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Abstract—Secure multi-party computation (MPC) enables
(joint) computations on sensitive data while maintaining pri-
vacy. In real-world scenarios, asymmetric trust assumptions
are often most realistic, where one somewhat trustworthy
entity interacts with smaller clients. We generalize previous
two-party computation (2PC) protocols like MUSE (USENIX
Security’21) and SIMC (USENIX Security’22) to the three-
party setting (3PC) with one malicious party, avoiding the
performance limitations of dishonest-majority inherent to 2PC.

We introduce two protocols, AUXILIATOR and SOCIUM,
in a machine learning (ML) friendly design with a fast online
phase and novel verification techniques in the setup phase.
These protocols bridge the gap between prior 3PC approaches
that considered either fully semi-honest or malicious settings.
AUXILIATOR enhances the semi-honest two-party setting with
a malicious helper, significantly improving communication by
at least two orders of magnitude. SOCIUM extends the client-
malicious setting with one malicious client and a semi-honest
server, achieving substantial communication improvement by
at least one order of magnitude compared to SIMC.

Besides an implementation of our new protocols, we pro-
vide the first open-source implementation of the semi-honest
3PC protocol ASTRA (CCSW’19) and a variant of the mali-
cious 3PC protocol SWIFT (USENIX Security’21).

Index Terms—Multi-Party Computation, Client-Malicious Set-
ting, 3PC, Asymmetric Trust, MPC

1. Introduction

In the current digital age, safeguarding sensitive user
data, including financial and health information, is of ut-
most importance. People are increasingly conscious of how
businesses use their data and the potential risks of some
of their most sensitive information falling into the wrong
hands. To address these concerns, laws like the General
Data Protection Regulation (GDPR) and the California Con-
sumer Privacy Act (CCPA) enforce stringent rules for data
handling. While these regulations address privacy concerns,
they also impose additional challenges in implementing
systems that benefit both businesses and customers while
still accessing private data.

∗This article is the full and extended version of an article published at
IEEE S&P’24 [18].

For a compelling real-world application, consider the
case of a business model where a service provider (SP) aims
to offer machine learning inference-as-a-service (MLaaS) to
its clients, as shown in Fig. 1. In this scenario, a client, such
as the owner of an online store, wants to assess the risk
of selling to a new customer who placed an invoice-based
order. The SP provides a credit scoring service to evaluate
the financial solvency of the customer and may offer addi-
tional services like payment fraud detection. These services
rely on ML inference, which has been covered in various
works such as [54], [62], [67], [80] for credit scoring, and
by Amazon for online payment fraud detection.1 The SP
possesses a proprietary ML model specifically trained for
the task at hand, which it wants to keep confidential. On
the other hand, the client aims to safeguard its customer’s
privacy by avoiding the exchange of personal data with the
SP. This helps to comply with regulations that restrict the
sharing of such data and prevents the SP from knowing with
whom the client conducts business. Additionally, the SP
might need large datasets to train its model before offering
the desired service. Although other companies could poten-
tially provide such data, a straightforward data exchange
raises privacy issues and could even be unlawful.
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Figure 1: Application where SP offers credit scoring / payment
fraud detection to a client that may be malicious. The client applies
these services to their customers’ data to verify their solvency.

To address the privacy concerns discussed above,
Privacy-Enhancing Technologies (PETs) can be deployed.
Secure multi-party computation (MPC) [56], [63], [78] is
one among such notable PETs, which enables a group
of parties to securely compute a joint function on their
private data. It ensures that only the outcomes are re-
vealed, preventing disclosure of any data beyond what can
be derived from the output. The industry is increasingly
adopting MPC2, especially for privacy-preserving machine

1. Amazon Fraud Detector, https://aws.amazon.com/fraud-detector/
2. See https://www.mpcalliance.org, https://mpc.cs.berkeley.edu
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learning (PPML), with major players such as Google [11],
Intel [10], Meta [48], and Microsoft [68] utilizing it.

From the perspective of MPC, trust among participants
can lead to two primary threat models: In the semi-honest
model, each party adheres to the protocol but attempts to
learn additional information from received messages. In the
malicious model, parties can arbitrarily deviate from the
protocol. In our MLaaS application, we place trust in the ser-
vice provider (SP) to act semi-honestly, given its established
reputation and role as a security solution provider, which
allows for the implementation of rigorous security measures
to minimize the risk of data breaches or hacks. However, it is
a strong assumption to expect that every individual client is
semi-honest [55]. A single malicious client gaining insights
into the SP’s ML model can be a significant threat to its
business model.

While there are semi-honest protocols like those in [4],
[42] that allow only additive errors in the computation
when dealing with malicious corruptions [41], [57], these
protocols are insufficient for our application. They do not
effectively prevent a malicious client from gaining access to
the ML model’s weights [55] or carrying out poisoning at-
tacks [38]. Therefore, a more direct solution in our scenario
involves using a secure two-party protocol (2PC) designed
for the malicious setting. However, this approach introduces
overhead for safeguarding against a potentially malicious SP,
even when assuming it to be semi-honest.

Similar to our application, many real-world scenarios are
best represented by an asymmetric trust setting because of
the heterogeneous nature of parties and their levels of trust-
worthiness. As a result, recent works like MUSE [55] and
SIMC [23] have adopted the client-malicious setting, where
the SP is assumed to be semi-honest, but the client can be
malicious. However, the classic client-malicious setting is
limited to two-parties (2PC), and protocols in this setting
have significantly more computation and communication
overhead than those in less stringent settings, such as three-
or four-party scenarios with honest majority [30], [53], [60],
[66]. Moreover, in the 2PC setting, security is only guaran-
teed with the possibility of an abort by a malicious party,
leading to Denial-of-Service (DoS) attacks [56]. In contrast,
settings with an honest majority can offer enhanced security
for real-world scenarios, including fairness, where honest
parties receive output whenever a malicious party does, and
robustness, which prevents DoS attacks by ensuring the
delivery of output to the honest parties [56].

Given the limitations in the 2PC setting, we propose a
configuration for our MLaaS application where the client
and SP agree to introduce an additional helper server, cre-
ating a three-party scenario (3PC). The helper server not
only enhances computational efficiency, but also contributes
to the system’s robustness. In our setup, the SP may manage
this helper server as well, ensuring non-collusion safeguards,
such as geographical separation to mitigate the risk of data
breaches during external attacks or outsourcing the helper
server to another SP for institutional separation.

The helper server is considered semi-honest, similar to
the SP, owing to shared reputation and legal considerations

accepted by both the client and the SP. Furthermore, we
explore a scenario in which the malicious client acts as a
helper, reflecting real-world scenarios involving low-end de-
vices as clients. We show that this configuration significantly
enhances efficiency compared to the two-party case where
only the client and SP are involved, both maintaining a semi-
honest behaviour. These scenarios are further detailed under
“Service Plans” in §1.2.

1.1. Related Work

This section provides a concise overview of related
works. Firstly, we highlight some of the prominent works in
the practical MPC domain. After that, we discuss the recent
research concerning non-symmetrical trust settings, which is
the main focus of our paper. We refer the reader to [27], [56],
[63] for a comprehensive analysis of related work on MPC.

MPC: In current research, most work on MPC falls into
two categories: those using Yao’s garbled circuits (GC) [79]
or linear secret-sharing (SS) [42] as the basis. Over the
years, GC-based research has seen notable progress in re-
ducing communication requirements and extending to mul-
tiple parties [7], [49], [70]. On the other hand, SS-based
research has expanded significantly, resulting in a wide
range of protocols [26], [29], [52], including more recent
advanced versions like silent-preprocessing [14], [28] and
function secret-sharing techniques [13], [33].

In addition to investigating MPC involving an arbitrary
number of parties, researchers have also focused on devel-
oping efficient optimizations tailored for a smaller number
of computation parties, typically up to four [4], [15], [17],
[65]. Especially, three-party (3PC) and four-party (4PC)
protocols, with an honest majority, have proven to result
in practically efficient protocols for advanced applications
like private machine learning [30], [53], [60], [66]. This
approach can also be used in scenarios with multiple parties,
where they can outsource their computations to a select few
agreed-upon compute parties [45], [77].

In the literature, there are several techniques and opti-
mizations, such as [16], [19], aimed at enhancing the prac-
tical performance of MPC protocols. In our protocols, we
leverage a mixed-protocol strategy and function-dependent
preprocessing, following the 3PC protocols employed
in [24], [51]. A mixed-protocol strategy combines arithmetic
and Boolean protocols from different domains, selecting
the most suitable one for each specific operation [34], [53],
[71]. In addition, function-dependent preprocessing aims to
minimize complexity of the online phase, ensuring optimal
performance when actual inputs are provided [8], [20],
[43]. This approach is particularly valuable in scenarios
like ML-as-a-Service, where computations are repeated
over the same circuit, allowing for efficient batching of
preprocessing across multiple protocol executions.

Protocols for non-symmetrical trust settings: The
standard semi-honest or malicious settings reflect homoge-
neous trust in all parties which hardly reflects many real-
world applications with heterogeneous participants. In the
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domain of PPML, this has recently sparked ever-growing
interest in what we call a fixed-corruption setting where only
a fixed and known subset of parties may be corrupted ma-
liciously. Semi-honest protocols offer insufficient protection
in such cases [38], [55], while malicious protocols for ho-
mogeneous trust provides protection against any party being
malicious resulting in significant performance overhead.

The non-symmetrical trust assumption we observe here
is not a novel concept in the literature. For example, in the
semi-honest GC protocol of Yao [79], securing against a ma-
licious evaluator is relatively straightforward by using secure
oblivious transfer against a malicious receiver. However,
achieving protection against a malicious garbler requires
significantly more expensive techniques (see [39] for dif-
ferent techniques). However, this trust assumption remained
unexplored from a real-world application perspective until
the recent work of MUSE [55], which explored the case
of a malicious client in the context of a client-server ML
inference protocol.

Subsequently, there were further developments in the
two-party (2PC) setting, such as [23], [36], [76], which
focused on enhancing efficiency and even examined the
opposite corruption scenario involving a malicious server.
In an orthogonal direction, [74] considered a three-party
setting with semi-honest security, but made the assumption
that one party was privileged and held more power than the
others. Similarly, in the domain of federated learning (FL),
ELSA [69] considered a 2PC semi-honest server setting
with malicious clients assisting the servers by providing
correlated randomness. Additionally, the recent work of [46]
explored a scenario with a dishonest majority and an extra
semi-honest helper party, demonstrating significant enhance-
ments in communication efficiency.

This work: We explore a fixed-corruption scenario in
the 3PC setting with an honest majority, which, to our
knowledge, has not been previously studied. Transitioning
from 2PC to an honest-majority case holds the potential
for substantial performance improvements, including the
removal of public-key operations like oblivious transfers,
and enables the attainment of higher security levels [4], [25],
[60]. To achieve an efficient online phase, we extend the 3PC
protocols used in ASTRA [24] and SWIFT [65], which em-
ploy function-dependent preprocessing and a mixed-protocol
strategy, representing the state-of-the-art in their respective
corruption settings. We proceed by elaborating on our exact
contributions.

1.2. Our Contributions

In this work, we introduce the first protocols for honest-
majority 3PC with an asymmetric corruption model, where
only one dedicated party can be maliciously corrupted. To
achieve this, we generalize the client-malicious setting from
MUSE [55] to the 3PC scenario by splitting the server’s task
in MUSE into two distinct parties. Our protocols allow one
party to act as a helper that is inactive during the majority
of the online phase, reducing operating costs. This leads

to two novel protocols and associated offerings that the
service provider (SP) can provide. The main contributions
are summarized as follows:

1) AUXILIATOR - 3PC with a malicious helper: Our first
novel protocol, AUXILIATOR, is designed for a malicious
helper. It builds upon the highly efficient semi-honest 3PC
protocol ASTRA [24], and maintains the same efficiency
in the online phase. Despite achieving stronger malicious
security, AUXILIATOR incurs only an overhead of at most
4× in total communication compared to ASTRA for ML
inference. This overhead can be reduced to below 2% with
additional local computation.

2) SOCIUM - 3PC with a malicious evaluator: Our second
protocol, SOCIUM, is designed for a fixed malicious evalua-
tor and is based on the malicious 3PC protocol SWIFT [51].
It achieves a similarly efficient online phase as that of
SWIFT and improves total communication for ML inference
by more than 8×, or over 1.35× when using additional local
computation for both protocols.

3) Streamlined online phase for performance: Our proto-
cols use the function-dependent preprocessing paradigm [8],
[20], [43], ideal for ML inference. The setup can be per-
formed by the SP and client at any time for future protocol
runs, while the client needs fast predictions when a poten-
tial customer places an order. Additionally, we design the
protocols for rings Z2ℓ , natively supported by standard CPU
architectures, resulting in more efficient local computation.

4) Options and insights for efficient setup: For prepro-
cessing, we offer two options: one optimizes local compu-
tation using triple sacrificing techniques [29] and cut-and-
choose [3], [40], while the other optimizes communication
using distributed zero-knowledge proofs [12]. Our novel
combination of triple sacrificing and matrix triples [61]
provides both asymptotic and practical improvements in
safeguarding matrix multiplication against malicious parties.

5) Spectrum between semi-honest and malicious 3PC:
AUXILIATOR and SOCIUM bridge the gap between semi-
honest and malicious honest-majority 3PC protocols in the
symmetric settings, by introducing scenarios where only
one fixed party can be malicious. They belong to the same
protocol family as ASTRA [24] and SWIFT [51], where one
party serves as a helper. The spectrum of protocols ranges
from ASTRA to AUXILIATOR and then SOCIUM, up to
SWIFT, with the adversary growing stronger when moving
from one protocol to the next. As the adversary’s strength
increases, the protocols become less efficient, allowing for
a fine-grained trade-off between adversarial strength and
efficiency in asymmetric settings as shown in Table 1 and
Table 2 in §6.1.

6) Machine learning friendly design: Our protocols offer
high-performance for ML tasks, supporting arithmetic for
linear and binary computation for non-linear layers, along
with corresponding conversions. Additionally, we provide
efficient matrix multiplication and free probabilistic trun-
cation protocols. The similarities to ASTRA and SWIFT
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enable easy access to further ML functionalities like com-
parison and fixed-point arithmetic operations (cf. full ver-
sion (Appendix B) for details).

TABLE 1: Total communication per multiplication (amortized)
for our protocols and related 3PC honest-majority protocols with
streamlined online phase. Setup can be based on sacrificing
(cf. §3.1) or distributed zero-knowledge proofs (DZKP, cf. §3.2).
σ denotes the statistical security parameter.

Sacrifice DZKP

ASTRA [24] none 2× Z2ℓ

AUXILIATOR (§4) helper 4× Z2ℓ+σ 1× Z2ℓ 2× Z2ℓ

SOCIUM (§5) evaluator 5× Z2ℓ+σ 2× Z2ℓ 3× Z2ℓ

SWIFT [51] any 9× Z2ℓ+σ 3× Z2ℓ 3× Z2ℓ

Protocol Malicious
Corruption

Setup
Online

1× Z2ℓ

7) Implementation, evaluation, and comparison: In ad-
dition to thoroughly evaluating our protocol’s communica-
tion, we provide open-source implementations of AUXIL-
IATOR and SOCIUM using triple sacrificing. We also offer
the first open-source implementations of ASTRA [24] and
SWIFT [51]3 using the same verification technique. Our
implementation, based on the MOTION [16] framework, is
available at https://encrypto.de/code/MOTION-FD. Notably,
this is the first instance where function-dependent prepro-
cessing is implemented in a versatile MPC framework.
Furthermore, we include a comparison with the related
2PC protocols ABY2.0 [65] and SIMC [23]. By extending
ABY2.0 with a malicious helper, AUXILIATOR achieves a
2 − 3 orders of magnitude improvement in setup commu-
nication. On the other hand, SOCIUM with an additional
semi-honest helper outperforms SIMC’s communication by
14− 60× without requiring computationally expensive ho-
momorphic encryption (HE).

8) Service plans: For MLaaS application, the choice of the
party acting as the helper allows the service provider (SP) to
offer various service plans with different pricing. SOCIUM
represents a standard plan where the client pays less to the
SP but needs to provide computational resources for one
evaluator. This setup allows the SP to save costs, as one of
its servers acts as the helper and can remain inactive for
most of the online phase. On the other hand, AUXILIATOR
is an advanced plan where the client pays more but only
needs to provide a helper during a batched setup phase. The
online phase is fully outsourced to the SP, which is bene-
ficial if the client lacks permanent computational resources
but can occasionally use, for example, cloud resources for
preprocessing. Additionally, there is a premium plan where
the client completely outsources the computation to the SP,
which can use a semi-honest 2PC protocol like ABY2.0 [65]
or run AUXILIATOR with an external untrusted helper. A
comparison of these plans and the setting considered by
MUSE [55] and SIMC [23], where the SP has only one
server, is provided in Fig. 2.

3. We consider the abort variant of SWIFT in [75].

Client SP
MUSE [55] / SIMC [23]

Prior: Single Server SP

Client SP

Inputs

Inputs

ABY2.0 [65]

Premium Plan

Client Helper SP

AUXILIATOR

Advanced Plan

Client SP

Helper

SOCIUM

Standard Plan

Figure 2: Comparing client-malicious setting: MUSE [55] /
SIMC [23] with a single non-colluding server with SP and our ser-
vice plans: Semi-honest 2PC outsourcing, e.g., using ABY2.0 [65],
AUXILIATOR: 3PC with a malicious helper, and SOCIUM: 3PC
with a malicious evaluator.

Outline of this work: In §2, we introduce the pre-
liminaries needed for subsequent sections. §3 provides a
technical overview of various techniques to protect against a
malicious adversary and how they are adapted to our asym-
metric setting. We then employ these techniques to construct
our protocols AUXILIATOR in §4 and SOCIUM in §5. In §6,
we perform both analytical and practical evaluations and
present a comprehensive comparison between our protocols
and related ones. Additional details relevant to this work are
provided in Appendix A, and Appendix B contains more
details on ML building blocks.

2. Preliminaries

Our protocols are designed to operate over the ring of
integers modulo 2ℓ for some ℓ ∈ N that we denote by
Z2ℓ . Note that setting ℓ > 1 corresponds to computation
in the arithmetic domain while ℓ = 1 corresponds to the
binary domain. The function to be computed is expressed
as a hybrid circuit, i.e., a circuit that may use arithmetic
as well as binary domains, and consists of multiplication /
AND and addition / XOR gates, as well as more specialized
gates such as matrix multiplication that are established
throughout the paper. To improve protocol performance,
we use input-independent but function-dependent prepro-
cessing [24], [65]. Furthermore, the servers use a collision-
resistant hash function, denoted by H(), as well as a pre-
shared pseudo-random function (PRF) key setup (see Ap-
pendix A.1) that facilitates the non-interactive generation of
shared randomness [4], [60].

2.1. Notations

The computation is conducted by three servers S0,S1,S2
that are pair-wise connected by private and authentic chan-
nels in a synchronous network. Similar to existing 3PC
protocols [24], [51], [66], we consider an asymmetric setting
where S0 helps to evaluate the given circuit while S1,S2
have the role of the evaluators. For simplicity, we sometimes
write, e.g., Si+1 which for i = 2 denotes S0.
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We denote the computational security parameter by κ
and the statistical security parameter by σ. For some of the
secret-sharing schemes we use in this paper, we may switch
between domains Z2ℓ and Z2ℓ+σ . In this case, extending a
sharing to the larger ring stands for padding all shares with
σ many zeroes on their left, and reducing a sharing to the
smaller ring stands for removing the σ most significant bits
on the left, i.e., taking all shares modulo 2ℓ. We distinguish
sharing over different domains by adding an index ℓ + σ
when considering domain Z2ℓ+σ by writing, e.g., ⟨v⟩ℓ+σ

instead of ⟨v⟩. Regarding secret-sharing, we also use the
notation ⟨A⃗⟩ to denote a matrix A⃗ that is secret-shared
element-wise. Furthermore, by 0⃗ we denote a matrix with
zero-entries only.

For applications dealing with real values like ML infer-
ence, we use the Fixed-Point Arithmetic (FPA) notation with
negative values being encoded in signed two’s complement
representation [21], [22], [61]. An integer v in FPA encodes
the value v · 2−d for a fixed d ∈ N similar to works such
as [24], [30], [60]. Moreover, operations like truncation after
multiplications are handled similar to the 3PC protocols in
ASTRA [24] and SWIFT [51] as these protocols form the
base for our constructions.

2.2. Security Model

We consider a static malicious adversary A, who gains
control over one of the three servers S0,S1,S2 at the onset
of the protocol. In contrast to a standard corruption scenario,
where the adversary can freely choose any server to corrupt
as long as it respects the maximum corruption threshold,
we focus on a specific setting where the adversary A is
only allowed to corrupt servers from a predetermined set
of participating servers. This setting, which is referred to
as fixed-corruption setting henceforth, has been recently
explored in the domain of two-party computation (2PC)
in works like [23], [36], [55], [76]. These works identified
practical scenarios in secure ML inference, where such re-
stricted corruption settings are applicable and demonstrated
improvements in terms of security and performance.

In the fixed-corruption setting with 3 servers, a proto-
col providing security with abort is sufficient as extending
it to provide robustness is very trivial. This is because,
once a corruption is detected, the remaining servers can
carry out the computation by excluding this server. This
also means that achieving the slightly weaker notion of
private robustness introduced in [30] is straightforward in
our setting. However, with respect to the credit scoring
application (see Fig. 1), we note a low incentive of the
potentially malicious client of trying to abort the protocol
execution as it is the sole receiver of outputs. Hence, we
focus on security with abort in the remainder of this paper.

Our protocols are not intended to satisfy the recently
introduced notion of Friends-and-Foes (FaF) security [2], in
which a malicious party is allowed to send its transcript to
a semi-honest party, with which the latter can try to break
the scheme’s privacy. Note that FaF security is proven to be
unfeasible for three parties in [2]. Moreover, in the credit

scoring application (see Fig. 1), a malicious client company
sending its transcript to one of SP’s servers contradicts this
company’s own incentive of protecting its inputs.

3. Protecting Against a Malicious Adversary

The central step of attaining security against a malicious
adversary, independent of whether it may corrupt any or just
some fixed party, is to ensure the correctness of multiplica-
tions, as this operation forms the building block requiring the
majority of interaction. Here, we consider multiple popular
verification methods over rings for this task that are well
suited to being moved to the setup phase. First, verification
by triple sacrificing [29], [31], [47] (§3.1) offers low com-
putational complexity while requiring communication linear
in the number of multiplication gates. Second, verification
by distributed zero-knowledge proofs [12], [15] (§3.2)
only requires sublinear communication at the expense of
higher computational complexity. The third approach is the
cut-and-choose method [3], [40], designed for the binary
domain with logical AND for multiplication, presented
in §A.2. Thus, we provide an opportunity to opt for either
low computation or low communication given a specific
network and hardware setting.

In this section, we review these verification methods and
discuss how they adapt to our fixed corruption setting where
only a single fixed server may turn malicious. Furthermore,
we generalize from multiplication to the verification of
matrix multiplication due to its significance, e.g., in the
evaluation of linear layers in machine learning inference.
For now, we simply assume some underlying linear secret-
sharing scheme where ⟨v⟩ is the sharing of v ∈ Z2ℓ between
all servers and specify additional required properties where
they are required.

3.1. Triple Sacrificing Approach

The original triple sacrifice method [31], [47] works over
fields and verifies the correctness of a triple (⟨a⟩, ⟨b⟩, ⟨c⟩),
i.e., that c = ab, by sacrificing a second correlated and
potentially incorrect triple (⟨â⟩, ⟨b⟩, ⟨ĉ⟩). Using the sacrifice
method in rings requires to use a larger ring to circumvent
problems that are introduced by non-zero elements not
necessarily being invertible in a ring as discussed in [1],
[29]. On a high level, this approach uses triples over the
larger ring Z2ℓ+σ to verify that a triple is valid in the smaller
ring Z2ℓ , i.e., c ≡2ℓ ab as shown in Proc. 1:

Procedure 1 Multiplication Triple Verification

1: Sample random r ∈ Z2σ .
2: Compute ⟨v⟩ℓ+σ = r⟨a⟩ℓ+σ − ⟨â⟩ℓ+σ .
3: Reconstruct v ∈ Z2ℓ+σ .
4: Compute ⟨w⟩ℓ+σ = v⟨b⟩ℓ+σ − r⟨c⟩ℓ+σ + ⟨ĉ⟩ℓ+σ .
5: Reconstruct w ∈ Z2ℓ+σ and abort if w ̸≡2ℓ+σ 0.

This method verifies the validity of triples by checking
if r(c − ab) ≡2ℓ+σ ĉ − âb. It fails with high probability if
(⟨a⟩, ⟨b⟩, ⟨c⟩) is incorrect over the smaller ring Z2ℓ .
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We observe that this approach can be generalized to
matrix triples [61], i.e., triples (⟨A⃗⟩ℓ+σ, ⟨B⃗⟩ℓ+σ, ⟨C⃗⟩ℓ+σ)
with A⃗ ∈ Zu×w

2ℓ+σ , B⃗ ∈ Zw×v
2ℓ+σ , C⃗ ∈ Zu×v

2ℓ+σ , where we wish to
verify that C⃗ ≡2ℓ A⃗ · B⃗. We generalize triple sacrificing as
shown in Proc. 2:

Procedure 2 Matrix Triple Verification

1: Sample random r ∈ Z2σ .
2: Compute ⟨V⃗⟩ℓ+σ = r⟨A⃗⟩ℓ+σ − ⟨ ⃗̂A⟩ℓ+σ .
3: Reconstruct V⃗ ∈ Zu×w

2ℓ+σ .

4: Compute ⟨W⃗⟩ℓ+σ = V⃗ · ⟨B⃗⟩ℓ+σ − r⟨C⃗⟩ℓ+σ + ⟨ ⃗̂C⟩ℓ+σ .
5: Reconstruct W⃗ ∈ Zu×v

2ℓ+σ and abort if W⃗ ̸≡2ℓ+σ 0⃗.

First, we will discuss optimizations for the verification
in Proc. 2, followed by a proof of its correctness.

For optimization, we batch multiple triple sacrifices. Un-
fortunately, batch verification results for fields as in [9], [64]
do not directly generalize to rings. This is due to reliance on
the Schwartz-Zippel lemma [72], [81] that itself relies on a
non-zero polynomial of degree d over some field F having
at most d+ 1 roots in F. For a ring Z2ℓ , this is clearly not
satisfied as f(X) = 2ℓ−1X has degree 1 but 2ℓ−1 many
roots. In addition, [9], [64] require polynomial interpolation
over fields which does not efficiently generalize to rings.
Batched verification that outputs triples over Z2ℓ exists [37],
but internally utilizes computation over fields based on the
work by [32] which increases computational complexity by
further computation modulo a prime.

Instead, we use the batching technique from [37], that is
fully compatible with the sacrifice approach from [1], [29].
Similar to [37], we use the same value r sampled in step 1
for all sacrifice instances that are executed in one batch.
Here, it only needs to be ensured that r is sampled randomly
and that it is unknown to a cheater before all required
triples have been generated. Also, the reconstruction of W⃗
for comparing all entries to 0 can be substituted with a
hash-based approach, contingent on the compatibility of the
secret-sharing scheme being utilized here. This approach
not only achieves constant communication for an arbitrary
number of batched sacrifice instances in step 5 but also
ensures that this communication remains independent of
matrix dimensions u and v. Further details, including the
applied secret-sharing schemes, will be provided later.

The overall communication for one verification mainly
comes from reconstructing V⃗ in step 3, while the commu-
nication of steps 1 and 5 amortize to 0, and other steps
are non-interactive. Thus, the communication cost is that of
reconstructing uw elements of Z2ℓ+σ . For u > v, the cost
can be improved to vw elements by generating the triple
(⟨B⃗⟩⊺ℓ+σ, ⟨A⃗⟩⊺ℓ+σ, ⟨C⃗⟩⊺ℓ+σ) and verifying C⃗⊺ = B⃗⊺ · A⃗⊺.

Lemma 3.1. Assume that step 5 in Proc. 2 is implemented
using a hash-based check that aborts if W⃗ ̸≡2ℓ+σ 0⃗
except for probability negligible in κ and accepts oth-
erwise. Then, for triples (⟨A⃗⟩ℓ+σ, ⟨B⃗⟩ℓ+σ, ⟨C⃗⟩ℓ+σ) and
(⟨ ⃗̂A⟩ℓ+σ, ⟨B⃗⟩ℓ+σ, ⟨ ⃗̂C⟩ℓ+σ), the matrix triple verification

in Proc. 2 accepts if C⃗ ≡2ℓ+σ A⃗·B⃗, and ⃗̂
C ≡2ℓ+σ

⃗̂
A·B⃗, i.e.,

no errors exists, and aborts except for probability negligible
in σ, κ if C⃗ ̸≡2ℓ A⃗ · B⃗, i.e., the triple is incorrect over Z2ℓ .

Proof. This proof is based on the proof for scalar multiplica-
tion in [29]. First, we define the potential errors introduced
by a cheating server as ∆⃗1 = C⃗− (A⃗ · B⃗) mod 2ℓ+σ and
∆⃗2 =

⃗̂
C− (

⃗̂
A · B⃗) mod 2ℓ+σ. It holds that

W⃗ ≡2ℓ+σ

(
(rA⃗− ⃗̂

A) · B⃗
)
− rC⃗+

⃗̂
C

≡2ℓ+σ r(A⃗ · B⃗)− (
⃗̂
A · B⃗)− rC⃗+

⃗̂
C

≡2ℓ+σ ∆⃗2 − r∆⃗1.

For the case when no errors exist, i.e., ∆⃗1 = ∆⃗2 = 0⃗,
W⃗ ≡2ℓ+σ 0⃗ and the hash-based check accepts.

Now, let us assume that C⃗ ̸≡2ℓ A⃗ · B⃗ and hence
∆⃗1 ̸≡2ℓ 0⃗, while the hash-based check accepts. Then, it
holds that W⃗ ≡2ℓ+σ 0⃗ except for probability negligible in
the computational security parameter κ. Let (i, j) be the
coordinates where Ci,j ̸≡2ℓ (A⃗ ·B⃗)i,j and thus, ∆1

i,j ̸≡2ℓ 0.
Let k ∈ Z be maximal such that 2k divides ∆1

i,j . Note that

k < ℓ and that
∆1

i,j

2k
can be inverted modulo 2ℓ+σ−k. Thus,

Wi,j ≡2ℓ+σ 0⃗

⇒ ∆2
i,j ≡2ℓ+σ r∆1

i,j

⇒
∆2

i,j

2k
≡2ℓ+σ−k r

∆1
i,j

2k

⇒
∆2

i,j

2k
·

(
∆1

i,j

2k

)−1

≡2ℓ+σ−k r.

As r is unknown to the cheater until after all triples have
been generated, ∆1

i,j ,∆
2
i,j have to be picked independent

of r. Hence, this equivalence holds with probability of at
most 2−σ−(ℓ−k) < 2−σ rendering the probability of the
verification accepting for incorrect C⃗ negligible in σ, κ.

3.1.1. Triple Sacrificing in the Fully Malicious Setting.
The triple verification approach in [37] uses replicated
secret-sharing (RSS) which works as follows: For a value
v ∈ Z2ℓ , ⟨v⟩ is called a RSS-share of v, if S0 holds
v0, v2 ∈ Z2ℓ , S1 holds v1, v0 ∈ Z2ℓ , and S2 holds
v2, v1 ∈ Z2ℓ , with v0+ v1+ v2 = v.4 With this sharing, the
amortized cost for step 1 in Proc. 2 becomes 0 as it only
requires each of the three servers to secret-share a fresh
random value. Similarly, step 3 incurs an amortized com-
munication of 3uw elements from Z2ℓ+σ [37]. Finally, [37]
implements the hash based check in step 5 as follows
(generalized to matrix triples here): For 0 ≤ i < 3, Si
broadcasts5 hi = H(W⃗0||W⃗1||W⃗2). For this, Si assumes
that W⃗i+1 = −W⃗i − W⃗i−1 as this is the only share it
does not hold directly. Then, if there is no hash collision,
W⃗ ̸≡2ℓ+σ 0⃗ implies that h0 = h1 = h2 does not hold which
will be detected by an honest server.

4. ℓ is replaced by ℓ+ σ when operating over a larger ring.
5. An echo-broadcast is sufficient for the case of abort.
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3.1.2. Triple Sacrificing in the Fixed Corruption Setting.
When only one fixed server can behave maliciously, we can
significantly simplify the verification process. W.l.o.g., as-
suming S0 and S1 are semi-honest, we can locally transform
a replicated sharing ⟨v⟩ into an additive sharing [u] between
these servers. S0 holds u0 = v0+v2, and S1 holds u1 = v1,
ensuring u = v. This allows them to perform the verification
in a semi-honest manner, without the third server.

Step 1 in Proc. 2 becomes non-interactive as S0,S1 can
locally sample r unknown to malicious S2. Step 3 sim-
plifies to semi-honest reconstruction among S0,S1, requir-
ing communication of 2uw elements from Z2ℓ+σ . Finally,
W⃗ = W⃗0 + W⃗1 = 0⃗ where W⃗0,W⃗1 are the [·]-shares, if
and only if W⃗0 = −W⃗1 in Z2ℓ+σ . This can be verified by
S0 computing h = H(W⃗0) and sending it to S1 that then
checks if h = H(−W⃗1).

3.1.3. Computation on Binary Rings. Adapting the triple
sacrificing for the binary domain (ℓ = 1) results in a large
overhead by lifting a single bit to a σ + 1 bit ring. E.g.,
in a fully malicious setting, this would require 369 bits of
communication in the preprocessing for a single AND gate
when σ = 40 (cf. §6). Instead, we switch to a computation-
ally lightweight cut-and-choose approach [3], [40] adapted
to our setting, and the details are provided in Appendix A.2.

3.2. Distributed Zero-Knowledge Proofs Approach

Using distributed zero-knowledge proofs (DZKPs) [12],
[15], one can verify the correctness of multiplication at
zero amortized communication overhead but higher local
computation than approaches like triple sacrificing (§3.1)
and cut-and-choose (Appendix A.2).

At a high level, verification of a multiplication using
DZKPs [15] involves each server proving the correctness
of their multiplication messages. In the context of 3PC
RSS protocols, [15] shows how to achieve this over the
maliciously-private6 protocol of [4], by utilizing the col-
lective availability of values in the statement among the
other two servers. The servers then construct a circuit for
the statement to be proved that evaluates to 0 if everything
is correct. [15] proposes a 2-round and log2(m) variant for
verifying a batch of m multiplications with trade-offs in
computation and communication.

Our 3PC protocols, AUXILIATOR (§4) and SO-
CIUM (§5), will seamlessly integrate with the DZKP ap-
proach above. We employ an extended version of DZKP [15]
for dot products, as proposed in SWIFT [51], [75] and
optimized for the known corruption setting. The specifics,
along with a detailed cost analysis for both variants of DZKP
for SWIFT, are provided in Appendix A.3.

4. AUXILIATOR: Untrusted Helper Case

We introduce AUXILIATOR, a 3PC protocol designed to
protect against a malicious helper server. In this protocol,

6. Privacy is maintained even during malicious corruption.

two semi-honest evaluators S1,S2 run an optimized online
phase with assistance from a potentially malicious helper
server S0 during the setup phase.

AUXILIATOR is based on the 3PC semi-honest protocol
ASTRA [24], [75], where S0 also acts as a helper during
setup phase. Both AUXILIATOR and ASTRA exhibit high
performance in arithmetic and binary worlds, with a par-
ticularly fast online phase that only involves two servers,7
further improving practical performance.

Since the malicious server S0 is only involved in the
setup phase, additional verification as discussed in §3 incurs
no online overhead over ASTRA. We now review ASTRA
briefly and discuss the modifications made to create AUX-
ILIATOR, which protect against the malicious S0.

4.1. Sharing Semantics

AUXILIATOR utilizes the same secret sharing schemes as
ASTRA, including intermediate [·]-sharing and ⟨·⟩-sharing.

Intermediate [·]-sharing. For a value v ∈ Z2ℓ , [v]
is an additive sharing of v between S1 and S2, i.e., S1 holds
v1 and S2 holds v2 such that v1 + v2 = v.

⟨·⟩-sharing. For v ∈ Z2ℓ , ⟨v⟩ is a replicated sharing
of v, where a random mask λv ∈ Z2ℓ is [·]-shared between
S1,S2 with S0 holding both shares of [λv] and S1,S2 hold
value mv ∈ Z2ℓ s.t. mv + λv = v. Writing down all shares
reveals the replicated nature of this scheme:

S0 : (λ1
v, λ

2
v), S1 : (λ1

v,mv), S2 : (λ2
v,mv)

The input sharing of a v ∈ Z2ℓ by Si follows ASTRA,
where servers non-interactively sample λ1

v and λ2
v s.t. Si

learns λv. This is followed by Si sending mv = v−λv to S1
and S2. In AUXILIATOR, a corrupt S0 may send inconsistent
mv. This can be easily thwarted by a hash-based check over
the mv values among S1 and S2. Similarly, reconstruction of
a value can be accomplished with S1 and S2, as they possess
the missing shares. Both secret-sharing schemes are linear,
meaning they allow computing any linear combination of
shared values without interaction. Additionally, any public
value or value known only to S1,S2 can be non-interactively
added to [v] by adding it to v1 or to ⟨v⟩ by adding it to mv.

4.2. Multiplication

ASTRA and AUXILIATOR differ mainly in their mul-
tiplication protocols. This section explores safeguarding
against a malicious S0 in ASTRA’s matrix multiplication.8
We prove security of AUXILIATOR in Appendix A.4.

Given ⟨X⃗⟩, ⟨Y⃗⟩ for some matrices X⃗ ∈ Zu×w
2ℓ

, Y⃗ ∈
Zw×v
2ℓ

, it holds that

Z⃗ := X⃗ · Y⃗ = (m⃗X + λ⃗X) · (m⃗Y + λ⃗Y)

= m⃗X · m⃗Y + m⃗X · λ⃗Y + λ⃗X · m⃗Y + λ⃗X · λ⃗Y.

7. If S0 provides inputs or receives output, it also participates in the
input and output phase at a low cost.

8. [24] does only contain protocols for multiplication and dot products,
but the generalization to matrices presented here is straightforward.
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ASTRA computes ⟨Z⃗⟩ = ⟨X⃗ · Y⃗⟩ based on the above
observation, as shown in Proc. 3.

Procedure 3 Matrix Multiplication in ASTRA [24], [75]

1: S0 generates [·]-sharing of γ⃗XY = λ⃗X · λ⃗Y among S1, S2.
2: Servers locally sample random [λ⃗Z] s.t. S0 learns λ⃗1

Z, λ⃗
2
Z.

3: S1,S2 compute [Z⃗] = m⃗X·m⃗Y+m⃗X·[λ⃗Y]+[λ⃗X]·m⃗Y+[γ⃗XY].
4: S1,S2 reconstruct m⃗Z by exchanging shares of [Z⃗]− [λ⃗Z].

Incorporating truncation. While operating over fixed-point
arithmetic, Proc. 3 allows free probabilistic truncation [61].
This is achieved by servers using [Z⃗/2d] in steps 3 and 4
of Proc. 3, instead of [Z⃗] [24], [75].
Malicious S0. The only opportunity for S0 to cheat in
Proc. 3 is in step 1, where it can generate [·]-shares for
an arbitrary γ⃗XY ̸= λ⃗X · λ⃗Y. By outsourcing this step to an
ideal functionality FMultPre, the remaining steps become se-
cure against both semi-honest and malicious helper settings.
AUXILIATOR uses this version and is presented in Fig. 3.

Input: ⟨·⟩-shares of X⃗ ∈ Zu×w
2ℓ

, Y⃗ ∈ Zw×v
2ℓ

.

Output: ⟨·⟩-shares of Z⃗ = X⃗ · Y⃗ ∈ Zu×v
2ℓ

.

Setup:

1. Invoke FMultPre([λ⃗X], [λ⃗Y]) to obtain [γ⃗XY = λ⃗X · λ⃗Y].

2. Non-interactively generate [λ⃗Z] by S0, S1 sampling random λ⃗1
Z ∈

Zu×v
2ℓ

, S0, S2 sampling random λ⃗2
Z ∈ Zu×v

2ℓ
.

Online:
1. For i ∈ {1, 2}, locally compute the following:

– Si: m⃗i
Z = (2− i) · m⃗X · m⃗Y+ m⃗X · λ⃗i

Y+ λ⃗i
X · m⃗Y+ γ⃗i

XY− λ⃗i
Z.

2. S1,S2 exchange m⃗1
Z, m⃗

2
Z and reconstruct m⃗Z = m⃗1

Z + m⃗2
Z

Protocol ΠMult(⟨X⃗⟩, ⟨Y⃗⟩)

Figure 3: Matrix multiplication in AUXILIATOR.

4.2.1. Instantiating FMultPre in AUXILIATOR. In ASTRA,
FMultPre consists of S0 and S1 sampling random γ⃗1

XY ∈
Zu×v
2ℓ

, and S0 sending γ⃗2
XY = λ⃗X · λ⃗Y − γ⃗1

XY to S2. This
semi-honest instantiation of FMultPre is denoted as Πsemi

MultPre.
To implement FMultPre securely in the presence of a mali-
cious S0, AUXILIATOR first uses Πsemi

MultPre to compute [γ⃗XY].
This is followed by a verification, using the techniques from
§3, and the details are presented next.

Triple Sacrificing and Cut-and-Choose: As discussed
in §3.1, a triple ([A⃗], [B⃗], [C⃗]) is verified using a second
triple ([

⃗̂
A], [B⃗], [

⃗̂
C]) with both triples being over a larger

ring Z2ℓ+σ . Now, to verify the triple ([λ⃗X], [λ⃗y], [γ⃗XY]),
servers locally map the triple to ([A⃗], [B⃗], [C⃗]), but over
the larger ring Z2ℓ+σ by extending each share’s entries by
σ number of zero bits. Regarding the second triple, random
[
⃗̂
A] can be generated non-interactively, while [

⃗̂
C] can be

obtained by running Πsemi
MultPre on [

⃗̂
A] and [B⃗]. The remaining

steps follows the verification described in §3.1.2.
Note that the local ring extension mentioned earlier

might not maintain correctness over the larger ring. E.g.,

we may have A⃗ ̸≡2ℓ+σ λ⃗X, but we can be certain that
A⃗ ≡2ℓ λ⃗X. This suffices as the final result of FMultPre will
be converted back to Z2ℓ for the subsequent online phase
to execute on.
Communication. The amortized cost of instantiating FMultPre

in AUXILIATOR with triple sacrificing for matrices in
Zu×w
2ℓ

,Zw×v
2ℓ

is 2u·(v+w) elements of Z2ℓ+σ (2×Πsemi
MultPre +

verification in §3.1.2). Also, using cut-and-choose for AND
incurs a communication of 11 bits (Appendix A.2.2). Table 2
in §6.1 provides an overview of the communication costs.

Distributed Zero-Knowledge Proofs: To verify the
correctness of Πsemi

MultPre, AUXILIATOR can use the extension
of DZKPs to dot products, proposed in SWIFT [51], [75].
Note that each entry p of γ⃗XY is the dot product of one row
a⃗ of λ⃗X and a column b⃗ of λ⃗Y. Hence, we can proceed by
verifying the correctness of each such dot product a⃗ · b⃗ = p

by checking the circuit c
({

a⃗1k, a⃗
2
k, b⃗

1
k, b⃗

2
k

}w

k=1
, p1, p2

)
:=

w∑
k=1

(
a⃗1kb⃗

1
k + a⃗1kb⃗

2
k + a⃗2kb⃗

1
k + a⃗2kb⃗

2
k

)
− p1 − p2 = 0. Here,

each variable is known to S0 as well as to at least S1 or
S2 and thus the DZKPs approach can be used directly. The
case for binary domain is similar except circuit c() being
replaced by a binary domain polynomial over 6 variables.
Communication: The amortized cost of instantiating
FMultPre with DZKPs for matrices in Zu×w

2ℓ
,Zw×v

2ℓ
is uv

elements of Z2ℓ for running Πsemi
MultPre, while the proof cost

amortizes to zero (see Appendix A.3). Furthermore, the
amortized cost of FMultPre for an AND operation is 1 bit.

5. SOCIUM: Untrusted Evaluator Case

In scenarios where the malicious server takes on the role
of an evaluator instead of a helper (as in AUXILIATOR), we
utilize our second protocol called SOCIUM. In this setup,
the semi-honest S0 acts as a helper, only participating in a
lightweight verification phase during the online execution,
while most of the verification occurs in the setup phase. To
avoid the expensive extension of the semi-honest ASTRA
protocol to safeguard against a potentially cheating evaluator
in the online phase (cf. ASTRA [24, §4.2]), we opt for the
robust and fully malicious 3PC protocol of SWIFT [51]9

as the basis for SOCIUM. SWIFT has the advantage of
moving all expensive verification to the setup phase. In the
following, we consider S2 as the malicious server, with the
case for malicious S1 being symmetrical. Leveraging the
semi-honest behavior of S0 and S1, we modify and optimize
SWIFT to suit our fixed corruption setting, resulting in our
novel protocol SOCIUM.

5.1. Sharing Semantics

In SOCIUM, we employ secret-sharing schemes from
SWIFT, including intermediate [·]-sharings, ⟨·⟩-sharings, and
J·K-sharings. It is important to note that although we use the

9. We use the simplified version of SWIFT presented in [75].
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same notations as AUXILIATOR, the sharing semantics are
not identical, despite some similarities.

Intermediate [·]-sharing. [v] is an additive sharing
of v ∈ Z2ℓ , where S0 holds v0, S1 holds v1 and S2 holds
v2 s.t. v = v0 + v1 + v2.

Intermediate ⟨·⟩-sharing. ⟨v⟩ is a replicated sharing
of v ∈ Z2ℓ , where S0 holds (v0, v2), S1 holds (v1, v0), and
S2 holds (v2, v1) s.t. v0 + v1 + v2 = v.

J·K-sharing. Sharing JvK of a value v ∈ Z2ℓ consists
of a random mask λv ∈ Z2ℓ that is ⟨·⟩-shared between
S0,S1,S2 and mv ∈ Z2ℓ held by S0,S1,S2 s.t. v = mv+λv.
Written out, the shares are:

S0 : (mv, λ
0
v, λ

2
v), S1 : (mv, λ

1
v, λ

0
v), S2 : (mv, λ

2
v, λ

1
v).

The input sharing and output reconstruction protocols
in SOCIUM closely resemble those in AUXILIATOR (§4.1).
However, in SOCIUM, the consistency check10 is necessary
only if a malicious S2 shares a value. Additionally, all
the sharings are linear, enabling the computation of linear
combinations of shared values in a non-interactive manner.

5.2. Multiplication

We begin with recalling the matrix multiplication in
SWIFT. Similar to AUXILIATOR, SWIFT uses the following
relation, as depicted in Proc. 4:

Z⃗ := X⃗ · Y⃗ = m⃗X · m⃗Y + m⃗X · λ⃗Y + λ⃗X · m⃗Y + λ⃗X · λ⃗Y.

The shares of ⟨m⃗Z⟩ in step 4 of Proc. 4 are distributed
among the servers as follows:

S0,S1 : m⃗0
Z = m⃗X · λ⃗0

Y + λ⃗0
X · m⃗Y + γ⃗0

XY − λ⃗0
Z

S1,S2 : m⃗1
Z = m⃗X · λ⃗1

Y + λ⃗1
X · m⃗Y + γ⃗1

XY − λ⃗1
Z

S2,S0 : m⃗2
Z = m⃗X · λ⃗2

Y + λ⃗2
X · m⃗Y + γ⃗2

XY − λ⃗2
Z + m⃗X · m⃗Y

Procedure 4 Matrix Multiplication in SWIFT [51], [75]

1: Generate ⟨·⟩-sharing of γ⃗XY = λ⃗X · λ⃗Y using FMultPre.
2: Locally sample random ⟨λ⃗Z⟩.
3: Compute ⟨Z⃗⟩ = m⃗X · m⃗Y + m⃗X · ⟨λ⃗Y⟩+ ⟨λ⃗X⟩ · m⃗Y + ⟨γ⃗XY⟩.
4: Reconstruct m⃗Z by exchanging shares of ⟨m⃗Z⟩ = ⟨Z⃗⟩−⟨λ⃗Z⟩.

In SWIFT, all the messages sent to or received from
helper S0 are delayed to a final verification phase, allowing
S0 to remain inactive for most of the online phase of the
protocol. The specific sequence of sent messages during
the online phase, using hash-based consistency checks, is
illustrated in Fig. 4 for a small example circuit.

Each layer of multiplications in Fig. 4, corresponding
to Z⃗ and W⃗, requires one round where S1,S2 interact. S0
receives m⃗1

U for each multiplication output U⃗ ∈ {Z⃗,W⃗}
only during the final verification in a single round. This is

10. SWIFT ensures consistency through its jsend primitive, which also
identifies an honest party when detecting inconsistency. Although this is
necessary for robustness, the hash-based check is enough to achieve security
with abort in SWIFT [75]. In our fixed-corruption setting, abort security is
sufficient, making robustness straightforward.

followed by sending of hash values by S0 to S1,S2. Thus,
the verification phase requires only constant 2 rounds for
arbitrarily many previous online rounds introduced by the
depth of the computed circuit.

S0 S1 S2
m⃗X, m⃗Y, m⃗V m⃗X, m⃗Y, m⃗V m⃗X, m⃗Y, m⃗V

Compute m⃗0
Z, m⃗

1
Z Comp. m⃗1

Z, m⃗
2
Z

m⃗0
Z m⃗2

Z
Reconstruct m⃗Z Rec. m⃗Z

Comp. m⃗0
W, m⃗1

W Comp. m⃗1
W, m⃗2

W
m⃗0

W m⃗2
W

Rec. m⃗W Rec. m⃗W

m⃗1
Z, m⃗

1
W

H(m⃗1
Z||m⃗1

W)
Check

Rec. m⃗Z, m⃗W

H(m⃗2
Z||m⃗2

W)

H(m⃗0
Z||m⃗0

W)
Check Check

Figure 4: Messages sent during the online phase in SWIFT while
computing JW⃗K =

(
JX⃗K · JY⃗K

)
·JV⃗K = JZ⃗K·JV⃗K (excludes input

sharing and output reconstruction). The sent values are colored to
match their respective consistency checks.

Malicious S2. We now explain how to tackle a malicious S2
in SOCIUM. Note that any message from S0 or S1 doesn’t
need a consistency check, reducing required checks by 3×.
Also, we let semi-honest S1 to send m⃗0

Z+m⃗1
Z directly to S2.

This simplifies the protocol by eliminating the need for S2
to compute m⃗1

Z during the online phase, which also removes
the requirement for S2 to obtain γ⃗1

XY in the setup phase.

Input: J·K-shares of X⃗ ∈ Zu×w
2ℓ

, Y⃗ ∈ Zw×v
2ℓ

.

Output: J·K-shares of Z⃗ = X⃗ · Y⃗ ∈ Zu×v
2ℓ

.

Setup:

1. Invoke F ′
MultPre on ⟨λ⃗X⟩ and ⟨λ⃗Y⟩ to obtain ⟨γ⃗XY⟩′ with γ⃗XY =

λ⃗X · λ⃗Y (S0 has γ⃗0
XY, γ⃗2

XY ; S1 has γ⃗1
XY, γ⃗0

XY ; S2 has γ⃗2
XY).

2. Non-interactively generate ⟨λ⃗Z⟩ by Si, Si+1 sampling random
λ⃗i
Z ∈ Z2ℓ for i ∈ {0, 1, 2}.

Online:
1. Locally compute the following (S0 during final verification):

– S1 : m⃗0
Z = m⃗X · λ⃗0

Y + λ⃗0
X · m⃗Y + γ⃗0

XY − λ⃗0
Z.

– S1 : m⃗1
Z = m⃗X · λ⃗1

Y + λ⃗1
X · m⃗Y + γ⃗1

XY − λ⃗1
Z.

– S2, S0: m⃗2
Z = m⃗X · λ⃗2

Y + λ⃗2
X · m⃗Y + γ⃗2

XY − λ⃗2
Z + m⃗X · m⃗Y .

2. S1 sends m⃗0
Z + m⃗1

Z to S2, while S2 sends m⃗2
Z to S1.

3. S1,S2 reconstruct m⃗Z = m⃗0
Z + m⃗1

Z + m⃗2
Z.

Final Verification (batched over all multiplications):

1. S1 sends m⃗0
Z + m⃗1

Z to S0.

2. S0 computes m⃗2
Z and reconstructs m⃗Z = m⃗0

Z + m⃗1
Z + m⃗2

Z.

3. S0 sends H(m⃗2
Z) to S1 who checks consistency to the m⃗2

Z it received
from S2.

Protocol ΠMult(JX⃗K, JY⃗K)

Figure 5: Matrix multiplication in SOCIUM.
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For the simplification above, we replace FMultPre in
SWIFT with a modified functionality F ′

MultPre. This func-
tionality computes ⟨γ⃗XY⟩′, which is an incomplete repli-
cated sharing lacking γ⃗1

XY possessed by S2, unlike ⟨γ⃗XY⟩.
Accordingly, we let S1 to send m⃗0

Z + m⃗1
Z to S0 during

the verification in the online phase as well. The resulting
multiplication protocol in the F ′

MultPre-hybrid model is given
in Fig. 5. Similar to SWIFT, it needs 3uvℓ bits of online
communication, and one round per multiplication (amor-
tized), but reduces hash-based verification by 3×.
Incorporating truncation. In contrast to SWIFT, SOCIUM
allows for free probabilistic fixed-point truncation [61], simi-
lar to AUXILIATOR. To see this, note that the multiplication
in SOCIUM allows the servers S1 and (S2,S0) to locally
compute a 2-out-of-2 additive sharing of Z⃗. Specifically,

S1 : Z⃗1 = (m⃗0
Z + m⃗1

Z) + (λ⃗0
Z + λ⃗1

Z)

S2,S0 : Z⃗2 = m⃗2
Z + λ⃗2

Z.

Then, for U⃗ = Z⃗/2d and λ⃗j
U = λ⃗j

Z for j ∈ {0, 1, 2}, servers
locally set the shares as follows:

S1 : m⃗0
U + m⃗1

U = (Z⃗1/2
d)− (λ⃗0

U + λ⃗1
U)

S2,S0 : m⃗2
U = (Z⃗2/2

d)− λ⃗2
U.

The remaining steps follow a similar protocol as the multi-
plication in Fig. 5, but now using U⃗ instead of Z⃗.

5.2.1. Instantiating F ′
MultPre in SOCIUM. To instantiate

FMultPre, SWIFT employs Πsemi
MultPre, a semi-honest multi-

plication protocol [4], [26], followed by verification using
DZKPs [15]. The protocol can further be extended to handle
matrix multiplication of C⃗ = A⃗ · B⃗, as shown in Proc. 5.

Procedure 5 Πsemi
MultPre: Semi-honest matrix multiplication [4], [26]

1: Locally sample [α⃗] with α⃗ = 0⃗ ∈ Zu×v

2ℓ
as in [4].

2: Locally compute [C⃗] for C⃗ = A⃗ · B⃗:

S0 : C⃗0 = A⃗0 · B⃗0 + A⃗0 · B⃗2 + A⃗2 · B⃗0 + α⃗0

S1 : C⃗1 = A⃗1 · B⃗1 + A⃗1 · B⃗0 + A⃗0 · B⃗1 + α⃗1

S2 : C⃗2 = A⃗2 · B⃗2 + A⃗2 · B⃗1 + A⃗1 · B⃗2 + α⃗2

3: [C⃗] to ⟨C⃗⟩: Si sends C⃗i to Si+1 for 0 ≤ i < 3.

While computing γ⃗XY = λ⃗X · λ⃗Y using Πsemi
MultPre, note

that SOCIUM only requires ⟨γ⃗XY⟩′ to be computed instead
of ⟨γ⃗XY⟩. Thus, step 3 in Proc. 5 can be simplified: S0
sends γ⃗0

XY to S1, and S2 sends γ⃗1
XY to S0. We use Πsemi′

MultPre
to denote this simplified version that computes ⟨γ⃗XY⟩′.
Note that Πsemi′

MultPre is maliciously private, meaning that a
malicious adversary can only compromise correctness by
introducing an additive error s.t. γ⃗XY = λ⃗X · λ⃗Y + δ⃗,
but not privacy, like Πsemi

MultPre [57]. Next, we’ll review how
the verification techniques from §3, along with Πsemi′

MultPre,
are applied in SOCIUM to securely instantiate F ′

MultPre. We
prove security of SOCIUM in Appendix A.4.

Triple Sacrificing and Cut-and-Choose: This is done
similar to AUXILIATOR, where the triple to be verified
(⟨λ⃗X⟩, ⟨λ⃗Y⟩, ⟨γ⃗XY⟩′) is mapped to (⟨A⃗⟩, ⟨B⃗⟩, ⟨C⃗⟩′) over
Z2ℓ+σ and the triple (⟨ ⃗̂A⟩, ⟨B⃗⟩, ⟨ ⃗̂C⟩′) is generated using
Πsemi′

MultPre. S0,S1 can convert these triples to an additive
sharing among them locally and perform verification using
the sacrificing approach in §3.1.2.

Since sacrificed triples immediately become additive
sharings between S0,S1, Πsemi′

MultPre doesn’t require S0 to send
⃗̂
C0 to S1. S2 sending ⃗̂

C2 is enough for S0 to participate in
verification using share ⃗̂

C0 +
⃗̂
C2 while S1 uses ⃗̂

C1.
Communication. The amortized cost of instantiating
F ′

MultPre in SOCIUM with triple sacrificing for matrices in
Zu×w
2ℓ

,Zw×v
2ℓ

is 3uv+2uw elements of Z2ℓ+σ (2×Πsemi′

MultPre
+ verification §3.1.2). Similarly, using cut-and-choose for
AND incurs a communication of 12 bits (cf. §A.2.2). Table 2
in §6.1 provides an overview of the communication costs.

Distributed Zero-Knowledge Proofs: Similar to AUX-
ILIATOR, checking the correctness of Πsemi′

MultPre using DZKPs
involves verifying if the value γ⃗2

XY sent by S2 to S0
is correct (§3.2). For this, given a row a⃗ of λ⃗X and
a column b⃗ of λ⃗Y, we apply the DZKP proof for
dot-product from SWIFT [51], [75] that verifies a⃗ ·
b⃗ = p as follows: c

({
a⃗1k, a⃗

2
k, b⃗

1
k, b⃗

2
k

}w

k=1
, α2, p2

)
:=

w∑
k=1

(
a⃗2kb⃗

2
k + a⃗2kb⃗

1
k + a⃗1kb⃗

2
k + a⃗2kb⃗

2
k

)
+ α2 − p2 = 0.

Communication. The amortized cost of instantiating F ′
MultPre

with DZKPs for matrices in Zu×w
2ℓ

,Zw×v
2ℓ

is 2uv elements
of Z2ℓ for running Πsemi′

MultPre, while the proof cost amortizes
to zero (see Appendix A.3). Furthermore, the amortized cost
of F ′

MultPre for an AND operation is 2 bits.

6. Evaluation

In §6.1, we evaluate AUXILIATOR (§4) and SO-
CIUM (§5) against semi-honest ASTRA [24] and malicious
SWIFT [51], providing a comprehensive comparison among
these closely related 3PC protocols. Additionally, we com-
pare AUXILIATOR to the related 2PC semi-honest protocol
ABY2.0 [65] in §6.2 to investigate the benefits of using an
untrusted but non-colluding helper. Additional benchmarks
to investigate the scalability of our protocols’ application
in machine learning are provided in §A.5. Moreover, we
provide a comparison between SOCIUM and SIMC [23]
for the client-malicious setting in §6.3, and §A.6 compares
AUXILIATOR to ELSA [69], a federated learning [59] pro-
tocol with asymmetric trust.

Choice of Parameters: In our evaluation, we use ring
size ℓ = 64 and computational security parameter κ = 128.
For triple sacrificing (§3.1), we set the statistical security
parameter σ = 64, running on Z2128 for optimal hardware
support. For cut-and-choose and DZKPs, we use σ = 40 and
a batch size of 220. We also employ the logarithmic round
variant of DZKPs (Appendix A.3), with communication of
0.24 bits per multiplication or 0.35 bits per dimension for

10



a dot product over 1024-length vectors. Note that matrix
multiplication naturally batches proofs for dot products,
resulting in a smaller actual batch size. Throughout the sec-
tion, “sacrificing” refers to using sacrificing in the arithmetic
and cut-and-choose in the binary domain for brevity.

Implementation and Benchmarking Environment:
Besides a theoretical communication analysis, we implement
ASTRA, AUXILIATOR, SOCIUM, and SWIFT in the MPC
framework MOTION [16] to benchmark runtimes.11 Due
to the complexity of implementing four protocols, we use
only triple sacrificing (cf. §3.1) as the verification method,
including in the binary domain.12 We run our benchmarks
on three servers, each equipped with a 16-core Intel Core i9-
7960X CPU at 2.8GHz and 128GB of RAM at 2666MHz.
Furthermore, we consider a LAN setting with 10Gbit/s
bandwidth and 1ms round-trip time (RTT), and a WAN
setting with 100Mbit/s bandwidth and 100ms RTT.

Evaluation for ML Inference: Parts of our evaluation
consider ML inference as a possible application of our
protocols. For that, we consider a 2-layer convolutional
neural network (CNN) trained on the MNIST dataset and a
7-layer CNN trained on the CIFAR-10 dataset, both CNNs
being from MiniONN [58]. In line with MUSE [55] and
SIMC [23], we replace max pooling for MNIST by average
pooling. Hence, we require gates for (matrix-)multiplication
and fixed-point truncation for linear layers as well as rec-
tified linear units (ReLUs) for the non-linear layers. The
required gates for ReLUs are provided by ASTRA and
SWIFT and a translation to AUXILIATOR and SOCIUM is
straightforward. For completeness regarding the multitude
of required truncation and ReLU realizations for all proto-
cols, we refer to Appendix B. We implement the different
linear and non-linear layers separately and aggregate their
individual performances for our runtime evaluations.

6.1. Spectrum: Semi-Honest to Malicious 3PC

In Table 2, we provide the amortized cost for multiplica-
tion, AND gates, and matrix multiplication in ASTRA [24],
AUXILIATOR(§4), SOCIUM(§5), and SWIFT [51]. Notably,
AUXILIATOR is based on ASTRA, and SOCIUM is based on
SWIFT, resulting in same online communication for ASTRA
and AUXILIATOR, as well as for SOCIUM and SWIFT.

Per-Gate Performance: The setup communication over-
head for one multiplication using sacrificing over semi-
honest ASTRA is as follows: It is a factor of 4 for AUX-
ILIATOR, 5 for SOCIUM, and 9 for SWIFT, in addition to
the overhead of working on an extended ring Z2ℓ+σ , which
adds another 2× for our settings. In the case of matrix
multiplication, the overhead factor is split between a uv part
representing the output dimensions, and a uw part for the
dimensions of the first input matrix. For dot products, i.e.,
u = v = 1 and w > 0, the overhead for sacrificing becomes
more evident as the communication becomes linear in the
vector dimension w, whereas it’s independent in ASTRA. A

11. https://encrypto.de/code/MOTION-FD
12. We use σ = 63 in sacrificing for optimal hardware support on Z264 .

similar trend in communication is observed for the binary
domain as well, where the overhead gradually increases
from AUXILIATOR over SOCIUM to SWIFT.

When using DZKP for verification, the amortized setup
cost for AUXILIATOR matches that of ASTRA, i.e., pro-
tection against a malicious helper comes for free regarding
communication. SOCIUM has an overhead of 2× over both
ASTRA and AUXILIATOR, but outperforms SWIFT by 33%.
Also, AUXILIATOR requires 3× fewer DZKPs than SWIFT.

For both verification approaches, we observe a spectrum
between fully semi-honest and malicious 3PC. The protocol
complexity increases for a stronger malicious adversary:
a fixed malicious evaluator as in SOCIUM requires more
expensive protection than a malicious helper as in AUXILIA-
TOR, but the highest cost comes with a malicious adversary
able to corrupt any party.

Performance for ML Inference: The communication
for ML inference using CNNs in MiniONN [58] is given
in Fig. 6. In the online phase, SOCIUM requires 1.68−1.69×
more communication than AUXILIATOR due to S0’s involve-
ment in the final verification phase. The online communica-
tion of ASTRA and AUXILIATOR or SWIFT and SOCIUM,
respectively, are similar, with small deviations stemming
from slightly different truncation and ReLU protocols, af-
fecting how computation is distributed between setup and
online phases.
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Figure 6: Total ML inference communication for ASTRA [24],
AUXILIATOR (§4), SOCIUM (§5), and SWIFT [51] using triple
sacrificing (§3.1) with cut-and-choose for binary domain (§A.2)
and distributed zero-knowledge proofs (§3.2) otherwise. The costs
are split between linear and non-linear layers. Numbers reported
on top of bars state setup + online communication.
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TABLE 2: Comparison of amortized setup and online communication for ASTRA [24], AUXILIATOR (§4), SOCIUM (§5), and SWIFT [51]
in ring elements/bits. Dimensions for matrix multiplication are u × w,w × v. Setup communication is given (except for semi-honest
ASTRA) for verification using triple sacrificing §3.1/cut-and-choose §A.2 and distributed zero-knowledge proofs (DZKP) §3.2.

Operation
Verification method Sacrifice DZKP Cut-and-Choose DZKP Sacrifice DZKP

ASTRA [24]
AUXILIATOR (§4) 4× Z2ℓ+σ 1× Z2ℓ 11 bits 1 bits (2uv + 2uw)× Z2ℓ+σ uv × Z2ℓ

SOCIUM (§5) 5× Z2ℓ+σ 2× Z2ℓ 12 bits 2 bits (3uv + 2uw)× Z2ℓ+σ 2uv × Z2ℓ

SWIFT [51] 9× Z2ℓ+σ 3× Z2ℓ 21 bits 3 bits (6uv + 3uw)× Z2ℓ+σ 3uv × Z2ℓ

ASTRA [24]/AUXILIATOR (§4)
SWIFT [51]/SOCIUM (§5)

Multiplication AND Matrix Multiplication

Setup phase

1× Z2ℓ 1 bits uv × Z2ℓ

Online phase (including final verification if applicable)

2× Z2ℓ 2 bits 2uv × Z2ℓ

3× Z2ℓ 3 bits 3uv × Z2ℓ

The total communication of AUXILIATOR with DZKP
has an overhead of only 0.8-1.4% compared to ASTRA.
On the other side, the overhead when using sacrificing
is 3.6-4.1× while providing cheaper local computation.
When using DZKP, the total communication of SOCIUM
is 2.05× worse than AUXILIATOR and 1.35-1.37× better
than SWIFT. For sacrificing, it is 1.59-1.67× worse than
AUXILIATOR and 8.37-8.57× better than SWIFT. Sacrific-
ing instead of DZKP increases the setup by 9.22-10.54× for
AUXILIATOR, 5.43-5.90× for SOCIUM, and 30.65-33.23×
for SWIFT. We observe that the substantial overhead of
SWIFT with sacrificing is mainly due to the linear layers,
which have an overhead of over 80× compared to the DZKP
variant. This is because sacrificing is inefficient for dot
products in SWIFT, that are necessary for truncation.

In general, the main bottleneck is the non-linear layers,
accounting for 74.9-88.8% of the overall communication.
However, in the sacrificing variant of SWIFT, the linear
layers cause over 83% of the overall communication due to
aforementioned issues regarding truncation. The protocols
require 28-35 online rounds for MNIST and 64-75 rounds
for CIFAR-10, mainly due to ReLUs implemented with
depth logarithmic in ℓ.

We provide measured runtimes of our implementations
in Fig. 7 for both LAN and WAN network settings. It’s
important to note that we use triple sacrificing not only
for arithmetic but also for binary computation. As a result,
the non-linear layers significantly bottleneck the protocol
execution, more than expected for an optimized implemen-
tation using cut-and-choose (§A.2). Online runtimes are gen-
erally similar between all protocols, with slight deviations
attributed to differences in truncations, ReLUs, compiler-
side optimizations, and scheduling. However, it is worth
noting that both ASTRA and AUXILIATOR involve only two
servers during the online phase, while the rest require the
helper’s involvement for the verification part.

Efficient batching reduces the previously observed sig-
nificant communication overhead of SWIFT truncation. For
LAN, the setup of AUXILIATOR is 2.50-8.99× slower than
ASTRA, while SOCIUM is 1.51-1.73× faster than SWIFT.
For WAN, these factors are 3.67-8.68× and 1.61-1.62×,
respectively.
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Figure 7: Total ML inference runtimes for our implementations of
ASTRA [24], AUXILIATOR (§4), SOCIUM (§5), and SWIFT [51]
using triple sacrificing (§3.1). The costs are split between linear and
non-linear layers. Numbers reported on top of the bars correspond
to setup + online runtimes.

6.2. Why to Keep a Malicious Helper: AUXILIA-
TOR vs ABY2.0

The setting of AUXILIATOR where a helper turns mali-
cious has a straightforward solution: exclude the helper and
run a semi-honest 2PC protocol between both evaluators.
ABY2.0 [65], the state-of-the-art for this setting, follows
precisely this approach. It uses similar secret-sharing se-
mantics as ASTRA [24] and AUXILIATOR, and has a nearly
equal online phase while emulating the helper in 2PC, for
example, based on oblivious transfer (OT). In this context,
we investigate the benefits of using a malicious helper in
AUXILIATOR compared to the baseline of ABY2.0.

ABY2.0 uses an OT-based setup using the correlated OT
from IKNP-style OT extension [5], [44]. An alternate option
for ABY2.0 is to instantiate the OT using the SilentOT
approach [14]. SilentOT, similar to DZKP compared to
sacrificing for AUXILIATOR, results in less communication
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but more computation. In the binary domain, SilentOT was
shown in [17] to decrease the setup cost per AND gate from
134 bits13 to 4 bits, plus the cost of 2 random OTs, which
can be decreased below 1 bit. For simplicity, we assume
zero communication per random OT. In the arithmetic do-
main, it is possible to replace the correlated OT in ABY2.0
with a random OT, converted to a correlated OT using the
conversion from [16], reducing the setup communication for
64-bit multiplication from 24 576 bits to 8 320 bits.14

TABLE 3: Setup communication (in MB) for ML inference in
ABY2.0 [65] when using either IKNP-style setup or SilentOT [14]
as well as for AUXILIATOR using sacrificing or DKZPs (§4).

IKNP-style SilentOT Sacrifice DZKP

Linear 1952.95 661.17 1.35 0.10
Non-linear 31.32 1.38 3.73 0.38

Total 1984.27 662.54 5.08 0.48

Linear 178974.16 60590.31 10.46 1.48
Non-linear 524.25 23.04 62.43 6.42

Total 179498.40 60613.36 72.89 7.90

Network Layers
ABY2.0 [65] AUXILIATOR (§4)

MNIST

CIFAR-10

In Table 3, we compare ML inference setups between
ABY2.0 with either IKNP-based OT extension or SilentOT
and AUXILIATOR based on either sacrificing or DZKP. It is
evident that even sacrifice-based AUXILIATOR significantly
outperforms both variants of ABY2.0 by at least two or-
ders of magnitude, confirming the substantial benefits of
adding a non-colluding but malicious helper. The improve-
ment is particularly prominent in the linear CNN layers,
where sacrifice-based AUXILIATOR outperforms IKNP-style
ABY2.0 by 1 442-17 112×, and SilentOT-based ABY2.0
by 488-5 793×, with DZKP-based AUXILIATOR providing
roughly another order of magnitude of improvement.

However, this advantage decreases significantly for non-
linear layers: AUXILIATOR using sacrifice outperforms
IKNP-style ABY2.0 by only 8.40×, and AUXILIATOR us-
ing DZKP outperforms SilentOT-based ABY2.0 by 3.59×.
Interestingly, the computationally expensive SilentOT-based
ABY2.0 outperforms the computationally cheap sacrifice-
based AUXILIATOR by 2.71×. Depending on the efficiency
of SilentOT and DZKP implementations, it may be an option
to use a sacrifice-based malicious helper for linear layers and
switch to SilentOT-based ABY2.0 for non-linear layers, as
both protocols’ secret-sharing semantics are compatible.

The advantage of ABY2.0 with SilentOT for non-linear
layers is due to the low cost of one AND gate, which
is roughly 4 bits. In contrast, the cut-and-choose based
AUXILIATOR requires 11 bits of communication. On the
other hand, the significant advantage of AUXILIATOR over
ABY2.0 for linear layers can be attributed to two fac-
tors. First, the cost of a multiplication is much higher for
ABY2.0. While a multiplication triple comes nearly for free

13. This includes an optimization for binary domain that ABY2.0 uses
and which is based on [35].

14. It is possible to generate a multiplication triple using random OT, as
described in [47], followed by Beaver’s multiplication [6]. However, this
approach is slightly more expensive.

in the binary domain using SilentOT, it does not in the
arithmetic domain. Second, AUXILIATOR based on sacrifice
has a setup cost of (2uv + 2uw) elements of Z2ℓ+σ for
multiplying matrices of dimensions u× w,w × v, which is
u·(v+w)/2× the cost of a scalar multiplication. In contrast,
ABY2.0 uses naive matrix multiplication in its setup due to
the lack of a helper, resulting in a matrix multiplication
setup cost of uvw× the cost of a scalar multiplication. E.g.,
for the second convolution layer of the CNN for CIFAR-10,
these factors are approximately ≈ 51k for AUXILIATOR, but
≈ 37 749k for ABY2.0.

6.3. Semi-Honest Helper in the Client-Malicious
Setting: SOCIUM vs SIMC

It is predictable that the client-malicious setting, i.e., the
2PC setting with a malicious client and semi-honest server,
as introduced by MUSE [55] only allows for less efficient
protocols than an honest majority 3PC setting. However, we
are interested in investigating the impact of adding a semi-
honest non-colluding helper to the setting and comparing
it to the state-of-the-art protocol for ML inference in the
client-malicious 2PC setting, SIMC [23]. Hence, we perform
a comparison between SIMC and our more generic MPC
protocol SOCIUM (§5).

TABLE 4: Total communication (in MB) for ML inference in
SIMC [23] and SOCIUM with either sacrificing or DKZPs (§5).

Sacrifice DZKP

Linear 50 1.95 0.45
Non-linear 133 8.86 2.62

Total 183 10.81 3.08

Linear 140 20.01 7.08
Non-linear 2240 148.33 43.90

Total 2380 168.34 50.98

Network Layers SIMC [23]
SOCIUM (§5)

MNIST

CIFAR-10

Table 4 provides a comparison regarding the total com-
munication for ML inference tasks. As expected, SOCIUM
clearly outperforms SIMC by a factor 14.14-16.93× when
using sacrificing and 46.69-59.47× when using DZKPs. For
non-linear layers in both CNNs, SOCIUM performs better by
≈ 15× with sacrificing and ≈ 51× with DZKPs. Regarding
linear layers, SOCIUM performs better by 6.99-25.69× with
sacrificing and 19.78-110.18× with DZKPs.

TABLE 5: Total runtime (in s) for ML inference in SIMC [23] and
sacrifice-based SOCIUM (§5) with non-optimized nonlinear layers.

SIMC SOCIUM SIMC SOCIUM

Linear 4.28 0.34 13.60 4.85
Non-linear 0.22 1.61 14.17 12.92

Total 4.50 1.95 27.77 17.77

Linear 22.96 3.70 45.39 15.53
Non-linear 2.41 19.91 191.65 130.80

Total 25.36 23.61 237.03 146.32

Network Layers
LAN WAN

MNIST

CIFAR-10
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Furthermore, the runtime comparison to SIMC in our
network settings, presented in Table 5, demonstrates that
SOCIUM outperforms SIMC by 1.07-2.31× in a LAN and
1.56-1.62× in a WAN. It is essential to note that our
implementation’s non-linear layers are not well optimized,
as we use triple sacrificing for binary computation as well.
However, the optimized linear layers of SOCIUM outperform
SIMC by 6.21-12.51× for LAN and 2.80-2.92× for WAN.
The lower improvement in WAN can be explained by SIMC
using homomorphic encryption for these layers.

TABLE 6: Online ML inference communication (in MB) for
SIMC++ [23] and sacrifice or DZKP based SOCIUM (§5).

Network SIMC++ [23] SOCIUM (§5)

MNIST 10 1.72

CIFAR-10 230 28.58

Recall that one of the design goals for SOCIUM was a
streamlined online phase. While SIMC doesn’t have a setup
phase, the authors proposed a variant called SIMC++ [23]
that sacrifices total communication for a better online phase.
However, the total communication of SIMC++ is worse
than SIMC by a factor of 1.61-1.77×, which extends the
advantage of using SOCIUM. In the comparison of on-
line communications provided in Table 6, we observe that
SOCIUM outperforms SIMC++ by a factor of 5.82-8.05×.
Unfortunately, since there is only a publicly available imple-
mentation of SIMC and not SIMC++, we are unable to pro-
vide a comparison of online runtime in our network settings.

7. Conclusion and Future Work

We introduced two robust protocols, AUXILIATOR and
SOCIUM, designed to bridge the gap between fully semi-
honest and fully-malicious honest-majority settings in three-
party computation. These protocols are well-suited for real-
world privacy-preserving machine learning scenarios, ac-
commodating varying levels of trust among participating
parties and offering flexible computation-communication
trade-offs. Specifically, we have showcased how a malicious
helper can enhance the performance of semi-honest two-
party computation (2PC) and how a semi-honest helper can
assist 2PC with a malicious party.

For future research, we aim to explore scenarios where
two out of three servers may exhibit malicious behavior,
expanding beyond the consideration of a single party in this
work. Additionally, our implementation serves as a founda-
tion for integrating various verification techniques, such as
cut-and-choose [3], [40], or distributed zero-knowledge [12],
[15], into our code framework. We also anticipate extending
our framework with additional primitives for both machine
learning and other applications. Furthermore, we anticipate
that this setting can significantly enhance more recent no-
tions of robustness, such as Friends-and-Foes security [2],
[50], leaving this as a promising direction for future work.
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Appendix A.
Additional Details

The appendix contains details regarding the pre-shared
key setup used by our protocols (§A.1), verification us-
ing cut-and-choose (§A.2) and distributed zero-knowledge
proofs (§A.3), the security of our protocols (§A.4), further
investigation of our protocols’ scalability for ML inference
tasks (§A.5), and a comparison to the protocol ELSA [69]
for secure federated learning (§A.6).

A.1. Pre-Shared Key Setup

Our protocols rely on a pre-shared pseudo-random func-
tion (PRF) key setup used for the non-interactive genera-
tion of shared randomness [4], [60]. Hence, we work in
the FKeySetup-hybrid model with FKeySetup being formally
defined in Fig. 8.

FKeySetup samples random keys k01, k02, k12, k012 ∈ {0, 1}κ
and sends (k01, k02, k012) to S0, (k01, k12, k012) to S1, and
(k02, k12, k012) to S2.

Functionality FKeySetup

Figure 8: Shared key setup functionality.

Note that this enables any subset of servers to non-
interactively sample a pseudo-random number. Si,Si+1

for 0 ≤ i < 3 sampling random βi ∈ Z2ℓ and Si then
defining αi = βi − βi−1 also enables setting up a random
additive sharing [α] of α = 0 [4].

A.2. Cut-and-Choose for Z2

As a basis for computationally lightweight verification
for binary domain computation, we use the cut-and-choose
approach of [3], [40]. The original method uses multiple
binary multiplication triples to verify the correctness of
the evaluation of each AND gate in a setting where any
of three parties may be malicious. It requires the gener-
ation of random permutations not known to a malicious
adversary until after the triple generation, a verification
protocol ΠVerifyByOpen that checks one triple’s correctness by
revealing its values, and a verification protocol ΠVerifyByOther

that checks one triple consuming another triple and only
accepts if either no or both triples are correct.

The verification uses buckets of B potentially incorrect
triples each, where one bucket is used to verify one AND.
Verifying one AND consists of an amortized overhead of
only generating B triples for the corresponding bucket
and running B instances of ΠVerifyByOther. The number of
instances of ΠVerifyByOpen per AND amortizes to 0. Now,
[3] shows that security is attained for σ = 40 when veri-
fying N = 220 AND gates for bucket size B = 2. Note
that all verification is executed in the offline phase so that
batching of N = 220 AND gates is feasible.

A.2.1. Cut-and-Choose in the Fully Malicious Setting.
The required random permutations can be chosen inter-
actively so that the communication per AND amortizes
to 0 [40]. Also, protocol ΠVerifyByOpen can easily be im-
plemented by revealing a triple to two servers who then
verify its correctness in plain. Thus, an incorrect triple
is detected by at least one non-cheating server. Checking
if a triple (⟨x⟩, ⟨y⟩, ⟨z⟩) ∈ Z3

2 is correct with a second
triple (⟨a⟩, ⟨b⟩, ⟨c⟩) ∈ Z3

2 works as depicted in Proc. 6. The
amortized cost of this check is that of reconstructing two
bits, i.e., 6 bits.

A.2.2. Cut-and-Choose in the Fixed Corruption Setting.
In the fixed corruption setting, random permutations can be
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Procedure 6 ΠVerifyByOther: Verify triple using second triple [40]

1: Locally compute ⟨p⟩ = ⟨x⟩ ⊕ ⟨a⟩, ⟨q⟩ = ⟨y⟩ ⊕ ⟨b⟩.
2: Reconstruct p, q ∈ Z2 .
3: Locally compute ⟨v⟩ = ⟨z⟩ ⊕ ⟨c⟩ ⊕ p⟨b⟩ ⊕ q⟨a⟩ ⊕ pq.
4: Verify that v = 0, otherwise abort. (Use batched hash based

check as in §3.1.1.)

chosen non-interactively by the semi-honest servers that we
w.l.o.g. let be S0,S1. Protocol ΠVerifyByOpen only requires to
reveal a triple to either S0 or S1, cutting the communication
in half compared to the fully malicious setting.

As for triple sacrificing (cf. §3.1.2), ΠVerifyByOther can
be optimized by converting from ⟨·⟩-sharings to additive [·]-
sharings between S0,S1 only and excluding S2 from the
remaining steps. Thus, the reconstruction of two bits among
the semi-honest servers only uses 4 bits of communication.
The final zero check can be implemented using the simpli-
fied hash based check from §3.1.2.

A.3. Distributed Zero-Knowledge Proofs

Using distributed zero-knowledge proofs (DZKPs) [12],
[15], one can verify the correctness of multiplication at
zero amortized communication overhead but higher local
computation than the approaches in §3.1, Appendix A.2.

A.3.1. DZKPs in the Fully Malicious Setting. DZKPs
enable to add verification to the RSS based maliciously
private multiplications from [4] where each server sends
one element in Z2ℓ by proving those messages’ correctness.
For the proof, it suffices to show that a degree-2 polynomial
with 6 variables evaluates to 0 where each variable is known
to the sender as well as being known to one of the other
servers or being additively shared among them.

[15] demonstrates that such proof for a batch of m mul-
tiplications can be implemented using (8

√
m+3) ·δℓ bits of

communication for δ ∈ N chosen such that 2(ℓ−1)δ·2
√
m+1

2ℓδ−
√
m

≤
2−σ in 2 rounds. This is satisfied for δ ≳ σ + log2(2

√
m).

A second option requires less local computation and has
lower communication of (1 + 4 log2 m) · δℓ bits while
requiring O(log2 m) rounds. Here, δ is chosen such that
5 log2 m+1

2δ−2
≤ 2−σ which is satisfied for δ ≳ σ + 3 +

log2 log2 m. Batch size m can be set such that through amor-
tization, the communication per multiplication verification is
roughly 0 bits.

Both approaches work on extension rings of degree δ
or the field F2δ for binary domain computation and require
polynomial interpolation which yields high computational
overhead. In contrast to [15], SWIFT [51], [75] moves this
expensive computation to the offline phase also allowing the
use of higher m and hence better amortization by batching
the setup of multiple protocol runs.

SWIFT [51], [75] also introduces DZKPs for dot
products and hence also matrix multiplication. The proof
communication for m dot products of dimension d
is (2

√
2m(4d+ 2) + 3) · δℓ bits in 2 rounds for δ ∈ N

chosen such that 2(ℓ−1)δ·
√

2m(4d+2)+1

2ℓδ−
√

m(4d+2)/2
≤ 2−σ which is

satisfied for δ ≳ σ + log2
√

2m(4d+ 2). Here, degree-2
polynomials in 4d + 2 variables are used. Again, this can
be used to decrease the verification cost per dot product to
roughly 0 bits. Applying the logarithmic round construction
of [15] yields a second option with (1+4 log2(md)) ·δℓ bits
communication in O(log2(md)) rounds. Now, δ is cho-
sen such that 5 log2(md)+1

2δ−2
≤ 2−σ which is satisfied for

δ ≳ σ + 3 + log2 log2(md).

A.3.2. DZKPs in the Fixed Corruption Setting. As seen
in §4.2.1 and §5.2.1, distributed zero-knowledge proofs can
be translated to the fixed corruption setting given that the
used secret-sharing scheme still is somewhat replicated.
While the amortized communication of one proof already
is 0 in the fully malicious setting, the fixed corruption setting
only requires the single malicious party to prove that its mes-
sages are correct. That improves the verification overhead
for both communication and computation by factor 3×.

A.4. Security

In this section, we discuss the security of our protocols.
We focus on the security of the interactive matrix multipli-
cation protocols, as the security of input and output phases
trivially follow the considerations in [24], [51]. Our proofs
work in the FKeySetup-hybrid (cf. Appendix A.1).

A.4.1. AUXILIATOR. Recall that the only difference be-
tween the matrix multiplication of AUXILIATOR (§4) and
ASTRA [24] lies in the instantiation of FMultPre in the setup
phase. Hence, the security of ΠMult in the FMultPre-hybrid
model immediately follows the security of ASTRA. We now
prove that our instantiation of FMultPre using triple sacrific-
ing (cf. §4.2.1) is secure. For brevity, we omit proofs for
instantiations using cut-and-choose (cf. §4.2.1) or distributed
zero-knowledge proofs (cf. §4.2.1) that can be similarly
derived from the respective proofs for the fully malicious
setting in [3], [15], [40].

• FMultPre receives (A⃗1, A⃗2, B⃗1, B⃗2), (A⃗1, B⃗1), (A⃗2, B⃗2) from
S0, S1, S2 where A⃗i ∈ Zu×w

2ℓ
, B⃗i ∈ Zw×v

2ℓ
for i ∈ {1, 2}. If these

values are inconsistent, use those by S1, S2. Reconstruct
A⃗ = A⃗1 + A⃗2, B⃗ = B⃗1 + B⃗2.

• If A controls S0, FMultPre receives additional values
δ⃗1 ∈ Zu×v

2σ , ∆⃗2 ∈ Zu×v
2ℓ+σ from A. Define ∆⃗1 = 2ℓδ⃗1 ∈ Zu×v

2ℓ+σ .

• If A controls S0 or S1, FMultPre also receives C⃗1 ∈ Zu×v
2ℓ

from
A. Otherwise, let C⃗1 ∈ Zu×v

2ℓ
be sampled uniformly at random.

• If A controls S2, FMultPre also receives k02, k12 ∈ {0, 1}κ from
A.

• Define C⃗2 = (A⃗ · B⃗)− C⃗1 so that C⃗1 + C⃗2 = A⃗ · B⃗.

• If A controls S0 and sends abort or ∆⃗2 − r∆⃗1 ̸≡2ℓ+σ 0⃗ for
randomly sampled r ∈ Z2σ , then FMultPre sends abort to all
servers. Otherwise, send C⃗1 to S1 and C⃗2 to S2.

Functionality FMultPre([A⃗], [B⃗])

Figure 9: Secure offline matrix multiplication functionality.
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We provide a formal definition of FMultPre in Fig. 9.
Observe that due to the use of shared keys for sampling
random values, the functionality has additional inputs by
the adversary A which is similar to, e.g., [4]. In particular,
an adversary A that corrupts S1 already knows output C⃗1

prior to the instantiation of FMultPre and hence inputs it in
our functionality. Likewise, an adversary A corrupting S2
directly inputs the shared keys known to S2 that are used to
sample multiple values within the protocol.

The simulator plays the role of S0,S1 and simulates each step of the
sacrifice based instantiation of FMultPre to S2 as follows:

1. Receive inputs A⃗2 ∈ Zu×w
2ℓ

, B⃗2 ∈ Zw×v
2ℓ

as well as k02, k12 ∈
{0, 1}κ from A.

2. Send A⃗2, B⃗2, k02, k12 to FMultPre and receive C⃗2 ∈ Zu×v
2ℓ

.

3. Sample random C⃗′2 ∈ Zu×v
2ℓ+σ under the constraint that C⃗′2 ≡2ℓ

C⃗2.

4. Send C⃗′2 to A on behalf of S0.

5. Sample random ⃗̂
C2 ∈ Zu×v

2ℓ+σ and send it to A on behalf of S0.

6. Sample random V⃗1 ∈ Zu×w
2ℓ+σ and send it to A on behalf of S1.

7. Sample random r ∈ Z2σ using k12 and ⃗̂
A2 ∈ Zu×w

2ℓ+σ using k02.

8. Compute V⃗ = rA⃗′2− ⃗̂
A2+ V⃗1 where A⃗′2 ∈ Zu×w

2ℓ+σ is A⃗2 with
each entry lifted to Z2ℓ+σ .

9. Compute W⃗2 = V⃗ · B⃗′2 − rC⃗′2 +
⃗̂
C2 where B⃗′2 ∈ Zw×v

2ℓ+σ is
B⃗2 with each entry lifted to Z2ℓ+σ .

10. Compute and send h1 = H(−W2
1,1||...|| − W2

1,v ||...|| −
W2

u,v) to A on behalf of S1.

Simulator Ssacrifice
MultPre

Figure 10: Simulation of secure offline matrix multiplication
protocol using the sacrifice method for the case of a corrupt S2.

If A corrupts S0, it does not only provide C⃗1 to
the functionality, but also inputs additional values δ⃗1 ∈
Zu×v
2σ , ∆⃗2 ∈ Zu×v

2ℓ+σ . Then, with ∆⃗1 = 2ℓδ⃗1 ∈ Zu×v
2ℓ+σ ,

the functionality outputs abort if A sends abort or also
if ∆⃗2−r∆⃗1 ̸≡2ℓ+σ 0⃗ for randomly sampled r. This techni-
cality stems from a gap in the completeness and soundness
of the triple sacrifice check from Lemma 3.1. Note that
it leaves open the case where S0 cheats in a way where
output C⃗ still is correct. Indeed, that occurs if ∆⃗1 from
the proof is chosen such that ∆⃗1 ≡2ℓ 0⃗, but ∆⃗1 ̸≡2ℓ+σ 0⃗
or ∆⃗2 ̸≡2ℓ+σ 0⃗. In this case, the probability of aborting
may not be negligible as, e.g., for an entry 2ℓ+σ−1 of ∆⃗1,
r · 2ℓ+σ−1 ≡2ℓ+σ 0 for all even r. This may seem irrelevant
as the output still is correct, but we have to ensure that no
selective failure attack is possible where an abort message
is sent depending on data that must stay secret. Clearly,
the abort here depends on the errors introduced by A
and randomly sampled r only. Hence, A may only gain
information about value r, but this is chosen randomly and
never used again after the check that may result in an abort
message. Formally, we let functionality FMultPre exactly
define this behaviour using a random value r. We argue

that this gives an adversary controlling S0 no meaningful
additional power as it now may input δ⃗1, ∆⃗2 ∈ Z2ℓ+σ that
possibly (but independent of any secret data such as inputs
of honest parties) lead to an abort, but anyway may also
send abort by itself with exactly the same probability.

Lemma A.1. The sacrifice based instantiation
of FMultPre (cf. §4.2.1) securely implements FMultPre

functionality in the fixed corruption setting, where the
malicious adversary A is allowed to corrupt S0.

Proof. Correctness immediately follows from previous con-
siderations including those in Lemma 3.1. Simulation for
corrupted S0 is easy by simply calling the ideal function-
ality FMultPre and forwarding whether it outputs abort
to A. Note that besides this potential abort, S0 receives
no messages. Next, let us first consider semi-honestly cor-
rupted S2 for which the simulator is given in Fig. 10. S2
receives shares of C⃗′,

⃗̂
C from S0 setting up two triples.

Here, C⃗′ ≡2ℓ C⃗ but is in the larger domain Z2ℓ+σ . Then, it
receives S1’s share of V⃗ and a hash h (cf. §3.1.2).

• Message C⃗′2 clearly consists of S2’s output C⃗2 in the
ℓ least significant bits while the σ most significant bits
appear uniformly random to S2 due to random selection
of C⃗′1 by S0,S1.

• Message ⃗̂
C2 appears uniformly random to S2 due to

random selection of ⃗̂
C1 by S0,S1.

• Message V⃗1 appears uniformly random to S2 due to
random selection of its component ⃗̂

A1 by S0,S1.
• Message h is equal to the hash computed by S2 due to

the completeness of the verification (cf. Lemma 3.1).
As the used randomness is uncorrelated, it is easy to see
that the simulation in Fig. 10 cannot be distinguished from a
real protocol run. For corrupt S1, simply observe that receiv-
ing V⃗2 is symmetrical to the simulation of S2 receiving V⃗1

in Fig. 10 and that it receives no further messages.

A.4.2. SOCIUM. For SOCIUM (§5), we omit the proof
for secure instantiation of F ′

MultPre as security up to an
additive error for Πsemi

MultPre directly follows from [57] while
the remaining construction follows symmetric arguments as
in §A.4.1. The central difference is that S2 does not receive
message C⃗2 in contrast to SWIFT [51] which clearly does
not violate our security.

While the online phase of SOCIUM also differs from that
of SWIFT [51], it is easy to see that the differences do not
infringe the protocol’s security. First, removing consistency
checks for messages sent by S0,S1 clearly is valid as SO-
CIUM assumes these servers to be semi-honest. Second, S1
sending m⃗0

Z + m⃗1
Z in the online phase instead of m⃗0

Z as in
SWIFT obviously is secure as in our setting, S1 is semi-
honest and in SWIFT, S2 knows m⃗1

Z beforehand, i.e., gains
no more information than in SOCIUM. Likewise, sending
this message to S0 instead of only m⃗1

Z is secure as S0 can
compute m⃗0

Z on its own.
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A.5. Scalability for ML Inference

To show the scalability of our protocols for ML infer-
ence, we compare the performance on the MiniONN [58] 7-
layer CNN for CIFAR-10 (with average pooling) to the per-
formance on the larger VGG16 (Net-D) 13-layer CNN [73]
on the same dataset. Compared to the CNN in MiniONN,
VGG16 is a much larger network with 16 instead of 8 linear
layers and 21 instead of 9 non-linear layers leading to a total
of ≈ 38 million parameters. As for MiniONN, we replace
max pooling required by VGG16 by average pooling here.

The communication when using VGG16 [73] for ML
inference on the CIFAR-10 dataset is given in Fig. 11.
Compared to the MiniONN [58] CNN for CIFAR-10, using
more than twice the number of layers in VGG16 yields a
1.65× increase in offline and online communication across
all protocols. The only exception is the setup for linear
layers when using sacrificing where the overhead is at most
1.90×. This can be attributed to differently sized matrices in
VGG16 compared to MiniONN. Here, we use the optimiza-
tion of calculating C⃗⊺ = B⃗⊺ · A⃗⊺ instead of C⃗ = A⃗ · B⃗
(cf. §3.1) to avoid an overhead of up to 110.80× in the
linear setup that would result from the unoptimized version
given the specific matrix dimensions in VGG16.
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Figure 11: Total ML inference communication on VGG16 [73] for
ASTRA [24], AUXILIATOR (§4), SOCIUM (§5), and SWIFT [51]
using triple sacrificing (§3.1). The costs are split between linear
and non-linear layers. Numbers reported on top of bars state setup
+ online communication.

As shown in Fig. 12, the runtimes of our implementation
that uses sacrificing (except for ASTRA) only increase
by 2.58-3.68× for LAN and 2.15-3.03× for WAN, when
compared to the MiniONN [58] CNN. The only outlier is
ASTRA in the LAN setting with a factor of 5.61×.

A.6. Comparison to ELSA for Federated Learning

ELSA [69] is a recent protocol designed for federated
learning [59], where it addresses asymmetric trust by as-
suming clients to be maliciously corrupt. It splits the role
of the aggregator between two semi-honest servers15 and

15. ELSA has extended their protocol to achieve malicious privacy dur-
ing aggregation. However, this inclusion has introduced additional overhead
in their semi-honest variant. To ensure fairness in the comparison, we
decided to evaluate AUXILIATOR against their semi-honest variant.
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Figure 12: Total ML inference run times on VGG16 [73] for
our implementations of ASTRA [24], AUXILIATOR (§4), SO-
CIUM (§5), and SWIFT [51] using triple sacrificing (§3.1). The
costs are split between linear and non-linear layers. Numbers
reported on top of the bars correspond to setup + online run times.

incorporates defenses against boosted gradients attacks by
malicious clients using ℓ2 norm and ℓ∞ norm. ELSA’s
main innovation lies in having untrusted clients provide
correlations to the server, acting as untrusted helpers to
enhance efficiency.

Interestingly, AUXILIATOR can model ELSA by allow-
ing malicious clients to take on the role of the malicious
helper, and each client provides correlations used only on
its own inputs, similar to ELSA. Additionally, in scenarios
where bandwidth-constrained clients are present, a dedicated
server can act as the helper on their behalf. This adaptation
enables AUXILIATOR to cater to use cases similar to those
addressed by ELSA.

TABLE 7: Communication (in GB) of secure aggregation using
ELSA [69] or AUXILIATOR computing the same functionality.
We use a tight analytical analysis of ELSA’s communication for
splitting it into offline and online communication.

offline 5.66 19.37 6.87 2.39
online 2.00 0.23 0.23 0.23
total 7.66 19.60 7.10 2.62

offline 22.65 77.49 27.49 9.57
online 7.98 0.90 0.90 0.90
total 30.63 78.38 28.39 10.47

ELSA
[69]

AUXILIATOR (§4)

Sacrifice Sacrifice +
ELSA OT DZKP

200 000 params
50 clients

200 000 params
200 clients

In Table 7, we compare the communication of ELSA
(when using a setup phase) with AUXILIATOR. For a fair
comparison, we replace ELSA’s original linear depth ripple-
carry adder with a logarithmic depth parallel prefix adder,
which we use in our protocols (Appendix B). This change
has a negligible impact on overall communication but re-
duces the number of online communication rounds from 113
to 17.

The streamlined online phase of AUXILIATOR clearly
outperforms ELSA by a factor of 8.81−8.89×. Additionally,
AUXILIATOR requires only 11 online rounds. While the
total communication is 2.92× better when using DZKP,
ELSA outperforms the sacrifice-based version by 2.56×.
Regarding the comparison to DZKP, note that ELSA is based
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on computationally lightweight computation rendering this
communication comparison unfair.

To achieve good total communication when using the
lightweight sacrifice approach, we improve the binary to
arithmetic conversion required in ELSA’s functionality. This
conversion is the main bottleneck responsible for more
than 98% of the communication for AUXILIATOR and
over 85% for ELSA itself. Note that while the current
version of AUXILIATOR is not well optimized for binary to
arithmetic conversion, it has 2.89− 2.90× better communi-
cation for all other operations combined. For the conversion,
ELSA uses an OT based approach where it profits from a
batched verification over the field F2κ , while rest of the
protocols work on Z2ℓ .

To further enhance the communication efficiency, we
replace the preprocessing step of the conversion used in
AUXILIATOR, which is based on the ASTRA approach [24],
with the ELSA conversion. By doing this, we enable AUX-
ILIATOR to partially compute on fields during preprocessing
only. This results in the sacrifice + ELSA OT variant of
AUXILIATOR. This variant not only significantly improves
the online phase, but also achieves slightly better total
communication than ELSA, surpassing it by 1.08×.

Appendix B.
Gates for Machine Learning

This section provides details for fixed-point truncation
and ReLUs for ASTRA [24], [75] and SWIFT [51], [75],
as analyzed and implemented for our evaluation and their
modifications for AUXILIATOR (§4) and SOCIUM (§5). Note
that among different publications, details for ASTRA and
SWIFT may slightly deviate. We use the most current
versions provided by [75] with minor tweaks.

Notation: By xd we denote the truncation of x, i.e.,
an arithmetic right shift by d = 16. By (b)

a for a bit b,
we denote its representation as an element of Z2ℓ , i.e., its
padding by ℓ−1 = 63 0 bits. To clearly distinguish between
shares in the binary and arithmetic domains, we use, e.g., ⟨x⟩
for an arithmetic sharing of x ∈ Z2ℓ and ⟨x⟩B for a binary
sharing of b ∈ Z2 . By x[i], we denote bit i of integer x,
i.e., xi where x is decomposed into xj with x =

∑ℓ−1
j=0 xj .

B.1. Truncation Pair Generation

SWIFT requires a designated protocol to generate trun-
cation pairs that is used in further operations.

Input: None.

Output: ⟨r⟩ for random r ∈ Z2ℓ , and JrdK.

Offline:
1. For s ∈ {1, 2}, 0 ≤ i < ℓ, S0, Ss non-interactively sample random
bit rs,i ∈ {0, 1}.

2. Compute ⟨r⟩:
a. Compute ⟨rs,i⟩ for s ∈ {1, 2}, 0 ≤ i < ℓ by setting r01,i =

Protocol ΠTr()

r21,i = r02,i = r12,i = 0 ∈ Z2ℓ and r11,i = (r1,i)
a, r22,i = (r2,i)

a

for 0 ≤ i < ℓ.

b. Set up vector ⟨A⃗⟩ of dimension ℓ where ⟨A⃗i+1⟩ = 2i+1 · ⟨r1,i⟩
for 0 ≤ i < ℓ.

c. Set up vector ⟨B⃗⟩ of dimension ℓ where ⟨B⃗i+1⟩ = ⟨r2,i⟩ for
0 ≤ i < ℓ.

d. Invoke FMultPre on ⟨A⃗⟩⊺ and ⟨B⃗⟩ to obtain ⟨x⟩ with x = A⃗⊺ ·B⃗.

e. Locally compute ⟨r⟩ =
ℓ−1∑
i=0

2i(⟨r1,i⟩+ ⟨r2,i⟩)− ⟨x⟩.

3. Compute JrdK:

a. Compute ⟨rs,i⟩ for s ∈ {1, 2}, f ≤ i < ℓ by setting λ0
r1,i

=

λ2
r1,i

= mr1,i = λ0
r2,i

= λ1
r2,i

= mr2,i = 0 ∈ Z2ℓ and λ1
r1,i

=

(r1,i)
a, λ2

r2,i
= (r2,i)

a for f ≤ i < ℓ.

b. Set up vector ⟨C⃗⟩ of dimension ℓ − f where ⟨C⃗i+1⟩ = 2i+1 ·

⟨r1,f+i⟩ for 0 ≤ i < ℓ−f−1 and ⟨C⃗ℓ−f ⟩ = (
ℓ∑

i=ℓ−f

2i)⟨r1,ℓ−1⟩.

c. Set up vector ⟨D⃗⟩ of dimension ℓ− f where ⟨D⃗i+1⟩ = ⟨r2,f+i⟩
for 0 ≤ i < ℓ− f .

d. Invoke FMultPre on ⟨C⃗⟩⊺ and ⟨D⃗⟩ to obtain ⟨y⟩ with y = C⃗⊺ ·D⃗.

e. Locally compute ⟨rd⟩ =
ℓ−f−2∑
i=0

2i(⟨r1,f+i⟩ + ⟨r2,f+i⟩) +

ℓ−1∑
i=ℓ−f−1

2i(⟨r1,ℓ−1⟩+ ⟨r2,ℓ−1⟩)−⟨y⟩ and set mrd = 0 to obtain

JrdK.

Figure 13: SWIFT: Truncation pair generation protocol [75].

B.2. Matrix Multiplication With Truncation

Input: ⟨·⟩-shares of X⃗ ∈ Zu×w
2ℓ

and Y⃗ ∈ Zw×v
2ℓ

.

Output: ⟨·⟩-shares of Z⃗ ∈ Zu×v
2ℓ

with Z⃗ = X⃗ · Y⃗.

Setup:

1. Non-interactively generate [Q⃗] by S0, S1 sampling random Q⃗1 ∈
Zu×v
2ℓ

, S0,S2 sampling random Q⃗2 ∈ Zu×v
2ℓ

.

2. S0,S1 sample random λ⃗1
Z ∈ Zu×v

2ℓ
.

3. S0 computes and sends λ⃗2
Z =

(
(λ⃗X · λ⃗Y)− Q⃗1 − Q⃗2

)d
− λ⃗1

Z

to S2.
Online:
1. Locally compute the following:

– S1: P⃗1 = (m⃗X · λ⃗1
Y) + (λ⃗1

X · m⃗Y) + Q⃗1.

– S2: P⃗2 = (m⃗X · λ⃗2
Y) + (λ⃗2

X · m⃗Y) + Q⃗2.

2. S1,S2 exchange P⃗1, P⃗2 and reconstruct m⃗Z =(
P⃗1 + P⃗2 + (m⃗X · m⃗Y)

)d
.

Protocol ΠFPA
Mult(⟨X⃗⟩, ⟨Y⃗⟩)

Figure 14: ASTRA: Matrix multiplication protocol for fixed-point
arithmetic [75].

Input: ⟨·⟩-shares of X⃗ ∈ Zu×w
2ℓ

, Y⃗ ∈ Zw×v
2ℓ

.

Output: ⟨·⟩-shares of Z⃗ = X⃗ · Y⃗ ∈ Zu×v
2ℓ

.

Protocol ΠFPA
Mult(⟨X⃗⟩, ⟨Y⃗⟩)
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Setup:

1. Invoke FMultPre([λ⃗X], [λ⃗Y]) to obtain [γ⃗XY = λ⃗X · λ⃗Y].

2. Non-interactively generate [λ⃗Z] by S0, S1 sampling random λ⃗1
Z ∈

Zu×v
2ℓ

, S0, S2 sampling random λ⃗2
Z ∈ Zu×v

2ℓ
.

Online:
1. Locally compute the following:

– S1: P⃗1 =
(
(m⃗X · m⃗Y) + (m⃗X · λ⃗1

Y) + (λ⃗1
X · m⃗Y) + γ⃗1

XY

)d
−

λ⃗1
Z.

– S2: P⃗2 =
(
(m⃗X · λ⃗2

Y) + (λ⃗2
X · m⃗Y) + γ⃗2

XY

)d
− λ⃗2

Z.

2. S1,S2 exchange P⃗1, P⃗2 and reconstruct m⃗Z = P⃗1 + P⃗2.

Figure 15: AUXILIATOR: Matrix multiplication protocol for fixed-
point arithmetic.

Input: J·K-shares of X⃗ ∈ Zu×w
2ℓ

, Y⃗ ∈ Zw×v
2ℓ

.

Output: J·K-shares of Z⃗ = X⃗ · Y⃗ ∈ Zu×v
2ℓ

.

Setup:

1. Invoke F ′
MultPre on ⟨λ⃗X⟩ and ⟨λ⃗Y⟩ to obtain ⟨γ⃗XY⟩′ with γ⃗XY =

λ⃗X · λ⃗Y (S0 has γ⃗0
XY, γ⃗2

XY ,S1 has γ⃗1
XY, γ⃗0

XY ,S2 has γ⃗2
XY).

2. Non-interactively generate ⟨λ⃗Z⟩ by Si, Si+1 sampling random
λ⃗i
Z ∈ Z2ℓ for i ∈ {0, 1, 2}.

Online:
1. Locally compute the following (S0 delays this step until final veri-
fication):

– S1 : P⃗0 = m⃗X · λ⃗0
Y + λ⃗0

X · m⃗Y + γ⃗0
XY .

– S1 : P⃗1 = m⃗X · λ⃗1
Y + λ⃗1

X · m⃗Y + γ⃗1
XY .

– S2, S0: P⃗2 = m⃗X · λ⃗2
Y + λ⃗2

X · m⃗Y + γ⃗2
XY + m⃗X · m⃗Y .

2. Send the following messages:

– S1 sends Q⃗1 =
(
P⃗0 + P⃗1

)d
− λ⃗0

Z − λ⃗1
Z to S2.

– S2 sends Q⃗2 =
(
P⃗2

)d
− λ⃗2

Z to S1.

3. S1,S2 reconstruct m⃗Z = Q⃗1 + Q⃗2.
Final Verification (batched over all multiplications):

1. S1 sends Q⃗1 to S0.

2. S0 computes Q⃗2 and reconstructs m⃗Z = Q⃗1 + Q⃗2.

3. S0 sends H(Q⃗2) to S1 that then checks consistency to the Q⃗2 it
received from S2.

Protocol ΠFPA
Mult(JX⃗K, JY⃗K)

Figure 16: SOCIUM: Matrix multiplication protocol for fixed-point
arithmetic.

Input: J·K-shares of X⃗ ∈ Zu×w
2ℓ

, Y⃗ ∈ Zw×v
2ℓ

.

Output: J·K-shares of Z⃗ = X⃗ · Y⃗ ∈ Zu×v
2ℓ

.

Setup:

1. Invoke FMultPre on ⟨λ⃗X⟩ and ⟨λ⃗Y⟩ to obtain ⟨γ⃗XY⟩ with γ⃗XY =

λ⃗X · λ⃗Y .

2. Non-interactively generate ⟨λ⃗W⟩ where S1, S2 know all shares by

Protocol ΠFPA
Mult(JX⃗K, JY⃗K)

S0, S1,S2 sampling random λ⃗0
W, λ⃗2

W ∈ Zu×v
2ℓ

and S1, S2 sampling
random λ⃗0

W, λ⃗2
W ∈ Zu×v

2ℓ
.

3. Obtain ⟨R⃗⟩ and JR⃗dK for random R⃗ ∈ Zu×v
2ℓ

by calling uv
instances of ΠTr.

Note: λ⃗Z = λ⃗W + λ⃗
Rd .

Online:
1. Locally compute the following (S0 delays this step until final veri-
fication):

– S0, S1: P⃗0 = m⃗X · λ⃗0
Y + λ⃗0

X · m⃗Y + γ⃗0
XY − R⃗0.

– S1, S2: P⃗1 = m⃗X · λ⃗1
Y + λ⃗1

X · m⃗Y + γ⃗1
XY − R⃗1.

– S2, S0: P⃗2 = m⃗X · λ⃗2
Y + λ⃗2

X · m⃗Y + γ⃗2
XY − R⃗2.

2. S1,S2 exchange P⃗0, P⃗2, reconstruct P⃗ = P⃗0 + P⃗1 + P⃗2 and set

W⃗ =
(
P⃗+ m⃗X · m⃗Y

)d
.

3. S1,S2 set up JW⃗K by setting m⃗W = W⃗ − (λ⃗0
W + λ⃗1

W + λ⃗2
W)

4. S1,S2 compute JZ⃗K = JW⃗K + JR⃗dK.
Final Verification (batched over all multiplications):
1. S1 sends m⃗W and S2 sends H(m⃗W) to S0 that then checks
consistency.

2. S0 computes P⃗0, P⃗2 and sends H(P⃗2) to S1 and H(P⃗0) to S2
that then check consistency to the values received in online step 2.

3. S0 computes its shares of JZ⃗K.

Figure 17: SWIFT: Matrix multiplication protocol for fixed-point
arithmetic [75].

B.3. Multiplication by Constant With Truncation

Input: ⟨·⟩-shares of x ∈ Z2ℓ , and a public constant c ∈ Z2ℓ .

Output: ⟨·⟩-shares of z ∈ Z2ℓ with z = c · x.

Setup:
1. Generate [λz ] with λz = c · λx:

– S0, S1 sample random λ1
z ∈ Z2ℓ .

– S0 computes and sends λ2
z = (c · λx)

d − λ1
z to S2.

Online:
2. S1,S2 compute mz = (c ·mx)

d.

Protocol ΠFPA
MultConstant(⟨x⟩, c)

Figure 18: ASTRA: Multiplication with a constant protocol for
fixed-point arithmetic [75].

Input: ⟨·⟩-shares of x ∈ Z2ℓ , and a public constant c ∈ Z2ℓ .

Output: ⟨·⟩-shares of z ∈ Z2ℓ with z = c · x.

Setup:

1. Non-interactively generate [λz ] by S0, S1 sampling random λ1
z ∈

Z2ℓ , S0, S2 sampling random λ2
z ∈ Z2ℓ .

2. S2 computes and sends p2 =
(
c · λ2

x

)d − λ2
z to S1.

Online:

1. S1 computes and sends p1 =
(
c · (mx + λ1

x)
)d − λ1

z to S2.

2. S1,S2 compute mz = p1 + p2.

Protocol ΠFPA
MultConstant(⟨x⟩, c)

Figure 19: AUXILIATOR: Multiplication with a constant protocol
for fixed-point arithmetic.
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Input: J·K-shares of x ∈ Z2ℓ and a public constant c ∈ Z2ℓ .

Output: J·K-shares of z ∈ Z2ℓ with z = c · x.

Setup:

1. Non-interactively generate ⟨λz⟩ by Si, Si+1 sampling random λi
z ∈

Z2ℓ for i ∈ {0, 1, 2}.

2. S0 computes and sends p0 =
(
c(λ0

x + λ2
x)
)d − λ0

z to S2.

3. S0 computes and sends p2 =
(
c(λ0

x + λ2
x)
)d − λ2

z to S1.
Online:

1. S1,S2 compute p1 =
(
c(mx + λ1

x)
)d − λ1

z .

2. S1,S2 compute mz :

– S1 computes mz = p1 + p2 − λ0
z .

– S2 computes mz = p1 + p0 − λ2
z .

Final Verification (batched over all multiplications):

1. S1 sends p1 to S0.

2. S0 computes mz like S1 did in online step 2.

Protocol ΠFPA
MultConstant(JxK, c)

Figure 20: SOCIUM: Multiplication with a constant protocol for
fixed-point arithmetic.

Input: J·K-shares of x ∈ Z2ℓ and a public constant c ∈ Z2ℓ .

Output: J·K-shares of z ∈ Z2ℓ with z = c · x.

Setup:

1. Obtain ⟨r⟩ and JrdK for random r ∈ Z2ℓ by calling ΠTr.

2. Reinterpret ⟨r⟩ as JrK by setting mr = 0.
Online:
1. S1,S2 compute JpK = c · JxK − JrK.

2. S1,S2 reconstruct p:

– S1, S2 exchange λ0
p, λ

2
p and set p = mp + λ0

p + λ1
p + λ2

p.

3. S1,S2 compute JzK = pd + JrdK.
Final Verification (batched over all multiplications):

1. S1 sends λ1
p and S2 sends H(λ1

p) to S0 that then checks consistency.

2. S0 computes p like S1,S2 did in online step 2.

3. S0 sends H(λ2
p) to S1 and H(λ0

p) to S2 that then check consistency
to the values received in online step 2.

3. S0 computes its shares of JzK.

Protocol ΠFPA
MultConstant(JxK, c)

Figure 21: SWIFT: Multiplication with a constant protocol for
fixed-point arithmetic [75].

B.4. Rectified Linear Units (ReLUs)

Note that our ReLUs work for integer and fixed-point
arithmetic, but internally only utilize integer arithmetic. This
is the case as the functionality is exactly the same for both
cases: The most significant bit (MSB) always returns the
sign of the number and multiplication by an integer sharing
of 0 or 1 without truncation to another integer or fixed-
point number is correct. The ReLU protocol is generic and
depends on instantiations of ΠMSB and ΠBitA discussed in
subsequent sections.

Input: ⟨·⟩-shares of x ∈ Z2ℓ .

Output: ⟨·⟩-shares of z ∈ Z2ℓ with z = max(0, x).

Online:
1. ⟨s⟩B = ΠMSB(⟨x⟩).

2. ⟨t⟩B = ⟨s⟩B ⊕ ⟨1⟩B.

3. ⟨t⟩ = ΠBitA(⟨t⟩B).

4. ⟨z⟩ = ⟨t⟩ · ⟨x⟩.

Protocol ΠReLU(⟨v⟩)

Figure 22: All protocols: Rectified linear unit (ReLU) protocol.
For use in a specific protocol, it is sufficient to replace ⟨·⟩-shares
by the protocol’s sharings and to then use the respective gates [75].

B.5. Most Significant Bit (MSB) Extraction

Like ASTRA and SWIFT, we utilize parallel prefix
adders (PPAs) for MSB extraction. The utilized PPA (pro-
vided alongside our implementation code16) uses 128 AND
gates and has a multiplicative depth of 6 for ℓ = 64.

Input: ⟨·⟩-shares of x ∈ Z2ℓ .

Output: ⟨·⟩B-shares of s ∈ Z2 with s = 1 iff x < 0.

Setup:

1. S0,S1 sample random λ1
ak

∈ Z2 for 0 ≤ k < ℓ.

2. S0 computes and sends λ2
ak

= (λ1
x + λ2

x)[k] ⊕ λ1
ak

to S2 for
0 ≤ k < ℓ.

2. Set up ⟨ak⟩B = ⟨(λ1
x + λ2

x)[k]⟩B by setting mak = 0 for 0 ≤
k < ℓ.
Online:
1. Set up ⟨bk⟩B = ⟨mx[k]⟩B by setting mbk = mx[k], λ1

bk
= λ2

bk
=

0 for 0 ≤ k < ℓ.

2. Compute sign ⟨s⟩B of ⟨x⟩ by running a binary PPA circuit on inputs
(⟨aℓ−1⟩B, ..., ⟨a0⟩B) and (⟨bℓ−1⟩B, ..., ⟨b0⟩B).

Protocol ΠMSB(⟨x⟩)

Figure 23: ASTRA: Most Significant Bit extraction protocol [75].

Input: ⟨·⟩-shares of x ∈ Z2ℓ .

Output: ⟨·⟩B-shares of s ∈ Z2 with s = 1 iff x < 0.

Setup:

1. S0,S1 sample random r1k ∈ Z2 for 0 ≤ k < ℓ.

2. Non-interactively set up ⟨bk⟩B = ⟨λ2
x[k]⟩B for 0 ≤ k < ℓ by

setting mbk = λ1
bk

= 0, λ2
bk

= λ2
x[k].

Online:
1. S1 computes and sends r2k = (mx + λ1

x)[k] ⊕ r1k to S2 for 0 ≤
k < ℓ.

2. Non-interactively set up ⟨ak⟩B = ⟨(mx +λ1
x)[k]⟩B for 0 ≤ k < ℓ

by setting mbk = r2k, λ
1
bk

= r1k, λ
2
bk

= 0.

3. Compute sign ⟨s⟩B of ⟨x⟩ by running a binary PPA circuit on inputs
(⟨aℓ−1⟩B, ..., ⟨a0⟩B) and (⟨bℓ−1⟩B, ..., ⟨b0⟩B).

Protocol ΠMSB(⟨x⟩)

Figure 24: AUXILIATOR: Most Significant Bit extraction protocol.

16. https://encrypto.de/code/MOTION-FD
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Input: J·K-shares of x ∈ Z2ℓ .

Output: J·KB-shares of s ∈ Z2 with s = 1 iff x < 0.

Setup:

1. Non-interactively set up JakKB = Jλ0
x[k]KB for 0 ≤ k < ℓ by

setting λ0
ak

= λ0
x[k], λ

1
ak

= λ2
ak

= mak = 0.

2. Non-interactively set up JbkKB = Jλ2
x[k]KB for 0 ≤ k < ℓ by

setting λ2
ak

= λ2
x[k], λ

0
ak

= λ1
ak

= mak = 0.

3. For 0 ≤ k < ℓ, S1, S2 sample random λ1
ck

∈ Z2 and S0, S1,S2
sample random λ0

ck
, λ2

ck
∈ Z2 .

Online:
1. Non-interactively (partially) set up JckKB = J(mx + λ1

x)[k]KB for
0 ≤ k < ℓ by S1, S2 setting mck = (mx+λ1

x)[k]⊕λ0
ck

⊕λ1
ck

⊕λ2
ck

.

2. For 0 ≤ k < ℓ, compute J·KB-shares of sk, tk ∈ Z2 that are the
outputs of a full-adder with inputs ak, bk, ck as follows:

– JskKB = JakKB ⊕ JbkKB ⊕ JckKB.

– JtkKB = JakKB ⊕
(
(JakKB ⊕ JbkKB) ∧ (JakKB ⊕ JckKB)

)
.

3. Compute sign JsKB of JxK by running a binary PPA circuit on inputs
(Jsℓ−1KB, ..., Js0KB) and (Jsℓ−2KB, ..., Js0KB, J0KB).
Final Verification (batched over all multiplications):
1. S1 sends mck to S0 for 0 ≤ k < ℓ.

2. S0 now has its shares of JckKB available for further verification.

Protocol ΠMSB(JxK)

Figure 25: SOCIUM: Most Significant Bit extraction protocol.

Input: J·K-shares of x ∈ Z2ℓ .

Output: J·KB-shares of s ∈ Z2 with s = 1 iff x < 0.

Setup:

1. Non-interactively set up JakKB = Jλ0
x[k]KB for 0 ≤ k < ℓ by

setting λ0
ak

= λ0
x[k], λ

1
ak

= λ2
ak

= mak = 0.

2. Non-interactively set up JbkKB = Jλ2
x[k]KB for 0 ≤ k < ℓ by

setting λ2
ak

= λ2
x[k], λ

0
ak

= λ1
ak

= mak = 0.

3. For 0 ≤ k < ℓ, S1, S2 sample random λ1
ck

∈ Z2 and S0, S1,S2
sample random λ0

ck
, λ2

ck
∈ Z2 .

Online:
1. Non-interactively (partially) set up JckKB = J(mx + λ1

x)[k]KB for
0 ≤ k < ℓ by S1, S2 setting mck = (mx+λ1

x)[k]⊕λ0
ck

⊕λ1
ck

⊕λ2
ck

.

2. For 0 ≤ k < ℓ, compute J·KB-shares of sk, tk ∈ Z2 that are the
outputs of a full-adder with inputs ak, bk, ck as follows:

– JskKB = JakKB ⊕ JbkKB ⊕ JckKB.

– JtkKB = JakKB ⊕
(
(JakKB ⊕ JbkKB) ∧ (JakKB ⊕ JckKB)

)
.

3. Compute sign JsKB of JxK by running a binary PPA circuit on inputs
(Jsℓ−1KB, ..., Js0KB) and (Jsℓ−2KB, ..., Js0KB, J0KB).
Final Verification (batched over all multiplications):
1. S1 sends mck and S2 sends H(mck ) to S0 that then checks
consistency for 0 ≤ k < ℓ.

2. S0 now has its shares of JckKB available for further verification.

Protocol ΠMSB(JxK)

Figure 26: SWIFT: Most Significant Bit extraction protocol [75].

B.6. Bit to Arithmetic Conversion

Input: ⟨·⟩B-shares of x ∈ Z2 .

Output: ⟨·⟩-shares of z = (x)a ∈ Z2ℓ , i.e., z is x padded with ℓ− 1 0
bits.

Setup:

1. Generate [p] = [(λ1
x + λ2

x)
a
]:

– S0, S1 sample random p1 ∈ Z2ℓ .

– S0 computes and sends p2 = (λ1
x + λ2

x)
a − p1 to S2.

2. Non-interactively generate [λz ] by S0, S1 sampling random λ1
z ∈

Z2ℓ , S0, S2 sampling random λ2
z ∈ Z2ℓ .

Online:
1. Locally compute the following:

– S1: q1 = (1− 2(mx)
a) · p1 − λ1

z .

– S2: q2 = (1− 2(mx)
a) · p2 − λ2

z .

2. S1 sends q1 to S2 and S2 sends q2 to S1.

3. Compute mz = q1 + q2 + (mx)
a.

Protocol ΠBitA(⟨x⟩B)

Figure 27: ASTRA: Bit to arithmetic conversion [75].

Input: ⟨·⟩B-shares of x ∈ Z2 .

Output: ⟨·⟩-shares of z = (x)a ∈ Z2ℓ , i.e., z is x padded with ℓ− 1 0
bits.

Setup:

1. Non-interactively set up [p] = [(λ1
x)

a
] by setting p1 = (λ1

x)
a
, p2 =

0.

2. Non-interactively set up [q] = [(λ2
x)

a
] by setting p1 = 0, p2 =

(λ2
x)

a.

3. Invoke FMultPre([p], [q]) to obtain [pq].

4. Compute [r] = [(λ1
x ⊕ λ2

x)
a
] = [p] + [q]− 2[pq].

5. Non-interactively generate [λz ] by S0, S1 sampling random λ1
z ∈

Z2ℓ , S0, S2 sampling random λ2
z ∈ Z2ℓ .

Online:
1. Locally compute the following:

– S1: s1 = (1− 2(mx)
a) · r1 − λ1

z .

– S2: s2 = (1− 2(mx)
a) · r2 − λ2

z .

2. S1 sends s1 to S2 and S2 sends s2 to S1.

3. Compute mz = s1 + s2 + (mx)
a.

Protocol ΠBitA(⟨x⟩B)

Figure 28: AUXILIATOR: Bit to arithmetic conversion.

Input: J·KB-shares of x ∈ Z2 .

Output: J·K-shares of z = (x)a ∈ Z2ℓ , i.e., z is x padded with ℓ− 1 0
bits.

Setup:

1. Non-interactively set up ⟨p⟩ = ⟨(λ0
x)

a⟩ by setting p0 =
(λ0

x)
a
, p1 = p2 = 0.

2. Non-interactively set up ⟨q⟩ = ⟨(λ1
x)

a⟩ by setting q1 = (λ1
x)

a
, q0 =

q2 = 0.

3. Non-interactively set up ⟨r⟩ = ⟨(λ0
x)

a⟩ by setting r2 = (λ2
x)

a
, r0 =

r1 = 0.

4. Invoke FMultPre(⟨p⟩, ⟨q⟩) to obtain ⟨pq⟩. Note that SWIFT func-

Protocol ΠBitA(JxKB)
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tionality FMultPre is used instead of SOCIUM functionality F ′
MultPre

here to obtain a full replicated sharing. Still, the simplified verifi-
cation of SOCIUM can be used in its instantiation.

5. Compute ⟨s⟩ = ⟨(λ0
x ⊕ λ1

x)
a⟩ = ⟨p⟩+ ⟨q⟩ − 2⟨pq⟩.

6. Invoke F ′
MultPre(⟨s⟩, ⟨c⟩) to obtain ⟨sc⟩′.

7. Compute ⟨t⟩′ = ⟨(λ0
x ⊕ λ1

x ⊕ λ2
x)

a⟩′ = ⟨s⟩′ + ⟨c⟩′ − 2⟨sc⟩′.

8. Non-interactively generate [λz ] by S0, S1 sampling random λ1
z ∈

Z2ℓ , S0, S2 sampling random λ2
z ∈ Z2ℓ .

Online:
1. Locally compute the following (S0 delays the step until the final
verification):

– S1 : u0 = (1− 2(mx)
a) · t0 − λ0

z

– S1 : u1 = (1− 2(mx)
a) · t1 − λ1

z

– S2, S0 : u2 = (1− 2(mx)
a) · t2 − λ2

z

2. S2 sends u2 to S1 and S1 sends u0 + u1 to S2.

3. S1, S2 set mz = (mx)
a + u0 + u1 + u2.

Final Verification (batched over all multiplications):

1. S1 sends u0 + u1 to S0.

2. S0 computes u2 and reconstructs mz = (mx)
a + u0 + u1 + u2.

3. S0 sends H(u2) to S1 that then checks consistency to the u2 it
received from S2.

Figure 29: SOCIUM: Bit to arithmetic conversion.

Input: J·KB-shares of x ∈ Z2 .

Output: J·K-shares of z = (x)a ∈ Z2ℓ , i.e., z is x padded with ℓ− 1 0
bits.

Setup:

1. Non-interactively set up ⟨p⟩ = ⟨(λ0
x)

a⟩ by setting p0 =
(λ0

x)
a
, p1 = p2 = 0.

2. Non-interactively set up ⟨q⟩ = ⟨(λ1
x)

a⟩ by setting q1 = (λ1
x)

a
, q0 =

q2 = 0.

3. Non-interactively set up ⟨r⟩ = ⟨(λ0
x)

a⟩ by setting r2 = (λ2
x)

a
, r0 =

r1 = 0.

4. Invoke FMultPre(⟨p⟩, ⟨q⟩) to obtain ⟨pq⟩.

5. Compute ⟨s⟩ = ⟨(λ0
x ⊕ λ1

x)
a⟩ = ⟨p⟩+ ⟨q⟩ − 2⟨pq⟩.

6. Invoke FMultPre(⟨s⟩, ⟨c⟩) to obtain ⟨sc⟩.

7. Compute ⟨t⟩ = ⟨(λ0
x ⊕ λ1

x ⊕ λ2
x)

a⟩ = ⟨s⟩+ ⟨c⟩ − 2⟨sc⟩.

8. Non-interactively generate [λz ] by S0, S1 sampling random λ1
z ∈

Z2ℓ , S0, S2 sampling random λ2
z ∈ Z2ℓ .

Online:
1. Locally compute the following (S0 delays the step until the final
verification):

– S0, S1 : u0 = (1− 2(mx)
a) · t0 − λ0

z

– S1, S2 : u1 = (1− 2(mx)
a) · t1 − λ1

z

– S2, S0 : u2 = (1− 2(mx)
a) · t2 − λ2

z

2. S2 sends u2 to S1 and S1 sends u0 to S2.

3. S1, S2 set mz = (mx)
a + u0 + u1 + u2.

Final Verification (batched over all multiplications):

1. S1 sends u1 and S2 sends H(u1) to S0 that then checks for
consistency.

Protocol ΠBitA(JxKB)

2. S0 computes u0, u2 and reconstructs mz = (mx)
a+u0+u1+u2.

3. S0 sends H(u2) to S1 and H(u0) to S2 that then check consistency
to the values received in online step 2.

Figure 30: SWIFT: Bit to arithmetic conversion [75].

B.7. Binary to Arithmetic Conversion

For our comparison to ELSA [69] we require a conver-
sion of an integer decomposed into its bits into an arithmetic
sharing. This is only needed for AUXILIATOR.

Input: ⟨·⟩B-shares of xk−1, ..., x0 ∈ Z2 for some k ∈ N.

Output: ⟨·⟩-shares of z ∈ Z2ℓ where z as binary encoding corresponds

to xk−1, ..., x0, i.e., z =
k−1∑
i=0

2ixi.

Setup:

1. Non-interactively set up [pi] = [(λ1
xi
)
a
] by setting p1i =

(λ1
xi
)
a
, p2i = 0 for 0 ≤ i < k.

2. Non-interactively set up [qi] = [(λ2
xi
)
a
] by setting p1i = 0, p2i =

(λ2
xi
)
a for 0 ≤ i < k.

3. Invoke FMultPre([pi], [qi]) to obtain [piqi] for 0 ≤ i < k.

4. Compute [ri] = [(λ1
xi

⊕ λ2
xi
)
a
] = [pi] + [qi] − 2[piqi] for 0 ≤

i < k.

5. Non-interactively generate [λz ] by S0, S1 sampling random λ1
z ∈

Z2ℓ , S0, S2 sampling random λ2
z ∈ Z2ℓ .

Online:
1. Locally compute the following:

– S1: s1 =
k−1∑
i=0

(
2i · (1− 2(mxi )

a) · r1i
)
− λ1

z .

– S2: s2 =
k−1∑
i=0

(
2i · (1− 2(mxi )

a) · r2i
)
− λ2

z .

2. S1 sends s1 to S2 and S2 sends s2 to S1.

3. Compute mz = s1 + s2 +
k−1∑
i=0

(
2i · (mxi )

a).

Protocol ΠB2A(⟨x0⟩B, ..., ⟨xk−1⟩B)

Figure 31: AUXILIATOR: Binary to arithmetic conversion.
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