
Homomorphic Multiple Precision Multiplication for CKKS
and Reduced Modulus Consumption

Jung Hee Cheon

CryptoLab Inc.

Seoul National University

Seoul, Republic of Korea

jhcheon@snu.ac.kr

Wonhee Cho

Seoul National University

Seoul, Republic of Korea

wony0404@snu.ac.kr

Jaehyung Kim

CryptoLab Inc.

Seoul, Republic of Korea

jaehyungkim@cryptolab.co.kr

Damien Stehlé

CryptoLab Inc.

Lyon, France

damien.stehle@cryptolab.co.kr

ABSTRACT
Homomorphic Encryption (HE) schemes such as BGV, BFV, and

CKKS consume some ciphertext modulus for each multiplication.

Bootstrapping (BTS) restores the modulus and allows homomorphic

computation to continue, but it is time-consuming and requires

a significant amount of modulus. For these reasons, decreasing

modulus consumption is crucial topic for BGV, BFV and CKKS, on

which numerous studies have been conducted.

We propose a novel method, calledMult2, to perform ciphertext

multiplication in the CKKS scheme with lower modulus consump-

tion. Mult2 relies an a new decomposition of a ciphertext into a

pair of ciphertexts that homomorphically performs a weak form

of Euclidean division. It multiplies two ciphertexts in decomposed

formats with homomorphic double precision multiplication, and

its result approximately decrypts to the same value as does the

ordinary CKKS multiplication.Mult2 can perform homomorphic

multiplication by consuming almost half of the modulus.

We extend it toMult𝑡 for any 𝑡 ≥ 2, which relies on the decompo-

sition of a ciphertext into 𝑡 components. All other CKKS operations

can be equally performed on pair/tuple formats, leading to the

double-CKKS (resp. tuple-CKKS) scheme enabling homomorphic

double (resp. multiple) precision arithmetic.

As a result, when the ciphertext modulus and dimension are

fixed, the proposed algorithms enable the evaluation of deeper

circuits without bootstrapping, or allow to reduce the number of

bootstrappings required for the evaluation of the same circuits.

Furthermore, they can be used to increase the precision without

increasing the parameters. For example,Mult2 enables 8 sequential

multiplications with 100 bit scaling factor with a ciphertext modu-

lus of only 680 bits, which is impossible with the ordinary CKKS

multiplication algorithm.

CCS CONCEPTS
• Security and privacy→ Cryptography.

KEYWORDS
Fully Homomorphic Encryption, CKKS scheme, Approximate mul-

tiplication, High precision, Small parameters

1 INTRODUCTION
Homomorphic Encryption (HE) provides a method to protect data

even during its processing. Since Gentry first opened the world

of Fully Homomorphic Encryption (FHE) in [17], its performance

has been improved dramatically. Among several FHE schemes, the

Cheon–Kim–Kim–Song (CKKS) scheme proposed in [12] supports

efficient real and complex number computations, which is essential

when managing real-world data including those arising in machine

learning [22, 25–30, 37].

In the CKKS scheme, the ciphertext modulus decreases as multi-

plications are performed. When the ciphertext modulus becomes

too small, multiplications cannot be performed anymore. A solu-

tion is to bootstrap the ciphertext to re-increase the modulus. The

CKKS bootstrapping [10] consists of a homomorphic evaluation

of a polynomial approximation to the modular reduction function,

combined with discrete Fourier transformations. Since homomor-

phic polynomial evaluation and linear transformations are costly,

bootstrapping itself takes time and consumes a significant amount

of ciphertext modulus.

For this reason, one is often faced with a shortage in ciphertext

modulus, which leads to increasing the ciphertext dimensions and

performing costly bootstrappings. In this sense, the ciphertext mod-

ulus has been considered an invaluable resource, and many works

have focused on reducing modulus consumption. This includes the

introduction of gadget decomposition [3, 5, 6, 20, 21] for the key

switching steps notably used for homomorphic multiplication and

bootstrapping.

In this work, we introduce a novel technique to reduce modu-

lus consumption, calledMult2. It almost halves the modulus con-

sumption while maintaining the asymptotic time complexity (and

sometimes improving it).Mult2 enables more multiplications for

somewhat homomorphic encryption (SHE) and allows to perform

more multiplications before bootstrapping for FHE. We further

support the theoretical analysis ofMult2 with experiments.

1.1 Homomorphic Euclidean division and
ciphertext decomposition

To reduce the modulus consumption in homomorphic multiplica-

tion (while maintaining the precision), we aim at decomposing the

Jung Hee Cheon, Wonhee Cho, Jaehyung Kim, and Damien Stehlé

multiplication of large bit-size multiplicands into several multi-

plications of smaller bit-size multiplicands. This is motivated by

the observation that modulus consumption is driven by the size of

the multiplicands. Consider the multiplication of two 2𝑘-bit inte-

gers𝑚1 and𝑚2. We decompose each of them into two 𝑘-bit pieces

as𝑚𝑖 = 2
𝑘 · �̂�𝑖 + �̌�𝑖 for 𝑖 ∈ {1, 2}. Then we have:

𝑚1𝑚2 = 2
2𝑘�̂�1�̂�2 + 2

𝑘 (�̂�1�̌�2 + �̌�1�̂�2) + �̌�1�̌�2 .

The 2𝑘-bit multiplication can be decomposed into four 𝑘-bit multi-

plications.

This approach immediately faces two difficulties. First, we need

a way to homomorphically decompose a large bit-size plaintext

into smaller pieces. Second, starting from pairs, one multiplication

results in three pieces (�̂�1�̂�2, �̂�1�̌�2 + �̌�1�̂�2, and �̌�1�̌�2), and the

number of pieces keeps increasing with more multiplications.

Let us focus on the increase of the number of pieces. In CKKS,

the underlying arithmetic is not over integers but over fixed-point

approximations to real (or complex) numbers. Starting with mul-

tiplicands with relative precision 2
−2𝑘

, we are interested in the

product only with relative precision ≈ 2
−2𝑘

. Put differently, only

the first two pieces, �̂�1�̂�2 and �̂�1�̌�2 + �̌�1�̂�2, are of interest, and

the third one, �̌�1�̌�2, can be dropped. Hence the number of pieces

remains constant. Note that relying on smaller precision arithmetic

for fixed-point or floating-point arithmetic is a standard technique

(see, e.g., [16, 23]).

We now consider the task of homomorphically decomposing a

large bit-size plaintext into smaller pieces.

Attempt 1: decompose then encrypt. As a first attempt, we may

try to decompose a large bit-size plaintext into a pair of smaller

plaintexts in the clear, and encrypt them into separate ciphertexts.

Let 𝑁 be a power of two and 𝑄 a positive integer. Consider a

plaintext polynomial 𝑚 ∈ 𝑅𝑄 := Z𝑄 [𝑥]/(𝑥𝑁 + 1). Now, given
a positive integer 𝑘 , we decompose 𝑚 into 𝑚 = 2

𝑘�̂� + �̌� with

�̌� := (𝑚 mod 2
𝑘) and encrypt each component independently:

𝑚 → (ĉt, čt), where ĉt = Enc(�̂�) and čt = Enc(�̌�) .

However, note that CKKS encryption adds noise to the plaintexts.

We have:

2
𝑘Dec(ĉt) + Dec(čt) = 2

𝑘 (�̂� + 𝑒) + (�̌� + 𝑒)

for some 𝑒 and 𝑒 in 𝑅 := Z[𝑥]/(𝑥𝑁 + 1), with ∥𝑒 ∥∞, ∥𝑒 ∥∞ small. To

fix the ideas, we can even consider them to be tiny compared to 2
𝑘
.

Even though 𝑒 and 𝑒 are small, as 𝑒 is multiplied by 2
𝑘
, the error

it induces leads to an overall relative precision of only ≈ 𝑘 bits. In

particular, the error 2
𝑘𝑒 is larger than �̌�.

Attempt 2: encrypt then decompose. Instead, we propose to homo-

morphically decompose the plaintext underlying a ciphertext. Note

that computing �̂� and �̌� from𝑚 is exactly a Euclidean division.

Divisions are notoriously difficult to implement homomorphically,

but we show how to achieve a weak form of it when the divi-

sor divides the ciphertext modulus. Consider a CKKS ciphertext

ct = Enc(𝑚) ∈ 𝑅2

2
𝑘𝑄

, for modulus 2
𝑘𝑄 divisible by the divisor 2

𝑘

(the approach works for divisors 𝑞div of arbitrary arithmetic shapes,

but here we keep 2
𝑘
for consistency with the above discussions).

We perform a (component-wise) Euclidean division by 2
𝑘
on ct,

obtaining its quotient ĉt and its remainder čt:

DCP
2
𝑘 (ct = 2

𝑘 · ĉt + čt) := (ĉt, čt) ∈ 𝑅2

𝑄 × 𝑅
2 .

Since the absolute value of each coefficient of čt is ≤ 2
𝑘/2, we can

consider it as an element of 𝑅2

𝑄
when 𝑄 > 2

𝑘
.

If𝑚 = 2
𝑘�̂�+�̌� as above, it is entirely possible that we do not have

Dec(ĉt) = �̂� and Dec(čt) = �̌�. However, since the decryption func-

tion is Z-linear, we have𝑚 = Dec(𝑐𝑡) = 2
𝑘Dec(ĉt)+Dec(čt). Hence

if we write Dec(ĉt) = �̂� + 𝑒 , then Dec(čt) = �̌� − 𝑒 with 𝑒 = 2
𝑘𝑒 .

Now, as ∥čt∥∞ ≤ 2
𝑘/2 and decryption is an inner product over 𝑅 by

a small-coefficient secret key vector, we have that Dec(čt) = �̌� − 𝑒
is small. This implies that the error 𝑒 cannot be much larger than 2

𝑘
,

and hence 𝑒 = 2
−𝑘𝑒 must be small. As the quotient error 𝑒 is small

and the remainder is consistent with the somewhat erroneous quo-

tient, this gives a weak form of homomorphic Euclidean division,

where the quotient may lead to a small remainder but maybe not

the smallest remainder possible.

Now that the first two difficulties are handled, our goal is to

define a homomorphic multiplication for decomposed ciphertexts.

1.2 Multiplication of decomposed ciphertexts
The CKKS homomorphic multiplication consists of three steps:

tensoring (Tensor), relinearization (Relin), and rescaling (RS), as
recalled in Section 2.2. We adapt each of them to decomposed ci-

phertexts to obtain aMult2 homomorphic multiplication algorithm

on ciphertexts given in decomposed forms.

Tensoring. We define a Tensor2 operation, also denoted by ⊗2
,

on decomposed ciphertexts ct1 = (ĉt1, čt1), ct2 = (ĉt2, čt2) ∈ 𝑅2

𝑄ℓ
×

𝑅2

𝑄ℓ
as follows:

(ĉt1, čt1) ⊗2 (ĉt2, čt2) := (ĉt1 ⊗ ĉt2, ĉt1 ⊗ čt2 + ĉt2 ⊗ čt1) .

The Tensor operation is crucial for reducing modulus consump-

tion, as it consumes modulus 2
𝑘
instead of 2

2𝑘
by discarding the

product čt1 ⊗ čt2 of the ciphertexts components corresponding to

the two remainders. Note that discarding čt1 ⊗ čt2 introduces a

new source of numerical error for the underlying plaintext. Over-

all for Mult2, this leads to the main new numerical error, of the

order of ∥Δ−1 · Dec(čt1 ⊗ čt2)∥∞ where Δ is the scaling factor for

messages.
1
If this is less than the other error terms (for example

due to rounding ciphertexts in the rescaling step), the impact of

the numerical inaccuracy of Tensor2 on the precision of a plaintext

remains limited. A detailed error analysis is provided in Section 4.

Relinearization and rescaling. If we applyRelin andRS operations
to both decomposed ciphertext components in parallel, the error

added to the high part ĉt ruins the accuracy of the underlying

plaintext, exactly like in the decompose-then-encrypt failed attempt

described above. Instead, we rely on a ‘raising the modulus’ strategy

that is numerically much more advantageous (similarly to encrypt-

then-decompose outperforming decompose-then-encrypt). Given a

pair of ciphertexts (ĉt, čt) ∈ 𝑅2

𝑄ℓ
× 𝑅2

𝑄ℓ
, we define the Relin2

and

1
Recall that in CKKS, a real number to be encrypted is first multiplied by a scaling factor

before being rounded to an integer; the scaling factor corresponds to the precision of

the encoding.

Homomorphic Multiple Precision Multiplication for CKKS
and Reduced Modulus Consumption

RS2
operations as follows:

Relin2 (ĉt, čt) := DCP
2
𝑘 (Relin(2𝑘 · ĉt)) + (0,Relin(čt)),

RS2 (ĉt, čt) := (RS(ĉt),RS(2𝑘 · ĉt + čt) − 2
𝑘 · RS(ĉt)).

These operations may introduce errors on the plaintexts underlying

the high parts, but they are compensated by matching terms in the

low parts. A detailed analysis is presented in Section 4.1. Finally,

we defineMult2 as RS2 ◦ Relin2 ◦ Tensor2.

Growth of the low part. When a ciphertext ct is first decomposed,

all coefficients of its low part čt are bounded as 2
𝑘/2. Therefore,

its decryption Dec(čt) is also small. However, as we proceed with

homomorphic computations and in particular multiplications, the

plaintext underlying the low part grows, mostly due to the Tensor2

tensor operation. In turn, the larger the low part, the greater the

error that occurs during the Tensor2 tensor operation and hence

during theMult2 multiplication. This effect amplifies when Mult2

is applied many times.

To mitigate this phenomenon, we propose to recombine and de-
compose the current ciphertext to make the decryption of its low

part as small as it was originally, and hence prevent further error

growth. A use of a large divisor 2
𝑘
saves more on the modulus

consumption front, but increases the error caused from tensoring,

which in turn requires an earlier recombine-and-decompose step.

Therefore, an appropriate divisor should be selected for the applica-

tion under scope. For an example parameter set with 𝑁 = 2
15
, our

experiments in Figure 1 illustrate that recombination is interesting

after 6 sequential applications of Mult2, with a divisor of 23 bits.

1.3 Double-CKKS and Tuple-CKKS
Multiplication on decomposed ciphertexts can be completed with

decomposed versions of the other basic homomorphic operations,

resulting in a double-precision version of CKKS which we call

Double-CKKS.

Our approach can be extended to decompose a ciphertext into

several ciphertexts. We call the number of components the tuple

length 𝑡 . Double-CKKS corresponds to 𝑡 = 2, and can save modulus

consumption up to by half, with the same asymptotic cost.

As we use larger 𝑡 , 𝑡-Tuple-CKKS can reduce the modulus con-

sumption further, up to a factor 1/𝑡 of the initial size for very large

precision. However, the number of pieces for a ciphertext becomes 𝑡

so that the total size of 𝑡-Tuple CKKS ciphertexts remains the same.

The number of integer operations is asymptotically increased by

about 𝑡 times for 𝑡 ≤ 𝑜 (log𝑁) (i.e., in a regime where the Number

Theoretic Transforms dominate the overall cost), but it is similar to

that of the original CKKS multiplication when taking into account

that the modulus reduction leads to smaller integers for the integer

operations.

1.4 Asymptotic gain
We compare the computational complexity ofMult andMult2. The
dominating step in homomorphic multiplication is relinearization,

which contains a lot of Number Theoretic Tranforms (NTT). The

number of relinearizations is 2 forMult2 and 1 for usualMult.
We now argue that the costs of these relinearizations differs.

As Mult2 has a modulus consumption that is essentially half of

that ofMult, for the same computation, one can halve the modulus

bit-sizes by relying on Mult2 rather than Mult. Further, we can

decrease the ring dimension by using the fact that the maximum

modulus is halved. Since the maximum modulus bit-size available

while satisfying certain security level is proportional to the ring

dimension, one may halve the ring dimension while maintaining

the same security.

Overall, by taking into account the increase of number of relin-

earizations and decreases in modulus bit-sizes and ring dimensions,

we obtain that Mult2 should enable a decrease by a factor 2 of

latency and ciphertext size, while keeping throughput essentially

identical. We stress that these estimates are quite approximate as

they neglect lower-order terms.

1.5 Concrete examples
We run experiments for concrete examples motivated by several

interesting applications.

Increased homomorphic capacity. One basic application of Double-
CKKS is to increase the number of sequential multiplications while

keeping the same scheme parameters. Experimental results on this

scenario can be found in Table 2. For ring degree 𝑁 = 2
15
, Double-

CKKS enables a capacity of 18 sequential multiplications while the

classical CKKS scheme allows only 13 sequential multiplications.

The data is for similar precision and for largest moduli of similar

sizes maximized to retain 128 bits of security.

Increased precision. Since Double-CKKS reduces the modulus

consumption during multiplication, we can get high-precision ho-

momorphic encryption with smaller parameters than before. For

multiplication depth 8 and 100 bit scaling factor, CKKS needs a

maximal modulus of at least 1, 000 bits (including the key switch-

ing auxiliary modulus). To enjoy 128 bits of security, this leads to

choosing a ring degree 𝑁 = 2
16
.

As illustrated in Table 3, Double-CKKS enables the same com-

putation with degree 𝑁 = 2
15

and a maximal modulus of only

680 bits. Furthermore, it decreases the multiplication latency from

270ms to 179ms, the maximal-level ciphertext size from 14.8MB

to 5.08MB, and more remarkably the maximal-level switching key

size from 74MB to 30.6MB. This is useful for many applications

where achieving high precision is crucial. These include Multi-key

HE [9, 14, 36] or Threshold FHE [4] and applications requiring

IND-CPA
D
security [34, 35].

1.6 Related works
Saving consumption of ciphertext modulus has been a focus of

various works. Gadget decomposition was for example introduced

to avoid modulus consumption in key switching. It comes in sev-

eral flavours, including bit decomposition [5, 6], digit decompo-

sition [13] and Residue Number System (RNS) based decomposi-

tion [3, 20, 21]. However, gadget decomposition not only slows

key switching by a factor equal to the gadget rank 𝑑𝑛𝑢𝑚, but also

increases key size by the same factor. The SEAL library [40] uses

the largest 𝑑𝑛𝑢𝑚 possible as default: as a result, the size of each

switching key
2
is 142.6MB for degree 𝑁 = 2

15
and 851.4MB for

2
The key size depends on themultiplicative depth and precision to be used, the numbers

we provide are for the generally available parameter sets.

Jung Hee Cheon, Wonhee Cho, Jaehyung Kim, and Damien Stehlé

degree 𝑁 = 2
16
. The Gentry-Sahai-Waters scheme [19], relying on

bit decomposition, drew attention due to its small noise growth.

In addition, several works focused on reducing the modulus con-

sumption in specific operations including linear transformation

and bootstrapping [2, 7, 8, 21, 24, 31–33]. However, these studies

focused on massive computations such as bootstrapping, and did

not improve homomorphic multiplication itself.

One of the important advantages of modulus saving is that ring

dimension can be reduced. Our Mult2 algorithm roughly halves

the modulus consumption in bits, allowing in turn to halve the

ring dimension. An alternative way to decrease the ring dimension

is to use ciphertexts in module-LWE formats, as proposed in [6]

and more recently studied in [39] in the context of CKKS. We may

first compare rank-2 module-CKKS and double-CKKS. Module-

CKKS keeps the same modulus as CKKS and a ciphertext has 3 ring

elements instead of 2 for CKKS, while double-CKKS allows to halve

bit-size of the maximum modulus and a ciphertext consists of 4

ring elements. As a result, a double-CKKS ciphertext is 33% smaller

in bit-size than a rank-2 module-CKKS ciphertext. The number of

relinearizations for double-CKKS andmodule-CKKSmultiplications

are 2 and 3 respectively, meaning that double-CKKS also wins in

computation cost. The comparison becomes even more in favor of

tuple-CKKS when a larger 𝑡 is used: the number of relinearizations

grows linearly versus quadratically, and there is a larger gap in

modulus bit-sizes.

2 PRELIMINARIES
In this section, we briefly recall the CKKS scheme and its bootstrap-

ping.

Notation. We use lower-case bold face for vectors. For a real num-

ber 𝑟 , we let ⌈𝑟⌋ denote its rounding to the nearest integer (down-

wards in case of a tie). Modular reduction by 𝑞 is denoted by [·]𝑞 .
When mapping the result to the integers, we take a representative

in (−𝑞/2, 𝑞/2]. We let ⟨·, ·⟩ or simply · denote the inner product

of two vectors and ∥ · ∥∞ the infinite norm. We use 𝑥 ← 𝐷 to

denote the sampling 𝑥 according to distribution 𝐷 . When a set 𝑆

is used instead of a distribution, 𝑥 ← 𝑆 means that 𝑥 is sampled

uniformly in 𝑆 . Let 𝑅 = Z[𝑋]/(𝑋𝑁 + 1) be the ring of integers of

the 2𝑁 -th cyclotomic field with a power-of-two degree 𝑁 . For an

integer 𝑞 ≥ 2, we write 𝑅𝑞 = 𝑅/𝑞𝑅. When clear from context, a

polynomial 𝑎(𝑋) can be denoted by 𝑎, i.e., omitting the variable 𝑋 .

Residue number system (RNS). Let B = {𝑞0, · · · , 𝑞ℓ } be a set of

primes and 𝑄ℓ =
∏ℓ

𝑖=0
𝑞𝑖 . We use the notation [·]B to refer to

the mapping from Z𝑄ℓ
to Z𝑞0

× . . . × Z𝑞ℓ , where 𝑎 is mapped to

[𝑎]B = ([𝑎]𝑞𝑖)0≤𝑖≤ℓ . By the Chinese Remainder Theorem (CRT),

this mapping is a ring isomorphism. The representation [𝑎]B is

known as the RNS representation of 𝑎 ∈ Z𝑄ℓ
. It enables component-

wise arithmetic operations within the smaller rings Z𝑞𝑖 , which
reduces computation costs.

2.1 The CKKS encryption scheme
In the CKKS scheme, messages are complex vectors while cipher-

texts are elements in 𝑅𝑄 × 𝑅𝑄 for some integer 𝑄 . The modulus 𝑄

is typically a product of RNS integers and, for the sake of efficiency,

arithmetic modulo 𝑄 is performed in the RNS form whenever pos-

sible. The canonical embedding can : R[𝑋]/(𝑋𝑁 + 1) → C𝑁 /2
maps𝑚(𝑋) ∈ 𝑅 into m ∈ C𝑁 /2, by evaluating𝑚(𝑋) at the prim-

itive 2𝑁 -th roots of unity 𝜉 𝑗 = 𝜉5
𝑗
for 0 ≤ 𝑗 < 𝑁 /2. We discard

the subsequent 𝜉5
𝑗
’s as they are conjugates of the first ones and

do not carry any extra information: as a result, the map can is an

isomorphism. We use can−1
to convert (encode) messages m and

plaintexts𝑚(𝑋).

Encoding and decoding. Beyond can, encoding and decoding for

the CKKS scheme rely on a real number Δ > 0 called the scaling

factor.
3

• Encoding: 𝑚(𝑋) ← Ecd(m,Δ). Given a message m ∈
C𝑁 /2 and the scaling factor Δ, the encoding map returns

𝑚(𝑋) = ⌈Δ · can−1 (m)⌋.
• Decoding: m← Dcd(𝑚(𝑋),Δ). Given a plaintext𝑚(𝑋) ∈

𝑅 and the scaling factor Δ, the decoding map returns m =

can(Δ−1 ·𝑚(𝑋)).
Basic operations.We now recall the algorithms of the CKKS en-

cryption scheme. Homomorphic multiplication and bootstrapping

are described subsequently.

• Setup: params ← FHE.Setup(1𝜆). Given the security pa-

rameter 𝜆, return a degree 𝑁 , a scaling factor Δ, a secret
key Hamming weight ℎ, a chain of moduli 𝑄0 < · · · < 𝑄𝐿 ,

an auxiliary modulus 𝑃 , two distributions 𝜒𝑒𝑛𝑐 and 𝜒𝑒𝑟𝑟
over 𝑅 and a decryption bound 𝐵Dec.

• Key generation: (sk, pk, swk) ← KeyGen(params). Re-
turn a secret key, public key and switching keys (including

the relinearization key and rotation keys).

– Sample 𝑠 ∈ 𝑅 with coefficients in {−1, 0, 1} and Ham-

ming weight ℎ, from a prescribed distribution, and

return sk = (1, 𝑠).
– Sample 𝑎 ← 𝑅𝑄𝐿

and 𝑒 ← 𝜒𝑒𝑟𝑟 ; return pk = (𝑏 =

[−𝑎 · 𝑠 + 𝑒]𝑄𝐿
, 𝑎) ∈ 𝑅2

𝑄𝐿
.

– Sample 𝑎 ← 𝑅𝑃𝑄𝐿
and 𝑒 ← 𝜒𝑒𝑟𝑟 ; return swk = (𝑏 =

[−𝑎 · 𝑠 + 𝑒 + 𝑃 · 𝑠′]𝑃𝑄𝐿
, 𝑎) where 𝑠′ ∈ 𝑅 is a switching

key. We consider 𝑠′ = 𝑠2
to obtain the relinearization

key rlk and 𝑠′ = 𝑠 (𝑋 5
𝑗) for 1 ≤ 𝑗 ≤ 𝑁 /2 − 1 to obtain

the rotation key rk𝑗 .
• Encryption: ct← Enc(𝑚(𝑋)). Given a plaintext𝑚(𝑋) ∈

𝑅, sample 𝑣 ← 𝜒𝑒𝑛𝑐 and 𝑒0, 𝑒1 ← 𝜒𝑒𝑟𝑟 ; return ct = [𝑣 · pk+
(𝑚(𝑋) + 𝑒0, 𝑒1)]𝑄𝐿

.

• Decryption: 𝑚(𝑋) ← Dec(ct). Given a ciphertext ct ∈
𝑅2

𝑄ℓ
for some 0 ≤ ℓ ≤ 𝐿, return𝑚(𝑋) = [⟨ct, sk⟩]𝑄ℓ

if the

latter has infinity norm ≤ 𝐵Dec, else return an error symbol.

• Rescale: ct𝑟𝑠 ← RS𝑞 (ct). This operation requires 𝑞 to be

a factor of the ciphertext modulus 𝑄ℓ . Given a ciphertext

ct ∈ 𝑅2

𝑄ℓ
, return 𝑐𝑡𝑟𝑠 = ⌈𝑞−1ct⌋ mod (𝑄ℓ/𝑞) ∈ 𝑅2

𝑄ℓ /𝑞 . If

ℎ + 1 < 𝑄ℓ/𝑞, then we have ∥RS𝑞 (ct) · sk − 𝑞−1ct · sk∥∞ ≤
(ℎ + 1)/2. We assume that ℎ is set so that the condition

holds every time we use RS in this work.

3
To minimize the numerical errors, it is useful to consider a different scaling factor for

each multiplication level of the circuit to be homomorphically evaluated; for the sake

of simplicity, we do not consider this optimization.

Homomorphic Multiple Precision Multiplication for CKKS
and Reduced Modulus Consumption

• Addition/subtraction: ct𝑎𝑑𝑑/ct𝑠𝑢𝑏 ← Add/Sub(ct, ct′).
Given two ciphertexts ct, ct′ ∈ 𝑅2

𝑄ℓ
, return ct𝑎𝑑𝑑 = [ct +

ct′]𝑄ℓ
(resp. ct𝑠𝑢𝑏 = [ct − ct′]𝑄ℓ

). Note that Dec(ct𝑎𝑑𝑑) =
Dec(ct) +Dec(ct′) (resp.Dec(ct𝑠𝑢𝑏) = Dec(ct) −Dec(ct′)).

The scheme parameters are set so that after homomorphic eval-

uation of a circuit on freshly generated ciphertexts, the underlying

plaintexts remain small and decrypt to a value that is close to the

evaluation of the considered circuit on the input plaintexts. This

is controlled by the 𝐵Dec bound. Alternatively, we could define

decryption as the inner product of the ciphertext with sk mod-

ulo𝑄0, and prove in the analysis that the result is indeed small and

correct. The first formulation is syntactically more convenient for

presenting our contributions.

2.2 CKKS multiplication
We now focus on homomorphic multiplication which is our target

operation. CKKS multiplication has the following signature.

• Multiplication: ct𝑚𝑢𝑙𝑡 ← Mult(ct, ct′). Given two cipher-

texts ct, ct′ ∈ 𝑅𝑄ℓ
× 𝑅𝑄ℓ

for 𝑄ℓ in the modulus chain

that decrypt to 𝑚 and 𝑚′, return a ciphertext ct𝑚𝑢𝑙𝑡 ∈
𝑅𝑄ℓ−1

× 𝑅𝑄ℓ−1
that decrypts to ≈𝑚 ·𝑚′/Δ.

Note that the output ciphertext is over a modulus that is lower

than the input ciphertexts. This motivates the use of a chain of

moduli 𝑄0 < · · · < 𝑄𝐿 , starting computations with ciphertexts

defined modulo 𝑄𝐿 and progressively going down the modulus

chain when multiplications are performed. Modulus consumption

has a drastic impact on performance, as homomorphic evaluations

with large multiplicative depth require a high modulus to start

with, which leads to heavier run-times. When adding, subtracting

or multiplying ciphertexts defined modulo 𝑄𝑖 and 𝑄 𝑗 for 𝑖 < 𝑗 ,

one can use the rescale operation RS defined above to equalize

the moduli to 𝑄𝑖 . Oppositely, to reduce modulus consumption,

it is sometimes interesting to multiply ct ∈ 𝑅2

𝑄𝑖
by 𝑄 𝑗/𝑄𝑖 to go

to the larger modulus 𝑄 𝑗 . This requires care as it also increases

the underlying plaintext. For example, we use this approach in

Definition 4.3 to avoid modulus consumption.

CKKS multiplication contains three steps: Tensor,Relin and RS.

• Tensor: ct𝑡𝑒𝑛 ← ct ⊗ ct′ or ct𝑡𝑒𝑛 ← Tensor(ct, ct′). Given
two ciphertexts ct = (𝑏, 𝑎) and ct′ = (𝑏′, 𝑎′) ∈ 𝑅2

𝑄ℓ
, return

ct𝑡𝑒𝑛 = (𝑏 ·𝑏′,−𝑎 ·𝑏′−𝑎′ ·𝑏, 𝑎 ·𝑎′) ∈ 𝑅3

𝑄ℓ
. Writing sk = (1, 𝑠),

we have:

ct𝑡𝑒𝑛 · (1, 𝑠, 𝑠2) = Dec(ct) · Dec(ct′).

• Relinearize: ct𝑟𝑒𝑙𝑖𝑛 ← Relin(ct𝑡𝑒𝑛, rlk). Given a cipher-

text ct𝑡𝑒𝑛 = (ct, ct′, ct′′) ∈ 𝑅3

𝑄ℓ
and a relinearization key

rlk ∈ 𝑅2

𝑃𝑄ℓ
, return ct𝑟𝑒𝑙𝑖𝑛 ∈ 𝑅2

𝑄ℓ
defined as follows:

4

ct𝑟𝑒𝑙𝑖𝑛 =

(
ct, ct′

)
+
⌈
ct′′ · rlk

𝑃

⌋
.

Note that Relin maps a ciphertext that decrypts under the

extended key (1, 𝑠, 𝑠2) to a ciphertext that decrypts to a

nearby plaintext under the secret key sk = (1, 𝑠). Indeed,

4
There exist variants, but the specific choice is irrelevant for describing our

contributions.

it may be checked that there exists a (small) bound 𝐸Relin
such that ∥ [(ct𝑟𝑒𝑙𝑖𝑛 · (1, 𝑠)) −ct𝑡𝑒𝑛 · (1, 𝑠, 𝑠2)]𝑄ℓ

∥∞ ≤ 𝐸Relin.

• Rescale: ct𝑟𝑠 ← RS𝑞ℓ (ct𝑟𝑒𝑙𝑖𝑛) where 𝑞ℓ = 𝑄ℓ/𝑄ℓ−1. The

output ct𝑟𝑠 is an element of 𝑅2

𝑄ℓ−1

. The purpose of RS in

homomorphic multiplication is to reduce the error and

to maintain the scale factor. Indeed, both of them grow

quadraticallywith the above operations: first, if bothDec(ct)
and Dec(ct′) contain errors, then their product contains

an error term that is the product of the errors; second, if

both Dec(ct) and Dec(ct′) need to be divided by Δ when

decoding, then their product needs to be divided by Δ2
to

achieve a homomorphic multiplication on plaintexts. Note

that in the homomorphic multiplication algorithm, only the

RS operation consumes ciphertext modulus.

Homomorphic multiplication of ciphertexts over modulus 𝑄ℓ is

then defined as Mult := RS𝑞ℓ ◦ Relin ◦ Tensor. It may be showed

that if Dec(ct) and Dec(ct′) have sufficiently small infinity norms

compared to 𝐵Dec, then

Decsk (Mult(ct, ct′)) − Decsk (ct) · Decsk (ct′)
Δ

∞
≤ 𝐸Mult,

for some (small) bound 𝐸Mult.

2.3 CKKS bootstrapping
As homomorphic multiplications consume modulus, at some stage,

one cannot perform homomorphic multiplications anymore. The

bootstrapping algorithm increases the ciphertext modulus while de-

crypting to the same message (up to some small noise). CKKS boot-

strapping consists of four steps: StC,ModRaise, CtS, and EvalMod.
StC andCtS are homomorphic evaluations of the discrete Fourier

transform and its inverse, respectively. Both consist of several mul-

tiplications by constants and rotations. Rotation is performed using

the rotation keys rk𝑗 for some 𝑗 and allows to map a ciphertext ct to

another one that decrypts to ≈ Dec(ct) (𝑋 5
𝑗).ModRaise consists in

viewing a ciphertext ct ∈ 𝑅𝑄0
× 𝑅𝑄0

by 𝑄𝐿/𝑄0 and as a ciphertext

in 𝑅𝑄𝐿
× 𝑅𝑄𝐿

that decrypts to Decsk (ct) + 𝑄0 · 𝐼 for some small

integer 𝐼 . EvalMod is the homomorphic evaluation of a polynomial

approximation of the modular reduction function, used to remove

the term 𝑄0 · 𝐼 caused byModRaise.

3 HOMOMORPHIC EUCLIDEAN DIVISION
When constructingmulti-precision arithmetic using single-precision

arithmetic, one decomposes a number into several pieces and define

operations on them. In order to define an analogous system for the

CKKS scheme, we first exhibit a homomorphic Euclidean division

and use it to decompose ciphertexts into several pieces.

3.1 Homomorphic Euclidean division
Let𝑚 ∈ 𝑅 be a plaintext polynomial. By coefficient-wise extension

of the Euclidean division of integers to polynomials, we define the

Euclidean division of𝑚 by 𝑞 as

𝑚 =
𝑚 − [𝑚]𝑞

𝑞
· 𝑞 + [𝑚]𝑞 .

Jung Hee Cheon, Wonhee Cho, Jaehyung Kim, and Damien Stehlé

The quotient is (𝑚− [𝑚]𝑞)/𝑞, and the remainder is [𝑚]𝑞 . We define

division on ciphertexts in the same way, by applying it on both

ciphertext components.

Definition 3.1 (Ciphertext Euclidean division). Let 𝑞 |𝑄 be
two integers. Let ct = (𝑏, 𝑎) ∈ 𝑅2

𝑄
be a ciphertext. The remainder of ct

by 𝑞 is defined as

Rem𝑞 (ct) = ([𝑏]𝑞, [𝑎]𝑞) ∈ 𝑅2 .

The quotient of ct by 𝑞 is defined as

Quo𝑞 (ct) = RS𝑞 (ct) =
ct − Rem𝑞 (ct)

𝑞
∈ 𝑅2

𝑄/𝑞 .

In the definitionQuo𝑞 (ct), the numerator is computed modulo𝑄 ,

i.e., the remainder Rem𝑞 (ct) ∈ 𝑅2
is interpreted as an element

of 𝑅2

𝑄
. As a result, the quotient Quo𝑞 (ct) belongs to the ciphertext

space of modulus 𝑄/𝑞. The remainder Rem𝑞 (ct) is itself defined
over 𝑅 × 𝑅 with coefficients in (−𝑞/2, 𝑞/2], but we will later view
it as a ciphertext modulo 𝑄/𝑞.

Theorem 3.2. Let 𝑞 |𝑄 be two integers. Let ct ∈ 𝑅2

𝑄
and sk = (1, 𝑠)

be a secret key with 𝑠 of Hammingweightℎ. Let𝑚 = [ct·sk]𝑄 ∈ 𝑅 and
write𝑚 = �̂� ·𝑞 +�̌� with �̌� = [𝑚]𝑞 ∈ 𝑅 and �̂� = (𝑚 − [𝑚]𝑞)/𝑞 ∈ 𝑅.
We have,

Quo𝑞 (ct) · sk = �̂� + 𝐼 mod 𝑄/𝑞,
Rem𝑞 (ct) · sk = �̌� − 𝑞𝐼,

for some 𝐼 ∈ 𝑅 satisfying ∥𝐼 ∥∞ ≤ (ℎ + 2)/2.

Proof. Since Quo𝑞 (ct) is an element of 𝑅2

𝑄/𝑞 , the quantity 𝑞 ·
Quo𝑞 (ct) can be viewed as an element of 𝑅2

𝑄
. Hence the definition

ofQuo gives the identity

ct = 𝑞 ·Quo𝑞 (ct) + Rem𝑞 (ct) mod 𝑄.

By taking the inner product with sk, we obtain:

𝑚 = 𝑞 ·
[
Quo𝑞 (ct) · sk

]
𝑄/𝑞 + Rem𝑞 (ct) · sk mod 𝑄.

Let 𝐼 = [Quo𝑞 (ct) · sk − �̂�]𝑄/𝑞 ∈ 𝑅. By using the identity 𝑚 =

�̂� · 𝑞 + �̌�, we observe that

Rem𝑞 (ct) · sk = �̌� − 𝑞𝐼 mod 𝑄.

We now show that 𝐼 is small. Since [·]𝑞 is a signed modular

reduction, we have ∥ [Rem(ct)]𝑞 ∥∞ ≤ 𝑞/2. Thus

∥Rem𝑞 (ct) · sk∥∞ = ∥Rem𝑞 (ct) · (1, 𝑠)∥∞ ≤ (ℎ + 1)𝑞
2

.

As ∥�̌�∥∞ ≤ 𝑞/2, we obtain that ∥𝐼 ∥∞ ≤ (ℎ + 2)/2. □

3.2 Pair representation
We introduce a novel ciphertext representation, as a quotient-

remainder pair rather than a single element of 𝑅2

𝑄
for some 𝑄 .

Definition 3.3. Let 𝑄ℓ be an element of the modulus chain (see
Section 2.1) and 𝑞div ≥ 2. Let 𝑄 ′

ℓ
= 𝑄ℓ · 𝑞div. Let ct ∈ 𝑅2

𝑄 ′ℓ
. The

decomposition of ct is

DCP𝑞div (ct) =
(
Quo𝑞div (ct),Rem𝑞div (ct)

)
∈ 𝑅2

𝑄ℓ
× 𝑅2

𝑄ℓ
.

Conversely, the recombination of (ĉt, čt) ∈ 𝑅2

𝑄ℓ
× 𝑅2

𝑄ℓ
is

RCB𝑞div (ĉt, čt) = 𝑞div · ĉt + čt ∈ 𝑅2

𝑄ℓ
.

An element of 𝑅2

𝑄
× 𝑅2

𝑄
corresponds to two CKKS ciphertexts,

which is why we refer to this decomposition as Pair Representa-
tion. Note that for any ct ∈ 𝑅2

𝑄 ′ℓ
, we have

RCB𝑞div ◦ DCP𝑞div (ct) = [ct]𝑄 ′ℓ
over 𝑅 (i.e., when casting the output of DCP to 𝑅2

). We emphasize

that in general, the output of RCB𝑞div is only defined over 𝑅2

𝑄ℓ
, and

has no reason to be well-defined modulo 𝑄 ′
ℓ
after homomorphic

operations as described in Section 4 have been performed.

Theorem 3.2 states that applying DCP𝑞div on a ciphertext es-

sentially performs Euclidean division on the underlying plaintexts.

The following lemma states that applying RCB𝑞div on a pair of

ciphertexts recombines the underlying plaintexts in base 𝑞div.

Lemma 3.4. For (ĉt, čt) ∈ 𝑅2

𝑄ℓ
× 𝑅2

𝑄ℓ
and a secret key sk ∈ 𝑅2, we

have, modulo 𝑄ℓ :

RCB𝑞div (ĉt, čt) · sk = (ĉt · sk) · 𝑞div + (čt · sk).

3.3 Tuple representation
We now extend the ciphertext pair representation to tuples.

Definition 3.5. Let 𝑄ℓ an element of the modulus chain (see
Section 2.1), 𝑞div ≥ 2 and 𝑒 ≥ 1. Let 𝑄 ′

ℓ
= 𝑄ℓ · 𝑞𝑒−1

div . Let ct ∈ 𝑅2

𝑄 ′ℓ
.

Define

(𝑐𝑡0, čt0) = DCP𝑞𝑒−1

div
(ct),

(𝑐𝑡𝑖 , čt𝑖) = DCP𝑞𝑒−𝑖−1

div
(𝑐𝑡𝑖−1) for 1 ≤ 𝑖 ≤ 𝑒 − 2.

For convenience, define 𝑐𝑡𝑒−1 = 𝑐𝑡𝑒−2. The decomposition of ct is:

DCP𝑒𝑞div (ct) =
(
𝑐𝑡0, . . . , 𝑐𝑡𝑒−2, 𝑐𝑡𝑒−1

)
∈
(
𝑅2

𝑄ℓ

)𝑒
.

Conversely, the recombination of (ĉt0, . . . , ĉt𝑒−1) ∈ (𝑅2

𝑄ℓ
)𝑒 is

RCB𝑒𝑞div (ĉt0, . . . , ĉt𝑒−2, ĉt𝑒−1)
= ĉt0 · 𝑞𝑒−1

div + . . . + ĉt𝑒−2 · 𝑞div + ĉt𝑒−1 ∈ 𝑅2

𝑄ℓ
.

An element of (𝑅2

𝑄
)𝑒 corresponds to 𝑒 CKKS ciphertexts, which

is why we refer to this decomposition as 𝑒-Tuple Representation.
We call 𝑡 the tuple length. Pair representation corresponds to 𝑡 = 2.

Note that for any ct ∈ 𝑅2

𝑄 ′ℓ
, we have

RCB𝑒𝑞div ◦ DCP
𝑒
𝑞div
(ct) = [ct]𝑄 ′ℓ

over 𝑅 (i.e., when casting the output of DCP to 𝑅𝑒).

4 HOMOMORPHIC DOUBLE-PRECISION
MULTIPLICATION

In this section, we describe our novel method to increase multipli-

cation precision by constructing a new multiplication consisting of

low precision multiplications. Before introducing our algorithm, we

recall a classical technique used to double precision in fixed-point

arithmetic.

Let𝑚 be an integer. Decompose𝑚 into a pair of integers which

correspond to quotient and remainder by 2
𝑘
where 𝑘 is a positive

integer:

�̂� = Quo
2
𝑘 (𝑚), �̌� = Rem

2
𝑘 (𝑚), 𝑚 = 2

𝑘 · �̂� + �̌�,

Homomorphic Multiple Precision Multiplication for CKKS
and Reduced Modulus Consumption

with |�̌� | ≤ 2
𝑘/2. Then, the multiplication of two decomposed

integers𝑚1 = 2
𝑘 · �̂�1 + �̌�1 and𝑚2 = 2

𝑘 · �̂�2 + �̌�2 satisfies:

𝑚1 ·𝑚2 = 2
2𝑘 · �̂�1 · �̂�2 + 2

𝑘 · (�̂�1 · �̌�2 + �̂�2 · �̌�1) + �̌�1 · �̌�2 .

For fixed-point computation with relative error ≈ 2
−2𝑘

, the last

component �̌�1 · �̌�2 is not relevant. Therefore, we can define the

multiplication as follows:

(�̂�1, �̌�1) × (�̂�2, �̌�2) := (�̂�1 · �̂�2, �̂�1 · �̌�2 + �̂�2 · �̌�1) .
We have already covered how to homomorphically perform

a Euclidean division in Section 3. In this section, we apply the

technique above for homomorphic multi-precision multiplication.

Note that homomorphic multi-precision addition and subtraction

can be performed componentwise on pair representations of cipher-

texts, and that key switching is studied below as a the relinearization

component of multiplication (see Definition 4.3). This provides a

complete set of instructions for homomorphic double-precision

arithmetic. All components of bootstrapping are hence enabled for

pair representations of ciphertexts, with the exception of modulus

raising, for which we propose to perform DCP ◦ModRaise ◦ RCB.

4.1 Tools
As seen in Section 2.2, CKKS ciphertext multiplication consists

of Tensor, Relin and RS operations. We define the corresponding

operations for pair representations of ciphertexts.

Definition 4.1 (Pair tensor). Let CT1 = (ĉt1, čt1),CT2 =

(ĉt2, čt2) ∈ 𝑅2

𝑄ℓ
×𝑅2

𝑄ℓ
be ciphertext pairs. The tensor of CT1 and CT2

is defined as

CT1 ⊗2 CT2 =

(
ĉt1 ⊗ ĉt2, ĉt1 ⊗ čt2 + čt1 ⊗ ĉt2

)
∈ 𝑅3

𝑄ℓ
× 𝑅3

𝑄ℓ
.

We will also use the notation Tensor2 (CT1,CT2).

The Tensor2 operation discards the component čt1 ⊗ čt2, un-
like the Tensor operation from Section 2.2. The following lemma

formalizes the relationship between Tensor2 and Tensor.

Lemma 4.2. Let CT𝑖 = (ĉt𝑖 , čt𝑖) ∈ 𝑅2

𝑄ℓ
× 𝑅2

𝑄ℓ
be a ciphertext pair

and RCB𝑞div (CT𝑖) = ct𝑖 for 𝑖 ∈ {1, 2}. Let sk = (1, 𝑠) ∈ 𝑅2 be a secret
key. Then, modulo 𝑄ℓ :

(ct1 ⊗ ct2) · (1, 𝑠, 𝑠2) = 𝑞div · (RCB𝑞div (CT1 ⊗2 CT2)) · (1, 𝑠, 𝑠2)
+ (ˇct1 · sk) · (ˇct2 · sk).

Now, assume that ∥Dec(ĉt𝑖)∥∞ ≤ �̂� and ∥Dec(čt𝑖)∥∞ ≤ �̌� for all
𝑖 ∈ {1, 2} and for some �̂�, �̌� satisfying 𝑁 (�̂�𝑞div + �̌�)2 < 𝑄ℓ/2.
Then we have:

[(RCB𝑞div (CT1⊗2CT2)) · (1, 𝑠, 𝑠2)]𝑄ℓ

− 1

𝑞div
[(ct1 ⊗ ct2) · (1, 𝑠, 𝑠2)]𝑄ℓ

∞
≤ 𝑁�̌�2

𝑞div
.

Proof. Let �̂�𝑖 = Decsk (ĉt𝑖) and �̌�𝑖 = Decsk (čt𝑖) for 𝑖 ∈ {1, 2}.
Since

RCB(CT1 ⊗2 CT2) = 𝑞div · (ĉt1 ⊗ ĉt2) + (𝑐𝑡1 ⊗ čt2 + čt1 ⊗ ĉt2),
we have, modulo 𝑄ℓ ,

(RCB(CT1 ⊗2 CT2)) · (1, 𝑠, 𝑠2) = 𝑞div · (�̂�1�̂�2) + (�̂�1�̌�2 + �̌�1�̂�2) .

Meanwhile, the following also holds, modulo 𝑄ℓ :

(ct1 ⊗ ct2) · (1, 𝑠, 𝑠2)
=
(
(𝑞div · 𝑐𝑡1 + čt1) ⊗ (𝑞div · ĉt2 + čt2)

)
· (1, 𝑠, 𝑠2)

= 𝑞2

div (�̂�1�̂�2) + 𝑞div (�̂�1�̌�2 + �̌�1�̂�2) + (�̌�1�̌�2).
This gives the first part of the result.

The condition 𝑁 (�̂�𝑞div + �̌�)2 < 𝑄ℓ/2 ensures that both left

and right hand sides of the equation in the lemma statement have

infinity norms < 𝑄ℓ/2, implying that the following holds over 𝑅:

[(ct1 ⊗ ct2) · (1, 𝑠, 𝑠2)]𝑄ℓ

= 𝑞div · [(RCB(CT1 ⊗2 CT2)) · (1, 𝑠, 𝑠2)]𝑄ℓ

+ [čt1 · sk]𝑄ℓ
· [čt2 · sk]𝑄ℓ

.

The result follows from bounding ∥ [čt1 · sk]𝑄ℓ
· [čt2 · sk]𝑄ℓ

∥∞. □

Lemma 4.2 states that if the underlying plaintexts are sufficiently

small, then Tensor2 applied to CT1 and CT2 decrypts to approxi-

mately the same plaintext as Tensor of ct1 and ct2 divided by 𝑞div,

over 𝑅. Note that this would not be ensured if we only had the first

part of Lemma 4.2, as we would have a division by 𝑞div modulo 𝑄ℓ .

Importantly, the Tensor2 operation somewhat contains a rescaling

by𝑞div, but without modulus consumption (themodulus𝑄ℓ remains

the same). This contributes to reducing modulus consumption in

multiplication.

The lemma could have been stated with a joint upper bound𝑀 =

max(�̂�, �̌�). We make it more precise as, later, they will play asym-

metric roles: the numerical errors will be directly impacted by �̌� ,

whereas �̂� is mostly involved in the correctness of computations.

Definition 4.3 (Pair relinearize). Let CT = (ĉt, čt) ∈ 𝑅3

𝑄ℓ
×

𝑅3

𝑄ℓ
be an output of Tensor2. The relinearization of CT is defined as

Relin2 (CT) = DCP𝑞div (Relin(𝑞div · ĉt)) + (0,Relin(čt)) .
Note that the same algorithm may be used for other instancia-

tions of key switching such as rotations.

A naive approach to relinearize CT would be to relinearize each

component independently, but this introduces a devastating numer-

ical error to the left hand side component that ruins the plaintext

computations. Instead, we raise the left hand side component and

decompose it. Observe that

Relin(RCB𝑞div (ĉt, čt)) = Relin(𝑞div · ĉt + čt)
≈ Relin(𝑞div · ĉt) + Relin(čt) .

This gives an approximate identity

DCP𝑞div ◦ Relin ◦ RCB𝑞div (CT) ≈ Relin2 (CT),
from which we derive the following correctness statement.

Lemma 4.4. Let CT ∈ 𝑅3

𝑄ℓ
×𝑅3

𝑄ℓ
and sk = (1, 𝑠) ∈ 𝑅2 a secret key

with 𝑠 of Hamming weight ℎ. Then the quantity[(
RCB𝑞div (Relin2 (CT))

)
· (1, 𝑠) −

(
RCB𝑞div (CT)

)
· (1, 𝑠, 𝑠2)

]
𝑄ℓ

has infinity norm ≤ 𝐸Relin + ℎ. Now, assume that ∥ [RCB𝑞div (CT) ·
(1, 𝑠, 𝑠2)]𝑄ℓ

∥∞ ≤ 𝑀 for some𝑀 satisfying 2(𝑀 +𝐸Relin +ℎ) < 𝑄ℓ/2.
Then the quantity[(
RCB𝑞div (Relin2 (CT))

)
· (1, 𝑠)

]
𝑄ℓ

−
[(
RCB𝑞div (CT)

)
· (1, 𝑠, 𝑠2)

]
𝑄ℓ

Jung Hee Cheon, Wonhee Cho, Jaehyung Kim, and Damien Stehlé

also has infinity norm ≤ 𝐸Relin + ℎ.

Proof. Write CT = (ĉt, čt). By linearity of RCB, we have, mod-

ulo 𝑄ℓ :

RCB(Relin2 (CT)) = Relin(𝑞div · ĉt) + Relin(čt) .

By using the definition of Relin, we obtain, modulo 𝑄ℓ , that:

Relin(𝑞div · ĉt) + Relin(čt) = Relin(𝑞div · ĉt + čt) + (0, 𝑒),

for some 𝑒 ∈ 𝑅 satisfying ∥𝑒 ∥∞ ≤ 1 (it is ≤ 3/2 as there are three

Relin roundings involved, but it must be integral). We then obtain,

still modulo 𝑄ℓ :(
RCB(Relin2 (CT))

)
· (1, 𝑠) =

(
Relin(𝑞div · ĉt + čt)

)
· (1, 𝑠) + 𝑠 · 𝑒.

Note that ∥𝑠 · 𝑒 ∥∞ ≤ ℎ. Using the correctness property of Relin (see

Section 2.2), we have:

[(Relin(𝑞div ·ĉt+čt)) ·(1, 𝑠)−(ĉt·𝑞div+čt) ·(1, 𝑠, 𝑠2)
]
𝑄ℓ

∞
≤ 𝐸Relin .

This gives the first part of the result. The condition 2(�̂�𝑞div�̌� +
𝐸Relin+ℎ) < 𝑄ℓ/2 ensures that both terms [(RCB𝑞div (Relin2 (CT))) ·
(1, 𝑠)]𝑄ℓ

and [(ĉt·𝑞div+čt) · (1, 𝑠, 𝑠2)]𝑄ℓ
have infinity norms < 𝑄ℓ/4,

which leads to the result. □

Another naive approach for relinearization would consist in

relinearizing after recombining: DCP𝑞div ◦ Relin ◦ RCB𝑞div (CT).
Note that this consumes modulus: both RCB and Relin keep the

modulus 𝑄ℓ of CT, but DCP decreases the modulus (by a factor

of 𝑞div). Oppositely, our approach does not consume modulus. As

𝑞div · ĉt is defined modulo 𝑞div ·𝑄ℓ , so is Relin(𝑞div · ĉt), and hence

the first term of Relin2 (CT) is defined modulo 𝑄ℓ . Also, the second

term computes (Relin(čt)) without consuming any modulus.

Definition 4.5 (Pair rescale). Let CT = (ĉt, čt) ∈ 𝑅2

𝑄ℓ
× 𝑅2

𝑄ℓ

be a ciphertext pair. Let 𝑞ℓ = 𝑄ℓ/𝑄ℓ−1. The rescale of CT is defined
as

RS2

𝑞ℓ
(CT) =

(
RS𝑞ℓ (ĉt), RS𝑞ℓ (𝑞div · ĉt + čt) − 𝑞div · RS𝑞ℓ (ĉt)

)
.

It belongs to 𝑅2

𝑄ℓ−1

× 𝑅2

𝑄ℓ−1

.

Note that the following equality holds:

RCB𝑞div (RS2

𝑞ℓ
(CT)) = RS𝑞ℓ (RCB𝑞div (CT)).

To achieve the same, a naive approach to rescale CT would consist

in rescaling after recombining: DCP𝑞div ◦RS𝑞ℓ ◦RCB𝑞div (CT). This
consumes more modulus: a factor 𝑞ℓ is lost due to RS𝑞ℓ and a

factor 𝑞div is lost due to DCP𝑞div . The function RS2

𝑞ℓ
only consumes

a factor 𝑞ℓ .

Lemma 4.6. Let CT ∈ 𝑅2

𝑄ℓ
× 𝑅2

𝑄ℓ
be a ciphertext pair. Let 𝑞ℓ =

𝑄ℓ/𝑄ℓ−1. Let sk = (1, 𝑠) ∈ 𝑅2 be a secret key with 𝑠 of Hamming
weight ℎ. Then the quantity[(
RCB𝑞div (RS2

𝑞ℓ
(CT))

)
· (1, 𝑠)

]
𝑄ℓ−1

− 1

𝑞ℓ

[(
RCB𝑞div (CT)

)
· (1, 𝑠)

]
𝑄ℓ

has infinity norm ≤ (ℎ + 1)/2.

Proof. We have, modulo 𝑄ℓ−1,(
RCB𝑞div (RS2

𝑞ℓ
(CT))

)
· (1, 𝑠) =

(
RS𝑞ℓ (RCB𝑞div (CT))

)
· (1, 𝑠) .

Now, to complete the proof, note that[(
RS𝑞ℓ (RCB𝑞div (CT))

)
· (1, 𝑠)

]
𝑄ℓ−1

− 1

𝑞ℓ

[(
RCB𝑞div (CT)

)
· (1, 𝑠)

]
𝑄ℓ

has infinity norm ≤ (ℎ + 1)/2. □

4.2 Multiplication for pair representations
We are now ready to define pair multiplication.

Definition 4.7 (Pair multiply). We define multiplication of ci-
phertext pairs over𝑄ℓ asMult2 := RS2

𝑞ℓ
◦Relin2◦Tensor2, where𝑞ℓ =

𝑄ℓ/𝑄ℓ−1. The result is a ciphertext pair over modulus 𝑄ℓ−1.

By combining Lemmas 4.2, 4.4 and 4.6, we obtain the following

theorem.

Theorem 4.8. Let CT1 = (ĉt1, čt1),CT2 = (ĉt2, čt2) ∈ 𝑅2

𝑄ℓ
×𝑅2

𝑄ℓ

be ciphertext pairs. Let 𝑞ℓ = 𝑄ℓ/𝑄ℓ−1 and sk = (1, 𝑠) ∈ 𝑅2 be a secret
key with 𝑠 of Hamming weight ℎ. Assume that ∥Dec(ĉt𝑖)∥∞ ≤ �̂�

and ∥Dec(čt𝑖)∥∞ ≤ �̌� for all 𝑖 ∈ {1, 2} and for some �̂�, �̌� satisfying
𝑁 (�̂�𝑞div + �̌�)2 + 𝐸Relin + ℎ < 𝑄ℓ/2. Then[(

RCB𝑞div (Mult2 (CT1,CT2))
)
· sk

]
𝑄ℓ−1

− 1

𝑞ℓ

[(
RCB𝑞div (CT1) · sk

)
·
(
RCB𝑞div (CT2) · sk

)]
𝑄ℓ

has infinity norm ≤ (𝑁�̌�2/𝑞div + 𝐸Relin + ℎ)/𝑞ℓ + (ℎ + 1)/2.

Proof. The theorem condition on �̂� and �̌� is more stringent

than the one in Lemma 4.2, which we can hence apply. Let CT =

(ĉt, čt) denote the output of Tensor2. Using the proof of Lemma 4.2,

we see that

∥RCB(CT) · (1, 𝑠, 𝑠2)∥∞ ≤
𝑁 (�̂�𝑞div + �̌�)2

𝑞div
.

One then observes that the theorem condition on �̂� and �̌� implies

the one in Lemma 4.4, which we can hence apply. Finally, applying

Lemma 4.6 and collecting terms provides the result. □

The condition on �̂� and �̌� is to ensure correctness of the compu-

tation, up to an error termwhose main component is𝑁�̌�2/(𝑞div𝑞ℓ).
This term does not appear in the classical CKKS homomorphic mul-

tiplication, as it stems from the dropping of the product of the

low parts in the definition of Tensor2. Due to its importance, the

growth of the quantity �̌� should be carefully bounded through

homomorphic computations involving sequential multiplications.

Modulus consumption. Note that the size of �̌� is roughly 𝐶𝑞2

div
where 𝐶 > 1 is a small quantity. The exact size will be discussed

in the following subsection. Here we explain how to set the sizes

of 𝑞div and 𝑞ℓ . In order to keep the main component𝑁�̌�/(𝑞div𝑞ℓ) ≈
𝑁𝐶2 ·𝑞div/𝑞ℓ small, the prime 𝑞ℓ should be at least as large as small

multiple of 𝑞div. We choose it minimal under this constraint. Since

we divide the plaintext by 𝑞div in Tensor2 and rescale by 𝑞ℓ in RS2

𝑞ℓ
,

the overall scale is divided by 𝑞div𝑞ℓ after a multiplication. Hence

we have a relation Δ ≈ 𝑞div𝑞ℓ . Since we chose 𝑞ℓ slightly larger

Homomorphic Multiple Precision Multiplication for CKKS
and Reduced Modulus Consumption

than 𝑞div, this implies that Δ is ≈ 𝑞2

ℓ
. We can observe the main ad-

vantage of Mult2 over classical CKKS homomorphic multiplication

that for the same modulus consumption we can handle plaintexts

that have twice larger bit-sizes.

Efficiency. In terms of run-time, executingMult2 requires 3 calls

to Tensor, 2 calls to Relin and 2 calls to RS. Note that only Relin
and RS involve NTTs, so that the contribution of Tensor to the

overall cost is negligible. Both Relin and RS have a costs that are

quasi-linear in the bit-size of the working modulus. Comparatively,

the classicalMult algorithm requires 1 call to Tensor, 1 call to Relin
and 1 call to RS, which seems cheaper than Mult2 at first sight.

However, when using several multiplications sequentially for large

plaintexts,Mult requires moduli that are twice larger due to its high

modulus consumption. Overall, the costs ofMult andMult2 are then
similar for performing a sequence of computations. In fact, asMult2
requires smaller moduli, one can also use smaller-degree rings for

the same security, which gives it an advantage in terms of latency.

In the case of fully homomorphic computations, bootstrapping

dominates the cost, and Mult2 is then much preferable as it enable

bootstrapping with smaller parameters.

In terms of swk bit-size,Mult2 outperformsMult by a factor ≈ 2

due to the smaller moduli that it involves. As for run-time, this

impact further increases if one takes into account that smaller

moduli enable the use of smaller-degree rings.

4.3 Bounding the low parts
In Theorem 4.8, we observed that the infinity norm of the error of

pair multiplications is bounded by a function of �̌� , an upper bound

of ∥Dec(čt𝑖)∥∞ for 𝑖 ∈ {1, 2}. As the decryption of the low part

∥Dec(čt)∥∞ increases as we proceed with a sequence of multiplica-

tions, the multiplication error also grows. Since Theorem 3.2 gives

the initial upper bound of the low part right after the first decom-

position, it suffices to analyze the low part growth through a single

multiplication (the analysis for addition and subtraction is elemen-

tary, and key switching is handled identically to the relinearization

step of multiplication).

As described in [38], using the canonical embedding rather

than the polynomial representation leads to tighter bounds on

norm growth when evaluating a circuit. This observation was used

in [38] for studying error terms, whereas we rely on it here to

study the low parts. Recall that the canonical embedding can :

R[𝑋]/(𝑋𝑁 + 1) → C𝑁 /2 gives the relationship between messages

and plaintexts (see Section 2.1). The main observation is that for two

polynomials𝑚1,𝑚2 ∈ 𝑅, we have ∥can(𝑚1 ·𝑚2)∥∞ ≤ ∥can(𝑚1)∥∞ ·
∥can(𝑚2)∥∞, as opposed to ∥𝑚1 ·𝑚2∥∞ ≤ 𝑁 ·∥𝑚1∥∞ ·∥𝑚2∥∞.When

considering multiple multiplications, the difference becomes a large

power of 𝑁 . Finally, note that for𝑚 ∈ 𝑅, we have ∥can(𝑚)∥∞/𝑁 ≤
∥𝑚∥∞ ≤ ∥can(𝑚)∥∞.

Theorem 4.9 (Growth of the low part). Let CT1 = (ĉt1, čt1)
and CT2 = (ĉt2, čt2) ∈ 𝑅2

𝑄ℓ
× 𝑅2

𝑄ℓ
be ciphertext pairs. Let 𝑞ℓ =

𝑄ℓ/𝑄ℓ−1 ≥ 2 and sk = (1, 𝑠) ∈ 𝑅2 be a secret key with 𝑠 of Ham-
ming weight ℎ. Suppose that ∥can ◦ Dec(ĉt𝑖)∥∞ ≤ �̂� and ∥can ◦
Dec(čt𝑖)∥∞ < �̌� for 𝑖 ∈ {1, 2} and for some �̂�, �̌� . Let CTMult =

Mult2 (CT1,CT2) = (ĉtMult, čtMult). Then the following holds:

∥can ◦ Dec(čtMult)∥∞ ≤
2�̂��̌�

𝑞ℓ
+ 𝑁

(𝐸Relin
𝑞ℓ
+ (ℎ + 3) (𝑞div + 1)

)
.

Proof. We analyze the growth for each step of Mult2 = RS2

𝑞ℓ
◦

Relin2 ◦ Tensor2.
Define CTTensor = Tensor2 (CT1,CT2) = (ĉtTensor, čtTensor). By

definition of Tensor2, we have:

can (
[čtTensor · (1, 𝑠, 𝑠2)]𝑄ℓ

)

∞
≤ 2�̂��̌� .

Now, define CTRelin = Relin2 (CTTensor) = (ĉtRelin, čtRelin). Note
that čtRelin consists of two terms: the first one is an output of DCP
whereas the second one is Relin(čtTensor). By Theorem 3.2, the

inner product of first term and sk has infinity norm ≤ 𝑁𝑞div (ℎ +
3)/2 (for the canonical embedding). Thanks to the bound above

on čtTensor · (1, 𝑠, 𝑠2) and the one quantifying the accuracy of Relin
(see Section 2.2), the inner product of the second term with sk has

infinity norm ≤ 𝑁𝐸Relin +2�̂��̌� (for the canonical embedding). The

triangle inequality then gives:

can (
[čtRelin · (1, 𝑠)]𝑄ℓ

)

∞ ≤ 2�̂��̌� + 𝑁

(
𝐸Relin + 𝑞div

ℎ + 3

2

)
.

Finally, we considerCTMult = RS2 (CTRelin). By definition ofRS2
,

we have:

čtMult =
1

𝑞ℓ

(
𝑞div · ĉtRelin + čtRelin

)
+ 𝑒 − 𝑞div (

1

𝑞ℓ
ĉtRelin + 𝑒),

for some 𝑒, 𝑒 whose canonical embeddings have infinity norms ≤
𝑁 /2. This simplifies to

čtMult =
1

𝑞ℓ
čtRelin − 𝑞div · 𝑒 + 𝑒.

By taking the inner product with sk, we obtain

can (
[čtMult · (1, 𝑠)]𝑄ℓ−1

)

∞ ≤

1

𝑞ℓ

can (
[čtRelin · (1, 𝑠)]𝑄ℓ

)

∞

+ 𝑁

2

(ℎ + 1) (𝑞div + 1).

This leads to the claimed bound. □

The main term of the upper bound is 2�̂��̌�/𝑞ℓ , which is propor-

tional to �̌� . In the classical CKKS scheme, it is usually assumed

that ∥Dcd ◦ Dec(ct)∥∞ ≤ 1. Since Dcd = Δ−1 · can, this can be

reinterpreted as ∥can ◦ Dec(ct)∥∞ ≤ Δ. For this reason, we can
assume that �̂� = Δ/𝑞div. In this case, the main term is as large as

2Δ�̌�/(𝑞div𝑞ℓ) ≈ 2�̌� , thanks to our choice of Δ at the end of Sec-

tion 4.2. Therefore, the upper bound of the low part grows by ≈ 1

bit after each multiplication, if Δ is set properly.

5 HOMOMORPHIC MULTI-PRECISION
MULTIPLICATION

In this Section, we extend our method to multiple precision. We

generalize it with any tuple length 𝑡 ≥ 2. The proofs are omitted as

they are direct adaptations of those of Section 4.

Jung Hee Cheon, Wonhee Cho, Jaehyung Kim, and Damien Stehlé

5.1 Tools
We define the operations corresponding to Tensor2, Relin2

and RS2

for 𝑡-tuple representations of ciphertexts.

Definition 5.1 (Tuple tensor). Let CT1 = (ĉt1,0, · · · , ĉt1,𝑡−1),
CT2 = (ĉt2,0, · · · , ĉt2,𝑡−1) ∈ (𝑅2

𝑄ℓ
)𝑡 be ciphertext tuples. The tensor

of CT1 and CT2 is defined as

ĉt𝑡𝑒𝑛,𝑖 =
𝑖∑︁
𝑗=0

ĉt1, 𝑗 ⊗ ĉt2,𝑖− 𝑗 , for all 𝑖 ∈ {0, · · · , 𝑡 − 1}

CT1 ⊗𝑡 CT2 = (ĉt𝑡𝑒𝑛,0, · · · , ĉt𝑡𝑒𝑛,𝑡−1) ∈ (𝑅3

𝑄ℓ
)𝑡 .

We will also use the notation Tensor𝑡 (CT1,CT2).

Note that the Tensor𝑡 operation discards more components than

the Tensor2 operation from Section 4.1. The following lemma for-

malizes the relationship between Tensor𝑡 and Tensor.

Lemma 5.2. Let CT𝑖 = (ĉt𝑖,0, · · · , ĉt𝑖,𝑡−1) ∈ (𝑅2

𝑄ℓ
)𝑡 be a ci-

phertext tuple satisfying RCB𝑡𝑞div (CT𝑖) = ct𝑖 for 𝑖 ∈ {1, 2}. Let
sk = (1, 𝑠) ∈ 𝑅2 be a secret key. Then, modulo 𝑄ℓ :

(ct1 ⊗ ct2) · (1, 𝑠, 𝑠2) = 𝑞𝑡−1

div · (RCB
𝑡
𝑞div
(CT1 ⊗𝑡 CT2)) · (1, 𝑠, 𝑠2)

+
𝑡−1∑︁
𝑖=1

𝑡−1∑︁
𝑗=𝑖

𝑞𝑡−1−𝑖
div (ĉt1, 𝑗 · sk) · (ĉt2,𝑡−1− 𝑗 · sk) .

Now, assume that ∥Dec(ĉt𝑖,0)∥ ≤ �̂� and ∥Dec(ĉt𝑖, 𝑗)∥ ≤ �̌� for all
𝑖 ∈ {1, 2}, 𝑗 ∈ {1, · · · , 𝑡−1} and for some �̂�, �̌� satisfying𝑁 (�̂�𝑞𝑡−1

div +
�̌�𝑞𝑡−2

div + · · · + �̌�)
2 < 𝑄ℓ/2. Then we have:

[RCB𝑡𝑞div (CT1 ⊗𝑡 CT2) · (1, 𝑠, 𝑠2)]𝑄ℓ

− 1

𝑞𝑡−1

div

[(ct1 ⊗ ct2) · (1, 𝑠, 𝑠2)]𝑄ℓ

∞ ≤

𝑡−1∑︁
𝑖=1

(𝑡 − 𝑖)𝑁�̌�2

𝑞𝑖div

.

Similarly to Lemma 4.2, Lemma 5.2 states that Tensor𝑡 applied
to CT1 and CT2 decrypts to approximately the same plaintext as

Tensor of ct1 and ct2 divided by 𝑞𝑡−1

div , over 𝑅, when the underlying

plaintexts are sufficiently small.

Definition 5.3 (Tuple relinearize). LetCT = (ĉt0, · · · , ĉt𝑡−1) ∈
(𝑅3

𝑄ℓ
)𝑡 be an output of Tensor𝑡 . The relinearization of CT is defined

recursively as

Relin𝑡 (CT) = DCP𝑡𝑞div (Relin(𝑞
𝑡−1

div · ĉt0)) + (0,Relin
𝑡−1 (CT)),

where CT = (ĉt1, · · · , ĉt𝑡−1) ∈ (𝑅3

𝑄ℓ
)𝑡−1.

Observe that

Relin(RCB𝑡𝑞div (ĉt0, · · · , ĉt𝑡−1))
= Relin(𝑞𝑡−1

div · ĉt0 + · · · + 𝑞div · ĉt𝑡−2 + ĉt𝑡−1)
≈ Relin(𝑞𝑡−1

div · ĉt0) + · · · + Relin(𝑞div · ĉt𝑡−2) + Relin(ĉt𝑡−1) .

This gives an approximate identity

DCP𝑡𝑞div ◦ Relin ◦ RCB
𝑡
𝑞div
(CT) ≈ Relin𝑡 (CT)

This leads to the following result.

Lemma 5.4. Let CT = (ĉt0, · · · , ĉt𝑡−1) ∈ (𝑅3

𝑄ℓ
)𝑡 be an output of

Tensor𝑡 . Let sk = (1, 𝑠) ∈ 𝑅2 be a secret key with 𝑠 of Hamming
weight ℎ. Then the quantity[(

RCB𝑡𝑞div (Relin
𝑡 (CT))

)
· (1, 𝑠) −

(
RCB𝑡𝑞div (CT)

)
· (1, 𝑠, 𝑠2)

]
𝑄ℓ

has infinity norm ≤ 𝐸Relin + 𝑡ℎ/2. Now, assume that ∥ [RCB𝑡𝑞div (CT) ·
(1, 𝑠, 𝑠2)]𝑄ℓ

∥∞ ≤ 𝑀 for some 𝑀 satisfying 2(𝑀 + 𝐸Relin + 𝑡ℎ/2) <
𝑄ℓ/2. Then[(
RCB𝑡𝑞div (Relin

𝑡 (CT))
)
· (1, 𝑠)

]
𝑄ℓ

−
[(
RCB𝑡𝑞div (CT)

)
· (1, 𝑠, 𝑠2)

]
𝑄ℓ

also has infinity norm ≤ 𝐸Relin + 𝑡ℎ/2.

Definition 5.5 (Tuple Rescale). Let CT = (ĉt0, · · · , ĉt𝑡−1) ∈
(𝑅2

𝑄ℓ
)𝑡 be a ciphertext tuple. Let 𝑞ℓ = 𝑄ℓ/𝑄ℓ−1. The rescale of CT is

defined as RS𝑡𝑞ℓ (CT) = (ĉt𝑟𝑠 , · · · , ĉt𝑟𝑠,𝑡−1) ∈ (𝑅2

𝑄ℓ−1

)𝑡 with ĉt𝑟𝑠,0 =

RS𝑞ℓ (ĉt0) and, for 𝑖 ∈ {1, 2, · · · , 𝑡 − 1},

ĉt𝑟𝑠,𝑖 = RS𝑞ℓ (𝑞𝑖div · ĉt0 + 𝑞
𝑖−1

div · ĉt1 + · · · + ĉt𝑖)
− 𝑞div · RS𝑞ℓ (𝑞𝑖−1

div · ĉt0 + 𝑞
𝑖−2

div · ĉt1 + · · · + ĉt𝑖−1) .

Note that the following equality holds:

RCB𝑡𝑞div (RS
𝑡
𝑞ℓ
(CT)) = RS𝑞ℓ (RCB𝑡𝑞div (CT)).

Lemma 5.6. Let CT ∈ (𝑅2

𝑄ℓ
)𝑡 be a ciphertext tuple. Let sk =

(1, 𝑠) ∈ 𝑅2 be a secret key with 𝑠 of Hamming weight ℎ. Then the
quantity[(
RCB𝑡𝑞div (RS

𝑡
𝑞ℓ
(CT))

)
· (1, 𝑠)

]
𝑄ℓ−1

− 1

𝑞ℓ

[(
RCB𝑡𝑞div (CT)

)
· (1, 𝑠)

]
𝑄ℓ

has infinity norm ≤ (ℎ + 1)/2.

5.2 Multiplication for tuple representation
We can now define 𝑡-tuple multiplication.

Definition 5.7 (Tuple multiply). We define multiplication of ci-
phertext tuples over𝑄ℓ asMult𝑡 := RS𝑡𝑞ℓ ◦Relin

𝑡◦Tensor𝑡 , where𝑞ℓ =
𝑄ℓ/𝑄ℓ−1. The result is a ciphertext pair over modulus 𝑄ℓ−1.

By combining Lemmas 5.2, 5.4 and 5.6, we obtain the following

theorem.

Theorem 5.8. Let CT𝑖 = (ĉt𝑖,0, · · · , ĉt𝑖,𝑡−1) ∈ (𝑅2

𝑄ℓ
)𝑡 be a cipher-

text tuple for 𝑖 ∈ {1, 2}. Let 𝑞ℓ = 𝑄ℓ/𝑄ℓ−1 and sk = (1, 𝑠) ∈ 𝑅2 be a
secret key with 𝑠 of Hamming weightℎ. Assume that ∥Dec(ĉt𝑖,0)∥∞ ≤
�̂� and ∥Dec(ĉt𝑖, 𝑗)∥∞ ≤ �̌� for all 𝑖 ∈ {1, 2}, 𝑗 ∈ {1, · · · , 𝑡−1} and for
some �̂�, �̌� satisfying 𝑁 (�̂�𝑞𝑡−1

div +�̌� ·𝑞
𝑡−2

div +· · ·+�̌�)
2+𝐸Relin+ 𝑡

2
ℎ <

𝑄ℓ/2. Then[(
RCB𝑡𝑞div (Mult𝑡 (CT1,CT2))

)
· sk

]
𝑄ℓ−1

− 1

𝑞ℓ

[(
RCB𝑡𝑞div (CT1) · sk

)
·
(
RCB𝑡𝑞div (CT2) · sk

)]
𝑄ℓ

has infinity norm

≤
(𝑡−1∑︁
𝑖=1

(𝑡 − 𝑖)𝑁�̌�2

𝑞𝑖div

+ 𝐸Relin +
𝑡

2

ℎ

)
· 1

𝑞ℓ
+ ℎ + 1

2

.

Homomorphic Multiple Precision Multiplication for CKKS
and Reduced Modulus Consumption

The correctness holds up to an error term whose main compo-

nent is (𝑡−1)𝑁�̌�2/(𝑞div𝑞ℓ). Since this term increases with the tuple

length 𝑡 , the growth of the quantity �̌� should be more carefully

bounded through homomorphic computations involving sequential

multiplications based onMult𝑡 .

Modulus consumption. We discuss about modulus consumption

of Mult𝑡 similar to Mult2. Note that the size of �̌� is still ≈ 𝐶𝑞2

div
where 𝐶 > 1 is a small constant. In order to keep the main compo-

nent (𝑡 − 1)𝑁�̌�2/(𝑞div𝑞ℓ) ≈ (𝑡 − 1)𝑁𝐶2 · 𝑞div/𝑞ℓ , the modulus 𝑞ℓ
should be at least as large as a small multiple of 𝑞div. Since we divide

the size of plaintext by 𝑞𝑡−1

div in Tensor𝑡 and rescale by 𝑞ℓ in RS𝑡𝑞ℓ ,
the scale is divided by 𝑞𝑡−1

div 𝑞ℓ after every multiplication. Hence we

have a relation Δ ≃ 𝑞𝑡−1

div 𝑞ℓ . Since we chose 𝑞ℓ to be slightly larger

than 𝑞div, this relation allows us to choose Δ to be as large as ≈ 𝑞𝑡
ℓ
.

The main advantage of Mult𝑡 over classical CKKS homomorphic

multiplication is that for the same modulus consumption we obtain

a 𝑡-multiple precision computation on plaintexts.

Efficiency. In terms of run-time, executingMult𝑡 requires 𝑡 (𝑡 +
1)/2 calls to Tensor, 𝑡 calls to Relin and 𝑡 calls to RS. Note that

only Relin and RS involve NTTs, so that the contribution of Tensor
to the overall cost is negligible when 𝑡 is 𝑜 (log𝑁). Therefore, the
multiplication time is proportional to 𝑡 . Both Relin and RS have a
costs that are quasi-linear in the bit-size of the working modulus.

However, Mult𝑡 requires moduli that are 𝑡-times smaller, the costs

of Mult and Mult𝑡 are also similar for performing a sequence of

computations. In fact, as Mult𝑡 requires smaller moduli, one can

also use smaller-degree rings for the same security, which gives it

an advantage in terms of latency.

In terms of swk bit-size,Mult𝑡 outperformsMult by a factor ≈ 𝑡
due to the smaller moduli that it involves. As for run-time, this

impact further increases if one takes into account that smaller

moduli enable the use of smaller-degree rings.

5.3 Bounding the low parts
In Theorem 5.8, we observed that the infinity norm of the error

of pair multiplications is bounded by a function of �̌� , an upper

bound of ∥Dec(ĉt𝑖, 𝑗)∥∞ for 𝑖 ∈ {1, 2} and 𝑗 ∈ {1, · · · , 𝑡 − 1}. As the
decryption of all low parts ∥Dec(ĉt𝑗)∥∞ for all 𝑗 ∈ {1, · · · , 𝑡 − 1}
increases as we proceed with a sequence of multiplications, the

multiplication error also grows. Since Theorem 3.2 gives the initial

upper bound of all low parts right after the first decomposition, it

suffices to analyze the growth of all low parts through a single mul-

tiplication (the analysis for addition and subtraction is elementary,

and key switching is handled identically to the relinearization step

of multiplication). Similarly to Section 4.3, we use the canonical

embedding to get tighter bounds.

Theorem 5.9 (Growth of low parts). Let CT𝑖 = (ĉt1,0, · · · ,
ĉt𝑖,𝑡−1) ∈ (𝑅2

𝑄ℓ
)𝑡 be a ciphertext tuple for 𝑖 ∈ {1, 2}. Let 𝑞ℓ =

𝑄ℓ/𝑄ℓ−1 and sk = (1, 𝑠) ∈ 𝑅2 be a secret key with 𝑠 of Ham-
ming weight ℎ. Suppose that ∥can ◦ Dec(ĉt𝑖,0)∥∞ ≤ �̂� and ∥can ◦
Dec(ĉt𝑖, 𝑗)∥∞ < �̌� for 𝑖 ∈ {1, 2}, 𝑗 ∈ {1, · · · , 𝑡−1} and for some �̂�, �̌� .
Let CTMult = Mult𝑡 (CT1,CT2) = (ĉtMult,0, · · · , ĉtMult,𝑡−1

). Then

the following holds:

∥can ◦ Dec(ĉtMult, 𝑗)∥∞

≤ 2�̂��̌� + (𝑗 − 1)�̌�2

𝑞ℓ
+ 𝑁

(𝐸Relin
𝑞ℓ
+ 𝑗 · (ℎ + 3) (𝑞div + 1)

)
,

where 𝑗 ∈ {1, · · · , 𝑡 − 1}.

The main term of the upper bound is (2�̂��̌� + (𝑡 − 2)�̌�2)/𝑞ℓ ,
which is proportional to �̌� . In the classical CKKS scheme, we usu-

ally assume that ∥Dcd◦Dec(ct)∥∞ ≤ 1. SinceDcd = Δ−1 ·can, this
can be reinterpreted as ∥can ◦ Dec(ct)∥∞ ≤ Δ. Hence, we can as-

sume that �̂� = Δ/𝑞𝑡−1

div ≈ 𝑞ℓ . Also, we could choose 𝑞ℓ to be slightly
larger than 𝑞div, we can assume that �̂� is larger than �̌� . In this

case, the main term is as large as 𝑡Δ�̌�/(𝑞𝑡−1

div 𝑞ℓ) ≈ 𝑡�̌� . Therefore,

the upper bound of all low parts grows approximately by log 𝑡 bits

after each multiplication.

6 EXPERIMENTS
We conducted experiments based on a proof-of-concept implemen-

tation of Mult2 (i.e., 𝑡 = 2). Our code is developed upon the C++

HEaaN library.
5
The experiments are conducted on an Intel Xeon

Gold 6242 at 2.8 GHz with 503GiB of RAM running Linux. All

security estimates derive from [1, 15].

Our implementation relies on RNS arithmetic. For the rescaling

function RS (which is used in both Quo and Relin2
), we proceed

exactly as in RNS-based rescaling [11, 18], with an extra RNS prime

equal to 𝑞div (if 𝑞div is larger than 2
64
, one can set it as the product

of several RNS primes, but this was the case in none of our exper-

iments). For high-precision computations, such as with a scaling

factor Δ of 100 bits, the list of RNS primes in our approach differs

from what would be done with RNS-based CKKS. Typically, one

would set the multiplication-ladder moduli 𝑞𝑖 as products of two

RNS primes: 𝑞𝑖 = 𝑞𝑖1 · 𝑞𝑖2 ≈ Δ, with 𝑞𝑖1 and 𝑞𝑖2 primes that both

fit in a 64-bit word. In our case, we only need 𝑞div · 𝑞𝑖 ≈ Δ and

can set 𝑞div and all 𝑞𝑖 ’s to be primes that fit in a 64-bit word. This

implies that each modulus 𝑞𝑖 corresponds to a single RNS prime.

We recall some notations which are extensively used in this

section: 𝑁 denotes the ring degree, ℎ the secret key Hamming

weight, Δ the scaling factor and 𝑄𝐿𝑃 the largest switching key

modulus.

6.1 Error growth
Table 1 describes the parameters we used in our first experiment.We

considered two parameter sets with 𝑡 = 1 (designed for the CKKS

Mult algorithm) and 𝑡 = 2 (designed for the Mult2 algorithm),

in order to compare the error growths of both approaches. The

parameter sets are designed so that a similar precision, a similar

decryption capacity and a similar security (of≈ 128 bits) are reached.
Further, for both of them, we use the same number of multiplication

levels (equal to 8). As expected, the overall largest modulus 𝑄𝐿𝑃

is smaller for 𝑡 = 2 than for 𝑡 = 1, although not by a factor 2, as

asymptotically lower-order terms contribute significantly for the

relatively small bit-sizes we consider.

5
We are using the CryptoLab HEaaN library, available at https://www.heaan.it/.

https://www.heaan.it/

Jung Hee Cheon, Wonhee Cho, Jaehyung Kim, and Damien Stehlé

Table 1: Parameters for the error growth observation. Here
log

2
𝑞 denotes the bit-sizes of prime factors in the modulus

chains, and log
2
𝑃 denotes the size of the auxiliary switching

key primes. Base refers to the base prime 𝑄0, Mult refers to
the multiplication primes 𝑞ℓ = 𝑄ℓ/𝑄ℓ−1 (the table entry also
provides the number 𝐿 of such primes), and Div refers to the
modulus 𝑞div used in Mult2. The secret key has Hamming
weight ℎ = 21, 845.

Multiplication

𝑁 log
2
(𝑄𝐿𝑃) log

2
Δ

log
2
𝑞

log
2
𝑃

algorithm Base Mult Div
Mult
(𝑡 = 1) 2

15
610

61

61 61 × 8 − 61

Mult2

(𝑡 = 2, new)

449 61 38 × 8 23 61

We performed 8 repeated squarings on a single ciphertext, and

measured how the error grows as a function of the number of

multiplications, as visualized in Figure 1.

0 2 4 6 8

−50

−45

−40

Number of repeated squarings

lo
g
2
∥c
an
(·)

∥ ∞

e1
e2

čt⊗ čt

Figure 1: Error growth as a function of the number of re-
peated squarings. The data points for 𝑒1 and 𝑒2 are the av-
erage magnitudes of the infinite norms of errors for 𝑡 = 1

and 𝑡 = 2, respectively. The data points for čt ⊗ čt correspond
to the average magnitudes of the squared lower parts after
rescaling them by 𝑞div. The norms are with respect to the
canonical embedding. The averages are taken over 1, 000 exe-
cutions.

The multiplication error 𝑒1 in the usual CKKS setting increases

by at most 1 bit after every squaring. On the other hand, when

using Mult2, the square of the lower part čt ⊗ čt increases by ap-

proximately 1.7 bits per multiplication. This corresponds to the

term that was discarded in the tensor step Tensor2, and contributes
to 𝑒2. Consistently with Theorem 4.8, the magnitude of 𝑒2 is essen-

tially the sum of the magnitudes of 𝑒1 and čt ⊗ čt. Therefore, at
the beginning, the multiplication 𝑒2 follows the growth of 𝑒1. As

čt⊗ čt grows, the quantity 𝑒2 starts to increase faster than 𝑒1. In our

experiment, this becomes significant at the 6th repeated squaring.

6.2 Increased homomorphic capacity
We now aim at maximizing multiplicative depth, for a given ring

degree (set here to 𝑁 = 2
15
). We designed two parameter sets, for

𝑡 = 1 and 𝑡 = 2. Both parameter sets used the largest modulus

possible 𝑄𝐿𝑃 while retaining 128 bits of security. The detailed pa-

rameter sets are provided in Table 2. For a fair comparison, we

decreased the moduli for 𝑡 = 1 (from 61 in Table 1 to 57 in Table 2),

so that both parameter sets in Table 2 lead to similar numerical

errors. Indeed, as seen in the previous subsection,Mult2 degrades

the numerical accuracy slightly faster. This adjustment brings one

more level to the 𝑡 = 1 parameter set. Overall, the second parameter

set provides a significantly larger multiplicative depth (18) than the

first one (13).

Table 2: Parameters maximizing the multiplicative depth
while retaining 128 bits of security. The secret key has Ham-
ming weight ℎ = 21, 845.

Mult.

𝑁 log
2
(𝑄𝐿𝑃) log

2
Δ

log
2
𝑞

log
2
𝑃

algorithm Base Mult Div
Mult
(𝑡 = 1) 2

15
855 57 57 57 × 13 − 57

Mult2

(𝑡 = 2, new)

875 61 61 38 × 18 23 × 3 61

As the moduli in the 𝑡 = 2 parameter sets of Tables 1 and 2

are the same, we expect the error to grow as depicted in Figure 1.

In particular, after 6 multiplication layers, one expects 𝑒2 to start

growing at an increased pace. To thwart this phenomenon, we

run recombine and decompose (DCP ◦ RCB), in order to decrease

čt ⊗ čt and maintain the precision. Concretely, we perform this

error refreshing between multiplication levels 6 and 7 and between

multiplication levels 12 and 13 (out of 18 levels). This explains the

use of 3 Div primes in the 𝑡 = 2 parameter set: 1 Div prime for the

initial DCP and 2 Div primes for the error refreshings.

To observe the error growth of these two parameter sets, we

performed 18 repeated squarings on a single ciphertext and mea-

sured the average infinity norms of errors over 1, 000 executions.

As the parameter with 𝑡 = 1 has multiplicative depth smaller

than 18, we constructed a parameter set with extended multi-

plicative depth equal to 18 only to measure the precision, with

log
2
(𝑄𝐿𝑃) = 855 + 5 · 57 = 1, 140 (note that for such a large 𝑄𝐿𝑃 ,

the parameter set would not reach 128 bits of security). Parameters

with 𝑡 = 1 and 𝑡 = 2 showed -31.3 bits and -31.0 bits of precision,

respectively.

We now study the gain ofMult2 overMult, taking error refresh-
ing (i.e., recombine and decompose) into account.

Let 𝑘 be the number ofMult2 sequential multiplications that can

be performed between two consecutive error refreshings. Such a

block of operations consists of 1 decompose and 𝑘 multiplications,

consuming an amount 𝑞div · (Δ/𝑞div)𝑘 of modulus. The maximum

Homomorphic Multiple Precision Multiplication for CKKS
and Reduced Modulus Consumption

multiplication depth starting from modulus 𝑄 can be computed as

log
2
(𝑄)

log
2
(Δ) − (1 − 1/𝑘) · log

2
(𝑞div)

.

For comparison, recall that the multiplicative depth of originalMult
is log

2
(𝑄)/log

2
(Δ). The depth gain ofMult2 overMult is just the

difference between these two multiplicative depths. At a high level,

when 𝑘 is sufficiently large and 𝑞div is set to ≈
√
Δ, we expect a

factor 2 improvement.

We now explain a strategy to choose𝑘 . According to Theorem 4.9,

the low part grows by approximately 1 bit after each multiplication.

When we get a ciphertext pair from a ciphertext by decomposing it,

the low part has infinity norm ≤ 𝑞div · (ℎ+1)/2. In order to maintain

the error coming from the low part smaller than the desired bound 𝐸,

it suffices that

𝑁 · ((ℎ + 1) · 𝑞div · 2𝑘−2)2
Δ

< 𝐸,

thanks to Theorem 4.8. One can choose 𝑘 to be the largest integer

satisfying

𝑘 ≤
log

2
(𝐸) + log

2
(Δ) − log

2
(𝑁)

2

− log
2
(𝑞div) − log

2
(ℎ + 1) + 2.

Note that log
2
(Δ) and log

2
(𝑞div) are the most significant terms

here. We suggest to choose 𝑞div slightly smaller than

√
Δ so that we

can have sufficiently large 𝑘 . Experiments show that this analysis

is pessimistic and allow for better pairs (𝑘, 𝑞div).

6.3 Increased precision
We now consider a setting where we want to perform a homomor-

phic computation on plaintexts that have large bit-sizes. This is

a situation that can come up for specific applications involving

large numbers or high precision, as well as for specific applications

requiring IND-CPA
D
security [34, 35]. In this third experimental

setup, we consider multiplicative depth equal to 8 and plaintexts

of 100 bits, i.e., about twice larger than modulus bit-sizes typically

considered with CKKS (for efficiency purposes, it is convenient to

set the modulus so that it fits within a 64-bit machine word).

The classical approach would consist in batching Base andMult
moduli by pairs, so that each pair product approximately matches

with Δ = 2
100

. With 8 levels, this leads to a large maximal modu-

lus 𝑄𝐿𝑃 of 1, 000 bits. As this is more than the maximal modulus

allowed for ring degree 𝑁 = 2
15

with 128 bits of security, this leads

to choosing degree 𝑁 = 2
16
. This gives the 𝑡 = 1 parameter set of

Table 3. In the table, the ‘(50 × 2)’ notation means that two 50-bit

primes are being paired to have a product that matches Δ = 2
100

.

Let us now explain how to use Double-CKKS in this context,

i.e., with 𝑡 = 2. We can decompose the scaling factor Δ as 𝑞 ≃ 2
60

and 𝑞div ≃ 2
40
. Even though the multiplicative depth is maintained,

this allows to greatly reduce the maximum modulus 𝑄𝐿𝑃 . In turn,

this allows to halve the ring degree, from 𝑁 = 2
16

to 𝑁 = 2
15

while retaining 128 bits of security. This corresponds to the 𝑡 = 2

parameter set of Table 3. Themargin between𝑞div ≃ 2
40

and𝑞 ≃ 2
60

is quite large, so that we can maintain precision even without the

recombine and decompose strategy mentioned in Section 6.2. To

check precision, we performed 8 repeated squarings on a single

ciphertext and measured the average infinity norms of errors over

1, 000 executions. We obtained -81.2 bit and -81.8 bit precision for

the 𝑡 = 1 and 𝑡 = 2 parameters, respectively.

We now focus on efficiency. Themultiplication latency decreased

from 270ms to 179ms, the ciphertext size (for the largest modulus)

decreased from 14.8MB to 5.08MB, and the switching key size (for

the largest modulus) decreased from 74MB to 30.6MB: i.e., 1.5 times

faster multiplication, 2.9 times smaller ciphertexts, and 2.4 times

smaller switching keys.
6
This stems from the lower moduli and

lower ring degree 𝑁 . Note that the number of 64-bit unit NTTs is

290 and 350, respectively, but the former has an NTT dimension

that is twice than the latter.

Table 3: Comparison of two approaches for computations
with large precision. Here 𝑑𝑛𝑢𝑚 denotes the key switching
gadget rank [3, 20, 21], 𝑇mult denotes the multiplication time
(using a single thread), #𝑁𝑇𝑇 denotes the number of 64-bit
unit NTTs in dimension 𝑁 , and ctxt size and key size respec-
tively denote the size of a ciphertext and a single switching
key at the maximum level. The secret key has Hamming
weight ℎ = 128.

Mult.

algorithm

𝑁 dnum 𝑇mult #𝑁𝑇𝑇 ctxt size key size

Mult
(𝑡 = 1)

2
16

9 270ms 290 14.8MB 73.7MB

Mult2

(𝑡 = 2, new)

2
15

11 179ms 350 5.08MB 30.6MB

log
2
(𝑄𝐿𝑃) log

2
Δ

log
2
𝑞

log
2
𝑃

Base Mult Div
1, 000

100

(50 × 2) (50 × 2) × 8 - (50 × 2)
680 (50 × 2) 60 × 8 40 60

7 CONCLUSION
Our new homomorphic multiplication,Mult𝑡 , decomposes a high

precision homomorphic multiplication into lower precision ones,

reducing the modulus consumption by roughly a factor 𝑡 . This

allows to increase homomorphic capacity and to increase precision

without increasing parameters.

In this work, we did not implement tuple-CKKS for 𝑡 > 2 because

we focused on examples with moderate precision. One could be

interested in 𝑡 > 2 for higher precision scenarios, and we leave the

experimental aspects of 𝑡 > 2 open for future work. Note that ob-

taining an efficient implementation for 𝑡 > 2 is not straightforward,

since arithmetic modulo 𝑞𝑡−1

div is not directly compatible with RNS-

CKKS. We expect that one could modify the RNS representation

to handle 𝑞𝑡−1

div separately while keeping RNS for the other moduli.

Such an implementation would be useful to assess the impact of 𝑡

on the efficiency and accuracy.

Although we discussed the possibility of bootstrapping using

Mult𝑡 for 𝑡 > 1, we did not provide an implementation of it. In

order to construct an efficient pair/tuple bootstrapping, one needs

to carefully manage error growth especially in homomorphic linear

6
For ciphertext size, we do not consider the possibility of storing the right side as the

seed of a hash function, as this is possible only at the largest modulus. For switching

key size, we consider this representation.

Jung Hee Cheon, Wonhee Cho, Jaehyung Kim, and Damien Stehlé

transformations, and also deal with the use of different scaling

factors during bootstrapping. We also leave this open for future

work.

REFERENCES
[1] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey

Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,

Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod

Vaikuntanathan. 2019. Homomorphic Encryption Standard. Cryptology ePrint

Archive, Paper 2019/939. https://eprint.iacr.org/2019/939

[2] Youngjin Bae, Jung Hee Cheon, Wonhee Cho, Jaehyung Kim, and Taekyung Kim.

2022. META-BTS: Bootstrapping Precision Beyond the Limit. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security
(Los Angeles, CA, USA) (CCS ’22). Association for Computing Machinery, New

York, NY, USA, 223–234. https://doi.org/10.1145/3548606.3560696

[3] Jean-Claude Bajard, Julien Eynard, M. Anwar Hasan, and Vincent Zucca. 2017.

A Full RNS Variant of FV Like Somewhat Homomorphic Encryption Schemes.

In Selected Areas in Cryptography – SAC 2016, Roberto Avanzi and Howard Heys

(Eds.). Springer International Publishing, Cham, 423–442.

[4] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter

M. R. Rasmussen, and Amit Sahai. 2018. Threshold Cryptosystems from Thresh-

old Fully Homomorphic Encryption. In Advances in Cryptology – CRYPTO 2018.
Springer International Publishing, Cham, 565–596.

[5] Zvika Brakerski. 2012. Fully Homomorphic Encryption without Modulus Switch-

ing from Classical GapSVP. In Advances in Cryptology – CRYPTO 2012, Reihaneh
Safavi-Naini and Ran Canetti (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-

berg, 868–886.

[6] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled) Fully

Homomorphic Encryption without Bootstrapping (ITCS ’12). Association for

Computing Machinery, New York, NY, USA, 309–325. https://doi.org/10.1145/

2090236.2090262

[7] Nathan Manohar Charanjit S. Jutla. 2022. Sine Series Approximation of the Mod

Function for Bootstrapping of Approximate HE. In Advances in Cryptology –
EUROCRYPT 2022.

[8] Hao Chen, Ilaria Chillotti, and Yongsoo Song. 2019. Improved Bootstrapping

for Approximate Homomorphic Encryption. In Advances in Cryptology – EU-
ROCRYPT 2019, Yuval Ishai and Vincent Rijmen (Eds.). Springer International

Publishing, Cham, 34–54.

[9] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. 2019. Efficient Multi-Key Ho-

momorphic Encryption with Packed Ciphertexts with Application to Oblivious

Neural Network Inference. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, London, UK, November 11-15,
2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz

(Eds.). ACM, 395–412. https://doi.org/10.1145/3319535.3363207

[10] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.

2018. Bootstrapping for Approximate Homomorphic Encryption. In Advances in
Cryptology – EUROCRYPT 2018, Jesper Buus Nielsen and Vincent Rijmen (Eds.).

Springer International Publishing, Cham, 360–384.

[11] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.

2018. A Full RNS Variant of Approximate Homomorphic Encryption. In Selected
Areas in Cryptography – SAC 2018 (Lecture Notes in Computer Science, Vol. 11349).
Springer, 347–368.

[12] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-

morphic encryption for arithmetic of approximate numbers. In Advances in
Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 409–437.

[13] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2016.

Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds.

In Advances in Cryptology – ASIACRYPT 2016, Jung Hee Cheon and Tsuyoshi

Takagi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 3–33.

[14] Michael Clear and Ciaran McGoldrick. 2015. Multi-identity and Multi-key Lev-

eled FHE from Learning with Errors. In Advances in Cryptology - CRYPTO,
Rosario Gennaro and Matthew Robshaw (Eds.). Springer, 630–656. https:

//doi.org/10.1007/978-3-662-48000-7_31

[15] Benjamin R. Curtis and Rachel Player. 2019. On the Feasibility and Impact of

Standardising Sparse-Secret LWE Parameter Sets for Homomorphic Encryption.

In Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied
Homomorphic Cryptography (London, United Kingdom) (WAHC’19). Association
for Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/

3338469.3358940

[16] T. J. Dekker. 1971. A floating-point technique for extending the available precision.

Numer. Math. 18, 3 (1971), 224–242. https://doi.org/10.1007/BF01397083

[17] Craig Gentry. 2009. A fully homomorphic encryption scheme. Ph. D. Dissertation.
Stanford University, USA.

[18] Craig Gentry, Shai Halevi, and Nigel P. Smart. 2012. Homomorphic Evaluation

of the AES Circuit. In Advances in Cryptology – CRYPTO 2012 (Lecture Notes in

Computer Science, Vol. 7417). Springer, 850–867. https://doi.org/10.1007/978-3-

642-32009-5_49

[19] Craig Gentry, Amit Sahai, and Brent Waters. 2013. Homomorphic Encryp-

tion from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,

Attribute-Based. In Advances in Cryptology – CRYPTO 2013, Ran Canetti and

Juan A. Garay (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 75–92.

[20] Shai Halevi, Yuriy Polyakov, and Victor Shoup. 2019. An Improved RNS Variant

of the BFV Homomorphic Encryption Scheme. In Topics in Cryptology – CT-RSA
2019, Mitsuru Matsui (Ed.). Springer International Publishing, Cham, 83–105.

[21] Kyoohyung Han and Dohyeong Ki. 2020. Better Bootstrapping for Approximate

Homomorphic Encryption. In Topics in Cryptology – CT-RSA 2020, Stanislaw
Jarecki (Ed.). Springer International Publishing, Cham, 364–390.

[22] Seungwan Hong, Jai Hyun Park, Wonhee Cho, Hyeongmin Choe, and Jung Hee

Cheon. 2022. Secure tumor classification by shallow neural network using

homomorphic encryption. BMC Genomics 23, 1 (2022). https://doi.org/10.1186/

s12864-022-08469-w

[23] Mioara Joldeş, Olivier Marty, Jean-Michel Muller, and Valentina Popescu. 2016.

Arithmetic Algorithms for Extended Precision Using Floating-Point Expansions.

IEEE Trans. Comput. 65, 4 (2016), 1197–1210. https://doi.org/10.1109/TC.2015.

2441714

[24] Charanjit S. Jutla and Nathan Manohar. 2020. Modular Lagrange Interpolation

of the Mod Function for Bootstrapping of Approximate HE. Cryptology ePrint

Archive, Report 2020/1355. https://ia.cr/2020/1355.

[25] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee Cheon. 2018.

Logistic regression model training based on the approximate homomorphic

encryption. BMC Medical Genomics 11, 4 (2018). https://doi.org/10.1186/s12920-

018-0401-7

[26] Duhyeong Kim, Yongha Son, Dongwoo Kim, Andrey Kim, Seungwan Hong,

and Jung Hee Cheon. 2020. Privacy-preserving approximate gwas computation

based on homomorphic encryption. BMC Medical Genomics 13, 7 (2020). https:

//doi.org/10.1186/s12920-020-0722-1

[27] Miran Kim, Arif Ozgun Harmanci, Jean-Philippe Bossuat, Sergiu Carpov,

Jung Hee Cheon, Ilaria Chillotti, Wonhee Cho, David Froelicher, Nicolas Gama,

Mariya Georgieva, Seungwan Hong, Jean-Pierre Hubaux, Duhyeong Kim, Kristin

Lauter, Yiping Ma, Lucila Ohno-Machado, Heidi Sofia, Yongha Son, Yongsoo

Song, Juan Troncoso-Pastoriza, and Xiaoqian Jiang. 2021. Ultrafast homomor-

phic encryption models enable secure outsourcing of genotype imputation. Cell
Systems 12, 11 (2021), 1108–1120.e4. https://doi.org/10.1016/j.cels.2021.07.010

[28] Miran Kim, Yongsoo Song, Baiyu Li, and Daniele Micciancio. 2020. Semi-parallel

logistic regression for GWAS on encrypted data. BMC Medical Genomics 13, 7
(2020).

[29] Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune Kim, Jong-

Seon No, and Woosuk Choi. 2022. Low-Complexity Deep Convolutional Neural

Networks on Fully Homomorphic Encryption Using Multiplexed Parallel Convo-

lutions. In Proceedings of the 39th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 162), Kamalika Chaudhuri, Ste-

fanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (Eds.).

PMLR, 12403–12422. https://proceedings.mlr.press/v162/lee22e.html

[30] Joon-Woo Lee, Hyungchul Kang, Yongwoo Lee, Woosuk Choi, Jieun Eom, Maxim

Deryabin, Eunsang Lee, Junghyun Lee, Donghoon Yoo, Young-Sik Kim, and Jong-

Seon No. 2022. Privacy-Preserving Machine Learning With Fully Homomorphic

Encryption for Deep Neural Network. IEEE Access 10 (2022), 30039–30054.

https://doi.org/10.1109/ACCESS.2022.3159694

[31] Joon-Woo Lee, Eunsang Lee, Yongwoo Lee, Young-Sik Kim, and Jong-Seon No.

2021. High-Precision Bootstrapping of RNS-CKKS Homomorphic Encryption

Using OptimalMinimax Polynomial Approximation and Inverse Sine Function. In

Advances in Cryptology – EUROCRYPT 2021, Anne Canteaut and François-Xavier
Standaert (Eds.). Springer International Publishing, Cham, 618–647.

[32] Joon-Woo Lee, Yongwoo Lee, Young-Sik Kim, Youngjune Kim, Jong-Seon No, and

HyungChul Kang. 2022. High-Precision Bootstrapping for Approximate Homo-

morphic Encryption by Error Variance Minimization. In Advances in Cryptology
– EUROCRYPT 2022.

[33] Yongwoo Lee, Joon-Woo Lee, Young-Sik Kim, and Jong-Seon No. 2020. Near-

Optimal Polynomial for Modulus Reduction Using L2-Norm for Approximate

Homomorphic Encryption. IEEE Access PP (08 2020), 1–1. https://doi.org/10.

1109/ACCESS.2020.3014369

[34] Baiyu Li and Daniele Micciancio. 2021. On the Security of Homomorphic En-

cryption on Approximate Numbers. In Advances in Cryptology – EUROCRYPT
2021, Anne Canteaut and François-Xavier Standaert (Eds.). Springer International
Publishing, Cham, 648–677.

[35] Baiyu Li, Daniele Micciancio, Mark Schultz, and Jessica Sorrell. 2022. Securing

Approximate Homomorphic Encryption Using Differential Privacy. In Advances
in Cryptology - CRYPTO 2022, Yevgeniy Dodis and Thomas Shrimpton (Eds.).

Springer, 560–589. https://doi.org/10.1007/978-3-031-15802-5_20

[36] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. 2017. Multikey

Fully Homomorphic Encryption and Applications. SIAM J. Comput. 46, 6 (2017),
1827–1892. https://doi.org/10.1137/14100124X

https://eprint.iacr.org/2019/939
https://doi.org/10.1145/3548606.3560696
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/3319535.3363207
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1145/3338469.3358940
https://doi.org/10.1145/3338469.3358940
https://doi.org/10.1007/BF01397083
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1186/s12864-022-08469-w
https://doi.org/10.1186/s12864-022-08469-w
https://doi.org/10.1109/TC.2015.2441714
https://doi.org/10.1109/TC.2015.2441714
https://ia.cr/2020/1355
https://doi.org/10.1186/s12920-018-0401-7
https://doi.org/10.1186/s12920-018-0401-7
https://doi.org/10.1186/s12920-020-0722-1
https://doi.org/10.1186/s12920-020-0722-1
https://doi.org/10.1016/j.cels.2021.07.010
https://proceedings.mlr.press/v162/lee22e.html
https://doi.org/10.1109/ACCESS.2022.3159694
https://doi.org/10.1109/ACCESS.2020.3014369
https://doi.org/10.1109/ACCESS.2020.3014369
https://doi.org/10.1007/978-3-031-15802-5_20
https://doi.org/10.1137/14100124X

Homomorphic Multiple Precision Multiplication for CKKS
and Reduced Modulus Consumption

[37] Qian Lou and Lei Jiang. 2021. HEMET: A Homomorphic-Encryption-Friendly

Privacy-Preserving Mobile Neural Network Architecture. In Proceedings of the
38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event (Proceedings of Machine Learning Research, Vol. 139), Marina Meila

and Tong Zhang (Eds.). PMLR, 7102–7110. http://proceedings.mlr.press/v139/

lou21a.html

[38] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2013. A Toolkit for Ring-

LWE Cryptography. In Advances in Cryptology – EUROCRYPT 2013, Thomas

Johansson and Phong Q. Nguyen (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 35–54.

[39] AnishaMukherjee, Aikata Aikata, Ahmet CanMert, Yongwoo Lee, Sunmin Kwon,

Maxim Deryabin, and Sujoy Sinha Roy. 2023. ModHE: Modular Homomorphic

Encryption Using Module Lattices: Potentials and Limitations. Cryptology ePrint

Archive, Paper 2023/895. https://eprint.iacr.org/2023/895 https://eprint.iacr.org/

2023/895.

[40] SEAL 2020. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL.

Microsoft Research, Redmond, WA..

http://proceedings.mlr.press/v139/lou21a.html
http://proceedings.mlr.press/v139/lou21a.html
https://eprint.iacr.org/2023/895
https://eprint.iacr.org/2023/895
https://eprint.iacr.org/2023/895
https://github.com/Microsoft/SEAL

	Abstract
	1 Introduction
	1.1 Homomorphic Euclidean division and ciphertext decomposition
	1.2 Multiplication of decomposed ciphertexts
	1.3 Double-CKKS and Tuple-CKKS
	1.4 Asymptotic gain
	1.5 Concrete examples
	1.6 Related works

	2 Preliminaries
	2.1 The CKKS encryption scheme
	2.2 CKKS multiplication
	2.3 CKKS bootstrapping

	3 Homomorphic Euclidean division
	3.1 Homomorphic Euclidean division
	3.2 Pair representation
	3.3 Tuple representation

	4 Homomorphic double-precision multiplication
	4.1 Tools
	4.2 Multiplication for pair representations
	4.3 Bounding the low parts

	5 Homomorphic multi-precision multiplication
	5.1 Tools
	5.2 Multiplication for tuple representation
	5.3 Bounding the low parts

	6 Experiments
	6.1 Error growth
	6.2 Increased homomorphic capacity
	6.3 Increased precision

	7 Conclusion
	References

