
Sloth: Key Stretching and Deniable Encryption using Secure
Elements on Smartphones

Daniel Hugenroth
University of Cambridge

dh623@cam.ac.uk

Alberto Sonnino
MystenLabs & University College London

alberto@mystenlabs.com

Sam Cutler
The Guardian

sam.cutler@theguardian.com

Alastair R. Beresford
University of Cambridge

arb33@cam.ac.uk

ABSTRACT

Privacy enhancing technologies must not only protect sensitive
data in-transit, but also locally at-rest. For example, anonymity
networks hide the sender and/or recipient of a message from net-
work adversaries. However, if a participating device is physically
captured, its owner can be pressured to give access to the stored
conversations. Therefore, client software should allow the user to
plausibly deny the existence of meaningful data. Since biometrics
can be collected without consent and server-based authentication
leaks metadata, implementations typically rely on memorable pass-
words for local authentication.

Traditional password-based key stretching lacks a strict time
guarantee due to the ease of parallelized password guessing by
attackers. This paper introduces Sloth, a key stretching method
leveraging the Secure Element (SE) commonly found in modern
smartphones to provide a strict rate limit on password guessing.
While this would be straightforward with full access to the SE,
Android and iOS only provide a very limited API. Sloth utilizes the
existing developer SE API and novel cryptographic constructions
to build an effective rate-limit for password guessing on recent
Android and iOS devices. Our approach ensures robust security
even for short, randomly-generated, six-character alpha-numeric
passwords against adversaries with virtually unlimited computing
resources. Our solution is compatible with approximately 96% of
iPhones and 45% of Android phones and Sloth seamlessly integrates
without device or OS modifications, making it immediately usable
by app developers today. We formally define the security of Sloth
and evaluate its performance on various devices.

Finally, we present HiddenSloth, a plausibly-deniable encryp-
tion scheme leveraging Sloth. It provides multi-snapshot resistance
against adversaries who can covertly capture its on-disk content
multiple times.

KEYWORDS

key stretching, deniable encryption, secure element, password hash-
ing, Android, iOS

This work has been published in Proceedings on Privacy Enhancing
Technologies 2024. It is available here: https://petsymposium.org/p
opets/2024/popets-2024-0123.php.

1 INTRODUCTION

Smartphones store very sensitive information, ranging from corpo-
rate secrets to our most intimate messages and pictures. All users
rely on their smartphones to protect their data when devices are lost,
stolen, or seized. This is accomplished at the device level through
full disk encryption. Apps with strong security requirements typi-
cally introduce an additional layer of encryption. Examples include
password managers and wallets for digital currency which store
sensitive data and need to work offline.

While such apps often allow access using biometrics as a conve-
nience, they typically require a master password as a fallback since
sensor readings might be unreliable or to facilitate access by differ-
ent people. In some cases, apps may intentionally avoid biometric
authentication due to concerns about false positives or a desire
to prevent involuntary unlocking of the secret: a user can deny
knowledge of a password, whereas fingerprints can be obtained
without their consent.

Thewhistleblowing systemCoverDrop [1] (presented at PETS ’22)
is an example of a system requiring plausibly-deniable encryption.
In particular, the set of potential sources that might have leaked
confidential information is necessarily small. This allows adver-
saries to enumerate suspects in order to then investigate them and
their devices. Since CoverDrop is installed as part of a regular news
app, its presence on disk is not suspicious per se. Importantly, in
the plausibly-deniable encryption scheme the adversary cannot dis-
tinguish whether they are given a wrong passphrase or the user has
not used the CoverDrop feature. However, the encryption scheme
presented in the CoverDrop design has limitations: its strength is
proportional to the size of the stored data, it has no formal security
model, and it does not work on iOS devices.

Passwords present a significant challenge: user-chosen pass-
phrases are typically low-entropy, something which is particularly
true on mobile devices with small on-screen keyboards. This makes
apps that use passwords vulnerable to brute-force attacks. As a
countermeasure, apps typically use key stretching schemes to in-
crease the cost for an adversary. Such schemes increase the com-
putational costs, e.g. PBKDF2, or use memory-hard functions, e.g.
Argon2. Unfortunately, we have to choose high (and thus expen-
sive) parameters in anticipation that the adversary has access to
many computers.

Modern smartphones come with a built-in Secure Element (SE),
a separate chip that is hardened against physical tampering and
side-channel attacks, and contains its dedicated CPU, RAM, storage,
and operating system. The SE communicates with the rest of the

1

https://petsymposium.org/popets/2024/popets-2024-0123.php
https://petsymposium.org/popets/2024/popets-2024-0123.php

Daniel Hugenroth, Alberto Sonnino, Sam Cutler, and Alastair R. Beresford

system bymessage passing which means that even a local adversary
with kernel-level privileges and hardware access cannot break the
security properties of the SE. While the smartphone vendor can
deploy custom code to the SE, including to rate limit operations,
app developers only have access to a limited API that provides
standard cryptographic operations.

Nevertheless, in this paper, we show that it is possible to build an
effective key stretching scheme with SEs as found on smartphones
today by using the limited bandwidth of the chip as an intentional
bottleneck. Under the assumption that the SE is secure, this places
an absolute time cost on each attempt to guess a password since
the adversary is forced to make all guesses via the SE, and access to
additional computational power is of no benefit. This is in contrast
to traditional key stretching schemes where difficult trade-offs are
required. For example, an increase in the number of rounds of a
key stretching scheme increases the cost of a successful attack for
a password of a given strength but also increases the time taken by
the app to authenticate the legitimate user.

In this paper, we also explore particularly sensitive scenarios
where encryption in itself might not be enough, and we consider
the case where the user may need to deny the existence of any
meaningful content at all. In a deniable encryption (DE) scheme the
decryption function always fails unless it is called with the correct
password (if any such password exists). However, decryption failure
is not distinguishable from trying to decrypt any (random) byte
string that does not contain hidden information. This requires an
app to initialize on installation any local state using a randomly-
encrypted ciphertext. Such DE schemes can be used to build deni-
able storage containing hidden volumes. DE schemes inherently
rely on passwords as a means of deniable authentication and our
work provides an effective SE-backed DE scheme. We extend our
DE scheme so that it leaks no information even if an attacker is
given multiple storage snapshots; e.g., access to several snapshots
of the device state might be available through cloud backups.

We make the following contributions.

(1) We design the Sloth key stretching scheme to provide effec-
tive rate-limiting against powerful adversaries. Our scheme
is practical since it uses existing APIs and does not require
software or hardware modifications.

(2) We evaluate these schemes on different Android and iOS
phone models and show that even short passwords of six
alpha-numerical characters provide strong security against
the most powerful adversaries while keeping user-initiated
unlock operations faster than 1 second.

(3) We formally capture the security of schemes using SEs by
introducing the model of a wall-time-bounded (WT) adver-
sary with oracle access to the SE; we prove the Sloth scheme
secure in this setting.

(4) We design the HiddenSloth DE scheme that can withstand
multi-snapshot adversaries and prove it secure.

We had to overcome the following key challenges. Mobile apps are
sandboxed and can only access a limited API. In particular, SEs do
not provide explicit rate-limiting APIs and apps cannot run cus-
tom code on the SE. Documentation for both platform is limited
requiring both an availability survey (Appendix A) and exploratory

engineering. Our design required bespoke formalization to allow
for security analysis which is different from the one used for com-
putationally and memory-hard key stretching functions.

2 BACKGROUND

Hardware support for executing code in a secure context is available
in most modern smartphones. Trusted Execution Environments
(TEE) are the first architecture that achieved wide integration. TEE
implementations, such as ARM TrustZone [35], run on the main
chip, but in a privileged context so that even a compromised Ker-
nel cannot manipulate them. However, TEEs generally come with
limited protection against side-channel and physical attacks. Se-
cure Elements (SE) are standalone components with their dedicated
CPU, memory, and storage. This provides stronger isolation and
protection against physical attacks.

Android allows developers to create and use keys via its API
which abstracts a Keymaster interface to manage keys. From API
level 23 (Android 6.0 M, released 2015) application developers can
verify that keys are stored inside secure hardware. For phones
released around 2015, this would typically mean that they are man-
aged by a Keymaster implementation inside a TEE. However, from
API level 28 (Android 9 P, released 2018), Android supports the
StrongBox Keymaster implementation which must be implemented
using an SE [20, 22]. Google has supported StrongBox in its flagship
models since the Pixel 3 release in 2018. Other devices might have
included SEs before this, but app developers would not have been
able to use them.

Apple refers to SEs in their devices as a Secure Enclave and they
have been supported in iOS devices since the iPhone 5S (released
2013) [4]. From the beginning, they have been used to protect
biometric data and secure device encryption. However, they only
were exposed to app developers with iOS 13 (released 2019) [7].

While TEEs and SEs allow for a much smaller implementation
and attack surface, they are not impenetrable. Researchers have suc-
cessfully extracted private keys from TrustZone implementations
from Qualcomm [38] and Samsung [39]. Intel’s SGX extension is
similar in broad terms to TrustZone where there are many docu-
mented attacks [31].

Appendix A provides a survey on the availability of SEs in mod-
ern smartphones, their APIs, and their performance. We find that
96% of iPhones and 45% of Android devices provide SE access to app
developers. Virtually all recent devices have at least TEE-backed
key protection.

2.1 Android and iOS APIs

Code that runs on the SE is (by design) executed without any
control by the operating system. Therefore, platforms do not allow
developers to run custom code. Instead, they offer access to specific
cryptographic operations through APIs. These APIs serialize the
user request and send it to the SE where it is parsed and executed.
The result is returned similarly.

We discuss the API on iOS first as it consists of very few oper-
ations. This provides a minimal attack surface, but as we will see
later, it also stands in the way of efficient software implementation.
At the time of writing, iOS only supports storing private EC keys of
type P256 [8]. Once created inside the SE, the API provides methods

2

Sloth: Key Stretching and Deniable Encryption using Secure Elements on Smartphones

pre-
processing SE-OP post-

processing

SE

Figure 1: Overview of all Sloth schemes. The user password,

𝑝𝑤 , is first pre-processed on the device with access to de-

vice state 𝜋 , producing𝜔𝑝𝑟𝑒 ; the SE executes a cryptographic

function over 𝜔𝑝𝑟𝑒 using its internal (hidden) state 𝜓 ; the

SE’s output, 𝜔𝑝𝑜𝑠𝑡 , is then returned to the device; the device

can then post-process 𝜔𝑝𝑜𝑠𝑡 , for example by applying a key

derivation function, resulting in 𝑘 as the final output.

to sign data, output the corresponding public key, and perform key
agreement via ECDH. The API also provides methods for encrypt-
ing and decrypting data. However, the documentation is not clear
on whether this happens entirely within the SE, or whether the
ECDH result is shared with an AES engine outside the chip. We
provide additional discussion on why the iOS API does not allow
simpler schemes in Appendix B.

The Android API offers more operations and key types to de-
velopers. It uses the Keymaster API which abstracts the actual key
handling from the user. Device vendors implement the Keymas-
ter HAL which serializes the API calls and communicates with
the backend. This backend could be a service running in a TEE or
SE. For our paper, we are interested in the StrongBox Keymaster
implementation which requires using a SE [22]. It guarantees the
availability of the following algorithms: RSA-2048, AES-128/256,
ECDSA P-256, ECDH P-256, HMAC-SHA256, and 3DES. The avail-
ability of symmetric cryptography allows us to come up with a
simpler design for Android devices. However, it also increases the
complexity of the implementation that device manufacturers have
to provide. Android recently added a new API setMaxUsageCount
for OS version 12+ (Android S, API 31) that deletes the key after
a given number of operations. While it would be convenient, it is
implemented at the OS level1, as StrongBox does not have suffi-
cient persistent per key storage and thus cannot manage respective
counters internally.

3 SYSTEM OVERVIEW

Figure 1 provides a high-level overview common to all our Sloth
schemes. Sloth distinguishes between two execution spaces: the
general device space and the SE. We assume operations performed
on the main device may be controlled by the adversary (e.g. using
a local kernel exploit) while we assume the SE is a separate piece
of hardware and remains secure (see Section 3.1). The user inputs
a password, 𝑝𝑤 , in the user space. The sloth schemes start by pre-
processing 𝑝𝑤 using the state 𝜋 ∈ Π where 𝜋 is accessible in user

1https://cs.android.com/android/platform/superproject/+/master:system/keymint/c
ommon/src/tag.rs;l=314-333;drc=ed657df7c7b329fb3d26eb0ce88af92594245ae8

space; the output of this pre-preprocessing step, 𝜔𝑝𝑟𝑒 , is given as
input to the SE. The SE maintains its own secure state,𝜓 ∈ Ψ, with
cryptographic keys inaccessible to the device. Each key maintained
in𝜓 is associated with a unique (and public) key handle ℎ. The SE
accesses𝜓 and executes a cryptographic operation SE-Op; its output
𝜔𝑝𝑜𝑠𝑡 is returned to the user space for further post-processing to
derive the final key 𝑘 . The key 𝑘 can then be used for authentication,
full disk encryption, or deniable encryption protocols.

3.1 Threat Model

We assume an adversary can physically capture the device. For
instance, they find a lost device on the street or stop the user at
a border crossing. Before the capture, we assume that the device
can be securely and confidentially operated by the user. After the
capture, only the SE resists full-access by the adversary.

The adversary aims to determine whether the device contains
any user data that has been encrypted with a password and if so
recover the password, and therefore the data. We assume passwords
are a sequence of characters, including passphrases. Further, we
assume that if the adversary can determine that encrypted infor-
mation is present on the device, they pressure the user with this
evidence and obtain the correct password. In other words, a suc-
cessful scheme must provide plausible deniability and prevent an
adversary from distinguishing between encrypted information and
random data.

There are many proposals [18, 26, 29, 30, 34, 36, 41] for plausibly-
deniable encryption (DE). They typically feature a multi-volume
model where one passphrase unlocks a benign cover volume and an-
other passphrase unlocks a hidden volume with sensitive data. For
simplicity, our definitions are single-volume—challenging the ad-
versary to decide between encryption of padded data and a random
bitstring of the same pre-defined length. Nevertheless, our simpler
model can be exchanged for a multi-volume one from existing work
and then wrapped with HiddenSloth to provide multi-snapshot
guarantees. Stenographic approaches, i.e. an attacker cannot deter-
mine whether any DEwas used, typically require subtle interactions
with the underlying layers. Therefore, they are not easily compat-
ible with our HiddenSloth scheme. However, both multi-volume
models and stenographic techniques allow for our key stretching
schemes to be used as drop-in replacements when processing the
user passphrase.

User-chosen passwords are typically of low-entropy as users re-
use the same passwords across different services and choose easy
to guess words and numbers. Therefore, we designed Sloth to allow
for short, memorable passphrases that are generated for the user.
Since these are randomly generated, we can assume that they are
uniformly distributed. In particular, we assume for the remainder
of the paper that the probability distribution of passphrases X has
Shannon entropy𝑚. I.e. for all passphrases 𝑝𝑤 in the support of
X and for random variable 𝑋 drawn according to X, Prob(𝑋 =

𝑎) = 2−𝑚 . However, developers integrating with Sloth might also
allow user-chosen passphrases and follow our arguments using a
min-entropy distribution similar as in the HKDF paper [28].

The adversary can also use the secure element SE as a black box
and can perform any operations via the available API (through Ora-
cle queries which we denote O𝑆𝐸). However, the adversary cannot

3

https://cs.android.com/android/platform/superproject/+/master:system/keymint/common/src/tag.rs;l=314-333;drc=ed657df7c7b329fb3d26eb0ce88af92594245ae8
https://cs.android.com/android/platform/superproject/+/master:system/keymint/common/src/tag.rs;l=314-333;drc=ed657df7c7b329fb3d26eb0ce88af92594245ae8

Daniel Hugenroth, Alberto Sonnino, Sam Cutler, and Alastair R. Beresford

extract information about the key material from the SE and they
cannot clone the SE. Similar guarantees are given by Apple for their
Secure Enclave [4] and Google for StrongBox implementations [22].
These claims are taken seriously by vendors: Apple and Google
award up to $250,000 [6] and $1,000,000 [21], respectively, for the
discovery of relevant vulnerabilities.

We introduce an abstract definition of an SE. The SE operates on
a state𝜓 that can only be (meaningfully) accessed by it. In practice,
many SEs have limited internal storage and store an authenticated
ciphertext of their state on storage managed by the OS. This en-
cryption is performed using a secret internal key. As the encrypted
key blobs are stored outside the SE, this can allow an attacker to
perform roll-back attacks which we discuss as a practical limitation
in Section 5.3. For our threat model we assume that the adversary
can capture all application data, such as code and stored data, as
well as the encrypted key blobs. A multi-snapshot adversary might
capture the application data multiple times (e.g. through automated
cloud backups), but the encrypted key blobs are only available once
they physically capture the device.

In our definitions, the explicit passing of the state models this
behavior. Definition 1 introduces a generic SE as there exist SEs
with different capabilities. Later sections introduce more specialized
definitions for SEs with various capabilities.

Definition 1 (Secure Element). A Secure Element SE operates on
a hidden state 𝜓 ∈ Ψ using the algorithm SE.Init and possible
extension algorithms. It also has a timing function TAlg that maps
each algorithm Alg and its arguments to a wall time cost. SE.Init :
∅ → Ψ initializes an empty state Ψwith TSE.Init () = 1. Only the SE
that initialized the state can operate on it with any of the extension
algorithms.

We assume the adversary has a limited wall time budget 𝐵 that
is spent when performing oracle operations. The costs for each
operation op is defined by Top and deduced from 𝐵 before it is
executed. We require that the adversary ends the experiment with
a non-negative time budget 𝐵 ≥ 0. We define for any algorithm
(including adversary and challenger):

Definition 2 (Wall Time Algorithm). A wall time (WT) algorithm
is a PPT algorithm 𝐴 with an initial wall time budget of 𝐵𝐴 ∈ N.
During its execution it can perform the operations op𝑖 (𝑝1, 𝑝2, . . .)
using the oracle O𝑆𝐸 given

∑
𝑖 Top𝑖 (𝑝1, 𝑝2, . . .) ≤ 𝐵𝐴 .

In comparison to standard security definitions, the strength is
no longer supported by just asymptotic computational effort in
𝑝𝑜𝑙𝑦 (𝜆), but also by a concrete wall time budget 𝐵. This is a strong
property, as it is independent of advances in processing power or
utilizing more machines.

3.2 Notations

Throughout the paper, let 𝜆 be a freely chosen but fixed security
parameter. We write 𝑥 .𝑦 ← 𝑧 to denote the assignment of value 𝑧
to the field 𝑦 of a named-tuple 𝑥 . Table 1 summaries the symbols
used in the rest of the paper.

4 THE SLOTH KEY STRETCHING SCHEME

We now describe the design of two concrete variants of our key
stretching scheme Sloth. In both cases we leverage the limited

Algorithms and schemes

HKDF Key derivation function
Ξ Key stretching scheme
Δ Deniable encryption scheme

Parameters

𝜆 Security parameter for computational security
𝑙 Length of 𝜔𝑝𝑟𝑒 in LongSloth
𝑛 Count of 𝜔𝑝𝑟𝑒s in RainbowSloth

Variables

𝑝𝑤 ∈ P The user password (space)
𝑚 The Shannon entropy of the password distribution
𝜋 ∈ Π Storage state (space)
𝜓 ∈ Ψ State (space) inside the SE
ℎ ∈ 𝐻 Key handle (space) for the SE
𝜔 An intermediate secret
𝑘 The final derived secret key

Table 1: We use these symbols for algorithms, parameters,

and variables in our descriptions throughout the paper.

throughput of the SE to effectively rate-limit password guessing.
The variant LongSloth (Section 4.1) only uses symmetric operations
and is simpler. In particular, it uses an HMAC operation and by
increasing the required length of its input, we can reduce the guess
rate. However, LongSloth is incompatible with the iOS API which
does not offer symmetric cryptographic operations. The variant
RainbowSloth (Section 4.2) is compatible with both Android and
iOS APIs as it only requires support for a DH key exchange, but
at the cost of higher complexity and additional assumptions. In
RainbowSloth, we make the final key dependent on the result of
multiple ECDH operations and thus we can reduce the guess rate
by increasing the required number of key agreements.

4.1 LongSloth: Simple Key Stretching Scheme

LongSloth exclusively relies on symmetric operations both outside
and inside the secure element SE. This enables extremely efficient
implementations on Android, but cannot be implemented on iOS
(see Section 4.2 for a variant compatible with iOS). Particularly,
LongSloth operates on an SE equipped with HMAC support:

Definition 3 (SE with HMAC Support). A Secure Element with
HMAC support SE-with-Hmac is an SE that has two extension
algorithms:
SE.HmacKeyGen : Ψ × 𝐻 → Ψ generates a new secret key 𝑘 and

updates𝜓 ∈ Ψ under handle ℎ ∈ 𝐻 :𝜓 .ℎ ← 𝑘 requiring time
TSE.HmacKeyGen (𝜓,ℎ) = Θ(1).

SE.Hmac : Ψ × 𝐻 ×𝑀 → {0, 1}𝜆 takes a message𝑚 ∈ 𝑀 and a
key handle ℎ ∈ 𝐻 and outputs theHMAC(𝜓,ℎ,𝑚) result of a
message𝑚 ∈ 𝑀 = {0, 1}∗ requiring time TSE.Hmac (𝜓,ℎ,𝑚) =
𝑐Hmac · |𝑚 | = Θ(|𝑚 |), where 𝑐Hmac is a device specific con-
stant.

4

Sloth: Key Stretching and Deniable Encryption using Secure Elements on Smartphones

Algorithm 1 The LongSloth protocol with the security parameters
𝑙 , 𝜆 freely chosen, but fixed.

1: procedure LongSloth.KeyGen(𝜓, 𝑝𝑤,ℎ)
2: 𝜋 ← {}
3: 𝜋.ℎ ← ℎ

4: 𝜋.𝑠𝑎𝑙𝑡
$← {0, 1}𝜆

5: 𝜓 ← SE.HmacKeyGen(𝜓,ℎ)
6: 𝑘 ← LongSloth.Derive(𝜋,𝜓, 𝑝𝑤)
7: return (𝜋,𝜓, 𝑘)
8:
9: procedure LongSloth.Derive(𝜋,𝜓, 𝑝𝑤)
10: 𝜔𝑝𝑟𝑒 ← PwHash(𝜋.𝑠𝑎𝑙𝑡, 𝑝𝑤, 𝑙)
11: 𝜔𝑝𝑜𝑠𝑡 ← SE.Hmac(𝜓, 𝜋 .ℎ, 𝜔𝑝𝑟𝑒)
12: 𝑘 ← Hkdf(𝜔𝑝𝑜𝑠𝑡)
13: return 𝑘

Algorithm 1 describes the main operations of LongSloth. The
procedure LongSloth.Derive (Line 9) outputs a potentially exist-
ing key. During the pre-processing step (see Figure 1), LongSloth
expands a user password to a bit string 𝜔𝑝𝑟𝑒 . This is achieved using
the PwHash operation that reads a salt value from the local storage
and then hashes the user password to a variable length output. The
output length 𝑙 = |𝜔𝑝𝑟𝑒 | is a configurable parameter to limit the
guess rate based on the SE throughput rate. Next, 𝜔𝑝𝑟𝑒 is computed
by the SE-OP securely inside the SE with a key selected by the
key handle ℎ. This operation is an HMAC producing 𝜔𝑝𝑜𝑠𝑡 that is
then hashed into the final key output 𝑘 = Hkdf(𝜔𝑝𝑜𝑠𝑡) using the
hash-based key derivation function HKDF [28].

The generation of a new key 𝑘 is done similarly. The procedure
LongSloth.KeyGen (Line 1) first initializes a new state 𝜋 with the
key handle ℎ and a fresh random salt value. The SE then generates
a new HMAC key under ℎ. It returns the updated state and the key
𝑘 by calling LongSloth.Derive.

Security intuition. LongSloth is designed to withstand an adver-
sary with a wall time budget 𝐵 < 2𝑚 ·𝑙 ·𝑐Hmac. That is, the adversary
would need to call 2𝑚 times the operation SE.Hmac(𝑥) with |𝑥 | = 𝑙

(see Definition 2) to try all possible user passwords. Intuitively, the
security of LongSloth relies on the observation that such an adver-
sary is unable to distinguish a key 𝑘 generated by LongSloth from
a random bit string. Section 6 provides a formal security analysis
based on the observation that HMAC is a PRF [12].

4.2 RainbowSloth: Key Stretching for iOS

RainbowSloth relies on an SE equipped with support for Elliptic
Curve Diffie-Hellman (ECDH) key exchanges (Definition 4). Rain-
bowSloth is more complex than LongSloth but is compatible with
both Android and iOS.

Definition 4 (SE with ECDH Support). A Secure Element with
Elliptic Curve Diffie-Hellman support SE-with-Ecdh is a SE that
has two extension algorithms:

SE.EcdhPrivKeyGen : Ψ ×𝐻 → Ψ generates a private EC key 𝑘
and updates𝜓 ∈ Ψ under handle ℎ ∈ 𝐻 :𝜓 .ℎ ← 𝑘 requiring
time TSE.EcdhPrivKeyGen (𝜓,ℎ) = Θ(1).

pre-
processing SE-OP

SE

SE-OP

...

KDF

Figure 2: RainbowSloth scheme with a sequence of 𝜔𝑝𝑟𝑒,𝑖 in-

puts. The dashed area indicates the SE. Since there is no par-

allelism, all SE-Op are executed sequentially.

SE.Ecdh : Ψ × 𝐻 × 𝑝𝑢𝑏 → {0, 1}𝜆 takes a EC public key 𝑝𝑢𝑏

and a key handle ℎ ∈ 𝐻 and outputs the key exchange
result Ecdh(𝜓 .ℎ, 𝑝𝑢𝑏) requiring time TSE.Ecdh (𝜓,ℎ, 𝑝𝑢𝑏) =
𝑐Ecdh = Θ(1), where 𝑐Ecdh is a device specific constant.

In contrast to LongSloth, RainbowSloth computes a sequence
of fixed-sized public keys as its pre-secrets 𝜔𝑝𝑟𝑒,𝑖 (see Figure 2).
The processing speed of each ECDH operation is constant since the
public key size is defined by the underlying elliptic curve. Instead
of increasing the input length of each operation, RainbowSloth
increases the required number of SE-Op executions to achieve a
given throughput limit.

Algorithm 2 describes the main operations of RainbowSloth. The
procedure RainbowSloth.Derive decrypts a potentially existing
key. It first expands the user password into multiple bit strings
𝜔𝑝𝑟𝑒,𝑖 with 𝑖 ∈ [1, 𝑛] calling PwHash. Those bit strings are then
formatted into P-256 public keys (Line 13). The SE uses the key
handle ℎ to select a private P-256 key and computes an ECDH
operation with each𝜔𝑝𝑟𝑒,𝑖 (Line 14). Since the SE has no parallelism,
these operations take place one after another. The resulting values
𝜔𝑝𝑜𝑠𝑡,𝑖 , 𝑖 ∈ [1, 𝑛] are then jointly hashed into a final key 𝑘 such
that each contributes to all bits of 𝑘 .

The generation of a new key 𝑘 is done similarly. The procedure
RainbowSloth.KeyGen (Line 1) first initializes a new state 𝜋 with
the key handle ℎ and a fresh random salt value. The SE then creates
a new P-256 key under ℎ. It returns all updated states and the key
𝑘 by calling RainbowSloth.Derive as described above.

Security intuition. RainbowSloth is designed to withstand an
adversary with wall time budget 𝐵 < 2𝑚 ·𝑛 ·𝑐Ecdh (see Definition 2);
the adversary would need to call 2𝑚 · 𝑛 times SE.Ecdh to try all
possible user passwords. Similarly to LongSloth, the security of
RainbowSloth relies on the observation that the adversary is unable
to distinguish a key 𝑘 generated by RainbowSloth from a random
bit string. Section 6 provides a formal security analysis assuming
the SE runs the ECDH operations in a group where the generalized
decisional Diffie-Hellman problem is hard [11].

Hashing into the P-256 public key space. RainbowSloth re-
quires an operation HashToP256 that maps any bit-string 𝑠𝑒𝑒𝑑 ∈

5

Daniel Hugenroth, Alberto Sonnino, Sam Cutler, and Alastair R. Beresford

Algorithm 2 The RainbowSloth protocol with the security pa-
rameters 𝑛, 𝜆 freely chosen, but fixed.

1: procedure RainbowSloth.KeyGen(𝜓, 𝑝𝑤,ℎ)
2: 𝜋 ← {}
3: 𝜋.ℎ ← ℎ

4: 𝜋.𝑠𝑎𝑙𝑡
$← {0, 1}𝜆

5: 𝜓 ← SE.EcdhPrivKeyGen(𝜓,ℎ)
6: 𝑘 ← RainbowSlowth.Derive(𝜋,𝜓, 𝑝𝑤)
7: return (𝜋,𝜓, 𝑘)
8:
9: procedure RainbowSloth.Derive(𝜋,𝜓, 𝑝𝑤)
10: 𝑙 ← 𝑛 · (256

8)
11: 𝜔𝑝𝑟𝑒,1 ∥ · · · ∥ 𝜔𝑝𝑟𝑒,𝑛 ← PwHash(𝜋.𝑠𝑎𝑙𝑡, 𝑝𝑤, 𝑙)
12: for i = 1 . . . n do

13: 𝑥 ← ReHashToP256(𝜔𝑝𝑟𝑒,𝑖)
14: 𝜔𝑝𝑜𝑠𝑡,𝑖 ← SE.Ecdh(𝜓, 𝜋 .ℎ, 𝑥)
15: 𝑘 ← Hkdf(𝜔𝑝𝑜𝑠𝑡,1 ∥ · · · ∥ 𝜔𝑝𝑜𝑠𝑡,𝑛)
16: return 𝑘

{0, 1}∗ to a valid P-256 public key. Each P-256 public key can be rep-
resented by 256 bits for its X-coordinate and a bit that determines
the Y-coordinate [17]. However, not all possible 257-bit strings refer
to valid public keys, as the key space only has size 2256. We designed
the ReHashToP256 algorithm and use it in our practical evaluation
(Section 7).

The ReHashToP256 algorithm (see Algorithm 3) considers the
SEC-1 octal representation of P-256 curve points with point com-
pression [17]. The representation for P-256 keys starts with a byte
that is either 0x02 or 0x03 for the Y-coordinate information bit fol-
lowed by 32 bytes for the X-coordinate. The algorithm repeatedly
hashes the seed string and a counter to a candidate octet array. The
first octet is then set as 0x02 or 0x03 based on the parity of the
original value of the first octet. We try to convert each candidate
array to a P-256 public key using the Sec1OctetImportP256 algo-
rithm [17, 2.3.4]. If it returns “invalid" (⊥) or the point at infinity
(O), the counter is incremented and the algorithm is repeated. Oth-
erwise, a valid P-256 public key is returned. A similar approach is
sketched in the Elligator paper [13, 1.4].

The runtime of this algorithm depends on finding a valid public
key representation in one of its iterations. Since the output of the
KDF can be considered pseudo-random, each iteration is indepen-
dent and roughly half of the candidate octet arrays are invalid. We
thus expect that the algorithm terminates with less than 10 itera-
tions in 1−0.510 > 99.9% of all cases. Hashingwith a counter instead
of re-hashing the seed avoids falling into small loops that consist
only of “bad seeds”. While long executions are unlikely, we are
unaware of proofs of this algorithm’s polynomial-time termination.

Alternatively, one might build this operation using the Elliga-
tor Squared (𝐸2) [42] technique. 𝐸2 maps an elliptic curve point to
a bit string that is indistinguishable from random. Such a bit string
can then be mapped back to an elliptic curve point. While it can be
computed efficiently [9], 𝐸2 bit strings require more space. A more
practical concern is that we are not aware of any freely available
implementation. However, if deterministic runtime is required, 𝐸2

can be used as a drop-in replacement for ReHashToP256.

Algorithm 3 The ReHashToP256 algorithm that maps any bit-
string 𝑠𝑒𝑒𝑑 ∈ {0, 1}∗ to a valid P-256 public key.
1: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0
2: while true do

3: 𝑎𝑟𝑟 ← HKDF(𝑠𝑒𝑒𝑑 ∥ 𝑐𝑜𝑢𝑛𝑡𝑒𝑟) [0 : 32]
4: 𝑎𝑟𝑟 [0] = 0x02 | (𝑎𝑟𝑟 [0] & 0x01)
5: 𝑥 = Sec1OctetImportP256(𝑎𝑟𝑟)
6: if 𝑥 ≠ ⊥ and 𝑥 ≠ O then return 𝑥

7: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1

5 THE SLOTH DENIABLE ENCRYPTION

SCHEME

Our generic methods to store and derive a key 𝑘 can be used to build
a deniable encryption (DE) scheme.We require a DE scheme to have
three methods: (i) an Init method that initializes a new storage
of a given maximum size, (ii) an Encrypt method that stores data
encrypted with a given password, and (iii) a Decrypt method that
retrieves and decrypts data from storage if there is any saved with
the given password (and otherwise fails).

We present two variants of our deniable encryption scheme,
1S-HiddenSloth (Section 5.1) and MS-HiddenSloth (Section 5.2). 1S-
HiddenSloth always pads the (potentially empty) payload to a fixed
sized and then encrypts it with either a derived passphrase or a
random key. Thus, it withstands an adversary capable of capturing
a single snapshot of the user’s device. MS-HiddenSloth wraps 1S-
HiddenSloth into another layer of symmetric encryption using
a key stored in the SE that is frequently rotated. This technique
allows re-encryption without user interaction resulting in different
ciphertexts that mimic encryption of new content by the user. Thus,
MS-HiddenSloth withstands an adversary capable of capturing
multiple snapshots at different points in time.

5.1 1S-HiddenSloth: Single-Snapshot

For most real-world scenarios, the single-snapshot adversary is the
most realistic threat model. An adversary gaining access to a phone
through finding or stealing it has no prior snapshot or knowledge of
the phone state, and hence cannot perform multi-snapshot attacks.
Similarly, an adversary who confiscates a device can rarely do so
covertly. If a user suspects an adversary may have taken a snapshot
of their phone, they can reset the phone and thus revert to a single-
snapshot scenario. Nevertheless, there may be situations where an
adversary can obtain multiple copies of the phone state over time;
this is addressed in Section 5.2.

Algorithm 4 presents 1S-HiddenSloth, a single-snapshot resis-
tant deniable encryption scheme. When calling the Init procedure,
the algorithm allocates a storage file 𝑏𝑙𝑜𝑏 and fills it with random
bytes to the given size (plus an allowance for overhead). This is
implemented by encrypting a zeroed payload using a randomly
chosen password (Line 5). Upon encrypting new user data by call-
ing the Encrypt procedure, the user provides a passphrase 𝑝𝑤

used to derive a cryptographic key 𝑘 (using either LongSloth or
RainbowSloth, see Section 4). The payload is then prefixed with a
4-bytes integer representing its length and padded to the maximum
size 𝑠 . The resulting byte string is encrypted using the key 𝑘 , for
instance using AES-GCM. For the Decrypt operation, the key 𝑘

6

Sloth: Key Stretching and Deniable Encryption using Secure Elements on Smartphones

Algorithm 4 The deniable encryption against single-snapshot DESS
protocol (1S-HiddenSloth) for maximum data size 𝑠 ≤ 231 and
security parameter 𝜆 freely chosen, but fixed. The underlying Sloth
protocol can be instantiated with either variant.

1: procedure DESS.Init(𝜓,ℎ, 𝑠)

2: 𝑝𝑤
$← {0, 1}𝜆

3: 𝜓, 𝜋, 𝑘 ← Sloth.KeyGen(𝜓, 𝑝𝑤,ℎ)
4: 𝜋.𝑠 ← 𝑠

5: 𝜋 ← DESS.Encrypt(𝜋,𝜓, 𝑝𝑤, [])
6: return (𝜋,𝜓)
7:
8: procedure DESS.Encrypt(𝜋,𝜓, 𝑝𝑤,𝑑𝑎𝑡𝑎)
9: 𝑘 ← Sloth.derive(𝜋,𝜓, 𝑝𝑤)
10: 𝑥 ← UInt32(|𝑑𝑎𝑡𝑎 |) ∥ 𝑑𝑎𝑡𝑎 ∥ 0 (|𝜋.𝑠 |− |𝑑𝑎𝑡𝑎 |−4)

11: 𝜋.𝑖𝑣
$← {0, 1}𝜆

12: 𝜋.𝑏𝑙𝑜𝑏, 𝜋 .𝑡𝑎𝑔← AE.Enc(𝑘, 𝑖𝑣, 𝑥)
13: return 𝜋

14:
15: procedure DESS.Decrypt(𝜋,𝜓, 𝑝𝑤)
16: 𝑘 ← Sloth.derive(𝜋,𝜓, 𝑝𝑤)
17: 𝑥 ← AE.Dec(𝑘, 𝜋 .𝑖𝑣, 𝜋 .𝑏𝑙𝑜𝑏, 𝜋 .𝑡𝑎𝑔)
18: if 𝑥 = ⊥ then return ⊥
19: 𝑠 ′ ← UInt32(𝑥 [: 4])
20: return 𝑥 [4 : 4 + 𝑠 ′]

is derived analogously and the algorithms attempt to decrypt the
beginning of the file. If this operation fails, an adversary will not
be able to tell whether the passphrase was wrong or there was no
previous call to Encrypt at all.

5.2 MS-HiddenSloth: Going Multi-Snapshot

Sometimes the storage state is available to an adversary on multiple
occasions. This may happen if an app’s data is backed up to the
cloud to protect against device loss. Intuitively, 1S-HiddenSloth does
not withstand such an adversary because changes in the ciphertext
leak whether the storage has been overwritten between the device
capture events.

MS-HiddenSloth overcomes this limitation and allows the ad-
versary to capture the storage state 𝜋 multiple times. However,
our model restricts the adversary to only access the SE once they
finally gain physical access to the device. That is, the adversary can
perform SE calls only during the last capture event. We believe this
restriction is practical as smartphones are usually with the user
and hence not likely available for covert access by the adversary2.

MS-HiddenSloth requires a SE that supports symmetric encryp-
tion. This primitive is available directly on Android. On iOS it can
be emulated by performing ECDH with a known public key and
then use the resulting shared secret for AES-GCM3.

2Also, if the adversary had such local privileged access multiple times they could
simply install malware that records the keyboard and screen.
3This is conveniently provided by the API as the SecKeyAlgorithm variant
eciesEncryptionCofactorVariableIVX963SHA256AESGCM.

Definition 5 (SE with Symmetric Encryption). A Secure Element
with symmetric encryption support SE-with-SymmEnc is an SE
that has three extension algorithms:

SE.SymmKeyGen : Ψ × 𝐻 → Ψ generates a new secret key 𝑘 and
updates𝜓 ∈ Ψ under handle ℎ ∈ 𝐻 :𝜓 .ℎ ← 𝑘 requiring time
TSE.SymmKeyGen (𝜓,ℎ) = Θ(1).

SE.SymmEnc : Ψ ×𝐻 × 𝐼𝑉 ×𝑀 → 𝐶 takes an initialization vector
𝑖𝑣 ∈ 𝐼𝑉 and a key handle ℎ ∈ 𝐻 and outputs the ciphertext
SymmEnc.Encrypt(𝜓 .ℎ, 𝑖𝑣,𝑚) = 𝑐 ∈ 𝐶 for the message𝑚 ∈
𝑀 requiring time TSE.SymmEnc (𝜓,ℎ,𝑚) = Θ(|𝑚 |).

SE.SymmDec : Ψ ×𝐻 × 𝐼𝑉 ×𝐶 → 𝑀 takes an initialization vector
𝑖𝑣 ∈ 𝐼𝑉 and a key handle ℎ ∈ 𝐻 and outputs the message
SymmEnc.Decrypt(𝜓 .ℎ, 𝑖𝑣, 𝑐) = 𝑚 ∈ 𝑀 for the ciphertext
𝑐 ∈ 𝐶 requiring time TSE.SymmEnc (𝜓,ℎ, 𝑐) = Θ(|𝑐 |).

To protect against a multi-snapshot adversary MS-HiddenSloth
wraps the storage in another layer of encryption guarded by an
additional symmetric key 𝑘𝑆𝐸 held in the SE’s secure state under
handle ℎ′. The outer layer is periodically re-encrypted using a new
temporary key 𝑡𝑘 , which in turn is re-encrypted with a fresh 𝑘𝑆𝐸 .
The re-encryption process (DEMS.Ratchet) should happen at least
as often as the adversary has the opportunity to access the stored
data. For instance, for a backed-up app, this would happen after ev-
ery upload operation. In other cases, every app restart could be used
as a trigger event. An important design feature of MS-HiddenSloth
is that it does not require the user’s password to execute the re-
encryption process; that is, the procedure DEMS.Ratchet can be
executed entirely in the background without user interaction.

MS-HiddenSloth algorithm. Algorithm 5 presents all the opera-
tions of MS-HiddenSloth. The initial state is initialized similarly to
1S-HiddenSloth but with the creation of an additional SE secret key
(𝑘𝑆𝐸) associated with the handle ℎ′ (Line 4). To encrypt new data,
MS-HiddenSloth first encrypts them as in 1S-HiddenSloth; it then
generates an ephemeral key 𝑡𝑘 that is used to re-encrypt the data
(Line 12). This ephemeral key is finally encrypted using the SE’s
secret key generated at Line 4 and stored in the user space 𝜋 . To
decrypt existing data, MS-HiddenSloth first decrypts the ephemeral
key 𝑡𝑘 (Line 21); it then uses that key to decrypt the outer en-
cryption layer (Line 22) and finally decrypt the data (Line 23). The
indirection via 𝜋.𝑡𝑘 allows to leverage the faster AES engine on the
main CPU without sacrificing security.

The re-encryption process (ratchet) works similarly to decryp-
tion followed by an encryption operation. It firsts retrieves the
temporary key 𝑡𝑘 and uses it to decrypt the outer encryption layer.
It then generates a new temporary key that is used to re-encrypt
the data and thus create a new outer encryption layer; the new
temporary key is then encrypted by the SE and persisted in the user
space. For performance reasons, MS-HiddenSloth does not perform
the re-encryption process over the actual data 𝜋.𝑏𝑙𝑜𝑏 inside the
SE; it instead re-encrypts the data with a temporary key 𝜋.𝑡𝑘 . This
temporary key 𝜋.𝑡𝑘 and its related fields 𝜋.𝑡𝑖𝑣 , 𝜋.𝑡𝑡𝑎𝑔 are freshly
generated at every encryption (Line 12) and ratchet step (Line 29);
they are only stored encrypted with the SE’s secret key generated
at Line 4.

7

Daniel Hugenroth, Alberto Sonnino, Sam Cutler, and Alastair R. Beresford

Algorithm 5 The deniable encryption against multi-snapshot DEMS
protocol (HiddenSloth) for max. size 𝑠 ≤ 231 and security param-
eter 𝜆 freely chosen, but fixed. The underlying Sloth protocol can
be instantiated with either variant.
1: procedure DEMS.Init(𝜓,ℎ, 𝑠)
2: 𝜋,𝜓, 𝑘 ← DESS.Init(𝜓,ℎ ∥ 0, 𝑠)
3: 𝜋.ℎ′ ← ℎ ∥ 1
4: 𝜓 ← SE.SymmKeyGen(𝜓, 𝜋 .ℎ′)
5: 𝜋.𝑠𝑒𝑖𝑣

$← {0, 1}𝜆

6: 𝑝𝑤
$← {0, 1}𝜆

7: 𝜋 ← DEMS.Encrypt(𝜋,𝜓, 𝑝𝑤, [])
8: return (𝜋,𝜓)
9:
10: procedure DEMS.Encrypt(𝜋,𝜓, 𝑝𝑤,𝑑𝑎𝑡𝑎)
11: 𝜋 ← DESS.Encrypt(𝜋,𝜓, 𝑝𝑤,𝑑𝑎𝑡𝑎)
12: 𝜋.𝑡𝑘 ← AE.KeyGen(); 𝜋.𝑡𝑖𝑣 $← {0, 1}𝜆
13: 𝜋.𝑏𝑙𝑜𝑏, 𝜋 .𝑡𝑡𝑎𝑔← AE.Enc(𝜋.𝑡𝑘, 𝜋 .𝑠𝑒𝑖𝑣, 𝜋 .𝑏𝑙𝑜𝑏)
14: 𝜓 ← SE.SymmKeyGen(𝜓, 𝜋 .ℎ′)
15: for K ∈ {𝑖𝑣, 𝑡𝑎𝑔, 𝑡𝑘, 𝑡𝑖𝑣, 𝑡𝑡𝑎𝑔} do

16: 𝜋.K ← SE.SymmEnc(𝜓, 𝜋 .ℎ′, 𝜋 .𝑡𝑖𝑣, 𝜋 .K)
17: return 𝜋

18:
19: procedure DEMS.Decrypt(𝜋,𝜓, 𝑝𝑤)
20: for K ∈ {𝑖𝑣, 𝑡𝑎𝑔, 𝑡𝑘, 𝑡𝑖𝑣, 𝑡𝑡𝑎𝑔} do

21: 𝜋.K ← SE.SymmDec(𝜓, 𝜋 .ℎ′, 𝜋 .𝑠𝑒𝑖𝑣, 𝜋 .K)
22: 𝜋.𝑏𝑙𝑜𝑏 ← AE.Dec(𝜋.𝑡𝑘, 𝜋 .𝑡𝑖𝑣, 𝜋 .𝑏𝑙𝑜𝑏, 𝜋 .𝑡𝑡𝑎𝑔)
23: return DESS.Decrypt(𝜋,𝜓, 𝑝𝑤)
24:
25: procedure DEMS.Ratchet(𝜋,𝜓)
26: for K ∈ {𝑖𝑣, 𝑡𝑎𝑔, 𝑡𝑘, 𝑡𝑖𝑣, 𝑡𝑡𝑎𝑔} do

27: 𝜋.K ← SE.SymmDec(𝜓, 𝜋 .ℎ′, 𝜋 .𝑠𝑒𝑖𝑣, 𝜋 .K)
28: 𝜋.𝑏𝑙𝑜𝑏 ← AE.Dec(𝜋.𝑡𝑘, 𝜋 .𝑡𝑖𝑣, 𝜋 .𝑏𝑙𝑜𝑏, 𝜋 .𝑡𝑡𝑎𝑔)
29: 𝜋.𝑡𝑘 ← AE.KeyGen(); 𝜋.𝑡𝑖𝑣 $← {0, 1}𝜆
30: 𝜋.𝑏𝑙𝑜𝑏, 𝜋 .𝑡𝑡𝑎𝑔← AE.Enc(𝜋.𝑡𝑘, 𝜋 .𝑡𝑖𝑣, 𝜋 .𝑏𝑙𝑜𝑏)
31: 𝜓 ← SE.SymmKeyGen(𝜓, 𝜋 .ℎ′);𝜋.𝑠𝑒𝑖𝑣 $← {0, 1}𝜆
32: for K ∈ {𝑖𝑣, 𝑡𝑎𝑔, 𝑡𝑘, 𝑡𝑖𝑣, 𝑡𝑡𝑎𝑔} do

33: 𝜋.K ← SE.SymmEnc(𝜓, 𝜋 .ℎ′, 𝜋 .𝑠𝑒𝑖𝑣, 𝜋 .K)
34: return (𝜋,𝜓)

Security intuition. This extra encryption layer is sufficient to
withstand a multi-snapshot adversary as the adversary will always
encounter a random-looking ciphertext. When the adversary fi-
nally gains access to the SE, they can only reverse the last outer
encryption, but not any beforehand. A similar local technique of
adding a reversible encryption layer is not possible without an SE
as the encryption key would be part of the captured storage state.
An alternative would be decrypting and re-encrypting the user data
at every event. This would however be impractical as it necessitates
the user to input their passphrase for each of these events.

5.3 Practical Implementation Details

Sloth is generally more practical than other schemes that rely on
compute and memory-hard functions. This is because parameters
of other schemes have to be chosen from the perspective of an
attacker with access to a large parallel cluster of machines that are
more powerful than a smartphone.

For the regular Sloth key stretching schemes and 1S-HiddenSloth,
the implementationmust not use a file system or underlying storage
technology that allows an attacker to discover whether and when
a file has been overridden. However, since the ratchet steps for MS-
HiddenSloth are assumed to be predictable from the adversary’s
perspective, its security guarantees hold for any form of storage.

The actual implementation into a production app also needs
to consider the allocated space for the deniable encryption since
it should always be the same size regardless of the actual usage.
Developers have to weigh the costs of having a large encrypted
file for non-users against the storage requirements of its active
users. Also, developers must take care that the deniable parts of
the application do not leave any other traces in the form of crash
reports and logging output.

In addition to application-specific storage, details on how the
SE is implemented and stores state are important: limited on-chip
storage means that SEs typically persist their state as encrypted key
blobs andmetadata usingmain device storage.While the techniques
used by SEs generally provide strong confidentiality and integrity,
they often only provide coarse roll-back protection. For instance, on
Android, only OS updates cause the StrongBox roll-back protection
counter to increment. As such, Android devices are vulnerable to
roll-back attacks where the adversary can replace the encrypted
version of the current state of SE storage4 with an older version.
The iOS documentation does not describe the level of roll-back
protection provided on iPhones and iPads.

For our HiddenSloth scheme, which relies on ratcheting keys,
the lack of roll-back protection can allow an adversary to detect
changes if they both capture the encrypted key blobs and Sloth
ciphertexts before and after a suspected usage event and later gain
oracle access to the SE. However, we note that the encrypted key
blobs are typically not accessible by application processes and they
are never backed up by the system. Therefore, the ratcheting mecha-
nism still provides value for common scenarios where an adversary
gains access to stored application state via online backups that
inadvertently include Sloth ciphertexts.

6 SECURITY ANALYSIS

We formally capture the security of our Sloth schemes using ex-
periments between a challenger C and a wall-time bounded (WT)
adversary A (Definition 2).

6.1 Key Stretching Security

We prove the security of LongSloth (Section 4.1) and RainbowSloth
(Section 4.2). For this we formally define an SE-backed key stretch-
ing scheme and and experiments for key stretching indistinguisha-
bility and hardness. The success of a WT adversary is controlled
by the time required by the SE to execute operations 𝑇SE-OP (and
the Sloth parameters).
4Typically stored in /data/misc/keystore/persistent.sqlite

8

Sloth: Key Stretching and Deniable Encryption using Secure Elements on Smartphones

Definition 6. A key stretching scheme Ξ for fixed security param-
eter 𝜆 consists of two algorithms:
KeyGen : Ψ × P × 𝐻 → Π × Ψ × {0, 1}𝜆 takes an SE state, a

password, and a key handle and returns a new storage state,
an updated SE state, and the derived key.

Derive : Π × Ψ × P → {0, 1}𝜆 takes a storage state, SE state, and
a password to derive a key 𝑘 ∈ {0, 1}𝜆 .

We require for correctness that after the initialization operation
(𝜋,𝜓, 𝑘) ← KeyGen(𝜓 ′, 𝑝𝑤,ℎ) and all subsequentDerive(𝜋,𝜓, 𝑝𝑤)
executions return the same 𝑘 .

We use the standard security notion for KDFs which requires
“that the derived key [. . .] is indistinguishable from a random key
if the adversary only knows the system parameter and the public
[inputs]” [37]. Intuitively, this means that the output distribution
meets typical requirements for input keys of other algorithms. We
capture this using an experiment where the adversary must distin-
guish between a derived key and a random bit string.

Definition 7 (Key Stretching Indistinguishability Experiment). Let
P be a probability distribution with Shannon entropy𝑚. Let A be
a WT adversary and C a WT challenger. Let Ξ be a key stretching
scheme. Then the key stretching indistinguishability experiment
KeyIndAΞ

(𝜆,P) is defined as follows:

(1) C samples a password 𝑝𝑤
$← P. Let𝜓 be freshly initialized

and ℎ an arbitrary (but fixed) key handle.
(2) C computes 𝜋,𝜓, 𝑘0 ← Ξ.KeyGen(𝜓, 𝑝𝑤,ℎ) under 𝜆 and

samples 𝑘1 ← {0, 1}𝜆 .
(3) C randomly samples 𝑏

$← {0, 1}.
(4) A receives (𝜋,𝜓, 𝑘𝑏).
(5) A receives oracle access O𝑆𝐸 (WT conditions).
(6) A outputs a bit 𝑏 ′ and wins iff 𝑏 = 𝑏 ′.
(7) The experiment returns 1 iff A wins, otherwise 0.

Definition 8 (Key Stretching Indistinguishability). A key stretch-
ing scheme Ξ with operation cost 𝜎 is indistinguishable if for all
WT adversaries A with wall-time budget 𝐵, there is a negligible
function negl:

𝑃𝑟 [KeyIndA,Ξ (𝜆,P) = 1] ≤ 1
2
+ negl(𝜆) + 𝐵

𝜎 · 2𝑚 ,

where P is a probability distribution with Shannon entropy𝑚.

The LongSloth and RainbowSloth schemes respectively described
in Section 4.1 and Section 4.2 fulfill these definitions as per the fol-
lowing theorems. We note that if𝑚 approaches 𝜆, e.g. when the
input is a strong cryptographic key, the definition can be updated
so that the latter term is covered by negl(𝜆) which is similar to
typical definitions. However, we are primarily interested in the
settings where the password space is relatively small.

Theorem 1 (LongSloth Indistinguishability). Let P be a random
distribution with Shannon entropy𝑚. The key stretching scheme
LongSloth is indistinguishable.

Proof. We present a full proof in Appendix C.1.2. □

Theorem 2 (RainbowSloth Indistinguishability). Let P be a ran-
dom distribution with Shannon entropy 𝑚. The key stretching
scheme RainbowSloth is indistinguishable.

Proof. We present a full proof in Appendix C.2.2. □

In addition to the theoretical result above, we are interested in
the practical success rate of a brute-force attacker, i.e., given 𝑘 find
𝑝𝑤 , with wall time budget 𝐵.

Definition 9 (Key Stretching Hardness Experiment). Let P be a
probability distribution with Shannon entropy𝑚. Let A be a WT
adversary and C a WT challenger. Let Ξ be a key stretching scheme.
Then the key stretching hardness experiment KeyHardA,Ξ (𝜆,P)
is defined below:

(1) C samples a password 𝑝𝑤
$← P. Let𝜓 be freshly initialized

and ℎ an arbitrary (but fixed) key handle.
(2) C computes 𝑘 = Ξ.KeyGen(𝜓, 𝑝𝑤,ℎ).
(3) A receives (𝜋,𝜓, 𝑘).
(4) A receives oracle access O𝑆𝐸 (WT conditions).
(5) A outputs a 𝑝𝑤 ′ and wins iff

𝑘 = Ξ.Derive(𝜓, 𝑝𝑤 ′, ℎ).
(6) The experiment returns 1 iff A wins, otherwise 0.

Definition 10 (Key Stretching Hardness). A key stretching scheme
Ξ is 𝜎-hard if for all WT adversaries A with wall-time budget 𝐵,

𝑃𝑟 [KeyHardA,Ξ (𝜆,P) = 1] ≤ 𝐵

𝜎 · 2𝑚 ,

where P is a probability distribution with Shannon entropy𝑚.

Theorem 3 (LongSloth Hardness). Let P be a random distribu-
tion with Shannon entropy 𝑚. Then the key stretching scheme
LongSloth with parameter 𝑙 is (𝑙 · 𝑐Hmac)-hard.

Proof. We present a full proof in Appendix C.1.1. □

Theorem 4 (RainbowSloth Hardness). Let P be a random distri-
bution with Shannon entropy𝑚. Then the key stretching scheme
RainbowSloth with parameter 𝑛 is (𝑛 · 𝑐Ecdh)-hard.

Proof. We present a full proof in Appendix C.2.1. □

6.2 Deniable Encryption Security

Similarly to key stretching, we discuss the security of deniable
encryption by giving formal definition, describing security ex-
periments, and then showing the security of HiddenSloth. We
only discuss the multi-snapshot case and prove the security of
MS-HiddenSloth. A similar (and simpler) reasoning applies to 1S-
HiddenSloth.

Definition 11 (SE with MS Deniable Encryption Support). A SE-
backed deniable encryption scheme Δ for fixed security parameter
𝜆 and maximum data size 𝑠 ∈ N consists of three algorithms:
Init : Ψ × 𝐻 × N → Π × Ψ takes a SE state, a key handle, and

storage size 𝑠 and returns a new storage state and SE state.
Encrypt : Π × Ψ × P × {0, 1}𝑠 → Π updates a storage state for

given SE state and a password so that it now stores the given
data.

Decrypt : Π × Ψ × P → {0, 1}𝑠 ∪ {⊥} tries to decrypt from the
storage state given the password. If successful, the previously
stored data is returned, otherwise ⊥.

Ratchet : Π × Ψ → Π × Ψ updates the storage and SE state by
decrypting and re-encrypting the stored data.

9

Daniel Hugenroth, Alberto Sonnino, Sam Cutler, and Alastair R. Beresford

In our indistinguishability experiment the adversary interac-
tively builds any two valid sequences of starting with an Init oper-
ation and multiple Encrypt operations. After each encryption, they
receive the persisted states. The challenger will then call Ratchet
on one of the sequences and provide the new state. The inability of
the adversary to decide which of the sequences the new state has
been derived from, implies that the Ratchet operation is indistin-
guishable from an Encrypt operation—hence the scheme provides
effective security against a multi-snapshot adversary.

Definition 12 (MS Deniable Encryption Indistinguishability Ex-
periment). Let 𝜆 be a fixed security parameter and 𝑠 the maximum
data size. Let P be a probability distribution with Shannon entropy
𝑚. Let A be a WT adversary with wall time budget 𝐵 and C a WT
challenger. Let Δ be a multi-snapshot deniable encryption scheme.
Then the multi-snapshot deniable encryption indistinguishability
experiment DE-MS-IndA,Δ (𝜆,P) is defined as follows:

(1) 𝐶 samples 𝑝𝑤
$← P. Let 𝜓0,𝜓1 be freshly initialized and ℎ

an arbitrary, but fixed key handle.

(2) 𝐶 randomly samples 𝑏
$← {0, 1}

(3) 𝐶 computes 𝜋0,𝜓0 ← Δ. Init(𝜓0, ℎ, 𝑠) and
𝜋1,𝜓1 ← Δ. Init(𝜓1, ℎ, 𝑠) under 𝜆.

(4) 𝐴 sends any 𝑏 ∈ {0, 1} and𝑚 ∈ {0, 1}𝑠 to 𝐶 .
(5) 𝐶 executes 𝜋

𝑏
← Δ. Encrypt(𝜋

𝑏
,𝜓

𝑏
, 𝑝𝑤,𝑚), then 𝐶 sends

𝜋
𝑏
to 𝐴.

(6) 𝐴 can repeat execution from step 4 several times (under WT
conditions).

(7) 𝐶 randomly samples 𝑏
$← {0, 1}, computes

𝜋𝑏 ,𝜓𝑏 ← Δ. Ratchet(𝜋𝑏 ,𝜓𝑏), and provides 𝐴 with (𝜋𝑏 ,𝜓𝑏).
(8) 𝐴 receives oracle access O𝑆𝐸 under the WT conditions.
(9) 𝐴 outputs a bit 𝑏 ′ and wins iff 𝑏 = 𝑏 ′.
(10) The experiment returns 1 iff 𝐴 wins, otherwise 0.

Definition 13 (MS Deniable Encryption Indistinguishability). A
multi-snapshot deniable encryption scheme Δ instantiated with
a 𝜎-hard key stretching scheme is𝑚-entropy secure if for all WT
adversaries A with time budget 𝐵, there is a function negl such
that

𝑃𝑟 [DE-MS-IndA,Δ (𝜆,P) = 1] ≤ 1
2
+ negl(𝜆) + 𝐵

𝜎 · 2𝑚 ,

where P is a probability distribution with Shannon entropy𝑚.

Theorem 5. (MS-HiddenSloth Indistinguishability) The multi-
snapshot deniable encryption scheme MS-HiddenSloth instantiated
with a 𝜎-hard key stretching scheme is𝑚-entropy secure.

Proof. We present a full proof in Appendix C.3. □

In particular, this means that MS-HiddenSloth instantiated with
our key stretching schemes LongSloth or RainbowSloth is𝑚-entropy
secure. Similarly to the key stretching scheme, we also analyze the
practical success rate of a brute-force attacker.

Definition 14 (Deniable Encryption Hardness Experiment). Let
P be a probability distribution with Shannon entropy𝑚. Let A be
a WT adversary with wall time budget 𝐵 and C a WT challenger.
Let Δ be a key stretching scheme. Then the deniable encryption
hardness experiment DeHardAΔ

(𝜆,P) is defined as follows:

(1) A provides C with 𝑑𝑎𝑡𝑎 with |𝑑𝑎𝑡𝑎 | > 0.

(2) C samples a password 𝑝𝑤
$← P. Let 𝜓 be freshly initial-

ized and ℎ an arbitrary (but fixed) key handle. Let 𝜋,𝜓 =

Δ. Init(𝜓,ℎ, |𝑑𝑎𝑡𝑎 |).
(3) C computes 𝜋 = Δ. Encrypt(𝜋,𝜓, 𝑝𝑤,𝑑𝑎𝑡𝑎).
(4) A receives (𝜋,𝜓).
(5) A receives oracle access O𝑆𝐸 (WT conditions).
(6) A outputs a 𝑝𝑤 ′ and wins iff

𝑑𝑎𝑡𝑎 = Δ.Decrypt(𝜋,𝜓, 𝑝𝑤 ′).
(7) The experiment returns 1 iff A wins, otherwise 0.

Definition 15 (Deniable EncryptionHardness). Adeniable encryp-
tion scheme Δ is 𝜎-hard if for all WT adversariesA with wall-time
budget 𝐵,

𝑃𝑟 [DeHardA,Δ (𝜆,P) = 1] ≤ 𝐵

𝜎 · 2𝑚 ,

where P is a probability distribution with Shannon entropy𝑚.

Theorem 6 (MS-HiddenSloth Hardness). Let P be a random dis-
tribution with Shannon entropy𝑚. Then the deniable encryption
scheme MS-HiddenSloth instantiated with a 𝜎-hard key stretching
scheme is 𝜎-hard.

Proof. We present a full proof in Appendix C.3.2. □

7 EVALUATION

Wemeasure the performance of SEs in Android and iOS devices (Sec-
tion 7.1), choose practical parameters for our schemes (Section 7.2),
and test full implementations of LongSloth and RainbowSloth (Sec-
tion 7.3) as well as HiddenSloth (Section 7.4).

7.1 Performance Characteristics of SEs

For iOS devices we measure the duration of the Secure Enclave’s
ECDH operations on the recent iPhones from XR to 14. These cover
the Apple chips A12, A13, A14, and A15. We wrote a benchmark
app that first creates a secret P-256 key within the SE. It then creates
a new random public key and performs ECDH with the private key
within the SE. We repeat the ECDH step 1,000 times with the new
public keys and measure the elapsed time. The results (Figure 3)
show that similar chips have similar run times, e.g., A15 for iPhone
13 and iPhone 14. All measurements are between 6ms and 16ms
with little variance per model. Surprisingly, the A13 chip has lower
throughput than its predecessor. However, A13 is also the first
one with a mathematically verified public key implementation [4]
which might point to a difference in the underlying algorithm.

For Android devices, we measure the duration of HMAC execu-
tions for inputs of varying lengths on multiple devices. We wrote a
benchmark tool that first creates a secret key within the SE. It then
generates random byte arrays as inputs, passes these as input to the
SE, and receives the computed HMAC value as a result. We repeat
this step 10 times for each device and input length to measure the
elapsed time. The results are shown in Figure 4. Intuitively, the mea-
sured time increases with input length in an almost linear manner.
There are minor inflection points that differ between the devices. In
our experiments, the Samsung phones also have a 10× higher band-
width compared to the Google devices. For our parameter choice,
this will result in a larger 𝑙 value for those devices. Notably, for the

10

Sloth: Key Stretching and Deniable Encryption using Secure Elements on Smartphones

4 6 8 10 12 14 16
Operation duration [ms]

iPhone XR (14.0, A12)

iPhone 11 (16.3, A13)

iPhone 12 (15.6.1, A14)

iPhone 13 (16.0.2, A15)

iPhone 14 (16.1, A15)

Co
nf

ig
ur

at
io

n

Figure 3: The duration of the ECDH operation on iOS for dif-

ferent phones (iOS version and chip generation in brackets).

1 KiB 10 KiB 100 KiB
Payload [bytes]

102

103

104

Du
ra

tio
n

[m
s]

Google Pixel 3
Google Pixel 7

Samsung Galaxy S21
Samsung Galaxy S22

Figure 4: The duration of a HMAC operations on Android

phones with StrongBox support. Both axes are log-scale.

Entropy 50 years 100 years

WordList (3 words) 38.8 3.4 ms 6.7 ms
WordList (4 words) 51.7 < 0.1 ms < 0.1 ms

AlphaNum (5 chars) 29.8 1.7 s 3.4 s
AlphaNum (6 chars) 35.7 27.8 ms 55.5 ms
AlphaNum (7 chars) 41.7 0.4 ms 0.9 ms

PIN (6 digits) 19.9 26.3 min 52.6 min
PIN (9 digits) 29.9 1.6 s 3.2 s

Table 2: Overview of password configurations, their entropy

(bits), and the required 𝑡𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 for given security margins.

same device and input length, the variance is very small. Once the
parameters have been established for each device, their impact is
predictable and dependable.

7.2 Parameter choice

For our evaluation, we target a security level of 𝑇𝑡𝑜𝑡𝑎𝑙 = 100 years.
We treat the acceptable password complexity, such as the alphabet
size and the number of characters, as input parameters. Other than

classic alphanumerical5 passwords, we also consider passphrases
that are based on the EFF word list [16] that contains 7776 words
and PINs consisting of only digits. Let |𝐴| be the alphabet size and
|𝑝𝑤 | the password length, then the entropy for a configuration is 𝑒 =
log2 (|𝐴| |𝑝𝑤 |). We want that an attacker’s worst-case to match the
targeted security level, i.e., if they brute-force the entire space, then
they require at least 𝑇𝑡𝑜𝑡𝑎𝑙 . Let 𝑇𝑡𝑜𝑡𝑎𝑙 be the targeted security level,
then for a password configuration with entropy 𝑒 each password
verification should take at least 𝑡𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = 𝑇𝑡𝑜𝑡𝑎𝑙 · 2−𝑒 . Table 2
shows that while short passphrases and alpha-numerical passwords
are feasible, short PIN codes are not as they require impracticably
long 𝑡𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 times.

We think that using𝑇𝑡𝑜𝑡𝑎𝑙 , i.e. the time to search the entire pass-
phrase space, is convenient for interpretation of our results. This
is because its linearity allows to calculate the expected time for
a given adversary success rate (and the other way around). For
example, for our choice of 𝑇𝑡𝑜𝑡𝑎𝑙 = 100 years, we would expect
that after a 10 years the adversary has guessed the correct pass-
phrase with a 10% chance. If we would like to reduce that chance
to 1%, we must set 𝑇𝑡𝑜𝑡𝑎𝑙 = 1 000 years and update 𝑡𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ac-
cordingly. Particular attention must be paid in scenarios where the
adversary succeeds when guessing 1 out of 𝑛 passphrases, e.g. after
capturing smartphones from a group of people. Since the individual
phones can be brute-forced in parallel, the random variables are
independent and the overall success rate increases accordingly.

The password configurations that we show in Table 2 are shorter
than those used in web applications nowadays. This is because
for Sloth the parameter choice does not need to conservatively
assume an attacker with highly parallel computing resources. Short
passwords, and in particular passphrases generated from word lists,
are more memorable and can be generated by the application for the
user — and thus avoid the problem of users picking weak passwords
or reusing the same one for different services.

In our main evaluation (Section 7.3) we will examine two con-
figurations: 3-word passphrases from the EFF word list (𝑐1) and
6-character alphanumerical passwords (𝑐2). In both cases, we mul-
tiply the minimal 𝑡𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 (as per Table 2) by a safety factor

of ×10 for conservative parameter choice. Therefore: 𝑡𝑐1 = 67𝑚𝑠

and 𝑡𝑐2 = 555𝑚𝑠 . This safety factor can account for the attacker
over-clocking the SE and overhead by the operating system when
communicating with the chip that an attacker might be able to
“optimize away”.

With the required minimum times 𝑡𝑐1, 𝑡𝑐2 for the individual op-
erations, we determine 𝑙 for LongSloth on Android and 𝑛 for Rain-
bowSloth on iOS. On Android, we use the measurements from Fig-
ure 4 to fit a second-degree polynomial where we set the y-values
to the smallest measurement for a given size minus 2 standard devi-
ations. We then pick the 𝑙 value at the intersection with the desired
duration and round to the next multiple of 100. On iOS we pick the
10th percentile value 𝑡𝑝10 of our measurements as a conservative
worst-case (i.e. fastest) duration and then compute 𝑛𝑐 = ⌈ 𝑡𝑐

𝑡𝑝10
⌉ for

𝑐 ∈ {𝑐1, 𝑐2}. The resulting values are summarized in Table 3. If an
app cannot find existing parameters for a new device type, it can
perform a similar method on its first start to self-calibrate.

5Case-sensitive letters a-zA-Z and digits 0-9, hence |𝐴 | = 62.

11

Daniel Hugenroth, Alberto Sonnino, Sam Cutler, and Alastair R. Beresford

3 words 6 characters
𝑡𝑐1 = 67ms 𝑡𝑐2 = 555ms

LongSloth (parameter: l)

Google Pixel 3 1,500 11,600
Google Pixel 7 4,500 24,200
Samsung Galaxy S21 10,700 178,000
Samsung Galaxy S22 2,200 145,100

RainbowSloth (parameter: n)

iPhone 11 6 43
iPhone 12 10 76
iPhone 13 12 95

Table 3: Parameter choices for given password configuration

and its 𝑡𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 augmented by a safety factor of 10×.

7.3 LongSloth and RainbowSloth

We implemented LongSloth on Android and RainbowSloth on iOS.
All code including documentation and analysis scripts is avail-
able under an MIT license.6 Where possible we use the existing
cryptography APIs of the platform, with AES-GCM for symmet-
ric authenticated encryption, and HKDF-SHA256 as the KDF. For
PwHash we use the third-party LibSodium library which is avail-
able on both platforms and implements the memory-hard password
hashing algorithm Argon2 [14]. For the evaluation, we choose the
recommended OWASP parameters for Argon2id with 19MiB of
memory and an iteration count of 2 [32]. Since one could opt for
another PwHash implementation, we exclude its runtime (50ms)
from our results for LongSloth and RainbowSloth.

For our evaluation, we are interested in the duration of the
Sloth.derive operations, as these determine the time costs for
an attacker. We use the parameters chosen in Section 7.2 including
the safety factor and execute each operation 10 times. The results
are shown in Figure 5 for LongSloth on Android RainbowSloth
on iOS. In all cases, the measured total durations comfortably ex-
ceed the threshold times 𝑡𝑐1 and 𝑡𝑐2. This confirms that with our
parameter choice, the algorithm meets its minimum timing promise
and hence key stretching security. The variance for the individual
configurations is small which can allow for reducing the safety
factor.

7.4 HiddenSloth

For the deniable encryption scheme HiddenSloth we evaluate its
Ratchet methods for varying maximum data sizes 𝑠 . This param-
eter 𝑠 spans from a small storage size that might wrap text-only
configurations (1MiB) to larger ones that can store long chat his-
tories including media (100MiB). Our results for Android and iOS
are shown in Figure 6. The measured durations are similar for all
test devices and range from around 700ms for 1MiB to about 2 s
for storage with 100MiB capacity. We note that the Ratchet step
does not require the password and thus can be executed in the
6https://github.com/lambdapioneer/sloth

50 100 150 200

Google Pixel 3
Google Pixel 7
S. Galaxy S21
S. Galaxy S22

500 600 700 800

50 100 150 200
Duration [ms]

iPhone 11

iPhone 12

iPhone 13

500 600 700 800
Duration [ms]

Figure 5: The duration of the LongSloth.Derive operation

on Android (top) RainbowSloth.Derive operation on iOS

(bottom). For both we evaluated the configurations 𝑐1 (left)

and 𝑐2 (right) from Table 3 for different phones. The red

lines indicate the threshold times 𝑡𝑐1 and 𝑡𝑐2.

1 MiB 10 MiB 100 MiB
Max data size (s) [bytes]

103

4 × 102
6 × 102

2 × 103

Du
ra

tio
n

[m
s]

Google Pixel 3
Google Pixel 7

Samsung Galaxy S21
Samsung Galaxy S22

1 MiB 10 MiB 100 MiB
Max data size (s) [bytes]

103

2 × 102

4 × 102
6 × 102

2 × 103

Du
ra

tio
n

[m
s]

iPhone 11 iPhone 12 iPhone 13

Figure 6: Duration of the HiddenSloth.Ratchet step for

various max size 𝑠 on Android (top) and iOS (bottom). Both

axes are log-scale.

0 20 40 60 80 100
Duration [ms]

Google Pixel 3
Google Pixel 7

Samsung Galaxy S21
Samsung Galaxy S22

Figure 7: Duration of HiddenSloth random-access decryp-

tion without authentication for 1MiB blocks.

12

https://github.com/lambdapioneer/sloth

Sloth: Key Stretching and Deniable Encryption using Secure Elements on Smartphones

background without any user interaction. As such, even large stor-
age sizes have no user-visible impact and we suggest scheduling it
when the device is idle and charging.

Decryption speed is critical for most application use-cases as it
dictates the speed by which stored data, e.g. photos, load. Apps can
optimize this step by caching the derived key 𝑘 and unwrapped
𝜋.K in memory after the user has entered their password. For this
we implemented authenticated encryption using an encrypt-then-
mac regime with AES-CTR and HMAC. This then allows random
access to individual blocks of the ciphertext. We evaluate random-
access decryption on Android and the results in Figure 7 show
that reading a 1MiB block generally takes less than 50ms. The app
should verify the authentication tag of the entire storage before
performing decryption operations.

7.5 Limitations

Sloth remains vulnerable to physical attacks during usage such
as shoulder surfing [10], smudge attacks [3], and side-channel at-
tacks that monitor keyboard entry [40]. However, this is compatible
with our threat model and solutions for these are orthogonal to
our scheme. In addition, if an app developer allows user-chosen
passphrases, then our Shannon entropy assumption (Section 3.1) is
not valid. Therefore, we designed Sloth such that randomly-chosen
passphrases are feasible. Since we rely on a hardware-backed secret,
device loss means that the secret cannot be recovered. However,
apps can introduce complementary backup procedures7.

8 RELATEDWORK

The terminology of key stretching which we also use for our pa-
per was coined in 1999 by Kelsey et al. [27]. Examples of mod-
ern password hashing functions include PBKDF2 [24], scrypt [33],
and Argon2 [14]. All share the property that an attacker can in-
crease brute-force speed by using more computers. Blocki et al. [15]
show in an economic analysis of offline password cracking that key
stretching alone does not provide sufficient protection.

Password-authenticated key agreement (PAKE) protocols, such
as OPAQUE [23], use interactive protocols with a server to rate-
limit password guesses. However, such protocols are not suitable
when there is unreliable Internet connectivity. Further, the required
network communication leaves traces that rule out their usage for
deniable encryption schemes. This also holds for related protocols
such as DupLESS [26]. The traffic can be obfuscated by sending
“dummy” requests. However, on smartphone mobile network trans-
mission have high energy costs and thus limiting how often this
can be done.

The VeraCrypt project [36] is the most-popular encryption soft-
ware that offers support plausible deniable encryption for regular
computers. It can also boot into different operating systems de-
pending on the entered password when unlocking the machine.
To our knowledge, StegFS [30] was the first practical design of a
plausibly-deniable encrypted file system. The recent INVISILINE
design [34] encodes a hidden volume in the IVs of a general-purpose

7For example, by adding an additional layer of indirection where the derived secret
𝑘 encrypts another secret 𝑘′ that is then used, e.g., for HiddenSloth. The 𝑘′ can be
temporarily decrypted, transferred to another device, and then re-encrypted there
using a new derived secret 𝑘2 .

block device encryption scheme and provides multi-snapshot resis-
tance. Our Sloth key stretching algorithm can be used as a drop-in
replacement with any of these schemes to improve their resistance
to brute-force attacks.

For mobile devices, MobiFlage [41] describes a design for pro-
viding deniable encryption on Android resisting single-snapshot
adversaries. The MobiCeal [18] paper describes an implementation
that protects against multi-snapshot adversaries by obfuscating
access patterns using “dummy writes”. However, both MobiFlage
and MobiCeal require changes to the operating system which ren-
ders them impractical for use by developers who wish to support
users of standard handsets. The work by Liao et al. [29] describes
a theoretical design where some computations for the deniable
encryption scheme are run inside an ARM TrustZone environment.
Likewise, this design would require significant changes to the op-
erating system and the ability to run custom code within the TEE.
Also, none of the above protect against brute-force attacks.

Our work is inspired by a deniable encryption scheme sketched
in CoverDrop [1] and shares the idea of storing a separate key
inside an SE. However, CoverDrop does not allow for generic key
stretching and it requires the entire ciphertext to grow to guarantee
lower guessing rates. Therefore, the security parameters cannot
be independently tweaked and it is less efficient than Sloth. Fur-
thermore, the approach described in CoverDrop does not work on
iOS due to the lack of AES-GCM support in Apple’s SE. The paper
also does not offer security proofs nor practical evaluations for a
representative set of devices.

Eldridge et al. [19] implement support for one-time programs
on smartphones. Similar to us, they creatively work around the
limitations of embedded SEs. Their solution allows creating one-
time programs for general functionalities using only a counter box
primitive. However, such counter boxes are not exposed to end-user
apps on iOS and thus they require jailbroken devices.

9 CONCLUSION

Sloth is a family of novel practical key stretching and deniable en-
cryption schemes which leverages the limited throughput of the
SE to provide strong security guarantees and favorable parameter
choices for standard smartphones. Sloth works without any changes
to the operating system and allows for shorter passphrases as the
adversary cannot speed up brute-force attacks by using multiple
computers. Our survey shows that SEs are more widely available
and more practical than is generally assumed. We presented a for-
mal model of SEs which capture their timing characteristics. Instead
of asymptotic analysis, we work with absolute duration to provide
definite time bounds. This precision allows picking smaller param-
eters that improve efficiency and usability for the user. We believe
that SEs will play a critical role in the security of mobile applica-
tions and services, and hope to inspire more research in the area of
hardware-assisted security on smartphones.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers from this and
previous submissions for their valuable feedback. Daniel Hugenroth
is supported by Nokia Bell Labs. This work is partially funded by
Mysten Labs.

13

Daniel Hugenroth, Alberto Sonnino, Sam Cutler, and Alastair R. Beresford

REFERENCES

[1] Mansoor Ahmed-Rengers, Diana A Vasile, Daniel Hugenroth, Alastair R Beres-
ford, and Ross Anderson. 2022. CoverDrop: Blowing the Whistle Through A
News App. Proceedings on Privacy Enhancing Technologies 2022, 2 (2022), 47–67.

[2] Amazon. 2023. AWS Device Farm. https://aws.amazon.com/device-farm.
[3] MD Amruth and K Praveen. 2016. Android smudge attack prevention techniques.

In Intelligent Systems Technologies and Applications: Volume 2. Springer, 23–31.
[4] Apple Inc. 2021. Apple Platform Security - Secure Enclave. https://support.appl

e.com/en-gb/guide/security/sec59b0b31ff/web.
[5] Apple Inc. 2022. App Store - iOS and iPadOS usage. https://web.archive.org/we

b/20230130101543/https://developer.apple.com/support/app-store/,.
[6] Apple Inc. 2022. Apple Security Bounty. https://security.apple.com/bounty/.
[7] Apple Inc. 2023. Apple Developer Documentation - SecureEnclave. https:

//developer.apple.com/documentation/cryptokit/secureenclave.
[8] Apple Inc. 2023. Apple Developer Documentation - SecureEnclave.P256. https:

//developer.apple.com/documentation/cryptokit/secureenclave/p256.
[9] Diego F Aranha, Pierre-Alain Fouque, Chen Qian, Mehdi Tibouchi, and Jean-

Christophe Zapalowicz. 2014. Binary elligator squared. In International Conference
on Selected Areas in Cryptography. Springer, 20–37.

[10] Adam J Aviv, John T Davin, Flynn Wolf, and Ravi Kuber. 2017. Towards baselines
for shoulder surfing on mobile authentication. In 33rd Annual Computer Security
Applications Conference. 486–498.

[11] Feng Bao, Robert H Deng, and Huafei Zhu. 2003. Variations of diffie-hellman
problem. In Information and Communications Security: 5th International Confer-
ence, ICICS 2003, Huhehaote, China, October 10-13, 2003. Proceedings 5. Springer,
301–312.

[12] Mihir Bellare. 2006. New proofs for NMAC and HMAC: Security without collision-
resistance. In Crypto, Vol. 4117. Springer, 602–619.

[13] Daniel J Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. 2013.
Elligator: elliptic-curve points indistinguishable from uniform random strings. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. 967–980.

[14] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. 2016. Argon2: new gener-
ation of memory-hard functions for password hashing and other applications. In
2016 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 292–302.

[15] Jeremiah Blocki, Benjamin Harsha, and Samson Zhou. 2018. On the economics
of offline password cracking. In 2018 IEEE Symposium on Security and Privacy
(S&P). IEEE, 853–871.

[16] Joseph Bonneau. 2016. Deep Dive: EFF’s New Wordlists for Random Passphrases.
Electronic Frontier Foundation (EFF) (2016). https://www.eff.org/deeplinks/2016
/07/new-wordlists-random-passphrases Accessed September 2023.

[17] Daniel R. L. Brown. 2009. SEC 1: Elliptic Curve Cryptography. Standard. Certicom
Research. Version 2.0.

[18] Bing Chang, Fengwei Zhang, Bo Chen, Yingjiu Li, Wen-Tao Zhu, Yangguang Tian,
Zhan Wang, and Albert Ching. 2018. Mobiceal: Towards secure and practical
plausibly deniable encryption on mobile devices. In 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). IEEE, 454–
465.

[19] Harry Eldridge, Aarushi Goel, Matthew Green, Abhishek Jain, and Maximilian
Zinkus. 2022. One-Time Programs from Commodity Hardware. In Theory of
Cryptography Conference. 121–150.

[20] Google Inc. 2022. Hardware Security Best Practices. https://source.android.com
/docs/security/best-practices/hardware.

[21] Google Inc. 2022. Android and Google Devices Security Reward Program Rules.
https://bughunters.google.com/about/rules/6171833274204160/android-and-
google-devices-security-reward-program-rules.

[22] Google Inc. 2022. Android Keystore system - Hardware security module. https:
//developer.android.com/training/articles/keystore#HardwareSecurityModule.

[23] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. 2018. OPAQUE: an asym-
metric PAKE protocol secure against pre-computation attacks. In Advances in
Cryptology–EUROCRYPT. Springer, 456–486.

[24] Burt Kaliski and A Rusch. 2017. RFC 8018: PKCS# 5: Password-Based Cryptogra-
phy Specification Version 2.1.

[25] Jonathan Katz and Yehuda Lindell. 2020. Introduction to modern cryptography.
CRC press.

[26] Sriram Keelveedhi, Mihir Bellare, and Thomas Ristenpart. 2013. DupLESS: Server-
Aided encryption for deduplicated storage. In 22nd USENIX Security Symposium
(USENIX Security ’13). 179–194.

[27] John Kelsey, Bruce Schneier, Chris Hall, and David Wagner. 2005. Secure applica-
tions of low-entropy keys. In Information Security: First International Workshop,
ISW’97 Tatsunokuchi, Ishikawa, Japan September 17–19, 1997 Proceedings. Springer,
121–134.

[28] Hugo Krawczyk. 2010. Cryptographic Extraction and Key Derivation: The HKDF
Scheme.. In CRYPTO, Vol. 6223. Springer, 631–648.

[29] Jinghui Liao, Bo Chen, and Weisong Shi. 2021. TrustZone enhanced plausibly
deniable encryption system for mobile devices. In 2021 IEEE/ACM Symposium on
Edge Computing (SEC). IEEE, 441–447.

[30] Andrew D McDonald and Markus G Kuhn. 2000. StegFS: A steganographic file
system for Linux. In Information Hiding: Third International Workshop, IH’99,
Dresden, Germany, September 29-October 1, 1999 Proceedings 3. Springer, 463–477.

[31] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. 2020. A survey
of published attacks on Intel SGX. arXiv preprint arXiv:2006.13598 (2020).

[32] Open Worldwide Application Security Project (OWASP). 2021. Password storage
cheat sheet. https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage
_Cheat_Sheet.html Accessed September 2023.

[33] Colin Percival and Simon Josefsson. 2016. The scrypt password-based key deriva-
tion function. https://www.rfc-editor.org/rfc/rfc7914.html.

[34] Sandeep Kiran Pinjala, Bogdan Carbunar, Anrin Chakraborti, and Radu Sion.
2023. INVISILINE: Invisible Plausibly-Deniable Storage. In 2024 IEEE Symposium
on Security and Privacy (SP). IEEE Computer Society, 18–18.

[35] Sandro Pinto and Nuno Santos. 2019. Demystifying Arm TrustZone: A compre-
hensive survey. ACM computing surveys (CSUR) 51, 6 (2019), 1–36.

[36] VeraCrypt project. 2023. VeraCrypt - Free Open source disk encryption with
strong security for the Paranoid. https://www.veracrypt.fr/en/Home.html.

[37] Baodong Qin, Shengli Liu, Tsz Hon Yuen, Robert H Deng, and Kefei Chen. 2015.
Continuous non-malleable key derivation and its application to related-key
security. In IACR International Workshop on Public Key Cryptography. Springer,
557–578.

[38] Keegan Ryan. 2019. Hardware-backed heist: Extracting ECDSA keys from Qual-
comm’s TrustZone. In Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security. 181–194.

[39] Alon Shakevsky, Eyal Ronen, and Avishai Wool. 2022. Trust Dies in Darkness:
Shedding Light on Samsung’s TrustZone Keymaster Design. IACR Cryptol. ePrint
Arch. 2022 (2022), 208.

[40] Laurent Simon,Wenduan Xu, and Ross Anderson. 2016. Don’t Interrupt MeWhile
I Type: Inferring Text Entered Through Gesture Typing on Android Keyboards.
In Proceedings on Privacy Enhancing Technologies, Vol. 3. 136–154.

[41] Adam Skillen andMohammadMannan. 2013. Mobiflage: Deniable storage encryp-
tionfor mobile devices. IEEE Transactions on Dependable and Secure Computing
11, 3 (2013), 224–237.

[42] Mehdi Tibouchi. 2014. Elligator squared: Uniform points on elliptic curves of
prime order as uniform random strings. In International Conference on Financial
Cryptography and Data Security. Springer, 139–156.

A SURVEY OF SE AVAILABILITY

The availability of SE functionality for end-user apps is determined
by hardware support (i.e. does the device have an SE) as well as
platform support for the respective API. We estimate market share
for both Apple’s iOS devices and Google’s Android ecosystem.

A.1 SE Support on Apple devices

As discussed in Section 2, Apple first added Secure Enclaves to
their iPhone 5S in 2013 and an API was added in iOS 13 which was
released in 2019. Since the iPhone 5S only supported iOS version
until 12, all devices with iOS 13 (platform support) also contain a
Secure Enclave (hardware support). This is supported by the fact
that there is no API to check for the presence of a Secure Enclave.
The App Store statistics for May 2022 show that 82% of all iPhones
use iOS 15 and 14% use iOS 14 [5]. No data is given for iOS 13
or before. Therefore, at least 96% of all iPhones devices expose
SE functionality to developers and are compatible with our Sloth
scheme.

A.2 SE Support on Android devices

The situation for the Android ecosystem is more complex as devices
are manufactured by different vendors with different hardware as
well as changes to the operating system. This can lead to situations
where Android devices have an SE, but do not offer API access,
or where a device’s API is compatible, but has no SE. We use the
overall distribution of active Android versions as an upper boundary
for platform support. We then execute test code on dozens of real
devices to determine hardware support.

14

https://aws.amazon.com/device-farm
https://support.apple.com/en-gb/guide/security/sec59b0b31ff/web
https://support.apple.com/en-gb/guide/security/sec59b0b31ff/web
https://web.archive.org/web/20230130101543/https://developer.apple.com/support/app-store/
https://web.archive.org/web/20230130101543/https://developer.apple.com/support/app-store/
https://security.apple.com/bounty/
https://developer.apple.com/documentation/cryptokit/secureenclave
https://developer.apple.com/documentation/cryptokit/secureenclave
https://developer.apple.com/documentation/cryptokit/secureenclave/p256
https://developer.apple.com/documentation/cryptokit/secureenclave/p256
https://www.eff.org/deeplinks/2016/07/new-wordlists-random-passphrases
https://www.eff.org/deeplinks/2016/07/new-wordlists-random-passphrases
https://source.android.com/docs/security/best-practices/hardware
https://source.android.com/docs/security/best-practices/hardware
https://bughunters.google.com/about/rules/6171833274204160/android-and-google-devices-security-reward-program-rules
https://bughunters.google.com/about/rules/6171833274204160/android-and-google-devices-security-reward-program-rules
https://developer.android.com/training/articles/keystore#HardwareSecurityModule
https://developer.android.com/training/articles/keystore#HardwareSecurityModule
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://www.rfc-editor.org/rfc/rfc7914.html
https://www.veracrypt.fr/en/Home.html

Sloth: Key Stretching and Deniable Encryption using Secure Elements on Smartphones

Figure 8: Distribution of Android version as shown in the

Android Studio IDE for January 6th, 2023.

Figure 9: Distribution of Android version as shown in the

Android Studio IDE for August 4th, 2022.

For the platform support we use the API Version Distribution
that is shown in the “New Project" wizard in the Android Studio IDE.
Figure 8 shows the API distribution that is shown when creating
new project in the Android Studio IDE when it was last updated on
January 6th, 2023. Figure 9 shows the same data for the previous
update in August 4th, 2022. Figure 8 shows that 97.2% of devices
run API level 23 (Android M) or higher and hence provide the API
to check whether a key is backed by a TEE or SE. Furthermore,
81.2% of devices run API level 28 (Android P) or higher and hence
provide the StrongBox API that can enforce storage in an SE.

For hardware support, we use the AWS Device Farm [2] which al-
lows remote access to real devices in a datacenter. We compile a test
application and upload it for execution on all selected device types.
Our test code performs multiple checks. First, we create different
key types and then check via KeyInfo#isInsideSecureHardware
if it is stored in secure hardware. A positive answer indicates that
the device has a TEE or SE. Then, we read the PackageManager fea-
ture flag for StrongBox support: FEATURE_STRONGBOX_KEYSTORE.
Finally, we create different key typeswith the setIsStrongBoxBacked
property that enforces storing them in an SE and checking for fail-
ures. Figure 10 and Table 4 summarize our results.

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Release Year

6
7
8
9

10
11
12
13

An
dr

oi
d

OS
 V

er
sio

n

Figure 10: Swarm plot of all surveyed Android devices. We

use green for StrongBox support, orange for TEE support,

and blue for no support for hardware-backed keys at all.

Device Model OS Release TEE SE

ASUS Nexus 7 - 2nd Gen (WiFi) 6 2013
Google Pixel 7 2016 ✓

Google Pixel 2 8 2017 ✓

Google Pixel 3 9 2018 ✓ ✓

Google Pixel 4 (Unlocked) 10 2019 ✓ ✓

Google Pixel 4a 11 2020 ✓ ✓

Google Pixel 5 (Unlocked) 12 2020 ✓ ✓

Google Pixel 6 (Unlocked) 12 2021 ✓ ✓

Google Pixel 7 13 2022 ✓ ✓

LG Stylo 5 9 2019 ✓

OnePlus 8T 11 2020 ✓

Samsung A51 10 2019 ✓

Samsung Galaxy A10s 10 2019 ✓

Samsung Galaxy A13 5G 11 2021 ✓

Samsung Galaxy A40 9 2019 ✓

Samsung Galaxy A7 8 2016 ✓

Samsung Galaxy A71 11 2020 ✓

Samsung Galaxy J7 (2018) 8 2018 ✓

Samsung Galaxy Note 10 9 2019 ✓ ✓

Samsung Galaxy Note20 11 2020 ✓ ✓

Samsung Galaxy S10 9 2019 ✓ ✓

Samsung Galaxy S21 Ultra 11 2021 ✓ ✓

Samsung Galaxy S22 5G 12 2022 ✓ ✓

Samsung Galaxy S23 13 2023 ✓ ✓

Samsung Galaxy S8 (T-Mobile) 8 2017
Samsung Galaxy S9 (Unlocked) 9 2018 ✓

Samsung Galaxy Tab A 10.1 10 2016 ✓

Samsung Galaxy Tab S4 8 2018 ✓

Samsung Galaxy Tab S6 (WiFi) 9 2019 ✓ ✓

Samsung Galaxy Tab S7 11 2020 ✓ ✓

Samsung Galaxy Tab S8 12 2022 ✓ ✓

Sony Xperia XZ3 9 2018 ✓

Xiaomi 12 Pro 12 2022 ✓

Table 4: All 33 surveyed devices from the AWS device farm.

The Device Model is the name provided by the AWS API. The

OS Version referes to the tested OS version and the device

might be available with different versions.

15

Daniel Hugenroth, Alberto Sonnino, Sam Cutler, and Alastair R. Beresford

These results show that the vast majority of devices released
after 2020 provide access to an SE. And all of those have at least
TEE support. The earliest device with SE support is the Google
Pixel 3 which was released 2018. The release year and Android
OS version strongly correlate meaning that newer devices indeed
run more recent OS versions. In our sample, all devices with OS
version 12+ (Android S, API 31) offer an SE. However, based on the
available API distribution (Figure 8), only 14% of active handhelds
run this OS version. For an estimate of the overall availability, we
take the relative presence of SEs for each OS version and weigh it
based on the API distribution. This yields an estimate of 45% devices
supporting SE globally for data from January 2023 (up from 39%
in August 2022). However, this value will differ between countries
and we believe it will continue to improve as more device features,
such as contactless payments, rely on SEs.

Note that the percentages are cumulative and in order to get the
actual percentage for a specific version number, e.g. API 9 in January
2023, we have to calculate 81.2% − 68.0% = 13.2%. For calculating
the estimated share of supported devices we first compute the
prevalence of SE support per API level using Table 4. This yields
the following data: API 9 (50.0%) API 10 (25.0%) API 11 (57.1%) API
12 (80.0%).

We then calculate for January 2023 as follows: 13.2% · 50.0% +
19.5% ·25.0%+24.4% ·57.1%+24.1% ·80.0% ≈ 44.7%. And for August
2022 likewise: 14.5% · 50.0% + 22.3% · 25.0% + 27.0% · 57.1% + 13.5% ·
80.0% ≈ 39.1%.

B LIMITATIONS OF THE IOS API

The iOS API for using the Secure Enclave allows for P256 private-
key pairs and a limited set of operations, namely key agreement
(provide a public key and receive the ECDH result) and signing
(provide a digest and receive a signature)8. There is no support
for symmetric keys or operations as with StrongBox on Android.
Nevertheless, the results from the asymmetric operations can be
used with other cryptographic algorithms. For instance, the Apple
API supports using a handle to a key stored inside the SE together
with ECIES encryption algorithms like eciesEncryptionCofactor
VariableIVX963SHA256AESGCM. We use this for the HiddenSloth
implementation on iOS.

However, using such ECIES encryption for emulating a scheme
similar to LongSloth is not possible due to two obstacles. (i) The
first concern is that the documentation is inconclusive9 regarding
whether all operations (including the AEC-GCM algorithm) are
performed inside the SE. For safety, and fearing that this may differ
across devices and releases, we assume that this is not the case.
If the AES-GCM algorithm is performed outside the SE, then an
adversary could capture its state after the first block and compute
more blocks on an external computer. Hence, we cannot increase

8“In particular, the Secure Enclave: [...] Works only with NIST P-256 elliptic curve keys.
These keys can only be used for creating and verifying cryptographic signatures, or for
elliptic curve Diffie-Hellman key exchange (and by extension, symmetric encryption)”.
See: https://developer.apple.com/documentation/security/certificate_key_and_trust
_services/keys/protecting_keys_with_the_secure_enclave
9The API design hints that AES is performed outside the SE:
The SecureEnclave.P256.KeyAgreement type allows access to a
x963DerivedSymmetricKey from outside the SE. See: https://developer.apple.
com/documentation/cryptokit/sharedsecret/x963derivedsymmetrickey(using:
sharedinfo:outputbytecount:)

the difficult by requiring a certain length for the input or output
stream.

(ii) Even if we assume that the full ECIES scheme is performed
inside the SE, we cannot construct a MAC/KDF using either the
encryption or decryption operations. The encrypt operation uses a
random ephemeral key. Therefore, the resulting ciphertext will be
different every time and thus we cannot use it for deriving keys in
a LongSloth-way. The decrypt operation verifies the authenticity
(the GCM tag) of the input. Therefore, it fails for arbitrary input.

We believe that we therefore have to rely on combining multiple
ECDH operations as we do in our RainbowSloth construction. For
the HiddenSloth ratchet operations the two listed concerns are
non-issues since (i) we perform the re-encryption before adversary
control and (ii) we want to perform authenticated encryption.

C SECURITY PROOFS

We prove the security of LongSloth (Section 4.1), RainbowSloth
(Section 4.2), and HiddenSloth (Section 5.2).

C.1 Security proofs for LongSloth

We first proof LongSloth Hardness as we will reuse the result for
our proof of LongSloth Indistinguishability.

C.1.1 LongSloth Hardness.

Proof. We constructively proof Theorem 3 by deriving the suc-
cess rate ofA with a given wall time budget B. For this we first note
that 𝑘 only allows A to verify its guesses, but provides no helpful
information otherwise. This is because the pre-image resistance of
HKDF implies A does not learn any information about 𝜔𝑝𝑜𝑠𝑡 (and
thus any of the previous state) from 𝑘 . Hence, knowing 𝑘 provides
A with no advantage when choosing 𝑝𝑤 ′ candidates.

Second, we show that A has to consider each 𝑝𝑤 ′ candidate
independently. For this we observe that the output 𝜔𝑝𝑟𝑒 =

PwHash(𝜋.𝑠𝑎𝑙𝑡, 𝑝𝑤 ′) is indistinguishable from random as per our
assumptions, i.e. the input to SE.Hmac is independent for each
𝑝𝑤 . We note that the salt sampled as per Ξ.KeyGen rules out any
pre-computations by A.

Third, we show that A has to pay the full costs (𝑙 · 𝑐Hmac) for
each of their guesses. This follows from the existential unforge-
ability under adaptive chosen-messages [25, p.113] that we can as-
sume for SE.Hmac. In particular, A does not gain any informa-
tion from submitting a prefix of 𝜔𝑝𝑟𝑒 . With the pre-image resis-
tance of HKDF, this implies that A must perform all steps of the
Ξ.Derive(𝜓, 𝑝𝑤 ′, ℎ) using oracle O𝑆𝐸 . Hence, one password guess
reduces (𝑙 · 𝑐Hmac) units from the adversary’s budget 𝐵.

Fourth, we derive the probability of success for a set password
guesses. Let 𝑋 be a random variable drawn from the distribution
P by the challenger to determine the password 𝑝𝑤 . Assume to
the advantage of A that they can efficiently sample a set 𝐺 of
passwords from P with each 𝑔𝑖 ∈ 𝐺 independently drawn from
P as random variable 𝑌 with 𝑔𝑖 ≠ 𝑔 𝑗∀𝑖, 𝑗 . Then the probability
that one of the guesses allows A to derive 𝑘 is: 𝑃𝑟 [A 𝑤𝑖𝑛𝑠] =∑
𝑝𝑤∈P

∑
𝑔∈G 𝑃𝑟 [𝑋 = 𝑝𝑤] · 𝑃𝑟 [𝑌 = 𝑝𝑤 ′] = ∑

𝑝𝑤∈P 𝑃𝑟 [𝑋 =

𝑝𝑤] · ∑𝑔∈G 𝑃𝑟 [𝑌 = 𝑝𝑤 ′] = |𝐺 | · 𝑃𝑟 [𝑌 = 𝑝𝑤 ′] ≤ |𝐺 |2𝑚 Based on
our arguments above, the maximum size of𝐺 that the adversary can

16

https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/protecting_keys_with_the_secure_enclave
https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/protecting_keys_with_the_secure_enclave
https://developer.apple.com/documentation/cryptokit/sharedsecret/x963derivedsymmetrickey(using:sharedinfo:outputbytecount:)
https://developer.apple.com/documentation/cryptokit/sharedsecret/x963derivedsymmetrickey(using:sharedinfo:outputbytecount:)
https://developer.apple.com/documentation/cryptokit/sharedsecret/x963derivedsymmetrickey(using:sharedinfo:outputbytecount:)

Sloth: Key Stretching and Deniable Encryption using Secure Elements on Smartphones

verify given budget 𝐵 is |𝐺 | = 𝐵
(𝑙 ·𝑐Hmac) . Substituting in the previous

equation yields: 𝑃𝑟 [KeyHard𝐴,Ξ = 1] ≤ 𝐵
(𝑙 ·𝑐Hmac) ·

1
2𝑚 . □

C.1.2 LongSloth Indistinguishability.

Proof. We prove Theorem 1 by reduction using the IND-HMAC
Experiment. However, the classic definitions assume a high-entropy
key 𝑘 sampled uniformly at random from {0, 1}𝜆 . In the LongSloth
algorithm, this key is derived from a password sampled from P.
Hence, we separately account for the adversary’s using their wall-
time budget to guess 𝑝𝑤 and hence derive 𝑘 using their Oracle
access. The success chance is captured by the Hardness result 𝐵

𝜎 ·2𝑚
from above.

The LongSloth protocol Ξ runs on a SE with HMAC support
SE-with-Hmac (Definition 3); let SE-OP be the HMAC protocol
run by the SE. For the reduction, let’s assume there exists an efficient
adversaryAΞ againstΞ; we build an adversaryA against SE-OP.A
interacts with a SE-OP-challenger C and simulates a Ξ-challenger
to AΞ.

Definition 16 recalls the IND-HMACA experiment played by
A and C. Bellare proved that HMAC is a PRF under the sole as-
sumption that its underlying compression function is a PRF [12].
As in the original paper by Bellare, it is convenient to consider a
PRF-adversary A that takes inputs (Section 3.2 of [12]). Figure 11
illustrates how to leverage AΞ to build an efficient adversary A
breaking the IND-HMAC security of SE-OP (Definition 17).

Definition 16 (IND-HMAC Experiment [12]). Let 𝜆 be a fixed
security parameter. Let A be a WT adversary and C a WT chal-
lenger. The SE-OP indistinguishability experiment IND-HMACA
is defined as follows:

(1) Let the state𝜓 be freshly initialized and ℎ an arbitrary (but
fixed) key handle. C randomly samples a secret key 𝑘 ←
SE.HmacKeyGen(𝜓,ℎ) and sets𝜓 .ℎ ← ℎ.

(2) A receives oracle access SE.Hmac under the WT conditions
(Definition 2).

(3) A submits a chosen plaintext𝑚 ∈ 𝑀 to C.
(4) C randomly samples 𝑏

$← {0, 1}, and provides A with 𝑐0 ←
SE.Hmac(𝜓,ℎ,𝑚) if 𝑏 = 0 or 𝑐1

$← {0, 1}𝜆 otherwise.
(5) A outputs a bit 𝑏 ′ and wins iff 𝑏 = 𝑏 ′.
(6) The experiment returns 1 iff A wins, otherwise 0.

Definition 17 (IND-HMAC Security [12]). A SE-OP protocol is
IND-HMAC secure if for all WT adversariesA with time budget 𝐵,
there is a function negl such that for all 𝜆 and an HMAC operation
with length 𝑙 having a cost of 𝜎 (𝑙)10,

𝑃𝑟 [IND-HMACA = 1] ≤ 1
2
+ negl(𝜆) + 𝐵

𝜎 (𝑙) · 2𝑚

The challenger C starts by initializing its internal state𝜓 with
a secret key. Adversary A selects a 𝑚-entropy secure password
𝑝𝑤 and uses it to generate a message for the challenger C; it sets
𝑚 ← PwHash(𝑠𝑎𝑙𝑡, 𝑝𝑤, 𝑙) (where 𝑠𝑎𝑙𝑡 is a random salt). Challenger
C samples a random bit. If 𝑏 = 0 it providesA with the HMAC of𝑚,
i.e., 𝑐0 ← Hmac(𝜓,ℎ,𝑚); otherwise it samples a random bit string
10In the main part of the paper we assume a fixed 𝑛 (or 𝑙 for RainbowSloth) chosen
based on the application requirements. In our proofs we parameterize 𝜎 to simplify
the reduction.

1 : Challenger C Adversary A Adversary AΞ

2 :

3 : 𝜓 ← {} ℎ ← {0, 1}∗; 𝜋 ← {}

4 : 𝑝𝑤
$← P

5 : 𝜋.ℎ ← ℎ; 𝜋.𝑠𝑎𝑙𝑡
$← {0, 1}𝜆

6 : 𝑚 ← PwHash(𝜋.𝑠𝑎𝑙𝑡, 𝑝𝑤, 𝑙)

7 : 𝑚; ℎ

8 : 𝑏
$← {0, 1}

9 : 𝜓 ← SE.SymmKeyGen(𝜓,ℎ)
10 : 𝑐0 ← SE.Hmac(𝜓,ℎ,𝑚)

11 : 𝑐1
$← {0, 1}𝜆

12 : 𝑐𝑏

13 : 𝑞𝑏 ← Hkdf(𝑐𝑏)

14 : 𝑞𝑏 ; 𝜋

15 : access O𝑆𝐸

16 : 𝑏

17 : output 𝑏

Figure 11: LongSloth security reduction. A leverages the ef-

ficient adversary AΞ to play against C and break the IND-

HMAC security of SE-OP.

𝑐1
$← {0, 1}𝜆 of the same size as the HMAC output. In order to guess

whether 𝑐𝑏 is the output of a HMAC or a random bit string, the
adversary A provides AΞ with the stretched key 𝑞𝑏 ← Hkdf(𝑐𝑏).
AΞ determines whether 𝑞𝑏 originated from a key stretching output
or a random source. To this purpose,AΞ can access the oracle O𝑆𝐸
under theWT conditions (see Definition 2). It finally returns𝑏 = 1 if
it believes 𝑞𝑏 originated from a random source and 𝑏 = 0 otherwise.
Finally, the adversaryA deduces that C computed the HMAC of𝑚
if 𝑏 = 0 and that it sampled a random bit string if 𝑏 = 1.

We observe thatA wins the IND-HMACA experiment with the
same probability as AΞ wins KeyIndAΞ

. As a result, the existence
of an efficient adversary AΞ winning KeyIndAΞ

with probability
𝑝 > 1/2 +negl+ 𝐵

𝜎 (𝑙) ·2𝑚 implies the existence of an efficient adver-
sary A winning IND-HMACA with the same probability 𝑝 . This
directly violates the assumption that SE-OP runs a IND-HMAC
secure HMAC algorithm, hence a contradiction. □

C.2 Security proofs for RainbowSloth

C.2.1 RainbowSloth Hardness.

Proof. The proof for RainbowSloth is analogous to the one
for LongSloth (see §C.1.1) with the cost of the critical operation
exchanged for 𝑛 · 𝑐Ecdh as per Definition 4. □

C.2.2 RainbowSloth Indistinguishability.

Proof. We prove Theorem 2 by reduction using the Generalized
DDH Experiment. However, the classic definitions assume a high-
entropy key 𝑘 sampled uniformly at random from {0, 1}𝜆 . In the
LongSloth algorithm, this key is derived from a password sampled
from P. Hence, we separately account for the adversary’s using
their wall-time budget to guess 𝑝𝑤 and hence derive 𝑘 using their
Oracle access. The success chance is captured by the Hardness
result 𝐵

𝜎 ·2𝑚 from above.
The RainbowSloth protocol Ξ runs on a SE with ECDH sup-

port SE-with-Ecdh (Definition 4); let SE-OP be the DDH secure
17

Daniel Hugenroth, Alberto Sonnino, Sam Cutler, and Alastair R. Beresford

1 : Challenger C Adversary A Adversary AΞ

2 :

3 : ℎ ← {0, 1}∗; 𝜋 ← {}

4 : 𝑝𝑤
$← P

5 : 𝜋.ℎ ← ℎ; 𝜋.𝑠𝑎𝑙𝑡
$← {0, 1}𝜆

6 : 𝜔𝑢𝑠𝑒𝑟 ← PwHash(𝜋.𝑠𝑎𝑙𝑡, 𝑝𝑤, 𝑙)
7 : 𝜔𝑝𝑟𝑒,1, . . . , 𝜔𝑝𝑟𝑒,𝑛 ← HashToP256(KDF(𝜔𝑢𝑠𝑒𝑟 | |𝑖))
8 : 𝑔← $𝜔𝑝𝑟𝑒,1, . . . , 𝜔𝑝𝑟𝑒,𝑛

9 : 𝑔

10 : 𝑏
$← {0, 1}; 𝑟 $← Z𝑞

11 : 𝑢0 ← (𝑔𝑟1 , . . . , 𝑔𝑟𝑘) ∈ G
𝑘

12 : 𝑢1
$← G𝑘

13 : 𝑢𝑏

14 : 𝑞𝑏 ← Hkdf(𝑢𝑏)

15 : 𝑞𝑏 ; 𝜋

16 : access O𝑆𝐸

17 : 𝑏

18 : output 𝑏

Figure 12: RainbowSloth security reduction.A leverages the

efficient adversary AΞ to play against C and break the gen-

eralized DDH assumption.

Diffie-Hellman key exchange run by the SE. For the reduction, let’s
assume there exists an efficient adversaryAΞ againstΞ; we build an
adversary A against SE-OP. A interacts with a SE-OP-challenger
C and simulates a Ξ-challenger to AΞ.

Definition 18 recalls the (generalized) decisional Diffie-Hellman
(DDH) [11] experiment played by A and C. Figure 12 illustrates
how to leverage AΞ to build an adversary A breaking the DDH
assumption (Definition 19).

Definition 18 (Generalized DDH [11]). Let 𝜆 be a fixed security
parameter. Let 𝑛 be an integer and G a large cyclic group of prime
order 𝑞. Let A be a WT adversary and C a WT challenger. The
generalized DDH indistinguishability experimentDDHA is defined
as follows:

(1) A provides C with (𝑔1, . . . , 𝑔𝑛) ∈ G𝑛 .
(2) C randomly samples 𝑏

$← {0, 1}. If 𝑏 = 0 it randomly sam-

ples 𝑟
$← Z𝑞 and sets 𝑢0 = (𝑔𝑟1, . . . , 𝑔

𝑟
𝑛) ∈ G𝑛 ; otherwise it

randomly samples 𝑢1 = (𝑢1, . . . , 𝑢𝑛) ∈ G𝑛 . It then provides
A with 𝑢𝑏 .

(3) A outputs a bit 𝑏 ′ and wins iff 𝑏 = 𝑏 ′.
(4) The experiment returns 1 iff A wins, otherwise 0.

Definition 19 (Generalized DDH [11]). The generalized decisional
Diffie-Hellman assumption holds inG if for any𝑛, there is a function
negl and 𝑛 ECDH operations having cost of 𝜎 (𝑛), such that

𝑃𝑟 [DDHA = 1] ≤ 1
2
+ negl(𝜆) + 𝐵

𝜎 (𝑛) · 2𝑚

Figure 12 shows how to leverage the RainbowSloth adversary
AΞ to build an efficient adversary breaking the the generalized
DDH assumption (Definition 19).

The adversary A selects a 𝑚-entropy secure password 𝑝𝑤 . It
then converts it into a 𝑛 P-256 public keys as described in Algo-

rithm 2: it picks a random salt 𝑠𝑎𝑙𝑡
$← {0, 1}∗, computes 𝜔𝑢𝑠𝑒𝑟 ←

PwHash(𝑠𝑎𝑙𝑡, 𝑝𝑤, 𝑙) and 𝜔𝑝𝑟𝑒,𝑖 = HashToP256(KDF(𝜔𝑢𝑠𝑒𝑟 | |𝑖))
for 𝑖 ∈ [0, . . . , 𝑛]. It then sends 𝑔 = (𝜔𝑝𝑟𝑒,0, . . . , 𝜔𝑝𝑟𝑒,𝑛) to the
challenger C.

C samples a random bit 𝑏 and a field element 𝑟
$← Z𝑞 . If 𝑏 = 0,

it computes 𝑢0 = (𝑔𝑟1, . . . , 𝑔
𝑟
𝑛); otherwise it randomly samples 𝑢1 ∈

G𝑛 . It finally sends 𝑢𝑏 to A.
In order to guess the bit 𝑏 picked by the challenger, A provides

AΞ with the stretched key 𝑞 = KDF(𝑢𝑏).
AΞ determines whether 𝑞𝑏 originated from its password 𝑝𝑤 or

a random source (leveraging its access to the O𝑆𝐸 oracle). It returns
𝑏 = 0 if it believes 𝑞𝑏 originated from 𝑝𝑤 and 𝑏 = 1 otherwise.
Finally, the adversary A deduces that C computed 𝑢0 from 𝑔 if
𝑏 = 0 and randomly generated 𝑢1 if 𝑏 = 1.

We observe that A wins the DDHA experiment with the same
probability as AΞ wins KeyIndAΞ

. As a result, the existence of
an efficient adversary AΞ winning KeyIndAΞ

with probability
𝑝 > 1/2+negl+ 𝐵

𝜎 (𝑛) ·2𝑚 implies the existence of an efficient adver-
sary A winning DDHA with the same probability 𝑝 . This directly
violates the assumption that the key exchange SE-OP is secure
under DDH, hence a contradiction. □

C.3 Security proof of HiddenSloth

Both 1S-HiddenSloth and MS-HiddenSloth run on top of a key
stretching scheme such as LongSloth (Section 4.1) and RainbowSloth
(Section 4.2); as a result, they run on a SE with either HMAC or
ECDH support. As mentioned in Section 5.1 and Section 5.2, any
HiddenSloth protocol Δ requires an authenticated IND-CPA secure
stream cipher AE running in the user space (i.e., outside of the SE).

C.3.1 MS-HiddenSloth Indistinguishability.

Proof. We prove Theorem 5 by reduction. Let’s assume there
exists an efficient adversary AΔ against Δ; we build an adversary
A against AE.A interacts with a AE-challenger C and simulates a
Δ-challenger toAΔ. Definition 20 recalls the IND-CPA experiment
played by A and C; Definition 21 recalls the definition of AE’s
IND-CPA security taking into account the ability of the adversary
to break the underlying key stretching scheme.
Definition 20 (AE IND-CPA Experiment). Let 𝜆 be a fixed security
parameter. LetA be aWT adversary with wall time budget 𝐵 and C
a WT challenger. Let Ξ be a 𝜎-hard key stretching scheme. The AE
indistinguishability experiment IND-CPAA is defined as follows:

(1) C randomly samples a secret key 𝑘 ← Ξ.KeyGen(𝜓, 𝑝𝑤,ℎ).
(2) A receives oracle access AE.Enc under the WT conditions

(Definition 2).
(3) A submits two chosen plaintexts (𝑚0,𝑚1) ∈ 𝑀2 to C.
(4) C randomly samples 𝑏

$← {0, 1} and 𝑖𝑣 $← 𝐼𝑉 , and provides
A with 𝑐𝑏 , 𝑡𝑏 ← AE.Enc(𝑘, 𝑖𝑣,𝑚𝑏).

(5) A receives oracle access AE.Enc under the WT conditions.
(6) A outputs a bit 𝑏 ′ and wins iff 𝑏 = 𝑏 ′.
(7) The experiment returns 1 iff A wins, otherwise 0.

Definition 21 (AE IND-CPA). A stream cipher AE keyed with the
output of an𝑚-entropy secure key stretching scheme is IND-CPA
secure if for all WT adversaries A with time budget 𝐵, there is a
function negl such that for all 𝜆,

𝑃𝑟 [IND-CPAA = 1] ≤ 1
2
+ negl(𝜆) + 𝐵

𝜎 · 2𝑚
It is convenient to grantA access to a SE oracle allowing to per-

fectly simulate SE symmetric encryption operations 𝑆𝐸.𝑆𝑦𝑚𝑚𝐸𝑛𝑐

18

Sloth: Key Stretching and Deniable Encryption using Secure Elements on Smartphones

Algorithm 6 Oracle simulating 𝑆𝐸.𝑆𝑦𝑚𝑚𝐸𝑛𝑐 operations as per-
formed by a SE-with-SymmEnc.

1: procedure O.Init()
2: 𝜓 ← {}
3: procedure O.Encrypt(ℎ′,𝑚)
4: 𝜓 ← SE.SymmKeyGen(𝜓,ℎ′)
5: 𝑖𝑣

$← 𝐼𝑉

6: return SE.SymmEnc(𝜓,ℎ′, 𝑖𝑣,𝑚)

as performed by a SE with symmetric encryption support SE-with-
SymmEnc (Definition 5). This oracle is described in Algorithm 6
and is initialized calling O.Init before starting the experiment.

Figure 13 illustrates how to leverage the MS-HiddenSloth adver-
sary AΔ to build an efficient adversary A breaking the IND-CPA
security of AE (Definition 21). Figure 13 generates a random key
𝑘 calling AE.KeyGen. The experiment should ideally generate 𝑘
through a Sloth key stretching algorithm but Theorems 1 and 2 state
that AΔ cannot distinguish a key generate by a Sloth algorithm
from a purely random key.

The key insights of the proof are the following. (i) Challenger C
indirectly simulates Algorithm 4 for adversary A. (ii) Adversary
A does not need to run a decryption operation before Line 26
as it previously cached the latest messages �̃� from AΔ within its
variables 𝑠0 and 𝑠1. It can thus feed them to C during the attack
phase and only needs to simulate the outer encryption layer (Line 29
to Line 34 of Algorithm 5).

During the preparation phase (lines 7 to 21 of Figure 13), the
adversary AΔ provides A with a message �̃� ← 𝑀 and a bit 𝑏. A
makes use of it oracle access to AE.Enc (step 2 of Definition 20)
by forwarding �̃� to the challenger C. C encrypts �̃� and replies
with the corresponding iv 𝑖𝑣 , ciphertext 𝑐 , and tag 𝑡 . A stores the
queried message as 𝑠

𝑏
← �̃�; it will later use it to simulate the state

of the protocol Δ toAΔ. It then sample a fresh key 𝑡𝑘 to re-encrypt
𝑐 , which simulates the outer encryption layer of Algorithm 5. A
makes use of its SE encryption oracle (defined in Algorithm 6) to
encrypt 𝑡𝑘 , 𝑡 , and 𝑖𝑣 .A now holds all information to craft a state 𝜋
as if generated by a Δ-challenger. The preparation phase repeats a
number of times chosen by AΔ (under WT conditions).
A eventually prepares two messages for the challenger C:𝑚0 ←

𝑠0 and𝑚1 ← 𝑠1. The values 𝑠0 and 𝑠1 retain the latest messages
queried by AΔ during the preparation phase for 𝑏 = 0 and 𝑏 = 1,
respectively. The challenger C encrypts either𝑚0 or𝑚1 based on
a random bit 𝑏 and provides A with the corresponding ciphertext
and tag 𝑐𝑏 , 𝑡𝑏 ← 𝐴𝐸. 𝐸𝑛𝑐 (𝑘, 𝑖𝑣,𝑚𝑏) and iv 𝑖𝑣 . At this point, 𝑐𝑏 is the
encryption of the latest pair (�̃�, 𝑏) queried byAΔ during the prepa-
ration phase (at Line 7). A finally re-encrypt those information to
simulate the outer encryption layer similarly to the preparation
phase.
AΔ accesses the oracle O𝑆𝐸 and eventually determines whether

𝜋 contains the encryption of the latest pair (�̃�0, 0) or (�̃�1, 1) it
submitted during the preparation phase. It eventually returns 𝑏 = 0
if it believes 𝜋 contains the encryption of �̃�0 and 𝑏 = 1 otherwise.
Finally, the adversary A deduces that C encrypted𝑚0 if 𝑏 = 0 and
𝑚1 if 𝑏 = 1.

1 : Challenger C Adversary A Adversary AΔ

2 :
3 : 𝑘 ← Ξ.KeyGen(𝜓, 𝑝𝑤,ℎ) 𝑠0 ← 0; 𝑠1 ← 0

4 : ℎ′ ← {0, 1}∗ | |1
5 :
6 :

7 : �̃� ← 𝑀 ; 𝑏 ← {0, 1}

8 : �̃�; 𝑏

9 : 𝑠
�̃�
← �̃�

10 : �̃�

11 : 𝑖𝑣
$← 𝐼𝑉

12 : 𝑐, 𝑡 ← AE.Enc(𝑘, 𝑖𝑣, �̃�)

13 : 𝑐 ; 𝑡 ; 𝑖𝑣

14 : 𝑡𝑘 ← AE.KeyGen()

15 : 𝜋 ← {}; 𝑡𝑖𝑣 $← 𝐼𝑉

16 : 𝜋.𝑏𝑙𝑜𝑏, 𝜋 .𝑡𝑡𝑎𝑔← AE.Enc(𝑡𝑘, 𝑡𝑖𝑣, 𝑐)
17 : 𝜋.𝑡𝑖𝑣 ← 𝑡𝑖𝑣; K ← [𝑡𝑘, 𝑡, 𝑖𝑣]
18 : 𝜋.K ← O.Encrypt(ℎ′,K)

19 : 𝜋

20 :
21 : 𝑚0 ← 𝑠0; 𝑚1 ← 𝑠1

22 : 𝑚0;𝑚1

23 : 𝑏
$← {0, 1}; 𝑖𝑣 $← 𝐼𝑉

24 : 𝑐𝑏 , 𝑡𝑏 ← AE.Enc(𝑘, 𝑖𝑣,𝑚𝑏)

25 : 𝑐𝑏 ; 𝑡𝑏 ; 𝑖𝑣

26 : 𝑡𝑘 ← AE.KeyGen()

27 : 𝜋 ← {}; 𝑡𝑖𝑣 $← 𝐼𝑉

28 : 𝜋.𝑏𝑙𝑜𝑏, 𝜋 .𝑡𝑡𝑎𝑔← 𝐴𝐸. 𝐸𝑛𝑐 (𝑡𝑘, 𝑡𝑖𝑣, 𝑐𝑏)
29 : 𝜋.𝑡𝑖𝑣 ← 𝑡𝑖𝑣; K ← [𝑡𝑘, 𝑡𝑏 , 𝑖𝑣]
30 : 𝜋.K ← O.Encrypt(ℎ′,K)

31 : 𝜋

32 : access O𝑆𝐸

33 : 𝑏

34 : output 𝑏

Figure 13: MS-HiddenSloth security reduction. A leverages

the efficient adversary AΔ to play against C and break the

IND-CPA security of AE.

We observe that A wins the IND-CPAA experiment with the
same probability as AΔ wins experiment DE-MS-IndAΔ

. As a re-
sult, the existence of an efficient adversaryAΔ winning experiment
DE-MS-IndAΔ

with probability 𝑝 > 1/2 + negl(𝜆) + 𝐵
𝜎 ·2𝑚 implies

the existence of an efficient adversaryA winning IND-CPAA with
the same probability 𝑝 . This directly violates the assumption that
AE is IND-CPA secure, hence a contradiction. □

C.3.2 MS-HiddenSloth Hardness.

Proof. Weprove Theorem 6 by showing that the probability that
adversaryA wins the deniable encryption hardness experiment for
protocol Δ is no bigger than its probability of winning the hardness
experiment against its underlying key stretching scheme Ξ. That
is, 𝑃𝑟 [KeyHardA,Δ = 1] ≤ 𝑃𝑟 [KeyHardA,Ξ = 1].

First,A removes the outer encryption layer calling SE.SymmDec
andAE.Dec (Line 27 and Line 28 of Algorithm 5). As a result, 𝜋.𝑏𝑙𝑜𝑏
contains the encryption of𝑑𝑎𝑡𝑎, encrypted using a key derived from
𝑝𝑤 . This operations requires a one-time cost of TSE.SymmEnc from
the adversary’s budget 𝐵 and does not need to be repeated for each
guess.

Second, we observe that 𝜋 (and 𝜋.𝑏𝑙𝑜𝑏 in particular) only allows
A to verify their guesses, but provides no helpful information
otherwise. This observation follows from the IND-CPA resistance of

19

Daniel Hugenroth, Alberto Sonnino, Sam Cutler, and Alastair R. Beresford

the underlying AE encryption scheme. Hence, knowing 𝜋 provides
A with no advantage when choosing 𝑝𝑤 ′ candidates.

Third, we show that A has to pay the full cost 𝑐Ξ required to
access the SE and run the underling key stretching schemeΞ used by
Δ.Decrypt.A must find a key 𝑘 such that AE.Dec(𝑘, 𝜋 .𝑖𝑣, 𝜋 .𝑏𝑙𝑜𝑏,
𝜋 .𝑡𝑎𝑔) returns 𝑑𝑎𝑡𝑎 (Line 17 of Algorithm 4). Assuming AE is a
permutation-based cipher, there is a single𝑘 satisfying this property.
Let’s assume (to the advantage of the adversary) that A can brute-
force AE.Dec to recover 𝑘 (since it does not require access to the
SE and thus does not cost A’s budget). A must now win the key
stretching hardness experiment presented in Definition 9 against
a Ξ-challenger. Assuming Ξ is 𝜎Ξ-hard, Definition 10 indicates A
pays budget 𝑐Ξ = 𝜎Ξ for each of their guesses.

Finally, since the adversary pays a one-time cost TSE.SymmEnc and
a cost of 𝜎Ξ for each of their guesses, the overall cost of guessing
𝑝𝑤 is 𝜎 > 𝜎Ξ per guess. It follows that 𝐵

𝜎 ·2𝑚 < 𝐵
𝜎Ξ ·2𝑚 , and thus

𝑃𝑟 [DeHardA,Δ = 1] ≤ 𝑃𝑟 [KeyHardA,Ξ = 1]. □

20

	Abstract
	1 Introduction
	2 Background
	2.1 Android and iOS APIs

	3 System Overview
	3.1 Threat Model
	3.2 Notations

	4 The Sloth Key Stretching Scheme
	4.1 LongSloth: Simple Key Stretching Scheme
	4.2 RainbowSloth: Key Stretching for iOS

	5 The Sloth Deniable Encryption Scheme
	5.1 1S-HiddenSloth: Single-Snapshot
	5.2 MS-HiddenSloth: Going Multi-Snapshot
	5.3 Practical Implementation Details

	6 Security Analysis
	6.1 Key Stretching Security
	6.2 Deniable Encryption Security

	7 Evaluation
	7.1 Performance Characteristics of SEs
	7.2 Parameter choice
	7.3 LongSloth and RainbowSloth
	7.4 HiddenSloth
	7.5 Limitations

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Survey of SE Availability
	A.1 SE Support on Apple devices
	A.2 SE Support on Android devices

	B Limitations of the iOS API
	C Security Proofs
	C.1 Security proofs for LongSloth
	C.2 Security proofs for RainbowSloth
	C.3 Security proof of HiddenSloth

