
Dora: A Simple Approach to Zero-Knowledge for RAM Programs

Aarushi Goel
∗

Mathias Hall-Andersen
†

Gabriel Kaptchuk
‡

Abstract

Existing protocols for proving the correct execution of a RAM program in zero-knowledge are plagued by a

processor expressiveness tradeo� : supporting fewer instructions results in smaller processor circuits (which improves

performance), but may result in more program execution steps because non-supported instruction must be emulated

over multiple processor steps (diminishing performance).

We present Dora, a very simple and concretely e�cient zero-knowledge protocol for RAM programs that

sidesteps this tension by making it (nearly) free to add additional instructions to the processor. �e computational

and communication complexity of proving each step of a computation in Dora, is constant in the number of supported

instructions. Dora’s approach is united by intuitive abstraction we call a ZKBag, a cryptographic primitive constructed

from linearly homomorphic commitments that captures the properties of a physical bag. We implement Dora and

demonstrate that on commodity hardware it can prove the correct execution of a processor with thousands of

instruction, each of which has thousands of gates, in just a few milliseconds per step. Our evaluation shows that

Dora has notably be�er end-to-end performance than concurrent work targeting the same problem.

∗
Purdue University aarushi@purdue.edu

†
Galois, zkSecurity and Aarhus University mathias@hall-andersen.dk

‡
University of Maryland, College Park kaptchuk@umd.edu.

1

mailto:aarushi@purdue.edu
mailto:mathias@hall-andersen.dk
mailto:kaptchuk@umd.edu

Contents

1 Introduction 3
1.1 Our Contributions . 4

1.2 Related Work . 5

2 Technical Overview 6
2.1 Background: Template for RAM Zero-knowledge . 6

2.2 Zero-Knowledge Bag . 7

2.3 Constructing Dora using ZKBag . 8

3 Preliminaries 10
3.1 Linearly Homomorphic Commitments . 11

3.2 Relaxed R1CS . 12

3.3 Commit-and-Prove Zero-Knowledge . 12

3.4 Commit-and-Prove ZK for R1CS . 13

3.5 Multi-Set Equality Proofs . 14

4 Zero-Knowledge Bag 14
4.1 De�ning ZKBag . 14

4.2 Realizing a ZKBag Protocol . 16

5 Verifying Memory Consistency using ZKBag 19

6 Verifying Processor Execution using ZKBag 20

7 Dora: Zero-Knowledge for RAM Programs 25

8 Implementation and Evaluation 27
8.1 Verifying Processor Execution . 29

8.2 Verifying Memory Consistency . 30

8.3 Comparison with Other Approaches . 31

A Additional Benchmarks and Evaluation 40
A.1 Additional Bandwidth Benchmarks . 40

A.2 Comparison with Concurrent Work . 42

2

1 Introduction
Zero-knowledge proofs and arguments

1
[GMR85, GMW86] empower a prover to demonstrate to a veri�er that

executing a public program p on some secret inputs x yields a particular output y, i.e., p(x) = y. A long line of work

has demonstrated feasibility of practically e�cient zero-knowledge systems [GS08, JKO13, GGPR13, BCC
+

16, Gro16,

KKW18, BBB
+

18, BCR
+

19, GWC19, Set20, HK20c, BMRS21, WYKW21, YSWW21, WYX
+

21, WYY
+

22, BBMHS22,

YHKD22]. As a result, zero-knowledge proofs are now being integrated as a key component of deployed systems

[BCG
+

14, Zav20, se19].

Most existing zero-knowledge proof systems require that p is represented as an arithmetic or boolean circuit

(or an equivalent algebraic constraint system). Most natural programs, however, are RAM programs, i.e., programs

designed for von Neumann architectures. RAM programs capture the intuitive notion of computation used by most

practitioners, in which a central processing unit (CPU) with a �xed set of instructions incrementally operates on a

large, random access memory using load and store operations.

Closing the gap between the RAM programs about which provers and veri�ers are interested and the circuit

representations required by zero-knowledge provers is a key hurdle to making zero-knowledge more deployable.

�is gap is more than semantic, as some algorithms in the RAM model are more e�cient than comparable circuit

representations (e.g., sorting). In other circumstances, the prover and veri�er might be particularly interested

in an existing RAM program, e.g., proving knowledge of a so�ware exploit against a deployed RAM program

[HK20c, GHAH
+

23, HYDK21, HK21] or proving that so�ware is legally compliant [BCG
+

22, BCGW22].

Zero-knowledge for RAMPrograms. In order to facilitate proving executions of RAM programs in zero-knowledge,

we use techniques that reduce RAM programs to the circuit representations used within zero-knowledge systems.

One straightforward approach is to leverage circuit compilers [MGC
+

16, Wan]: transform the source code describing

a RAM program into a circuit capturing the same functionality. Correct evaluation of the resulting circuit can then be

proven using any existing zero-knowledge system for circuits, as done in [HK20c]. �is approach, however, introduces

several, noteworthy ine�ciencies: the resulting circuit must be input-independent, all loops must be unrolled for a

�xed number of iterations, and all input-dependent conditional branches are part of the circuit description.
2

�ese

constraints can signi�cantly increase the size of the resulting circuit, and therefore increase the complexity of proving

their evaluation in zero-knowledge.

Instead, the state-of-the-art approach to proving the execution of RAM programs in zero-knowledge [BCG
+

13,

BCTV14b, BCTV14a, HK20a, HYDK21, HK21, FKL
+

21, DOTV22] emulates the execution of the RAM program on

a custom processor. First, the prover and veri�er agree upon a circuit representation of the CPU and RAM access

module. �en, the prover demonstrates that a step of the computation was executed correctly by showing that the

program state (comprising the state of memory and any additional registers in the CPU) is the outcome of a valid state
transition from the previous program state, where the valid transition functions are determined by the processor’s

instruction set. �is process is repeated until program execution has completed.

�e Expressiveness Tradeo�. Designing an optimized processor to use when proving execution of RAM programs

in zero-knowledge requires grappling with an expressiveness tradeo�. It is natural to want a very small processor

circuit with very few instructions, as the prover must “pay” for all the instructions in the processor in each step of

the proof—even unused instructions. �is is because proving each state transition using modern zero-knowledge

proof systems—including SNARKs—will have prover complexity proportional to total size of the processor. As

such, minimizing processor size has become standard practice; Ben-Sasson et al. [BCG
+

13, BCTV14b] introduced a

processor called TinyRAM with only 29 instructions for this purpose, and recent works have created other processors

with even fewer instructions [HK20a, HYDK21, FKL
+

21]. �is approach, however, results in more steps of program

execution—potentially negating the value of a smaller circuit representation of the processor—because instructions

not included in the processor must be emulated over multiple processor steps. Finding the right balance between

processor expressiveness (i.e., how many instructions it supports) and program length is a highly nuanced engineering

problem and will depend on the speci�c RAM program.

In this work, we propose a simple, new approach to RAM zero-knowledge that avoids the expressiveness tradeo�

altogether. Our work leverages the observation that the processor circuit has a very speci�c structure; namely,

1
We use the terms proofs and arguments interchangeably in this work, as is common in practically oriented work on zero-knowledge.

2
As discussed below, some recent work has shown how to avoid the communication costs associated with branching.

3

that it is a disjunction of the supported instructions. A sequence of recent works on disjunctive zero-knowledge

[HK20c, BMRS21, GGHAK22b, KST22, KS22, GHAKS23, KS23] have shown that it is possible to design zero-knowledge

protocols with prover complexity proportional only to the size of the largest clause in the disjunction. Within the

context of RAM zero-knowledge, this would allow adding additional instructions to the processor circuit for free,

thereby increasing expressiveness.

1.1 Our Contributions
We present Dora, a conceptually simple and concretely e�cient zero-knowledge proof system for RAM programs

with a non-succinct proof size. We focus on designing a non-succinct proof system because they have been shown

by several recent and groundbreaking works [DIO21, YSWW21, YHH
+

23, BMRS21, WYKW21, DOTV22] to yield

signi�cantly be�er proof generation times as compared to succinct zero-knowledge (i.e., zkSNARKs).
3 Dora provides

a new way out of the expressiveness tradeo� by supporting increased processor expressiveness for free (both in terms

of computation and communication). Dora has the following desirable a�ributes:

– Communication and Computation Complexity of O(t+ `), where t is the number of steps of the computation and `
is the number of instructions supported by the processor.

4
�e veri�er sends just a single �eld element in each

step of the computation and the prover’s per-step communication and computation depends only on the size of

the instruction being executed in that step. Note that naı̈ve approaches would have prover and communication

complexity O(t`), making Dora a signi�cant improvement.

– Generic Approach and Fiat-Shamir Friendly: Our approach combines new techniques with insights from recent

work on disjunctive zero-knowledge [HK20c, GGHAK22b, GHAKS23] and incrementally veri�able computation

[KST22, KS22]. Dora only assumes the existence of a linearly homomorphic commitment scheme, the optimal

choice for which can be selected based on the deployment considerations. For example, if Dora was deployed in

an interactive se�ing, VOLE-based techniques [BCGI18, YWL
+

20, BMRS21, YSWW21, WYKW21, BBMH
+

21] can

be used, whereas Pedersen commitments [Ped92] can be substituted when non-interactivity is desirable. If the

commitment scheme is post-quantum secure, then Dora will also be post-quantum secure. Finally, the veri�er in

Dora is public coin, making it Fiat-Shamir friendly [FS87].
5

– Concretely E�cient: Dora is concretely e�cient. We implement Dora and integrate it into the swanky [Gal19]

framework. �e marginal cost of proving an additional step of computation with Dora is on the order of milliseconds.

For example, if each instruction has 29 gates, then Dora, when run on commodity hardware (slower than a typical

laptop), can prove correct execution of a program at >2000 steps per second—no ma�er how expressive the

processor instruction set.

SimpleApproach. Our approach for e�ciently realizing a zero-knowledge protocol for RAM programs is exceedingly

simple. We identify a single abstraction through which we can unify our approach to proving that memory has been

handled honestly and the processor circuit has been correctly applied. We call this abstraction a zero-knowledge bag
(ZKBag). �e natural physical analogy of the ZKBag is an opaque bag �lled with identical envelopes. A prover can

insert envelopes (i.e. commitments) into this bag and later remove envelopes. Because the bag’s material is opaque

and all envelopes are identical, an observer cannot determine when a removed envelope was initially inserted but

knows that anything removed must have, at one point, been inserted. We construct Dora from two ZKBags as follows:

(1) To ensure that memory is treated consistently, the prover and the veri�er keep the active state of memory within

the �rst ZKBag. To manipulate a memory cell, the prover simply �nds the envelope holding that cell within the

bag and removes it, updates it appropriately, and returns it to the bag.

(2) We let the second bag hold the intermediary states for a set of ` batch proof protocols, each corresponding to an

instruction supported by the processor. In each processor step, the prover removes the state for the appropriate

instruction, adds another instance of the instruction into the state, and returns the updated state to the bag. Once

all steps are complete, each of the ` batch proofs are veri�ed.

3
We leave the problem of designing a succinct zero-knowledge for RAM programs with similar concrete prover e�ciency to future work.

4
We assume that all instructions are of the same size. �is assumption holds without loss of generality, as we can always pad smaller instructions

to match the size of the largest instruction.

5
We provide a more detailed discussion on the application of the Fiat-Shamir transform to Dora in 8.

4

Concurrent Work. Two recent works [YHH
+

23, YH23], developed concurrently with our own, focus on designing

more e�cient zero-knowledge random access memory [YH23] and for proving statements with processor-like

structures [YHH
+

23]. Although not done, it is straightforward to combine these two works to achieve a RAM

zero-knowledge protocol.
6

A crucial di�erence between these works and Dora, lies in the relative simplicity of our approach. For instance,

in [YHH
+

23], Heath et al. demonstrate how to adapt speci�c techniques from VOLE-based zero-knowledge proof

systems [DIO21, YSWW21] for proving statements with processor-like structures with optimal asymptotic complexity.

Similarly, they develop separate techniques for independently handling memory accesses. In contrast, our goal in this

work was to identify the simplest fundamental approach for designing zero-knowledge for RAM programs with the

desired asymptotic complexity. For this, as discussed above, we formalize a single unifying primitive called zkBag

and demonstrate that it su�ces for proving consistency of both processor execution and memory accesses.

We think that this clean and simple abstraction e�ectively highlights the main challenges that must be overcome

for e�ciently implementing zero-knowledge for RAM programs. �is, in turn, may contribute to further enhancing

the practical e�ciency of zero-knowledge for RAM programs in future works—perhaps by combining our approaches.

We include a concrete, best-e�ort comparison to these concurrently developed works in Appendix A.2. We �nd that

Dora o�ers notably faster proving times (1.5x-10x)
7

for processor execution but is slower (≈ 2x) at updating memory.
8

In both approaches, proving the processor execution is the main performance bo�leneck (proving correct execution

of processor step takes milliseconds while memory update takes microseconds), meaning Dora may o�er a more

promising path to production quality systems.

1.2 Related Work
Zero-knowledge for RAM programs emerged as a problem of interest following the work of Ben-Sasson et al.

[BCGT13, BCG
+

13, BCTV14b, BCTV14a], which demonstrated that it was feasible to prove the correct execution

of real RAM programs. �ese works laid out the primary template from which we work (discussed in Section 2.1

below). Recent works have improved performance, including the work of Heath et al. [HK20a, HYDK21, HK21],

Franzese et al. [FKL
+

21] and Delpech de Saint Guilhem et al. [DOTV22]. �ese works have demonstrated concrete

e�ciency, but still must pay the cost of the full processor circuit in each step. Another common approach to proving

correct execution of RAM programs is to “unroll” the program into an explicit circuit which can be prover with

generic zero-knowledge techniques, e.g., [CK18, YSWW21, WYKW21]. �e demonstration that these approaches

are e�cient has led to studying new applications of zero-knowledge, e.g., proofs that a program can be exploited

[HK20c, GHAH
+

23, CHP
+

23].

To reduce the complexity of executing one step of the processor to be independent of the number of instructions,

we leverage the disjunctive structure of processors. Zero-knowledge that is optimized for disjunctions has been

the focus of foundational work on zero-knowledge [CDS94, AOS02, GMY03] and a signi�cant number of recent

work [GK15, CPS
+

16, Kol18, HK20c, GGHAK22b, ACF21, BMRS21, GHAKS23]. Generally, these works exploit the

observation that the prover knows which clause of the disjunction is satis�ed, and therefore the work on the remaining

clauses is “wasted.” �is means that protocols can be designed, e.g., [HK20c, GGHAK22b, ACF21, BMRS21], that have

communication complexity the depends mostly on the size of the largest clause in the disjunctions (possibly with

logarithmic overhead). Our work can be seen as developing specialized disjunctive zero-knowledge techniques that

compose well with RAM access and have e�cient computation time.

Incrementally Veri�able Computation. Our works builds on two recent results on building incrementally ver-

i�able computation (IVC) from folding schemes, Nova [KST22], SuperNova [KS22], Protostar [BC23] which are a

part of an emerging literature on concretely e�cient IVC [BGH19, BCMS20, BDFG21, BCL
+

21]. In Nova [KST22] ,

Kothapalli et al. show how to build a folding scheme for NP using a generalization of R1CS called Relaxed R1CS and

show how it can be used to build IVC. SuperNova [KS22] and Protostar [BC23] were then proposed as extensions

of Nova that support non-uniform IVC for “free,” and discuss how to apply their techniques to verifying processor

6
In a follow-up work [YHH

+
24], the authors of [YHH

+
23, YH23] explore this approach.

7
�e conference version of this work had a typo in Figure 11 table which was propagated throughout the rest of the text. �is has been �xed in

this version.

8
�e initial version of this paper shared publicly reported that Dora o�ered slower proving times for both processor execution and updating

memory that concurrent work. �is was due to an error in our evaluation that compared the performance of Dora on an 128-bit �eld to concurrent

work on a 61-bit �eld. �e evaluation presented in this version is more accurate.

5

computations.

Zero-knowledge proofs for RAM program execution can be seen as a version of non-uniform IVC where the

prover must also hide which instructions are applied to the state at each step of the computation, but also need

not be fully succinct in the number of steps. Zero-knowledge is not a goal of SuperNova, and thus we require new

techniques to leverage their approach into our se�ing. Additionally, SuperNova’s IVC reasons over the entire contents

of memory, which is not concretely e�cient; instead, we couple our zero-knowledge IVC with a separate protocol for

managing memory consistency. Kothapalli and Se�y have also recently introduced HyperNova [KS23], which aims

to develop new folding schemes for NP that can be used to build more e�cient IVC.

Other SNARKs. �ere are other prior works [WSR
+

15, ZGK
+

18, KPPS20, BBHR18, lib18, gen20, hod21, GPR21,

MAGABMMT23, DXNT23, CGG
+

24] that focus on building concretely e�cient zkSNARKs (zero-knowledge succinct

non-interactive arguments of knowledge), where the prover cost grows only with the size of the program execution.

For instance, Bu�et [WSR
+

15], vRAM [ZGK
+

18], Mirage [KPPS20], MUX-Marlin [DXNT23] and Sublonk [CGG
+

24]

that consider an “a la carte” cost pro�le for the provers where the prover cost for proving a step of computation grow

only with the size of the circuit representing the instruction invoked on that step, i.e. independent of the number

of branches. However, these schemes require a trusted common reference string setup and make use of expensive

public-key operations. Works building on zkSTARKs [BBHR18, lib18, gen20, hod21, GPR21, MAGABMMT23] use

a transparent (i.e. untrusted) setup and require the prover to only do work proportional to the execution trace.

However, they require making a non-black box use of cryptographic hash functions. Similarly, commit and prove

style SNARKs that [CFQ19, Lip16, CFH
+

15] that have similar prover computation times also make non-black box

use of cryptographic commitments. �erefore, while all of these schemes have sublinear proof sizes, their prover

computation times are signi�cantly worse than those resulting from known techniques for zero-knowledge with

non-sublinear sized proofs.

2 Technical Overview
We now give an overview of the key techniques we use to construct Dora. We �rst recall the basic template to

achieving zero-knowledge for RAM programs before proceeding to Dora itself.

2.1 Background: Template for RAM Zero-knowledge
As discussed earlier, while zero-knowledge has primarily been studied in the circuit model (i.e., where the relation

for the NP language is represented as a circuit over a �nite �eld), a signi�cant line of work has studied how to

achieve zero-knowledge for RAM programs [BCGT13, BCG
+

13, BCTV14b, HK20a, HYDK21, GHAH
+

23]. �e key

idea in these works is to bootstrap from circuit zero-knowledge to RAM zero-knowledge by representing the RAM

machine on which the program should be evaluated as an explicit circuit. �e prover can then use this circuit as a

state transition function, and show (in zero-knowledge) that repeatedly applying this circuit t times to some initial

inputs, results in a desired �nal processor state.

More concretely, the prover and veri�er represent the RAM machine using two components: (1) a processor circuit
Cproc, and (2) a memory checker circuit Cmem. Cproc takes as input, values fetched from memory and implements a set

of valid instructions I = {I1, . . . , I`}, ensuring that only one of these is evaluated at every step over the inputs. For

example, the Ii instruction might add values, test values for equality, or modify the processor state to a�ect control

�ow, etc. . . �e result of this evaluation can then be stored back in memory.
9

�e memory checker circuit Cmem

enforces that memory is treated consistently—that is, when a value is read from a particular memory address, Cmem

checks to make sure that the value corresponds exactly to the last value wri�en to that memory address.

Because most approaches for instantiating zero-knowledge for RAM program relies on this bootstrapping approach,

the key determinant of e�ciency is the size of the circuits required to implement the functionality Cproc and Cmem.

– Current Approaches to Cproc. Prior work has emphasized the need for a small Cproc, at the expense of expressive-

ness. For example, Ben-Sasson et al. [BCG
+

13] describe a minimal Cproc called TinyRAM, which contains 27

9
Hardware architectures also have local memory, i.e., registers and program counter, within the processor circuit. For the purposes of this

overview, we elide these low level details, but note that they can either be handled as state within the processor circuit or simply as a specially

named memory region.

6

instruction that can be represented in ≤ 972 gates.
10

�is is because the �nal circuit contains t copies of Cproc,

and t can be very large (e.g. imagine t is in the hundreds of thousands, or more). �us, if a particular instruction

Ii is very rarely used (in an average program), the prover and veri�er still pay for that instruction in each

step of the program execution. It may be more e�cient to instead emulate Ii using a sequential series of other

instructions, increasing the value of t while e�ectively reducing the costs of each of the t steps. In practice, this

emulation approach is concretely e�cient—executing a RAM program on a TinyRAM only increases t by a

multiplicative factor of 2-6x compared to x86, which contains hundreds of instructions.

– Current Approaches to Cmem. �ere are two primary approaches to checking the consistency of memory accesses

discussed in prior works: (1) leverage an e�cient oblivious RAM (ORAM) construction, or (2) use a permutation
proof. In the former approach, the prover stores tuples of the form (address, value) within an ORAM (eg.

[MRS17]), which is either maintained by the veri�er (if the proof will be executed interactively) or represented

in a non-black box manner within Cmem. Since ORAM constructions hide access pa�erns and can guarantee

consistency, the veri�er can be con�dent that memory has been treated honestly without learning anything

about the program execution. �e other approach has the prover generate a memory trace of all reads and

writes during program execution. �e prover then permutes this trace to be sorted by address (tie-broken

by timestamp), and Cmem needs to only check that neighboring elements of the sorted trace are internally

consistent. �is la�er approach has been found to be more e�cient in practice, and is the primary approach

used in work focused on concrete e�ciency [FKL
+

21, DOTV22, GHAH
+

23].

2.2 Zero-Knowledge Bag
At the heart of our construction is a new, unifying primitive that we introduce called a zero-knowledge bag (or ZKBag).

We begin by describing this building block and then show how it can be used to instantiate Dora. We require that a

ZKBag—the digital equivalent of a physical, opaque bag—provides the following (informal) guarantees:

1. Unique Removal: Once an element has been retrieved from the ZKBag, it cannot be retrieved again (unless, of

course, it is re-inserted).

2. Ordered Binding: Every element that is retrieved from the bag is exactly one of the elements that was previously

inserted into the ZKBag.

3. Order Hiding: �e act of retrieving an element from the ZKBag reveals nothing about when that element was

inserted.

Clearly, in order to realize the order hiding property, elements cannot be inserted into the ZKBag in the clear, or

else a veri�er could trivially link insertions and retrievals based on the value itself. As such, we insert and remove

cryptographic commitments; when the prover wants to remove a value, it creates a new, fresh commitment to the

value and convinces the veri�er that the value therein corresponds to a value currently within the bag. �is process

should also remove the commi�ed value from the bag.

Looking ahead, ZKBag provides the right combination between binding and pa�ern hiding required to construct

zero-knowledge for RAM programs. �e relationship between ZKBag and memory consistency should be clear:

writing to memory corresponds exactly to inserting a (address, value) tuple into a ZKBag, and reading from memory

corresponds exactly to retrieving a (address, value) tuple from a ZKBag. We will also use a ZKBag to hold the

instruction set I for the processor, and have the prover pick out one instruction to be evaluated in each processor

step (before reinserting it).

Constructing a ZKBag. It is clear to see that ZKBag is closely reminiscent of many existing cryptographic primitives.

If unique removal were not required, ZKBag could be realized directly with set membership proofs, a concretely e�cient

primitive that has been the subject of immense recent study (eg. [RST01, CCs08, BCF
+

21, GGHAK22a, CGT23]). To

achieve unique removal, it is clear that some kind of oblivious revocation is required, a technique that has been used

in multiple other contexts, eg. ZCash [MGGR13]. However, a set membership based approach will require that the

10
For simplicity, we do not yet make a distinction between the number of gates needed to compute the instructions and the number of gates

needed to verify that a claimed evaluation is correct. In practice, we always mean the la�er.

7

statement for each retrieval grows as the protocol continues.
11

Ideally, we want each insertion and retrieval to require

a constant amount of communication and computation, as these interfaces will be called many (ie. O(t)) times.

To achieve constant overhead, we batch checks required for ordered binding and unique removal across all insertions

and retrievals, deferring the veri�cation until the end of the protocol. In more detail, the prover and veri�er maintain

two lists of commitments: a list of insertions I and a list of retrievals R. Each time the prover wants to insert a

value vi into the ZKBag, the veri�er provides a uniformly random tag tagi to the prover. �e prover forms a hiding
commitment comvi as comvi = Com(vi) and the parties jointly form a public/non-hiding commitment comtagi as

comtagi = Com(tagi) with shared randomness. Both parties add (comtagi , comvi) to their respective insertion list I .

When retrieving a value vj from the ZKBag, the prover recalls the tag tagj generated during insertion, creates the

hiding commitment tuple (comtagj = Com(tagj), comvj = Com(vj)) using fresh randomness and both parties add

(comtagj , comvj) to the their respective retrieval listR.

When the protocol ends, the prover retrieves any remaining values from the bag (i.e., it empties the bag) and

gives a permutation proof demonstrating that there exists a permutation φ such that I = φ(R). It is easy to see

that read-only access to the ZKBag can be accomplished by removing a tuple (comtag, comv) from the bag and

immediately re-inserting the same (non-rerandomized) value commitment with a freshly generated tag (ie. the tuple

(com′tag, comv)).

Intuitively, the use of hiding commitments provides the necessary order hiding property, and the tags provides both

the ordered binding and unique removal properties. Speci�cally, a prover who wanted to remove an item that has not

yet been inserted would need to predict the tag that the veri�er would generate for that value in the future. Similarly,

if an adversary removes the same value from the ZKBag twice, it must produce a second valid tag corresponding to

the value. If the prover re-uses the same tag twice, there will be a mismatch in the tags in I andR, and if it uses a new

tag, it must predict a tag the veri�er will generate in the future. �is construction is highly e�cient. Each insertion

and removal requires preparing and sending only two commitments. �e batched check can be done with constant

communication and linear computation using a Ne�-style commit-and-prove style permutation proof [Nef01] (which

we describe in Section 3.5).

2.3 Constructing Dora using ZKBag
In our work, we approach the problem of constructing e�cient zero-knowledge for RAM programs at the protocol
level, rather than trying to optimize the choice of circuits Cproc and Cmem.

Expressiveness Comes Free in Zero-Knowledge. �e result is Dora, a protocol for RAM zero-knowledge that

transcends the seemingly inherent tradeo� between processor expressiveness (i.e., |I| = `) and execution trace

length (i.e., t) altogether, and instead shows that processor expressiveness can come (nearly) free12
—both in terms of

computation and communication.

As with prior a�empts, Dora can be decomposed into a memory component and a processor instruction handling

component, each of which we realize with ZKBag. Before describing the techniques that we use in Dora, we brie�y

recall our e�ciency goals for each component:

– E�ciency Goals for Memory Component: During each step of execution, the prover will fetch (1) the value stored at

the address indicated by the program counter, and (2) fetch a single value from memory and write a single value

to memory, as either (or both) might be necessary for the next instruction. We require that the computation and

communication complexity of each fetch and write must be constant.

– E�ciency Goals for Processor Instruction Component: During each step of execution, the prover will evaluate a

single instruction on the processor state, where the instruction is determined by the value fetched in (1) above. We

require that the communication and computation complexity of each step of execution is independent of |I|.

We now discuss how to achieve both of our goals using ZKBag.

HandlingMemory inDora using ZKBag. As noted above, handling memory access with ZKBag is straightforward,

as ZKBag’s properties are virtually identical to those required for memory consistency. �e prover and the veri�er

11
We note that there is a recent line of work showing the set membership—and disjunctive zero-knowledge more generally—can be achieved

with very low overhead as the statement size grows. While it may be possible to construct ZKBag from these primitives, we instead pursue another

approach discussed below.

12
In particular, we do not need to pay the cost of processor expressiveness at each step of the processor execution.

8

begin by initializing the memory space by inserting public tuples (address, value) into ZKBag for every address in

the memory space, including the program code and the rest of the initial memory state (e.g. the initial stack and heap)

of the execution. When proving a step of the computation, the prover interacts with the memory store three times
13

:

(1) �e prover begins by reading the next instruction from memory and loading it into the processor state. �is is

a read-only operation, which the prover achieves by removing and re-inserting the same value (i.e. the same

commitment).

(2) �e prover also reads a value from memory into the processor state in case the instruction that will be run in the

next instruction needs to read memory (e.g. for a LOAD instruction). Just as above, this read is read-only. Note that

the prover must always perform this read in every step of the computation in order to hide any witness-dependent

read pa�erns.

(3) Finally, the prover performs an update to one address in memory in case the instruction run in that step is a

STORE instruction. �is write instruction requires removing an element from the ZKBag and then rewriting to

the same address with a new value from the processor state.
14

If the instruction does not require performing a

write instruction, the prover can simply rewrite the initial value leaving memory functionally unchanged.

Soundness follows directly from the unique removal and ordered binding properties of the ZKBag (discussed above),

as these properties guarantee that the veri�er knows that each values read from memory must be “current.” Zero-

knowledge relies on the order hiding property to hide the memory addresses being manipulated.

Using this protocol, the total complexity of managing memory in Dora is only three tuple insertions and three

tuple removals per step of the computation, but this can be reduced because the prover does not need to resend the

same commitments multiple times.

Handling Processor Instructions in Dora using ZKBag. During each step of processor execution, the prover

needs to convince the veri�er that a processor state sti+1 is the result of applying one of the instructions in the

instruction set to the previous processor state sti, without revealing which instruction was applied. We begin by

giving a baseline approach for achieving our goal before proceeding to optimize the approach to improve concrete

performance.

Baseline Approach. A straightforward approach would be to use a set membership proof; the prover could generate a

commitment to the executed instruction and then provide a proof that the contents of the commitment are a valid

instruction. �is commitment can then be added to the statement for another zero-knowledge proof that demonstrates

the transition from sti to sti+1. �is approach, while intuitive, has two primary downfalls:

(1) While there has been a tremendous amount of work on set membership proofs, state-of-the-art protocols have

a logarithmic size in the number of elements in the set and a linear computation complexity in the size of

the set (e.g., [HK20c, HK20b, GGHAK22a, GGHAK22b]). While in practice it might be acceptable to tolerate

the communication overhead, linear computation complexity may be unreasonable for large instruction sets.

Moreover, our aim in this work is to achieve constant overhead—both in terms of communication and computation.

While SNARKs might be a way to achieve our goals for the veri�er, given SNARK’s succinctness and constant-time

veri�cation, there is not an obvious way to use this set membership approach to get constant overhead for the

prover.

(2) Given a commitment to the step’s instruction I , the prover must then prove that sti+1 is the result of applying I to

sti. Doing this e�ciently is non-trivial, given that the statement of interest is in commi�ed form. A very natural

approach to would be to combine non-black box use of the commitment scheme and universal circuits (ie. prove

that I is in the commitment and that U(I, sti) = sti+1, where U is a universal circuit of the appropriate size), and

then prove the resulting statement using generic, circuit zero-knowledge. Unfortunately, both non-black box use

of cryptography and universal circuits tend to be highly ine�cient, making this approach una�ractive. It might be

possible to design very speci�c zero-knowledge proofs that naturally interoperate the chosen commitment scheme

13
We assume that the processor here has a simple load store architecture and all instructions in the instruction set read and write at most a

single value. In more complex architectures (eg. architectures that support indirect loads) additional interactions with memory may be necessary.

Supporting these instructions is trivial.

14
Ensuring that the read and write are to the same memory location can be easily ensured by reusing the address commitment retrieved during

the removal.

9

to avoid the non-black box use of cryptography, but this approach would reduce the �exibility and modularity of

our construction.

As such, the seemingly natural approach to handling processor instruction in Dora appears to be unfruitful.

Instead, we investigate how ZKBag could be used to design a more e�cient approach. As already demonstrated with

memory management, ZKBag provides a highly e�cient (ie. constant overhead) way to obliviously select elements

from a set. As such, it seems natural to substitute the set-membership proof in the above template with ZKBag,

resolving problem (1). However, using ZKBag in this way does nothing to resolve problem (2). As such, we require a

slightly more nuanced approach to using ZKBag in order to achieve our result.

Combining ZKBag and Relaxed R1CS to Achieve Constant Overhead. Rather than store instructions in a ZKBag, we

build on an approach from prior works on IVCs [KST22, KS22] and store a set of accumulators in the ZKBag—one

accumulator for each instruction in the instruction set. Executing a step of the processor involves obliviously retrieving

the appropriate accumulator from the ZKBag and updating it. �e intuition behind this approach is to use these

accumulators to iteratively update NP statements at each step, such that the prover can simultaneously verify the �nal

accumulated set of |I| statements at the end of the protocol. �ese accumulators are carefully designed such that the

prover’s knowledge of a valid witness at the end of the protocol for each accumulated statement demonstrates that

each step was correctly executed. �e bene�t of this approach is that the computationally expensive zero-knowledge

proofs are deferred until the end of the protocol, requiring only a single zero-knowledge proof for each instruction

rather than for each step, further improving Dora’s concrete e�ciency.

To instantiate these accumulators, we leverage Relaxed R1CS folding, an approach described by [KST22]. Relaxed

R1CS is a natural extension to standard R1CS such that there can be additional error terms. A typical R1CS relation is

constructed by matrices A,B,C and an instance
−→x is satis�ed if there exists a witness

−→w such that A · −→z ◦B · −→z =
C · −→z , where

−→z = −→w ‖−→x . A relaxed R1CS relation injects two additional error parameters, u ∈ F and
−→e ∈ Fm, and

is satis�ed if there exists a
−→z = −→w ‖−→x ‖u such that (A · −→z) ◦ (B · −→z) = u · (C · −→z) + −→e . �e power of relaxed

R1CS is that it permits folding: given a �xed relation A,B,C, and two instances (−→x 1, u1,
−→e 1) and (−→x 2, u2,

−→e 2), it

is possible to combine the two into a new instance (−→x , u,−→e) for the same relation A,B,C. Importantly, a prover

can only satisfy the new instance (−→x , u,−→e) if they had valid witnesses
−→w 1,
−→w 2 to the initial instances (except with

negligible probability). We defer the details of this folding procedure to Section 3.2.

Dora leverages this technique as follows: the prover and veri�er initialize a ZKBag and (publicly) insert a relaxed

R1CS instance (as de�ned by
−→e and

−→z) for each instruction into the ZKBag that will be used as an accumulator.

During each step of the computation, the prover retrieves the instance corresponding to the current instruction and

prepares a new instance for the current instruction using the commi�ed processor state and the values retrieved

from memory. �e prover then folds the state of the accumulator with the newly prepared instance, locally updating

the witness required to satisfy the folded instance. Finally, the prover inserts the folded instance into the ZKBag

and continues to the next step. A�er all the steps have been run, the prover removes the �nal accumulator for

each instruction from the ZKBag and opens them to the veri�er. �e prover and veri�er then engage in a generic

zero-knowledge proof for the �nal relaxed R1CS instances. We note that there are several low-level details we have

omi�ed in this description for clarity (e.g., the �nal instances must be randomized to satisfy zero-knowledge).

Putting It All Together. Dora is realized by combining the techniques described above for memory management

and proving the correctness of instruction executions. In each step, the prover retrieves the appropriate values from

memory and adds them to the (commi�ed) processor state. �e prover then uses the processor state to construct a

relaxed R1CS instance that would prove correct execution of the instruction and folds it into the accumulator for the

instruction executed in that step. Finally, the prover updates a memory location to emulate a store instruction. Once

all of the steps have been completed, the prover opens all the accumulators and proves that it has a witness to each

one.

We benchmark Dora in Section 8 and show that it is highly e�cient. Because of its nice asymptotics, Dora can

prove correct execution of RAM programs on massive processors (thousands of instruction with thousands of gates

each) in milliseconds per step.

10

3 Preliminaries
In this section, we recall some prelimary de�nitions. In Section 3.1, we present a de�nition of linearly homomorphic

commitments. In Section 3.3, we recall the de�nition of a commit-and-prove zero-knowledge protocol. In Section 3.2,

we provide a formal overview of relaxed R1CS [KST22]. In Section 3.4, we recall a construction of commit-and-prove

ZK for R1CS (implicit in [KST22]). Finally, in Section 3.5 we recall the construction of Ne�-style [Nef01] multi-set

equality proofs.

Notation. Let t be the number of steps in the program trace, ` be the number of instructions in the processor circuit,

m be the number of addresses in memory.

3.1 Linearly Homomorphic Commitments
Our construction makes use of a standard linearly homomorphic commitment primitive, which we de�ne below. We

intentionally give a general enough de�nition of this primitive that can capture both interactive instantiations (eg.

VOLE-based [BMRS21]) and non-interactive instantiations (eg. Pedersen [Ped92]).

De�nition 1 (Linearly Homomorphic Commitments). Linearly homomorphic commitments comprise of a tuple of
four interactive protocols πLCom = (πLCom

Setup , π
LCom
Commit, π

LCom
Open , π

LCom
Comb) between a Sender Sen and receiver Rec and a PPT

algorithm EquivLCom de�ned as follows:

– ((pp, skey), (pp, rkey))← πLCom
Setup : �e setup protocol generates any needed public parameters pp, a sender key skey as

output for the sender and a receiver key rkey as output for the receiver.

– ((com, op), (com))← πLCom
Commit: �e commit protocol takes the value val to be commi�ed as input from the sender and

outputs a commitment com to both the sender and the receiver. It additionally outputs op to the sender.

– ((b), (val′))← πLCom
Open : Both the sender and receiver invoke the opening protocol using a commitment com as input.

�e sender additionally inputs a value val commi�ed inside this commitment and the associated opening information
op. �is protocol outputs a value val′ ∈ {val,⊥} to the receiver and a bit b ∈ {0, 1} to the sender indicating whether
or not val′ =?= val.

– ((com, op), (com))← πLCom
Comb : �e linear combination protocol takes (pp, skey, flin, com1, op1, com2, op2) as input

from the sender and (pp, rkey, flin, com1, , com2) as input from the receiver. It computes the function flin on com1 and
com2 and outputs the resulting new commitment com and its corresponding opening information op.

– op ← EquivLCom(pp, rkey, com, val): �e equivocation algorithm and outputs the new opening information op
corresponding to com and val.

We require that the scheme satis�es standard hiding. For binding, we assume that the commitment scheme has an
extractor that can extract the val within a commitment. In addition to these standard properties, we assume that the
πLCom
Comb algorithm allows the sender and receiver to perform linear operations over commitments and we assume that the

receiver can always equivocate. Formally, these properties are de�ned as follows:

1. Hiding: Let ((pp, skey) , (pp, rkey)) ← πLCom
Setup

〈
Sen

(
1λ
)
,Rec

(
1λ
)〉

be an honest execution of the setup protocol.
For any val1, val2 ∈ V , the view of Rec remains computationally indistinguishable in the following two executions:

πLCom
Commit〈Sen(pp, skey, val1),Rec(pp, rkey)〉

πLCom
Commit〈Sen(pp, skey, val2),Rec(pp, rkey)〉

2. Equivocation: Let ((pp, skey) , (pp, rkey)) ← πLCom
Setup

〈
Sen

(
1λ
)
,Rec

(
1λ
)〉

be an honest execution of the setup
protocol. �e following holds ∀ val ∈ V and every honest execution of the commit protocol ((com, op) , (com)) ←
πLCom
Commit 〈Sen (pp, skey, val) ,Rec (pp, rkey)〉: if (val′, op′)← EquivLCom (pp, rkey, com), then for an honest sender

and receiver,

Pr[((1), (val′))← πLCom
Open 〈Sen(pp, skey, com, op′, val′),Rec(pp, rkey, com)〉] ≥ 1− neg(λ)

11

3. Linear Homorphism: Let ((pp, skey) , (pp, rkey)) ← πLCom
Setup

〈
Sen

(
1λ
)
,Rec

(
1λ
)〉

be an honest execution of the
setup protocol. �e following holds for all val1, val2 ∈ V , every linear function flin : V × V → V and all honest
executions of the commit protocol (∀ i ∈ [2]) ((comi, opi) , (comi))← πLCom

Commit 〈Sen (pp, skey, vali) ,Rec (pp, rkey)〉:
if

((com, op), (com)) ← πLCom
Comb 〈Sen(pp, skey, flin, com1, op1, com2, op2),Rec(pp, rkey, flin, com1, , com2)〉 ,

then for an honest sender and receiver,

Pr[((1), (flin(val1, val2)))← πLCom
Open 〈Sen(pp, skey, com, op, flin(val1, val2),Rec(pp, rkey, com)〉] ≥ 1− neg(λ)

4. Binding/Extraction: Let ((pp, skey) , (pp, rkey)) ← πLCom
Setup

〈
Sen

(
1λ
)
,Rec

(
1λ
)〉

be an honest execution of the
setup protocol. �ere exists an extractor E , such that for any PPT adversaryA and for any com such that ((·) , (com))←
πLCom
Commit 〈A (pp, skey, ·) ,Rec (pp, rkey)〉, then (val)← EO(A) (pp) such that for any honest receiver and val 6= val′ 6=
⊥, it holds that

Pr[((·), (val′))← πLCom
Open 〈A(pp, skey, com, ·),Rec(pp, rkey, com)〉] ≤ neg(λ)

Short-Hand Notation. For simplicity, we use the notation JvK denotes a commitment to some value
−→v . We o�en

abuse notation and use J−→x K to denote a linearly homomorphic commitment to a vector of elements in
−→x ∈ F∗. We

use linear arithmetic operations as a short-hand for πLCom
Comb , e.g., JvalK = c1 · Jval1K + Jval2K, where c1 is some public

value. Finally, we remark that the by default, the above de�nition of πLCom
Commit is presented for private commitments, i.e.,

it only takes the value to be commi�ed as input from the sender. However, it can easily be adapted to allow for public
commitments, where both the sender and receiver have access to the value being commi�ed. It that case, we assume

that in addition to taking val as input from both parties, πLCom
Commit is run on shared randomness between the sender

and receiver.

3.2 Relaxed R1CS
Exisiting proof systems works with di�erent representations of the relation they are proving. �e most popular

representation amongst state-of-the-art proof systems is known as the rank 1 constrained system (or R1CS) that

generalizes arithmetic circuits. In this work, we use Relaxed R1CS, a generalization of R1CS introduced by Kothapalli,

Se�y and Tzialla [KST22]:

De�nition 2 (Relaxed R1CS, [KST22]). A relaxed R1CS (Rank-1 Constraint System) [KST22] is de�ned by three matrixes
A,B,C ∈ Fm×m. A witness w satis�es an instance (−→e ,−→x , u) i�. the “extended witness”−→z = −→w ‖−→x ‖u ∈ Fm satis�es:
(A · −→z) ◦ (B · −→z) = u · (C · −→z) +−→e . For ease of notation, refer to Relaxed R1CS instances by their extended witness −→z
and error term −→e , which in turn de�nes −→w ,−→x , and u.

One valuable feature of Relaxed R1CS instances, as noted by [KST22], is that they can be “folded.” �at is, given

two Relaxed R1CS instances (−→z1 ,−→e1) and (−→z2 ,−→e2) and a randomly sampled r ∈ F, we can de�ne a new instance

(−→z ,−→e) as:

−→e = −→e1 + r ·
−→
T + r2 · −→e2 , u = u1 + r · u2, −→z = −→z1 + r · −→z2 , where

−→
T = A · −→z1 ◦B · −→z2 + A · −→z2 ◦B · −→z1 − u1 ·C · −→z2 − u2 ·C · −→z1

Importantly, this folding process is sound, in that if either (−→z1 ,−→e1) or (−→z2 ,−→e2) are not satis�ed, then (−→z ,−→e) is also

unsatis�ed with high probability (over the choice of r). An additional fact about the folding scheme above (not

directly used in Nova [KST22]) is that the folding only depends on the dimensions of A, B and C. �is means that we

can have the veri�er “fold” two commi�ed instances pairs without revealing the relation these instances belong. �is

will be crucial as we will be executing the folder “obliviously,” in that only the prover will know which instance is

being considered.

Remark (R1CS is a Special Case of Relaxed R1CS). Note that regular R1CS is captured as the special case of De�nition 2

where
−→e =

−→
0 ∈ Fm and u = 1. �roughout the section, to simplify notation, we will refer to relaxed R1CS instances

by their error term
−→e ∈ Fm and extended witness

−→z ∈ Fm; which de�ne
−→w ,−→x , u.

12

3.3 Commit-and-Prove Zero-Knowledge
Both our �nal construction Dora and our subprotocol for handling processor instructions are custom-designed commit-

and-prove style zero-knowledge for speci�c languages. In this section, we recall the de�nition of this primitive. We

assume that the commitments in this de�nition were computed using inearly homomorphic commitments de�ned in

Section 3.1.

De�nition 3 (LinCom-Based Commit-and-Prove ZK). LinCom-based commit-and-prove zero-knowledge proof system
for an NP-relationR, comprises of a tuple of 3 interactive protocols (πSetup, πProof , πVerify) between the sender and receiver
de�ned as follows:

• ((pp, skey), (pp, rkey))← πZK
Setup:�e setup protocol generates any needed public parameters pp, a sender key skey as

output for the sender/prover and a receiver key rkey as output for the receiver/veri�er.

• ((ProofZK, st), (ProofZK)) ← πZK
Prove: �e prove protocol takes as input (pp, skey,−→x , com,−→op,−→w) from the

sender/prover and (pp, rkey,−→x , J−→w K) from the receiver/veri�er. It outputs a proofProofZK that allows the prover/sender
to convince the receiver/veri�er that it knows−→w ,−→op such that they are a valid opening for J−→w K and−→w is a valid witness
for statement −→x . �is protocol may additionally output some secret state st for the sender/prover.

• ((b), (b)) ← πZK
Verify: �e verify protocol takes as input (pp, skey,ProofZK, st,−→x) from the sender/prover and

(pp, rkey,ProofZK,−→x) from the receiver/veri�er and outputs a bit b ∈ {0, 1}, based on whether or not the proof
ProofZK veri�es.

We require the above protocols to satisfy the standard notions of correctness, zero-knowledge and knowledge

soundness.

3.4 Commit-and-Prove ZK for R1CS
Next, we recall a simple Σ-protocol for R1CS-satis�ability. �is protocol is derived directly from the Nova [KST22]

IVC scheme. �is protocol satis�es all the properties that we need from a commit and prove zero-knowledge protocol

de�ned in Section 3.3. Let (A,B,C) be an R1CS instance. Given a commitment

q−→z
y

, computed using a linearly

homomorphic commitment (see Section 3.1), the prover wants to convince the veri�er that the value
−→z = −→w ‖−→x ‖u

commi�ed inside this commitment is a valid extended witness for (A,B,C). �e setup algorithm πZK
Setup of this proof

system is the same as the setup of the above linearly homomorphic commitment scheme. We now describe the πZK
Prove

and πZK
Verify protocols.

• Prover samples a random satisi�ed relaxed R1CS instance as follows:

– Sample
−→z0 ←$Fm and parse

−→z0 = −→w0‖−→x0‖u0.

– Set

−→
L ←

(
A · −→z0

)
◦
(
B · −→z0

)
,

−→
R ← u0 ·

(
C · −→z0

)
and
−→e0 ←

−→
L −

−→
R

• Prover then computes the cross terms:

−→
t1 ← A · −→z ◦Bi · −→z0 + A · −→z0 ◦Bi · −→z

−→
t2 ← u ·C · −→z0 + u0 ·C · −→z

−→
T ← −→t1 −

−→
t2

• Prover and veri�er use πLCom
Commit to compute commitment-opening pairs ((JT K , opT) , (JT K)),

(
Jz0K , opz0

)
and(

Jz0K , ope0
)
.

• �e veri�er then samples and sends r←$F.

• Prover uses πLCom
Comb , π

LCom
Open to open the following linear combinations of the two instances:

– Let

−→
e′ be the opened value associated with the commitment

(
r ·

r−→
T

z
+ r2 ·

q−→e0
y)

13

– Let

−→
z′ be the opened value associated with the commitment

(−→z + r · −→z0
)

• Finally, if the above openings are valid, the veri�er checks:

(
A ·
−→
z′
)
◦
(
B ·
−→
z′
)

=?= u′ ·C ·
−→
z′ +

−→
e′ , where

u′ = u + r · u0.

3.5 Multi-Set Equality Proofs
In our construction of ZKBag, we leverage an e�cient set equality proof (also referred to as a permutation

proof). In our concrete instantiation of Dora, we use the simple Bayer-Groth style proof. To the best of our

knowledge, this construction was �rst documented in [Nef01] and has subsequently been independently dis-

covered in many works [BG12, FKL
+

21]. Given 2 sets of commitments, S1 = (J−→a1K , . . . , J−→akK) and S2 =(r−→
b1

z
, . . . ,

r−→
bk

z)
, the multi-set equality proof can be viewed as a commit-and-prove zero-knowledge proto-

col (say

(
πZKMultiSet
Setup , πZKMultiSet

Prove , πZKMultiSet
Verify

)
) for the following relation: there exists a permutation p, such that

p (−→a 1, . . . ,
−→a k) =

−→
b 1, . . . ,

−→
b k .

We now recall this well-known Bayer-Groth style [BG12] shu�e proof. We assume that all commitments were

computed using linearly homomorphic commitments from Section 3.1. �is is the only component in our construction

that (black-box) relies on a general proof system – let

(
πZK
Setup, π

ZK
Prove, π

ZK
Verify

)
be the commit and prove zero-knowledge

protocol for general R1CS satis�ability from Section 3.4. �e setup algorithm πZKMultiSet
Setup of this proof system is the

same as the setup of the above linearly homomorphic commitment scheme. We now describe the πZKMultiSet
Prove and

πZKMultiSet
Verify protocols.

• Veri�er samples random �eld elements u, v←$F, and sends them to the prover.

• For each i ∈ [k], both the prover and veri�er use πLCom
Comb to compute

JαiK =
〈(

1, u2, . . . , uk−1
)
, J−→aiK

〉
JβiK =

〈(
1, u2, . . . , uk−1

)
,
r−→
bi

z〉
• Finally, the prover uses

(
πZK
Setup, π

ZK
Prove, π

ZK
Verify

)
to convince the veri�er that

∏
i∈[k] (v − JαiK) =∏

i∈[k] (v − JβiK).

4 Zero-Knowledge Bag
�e heart of Dora is a zero-knowledge bag (ZKBag) protocol. �is cryptographic object is analogous to a physical bag

into which the prover and veri�er place wrapped objects. �e critical properties of the protocol are equivalent to the

physical properties that such a bag would possess: only objects previously put into the bag can be removed, and the

bag itself hides the correspondence between the order in which objects are inserted and removed. In some sense, the

zero-knowledge bag can be seen as a “slow moving” shu�e proof augmented with a sense of time.

4.1 De�ning ZKBag
De�nition 4 (LinCom-Based Zero-Knowledge Bag). A ZKBag is parameterized by a linearly homomorphic commitment
scheme, and as such we call the resulting cryptographic primitive a LinCom-Based ZKBag. A LinCom-Based ZKBag
comprises of a tuple of 5 interactive protocols (πZKBag

Setup , π
ZKBag
Init , πZKBag

Insert , π
ZKBag
Remove, π

ZKBag
VerEmpty) between the sender and

receiver:

– ((pp, skey) , (pp, rkey))← πZKBag
Setup

〈
Sen

(
1λ
)
,Rec

(
1λ
)〉
: �e setup protocol generates any needed public parameters

pp, generates a sender key skey as output for the sender and a receiver key rkey as output for the receiver.

– ((bag, state) , (bag))← πZKBag
Init 〈Sen (pp, skey) ,Rec (pp, rkey)〉 : �e parties take the output of πZKBag

Setup as input and
initialize the ZKBag. �e sender and receiver each maintain some joint information bag and the sender maintains
some secret information state.

14

–
((
bag′, state′

)
,
(
bag′

))
← πZKBag

Insert

〈
Sen

(
pp, skey, bag, state,

r−→
val

z
, op, val

)
,Rec

(
pp, rkey, bag,

r−→
val

z)〉
: �e

parties take in the current state of the bag ((bag, state), (bag)) and a commitment
r−→
val

z
. Additionally, the sender

provides a valid opening to the commitment (
−→
val, op). �is updates the state of the bag held by both the sender and the

receiver.

–
((
bag′, state′

)
,
(
bag′

))
← πZKBag

Remove

〈
Sen

(
pp, skey, bag, state,

r−→
val

z
, op, val

)
,Rec

(
pp, rkey, bag,

r−→
val

z)〉
: �e

parties take in the current state of the bag ((bag, state), (bag)) and a commitment
r−→
val

z
. Additionally, the sender

provides a valid opening to the commitment (
−→
val, op). �is updates the state of the bag held by both the sender and the

receiver.

– ((b) , (b))← πZKBag
VerEmpty 〈Sen (pp, skey, bag, state) ,Rec (pp, rkey, bag)〉 : �e parties take in the current state of the

bag ((bag, state), (bag)) and check if the bag is empty. �is outputs a bit b to the sender and the receiver.

We de�ne 3 properties of these algorithms: correctness, knowledge soundness, and zero-knowledge.

1. Correctness: Correctness considers an interaction between the sender and receiver in which they run setup and
initialize. A�er this �rst phase, the sender and receiver run an arbitrary sequence of inserts and removes. If there is a
one-to-one correspondence between inserts and removes such that the remove always comes a�er the corresponding
insert and the values in each corresponding pair are for the same values, then a call to πZKBag

VerEmpty will return 1 w.h.p.

Formally speaking, let ((pp, skey), (pp, rkey)) ← πZKBag
Setup 〈(Sen(1λ),Rec(1λ)〉, ((bag, state), (bag)) ←

πZKBag
Init 〈Sen(pp, skey),Rec(pp, rkey)〉 be honest executions of the setup and initialization protocols. For any
n ∈ poly(λ), val1, . . . , valn ∈ V and any sequence of 2n executions of the insert and remove protocols such
that for each i ∈ [n], a protocol of the form πZKBag

Remove〈Sen(· · · , comi, opivali),Rec(· · · , comi)〉 only appears af-
ter πZKBag

Insert 〈Sen(· · · , com′i, op′ivali),Rec(· · · , com′i)〉 in the sequence and each of these appear exactly once, it holds
that:

Pr
[
((1), (1))← πZKBag

VerEmpty〈Sen(pp, skey, bag, state),Rec(pp, rkey, bag)〉
]
≥ 1− neg(λ)

Here for each i ∈ [n], comi and com′i are commitments of the form:

((comi, opi), (comi))← πLCom
Commit〈Sen(pp, skey, vali),Rec(pp, rkey)〉 and

((com′i, op
′
i), (com

′
i))← πLCom

Commit〈Sen(pp, skey, val′i),Rec(pp, rkey)〉.

2. Knowledge Soundness: Knowledge soundness intuitively says that a malicious sender cannot (w.h.p.) convince the
receiver that the bag is empty a�er an interaction unless all the restrictions on the interaction from correctness hold
and the bag truly is empty. We formalize this by saying that there exists an extractor that can extract the values used
in the insertions and removals, such that (as above) there is a one-to-one correspondence between inserts and removes
such that the remove always comes a�er the corresponding insert and the values in each corresponding pair are for the
same values.

Formally speaking, let ((pp, skey), (pp, rkey)) ← πZKBag
Setup 〈(Sen(1λ),Rec(1λ)〉 be an honest execution of the setup

protocol. �ere exists an extractor E such that, for any PPT adversary A, any n ∈ poly(λ), any execution of the
initialization protocol of the form ((· · ·), (bag0))← πZKBag

Init 〈A(pp, skey),Rec(pp, rkey)〉, and any sequence of 2n
protocol executions

(
((· · ·), (bagi))← πUpdatei〈A(pp, skey, comi · · ·),Rec(pp, rkey, bagi−1, comi)〉

)
i∈[2n] where

each comi is the result of invoking

((comi, opi), (comi))← πLCom
Commit 〈A(pp, skey),Rec(pp, rkey)〉 ,

and where for each i ∈ [2n], Updatei ∈ {Insert,Remove}, if it holds that,

((1), (1))← πZKBag
VerEmpty〈A(pp, skey, bag2n),Rec(pp, rkey, bag2n)〉

15

then (val1, . . . , val2n)← EO(A)(pp), such that if IndexInsert and IndexRemove denote the values of i corresponding to
insertions and removals, then

Pr
[
∃ a bijection f : IndexInsert → IndexRemove, s.t., ∀i ∈ IndexInsert, (f(i) > i) ∧

(
vali = valf(i)

)]
≥ 1− neg(λ)

and for all i ∈ [2n], any honest receiver Rec, and computationally bounded adversary A, and any vali 6= val′i 6= ⊥, it
holds that

Pr[((·), (val′i))← πLCom
Open 〈A(pp, skey, com, ·),Rec(pp, rkey, com)〉] ≤ neg(λ)

3. Zero-Knowledge: Zero-knowledge says that the receiver learns nothing about the values inserted and removed,
beyond the fact that the limitations from correctness are satis�ed. We formalize this by saying that the view of the
receiver in an honest interaction with the sender is computationally indistinguishable from an interaction with a
simulator that does not know the values inserted or removed from the bag.

Formally speaking, the exists a simulator Sim = (SimSetup,SimInit,SimInsert,SimRemove,SimVerEmpty), such that for
any n ∈ poly(λ), the the view of Rec in the following sequence of protocol executions

((pp, skey), (pp, rkey))← πZKBag
Setup

〈
Sen(1λ),Rec(1λ)

〉
((bag0, state0), (bag0))← πZKBag

Init 〈Sen(pp, skey),Rec(pp, rkey)〉

For each i ∈ [2n] and arbitrary vali:

((comi, opi), (comi))← πLCom
Commit 〈Sen(pp, skey, vali),Rec(pp, rkey)〉 ,

((bagi, statei), (bagi))← πZKBag
Updatei

〈
Sen(pp, skey, bagi−1, statei−1, comi, opi, vali),Rec(pp, rkey, bagi−1, comi)

〉
,

where Updatei ∈ {Insert,Remove}. And �nally,

((1), (1))← πZKBag
VerEmpty 〈Sen(pp, skey, bag2n, state2n),Rec(pp, rkey, bag2n)〉

is computationally indistinguishable from its view in the following sequence of protocol executions. For readability, we
omit the state passing between the interactions, but assume that each part of the simulator and the receiver can pass
arbitrary state:

〈(SimSetup(1
λ)↔ Rec(1λ)〉

〈(SimInit(1
λ)↔ Rec(1λ)〉

For each i ∈ [2n]:

((comi, opi), (comi))← πLCom
Commit 〈Sim(pp, skey, 0),Rec(pp, rkey)〉 ,

〈(SimUpdatei(1
λ, comi, opi)↔ Rec(1λ, comi)〉

Updatei ∈ {Insert,Remove}. And �nally,

〈(SimVerEmpty(1
λ)↔ Rec(1λ)〉

4.2 Realizing a ZKBag Protocol
We give a concrete implementation of ZKBag in Figure 1. At a high level the protocol is as follows: during setup, the

parties run the setup algorithm of the underlying linearly homomorphic commitment scheme (if there is one) πLCom

(see Section 3.1). During initialization, the parties just initialize three empty sets: (1) a set of commi�ed values that

were inserted into the bag I , (2) a set of commi�ed values that were removed from the bagR, and (3) some private

state B for the sender that will hold plaintext information about the commi�ed values. Each time a (commi�ed) item

J−→v K is inserted into the bag, the receiver samples a random tag←$F and both parties add (JtagK , J−→v K) to the set of

“input elements” I . Additionally, the sender records the tag and values by adding (tag,−→v) to B. Whenever the sender

16

((pp, skey) , (pp, rkey))← πZKBag
Setup

〈
Sen

(
1λ
)
,Rec

(
1λ
)〉

• Sen and Rec invoke

((
ppLCom, skeyLCom

)
,
(
ppLCom, rkeyLCom

))
← πLCom

Setup

〈
Sen

(
1λ
)
,Rec

(
1λ
)〉

• Output

(
pp = ppLCom, skey = skeyLCom

)
to Sen and

(
pp = ppLCom, rkey = rkeyLCom

)
to Rec.

((bag, state) , (bag))← πZKBag
Init 〈Sen (pp, skey) ,Rec (pp, rkey)〉

• Sen and Rec each initialize an empty list of inserted elements I ← ∅, an empty list of removed elementsR← ∅ and

a counter cnt← 0. Additionally, Sen initializes a map B← ∅.
• Output ((I,R) ,B) to Sen and (I,R) to Rec.

((bag′, state′) , (bag′))← πZKBag
Insert

〈
Sen

(
pp, skey, bag, state,

r−→
val

z
, op, val

)
,Rec

(
pp, rkey, bag,

r−→
val

z)〉
• Rec samples tag←$F and sends it to Sen.

• Sen and Rec invoke ((JtagK , ·) , (JtagK)) ← πLCom
Commit 〈Sen (pp, skey, tag) ,Rec (pp, rkey, tag)〉 on shared random-

ness.

• �ey add the following tuple to the list of inserted elements: I ← I ∪
(
JtagK ‖

r−→
val

z)
• Finally, Sen adds a new counter and tag for the value to the map B[val].Push (tag)
• Output ((I,R) ,B) to Sen and (I,R) to Rec.

((bag′, state′) , (bag′))← πZKBag
Remove

〈
Sen

(
pp, skey, bag, state,

r−→
val

z
, op, val

)
,Rec

(
pp, rkey, bag,

r−→
val

z)〉
• Sen retrieves a tag for the value from the map as tag ← B[−→v].Pop () , and computes commitments to this tag

((JtagK , ·) , (JtagK))← πLCom
Commit 〈Sen (pp, skey, tag) ,Rec (pp, rkey)〉

• Sen and Rec add to the set of removed elementsR← R∪
(

JtagK ‖
r−→
val

z)

((b) , (b))← πZKBag
VerEmpty 〈Sen (pp, skey, bag, state) ,Rec (pp, rkey, bag)〉

• Sen and Rec assert equality between the list of inserted and removed elements by invoking πZKMultiSet
on (I,R)

Figure 1: Zero-Knowledge Bag Protocol.

wants to remove an element
−→v , they recall the appropriate tag using B, creates a fresh commitment to (tag,−→v), and

then both sides add the fresh commitment to the set of “removed elements”R. �e �nal check is simply checking (set)

equality of the inserted and removed elements using the πZKMultiSet := (πZKMultiSet
Setup , πZKMultiSet

Prove , πZKMultiSet
Verify) protocol

(see Section 3.5).

Finally, the intuition for why this simple interactive protocol achieves soundness, i.e., ensures that the sender

cannot cheat by removing an element that was not previously inserted is the following: in order to do so, the sender

would need to guess the appropriate tag that will be sampled in the future, which they are only able to do with

negligible probability 1/|F|. �erefore, they are restricted to ”recalling/retrieving” a previously inserted element, for

which the tag is known. �ey are prevented from removing the element multiple times because the tags for each

insertion should be unique (with high probability). πZKMultiSet
ensures that insertion and removals are one-to-one.

Formally, we prove the following theorem:

17

�eorem 4.1. Assuming that πLCom in a secure linearly homomorphic commitment scheme (see Section 3.1), and
πZKMultiSet is a commit-and-prove style multi-set equality proof system(see Section 3.5), then πZKBag, shown in Figure 1,
is a LinCom-Based Zero-Knowledge Bag, as de�ned in De�nition 4.

Correctness. By the correctness of ΠMultiSetEquality, it is simple to see that ΠZKBag is correct. Namely, if the pa�ern

of insertions and removals is honest, ie. the insertions and removals are a permutation and each removal comes a�er
its associated insertion, then ΠZKBag will output 1 with high probability.

Knowledge Soundness. �e extractor E runs by simply running the extractor of the linearly-homomorphic com-

mitment scheme on each of {comi}i∈[2n]. Denote the outputs of these extractors as val1, . . . , val2n. Moreover, if

Updatei is Remove, E runs the extractor of the linearly-homomorphic commitment scheme on the commitment to

the tag created in that interaction. Denote the outputs of the extractors as tagRemove
i . If any of these extractions fails,

the extractors fails with error ErrorComExtract. Otherwise, E outputs val1, . . . , val2n.

We now show that E will output a compliant set of values val1, . . . , val2n with high probability. Let NumInsert
denote the number of insertions and NumRemove denote the number of insertions and removals in the interaction,

respectively.

1. Note that the extractor only outputs ErrorComExtract with 3n times the error rate of the extractor of the linearly-

homomorphic commitment scheme, which, by the binding/extraction property of the linearly-homomorphic

commitment scheme only happens with negligible probability.

2. Next, note that the probability of any two instances of Insert in the interaction sharing a value tag is < n2

|F| . Since

this value might not be small enough, in Section 8 we discuss an optimization to our implementation, where we

sample each tag uniformly at random from F2
instead of F. As a result, the probability of any two instances sharing

a tag is < n2

|F|2 . Looking ahead, for the remaining soundness analysis we will assume that each tag is samped as

two �eld elements.

3. To �x notation, we create the following tuples for i ∈ [2n] :

• If Updatei is Insert, then create the tuple (i, tagInserti , vali), where tagInserti is the tag generated during the

execution of Updatei. Denote the set of all such tuples as {(timestampInsertj , tagInsertj , valInsertj)}j∈[NumInsert]

• If Updatei is Remove, then create the tuple (i, tagRemove
i , vali), where tagRemove

i is the tag extracted above.

Denote the set of all such tuples as {(timestampRemove
j , tagRemove

j , valRemove
j)}j∈[NumRemove]

4. Next, note that by the soundness of the permutation check, NumInsert = NumRemove = n, and

{(tagInsertj , valInsertj)}j∈[NumInsert] and {(tagRemove
j , valRemove

j)}j∈[NumRemove] are permutations of one another, except

with negligible probability bounded by
n
|F| . Denote this permutation as f .

5. Next, we observe that for each (timestampRemove
j , tagRemove

j , valRemove
j), there exists a

(timestampInsertj′ , tagInsertj′ , valInsertj′) with timestampInsertj′ < timestampRemove
j such that tagInsertj′ = tagRemove

j , and

valInsertj′ = valRemove
j . If this were not the case, then it would imply that the tag for the insertion must have been

sampled a�er the removal and the prover must have correctly guessed a tag before it was sampled. Clearly the

probability that there exist j, j′, such that this happens is at most
n2

|F|2 .

We let the bijective map f be de�ned by a valid permutation between inserts and removals, which must exist

with high probability, as described in (4). Note that this f is monotonically increasing by (5). Moreover, because we

invoked the linearly homomorphic commitment scheme’s extractor, for all computationally bounded adversaries A
there is only a negligible probability that they could produce a valid equivocation to the commitments. �us, with

statistically small probability ≤ n2

|F|2 + n
|F| ≤

2n
|F| , the output of E is compliant with the de�nition.

Zero-knowledge. �e simulator Sim simply follows the protocol executions described in De�nition 4, and honestly

follows the protocol at all steps. Note that the most signi�cant di�erence is that the simulator commits to zero instead

of other values, but otherwise the interactions are identical.

18

We now show that view of the receiver when interacting with the simulator is the computationally close to the

view of the receiver interacting with the honest sender. We proceed with a hybrid argument. Let Hybrid0 denote the

interaction between the receiver and the honest sender.

• Hybrid1 : LetHybrid1 be the same asHybrid0, but Sim simulates πZKMultiSet
during πZKBag

VerEmpty. By the zero-knowledge

property of πZKMultiSet
, the view of receiver in Hybrid1 and Hybrid0 are computationally close.

• Hybrid2,Hybrid3, . . . ,Hybrid2n+1 : In each of these hybrids, instead of commiting to a real value, Sim commits to

0 instead. By the hiding property of the commitment scheme, the view of receiver in Hybridi+1 and Hybridi are

computationally close for i ∈ [1, 2n+ 1].

• Hybrid2n+2 :Hybrid2n+2 is the same as Hybrid2n+1, but Sim executes ΠMultiSetEquality honestly instead of simulating.

Again, by the zero-knowledge property of ΠMultiSetEquality, the view of receiver in Hybrid2n+1 and Hybrid2n+2 are

computationally close.

Note that the view of the receiver in Hybrid2n+2 is distributed the same as the view of the receiver when interacting

with the simulator above. �us, we have concluded our proof.

5 Verifying Memory Consistency using ZKBag
When proving the correct execution of a RAM program, we need to ensure that each time an address is read from

memory, only the value last wri�en to that address must be returned. Importantly, because we require zero-knowledge,

this must be done without revealing executed programs memory access pa�erns. We observe that this aligns perfectly

with the properties guaranteed by ZKBag.

Recall that memory can be seen as a sequence of tuples (addr, val), where addr is a unique address within the

memory space and val is the current value being stored at that address. We can use ZKBag as a key-value store by

dedicating the �rst part of the inserted value to be the key and the second part to be the value. �at is, we store tuples

of the form (addr, val) within the bag. �e state of the bag corresponds to the “current” state of memory. Updating

the contents of memory can be handled by updating (i.e., inserting or removing) the contents of the ZKBag.

Rather than giving a formal de�nition for our protocol for handling memory πMemory
, we simply observe that the

de�nitions are functionally equivalent to those of ZKBag, but the elements being inserted and removed from the bag

now contain memory addresses. In order to make the semantics of our �nal construction easier to read, we provide a

wrapper around the ZKBag with the names of common memory operations: Init,Read,Update,Verify:

– ((stateP, stateV) , (bag))← πMemory
Init 〈P ({valaddr}addr ∈ 1...,m) ,V ({valaddr}addr ∈ 1...,m)〉 : �e prover and veri�er

take in a set of public values that will make up the initial contents of memory. �e result will be state for each

party.

– ((bag, state) , (bag))← πMemory
Read 〈P (stateP, (JaddrK , JvalK) , (opaddr, opval) , (addr, val)) ,V (stateV, (JaddrK , JvalK))〉 :

�e prover and veri�er take a commitment (JaddrK , JvalK)—where val is the value that the prover claims will result

of reading from the address. Additionally, the prover takes in the actual value and opening to the commitments.

�e result is updated state for each party.

– ((bag, state) , (bag))← πMemory
Update 〈P (stateP, (JaddrK , JvalK , Jval′K) , (opaddr, opval, opval′) , (addr, val, val

′)) ,V (stateV, (JaddrK , JvalK , Jval′K))〉 :
�e prover and veri�er take a commitment (JaddrK , JvalK) along with a commitment to the new value

q
val′

y
.

Additionally, the prover takes in the actual value and opening to the commitments. �e result is an updated state

for each party.

– ((b) , (b))← πMemory
Verify 〈P (stateP, {valaddr}addr ∈ 1...,m) ,V (stateV, {valaddr}addr ∈ 1...,m)〉 : �e prover and veri�er

take in their current state and a set of values (representing the current state of memory) and then output 1 if this is

really the current state of memory and 0 otherwise. Optionally, the veri�er can take any amount of these values in

commi�ed form (to maintain secrecy).

We provide a writeup of the memory checking protocol πMemory
in Figure 2. In brief, during πMemory

Init , the parties

initialize and setup the ZKBag, and then insert tuples with the address and values to the ZKBag. When invoking

πMemory
Update , the parties remove the old address-value tuple (JaddrK , JvalK) from the ZKBag and insert the new tuple

19

((stateP, stateV) , (bag))← πMemory
Init 〈P ({valaddr}addr ∈ 1...,m) ,V ({valaddr}addr ∈ 1...,m)〉

– P and V initialize and setup a ZKBag by invoking both πZKBag
Setup and πZKBag

Init

– For each addr ∈ 1 . . . ,m:

– P and V generate JaddrK and JvaladdrK by invoking πLCom
Commit on shared randomness (to generate a public commitment).

– P and V insert the tuple (JaddrK , JvaladdrK) into the ZKBag by invoking πZKBag
Insert

((bag, state) , (bag))← πMemory
Read 〈P (stateP, (JaddrK , JvalK) , (opaddr, opval) , (addr, val)) ,V (stateV, (JaddrK , JvalK))〉

– P and V remove (JaddrK , JvalK) from the ZKBag by invoking πZKBag
Remove

– P and V insert (JaddrK , JvalK) into the ZKBag by invoking πZKBag
Insert

((bag, state) , (bag))← πMemory
Update

〈
P
(
stateP,

(
JaddrK , JvalK ,

q
val′

y)
, (opaddr, opval, opval′) ,

(
addr, val, val′

))
,V
(
stateV,

(
JaddrK , JvalK ,

q
val′

y))〉

– P and V remove (JaddrK , JvalK) from the ZKBag by invoking πZKBag
Remove

– P and V insert (JaddrK , Jval′K) into the ZKBag by invoking πZKBag
Insert

((b) , (b))← πMemory
Verify 〈P (stateP, {valaddr}addr ∈ 1...,m) ,V (stateV, {valaddr}addr ∈ 1...,m)〉

– For each addr ∈ 1 . . . ,m:

– P and V generate JaddrK and JvaladdrK by invoking πLCom
Commit on shared randomness.

– P and V remove the tuple (JaddrK , JvaladdrK) from the ZKBag by invoking πZKBag
Remove.

– Finally, P and V check that ZKBag is empty by invoking πZKBag
VerEmpty

Figure 2: A protocol for verifying memory consistency using ZKbag.

(JaddrK ,
q
val′

y
) into the ZKBag. Importantly, the commitment to the address JaddrK is consistent across the two

protocol invocations. When invoking πMemory
Read the parties remove the address-value tuple (JaddrK , JvalK) and the

reinsert the same tuple back into the ZKBag. Finally, when invoking πMemory
Verify , the parties remove the remaining

contents of the ZKBag and then call πZKBag
VerEmpty.

6 Verifying Processor Execution using ZKBag
When proving correct execution of a RAM program, the prover must convince the veri�er that a “valid” instruction

was executed at every step of the program. �is constitutes: (1) the prover picked one of the instructions supported

by the processor, (2) the picked instruction was executed honestly and (3) that the picked instruction is the “correct

choice” based on the input-dependent execution. In this section, we present a zero-knowledge protocol using ZKBag

(see Section 4) that helps enforce (1) and (2). In the next section, we demonstrate how to combine this protocol with

the protocol for memory consistency (see Section 5) to obtain a zero-knowledge proof system for RAM programs that

enforces all of the above guarantees.

Disjunctive Relation. Our zero-knowledge protocol for checking correct execution of processor instructions, is a

20

custom LinCom based commit-and-prove style zero-knowledge protocol see Section 3.3) for the following relation

RZKDisj
:

Let (Ai,Bi,Ci)i∈[`] be a set of ` R1CS instancesa. Given t com-
mitments (

q−→zj
y
)j∈[t] computed using πLCom

Commit (see Section 3.1), the
prover/sender wants to convince the receiver/veri�er that for each
j ∈ [t], it knows −→zj ,−→opj such that they form a valid opening for
JzjK and an index instj ∈ [`], such that −→zj is a valid extended
witness for (Ainstj ,Binstj ,Cinstj).

a
We assume that each of these R1CS instances is of the same size. �is can

be achieved without loss of generality by appropriately padding the smaller

instances.

Recall from Section 3.2, that for an R1CS relation, each extended witness is of the form
−→zj = −→wj‖−→xj‖1, where

−→xj
is a part of the instance (which may or may not be known to the veri�er), while

−→wj is exclusively known only to the

prover. �erefore,

q−→zj
y

can be parsed as

q−→wj
y
‖

q−→xj
y
‖ J1K. Here, we assume that

q−→wj
y

were computed traditionally,

commitment J1K was computed using shared randomness, and the randomness used for

q−→xj
y

is either private or

shared depending on the nature of
−→xj .

Commit-and-Prove ZK Proof System forRZKDisj. As discussed previously, we design a commit-and-prove zero-

knowledge proof system forRZKDisj
using a ZKBag protocol πZKBag

(see Section 4) and the folding scheme for relaxed

R1CS from [KST22]. Given these tools, our protocol is straightforward and works as follows:

Setup: ((pp, skey), (pp, rkey))← πZKDisj
Setup

�e parties run πLCom
Setup to obtain (pp, skey, rkey).

Prove: ((ProofZK, st), (ProofZK))← πZKDisj
Prove

�is protocol proceeds in two phases:

I. Initialization Phase: �e parties start by invoking πLCom
Commit to create public commitments to trivially satis�ed

relaxed R1CS extended witnesses (i.e., just a vector of 0s) for each of the ` instructions. �ey then invoke πZKBag
Init

to initialize a ZKBag and πZKBag
Insert to store each of these commitments in the ZKbag (see Figure 1).We refer to these

commitments as accumulators.

II. Execution Phase: �en for each step j ∈ [t]:

i) Parties invoke πZKBag
Remove to retrieve the accumulator for the satis�ed instruction instj from the ZKbag.

ii) �e prover computes cross terms

−→
T for the instth

j instruction using (see Section 3.2) the retrieved accumulator

and the new satis�ed R1CS extended witness
−→zj and uses πLCom

Commit to compute a commitments to these cross

terms.

iii) �e veri�er samples a random �eld element r←$F.

iv) �e parties fold the retrieved accumulator onto the new satis�ed R1CS extended witness
−→zj using r. �is

forms the updated accumulator for the instth

j instruction.

v) �e parties invoke πZKBag
Insert to store the updated accumulator.

Verify: ((b), (b))← πZKDisj
Verify

Each accumulator is removed, randomized, and checked:

– For each i ∈ [`], the prover samples a random relaxed R1CS instance and computes the corresponding error term.

�e prover recalls the accumulator for the ith instruction and computes cross terms

−→
T for this instruction using

the retrieved accumulator and the random R1CS extended witness and uses πLCom
Commit to compute a commitments

to these cross terms.

21

– �e veri�er samples a random �eld element r←$F.

– For each i ∈ [`], the parties use πZKBag
Remove to retrieve the accumulator for the ith instruction and fold it onto the

commitment of the randomly sampled R1CS instance for this instruction.

– �e parties verify that the bag is empty with πZKBag
VerEmpty.

– Finally, for each i ∈ [`], the prover opens the �nal accumulators and the veri�er check that they are satisfying.

�e parties start by creating public commitments to trivially satis�ed relaxed R1CS extended witnesses (i.e., just a

vector of 0s) for each of the ` instructions. �ey then initialize a ZKBag and store each of these commitments in the

ZKbag (see Figure 1). We refer to these commitments as accumulators for the ` instructions.�en for each step j ∈ [t]
of the processor, the parties proceed as follows: i) Parties retrieve the accumulator for the satis�ed instruction instj

from the ZKbag. ii) �e prover computes cross terms

−→
T for the instth

j instruction using the retrieved accumulator

and the new satis�ed R1CS extended witness
−→zj and computes a commitment to these cross terms. iii) �e veri�er

samples a random �eld element. iv) �e parties fold the retrieved accumulator onto the new satis�ed R1CS extended

witness
−→zj using this random value. �is forms the updated accumulator for the instth

j instruction. v) Store the

updated accumulator in the bag. At the end, every accumulator is extracted from the bag, randomized and checked

naively.

We note that a naı̈ve strategy to design a commit-and-prove protocol for this relation without zero-knowledge

would be to simply commit to the extended witness
−→zj at each step, reveal the associated instruction index instj

use any generic commit-and-prove proof system (e.g. �ickSilver [YSWW21]) to prove correct execution of this

step. Our protocol achieves the zero-knowledge property while only incurring a multiplicative overhead of 4 of this

naı̈ve protocol. �is is because our protocol requires commi�ing to 4 vectors proportional to the length of
−→zj and the

ZKBag operations are independent of the dimension of the extended witness or R1CS relation.

We include a formal description of this protocol in Figures 3 and 4. We now prove the following theorem:

�eorem 6.1. Assuming that πLCom in a secure linearly homomorphic commitment scheme (see Section 3.1), and πZKBag

is a zero-knowledge bag (see Section 4), then πZKDisj , shown in Figures 3 and 4, is a LinCom-based commit-and-prove
zero-knowledge as de�ned in Section 3.3 forRZKDisj.

Proof. Correctness. Correctness follows from correctness of Linearly Homomorphic commitment, ZKBag and the

folding property of relaxed R1CS (see Section 3.2).

Zero-Knowledge. Let SimZKBag = (SimZKBag
Setup ,Sim

ZKBag
Init ,SimZKBag

Insert ,Sim
ZKBag
Remove,Sim

ZKBag
VerEmpty) be the simulator for

ZKBag. We now describe the simulator Sim for our πZKDisj
protocol.

1. Setup: Sim uses SimZKBag
Setup to simulate the setup protocol.

2. Initialization Phase: Sim uses SimZKBag
Init to simulate initializing a ZKBag. For each i ∈ [`], it then honestly invokes

πLCom
Commit to compute public commitments to trivially satis�ed relaxed-R1CS instances and uses SimZKBag

Insert to simulate

inserting thses commitments in the simulated ZKBag. Sim also initializes the map M as described in the protocol.

3. Execution Phase: For each j ∈ [t], Sim proceeds as follows: Set
−→wj =

−→
0 . Additioanlly, if

−→xj is unknown to the

receiver, set
−→xj =

−→
0 . Invoke πLCom

Commit to compute a commitment to
−→zj = −→wj‖−→xj‖1. Set

−→
z′ =

−→
e′ =

−→
T =

−→
0 . It

honestly invokes πLCom
Commit to compute commitments to these values. Use SimZKBag

Remove to simulate removing

r−→
z′

z

and

r−→
e′

z
from the simulated bag. Finally, it samples r←$F, computes

q−→z
y

and

q−→e
y

using r and the above

commitments as described in the protocol using πLCom
Comb . Finally, it uses SimZKBag

Insert to simulate inserting

q−→z
y

andq−→e
y

in the simulated ZKBag.

4. Veri�cation Protocol: For each i ∈ [`], the simulator sets

−→
Ti = −−→z(i,1) = −−→z(i,2) = −−→e(i,1) = −−→e(i,2) =

−→
0 and invokes

πLCom
Commit to compute commitments to these values. For each i ∈ [`], it then samples r←$F and uses SimZKBag

Remove

to simulate removing

q−→zi
y

and

q−→ei
y

from the simulated ZKBag. Uses the above commitments along with r to

compute

q−→zi
y

and

q−→ei
y

as described in the protocol using πLCom
Comb . �en use SimZKBag

VerEmpty to simulate demonstrating

22

that the ZKBag is empty. Finally, for each i ∈ [`], it samples
−→zi ,−→ei such that Ai ·−→zi ◦Bi ·−→zi =?= ui · (C ·−→zi) + ei.

It uses these values and runs EquivLCom to compute an equivocal opening for
−→zi ,−→ei and invokes πLCom

Open using these

openings.

23

((pp, skey) , (pp, rkey))← πZKDisj
Setup

〈
Sen
(
1λ
)
,Rec

(
1λ
)〉

– Sen and Rec invoke

((
ppLCom, skeyLCom

)
,
(
ppLCom, rkeyLCom

))
← πLCom

Setup

〈
Sen
(
1λ
)
,Rec

(
1λ
)〉

– Output

(
pp = ppLCom, skey = skeyLCom

)
to Sen and

(
pp = ppLCom, rkey = rkeyLCom

)
to Rec.

((
ProofZK, st

)
,
(
ProofZK

))
← π

ZKDisj
Prove

〈
Sen

(
pp, skey, (Ai,Bi,Ci)i∈[`],

(r−→zj
z)
j∈[t]

,

(
−−→opzj

)
j∈[t]

,
(−→zj)j∈[t]

)
, Rec

(
pp, rkey, (Ai,Bi,Ci)i∈[`],

(r−→zj
z)
j∈[t]

)〉

1. Initialization Phase:

– Sen and Rec initialize a ZKBag ((bag0, state0) , (bag0))← πZKBag
Init 〈Sen (pp, skey) ,Rec (pp, rkey)〉.

– For each i ∈ [`], Sen and Rec invoke

((s−→
z0i

{
, op

z0
i

)
,

(s−→
z0i

{))
← πLCom

Commit

〈
Sen
(
pp, skey,

−→
0
)
,Rec (pp, rkey)

〉
and((s−→

e0i

{
, op

e0
i

)
,

(s−→
e0i

{))
← πLCom

Commit

〈
Sen
(
pp, skey,

−→
0
)
,Rec

(
pp, rkey,

−→
0
)〉

on shared randomness, to compute public commitments

to a trivially satis�ed relaxed-R1CS instance and stores them in the ZKBag

((bagi, statei) , (bagi))← πZKBag
Insert

〈
Sen

(
pp, skey, bagi−1, statei,

(s−→
z0i

{
,

s−→
e0i

{)
,
(
op

z0
i
, op

e0
i

)
,

(−→
z0i ,
−→
e0i

))
,

Rec

(
pp, rkey, bagi−1,

(s−→
z0i

{
,

s−→
e0i

{))〉

– Sen initializes a local map M maintaining the state of each of the ` accumulators: ∀i ∈ [`], M[i]←
(−→zi ,−→ei).

2. Execution Phase: For each j ∈ [t],

– Given as input an index instj ∈ [`], Sen retrieves the state of the instj ’th accumulator

(−→z ′,−→e ′)← M[instj], computes the cross terms

−→
T = A · −→z ′ ◦B · −→zj + A · −→zj ◦B · −→z ′ − u1 ·C · −→zj − u2 ·C · −→z ′

– Sen and Rec invoke the following to compute commitments to the retrieved accumulator and these cross terms((s−→
z′

{
, opz′

)
,

(s−→
z′

{))
← π

LCom
Commit

〈
Sen

(
pp, skey,

−→
z′
)
,Rec (pp, rkey)

〉
((s−→

e′
{
, ope′

)
,

(s−→
e′

{))
← π

LCom
Commit

〈
Sen

(
pp, skey,

−→
e′
)
,Rec (pp, rkey)

〉
((r−→

T
z
, opT

)
,
(r−→

T
z))

← π
LCom
Commit

〈
Sen
(
pp, skey,

−→
T
)
,Rec (pp, rkey)

〉
– Sen and Rec remove the old accumulator corresponding to the instj ’th index from the ZKBag. To simplify the notation, let ρ = `+ 2j − 1.

((
bagρ, stateρ

)
,
(
bagρ

))
← π

ZKBag
Remove

〈
Sen

(
pp, skey, bagρ−1, stateρ−1,

(s−→
z′

{
,

s−→
e′

{)
, (opz′ , ope′) ,

(−→
z′ ,
−→
e′
))

,

Rec

(
pp, rkey, bagρ−1,

(s−→
z′

{
,

s−→
e′

{))〉

– Rec samples a random r ←$ F and sends it to Sen.

– Sen and Rec update the instj ’th accumulator

q−→e
y
←

q−→e ′
y
+ r ·

r−→
T

z q−→z
y
←

q−→z ′
y
+ r ·

q−→z j
y

and insert the updated accumulator in ZKBag. As before, let ρ = `+ 2j.

((
bagρ, stateρ

)
,
(
bagρ

))
← π

ZKBag
Insert

〈
Sen
(
pp, skey, bagρ−1, stateρ−1,

(q−→z y
,
q−→e

y)
, (opz, ope) ,

(−→z ,−→e))
Rec

(
pp, rkey, bagρ−1,

(q−→z y
,
q−→e

y))〉

Figure 3: Part 1 of zero-knowledge protocol for verifying processor execution.
24

((b), (b))← πZKDisj
Verify

〈
Sen
(
pp, skey,ProofZK, st, (Ai,Bi,Ci)i∈[`]

)
,Rec

(
pp, rkey,ProofZK, (Ai,Bi,Ci)i∈[`]

)〉
– Sen proceeds as follows for each i ∈ [`]

1. Generate random relaxed R1CS instance z(i,2) ←$ Fm , where
−−−→z(i,2) = −−−→w(i,2)‖−−−→x(i,2)‖−−−→u(i,2) .

2. Compute the corresponding error term

−→
L ← (Ai · −−−→z(i,2)) ◦ (Bi · −−−→z(i,2))

−→
R ← u(i,2) · (Ci · −−−→z(i,2))

−−−→e(i,2) ←
−→
L −

−→
R

3. Retrieve the i’th accumulator state (−−−→z(i,1),
−−−→e(i,1))← M[i] and compute cross terms as

−→
δ1 ← Ai · −−−→z(i,1) ◦Bi · −−−→z(i,2)

−→
δ2 ← Ai · −−−→z(i,2) ◦Bi · −−−→z(i,1)

−→
δ3 ← u(i,1) ·Ci · −−−→z(i,2)

−→
δ4 ← u(i,2) ·Ci · −−−→z(i,1)

−→
Ti ←

−→
δ1 +

−→
δ2 −

−→
δ3 −

−→
δ4

4. Computes commitments to the two accumulators and the cross terms((r−→
Ti

z
, opTi

)
,
(r−→
Ti

z))
← π

LCom
Commit

〈
Sen
(
pp, skey,

−→
Ti
)
,Rec (pp, rkey)

〉
((q−−−→z(i,1)

y
, opz(i,1)

)
,
(q−−−→z(i,1)

y))
← π

LCom
Commit

〈
Sen
(
pp, skey,−−−→z(i,1)

)
,Rec (pp, rkey)

〉
,((q−−−→z(i,2)

y
, opz(i,2)

)
,
(q−−−→z(i,2)

y))
← π

LCom
Commit

〈
Sen
(
pp, skey,−−−→z(i,2)

)
,Rec (pp, rkey)

〉
((q−−−→e(i,1)

y
, ope(i,1)

)
,
(q−−−→e(i,1)

y))
← π

LCom
Commit

〈
Sen
(
pp, skey,−−−→e(i,1)

)
,Rec (pp, rkey)

〉
,((q−−−→e(i,2)

y
, ope(i,2)

)
,
(q−−−→e(i,2)

y))
← π

LCom
Commit

〈
Sen
(
pp, skey,−−−→e(i,2)

)
,Rec (pp, rkey)

〉

– Rec samples a random r ←$ F and sends it to Sen.

– For each i ∈ [`], Sen and Rec proceed as follows:

1. Remove the i’th accumulator from ZKBag. To simplify notation, let τ = `+ 2t+ i.

((bagτ , stateτ) , (bagτ))← π
ZKBag
Remove

〈
Sen
(
pp, skey, bagτ−1, stateτ−1,

(q−−−→z(i,1)
y
,
q−−−→e(i,1)

y)
,
(
opzi , opei

)
,
(−→zi ,−→ei)) ,

Rec
(
pp, rkey, bagτ−1,

(q−−−→z(i,1)
y
,
q−−−→e(i,1)

y))〉
2. Accumulate with the blinding instance

q−→ei
y
←

q−−−→e(i,1)
y
+ r ·

r−→
Ti

z
+ r

2 ·
q−−−→e(i,2)

y q−→zi
y
←

q−−−→z(i,1)
y
+ r ·

q−−−→z(i,2)
y

ui = u(i,1) + r · u(i,2)

– �ey check whether the ZKBag is empty ((1), (1))← πZKBag
VerEmpty

〈
Sen
(
pp, skey, bag2`+2t, state2`+2t

)
,Rec

(
pp, rkey, bag2`+2t

)〉
.

– For each i ∈ [`], Sen opens the following commitments to Rec

(
(1) ,

(−→ei))← π
LCom
Open

〈
Sen
(
pp, skey,

q−→ei
y
, op−→ei ,

−→ei
)
,Rec

(
pp, rkey,

q−→ei
y)〉

(
(1) ,

(−→zi))← π
LCom
Open

〈
Sen
(
pp, skey,

q−→zi
y
, op−→zi ,

−→zi
)
,Rec

(
pp, rkey,

q−→zi
y)〉

– Finally, for each i ∈ [`], Rec veri�es the extended witness

Ai · −→zi ◦Bi · −→zi =
?
= ui · (C · −→zi) + ei

Figure 4: Part 2 of zero-knowledge protocol for verifying processor execution.

25

We now show that view of the receiver when interacting with the simulator Sim is the computationally close to

the view of the receiver interacting with the honest sender. We proceed with a hybrid argument. Let Hybrid0 denote

the interaction between the receiver and the honest sender.

• Hybrid1 : Let Hybrid1 be the same as Hybrid0, but Sim simulates πZKBag
. By the zero-knowledge property of πZKBag

,

the view of the receiver in Hybrid1 and Hybrid0 are computationally close.

• Hybrid2 : �is hybrid is similar to Hybrid1, except that in the veri�cation protocol in this hybrid, for each i ∈ [`],
Sim samples

−→zi ,−→ei such that Ai · −→zi ◦ Bi · −→zi =?= ui · (C · −→zi) + ei. It uses these values and runs EquivLCom

to compute an equivocal opening for
−→zi ,−→ei and invokes πLCom

Open using these openings. By equivocation property

πLCom
, the view of the receiver in Hybrid1 and Hybrid2 are computationally close.

• Hybrid3 �is hybrid is the same as Hybrid2, except that instead of computing commitments to honestly computed

values, Sim computes commitments to

−→
0 . By the hiding property of πLCom

, view of receiver in Hybrid2 and Hybrid3
are computationally close.

Note that the view of the receiver in Hybrid3 is distributed the same as the view of the receiver when interacting

with the simulator above. �us, we have concluded our proof.

Knowledge Soundness. Let ELCom be the extractor of the linearly homomorphic commitment scheme. Given

a verifying proof transcript for πZKDisj
, the extractor E for our πZKDisj

protocol runs ELCom to simply extract the

extended witness
−→zj from

q−→zj
y

, for each j ∈ [t]. �e probability that the ∃j∗ ∈ [t], such that for each i ∈ [`], the

extracted
−→zj is not a satisfying extended witness for (Ai,Bi,Ci) depends on the following:

• ELCom failed to extract the correct value, which only happens with negligible probability due to the binding property

of πLCom
.

• �e adversary succeeds in violating knowledge soundness of πZKBag
. Recall from �, assuming the adversary cannot

break the binding property of πLCom
, the statistical soundness error in our ZKBag with n insertions is ≤ 2n

|F| . �e

ZKBag used in ΠProveDisj has n = ` + t insertions, and therefore the probability that the adversary succeeds in

breaking knowledge soundness of the underlying ZKBag is ≤ 2`+2t
|F| , which is negligibly small.

• �e adversary manages to cheat by successfully guessing at least one of the t+ ` random challenges sampled by

the veri�er. Since the veri�er samples these challenges uniformly at random from F, this probability is
t+`
|F| , which

is exponentially small for a large �eld.

�erefore, from binding property of πLCom
, it follows that this extractor fails to extract a satisfying set of extended

witnesses from a verifying transcript with a statistically small probability ≤ 3t+3`
|F| .

7 Dora: Zero-Knowledge for RAM Programs
We construct Dora using our protocols from Section 5 and Section 6. A processor with a Von Neumann architecture

consists of instructions I = {I1, . . . , I`} and maintains a local state
−→
st = (pc,Reg1, . . . ,Regk), where pc denotes

the program counter and we use Reg1, . . . ,Regk to refer to values stored in its local registers.

NP RelationRzkRAM. To prove correct execution of a RAM program, we design a LinCom based commit-and-prove

style zero-knowledge proof system (see 3.3) forRzkRAM
, de�ned as follows:

De�nition 5 (RzkRAM
). Let

−→
M0 denote the public initial state of the memory and −→st0 denote the initial state of the

processor. For each processor step j ∈ [t], given commitments
r−→
stj

z
, JinstjK,

r−−−−−−→
ReadValj

z
,
r−−−−−−−−−→
OldWriteValj

z
, where

r−→
stj

z
is a concatenation of commitments to the program counter

q−→pcj
y
and values stored in the registers including (but

not limited to)
r−−−−−−−→
ReadAddrj

z
,
r−−−−−−−→
WriteAddrj

z
,
r−−−−−−→
WriteValj

z
, the prover wants to convince the veri�er that it knows the

corresponding values and opening information such that:

– instj is the value stored in the memory at location −−−→pcj−1.

26

–
−−−−−−−→
ReadAddrj is stored in the appropriate registers in −−−→stj−1 and

−−−−−−→
ReadValj is the value stored in memory at

−−−−−−−→
ReadAddrj .

– −→stj (containing
−−−−−−−→
WriteAddrj ,

−−−−−−→
WriteValj in the appropriate registers) is the outcome of evaluating Iinstj on input −−−→stj−1,−−−−−−→

ReadValj .

– Old value
−−−−−−−−−→
OldWriteValj at location

−−−−−−−→
WriteAddrj in the memory is replaced with

−−−−−−→
WriteValj .

For each i ∈ [`], let (Ai,Bi,Ci) be an R1CS relation for a predicate checking if

−→
st′ (containing

−−−−−−−→
WriteAddr and

−−−−−→
WriteVal) is the result of applying Ii on input (

−→
st ,
−−−−−→
ReadVal).

Commit-and-Prove ZK Proof System for RzkRAM. Let πLCom
be a linearly homomorphic commitment scheme,

πzkDisj
be the protocol from Section 6 and πMemory

be the protocol from Section 5. Dora works as follows:

Setup: πzkRAM
Setup :

Sen and Rec invoke πLCom
Setup to obtain pp, skey and rkey.

Prove: πzkRAM
Prove :

We divide the prover protocol into an initialization phase and an execution phase:

I. Initialization Phase: Sen and Rec proceed as follows:

– Invoke πLCom
Commit on

−→
st0,

−→
M0 to get

r−→
st0

z
and

r−→
M0

z
.

– Invoke πMemory
Init on

r−→
M0

z
to initialize the memory.

– Run the Initialization Phase of πZKDisj
Prove .

II. Execution Phase: For each j ∈ [t]:

– Invoke πLCom
Commit to compute commitments

r−→
stj

z
, JinstjK,

r−−−−−−→
ReadValj

z
,

r−−−−−−−−−→
OldWriteValj

z
, where

r−→
stj

z
includes

commitments to the program counter

q−→pcj
y

and register values including

r−−−−−−−→
ReadAddrj

z
,

r−−−−−−−→
WriteAddrj

z
,

r−−−−−−→
WriteValj

z
. use

−−−−−−→
ReadValj ,

−−−→
stj−1, and

−→
stj to compute a commitment to the extended witness

q−−→zinstj
y

for

the relation (Ainstj ,Binstj ,Cinstj)

– Invoke πMemory
Read to read JinstjK from address

q−−−→pcj−1
y

and to read

r−−−−−−→
ReadValj

z
from address

r−−−−−−−→
ReadAddrj

z
.

– Invoke πMemory
Update to replace

r−−−−−−−−−→
OldWriteValj

z
with

r−−−−−−→
WriteValj

z
at the location

r−−−−−−−→
WriteAddrj

z
.

– Finally, run the jth
step in the execution phase in πZKDisj

Prove using

q−−→zinstj
y

and instruction index instj .

Verify: πzkRAM
Verify :

Sen and Rec invoke πMemory
Verify , πZKDisj

Verify and πLCom
Open on JsttK and JMtK. Output 1, if all these checks verify.

We now prove the following �eorem.

�eorem 7.1. Assuming that πLCom in a secure linearly homomorphic commitment scheme (see Section 3.1), πMemory is a
protocol for checking memory consistency (see Section 5) and πZKDisj be a commit-and-prove zero-knowledge forRZKDisj as
de�ned in Section 6. �en the above protocol πzkRAM = (πzkRAM

Setup , πzkRAM
Prove , πzkRAM

Verify) is a LinCom-based commit-and-prove
zero-knowledge (Section 3.3) forRzkRAM with statistical soundness error bounded by 2m+9t+3`

|F| .

Proof. Correctness. Correctness follows from correctness of Linearly Homomorphic commitment πLCom
, memory

consistency protocol πMemory
and protocol for verifying processor execution πZKDisj

.

27

Zero-Knowledge. Let SimMemory = (SimMemory
Setup ,SimMemory

Init ,SimMemory
Insert ,SimMemory

Remove ,Sim
Memory
VerEmpty) be the simulator

for πMemory
and let SimZKDisj

be the simulator for πZKDisj
. �e simulator Sim for our πzkRAM

protocol proceeds like

the Sen in an honest execution of πzkRAM
, except that: (1) Instead of running πMemory

honestly, it uses SimMemory
to

simulate operations in πMemory
, (2) instead of running πZKDisj

honestly, it uses SimZKDisj
to simulate operations in

πZKDisj
and (3) whenever the parties invoke πLCom

Commit (except when commi�ing to M0), Sen computes a commitment

to

−→
0 . Commitment to M0 is computed honestly as described in the protocol.

We now show that view of the receiver when interacting with the simulator Sim is the computationally close to

the view of the receiver interacting with the honest sender. We proceed with a hybrid argument. Let Hybrid0 denote

the interaction between the receiver and the honest sender.

• Hybrid1 : Let Hybrid1 be the same as Hybrid0, but Sim simulates πMemory
. By the zero-knowledge property of

πMemory
, the view of the receiver in Hybrid1 and Hybrid0 are computationally close.

• Hybrid2 : �is hybrid is similar to Hybrid1, except that Sim simulates πZKDisj
. By the zero-knowledge property of

πZKDisj
, the view of the receiver in Hybrid1 and Hybrid2 are computationally close.

• Hybrid3 �is hybrid is the same as Hybrid2, except that instead of computing commitments to honestly computed

(private) values, Sim computes commitments to

−→
0 . By the hiding property of πLCom

, view of receiver in Hybrid2
and Hybrid3 are computationally close.

Note that the view of the receiver in Hybrid3 is distributed the same as the view of the receiver when interacting

with the simulator above. �us, we have concluded our proof.

Knowledge Soundness. Let ELCom be the extractor of the linearly homomorphic commitment scheme. Given a

verifying proof transcript for πzkRAM
, the extractor E for our πzkRAM

protocol runs ELCom to simply extract the values

from all commitments computed during the protocol. �e probability that extracted values do not satisfy the relation

RzkRAM
as described in Section 7, depends on the following:

• ELCom failed to extract the correct value, which only happens with negligible probability due to the binding property

of πLCom
.

• �e adversary succeeds in violating knowledge soundness of πMemory
. Recall from �, assuming that the adversary

cannot break the binding property of πLCom
, the statistical soundness error in our ZKBag with n insertions is

≤ 2n
|F| . π

Memory
is essentially a ZKBag with n = m+ 3t insertions and therefore, the probability that the adversary

succeeds in breaking knowledge soundness of the underlying ZKBag is ≤ 2m+6t
|F| , which is negligibly small.

• �e adversary succeeds in violating knowledge soundness of πZKDisj
, which as discussed in � happens probability

≤ 3t+3`
|F| .

�erefore, assuming that the binding property of πLCom
holds, the overall probability that this extractor fails to extract

a satisfying set of extended witnesses from a verifying transcript is ≤ 2m+9t+3`
|F| , which is negligbly small.

8 Implementation and Evaluation
We implement Dora and provide thorough micro-benchmarks for the sub-protocols described in Section 6 and

Section 5.

Optimizations. When implementing Dora, we integrate several minor optimizations. Namely, because of the high

number of rounds in the ZKbag protocol we apply Fiat-Shamir to compute tag challenges, but we do not use Fiat-

Shamir in the �nal consistency check. We note that, in general, the use of Fiat-Shamir in multi-round protocols can

exponentially degrade security. �is soundness loss comes from rewinding during extraction. Speci�cally, rewinding

produces a tree of protocol transcripts, whose leaves grow exponentially in the number of rounds in a multi-round

protocol (see, e.g., [AFK22]). �is, however, is not a problem in Dora because we do not rewind during extraction; we

rely on the underlying commitment scheme’s extractor, circumventing the exponential loss.

28

(a) Instructions/sec with Dora (over 50,000 steps). Larger is

be�er.
(b) Marginal milliseconds per additional step. Smaller is be�er.

(c) Instructions/sec Dora can execute with instructions of size

212 under di�erent bandwidth con�gurations. Larger is be�er.

(d) Marginal milliseconds per additional step with instructions

of size 212 under di�erent bandwidth con�gurations. Smaller is

be�er.

Figure 5: Evaluations of Dora’s performance with varying instruction sizes and network con�gurations. In graphs (a)

and (b), the line’s color represents the number of multiplication gates in each instruction used in the test (see legends).

For each color there are three lines, each representing a di�erent network latency: (1) the darkest hue, marked with •,
is 0ms latency, (2) the middle hue, marked with ×, is 10ms latency, and (3) the lightest hue, marked with ?, is 100ms.

For these experiments, our setup had insu�cient memory to evaluate a processor with 215 instructions consisting of

215 gates each. In graphs (c) and (d) we illustrate the impact of constrained bandwidth using the case of instructions

with size 212 gates. “High Band” represents a 1Gbit connection, “Med Band” represents a 100Mbit connection, and

“Low Band” represents a 50Mbit connection. Di�ering marks and hues have consistent meanings regarding latency as

in (a) and (b).

We note that the extractor of the underlying commitment scheme may, itself, rely on rewinding. As a result

rewinding may be used during the full Dora extractor—which might seem to raise the specter of exponential security

loss again. However, observe that we can extract each commi�ed value immediately as the commitments are formed

(before any other non-commitment speci�c messages are sent). As such, the only messages that are rewinded are

those used to form commitments and we never rewind a Dora-speci�c message. �us, we avoid the exponential

transcript tree.

In our approach, the random oracle is only used to argue intractability. Within processor checks, we only require

that for a commitment c = Com(f) to a constant degree polynomial f(X), if rand is the output of the random

oracle evaluated on c, then f(rand) 6= 0 with high probability, which is guaranteed by Schwartz-Zippel. When

sampling tags within the ZKBag protocol, we only require that the random oracle does not output the same tag twice

within a polynomial number of samples. �us, because the security of ZKBag is statistical in the size of the �eld

(a 61-bit prime �eld), we need to sample two �eld elements for each tag. �e resulting protocol has ≈ 122 bits of

computation security and remains designated veri�er, as we still use VOLE for all commitments.

Concretely, the statistical soundness error of our largest tested parameters is ≈ 2−40. To see this, recall that

Dora’s soundness error is bounded by
2m+9t+3`
|F| (�eorem 7.1) and we set m = 220, t = 50, 000 ≈ 216 and ` = 215

for our largest tests. Note that the dominating factor here by far is m, so t could be dramatically increased without

signi�cantly degrading soundness.

Implementation and Benchmark Con�guration. We implement Dora in Rust on top of Galois’ swanky [Gal19]

29

C
o

m
m

u
n

i
c
a
t
i
o

n
(
M

B
)

Gates in

Instruction

Instructions in Processor

23 26 29 212 215

26 232.1 232.9 239.2 262.3 378.7

29 597.8 599.8 615.8 669.0 980.3

212 1734.3 1740.0 1788.3 1948.3 2864.7

215 4844.9 4860.7 4992.5 5437.7 -

Figure 6: Total communication for verifying the correct application of 50,000 processor steps, measured in MB.

C
o

m
m

u
n

i
c
a
t
i
o

n
(
K

B
)

Gates in

Instruction

Instructions in Processor

23 26 29 212 215

26 4.4KB 4.4KB 4.5KB 4.9KB 4.4KB

29 11.8KB 11.8KB 12.0KB 12.7KB 11.7KB

212 34.5KB 34.5KB 35.3KB 37.4KB 34.4KB

215 96.7KB 96.9KB 98.7KB 104.7KB -

Figure 7: Marginal communication for verifying an additional processor step (in KB). Calculated by interpolating

between 25,000 and 50,000 steps.

framework, a suite of secure computation and zero-knowledge tools.
15

Our code is intentionally designed to be

interoperable with the emerging SIEVE intermediary representation (IR) [sie] standard such that it can interface with

other emerging zero-knowledge techniques. To instantiate our linearly homomorphic commitments, we use vector

oblivious linear evaluation (VOLE) base commitments, like other state-of-the-art interactive zero-knowledge protocols

(e.g. �ickSilver [YSWW21]). swanky generates the prerequisite VOLE correlations using KOS OT-extension

protocol [KOS15]. �ese correlations are computed “just-in-time,” rather than in a pre-processing phase; the resulting

interaction introduces a non-trivial overhead in our implementation which is included in all benchmarks. We also

include all setup costs in our benchmarks. Our evaluation is done over a 61-bit prime �eld. We run the benchmarks

on a single server (both prover and veri�er are singled threaded) with 16 cores of AMD Milan EPYC 7003 @

2.4 Ghz with 64 GB of RAM. We note that while this machine has a lot of RAM, it is very slow compared to consumer

grade laptops. We simulate network conditions using tc(8) and netem(8).

8.1 Verifying Processor Execution
We begin by benchmarking our disjunctive zero-knowledge protocol that ensures each application of the processor

circuit is done correctly (Section 6). We realize this protocol as a custom plugin for the SIEVE IR [sie] which takes in

a set of functions (ie. the instructions) over which to do the disjunction. �e result is a plugin that can be called with

the appropriate number of inputs and outputs.

In order to benchmark this construction, we generate uniformly random instruction circuits over F261 with a

prescribed number of multiplication gates. We do this by repeatedly sampling a random addition/multiplication gate

with probability 1/2 until the desired number of multiplication gates is reached. To connect these gates, we sample

random input wires for each new gate from the set of previous output wires. �e result is circuits with random

topology, a good approximation for the worst case for e�ciency.

Speed Benchmarks. We present our results in Figure 5:

(1) In Figure 5a, we show how many processor steps Dora proves per second for processors of varying complexity.

�ese values are computed by proving 50,000 steps of the processor circuit, where a random instruction is chosen

in each step. We vary the number of multiplication gates in each instruction in the set {26, 29, 212, 215} and vary

15
Code available at https://github.com/rot256/research-dora/

30

https://github.com/rot256/research-dora/

the number of instructions supported by the processor in the set {23, 26, 29, 212, 215}. Note that the overhead

of setup and verifying the �nal R1CS instances grows as the number of instructions grows and the size of the

instructions grows. When the number of instructions reaches 215, this overhead becomes non-trivial (compared

to the �xed 50,000 steps) and begins to become visible in the benchmarks. We note that our machine ran out

of memory for 215 instructions of size 215 simply because the overhead for holding the descriptions of the

instructions was too high.

(2) In Figure 5b, we illustrate that the marginal cost of proving each additional step of the processor is constant

in the number of instructions. To do this, we run the same experiment as in (1), but for 25,000 processor steps,

interpolate between the two points and compute the time taken to prove each of the additional 25,000 steps. In

this �gure, the asymptotic characteristic of Dora becomes very clear: the marginal cost per-step is constant as the

number of instructions in the processor increases.

(3) In Figure 5c and Figure 5d we replicate the above experiments while varying the bandwidth in the connection

between the prover and the veri�er (full benchmarks in Appendix A). Speci�cally, we test three bandwidth

con�gurations: (i) a data-center-to-data-center“High Band” connection at 1Gbit, (ii) a standard consumer-grade

“Med Band” connection at 100Mbit, and (iii) a low-quality “Low Band” connection at only 50Mbit. To illustrate

the impact of constraining bandwidth on Dora’s performance, we run 50,000 steps of a processor with a variable

number of instructions (in the set {23, 26, 29, 212, 215}), each of size 212. Dropping bandwidth by a factor of 10

only cuts performance by a factor of 2, indicating that Dora is CPU bound.

Our benchmarks show that despite Dora’s simple design, Dora is highly e�cient—able to prove a marginal step of

computation in less than 10ms, even with high network latency and large instructions.

Communication Benchmarks. We measure the total communication between the prover and the veri�er—

e�ectively the proof size—during the experiments described above. In Figure 6 we provide the total communication

for running 50,000 steps of the processor with varying con�guration, measured in MB. We additionally provide

measurements of the additional communication incurred for each additional step of the proof in Figure 7. �ese are

computed by interpolating between performance measurements for 25,000 and 50,000 steps of the relevant processor.

Notice that each row of Figure 7 is largely constant, with ji�er due to OT batching.

8.2 Verifying Memory Consistency
Recall that the total cost of proving a step of a processor in Dora is a single invocation of this protocol, plus several

memory access operations. In this subsection we show that the costs of these memory operations are marginal

compared to checking the processor instructions. As such, we use the benchmarks provided in Figure 5 as a good

approximation of the overall performance of Dora.

Benchmarks. We present our memory benchmarks in two tables:

(1) In Figure 8 we present the average number of memory operations (READ/WRITE) per second, computed as an

average over 223 operations, when considering di�erent network con�gurations (both bandwidth and latency).

To illustrate that the size of the memory does not meaningfully impact performance, we run each experiment

with ally memory space sizes in {212, 214, 216, 218, 220}. As above, our bandwidth con�gurations capture a 1Gbit

High Bandwidth se�ing (data-center-to-data-center), a 100Mbit Medium Bandwidth se�ing (consumer-grade),

and a 50Mbit Low Bandwidth se�ing (poor quality).

(2) In Figure 9 we show the marginal cost of each additional memory operation to highlight the asymptotic behavior

of our construction. We do this by computing the di�erence in runtime for performing 222 operations and 223

operations.

(3) At the end of each table, we show the communication associated with memory accesses. In Figure 8, we show the

total communication required to evaluate a large number of operations (in {222, 223, 224}) for di�erent memory

sizes. �en, at the end of Figure 9 we show that the additional communication associated with an additional

memory operation is only ≈ 50 bytes. �is is computed by interpolating between the communication measure

for 222 and 223 memory operations.

Evaluation. Our results show that each memory operation takes only several microseconds, even with very high

network latency. Given that these operations are several orders of magnitude faster than the processor instruction

31

H
i
g

h
B

a
n

d
w

i
d

t
h Network

Latency

Memory Space Size

212 214 216 218 220

0 ms 331,946 334,580 334,167 325,316 310,861

10 ms 319,846 319,116 310,459 306,904 296,532

100 ms 173,626 173,705 172,179 168,968 164,134

M
e
d

i
u

m
B

a
n

d
w

i
d

t
h

Network

Latency

Memory Space Size

212 214 216 218 220

0 ms 174,985 174,446 173,569 171,304 162,658

10 ms 168,483 167,990 166,609 164,737 156,445

100 ms 122,165 122,960 121,115 120,394 114,766

L
o
w

B
a
n

d
w

i
d

t
h

Network

Latency

Memory Space Size

212 214 216 218 220

0 ms 105,578 105,679 105,343 103,743 97,459

10 ms 103,335 102,497 99,842 98,703 93,011

100 ms 83,570 83,876 82,873 81,937 77,244

C
o

m
m

u
n

i
c
a
t
i
o

n
(
M

B
)

Memory

Operations

Memory Space Size

212 214 216 218 220

222 214.2 214.6 216.6 224.5 258.6

223 423.6 424.1 426.0 433.9 465.4

224 839.7 840.3 842.2 850.1 881.5

Figure 8: Number of memory operations (READ/WRITE) per second, averaged over 223 operations when running on

Intel i7-11800H. Larger is be�er.

checks benchmarked above, we conclude that memory operations have a marginal impact on Dora’s overall perfor-

mance. We note that these results also show that performance starts to degrade when the network latency hits 100ms.

�is is an artifact of the on-demand nature of the VOLE computation in swanky. Because correlations are not

computed upfront, the computation must pause in order to generate more VOLE correlations. Because this correlation

generation protocol is a multi-round protocol, when the latency increases VOLE correlation generation dominates

the overall cost. We emphasize that this is not a fundamental limitation of the protocol but rather a limitation of

swanky, as OT correlations could be computed o�ine. Additionally, dropping bandwidth by a factor of 10 results in

approximately twice the per-operation time, demonstrating the CPU is Dora’s key resource.

8.3 Comparison with Other Approaches
We compare Dora with alternative approaches to proving the correct execution of RAM programs. For each of these

comparisons, we li� performance �gures from the associated papers.

Linear-sized Proofs. A direct alternative to Dora is using a linear-sized, linear-time zero-knowledge proof, which

has seen signi�cant recent breakthroughs e.g., [BMRS21, WYKW21, DOTV22, YSWW21, WYY
+

22, BBMHS22], etc.

�e downside of this approach is that the proof must be over entire processor (as was done in [HK20a, HYDK21,

YHKD22, GHAH
+

23]). As the processor’s branching factor increases, Dora ’s performance improves relative to this

approach. We estimate that Dora becomes more e�cient than a naı̈ve proof strategy (e.g., a commit-and-prove

protocol using �ickSilver [YSWW21]) for processors with 4 or more instructions. �is is because Dora computes

commitments to 4 vectors (z, z′, e, e′) of instruction size, and its ZKBag operations are independent of the extended

witness or R1CS relation.

Succinct Proofs. While succinct proofs have fast veri�cation and small proof sizes, they su�er from slow prover

32

H
i
g

h
B

a
n

d
w

i
d

t
h Network

Latency

Memory Space Size

212 214 216 218 220

0 ms 3.09µs 2.95µs 3.05µs 3.07µs 2.61µs
10 ms 3.16µs 3.06µs 3.29µs 3.28µs 2.73µs
100 ms 5.68µs 5.63µs 5.68µs 5.80µs 4.84µs

M
e
d

i
u

m
B

a
n

d
w

i
d

t
h

Network

Latency

Memory Space Size

212 214 216 218 220

0 ms 5.70µs 5.68µs 5.72µs 5.71µs 5.08µs
10 ms 5.87µs 5.93µs 5.98µs 5.97µs 5.32µs
100 ms 8.12µs 8.03µs 8.14µs 8.07µs 7.16µs

L
o
w

B
a
n

d
w

i
d

t
h

Network

Latency

Memory Space Size

212 214 216 218 220

0 ms 9.56µs 9.41µs 9.42µs 9.38µs 8.88µs
10 ms 9.65µs 9.76µs 9.96µs 9.90µs 9.22µs
100 ms 11.93µs 11.78µs 11.93µs 11.81µs 11.00µs

C
o

m
m

.
(
B

) Memory Space Size

212 214 216 218 220

49.9B 49.9B 49.9B 49.9B 49.3B

Figure 9: Marginal time for an additional memory operation, evaluated on Intel i7-11800H. Smaller is be�er.

Notice that marginal cost is independent of memory size.

times. In contrast, Dora o�ers signi�cantly faster prover times. To compare, we estimate the runtime for proving

correct execution of processor instructions using state-of-the-art succinct proofs. Extending SNARKs to handle

updatable memory e�ciently would likely lead to non-trivial challenges (see [BCG
+

13]).

A naı̈ve approach would represent the processor as a large circuit and prove it with a SNARK like Orion [XZS22],

which has linear prover time. Orion’s authors estimate proving an R1CS instance with 220 constraints takes 3.09

seconds. Note that a single step (t = 1) of a processor circuit with 29 instructions, each with 211 constraints already
has 220 constraints. In contrast, Dora proves one step of a similar processor in under 4ms (even with 100ms latency),

making it ≈ 280 times faster.

Disjunction-optimized SNARKs like MuxProofs [DXNT23] and Sublonk [CGG
+

24] o�er prover times proportional

to the largest instruction. Sublonk, for example, proves t = 16 steps of a processor with n = 210 instructions, each of

size 216 in 20.04 seconds, which is ≈ 1.25 seconds per step, while Dora takes under 10ms, making it ≈ 125 times

faster. �e authors of Subplonk [CGG
+

24, Figure 3] claim that it takes ≈ 11 seconds to prove t = 128 steps of a

processor with n = 23 instructions, each of size 212. Extrapolating naively, it will take ≈ 4, 300 seconds to prove

t = 50, 000 steps. In contrast, Dora proves t = 50, 000 steps of the equivalent processor in only < 50 seconds with

100ms latency, making Dora ≈ 85 times faster.

Disjunction-Optimized Linear-sized Proofs. As discussed in Section 1.1, two works [YHH
+

23, YH23], developed

concurrently with our own, also focus on designing zero-knowledge for proving correct execution of RAM programs.

In Appendix A.2,we give a best-e�ort, apples-to-apples comparison between our approaches. We �nd that our memory

approach is slightly slower (≈2x) than [YH23] while our processor approach is faster (1.5x-10x) than [YHH
+

23]. We

note, however, that the comparison reduces to concrete constants, and thus even minor engineering choices could

in�uence this comparison. More importantly, we believe that Dora’s incredibly simple and intuitive design makes it

independently interesting regardless of performance.

33

Acknowledgements
�e authors would like to thank Yibin Yang for providing benchmarks by correspondence to help clarify the comparison

with concurrent work provided in Appendix A.2. Majority of this work was done while the �rst author was at NTT

Research and the third author was at Boston University. �e second author is funded by Concordium Blockchain

Research Center, Aarhus University, Denmark, implementation work was undertaken while at Galois partially funded

by the FROMAGER (SIEVE) grant. �e third author is supported by the National Science Foundation under Grant

#2030859 to the Computing Research Association for the CIFellows Project and is supported by DARPA under

Agreement No. HR00112020021. Any opinions, �ndings and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily re�ect the views of the United States Government or

DARPA.

References
[ACF21] �omas A�ema, Ronald Cramer, and Serge Fehr. Compressing proofs of k-out-of-n partial

knowledge. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS,

pages 65–91, Virtual Event, August 2021. Springer, Cham. 5

[AFK22] �omas A�ema, Serge Fehr, and Michael Klooß. Fiat-shamir transformation of multi-round

interactive proofs. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part I, volume

13747 of LNCS, pages 113–142. Springer, Cham, November 2022. 27

[AOS02] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 1-out-of-n signatures from a variety of

keys. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 415–432. Springer,

Berlin, Heidelberg, December 2002. 5

[BBB
+

18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.

Bulletproofs: Short proofs for con�dential transactions and more. In 2018 IEEE Symposium on
Security and Privacy, pages 315–334. IEEE Computer Society Press, May 2018. 3

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and

post-quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046, 2018.

6

[BBMH
+

21] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, Benoı̂t Razet, and Peter Scholl. Appen-

zeller to brie: E�cient zero-knowledge proofs for mixed-mode arithmetic and Z2k. In Giovanni

Vigna and Elaine Shi, editors, ACM CCS 2021, pages 192–211. ACM Press, November 2021. 4

[BBMHS22] Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Peter Scholl. MozZ2karella: E�cient

vector-ole and zero-knowledge proofs over Z2k . In Yevgeniy Dodis and �omas Shrimpton, editors,

Advances in Cryptology – CRYPTO 2022, pages 329–358, Cham, 2022. Springer Nature Switzerland.

3, 31

[BC23] Benedikt Bünz and Binyi Chen. Protostar: Generic e�cient accumulation/folding for special-sound

protocols. In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part II, volume 14439 of LNCS,

pages 77–110. Springer, Singapore, December 2023. 5

[BCC
+

16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. E�cient

zero-knowledge arguments for arithmetic circuits in the discrete log se�ing. In Marc Fischlin and

Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 327–357.

Springer, Berlin, Heidelberg, May 2016. 3

[BCF
+

21] Daniel Benarroch, Ma�eo Campanelli, Dario Fiore, Kobi Gurkan, and Dimitris Kolonelos. Zero-

knowledge proofs for set membership: E�cient, succinct, modular. In Nikita Borisov and Claudia

Dı́az, editors, FC 2021, Part I, volume 12674 of LNCS, pages 393–414. Springer, Berlin, Heidelberg,

March 2021. 7

34

[BCG
+

13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for C:

Verifying program executions succinctly and in zero knowledge. In Ran Cane�i and Juan A. Garay,

editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108. Springer, Berlin, Heidelberg,

August 2013. 3, 5, 6, 32

[BCG
+

14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Ma�hew Green, Ian Miers, Eran Tromer,

and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE
Symposium on Security and Privacy, pages 459–474. IEEE Computer Society Press, May 2014. 3

[BCG
+

22] Kenneth A. Bamberger, Ran Cane�i, Sha� Goldwasser, Rebecca Wexler, and Evan Joseph Zimmer-

man. Veri�cation dilemmas, law, and the promise of zero-knowledge proofs. Berkeley Technology
Law Journal, 37(1), 2022. 3

[BCGI18] Ele�e Boyle, Geo�roy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE. In David

Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages

896–912. ACM Press, October 2018. 4

[BCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions from RAMs

to delegatable succinct constraint satisfaction problems: extended abstract. In Robert D. Kleinberg,

editor, ITCS 2013, pages 401–414. ACM, January 2013. 5, 6

[BCGW22] Dor Bitan, Ran Cane�i, Sha� Goldwasser, and Rebecca Wexler. Using zero-knowledge to reconcile

law enforcement secrecy and fair trial rights in criminal cases. In Proceedings of the 2022 Symposium
on Computer Science and Law, CSLAW ’22, page 9–22, New York, NY, USA, 2022. Association for

Computing Machinery. 3

[BCL
+

21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas Spooner. Proof-

carrying data without succinct arguments. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part I, volume 12825 of LNCS, pages 681–710, Virtual Event, August 2021. Springer, Cham. 5

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Recursive proof

composition from accumulation schemes. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020,
Part II, volume 12551 of LNCS, pages 1–18. Springer, Cham, November 2020. 5

[BCR
+

19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and

Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and Vincent

Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer, Cham,

May 2019. 3

[BCTV14a] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via

cycles of elliptic curves. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II,
volume 8617 of LNCS, pages 276–294. Springer, Berlin, Heidelberg, August 2014. 3, 5

[BCTV14b] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive

zero knowledge for a von neumann architecture. In Kevin Fu and Jaeyeon Jung, editors, USENIX
Security 2014, pages 781–796. USENIX Association, August 2014. 3, 5, 6

[BDFG21] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Halo in�nite: Proof-carrying data from

additive polynomial commitments. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I,
volume 12825 of LNCS, pages 649–680, Virtual Event, August 2021. Springer, Cham. 5

[BG12] Stephanie Bayer and Jens Groth. E�cient zero-knowledge argument for correctness of a shu�e.

In David Pointcheval and �omas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,

pages 263–280. Springer, Berlin, Heidelberg, April 2012. 14

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition without a trusted

setup. Cryptology ePrint Archive, Report 2019/1021, 2019. 5

35

[BMRS21] Carsten Baum, Alex J. Malozemo�, Marc B. Rosen, and Peter Scholl. Mac’n’cheese: Zero-knowledge

proofs for boolean and arithmetic circuits with nested disjunctions. In Tal Malkin and Chris

Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 92–122, Virtual Event, August

2021. Springer, Cham. 3, 4, 5, 11, 31

[CCs08] Jan Camenisch, Ra�k Chaabouni, and abhi shelat. E�cient protocols for set membership and

range proofs. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 234–252.

Springer, Berlin, Heidelberg, December 2008. 7

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge and

simpli�ed design of witness hiding protocols. In Yvo Desmedt, editor, CRYPTO’94, volume 839 of

LNCS, pages 174–187. Springer, Berlin, Heidelberg, August 1994. 5

[CFH
+

15] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael

Naehrig, Bryan Parno, and Samee Zahur. Geppe�o: Versatile veri�able computation. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 253–270.

IEEE Computer Society, 2015. 6

[CFQ19] Ma�eo Campanelli, Dario Fiore, and Anaı̈s �erol. LegoSNARK: Modular design and composition

of succinct zero-knowledge proofs. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and

Jonathan Katz, editors, ACM CCS 2019, pages 2075–2092. ACM Press, November 2019. 6

[CGG
+

24] Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Rohit Sinha. Sublonk: Sublinear

prover plonk. Proc. Priv. Enhancing Technol., 2024(3):314–335, 2024. 6, 32

[CGT23] Alishah Chator, Ma�hew Green, and Pratyush Ranjan Tiwari. Sok: Privacy-preserving signatures.

Cryptology ePrint Archive, Paper 2023/1039, 2023. https://eprint.iacr.org/2023/
1039. 7

[CHP
+

23] Santiago Cuéllar, Bill Harris, James Parker, Stuart Pernsteiner, and Eran Tromer.

Cheesecloth:{Zero-Knowledge} proofs of real world vulnerabilities, 2023. 5

[CK18] �an Chen and Alexandros Kapravelos. Mystique: Uncovering information leakage from browser

extensions. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors,

ACM CCS 2018, pages 1687–1700. ACM Press, October 2018. 5

[CPS
+

16] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti.

Online/o�ine OR composition of sigma protocols. In Marc Fischlin and Jean-Sébastien Coron,

editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 63–92. Springer, Berlin, Heidelberg,

May 2016. 5

[DIO21] Samuel Di�mer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero knowledge and its applications.

In Stefano Tessaro, editor, 2nd Conference on Information-�eoretic Cryptography, ITC 2021, July
23-26, 2021, Virtual Conference, volume 199 of LIPIcs, pages 5:1–5:24. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2021. 4, 5

[DOTV22] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, Titouan Tanguy, and Michiel Verbauwhede.

E�cient proof of RAM programs from any public-coin zero-knowledge system. In Clemente Galdi

and Stanislaw Jarecki, editors, SCN 22, volume 13409 of LNCS, pages 615–638. Springer, Cham,

September 2022. 3, 4, 5, 7, 31

[DXNT23] Zijing Di, Lucas Xia, Wilson Nguyen, and Nirvan Tyagi. Muxproofs: Succinct arguments for

machine computation from tuple lookups. Cryptology ePrint Archive, Paper 2023/974, 2023.

https://eprint.iacr.org/2023/974. 6, 32

36

https://eprint.iacr.org/2023/1039
https://eprint.iacr.org/2023/1039
https://eprint.iacr.org/2023/974

[FKL
+

21] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, and Chenkai Weng.

Constant-overhead zero-knowledge for RAM programs. In Giovanni Vigna and Elaine Shi, editors,

ACM CCS 2021, pages 178–191. ACM Press, November 2021. 3, 5, 7, 14

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi�cation and

signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages

186–194. Springer, Berlin, Heidelberg, August 1987. 4

[Gal19] Galois, Inc. swanky: A suite of rust libraries for secure computation. https://github.
com/GaloisInc/swanky, 2019. 4, 28

[gen20] genSTARK. h�ps://github.com/guildofweavers/genstark, 2020. 6

[GGHAK22a] Aarushi Goel, Ma�hew Green, Mathias Hall-Andersen, and Gabriel Kaptchuk. E�cient set

membership proofs using MPC-in-the-head. PoPETs, 2022(2):304–324, April 2022. 7, 9

[GGHAK22b] Aarushi Goel, Ma�hew Green, Mathias Hall-Andersen, and Gabriel Kaptchuk. Stacking sigmas:

A framework to compose Σ-protocols for disjunctions. In Orr Dunkelman and Stefan Dziem-

bowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 458–487. Springer, Cham,

May / June 2022. 4, 5, 9

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. �adratic span programs

and succinct NIZKs without PCPs. In �omas Johansson and Phong Q. Nguyen, editors, EU-
ROCRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, Berlin, Heidelberg, May 2013.

3

[GHAH
+

23] Ma�hew Green, Mathias Hall-Andersen, Eric Hennenfent, Gabriel Kaptchuk, Benjamin Perez,

and Gijs Van Laer. E�cient proofs of so�ware exploitability for real-world processors. PoPETs,
2023(1):627–640, January 2023. 3, 5, 6, 7, 31

[GHAKS23] Aarushi Goel, Mathias Hall-Andersen, Gabriel Kaptchuk, and Nicholas Spooner. Speed-stacking:

Fast sublinear zero-knowledge proofs for disjunctions. In Carmit Hazay and Martijn Stam, editors,

EUROCRYPT 2023, Part II, volume 14005 of LNCS, pages 347–378. Springer, Cham, April 2023. 4, 5

[GK15] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a

coin. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of

LNCS, pages 253–280. Springer, Berlin, Heidelberg, April 2015. 5

[GMR85] Sha� Goldwasser, Silvio Micali, and Charles Racko�. �e knowledge complexity of interactive

proof-systems (extended abstract). In 17th ACM STOC, pages 291–304. ACM Press, May 1985. 3

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity and

a methodology of cryptographic protocol design (extended abstract). In 27th FOCS, pages 174–187.

IEEE Computer Society Press, October 1986. 3

[GMY03] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge protocols using

signatures. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 177–194. Springer,

Berlin, Heidelberg, May 2003. 5

[GPR21] Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo – a Turing-complete STARK-friendly

CPU architecture. Cryptology ePrint Archive, Report 2021/1063, 2021. 6

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-

Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326. Springer,

Berlin, Heidelberg, May 2016. 3

37

https://github.com/GaloisInc/swanky
https://github.com/GaloisInc/swanky

[GS08] Jens Groth and Amit Sahai. E�cient non-interactive proof systems for bilinear groups. In Nigel P.

Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, Berlin, Heidelberg,

April 2008. 3

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over lagrange-

bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report

2019/953, 2019. 3

[HK20a] David Heath and Vladimir Kolesnikov. A 2.1 KHz zero-knowledge processor with BubbleRAM.

In Jay Liga�i, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages

2055–2074. ACM Press, November 2020. 3, 5, 6, 31

[HK20b] David Heath and Vladimir Kolesnikov. Stacked garbling - garbled circuit proportional to longest

execution path. In Daniele Micciancio and �omas Ristenpart, editors, CRYPTO 2020, Part II,
volume 12171 of LNCS, pages 763–792. Springer, Cham, August 2020. 9

[HK20c] David Heath and Vladimir Kolesnikov. Stacked garbling for disjunctive zero-knowledge proofs. In

Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages

569–598. Springer, Cham, May 2020. 3, 4, 5, 9

[HK21] David Heath and Vladimir Kolesnikov. PrORAM - fast P (log n) authenticated shares ZK ORAM.

In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume 13093 of LNCS,

pages 495–525. Springer, Cham, December 2021. 3, 5

[hod21] hodor. h�ps://github.com/ma�er-labs/hodor, 2021. 6

[HYDK21] David Heath, Yibin Yang, David Devecsery, and Vladimir Kolesnikov. Zero knowledge for every-

thing and everyone: Fast ZK processor with cached ORAM for ANSI C programs. In 2021 IEEE
Symposium on Security and Privacy, pages 1538–1556. IEEE Computer Society Press, May 2021. 3,

5, 6, 31

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using garbled circuits:

how to prove non-algebraic statements e�ciently. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and

Moti Yung, editors, ACM CCS 2013, pages 955–966. ACM Press, November 2013. 3

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowledge

with applications to post-quantum signatures. In David Lie, Mohammad Mannan, Michael Backes,

and XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537. ACM Press, October 2018. 3

[Kol18] Vladimir Kolesnikov. Free IF: How to omit inactive branches and implement S-universal garbled

circuit (almost) for free. In �omas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part III,
volume 11274 of LNCS, pages 34–58. Springer, Cham, December 2018. 5

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal

overhead. In Rosario Gennaro and Ma�hew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume

9215 of LNCS, pages 724–741. Springer, Berlin, Heidelberg, August 2015. 29

[KPPS20] Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, and Dawn Song. MIRAGE:

Succinct arguments for randomized algorithms with applications to universal zk-SNARKs. In

Srdjan Capkun and Franziska Roesner, editors, USENIX Security 2020, pages 2129–2146. USENIX

Association, August 2020. 6

[KS22] Abhiram Kothapalli and Srinath Se�y. SuperNova: Proving universal machine executions without

universal circuits. Cryptology ePrint Archive, Report 2022/1758, 2022. 4, 5, 10

38

[KS23] Abhiram Kothapalli and Srinath Se�y. Hypernova: Recursive arguments for customizable con-

straint systems. Cryptology ePrint Archive, Paper 2023/573, 2023. https://eprint.iacr.
org/2023/573. 4, 6

[KST22] Abhiram Kothapalli, Srinath Se�y, and Ioanna Tzialla. Nova: Recursive zero-knowledge arguments

from folding schemes. In Yevgeniy Dodis and �omas Shrimpton, editors, CRYPTO 2022, Part IV,

volume 13510 of LNCS, pages 359–388. Springer, Cham, August 2022. 4, 5, 10, 12, 13, 21

[lib18] libSTARK. h�ps://github.com/elibensasson/libstark, 2018. 6

[Lip16] Helger Lipmaa. Prover-e�cient commit-and-prove zero-knowledge SNARKs. In David Pointcheval,

Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors, AFRICACRYPT 16, volume 9646 of LNCS,

pages 185–206. Springer, Cham, April 2016. 6

[MAGABMMT23] Héctor Masip-Ardevol, Marc Guzmán-Albiol, Jordi Baylina-Melé, and Jose Luis Muñoz-Tapia.

eSTARK: Extending STARKs with arguments. Cryptology ePrint Archive, Report 2023/474, 2023.

6

[MGC
+

16] Benjamin Mood, Debayan Gupta, Henry Carter, Kevin Butler, and Patrick Traynor. Frigate: A

validated, extensible, and e�cient compiler and interpreter for secure computation. In 2016 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 112–127, 2016. 3

[MGGR13] Ian Miers, Christina Garman, Ma�hew Green, and Aviel D. Rubin. Zerocoin: Anonymous dis-

tributed E-cash from Bitcoin. In 2013 IEEE Symposium on Security and Privacy, pages 397–411.

IEEE Computer Society Press, May 2013. 7

[MRS17] Payman Mohassel, Mike Rosulek, and Alessandra Scafuro. Sublinear zero-knowledge arguments

for RAM programs. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part I, volume 10210 of LNCS, pages 501–531. Springer, Cham, April / May 2017. 7

[Nef01] C. Andrew Ne�. A veri�able secret shu�e and its application to e-voting. In Michael K. Reiter and

Pierangela Samarati, editors, ACM CCS 2001, pages 116–125. ACM Press, November 2001. 8, 10, 14

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure veri�able secret sharing.

In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer, Berlin,

Heidelberg, August 1992. 4, 11

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin Boyd, editor,

ASIACRYPT 2001, volume 2248 of LNCS, pages 552–565. Springer, Berlin, Heidelberg, December

2001. 7

[se19] swisspost evoting. E-voting system 2019. https://gitlab.com/
swisspost-evoting/e-voting-system-2019, 2019. 3

[Set20] Srinath Se�y. Spartan: E�cient and general-purpose zkSNARKs without trusted setup. In Daniele

Micciancio and �omas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages

704–737. Springer, Cham, August 2020. 3

[sie] Sieve intermediate representation. h�ps://github.com/sieve-zk/ir. 29

[Wan] Xiao Wang. emp-tool. https://github.com/emp-toolkit/emp-tool. 3

[WSR
+

15] Riad S. Wahby, Srinath T. V. Se�y, Zuocheng Ren, Andrew J. Blumberg, and Michael Wal�sh.

E�cient RAM and control �ow in veri�able outsourced computation. In NDSS 2015. �e Internet

Society, February 2015. 6

39

https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/573
https://gitlab.com/swisspost-evoting/e-voting-system-2019
https://gitlab.com/swisspost-evoting/e-voting-system-2019
https://github.com/emp-toolkit/emp-tool

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, scalable, and

communication-e�cient zero-knowledge proofs for boolean and arithmetic circuits. In 2021 IEEE
Symposium on Security and Privacy, pages 1074–1091. IEEE Computer Society Press, May 2021. 3,

4, 5, 31

[WYX
+

21] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. Mystique: E�cient

conversions for zero-knowledge proofs with applications to machine learning. In Michael Bailey

and Rachel Greenstadt, editors, USENIX Security 2021, pages 501–518. USENIX Association, August

2021. 3

[WYY
+

22] Chenkai Weng, Kang Yang, Zhaomin Yang, Xiang Xie, and Xiao Wang. AntMan: Interactive zero-

knowledge proofs with sublinear communication. In Heng Yin, Angelos Stavrou, Cas Cremers,

and Elaine Shi, editors, ACM CCS 2022, pages 2901–2914. ACM Press, November 2022. 3, 31

[XZS22] Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion: Zero knowledge proof with linear prover

time. In Yevgeniy Dodis and �omas Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of

LNCS, pages 299–328. Springer, Cham, August 2022. 32

[YH23] Yibin Yang and David Heath. Two shu�es make a ram: Improved constant overhead zero

knowledge ram. Cryptology ePrint Archive, Paper 2023/1115, 2023. https://eprint.
iacr.org/2023/1115. 5, 32, 42, 44

[YHH
+

23] Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakrishnan Venkita-

subramaniam. Batchman and robin: Batched and non-batched branching for interactive zk. In

Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, CCS

’23, page 1452–1466, New York, NY, USA, 2023. Association for Computing Machinery. 4, 5, 32, 42

[YHH
+

24] Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakrishnan Venki-

tasubramaniam. Tight ZK CPU: Batched ZK branching with cost proportional to evaluated

instruction. Cryptology ePrint Archive, Report 2024/456, 2024. 5, 42

[YHKD22] Yibin Yang, David Heath, Vladimir Kolesnikov, and David Devecsery. EZEE: Epoch parallel zero

knowledge for ANSI C. In 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P),
pages 109–123. IEEE, 2022. 3, 31

[YSWW21] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. �ickSilver: E�cient and a�ordable

zero-knowledge proofs for circuits and polynomials over any �eld. In Giovanni Vigna and Elaine

Shi, editors, ACM CCS 2021, pages 2986–3001. ACM Press, November 2021. 3, 4, 5, 22, 29, 31

[YWL
+

20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast extension for

correlated OT with small communication. In Jay Liga�i, Xinming Ou, Jonathan Katz, and Giovanni

Vigna, editors, ACM CCS 2020, pages 1607–1626. ACM Press, November 2020. 4

[Zav20] Greg Zaverucha. �e picnic signature algorithm. Technical report, 2020. https://github.
com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf. 3

[ZGK
+

18] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos Papa-

manthou. vRAM: Faster veri�able RAM with program-independent preprocessing. In 2018 IEEE
Symposium on Security and Privacy, pages 908–925. IEEE Computer Society Press, May 2018. 6

40

https://eprint.iacr.org/2023/1115
https://eprint.iacr.org/2023/1115
https://github.com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf
https://github.com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf

A Additional Benchmarks and Evaluation
In this section we provide additional benchmarks and evaluations that we did not include in the main body due to

readability concerns. Namely, in Appendix A.1 we begin by presenting complete benchmarks for verifying correct

executions of the processor under di�erent bandwidth conditions and in Appendix A.2 we provide a best-e�ort

comparison of Dora’s performance with concurrent work.

A.1 Additional Bandwidth Benchmarks
In Section 8, we presented an evaluation of Dora’s performance under di�erent network con�gurations. In order to

preserve the readability of the main text, we chose to present only two suites of experiments: (1) in the �rst set of

experiments, we kept bandwidth constant at 1Gbit and varied the size of the instructions in the processor in the set

{26, 29, 212, 215}; (2) in the second set of experiments, we kept the size of the instructions in the processor constant

at 212, but varied the bandwidth in the set {1Gbit, 100Mbit, 50Mbit}. For completeness, we include the full “cross

product” of these sets in Figure 10 below. Note that the high bandwidth graphs are copied directly from Section 8 in

order to make comparison easier for the reader.

As discussed in the main body of the paper, we see Dora continues to operate e�ciently even when bandwidth is

constrained. Speci�cally, we see that reducing the available bandwidth from 1Gbit to 100Mbit only reduces the rate at

which Dora can prove execution of a processor by a factor of 2. We believe this is largely because the most complex

and time intensive parts of Dora are computation, rather than communication. We do, however, still see some impact

when bandwidth is constrained. We believe this is because when messages are exchanged between the prover and the

veri�er (e.g., during OT correlation processing or the �nal batch proofs), the messages can be large. �us, the total

time it takes to transmit these messages increase when bandwidth reduces.

41

(a) Number of instructions per second Dora can execute in the

High Bandwidth (1Gbit) se�ing. Larger is be�er.

(b) Marginal milliseconds required to execute an additional step

of the processor in the High Bandwidth (1Gbit) se�ing. Smaller

is be�er.

(c) Number of instructions per second Dora can execute in the

Medium Bandwidth (100Mbit) se�ing. Larger is be�er.

(d) Marginal milliseconds required to execute an additional step

of the processor in the Medium Bandwidth (100Mbit) se�ing.

Smaller is be�er.

(e) Number of instructions per second Dora can execute in the

Low Bandwidth (50Mbit) se�ing. Larger is be�er.

(f) Marginal milliseconds required to execute an additional step

of the processor in the Low Bandwidth (50Mbit) se�ing. Smaller

is be�er.

Figure 10: Evaluations of Dora’s performance across di�erent bandwidths. Graphs (a) and (b) are in the High

Bandwidth se�ing, graphs (c) and (d) are in the Medium Bandwidth se�ing, and graphs (e) and (f) are in the Low

Bandwidth se�ing. Hardware speci�cations and explanations for markers and hues can be found in Section 8.

42

A.2 Comparison with Concurrent Work
Two works [YHH

+
23, YH23], developed concurrently with our own, outline a similar approach to proving the correct

execution of RAM programs. More speci�cally, Yang et al. [YHH
+

23] proposed Batchman and Robin, a pair of

techniques that produce interactive zero-knowledge specially designed for proving a batch of disjunctions (eg. a set

of processor circuits). Yang and Heath [YH23] proposed a new approach for creating zero-knowledge random access

memory based on a pair of permutation proofs. It is straight forward to combine these two works to achieve a RAM

zero-knowledge protocol with be�er/similar concrete performance as Dora; indeed, in follow up work completed

subsequently to our own, some of these authors have done exactly this [YHH
+

24].

In this section we give an apples-to-apples comparison of Dora with [YHH
+

23] and [YH23]. At the highest level,

this apple-to-apples comparison shows that Dora has a notable performance advantage over [YHH
+

23] when being

used to prove the correct execution of the processor in each step, while the memory handling techniques proposed in

[YH23] appear to outperform the techniques used in Dora by a factor of two.
16

Batchman and Robin [YHH+23]. Yang et al. [YHH
+

23] begin by proposing Robin, a more communication e�cient

approach to disjunctive, VOLE-based zero-knowledge. �eir key insight is that the prover and veri�er, given a linearly

homomorphic commitment to an extended witness, can compress that satis�ability check of each clause in the

disjunction down to a constant size check (ie. if a commi�ed value is 0). �is protocol requires only a single random

challenge from the veri�er. �ey then propose Batchman, a way to batch many instances of these disjunctive

statements together. �ey accomplish this by having the prover commit to the branch they want to satisfy in each

statement in the batch, and then do a bespoke membership proof to show that the commitment contains a valid

clause.

We note that Batchman does a small linear amount of work in the number of clauses in the disjunction, meaning

Dora’s asymptotic behavior is slightly be�er. However, we believe that using a ZKBag (or the read-only memory

construction from [YH23]), the scheme can be improved to avoid this linear dependence on the number of clauses.

On the next page (Figure 12), we provide benchmarks for proving disjunctions, both absolute times and marginals,

with Dora on equivalent hardware used to evaluate Batchman. In order to a�empt to provide apples-to-apples

comparisons of our evaluations, we contacted the authors of [YHH
+

23] to obtain results for a greater number of

clauses on a machine similar to the server (Intel Xeon Platinum 8259C) we used for our benchmarks.

We summerize these results, along with the appropriate direct comparisons from our Dora evaluation, in Figure 11.

Although their setup is slightly di�erent (e.g. consisting of two independent colocated machines), we observe that

Dora has signi�cantly be�er concrete performance, especially at the large processor size regime. Concretely, we see

that for processor with 215 instructions, Dora has between 1.5x-10x be�er performance than Batchman, depending

on the exact network con�gurations and processor size.

Batchman Dora Performance Ratio

Network

Bandwidth

Size of Instructions Size of Instructions Size of Instructions

29 212 215 29 212 215 29 212 215

50 Mbps 19.42 11.84 2.89 193.61 66.52 23.57 9.97x 5.62x 8.16x

100 Mbps 30.09 21.77 5.16 269.52 93.17 32.91 8.96x 4.28x 6.38x

1 Gbps 148.62 82.88 17.88 375.98 129.10 45.64 2.53x 1.56x 2.43x

Figure 11: Performance of Batchman, as provided in private communication with the authors. �e numbers shown

are the number of steps applications per second Batchman performs when there are 215 instructions, where the

size of each instruction varies by column. (�e conference version of this work had a typo in this table which was

propagated throughout the rest of the text. �is has been �xed in this version.)

16
As noted in the introduction, the initial version of this work misreported this comparison due to an error in our implementation. Speci�cally,

we benchmarked Dora’s performance on a 128-bit �eld, which concurrent work benchmarked performance on a 61-bit �eld. �e benchmarks

reported in this version rectify this mistake.

43

(a) Number of instructions per second Dora can execute in

the High Bandwidth (1Gbit) se�ing using Intel Xeon
Platinum 8259C. Larger is be�er.

(b) Marginal milliseconds required to execute an additional step

of the processor in the High Bandwidth (1Gbit) se�ing using

Intel Xeon Platinum 8259C. Smaller is be�er.

(c) Number of instructions per second Dora can execute in

the Medium Bandwidth (100Mbit) se�ing using Intel Xeon
Platinum 8259C. Larger is be�er.

(d) Marginal milliseconds required to execute an additional step

of the processor in the Medium Bandwidth (100Mbit) se�ing

using Intel Xeon Platinum 8259C. Smaller is be�er.

(e) Number of instructions per second Dora can execute in

the Low Bandwidth (50Mbit) se�ing using Intel Xeon
Platinum 8259C. Larger is be�er.

(f) Marginal milliseconds required to execute an additional step

of the processor in the Low Bandwidth (50Mbit) se�ing using

Intel Xeon Platinum 8259C. Smaller is be�er.

Figure 12: Evaluations of Dora’s performance on Intel Xeon Platinum 8259C@ 2.50GHz with 128 GB of

RAM. As with the equivalent graph in Section 8, the line’s color represents the number of multiplication gates in each

instruction used in the test (see legends). Graphs (a) and (b) are in the High Bandwidth se�ing, graphs (c) and (d) are

in the Medium Bandwidth se�ing, and graphs (e) and (f) are in the Low Bandwidth se�ing.

44

Two Shu�les Make a RAM [YH23]. Yang and Heath also recently proposed a new approach for creating zero-

knowledge random access memory. �eir approach, which is very similar to ours, uses two permutation proofs to

ensure that memory is treated consistently. While Dora uses time-stamping to ensure that a prover does not “read

from the future,” Yang and Heath use set membership proofs (which they implement using one of their permutation

proofs). �eir approach yields a circuit for random access memory, while ours results in a protocol. We provide

benchmarks to compare concrete performance of our schemes, but note that the two share are conceptual core such

that we would not anticipate performance to signi�cantly diverge.

We provide equivalent benchmarks as in the main body of this work for Dora, but on equivalent hardware

used in [YH23]. First, we perform 223 memory operations when the memory space is set at some �xed size in

{212, 214, 216, 218, 220}. �e number of memory operations per second in reported in Figure 13 below. Note that

performance slightly decreases, presumably because the absolute, single-threaded speed of the processor is lower—even

if the processor as a whole is more powerful.

Next, in Figure 14 we report the marginal, per-access overhead of doing an additional memory operation. �is

is computed by observing the di�erence in total runtime between 222 and 223 memory operations. In Figure 10 of

[YH23], the authors report ∼ 1.5µs per memory operation, while Dora’s performance is ∼ 3µs. We note that we see

nothing inherent about the di�erence in performance between the two schemes and the gap in concrete performance

may be an artifact of implementation details.

H
i
g

h
B

a
n

d
w

i
d

t
h

Network

Latency

Memory Space Size

212 214 216 218 220

0 ms 262,382 257,367 257,469 253,916 245,863

10 ms 252,054 250,766 246,231 242,445 236,432

100 ms 149,046 149,200 147,945 145,968 141,358

M
e
d

i
u

m
B

a
n

d
w

i
d

t
h

Network

Latency

Memory Space Size

212 214 216 218 220

0 ms 151,198 151,444 151,222 148,350 141,807

10 ms 146,531 147,076 145,729 143,788 138,027

100 ms 111,210 109,863 110,439 109,396 104,383

L
o
w

B
a
n

d
w

i
d

t
h Network

Latency

Memory Space Size

212 214 216 218 220

0 ms 94,697 94,400 94,396 92,828 87,658

10 ms 92,814 92,808 92,307 90,252 86,219

100 ms 78,023 74,897 77,668 76,602 72,685

Figure 13: Number of memory operations (READ/WRITE) per second, averaged over 223 operations when running

on Intel Xeon Platinum 8259C. Larger is be�er. See Section 8 for details on the experimental setup.

45

H
i
g

h
B

a
n

d
w

i
d

t
h

Network

Latency

Memory Space Size

212 214 216 218 220

0 ms 3.83µs 3.96µs 3.95µs 3.64µs 3.15µs
10 ms 3.97µs 3.96µs 4.05µs 4.13µs 3.25µs
100 ms 6.61µs 6.53µs 4.15µs 6.64µs 5.45µs

M
e
d

i
u

m
B

a
n

d
w

i
d

t
h

Network

Latency

Memory Space Size

212 214 216 218 220

0 ms 6.58µs 6.53µs 6.54µs 6.64µs 5.72µs
10 ms 6.83µs 6.77µs 6.82µs 6.83µs 5.49µs
100 ms 8.89µs 9.07µs 8.42µs 8.92µs 7.68µs

L
o
w

B
a
n

d
w

i
d

t
h Network

Latency

Memory Space Size

212 214 216 218 220

0 ms 10.54µs 10.57µs 10.52µs 10.54µs 9.67µs
10 ms 10.75µs 10.72µs 10.75µs 10.93µs 9.78µs
100 ms 12.72µs 13.74µs 12.77µs 12.75µs 11.53µs

Figure 14: Marginal time for an additional memory operation, evaluated on Intel Xeon Platinum 8259C.

Smaller is be�er. See Section 8 for details on the experimental setup.

46

	Introduction
	Our Contributions
	Related Work

	Technical Overview
	Background: Template for RAM Zero-knowledge
	Zero-Knowledge Bag
	Constructing Dora using ZKBag

	Preliminaries
	Linearly Homomorphic Commitments
	Relaxed R1CS
	Commit-and-Prove Zero-Knowledge
	Commit-and-Prove ZK for R1CS
	Multi-Set Equality Proofs

	Zero-Knowledge Bag
	Defining ZKBag
	Realizing a ZKBag Protocol

	Verifying Memory Consistency using ZKBag
	Verifying Processor Execution using ZKBag
	Dora: Zero-Knowledge for RAM Programs
	Implementation and Evaluation
	Verifying Processor Execution
	Verifying Memory Consistency
	Comparison with Other Approaches

	Additional Benchmarks and Evaluation
	Additional Bandwidth Benchmarks
	Comparison with Concurrent Work

