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ABSTRACT

In their 2022 study, Kuang et al. introduced the Multivariable Polynomial Public Key (MPPK)
cryptography, a quantum-safe public key cryptosystem leveraging the mutual inversion relationship
between multiplication and division. MPPK employs multiplication for key pair construction and
division for decryption, generating public multivariate polynomials. Kuang and Perepechaenko
expanded the cryptosystem into the Homomorphic Polynomial Public Key (HPPK), transforming
product polynomials over large hidden rings using homomorphic encryption through modular mul-
tiplications. Initially designed for key encapsulation mechanism (KEM), HPPK ensures security
through homomorphic encryption of public polynomials over concealed rings. This paper extends
its application to a digital signature scheme. The framework of HPPK KEM can not be directly
applied to the digital signatures dues to the different nature of verification procedure compared
to decryption procedure. Thus, in order to use the core ideas of the HPPK KEM scheme in the
framework of digital signatures, the authors introduce an extension of the Barrett reduction algorithm.
This extension transforms modular multiplications over hidden rings into divisions in the verification
equation, conducted over a prime field. The extended algorithm non-linearly embeds the signature
into public polynomial coefficients, employing the floor function of big integer divisions. This
innovative approach overcomes vulnerabilities associated with linear relationships of earlier MPPK
DS schemes. The security analysis reveals exponential complexity for both private key recovery
and forged signature attacks, taking into account that the bit length of the rings is twice that of the
prime field size. The effectiveness of the proposed Homomorphic Polynomial Public Key Digital
Signature (HPPK DS) scheme is illustrated through a practical toy example, showcasing its intricate
functionality and enhanced security features.

Keywords Post-Quantum Cryptography · PQC · Quantum Cryptography · KEM · Digital Signature · Barrett Reduction
Algorithm

1 Introduction

Kuang in 2021 [1] proposed a public key scheme called deterministic polynomial public key or DPPK for key exchange.
DPPK essentially consists of two solvable univariate polynomials f(x) and h(x) multiplying with a randomly chosen
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polynomial B(x). The public key is constructed through polynomial multiplications over a finite field Fp excluding
their constant terms. It is secure against the key recovery from the public key but it is insecure against the secret recovery
with the deterministic factoring technique reported by Evdokimov in 1994 using Generalized Riemann Hypothesis
or GRH [2]. Later, Kuang and Barbeau [3, 4] proposed to change the univariate polynomial B(x) to a multivariate
polynomial B(x, u1, . . . , um) with variable x for the secret and u1, . . . , um for random noise values to produce
two multivariate polynomials P (x, u1, . . . , um) and Q(x, u1, . . . , um) by excluding both constant terms and highest
order terms. This updated variant is called the multivariate polynomial public key or MPPK for key encapsulation
mechanism or KEM. In MPPK KEM, the excluded terms in polynomials P (x, u1, . . . , um) and Q(x, u1, . . . , um)
form separate public key elements called noise functions, namely N0(u1, . . . , um) associated with the constant terms
and Nn(x, u1, . . . , um) associated with the highest order terms. Both N0(u1, . . . , um) and Nn(x, u1, . . . , um) are
encrypted with randomly chosen private key elements R0 and Rn ∈ Fp. By leveraging the noise functions together
with all public key elements, the Gaussian elimination technique can be used to eliminate unknown coefficients from
B(x, u1, . . . , um) and create equation system of unknown coefficients from univariate polynomials f(x) and h(x),
potentially reducing the private key security.

Kuang, Perepechaenko, and Barbeau in 2022 [5] proposed to encrypt the coefficients of the noise functions
N0(u1, . . . , um) and Nn(x, u1, . . . , um) over a hidden ring Z/SZ with self-shared secret key values R0 and Rn

respectively. The ring size is required to be at least 2× bigger than the size of the field prime p. Kuang and
Perepechaenko in 2023 [6] further extended this MPPK KEM by encrypting the entire public key elements over a
hidden ring and renamed it as Homomorphic Polynomial Public Key or HPPK KEM because the encryption over the
hidden ring holds the homomorphic property. Kuang and Perepechaenko in 2023 [7] proposed a further variant of the
HPPK KEM over dual hidden rings with each public polynomials P (x, u1, . . . , um) and Q(x, u1, . . . , um) encrypted
over their own separate rings. The homomorphic symmetric encryption essentially turns public key cryptography into
symmetric encryption with the self-shared keys.

On the other hand, Kuang, Perpechaenko, and Barbeau in 2022 [8] proposed their digital signature scheme or MPPK/DS
based on the identity equation f(x)Q(x, u1, . . . , um) = h(x)P (x, u1, . . . , um) mod p, with P (x, u1, . . . , um) =
f(x)B(x, u1, . . . , um) and Q(x, u1, . . . , um) = h(x)B(x, u1, . . . , um) over the prime field Fp. Later, Kuang and
Perpechaenko optimized MPPK/DS for parameter selections [9]. The identity equation in MPPK/DS offers a way to
establish the signature verification but it leaves a way for the forged signature reported later by Guo in 2023 [10].

2 Contribution

In this paper, we propose a novel digital signature scheme based on the HPPK KEM using the symmetric encryption
over dual hidden rings with secret keys R1 from Z/S1Z and R2 from Z/S2Z and considering

R−1
1 R1 = 1 mod S1, R

−1
2 R2 = 1 mod S2 (1)

with condition gcd(R1, S1) = 1 and gcd(R2, S2) = 1. We can then insert Eq. (1) into the identity equation
f(x)Q(x, u1, . . . , um) = h(x)P (x, u1, . . . , um) mod p and turn it into a conditional identity equation with knowing
the secret keys R1 ∈ Z/S1Z and R2 ∈ Z/S2Z. The secret keys R1, S1 and R2, S2 are used to encrypt coefficients of
the product polynomials P (x, u1, . . . , um) and Q(x, u1, . . . , um), respectively, using modular multiplicative operations
and the produced ciphertext coefficients are used to derive public key polynomials. The moduli S1 and S2 representing
the hidden rings can’t be shared with the signature verifier. We enhance the Barrett reduction algorithm by adapting it to
convert modular multiplications into divisions, utilizing the Barrett parameter R = 2k, where k significantly surpasses
the bit length of S1 and S2. This adaptation addresses the potential issue wherein the floor function of the Barrett
reduction algorithm may occasionally yield a result z − 1 instead of z due to the limitations of the floor function’s
cutoff. Then the conditional identity equation with mod p could be partially applied to the moduli S1 and S2 to produce
public key elements s1 = β ∗S1 mod p and s2 = β ∗S2 mod p with a random chosen β ∈ Fp. The signature elements
from the private polynomials f(x) and h(x) are calculated with x = Hash(M) and then decrypted into F and H as
signature elements with R2 and R1 respectively.

Related work is reviewed in Section 3. The HPPK-THR KEM cryptography system is briefly described in Section 4.
Section 5 introduces HPPK DS. Section 6 discusses the security analysis. We conclude with Section 7.

3 Related Work

In the realm of Post-Quantum Cryptography (PQC), the field of digital signatures is currently undergoing extensive
exploration and development. This is in response to the potential threats posed by quantum computers to traditional
cryptographic algorithms. The National Institute of Standards and Technology (NIST) initiated the standardization
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process for Post-Quantum Cryptography (PQC) in 2017 [11], initially considering 69 candidates. The first round
concluded in 2019, narrowing down the field to 26 candidates entering the second round [12].

Among these candidates, only four Key Encapsulation Mechanism (KEM) options progressed to the third round: code-
based Classic McEliece [13], lattice-based CRYSTALS-KYBER [14], NTRU [15], and SABER [16]. Additionally,
three digital signature candidates advanced to the third round: lattice-based CRYSTALS-DILITHIUM [17] and
FALCON [18], along with multivariate Rainbow [19], as shown in NIST status report in 2021 [20]. In a subsequent
update, NIST declared Kyber as the sole KEM candidate for standardization [21]. For digital signatures, NIST identified
CRYSTALS-Dilithium, FALCON, and SPHINCS+ [22] as the three standardized algorithms.

In early 2022, vulnerabilities in the NIST round 3 finalists came to light. Damien Robert initiated this revelation
by reporting an attack on Supersingular Isogeny Diffie–Hellman (SIDH) in polynomial time [23, 24]. Subsequently,
Castryck and Decru presented a more efficient key recovery attack on SIDH[25], achieving key recovery for NIST
security level V in under 2 hours using a laptop.

In a separate development, a novel cryptoanalysis was introduced by Emily Wenger et al. in 2022 [26]. This approach
utilizes Machine Learning (ML) for the secret recovery of lattice-based schemes. Wenger’s team demonstrated that their
attack could fully recover secrets for small-to-midsize Learning With Errors (LWE) instances with sparse binary secrets,
up to lattice dimensions of n = 128 with SALSA [26], n = 350 with PICANTE [27], and n = 512 with VERDE [28].
The potential scalability of this attack to real-world LWE-based cryptosystems is being explored. The team is actively
working on enhancing the attack’s capability to target larger parameter sets, although the timeframe and resources
required for this advancement remain uncertain. Their latest publishing not only improves the secret recovery methods
of SALSA but also introduce a novel cross-attention recovery mechanism [28]. Their innovative attack has ushered in a
new era of cryptoanalysis, particularly when integrating ML with quantum computing.

Sharp et al. recently achieved significant breakthroughs in integer factorization, as detailed in their report [29]. Their
research focuses on breaking a 300-bit RSA public key using the MemComputing technique in simulation mode.
MemComputing, a novel computing paradigm characterized by time non-locality, represents a noteworthy departure
from traditional computing methods. In contrast to quantum computing, which relies on physical quantum processing
units and exponential quantum resources for substantial computational acceleration, MemComputing demonstrates the
ability to achieve large prime factorizations with polynomial computing resources. This holds true even when using
classical computing systems, although further acceleration can be attained through ASIC implementation. Notably,
Zhang and Ventra have recently proposed a digital implementation of MemComputing [30]. The implications of
this technological advancement suggest that classical cryptography may become vulnerable sooner than anticipated,
potentially outpacing the threat posed by quantum computers.

4 Brief of Homomorphic Polynomial Public Key Cryptography

In this section, we are going to briefly describe the motivation behind and development of the HPPK scheme: the path
from the original deterministic polynomial public key or DPPK, proposed by Kuang in 2021 [1], then multivariate
polynomial public key or MPPK, proposed by Kuang, Perepechaenko, and Barbeau in 2022 [5], to the homomorphic
polynomial public key over a single hidden ring in 2023 [6], and over a dual hidden ring scheme [7]. MPPK schemes
for digital signature or MPPK/DS have been proposed by Kuang, Perepechaenko, and Barbeau in 2022 [8], then an
optimized version was proposed by Kuang and Perepechaenko in 2023 [9]. A forged signature attack was reported by
Guo in 2023 [10].

4.1 DPPK

The DPPK cryptography was first proposed by Kuang in 2021 to leverage the elementary identity equation [1]

f(x)

h(x)
=

B(x)f(x)

B(x)h(x)
=

P (x)

Q(x)
mod p (2)

with p being a prime, f(x) and h(x) ∈ Fp as private solvable polynomials, and random base polynomial B(x) ∈ Fp

used to encrypt f(x) and h(x). They are defined as follows over the field Fp,

f(x) = f0 + f1x+ · · ·+ fλx
λ,

h(x) = h0 + h1x+ · · ·+ hλx
λ, (3)

B(x) = B0 +B1x+ · · ·+Bnx
n.

Product polynomials P (x) = f(x)B(x) and Q(x) = h(x)B(x) are used to create public key polynomials P ′(x) =
P (x)− P0 and Q′(x) = Q(x)−Q0 by excluding their constant terms P0 and Q0 respectively. The randomly chosen
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secret x ∈ Fp is encrypted into ciphertext P̄ = P ′(x) and Q̄ = Q′(x) and is extracted through a radical expression
through following equation

f(x)

h(x)
=

P̄ + f0B0

Q̄+ h0B0
= k mod p −→ f(x)− kh(x) = 0 mod p. (4)

Indeed, given that the decrypting party has knowledge of values f0B0, h0B0, P̄ , Q̄, they can calculate value k, which
can then be used in the equation

f(x)

h(x)
= k mod p (5)

to find x. Although the key recovery attack on the DPPK scheme is non-deterministic, and can be carried out by solving
public key equation system using Gaussian elimination technique, DPPK is vulnerable to the secret recovery attack
from the ciphertext under Generalized Riemann Hypothesis or GRH by Evdokimov [2].

4.2 MPPK Key Encapsulation Mechanism

In order to overcome the DPPK vulnerability with respect to the secret recovery attack, Kuang and Barbeau in
2021 [3, 4] proposed to replace the randomly chosen base polynomial B(x) with a randomly chosen multivariate
polynomial B(x, u1, . . . , um) over the prime field Fp, called MPPK KEM. The variable x denotes the secret and
u1, . . . , um refer to the randomly chosen noise variables from Fp. The public key polynomials P ′(x, u1, . . . , um)
and Q′(x, u1, . . . , um) are created from the product polynomials P (x, u1, . . . , um), Q(x, u1, . . . , um) excluding their
constant terms and highest order terms. The constant terms and the highest order terms are used to create two noise
functions N0(u1, . . . , um) = R0B0(u1, . . . , um) and Nn(x, u1, . . . , um) = RnBn(u1, . . . , um)xn+λ ∈ Fp, where
R0 and Rn are the private key values, randomly selected from Fp.

Key encapsulation mechanism in MPPK is achieved through the randomly chosen noise variables u1, . . . , um ∈ Fp.
The ciphertext consists of four elements P̄ = P ′(x, u1, . . . , um), Q̄ = Q′(x, u1, . . . , um), N̄0 = N0(u1, . . . , um) ,
and N̄n = Nn(x, u1, . . . , um). And the decryption is the same as in DPPK

k =
f(x)

h(x)
=

B(x, x1, . . . , xm)f(x)

B(x, x1, . . . , xm)h(x)
=

P (x, x1, . . . , xm)

Q(x, x1, . . . , xm)
mod p, (6)

where polynomial values of P (x, u1, . . . , um) and Q(x, u1, . . . , um) are calculated with four elements of ciphertext
and private key: f0, h0, R0, and Rn.

The two noise functions N0(u1, . . . , um) and Nn(x, u1, . . . , um) ∈ Fp partially leak B0j and Bnj because of N0j

N0ℓ
=

R0B0j

R0B0ℓ
=

B0j

B0ℓ
mod p and Nnj

Nnℓ
=

RnBnj

RnBnℓ
=

Bnj

Bnℓ
. Kuang, Perepechaenko, and Barbeau in 2022 [5] proposed a

mechanism by choosing R0 and Rn to encrypt the coefficients of two noise functions over a hidden ring Z/SZ with
the bit length of the ring two times bigger than that of the prime field Fp. Having the value S hidden, implies that S
is a part of the private key. Without knowing S, the divisions N0j

N0ℓ
and Nnj

Nnℓ
can not be carried out successfully. This

eliminates the vulnerability originally present in the two noise functions.

The ciphertext of MPPK KEM with a hidden ring consist of elements but the elements N̄0 and N̄n are three times
bigger than the size of the prime field.

4.3 HPPK KEM

In the framework of the MPPK KEM scheme, the security of all coefficients within two noise functions was safeguarded
through encryption over a hidden ring with a bit length 2× larger than the prime field bit length. This concept was
subsequently expanded to encompass all coefficients of product polynomials P (x, u1, . . . , um) and Q(x, u1, . . . , um)
by Kuang and Perepechaenko in 2023 [6]. The encryption method has been demonstrated to be partially homomor-
phic, under addition and scalar multiplication operations. Consequently, the scheme was renamed as Homomorphic
Polynomial Public Key, or HPPK.

In HPPK KEM, the entire product polynomials P (x, u1, . . . , um) and Q(x, u1, . . . , um) are considered private

P (x, u1, . . . , um) = f(x)B(x, u1, . . . , um) =

m∑
j=1

n+λ∑
i=0

pijx
iuj mod p

Q(x, u1, . . . , um) = h(x)B(x, u1, . . . , um) =

m∑
j=1

n+λ∑
i=0

qijx
iuj mod p

(7)
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with pij =
∑

s+t=i fsBtj mod p and qij =
∑

s+t=i hsBtj mod p. Choosing a secret S with its bit length to be more
than double of the prime field Fp and secret encryption key R1 and R2 over the ring with condition gcd(R1, S) = 1
and gcd(R2, S) = 1, we then encrypt entire coefficients of P (.) and Q(.) as follows

p′ij = R1 × pij mod S, q′ij = R2 × qij mod S (8)

then the cipher polynomials can be written as

P(x, u1, . . . , um) =

m∑
j=1

n+λ∑
i=0

p′ij(x
iuj mod p)

Q(x, u1, . . . , um) =

m∑
j=1

n+λ∑
i=0

q′ij(x
iuj mod p) (9)

The secret encryption is the same as in MPPK KEM, but now we only have two elements for the ciphertext: P̄, Q̄. The
decryption is split into two phases: symmetric homomorphic decryption with R1 and R2

P̄ = (R−1
1 × P̄ mod S) mod p, Q̄ = (R−1

2 × Q̄ mod S) mod p (10)

and then the secret extraction which is the same as in DPPK. In the most recent iteration of HPPK KEM, Kuang and
Perepechaenko (2023) propose employing two distinct rings, Z/S1Z for the encryption of P (.) and Z/S2Z for the
encryption of Q(.), to further enhance the security [7].

4.4 MPPK DS

A digital signature scheme based on MPPK has been proposed by Kuang, Perepechaenko, and Barbeau in 2022 [8]
and later optimized variant was proposed by Kuang and Perepechaenko in 2023 [9]. MPPK digital signature scheme
originated from MPPK over a single prime field [3, 4]. The signature verification equation stems from the identity
equation

f(x)Q(x, u1, . . . , um) = h(x)P (x, u1, . . . , um) mod φ(p), (11)

where φ(p) is an Euler’s totient function. For a prime p, φ(p) = p − 1. With the inclusion of two noise functions
N0(u1, . . . , um) = R0B0(u1, . . . , um) and Nn(x, u1, . . . , um) = RnBn(u1, . . . , um)xn+λ ∈ Fp, Eq. (11) becomes

f(x)Q′(x, u1, . . . , um) =h(x)P ′(x, u1, . . . , um) + s0(x)N0(u1, . . . , um)

+ sn(x)Nn(x, u1, . . . , um) mod φ(p). (12)

with s0(x) = f0h(x) − h0f(x), sn(x) = fλh(x) − hλf(x). Choosing a secret base g ∈ Fp to avoid the discrete
logarithm and performing modular exponentiation to the above Eq. (12), we obtain

AQ′(x,u1,...,um) = BP ′(x,u1,...,um)CN0(u1,...,um)DNn(x,u1,...,um) mod p (13)

with A = gf(x), B = gh(x), C = gs0(x), D = gsn(x) as signature elements. Recently, Guo uncovered a forged
signature attack on MPPK DS [10], attributed to the linearity between signature elements and public polynomials of
Eq. (12). Attempts were made to address this vulnerability in MPPK DS, but it proved exceedingly challenging to
rectify within a single modulo domain due to the linearity.

5 HPPK Digital Signature Scheme

The homomorphic encryption operator Ê(R,S) was defined in [6, 7] as

Ê(R,S)(f) = (R ◦ f) mod S = f ′, (14)

with f being a polynomial and decryption operator Ê−1
(R,S)

Ê−1
(R,S)(f

′) = (R−1 ◦ f ′) mod S. (15)

So it is very easy to verify that

Ê−1
(R,S)(f

′) = Ê−1
(R,S)Ê(R,S)(f) = (R−1 ×R mod S) ◦ f = f. (16)
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which reveals the unitary and reversible relation

Ê−1
(R,S)Ê(R,S) = 1. (17)

Indeed, this encryption operator serves as a distinctive permutation operator or a quantum permutation gate that
can be implemented in a native quantum computing system [31, 32]. Furthermore, it adheres to the principles of
non-commutativity, i.e.

Ê(R,S)Ê(R′,S′) ̸= Ê(R′,S′)Ê(R,S). (18)
The non-commutativity is very important for us to reuse it multiple times to encrypt the entire coefficients of a product
polynomial without reducing its security [33], unlike the case of One-Time-Pad encryption with XOR because XOR
operator is commutable.

5.1 HPPK DS Algorithm

Let’s insert Eq. (17) into Eq. (11) with a randomly chosen α ∈ Fp

{[αf(x) mod p][Ê−1
(R2,S2)

Ê(R2,S2)]Q(...)} mod p = {[αh(x) mod p][Ê−1
(R1,S1)

Ê(R1,S1)]P (...)} mod p (19)

then we reorganize Eq. (19) into a verification equation

F (x)Q(x, u1, . . . , um) mod p = H(x)P(x, u1, . . . , um) mod p (20)

with

F (x) = Ê−1
(R2,S2)

[αf(x) mod p] = R−1
2 × [αf(x) mod p] mod S2 (21)

H(x) = Ê−1
(R1,S1)

[αh(x) mod p] = R−1
1 × [αh(x) mod p] mod S1 (22)

as signature polynomials with α ∈ Fp randomly chosen per signing message and

P(x, u1, . . . , um) = Ê(R1,S1)P (x, u1, . . . , um)

= {
m∑
j=1

n+λ∑
i=0

[R1 × pij mod S1](x
iuj mod p)} mod S1

= {
m∑
j=1

n+λ∑
i=0

Pij(x
iuj mod p)} mod S1 (23)

Q(x, u1, . . . , um) = Ê(R2,S2)Q(x, u1, . . . , um)

= {
m∑
j=1

n+λ∑
i=0

[R2 × qij mod S2](x
iuj mod p)} mod S2

= {
m∑
j=1

n+λ∑
i=0

Qij(x
iuj mod p)} mod S2 (24)

as homomorphically encrypted polynomials with coefficients Pij = R1 ∗ pij mod S1 and Qij = R2 ∗ qij mod S2. We
can then rewrite the verification equation Eq. (20) as

m∑
j=1

n+λ∑
i=0

[F (x)Qij mod S2](x
iuj mod p) mod p =

m∑
j=1

n+λ∑
i=0

[H(x)Pij mod S1](x
iuj mod p) mod p

−→
m∑
j=1

n+λ∑
i=0

Vij(F )xiuj mod p =

m∑
j=1

n+λ∑
i=0

Uij(H)xiuj mod p

−→ V (F, x, u1, ..., um) = U(H,x, u1, ..., um) mod p (25)

with polynomial coefficients Vij(F ) and Uij(H) to be defined as

Uij(H) = [H(x)Pij mod S1] mod p

Vij(F ) = [F (x)Qij mod S2] mod p.
(26)

6
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The coefficients newly defined as Vij(F ) and Uij(H) in Eq.(26) cannot be directly computed due to the hidden nature
of moduli S1 and S2, as they are not accessible to the verifier. However, the Barrett reduction algorithm offers a solution,
enabling the transformation of modular multiplications over both hidden rings into divisions[34]:

ab mod n = ab− n⌊ab
n
⌋ = ab− n⌊

a⌊Rb
n ⌋
R

⌋ = ab− n⌊aµ
R

⌋ (27)

with µ = ⌊Rb
n ⌋ as the Barrett parameter and R = 2k, k ≥ ⌈log2 n⌉, the Barrett reduction algorithm proves instrumental

in enhancing the efficiency of modular multiplications with the precomputed µ. The outcome z generated by the Barrett
algorithm typically falls within the range of [0, 2n) but not consistently within [0, n). Therefore, if the result exceeds
n, it necessitates returning z − n. Notably, it has been observed that the occurrence of z > n cases can be mitigated
by increasing the bit length of R. Our testing indicates that when k − ⌈log2 n⌉ > 30, the instances of z > n tend to
approach zero after 100,000,000 trials.

With Eq. (27), we can transform Eq. (26) into the following equations by multiplying a randomly chosen β ∈ Fp and
then taking modp

Uij(H) = H(x)p′ij − s1⌊
H(x)µij

R
⌋ mod p

Vij(F ) = F (x)q′ij − s2⌊
F (x)νij

R
⌋ mod p. (28)

with

s1 = βS1 mod p

s2 = βS2 mod p

p′ij = βPij mod p

q′ij = βQij mod p

µij = ⌊RPij

S1
⌋

νij = ⌊RQij

S2
⌋

(29)

to be elements of the public key for HPPK DS. The hidden S1, S2 are no longer required for the signature verification.
The private key consists of:

f(x), h(x) : hi, i = 0, 1, ..., λ

R1 ∈ Z/S1Z
R2 ∈ Z/S2Z

(30)

It should be pointed out that coefficients in Eq. (28) of public polynomials in Eq. (25) are non-linearly associated with
signature elements F (x) and H(x) at variable value x (note, please treat F (x) and H(x) as numbers of polynomial
values at message x), or called signature embedded coefficients. This non-linearity prevents the forged signature found
in our early MPPK DS scheme [10].We will delve into this aspect in the subsequent security analysis section, where we
set β = 1 for the independence of s1 and s2, alongside a randomly selected value governing the association between s1
and s2.

5.2 Signing

The signing algorithm is very straightforward in HPPK DS:

• Assign the hash code of a message to variable x = Hash(M);
• Randomly choose α ∈ Fp;

• Evaluate F = R−1
2 × [αf(x) mod p] mod S2;

• Evaluate H = R−1
1 × [αh(x) mod p] mod S1;

• HPPK DS sig = {F,H}.

Subsequently, the signer appends the signature sig = {F,H} to the message, possibly alongside the public key if the
recipient lacks it. The recipient of the message can then verify the signature using the public key of the HPPK DS. In

7
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cases where the hash code of the message exceeds the bit length of the finite field Fp, segmentation becomes necessary,
aligning with Fp, and the segmented parts are concatenated to form the message’s signature.

To prevent signature verification failure, it is advisable to conduct verification, as outlined in subsection 5.3. In the
event of verification failure, it is recommended to randomly select a new α ∈ Fp and reevaluate F and H .

5.3 Verify

The signature verification consists of two stages: evaluating signature embedded coefficients and comparing polynomial
values at the variable value x. The procedure is as follows

• x = Hash(M), and randomly choose variables u1, . . . , um ∈ Fp;
• Evaluate Uij(H), Vij(F ) based on Eq. (28) for i = 0, ..., n+ λ, j = 1, ...,m;
• Evaluate V (F, x, u1, ..., um) and U(H,x, u1, ..., um) and check if they are equal. If they are equal, the

verification is passed. Otherwise, the verification is failed.

5.4 A Variant of the Barrett Reduction Algorithm

The Barrett reduction algorithm [34] is employed to enhance the efficiency of modular operations, particularly modular
multiplications as expressed in Eq. (27). The outcome z typically lies within the range of [0, 2n) due to the limitations
imposed by the pre-computed floor function ⌊Rb

n ⌋ with R = 2k. In the context of the proposed HPPK DS scheme,
however, it is essential for the result to fall within [0, n). Notably, by increasing the value of k, the results obtained
from the Barrett reduction algorithm can be effectively constrained to the desired range of [0, n).

All three lines exhibit a roughly linear relationship in the semi-log graph, converging to zero as δ surpasses 24 bits.
However, as k decreases to ⌈log2 n⌉, the instances of falling beyond [0, n) rise to 6% for ⌈log2 n⌉ = 208 bits, 2% for
⌈log2 n⌉ = 292 bits, and 0.3% for ⌈log2 n⌉ = 400 bits, respectively. Consequently, achieving a result within [0, n)
with high probability is feasible when δ = k − ⌈log2 n⌉ > 32 bits. In Fig. 1, a semi-logarithmic graph depicts the
count of Barrett reduction results (z = a ∗ b mod n) falling within the range [n, 2n) per 108 computations, where
a < n and b < n are randomly chosen. The graph is plotted against the parameter δ = k − ⌈log2 n⌉. Three scenarios
are represented by the blue line for ⌈log2 n⌉ = 208 bits, the yellow line for ⌈log2 n⌉ = 304 bits, and the grey line for
⌈log2 n⌉ = 400 bits, respectively.

5.5 A Toy Example

5.5.1 Key Pair Generation

For purposes of simplicity, consider HPPK DS defined over a prime field F13 and choose S1 = 6797, S2 = 7123. we
select R1 = 4267, R2 = 6475. Let the randomly chosen private key consist of the following values:

S1 = 6797, R1 = 4267

S2 = 7123, R2 = 6475

f(x) = 4 + 9x

h(x) = 10 + 7x

(31)

Let the base polynomial B(.) randomly generated for this example be

B(x, u1, u2) = (8 + 7x)u1 + (5 + 11x)u2

and then product polynomials

P (x, u1, u2) = f(x)B(x, u1, u2) = (6 + 9x+ 11x2)u1 + (7 + 11x+ 8x2)u2 mod 13

Q(x, u1, u2) = h(x)B(x, u1, u2) = (2 + 9x+ 10x2)u1 + (11 + 2x+ 12x2)u2 mod 13

Now let’s encryption P (x) and Q(x) with R1 over the rings

P(x, u1, u2) = 4267 ∗ P (x, u1, u2) mod 6797

= (5211 + 4418x+ 6155x2)u1 + (2681 + 6155x+ 151x2)u2

Q(x, u1, u2) = 6475 ∗Q(x, u1, u2) mod 7123

= (5827 + 1291x+ 643x2)u1 + (7118 + 5827x+ 6470x2)u2

8
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Figure 1: A semi-log graph illustration of the Barrett reduction results falling in [n, 2n) per 108 computations of
z = a ∗ b mod n, with randomly chosen a < n and b < n, is plotted as a function of δ = k− ⌈log2n⌉ in bits. The blue
line corresponds to ⌈log2n⌉ = 208 bits, the yellow line to ⌈log2n⌉ = 292 bits, and the grey line to ⌈log2n⌉ = 400 bits.

Then we obtain the key pair by choosing the Barrett parameter R = 224:

Private Key:

f0 = 4, f1 = 9;h0 = 10, h1 = 9

R1 = 4267, S1 = 6797;R2 = 6475, S2 = 7123

Public Key: For simplification, we choose β = 1 to evaluate all public key elements.

s1 = S1 mod 13 = 11, s2 = S2 mod 13 = 12

p′01 = P01 mod 13 = 5211 mod 13 = 11

p′11 = P11 mod 13 = 4418 mod 13 = 11

p′21 = P21 mod 13 = 6155 mod 13 = 6

p′02 = P02 mod 13 = 2681 mod 13 = 3

p′12 = P12 mod 13 = 6155 mod 13 = 6

p′22 = P22 mod 13 = 151 mod 13 = 8

q′01 = Q01 mod 13 = 5827 mod 13 = 3

9
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q′11 = Q11 mod 13 = 1291 mod 13 = 4

q′21 = Q21 mod 13 = 643 mod 13 = 6

q′02 = Q02 mod 13 = 7118 mod 13 = 7

q′12 = Q12 mod 13 = 5827 mod 13 = 3

q′22 = Q22 mod 13 = 6470 mod 13 = 9

µ′
01 = ⌊RP01

S1
⌋ = ⌊2

24 ∗ 5211
6797

⌋ = 12862449

µ′
11 = ⌊RP11

S1
⌋ = ⌊2

24 ∗ 4418
6797

⌋ = 10905066

µ′
21 = ⌊RP21

S1
⌋ = ⌊2

24 ∗ 6155
6797

⌋ = 15192550

µ′
02 = ⌊RP02

S1
⌋ = ⌊2

24 ∗ 2681
6797

⌋ = 6617583

µ′
12 = ⌊RP12

S1
⌋ = ⌊2

24 ∗ 6155
6797

⌋ = 15192550

µ′
22 = ⌊RP22

S1
⌋ = ⌊2

24 ∗ 151
6797

⌋ = 372717

ν′01 = ⌊RQ01

S2
⌋ = ⌊2

24 ∗ 5827
7123

⌋ = 13724671

ν′11 = ⌊RQ11

S2
⌋ = ⌊2

24 ∗ 1291
7123

⌋ = 3040767

ν′21 = ⌊RQ21

S2
⌋ = ⌊2

24 ∗ 643
7123

⌋ = 1514495

ν′02 = ⌊RQ02

S2
⌋ = ⌊2

24 ∗ 7118
7123

⌋ = 16765439

ν′12 = ⌊RQ12

S2
⌋ = ⌊2

24 ∗ 5827
7123

⌋ = 13724671

ν′22 = ⌊RQ22

S2
⌋ = ⌊2

24 ∗ 6470
7123

⌋ = 15239167

The above public key together with security parameters p = 13, R = 224 would be available for any verifier to process
any signature generated by the true signer holding the private key.

5.5.2 Signing

Assume that the hashed value of a message M is x = 9. Here are steps to generate the signature:

• Choose a random α = 1 ∈ F13,

• Evaluate F = R−1
2 × [αf(x) mod p] mod S2 = 6475−1 × [4 + 9 ∗ 9 mod 13] mod 7123 = 5683

• Evaluate H = R−1
1 × [αh(x) mod p] mod S1 = 4267−1 × [10 + 7 ∗ 9 mod 13] mod 6797 = 5357

then the signature is sig = {5683, 5357}.

5.5.3 Verify

After receiving the signature from the sender, the signature verification consists of two steps: evaluating the coefficients
of verification polynomials U(H,x, u1, u2) and V (F, x, u1, u2) with the signature elements and then polynomial values

10
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at the variable x = Hash(M). Let’s first prepare all coefficients:

U01 = Hp′01 − s1⌊
Hµ01

R
⌋ = 5357 ∗ 11− 11 ∗ ⌊5357 ∗ 12862449

224
⌋ mod 13 = 9

U11 = Hp′11 − s1⌊
Hµ11

R
⌋ = 5357 ∗ 11− 11 ∗ ⌊5357 ∗ 10905066

224
⌋ mod 13 = 7

U21 = Hp′21 − s1⌊
Hµ21

R
⌋ = 5357 ∗ 6− 11 ∗ ⌊5357 ∗ 15192550

224
⌋ mod 13 = 10

U02 = Hp′02 − s1⌊
Hµ02

R
⌋ = 5357 ∗ 3− 11 ∗ ⌊5357 ∗ 6617583

224
⌋ mod 13 = 4

U12 = Hp′12 − s1⌊
Hµ12

R
⌋ = 5357 ∗ 6− 11 ∗ ⌊5357 ∗ 1519255

224
⌋ mod 13 = 10

U22 = Hp′22 − s1⌊
Hµ22

R
⌋ = 5357 ∗ 8− 11 ∗ ⌊5357 ∗ 372717

224
⌋ mod 13 = 12

V01 = Fq′01 − s2⌊
Fν01
R

⌋ = 5683 ∗ 3− 12 ∗ ⌊5683 ∗ 13724671
224

⌋ mod 13 = 1

V11 = Fq′11 − s2⌊
Fν11
R

⌋ = 5683 ∗ 4− 12 ∗ ⌊5683 ∗ 3040767
224

⌋ mod 13 = 11

V21 = Fq′21 − s2⌊
Fν21
R

⌋ = 5683 ∗ 6− 12 ∗ ⌊5683 ∗ 3040767
224

⌋ mod 13 = 5

V02 = Fq′02 − s2⌊
Fν02
R

⌋ = 5683 ∗ 7− 12 ∗ ⌊5683 ∗ 16765439
224

⌋ mod 13 = 12

V12 = Fq′12 − s2⌊
Fν12
R

⌋ = 5683 ∗ 3− 12 ∗ ⌊5683 ∗ 13724671
224

⌋ mod 13 = 1

V22 = Fq′22 − s2⌊
Fν22
R

⌋ = 5683 ∗ 9− 12 ∗ ⌊5683 ∗ 15239167
224

⌋ mod 13 = 6

So we obtain the verification polynomials

U(H = 5357, x, u1, u2) = (9 + 7x+ 10x2)u1 + (4 + 10x+ 12x2)u2 mod 13

V (F = 5683, x, u1, u2) = (1 + 11x+ 5x2)u1 + (12 + x+ 6x2)u2 mod 13
(32)

It is easy to verify that U1(x = 9) = V1(x = 9) = 11 mod 13 and U2(x = 9) = V2(x = 9) = 0 mod 13. For any
randomly chosen u1, u2 ∈ F13, U(F = 5683, x = 9, u1, u2) = V (H = 5357, x = 9, u1, u2). The verification is
passed.

It is noticed that the signature of a given variable value x would be randomized by choosing a random factor α ∈ Fp,
which would lead to ′′random′′ verification polynomials as shown in Eq. (32). However, a genuine signature would
pass the verification.

This toy example also demonstrates that U1(x) = V1(x) mod 13 −→ 5x2 + 9x+ 8 = 5(x+ 3)(x+ 4) = 0 mod 13.
There are two roots r1 = 9 and r2 = 10 satisfying the equation. That means, the same signature {F = 5683, H =
5357} would pass the verification for x = 9 and x = 10, which leads a potential forged signature with x = 10.
Considering U2(x) = V2(x) mod 13 −→ 6x2 + 9x + 5 = 6(x + 4)2 = 0 mod 13 which only has a single root
r1 = r2 = 9 ∈ F13. That means, x = 10 would not satisfy the verification U2(x) = V2(x) mod 13. Therefore, the
minimum requirement is to set m = 2 to avoid potential forged signature.

6 HPPK DS Security Analysis

In this section, we present the attacks we have discovered on the HPPK DS scheme to this day, and their classical
computational complexities. We consider two main attack avenues, namely key recovery and signature forgery.

6.1 Private Key Attacks

Proposition 1. There exists a private key recovery attack on the HPPK DS scheme with classical computational
complexity of O(2p(S1 + S2)), where p is a prime value security parameter as in Section 4.1 with s1 independent from
s2 in the public key, and S1, S2 are the hidden ring values.

11



HPPK DS A PREPRINT

Proof. From the description of the HPPK DS scheme given in Section 5, we can deduce that Fq′kj − s2⌊Fνkj

R ⌋
mod p = FQkj mod S2 mod p for any fixed choice of k ∈ {0, . . . , λ + n}, j ∈ {1, . . . ,m}. The adversary can
obtain the numerical value of the left-hand side expression, namely Fq′kj − s2⌊Fνkj

R ⌋ mod p, by intercepting honest
signature value F and having access to the public key elements. Thus, the adversary can obtain the value FQkj

mod S2 mod p for any fixed k ∈ {0, . . . , λ + n}, j ∈ {1, . . . ,m}. For simplicity, let k = 0. The value FQ0j

mod S2 mod p can also be expressed as

FQ0j mod S2 mod p = αf(x)h0b0j .

In a similar manner, HPkj mod S1 mod p = Hp′kj − s1⌊Hµkj

R ⌋ mod p, whose value can be obtained by the
attacker using honest signature elements and the public key values for any fixed k ∈ {0, . . . , λ+ n}, j ∈ {1, . . . ,m}.
The value HP0j mod S1 mod p can be expressed as

HP0j mod S1 mod p = αh(x)f0b0j ,

for any j ∈ {1, . . . ,m}.
Suppose that the adversary chose k = 0. We showed that the attacker has ability to create values αh(x)f0b0j mod p
and αf(x)h0b0j mod p for any fixed value j ∈ {1, . . . ,m}. They can then consider the ratios of the form

αf(x)h0b0j
αh(x)f0b0j

mod p =
f(x)h0

h(x)f0
mod p

for any j ∈ {1, . . . ,m}. Suppose the value of the ratio under consideration is K ∈ Z/pZ. Then the equation becomes

f0h0 + f1h0x+ · · ·+ fλh0x
λ

h0f0 + h1f0x+ · · ·+ hλf0xλ
= K mod p

which can then be written as

f0h0 + f1h0x+ · · ·+ fλh0x
λ = Kh0f0 +Kh1f0x+ · · ·+Khλf0x

λ mod p

or equivalently

1 +
f1
f0

x+ · · ·+ fλ
f0

xλ = K +K
h1

h0
x+ · · ·+K

hλ

h0
xλ mod p.

The adversary can create a system of such equations for various values of message variable x and accordingly various
intercepted signature values F,H. This system can be solved for ratios of the form f1

f0
, . . . , fλ

f0
, . . . , h1

h0
, . . . , hλ

h0
mod p.

The adversary can then get values f1, . . . , fλ, h1, . . . , hλ mod p if they first obtain f0, h0 using a brute force search.
Classical computational complexity of this step of the attack is then O(2p).

The adversary still needs values S1, S2. Classical computational complexity of the brute force search for values
S1, S2 is O(S1 + S2). Having values S1, S2 the adversary can find value αR−1

1 = F
f(x) , αR

−1
2 = H

f(x) for an
honest intercepted signature elements F,H . Having all of the obtained values, the adversary would be able to
forge signatures for any message x. This brings the overall classical computational complexity of this attack to
O(2p(S1 + S2)) = O(2p(S1 + S2)).

An improved version of this attack is proposed in Proposition 2 below.
Proposition 2. There exists a private recovery attack on the HPPK DS scheme with classical computational complexity
of O(p(S1

p ∗ S2

p )), where p is a prime value security parameter as in Section 4.1 with s1 depending on s2 in the public
key 29.

Proof. As stated in Section 5, the values s1, s2 are publicly shared as a part of the public key. The values s1, s2 are
such that s1 = βS1 mod p and s2 = βS2 mod p. Thus, they can be expressed as S1 = s1

β + kp and S2 = s2
β + tp,

for some positive integers k, t. Given bit-length of S1, S2, we can infer that k ≤ S1

p and t ≤ S2

p . Using brute force
search, the adversary can find values β, k, t, and hence can find values S1, S2. The classical computational complexity
of this step of the attack is O(p(S1

p ∗ S2

p )).

We will now show that having found values S1, S2 it is possible to forge a signature in the framework of HPPK
DS scheme. Indeed, consider the expression U0j = [H(x)P0j mod S1 mod p], for some j ∈ {1, . . . ,m}. The
adversary can recreate the value of this expression using intercepted signature values and elements of the public key.
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This expression, however, is also equal to αh(x)f0b0j mod p for the same value of j ∈ {1, . . . ,m}. Similarly, the
value V0j is equal to αf(x)h0b0j mod p for the same j ∈ {1, . . . ,m}. The adversary can then consider ratio of the
form

αf(x)h0b0j
αh(x)f0b0j

mod p =
f(x)h0

h(x)f0
mod p = W,

for that same fixed j. This equation can be expressed as

1 +
f1
f0

x+ · · ·+ fλ
f0

xλ = W +W
h1

h0
x+ · · ·+W

hλ

h0
xλ mod p.

The adversary can generate more equations of this form for various intercepted values of F,H , and corresponding
different values x. Having more of these equations, the adversary can solve the system of these equations for values
f1
f0
, . . . , fλ

f0
, h1

h0
, . . . , hλ

h0
.

For an honest intercepted signature F and it’s corresponding message x, the adversary can now evaluate the expression
1 + f1

f0
x + · · · + fλ

f0
xλ mod p = E. The adversary can also evaluate F

E mod S2 = R−1
2 αf0 mod S2 = R′

2

mod S2. Similarly the adversary can obtain R′
1 = H

1+
h1
h0

x+···+hλ
h0

xλ mod p
mod S1 = R−1

1 αh0 mod S1. Using

these values the adversary can forge a signature for any message x in the framework of HPPK DS scheme.

The overall complexity of the attack is then O(p(S1

p ∗ S2

p )).

6.2 Forgery Attacks

Proposition 3. There exists a forgery attack on the HPPK DS scheme with classical computational complexity of
O(S1 ∗ S2).

Proof. To spoof the signature the adversary needs to find values F ′, H ′ that satisfy

λ+n∑
k=0

(F ′q′kj − s2⌊
F ′νkj
R

⌋)xk mod p =

λ+n∑
k=0

(H ′p′kj − s1⌊
H ′µkj

R
⌋)xk mod p,

for all j ∈ {1, . . . ,m}. This equation can be re-written using the definition of a floor function as

λ+n∑
k=0

(F ′q′kj − s2[
F ′νkj
R

− akj ])x
k mod p =

λ+n∑
k=0

(H ′p′kj − s1[
H ′µkj

R
− bkj ])x

k mod p, (33)

for some unknown values 0 ≤ akj , bkj < 1 for all j ∈ {1, . . . ,m}. To spoof the signature in the framework of the
HPPK DS algorithm, the adversary needs to find values F ′, H ′ that satisfy Eq. (33) for all j ∈ {1, . . . ,m}. This entails
that the adversary needs to solve a system of m equation in 2 +m(λ+ n+ 1) variables.

Proposition 4. There exists a non-deterministic forgery attack on the HPPK DS scheme with classical computational
complexity of O(S1 ∗ S2).

Proof. For a forgery attack, the adversary wants to find values F ′ and H ′ such that

λ+n∑
k=0

m∑
j=1

(F ′q′kj − s2⌊
F ′νkj
R

⌋)xk mod p =

λ+n∑
k=0

m∑
j=1

(H ′p′kj − s1⌊
H ′µkj

R
⌋)xk mod p.

The adversary also has the ability to intercept honest signatures F,H from communication records that satisfy

λ+n∑
k=0

m∑
j=1

(Fq′kj − s2⌊
Fνkj
R

⌋)xk mod p =

λ+n∑
k=0

m∑
j=1

(Hp′kj − s1⌊
Hµkj

R
⌋)xk mod p.

It then might be possible to find a positive integer value K such that

K
∑
k

∑
j

(Fq′kj − s2⌊
Fνkj
R

⌋)xk mod p = K
∑
k

∑
j

(Hp′kj − s1⌊
Hµkj

R
⌋)xk mod p =
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∑
k

∑
j

(KFq′kj −Ks2⌊
Fνkj
R

⌋)xk mod p =
∑
k

∑
j

(KHp′kj −Ks1⌊
Hµkj

R
⌋)xk mod p =

∑
k

∑
j

((KF )q′kj − s2⌊
(KF )νkj

R
⌋)xk mod p =

∑
k

∑
j

((KH)p′kj − s1⌊
(KH)µkj

R
⌋)xk mod p =

∑
k

∑
j

(F ′q′kj − s2⌊
F ′νkj
R

⌋)xk mod p =
∑
k

∑
j

(H ′p′kj − s1⌊
H ′µkj

R
⌋)xk mod p,

where F ′ = KF and H ′ = KH.

It is important to point out that such value K might not exist for all values F,H . In this case, the adversary would
try different honest signature values F,H and accordingly different message value x. The condition for such K to
exist for a given F,H is that K multiplied by a decimal part of values Fνkj

R and Hµkj

R must be less than 1 for any
k ∈ {0, . . . , n+ λ}, j ∈ {1, . . .m}. Then, K⌊Fνkj

R ⌋ = ⌊KFνkj

R ⌋, and similarly K⌊Hµkj

R ⌋ = ⌊KHµkj

R ⌋.

Since in the worst case scenario the adversary might need to go over all possible F,H , classical computational
complexity of this attack is O(S1 ∗ S2).

Proposition 5. There exists a signature forgery attack on HPPK DS scheme with classical complexity of O(S1 ∗ S2).

Proof. For simplicity, suppose that k = n+ λ = 1,m = 1. However this attack works for any values of n, λ and m.
An adversary can intercept an honest signature that satisfies the equation

1∑
k=0

(Fq′kj − s2⌊
Fνkj
R

⌋)xk mod p =

1∑
k=0

(Hp′kj − s1⌊
Hµkj

R
⌋)xi mod p, (34)

for a fixed value j ∈ {1, . . . ,m}. Given the parameters under the assumption made at the beginning of the proof,
Eq. (34) can be expanded as

Fq′01 − s2⌊
Fν01
R

⌋+ Fq′11x− s2⌊
Fν11
R

⌋x mod p = Hp′01 − s1⌊
Hµ01

R
⌋+Hp′11x− s1⌊

Hµ11

R
⌋x mod p.

It is true that (F + tp) mod p = F mod p and (H + tp) mod p = H mod p, for some positive integer t. Under
certain conditions, there also exists such positive integer t that

⌊Fνkj
R

⌋ mod p = ⌊ (F + tp)νkj
R

⌋ mod p

and

⌊Hµkj

R
⌋ mod p = ⌊ (H + tp)µkj

R
⌋ mod p.

Then signature values F ′ = (F + tp) and H ′ = (H + tp) will pass verification in the framework of HPPK DS.

Note however, that the adversary might need to search the whole space of tuples (t, F,H, x) to find at least one to
satisfy the verification equation in the framework of HPPK DS scheme. Thus, the classical computational complexity
of this attack is O(S1 ∗ S2).

6.3 Security Conclusion

In this section, we have comprehensively outlined all the attacks discovered to date on the HPPK DS algorithm. The
most potent threats, from the attacker’s perspective, manifest as key recovery attacks elucidated in Section 6.1. The
classical computational complexities of the attacks detailed in this section are denoted as O(2p(S1 + S2)), where s1
is independent of s2 in the public key, and O(p(S1

p ∗ S2

p )) = O(S1 ∗ S2/p) for s1 associated with s2 in the public
key—an optimal selection.

The intricacy of these computations hinges on the bit-size of the prime p and the concealed ring values S1, S2. To
optimize this complexity, it suffices to choose S1, S2 such that |S1|2 = |S2|2 = 2|p|2, culminating in the total classical
computational complexity of the most effective attack on the HPPK DS algorithm being O(p3). This, in essence,
governs the sizing of the security parameters requisite for each security level.

14



HPPK DS A PREPRINT

Table 1 presents a comprehensive overview of key sizes, signature sizes, and estimated entropy for all three NIST
security levels. HPPK DS ensures robust security with entropy values of 192, 288, and 384 bits for NIST security levels
I, III, and V, respectively.

The public key (PK) sizes exhibit a linear progression, with dimensions of 372, 552, and 704 bytes for security levels I,
III, and V. Conversely, the private key (SK) sizes remain remarkably small, comprising 96 bytes for level I, 144 bytes
for level III, and 192 bytes for level V.

In terms of signature sizes, HPPK DS maintains efficiency with compact outputs of 128, 192, and 256 bytes for NIST
security levels I, III, and V, respectively. Our forthcoming work will delve into the benchmark performance of HPPK
DS and provide a thorough comparison with NIST-standardized algorithms.

Table 1: The key and signature sizes in bytes, as provided by the HPPK DS scheme for the proposed parameter sets, are
determined based on the optimal complexity of O(S1S2/p). In this context, we choose the Barrett parameter R to be
32 bits longer than S1/S2, and the hidden ring size is set to be 2× the primed field size. All data is presented in bytes.

Security level Entropy (bits) Field size (bits) PK SK Sign Hash
I 192 64 372 96 128 SHA-256

III 288 96 552 144 192 SHA-384
V 384 128 704 192 256 SHA-512

7 Conclusion

To counteract the forgery attack observed in MPPK/DS [8, 9], this paper suggests an extension of the HPPK KEM [7]
utilizing dual hidden rings for a quantum-secure digital signature scheme. The Barrett reduction algorithm for modular
multiplication is expanded to convert modular multiplications over dual hidden rings into divisions by the Barrett
parameter R. This embedding process incorporates signature elements into coefficients of a public polynomial over
Fp through the floor function. The non-linear nature of the floor function contributes to the security of the proposed
HPPK DS scheme. The functionality of the HPPK DS scheme is illustrated through a toy example. Security analysis
reveals that the HPPK DS scheme achieves a complexity of O(S1S2/p) = O(p3). Future work involves benchmarking
its performance and comparing it with NIST-standardized algorithms.
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