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Abstract

In their seminal work, Ishai, Kushilevitz, Ostrovsky, and Sahai (STOC‘07) presented the
MPC-in-the-Head paradigm, which shows how to design Zero-Knowledge Proofs (ZKPs) from
secure Multi-Party Computation (MPC) protocols. This paradigm has since then revolution-
ized and modularized the design of efficient ZKP systems, with far-reaching applications be-
yond ZKPs. However, to the best of our knowledge, all previous instantiations relied on fully-
secure MPC protocols, and have not been able to leverage the fact that the paradigm only im-
poses relatively weak privacy and correctness requirements on the underlying MPC.

In this work, we extend the MPC-in-the-Head paradigm to game-based cryptographic primi-
tives supporting homomorphic computations (e.g., fully-homomorphic encryption, functional
encryption, randomized encodings, homomorphic secret sharing, and more). Specifically, we
present a simple yet generic compiler from these primitives to ZKPs which use the underlying
primitive as a black box. We also generalize our paradigm to capture commit-and-prove pro-
tocols, and use it to devise tight black-box compilers from Interactive (Oracle) Proofs to ZKPs,
assuming One-Way Functions (OWFs).

We use our paradigm to obtain several new ZKP constructions:

1. The first ZKPs for NP relations R computable in (polynomial-time uniform) NC1, whose
round complexity is bounded by a fixed constant (independent of the depth of R’s verifi-
cation circuit), with communication approaching witness length (specifically, n · poly (κ),
where n is the witness length, and κ is a security parameter), assuming DCR. Alterna-
tively, if we allow the round complexity to scale with the depth of the verification circuit,
our ZKPs can make black-box use of OWFs.

2. Constant-round ZKPs for NP relations computable in bounded polynomial space, with
O (n) + o (m) · poly (κ) communication assuming OWFs, where m is the instance length.
This gives a black-box alternative to a recent non-black-box construction of Nassar and
Rothblum (CRYPTO‘22).

3. ZKPs for NP relations computable by a logspace-uniform family of depth-d (m) circuits,
with n·poly (κ, d (m)) communication assuming OWFs. This gives a black-box alternative
to a result of Goldwasser, Kalai and Rothblum (JACM).
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1 Introduction

Zero-Knowledge Proofs (ZKPs) [GMR85, GMR89] enable a prover P to prove to an efficient ver-
ifier V that x ∈ L for some NP-language L, while revealing nothing except the validity of the
statement. ZKPs have numerous applications, and are a fundamental building block in the design
of many secure Multi-Party Computation (MPC) protocols.

In their seminal work that introduced the “MPC-in-the-Head” paradigm, Ishai, Kushilevitz,
Ostrovsky, and Sahai [IKOS07] established a surprising connection between MPC protocols and
ZKPs. Specifically, they gave a construction in the reverse direction, showing how to construct
ZKPs from MPC protocols. The high-level idea is to associate an NP-relation R = R (x,w) for L
with a function f whose input is x and additive shares of w, and generate the proof using an MPC
protocol Π for f . More specifically, P secret shares w, emulates “in her head” the execution of Π
on x and the witness shares, and commits to the views of all parties in this execution. The verifier
then chooses a subset of parties whose views are opened and checked for consistency. Importantly,
this ZKP makes black-box use of the underlying primitives (e.g., the one-way function used to
instantiate the commitment scheme) as well as the algorithms of Π’s participants. Moreover, Π is
only required to satisfy relatively weak security guarantees, specifically correctness and privacy
against semi-honest corruptions.

The “MPC-in-the-Head” paradigm draws its power from its generality: it can be instanti-
ated with any secure MPC protocol Π for f (with essentially any number of parties), utilizing
the efficiency properties of Π to obtain different tradeoffs between the parameters of the resul-
tant ZKP (e.g., communication complexity, supported class of languages, etc.). The versatility
of the paradigm was demonstrated in [IKOS07], who – by instantiating the construction with
“appropriate” MPC protocols – designed two types of constant-round communication-efficient
ZKPs. Specifically, using a protocol of [BI05], they construct ZKPs for AC0 (i.e., constant-depth
circuits over ∧,∨,⊕,¬ gates of unbounded fan-in) whose communication complexity approaches
the witness length, namely it is n · poly(κ, log s) bits (here, n is the witness length, κ is the secu-
rity parameter, and s is the size of the verification circuit for R). And, using a protocol of [DI06],
they construct “constant rate” ZKPs for all NP, namely ZKPs whose communication complexity is
O(s)+poly(κ, log s), where s is the size of the verification circuit using gates of bounded fan in. Both
constructions use the underlying commitment scheme (which can be based on one-way functions)
as a black box.

Following its introduction, the “MPC-in-the-Head” paradigm has been extensively used to
obtain black-box constructions [IPS08, HIKN08, IPS09, IW14, GOSV14, IKP+16, GIW16, HVW20],
and communication-efficient protocols by using highly-efficient MPC protocols [GIW16, IPS08,
IKO+11, GMO16, AHIV17, HIMV19, HVW20, BFH+20, HVW22]. In many of these works, the
paradigm was used to compile protocols from semi-honest to malicious security. In the context
of designing sublinear ZK arguments (and ZK-SNARKs), recent works [AHIV17, BFH+20] have
leveraged the MPC-in-the-Head paradigm to obtain highly-efficient succinct proofs [AHIV22].

However, Ishai et al. [IKOS07] and, to the best of our knowledge, all follow-up works, relied
on fully-secure MPC protocols (in the simulation-based paradigm). In particular, the constructions
presented in the 15 years since [IKOS07] have not utilized the fact that the MPC protocol is only
required to be correct (when all parties are honest), and private against semi-honest corruptions.
Since such protocols could potentially be made more efficient than fully-secure protocols, “MPC-
in-the-Head” might not have yet realized its full potential.
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1.1 Our Contribution

We extend the “MPC-in-the-Head” paradigm to use game-based primitives that only guarantee
correctness and privacy against semi-honest adversaries. Thus, we can exploit – for the first time –
the observation of [IKOS07] that full security is not needed, and rely on the weaker requirements
essential for the “MPC-in-the-Head” paradigm. We then use our paradigm to obtain new (also,
black-box) constructions of succinct ZKPs.

1.1.1 ZKPs from Game-Based Primitives: A General Paradigm

We present a paradigm for constructing ZKPs that can be applied to a wide range of primitives, in-
cluding Fully Homomorphic Encryption (FHE), Functional Encryption (FE), Homomorphic Secret
Sharing (HSS), Function Secret Sharing (FSS), Randomized Encodings (REs), and Laconic Func-
tion Evalaution (LFE). Roughly speaking, the underlying primitive should contain a method of
encoding secret information, a procedure for generating keys associated with computations, and
a method of performing homomorphic computations on the encoded messages using the keys. For
example, in an FE scheme, encoding the secret is simply encrypting it, function keys can be gener-
ated for different functions, and the computation can be executed homomorphically over cipher-
texts by decrypting the ciphertext using an appropriate function key. Importantly, our paradigm
preserves the efficiency of the underlying primitive in the following sense: the communication
complexity of the resultant ZKP is proportional to the sum of (1) the size of the keys; (2) the size of
encodings, and (3) the randomness complexity of the primitive (namely; the amount of random-
ness needed to generate encodings and keys).1 In particular, the communication complexity does
not depend directly on the size of the computation.

More specifically, we obtain the following result, where the soundness error is the probability
that the verifier accepts a false claim (see Section 4 and the theorems therein for formal statements
of the transformation from different primitives):

Theorem 1.1 (ZKPs from Game-Based Non-Interactive Primitives – informal). LetR = R (x,w) be
an NP-relation with verification circuit C, and let κ be a security parameter. Let P = (Gen,Enc,Eval,Dec)
be a game-based non-interactive primitive P ∈ {FHE,FE,FSS,HSS, LFE,RE} for a circuit class containing
C. Assuming ideal commitments, there exists a constant-round ZKP with constant soundness error, which
uses P as a black-box.

Moreover, assume that:

• Keys generated by Gen have length ℓk (κ),

• Encodings generated by Enc have length ℓc (κ, l) (l denotes the length of the encrypted message),

• And the executions of Gen,Enc and Eval each consume ℓr (κ) random bits,

Then the communication complexity of the proof is O (n+ ℓr (κ) + ℓk (κ) + ℓc (κ, n)) bits, where n denotes
the witness length.

Our paradigm is quite versatile: it can be applied to primitives in which the homomorphic
computation is performed by a single party (as in FE and FHE), or distributed between multiple
parties (as in HSS and FSS); it can handle primitives with a correctness error, in which decryption

1This dependence on the randomness can be removed by generating the randomness using a PRG whose output
is indistinguishable from random, against non-uniform distinguishers. This causes only a negligible increase in the
soundness error.

3



might not always yield the correct output of the computation; and it can rely on secret- or public-
key primitives. See Section 4 for the various constructions.

Generalization to Interactive Protocols. We generalize our paradigm to use interactive protocols
as the underlying building block, showing that our paradigm can be used to design protocols for
commit-and-prove style functionalities. In particular, this generalized paradigm can be applied to
Interactive Proofs (IPs) and Interactive Oracle Proofs (IOPs). As described in Section 1.1.2 below,
this is useful for designing black-box variants of (succinct) ZKPs.

1.1.2 (Succinct) Black-Box ZKP Constructions

Similar to [IKOS07], the generality of our paradigm means it can be instantiated with various
underlying primitives. We can additionally exploit the relatively weak security properties required
from the underlying primitives to obtain efficiency gains in the communication complexity of
the resultant ZKP. Specifically, by instantiating our paradigm with appropriate primitives, we
construct ZKPs with new tradeoffs between the communication complexity, the supported class
of languages, and the underlying assumptions. Moreover, we reprove several known results by
casting known construction as special cases of our paradigm. Another attractive feature of our
paradigm is that any future constructions of the underlying primitives can be plugged-into the
compiler of Theorem 1.1 to obtain a new ZKP system. This is particularly important given the
recent rapid improvement in the design of some of the underlying primitives (e.g., the relatively
new notion of HSS, see Section 1.3).

We now give more details on these ZKP constructions.

Constant-Round ZKPs Approaching Witness Length. Instantiating Theorem 1.1 with an appro-
priate HSS scheme, we obtain constant-round ZKPs approaching witness length for (polynomial-
time uniform) NC1,2 assuming the DCR assumption. (In fact, our ZKPs make a black-box use of
HSS, which can be instantiated with the appropriate parameters assuming DCR.) The round com-
plexity of our ZKPs is bounded by a universal constant, independent of the depth of the relation’s
verification circuit. This should be contrasted with [IKOS07], who obtain similar ZKPs for AC0

assuming One-Way Functions (OWFs). See Section 4.1 for the construction and proof.

Corollary 1.2 (Constant-Rnd. ZKPs of Quasi-Linear Length from DCR). Assume that the DCR
hardness assumption (Definition 2.1) holds. Then there exists a universal constant c such that any NP-
relation in (polynomial-time uniform) NC1 has a c-round ZKP with 7/8 soundness error and n · poly (κ)
communication complexity, where n denotes the witness length, and κ is the security parameter.

Next, we show that if the round complexity of the ZKP is allowed to scale with the depth of the
relation’s verification circuit, then our ZKPs can make black-box use of OWFs (instead of the DCR
assumption). This should be contrasted with Goldwasser et al. [GKR15], who obtain ZKPs ap-
proaching witness length for NC (with log-many rounds), and O(1)-round ZKPs for (polynomial-
time uniform) NC1 relations which follows from [GR20]. Both results are based on OWFs and use
it in a non-black-box way; see Section 1.3 for a more detailed comparison, and Section 5.1 for the
proof.

Corollary 1.3 (Constant-Rnd. ZKPs of Quasi-Linear Length from OWFs). Assume that OWFs exist.
Then any NP-relation in (polynomial-time uniform) NC1 has a constant-round ZKP with 1/2 soundness
error and n · poly (κ) communication complexity, where n denotes the witness length, and κ is the security
parameter. Moreover, the ZKP uses the OWF as a black box.

2By polynomial-time uniform NC1 we mean that there exist a polynomial p(n) and a Turing machine that on input
1n runs in time p(n) and outputs the circuit (in NC1) for input length n.
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As a second application, instantiating Theorem 1.1 with an FHE scheme, we obtain constant-
round ZKPs for all NP, whose communication is proportional to the witness length. Moreover,
our construction is black-box in the underlying FHE scheme. This gives a black-box alternative
to a non-interactive ZKP construction of Gentry et al. [GGI+15] with similar parameters. More
formally, we have the following corollary.

Corollary 1.4 (Constant-Rnd. ZKPs for all NP from FHE). Assume the existence of an FHE scheme for
all polynomial sized circuits. Then every NP language has a constant-round ZKP with 3/4 soundness error
and O(n) + poly (κ) communication complexity, where n denotes the witness length, and κ is the security
parameter. Moreover, the construction uses the underlying FHE scheme as a black-box.

We note that similar to [GGI+15], to instantiate our construction of Corollary 1.4 we need an
FHE scheme that can evaluate any polynomial-size circuit, and such constructions are known as-
suming LWE and circular-security of a particular encryption, or indistinguishability obfuscation.

Constant-Round ZKPs from OWFs. Instantiating Theorem 1.1 with an appropriate Randomized
Encoding (RE) [IK00, AIK04] scheme (specifically, an appropriate garbling scheme), we reprove
the following theorem from [HV16], who explored 2PC-in-the-Head as an intermediate step to-
ward building black-box adaptively-secure ZKPs from OWFs.

Corollary 1.5. Assume that OWFs exist. Then any polynomial-size Boolean circuit C has a constant-
round ZKP with 2/3 soundness error and O(κ|C|) communication complexity, where κ is the security
parameter. Moreover, the ZKP uses the OWF as a black-box.

Everything Provable is Provable in Black-Box ZK. Ben-Or et al. [BGG+88] compiled a public-
coin IP3 for any language L to a ZKP for L, by making non-black-box use of a OWF. Instantiating
our generic C&P abstraction of Section 5 with randomized encodings as the underlying primi-
tive, we obtain a similar transformation from IPs to ZKPs, which makes only black-box use of the
underlying OWF. Specifically, we show the following (see Section 5.1.1 for further details):

Corollary 1.6 (Everything Provable is Provable in Black-Box ZK). Assume OWFs exist. Then any
L ∈ IP has a zero-knowledge proof which uses the underlying OWF as a black-box.

Succinct Black-Box ZKPs for Bounded-Space/Bounded-Depth NP. We use our C&P abstraction
to provide an IP-to-ZKP compiler which makes black-box use of a OWF (see Theorem 5.1). Apply-
ing this compiler to the “doubly-efficient” IPs of [GKR15] yields ZKPs for bounded-depth NP, as
specified in Corollary 1.7 (see Section 5.1.1 and Corollary 5.3 for the formal statement). Prior to
our work, succinct black-box ZKPs from OWFs were only known for AC0 [IKOS07].

Corollary 1.7 (Succinct ZKPs for Bounded-Depth NP – informal). Assume OWFs exist, and let
κ(m) ≥ log(m) be a security parameter. Let R be an NP-relation computable by a logspace-uniform
family of Boolean circuits of size poly(m) and depth d(m), where m is the instance length. Then there
exists a public-coin d(m)-round ZKP for R in which the prover runs in time poly(m,κ(m)) (given a
witness), the verifier runs in time m · poly(n(m), κ(m), d(m)), and the communication complexity is
n(m) · poly(κ(m), d(m)), where n(m) denotes the witness length. Moreover, the protocol uses the under-
lying OWF as a black-box.

We extend our black-box IP-to-ZKP compiler to apply to IOPs. Combined with ideas from
[NR22], the compiler has essentially no overhead in the communication complexity (specifically,

3In a public-coin IP, the verifier’s messages are simply random bits.
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overhead (1 + γ) for an arbirary constant γ > 0). This gives a black-box alternative to the recent
IOP-to-ZKP compiler of [NR22]. Applying our compiler to the succinct IOPs of [RR20] gives the
following result (see Section 5.1.2 and Corollary 5.6 for the formal statement):

Corollary 1.8 (Succinct ZKPs for Bounded-Space NP – Informal). Assume OWFs exist, and let κ be
a security parameter. Let R be an NP relation computable in polynomial time and bounded polynomial
space (mδ-space for some fixed δ ∈ (0, 1))). Then for any constants γ, β ∈ (0, 1), there exists a public-coin,
constant-round, ZKP for R with constant soundness error, and communication complexity (1 + γ)n +
mβ ·poly(κ), where m,n denote the instance and witness lengths, respectively. Moreover, the ZKP uses the
underlying OWF as a black box.

1.2 Technical Overview

Our construction is conceptually simple. It relies in a black-box manner on a non-interactive game-
based primitive, that allows for homomorphic computation of a function f while hiding both the
function and the input to it. We first describe the properties needed from such primitives, then
explain how they are used in our ZKP constructions.

The Building Block: Game-Based Non-Interactive Primitive with Homomorphic Computa-
tions. Let R = R (x,w) be an NP relation, and let L be the corresponding NP language. Let P
be a cryptographic primitive consisting of the following four algorithms:

• Gen is a key generation algorithm used to generate keys, and all setup parameters needed to
execute the primitive.

• Enc is an encoding procedure used to encode secrets.

• Eval is an evaluation procedure used to homomrphically compute over encoded secrets.

• Dec is a decoding procedure used to decode the outcome of homomorphic computations.

These algorithms are required to satisfy the following properties:

• Correctness: homomorphic computations yield the correct outcome; namely, they emulate
the computation over unencoded messages. For simplicity, we assume perfect correctness
in this section; however, our paradigm (described in Section 4) extends to primitives with a
correctness error. (See, e.g., Section 4.1.)

• Input Privacy: encodings generated by Enc computationally hide the encoded secrets. (In
particular, this implies that the output of a homomorphic computation over an encoding c
hides the secret encoded by c.)

• Function Privacy: outputs of homomorphic computations generated by Eval reveal only the
outcome of the computation, hiding all other information regarding the evaluated function.

One example of such a primitive is circuit-private Fully Homomorphic Encryption (FHE). Nev-
ertheless, our abstraction captures a rich class of cryptographic objects, including function-private
Functional Encryption (FE) and homomorphic forms of secret sharing, such as Homomorphic Se-
cret Sharing (HSS) and Function Secret Sharing (FSS). The latter two examples (HSS and FSS) differ
significantly from the former two (FHE and FE) because, in HSS/FSS, evaluation is distributed be-
tween k parties. We call such primitives k-party primitives, where a 1-party primitive is a primitive
in which evaluation is not distributed (this is the case in, e.g., FHE and FE). For simplicity, we
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present our ZKP blueprint below for 1-party primitives, and it might be helpful for the reader to
keep the FHE example in mind as an instantiation of the blueprint. We then describe how to gen-
eralize our abstraction to k-party primitives (see also the full abstraction in Figure 4, Section 3).
This allows us to obtain Theorem 1.2 by instantiating our paradigm with recent HSS constructions.

Blueprint of Our ZKP construction. Similar to the MPC-in-the-head paradigm of [IKOS07], the
prover P emulates the primitive’s algorithms “in her head” and commits to (the transcripts of)
these executions. The verifier V then checks that the primitive was honestly executed. If this is the
case, the computation’s output would be 1 if and only if x ∈ L. Our constructions assume an ideal
commitment oracle FCom, which can be instantiated with computationally-hiding commitments
(see Section 2.1). We now describe the construction in more detail. Let C (·, ·) be the verification
circuit ofR. The ZKP between P with input x ∈ L and witness w, and V with input x, is executed
as follows (see also Figure 1).

In the first – and most crucial – step of the ZKP, P additively shares the witness w = w1 ⊕ w2,
and lets C̃ (u) := C (x,w1 ⊕ u). Intuitively, this sharing divides w into two parts: one is tied to the
homomorphic computation, and the other is the secret over which the computation is executed.
This division is essential because we rely on weak primitives which only guarantee correctness (i.e., in
an honest execution), with no correctness guarantees against malicious corruptions. Indeed, in this
case V must check all parts of the execution – including encoding and homomorphic computation
– so none of these steps can depend directly on the witness w. By separating w into two parts, we
can remove the direct dependence on w from both the encoding and the homomorphic evaluation
steps.4 The prover’s goal now reduces to proving that w2 satisfies C̃.

For this, P performs the following “in her head”. P first generates the keys for homomorphic
computation (by running Gen), then encodes w2 (using Enc) to an encoding c, and homomorphi-
cally evaluates C̃ over c (using Eval) to obtain an encoded outcome c′. P then commits to all values
generated during these executions, namely: the randomness needed for the executions of Gen,Enc
and Eval, the encoding c of w2, and the encoded output c′. Notice that to homomorphically eval-
uate C̃ on w2, one must perform the following four steps: (1) generate keys for the homomorphic
computation; (2) encode w2; (3) homomorphically evaluate C̃ over w2; (4) decode the outcome of
the homomorphic computation. As noted above, if all these steps were honestly executed, the
outcome is 1 if and only if x ∈ L (because of perfect correctness). Therefore, the verifier’s goal is
to check that the steps were honestly executed. For this, he randomly chooses one of the steps and
checks that it was honestly executed, where P decommits the inputs, outputs, and randomness
used in the step. The construction is described more explicitly in Figure 1.

Example: ZKPs from FHE. To demonstrate how to use our paradigm, we briefly describe an in-
stantiation based on FHE (see Section 4.6 for the detailed construction and proof).5 Let FHE =
(Gen,Enc,Eval,Dec) be an FHE scheme. The Setup step (Step 2) consists of executing Gen to gen-
erate a public encryption key pk and secret decryption key sk. pk can be sent to V in the clear,
whereas P commits to sk and the randomness rG used by Gen. The witness encoding step (Step 3)
consists of P executing Enc with sk to encrypt w2, and committing to w2, the ciphertext c, and the
randomness rE used to generate it. Evaluation (Step 4) consists of P executing Eval to homomor-

4This is reminiscent of the [IKOS07] construction from passively-secure MPC protocols, in which the witness is
secret-shared between the parties participating in the execution “in-the-head”. We note, however, that our use of secret
sharing is conceptually different: in our case, there is no underlying two- or multi-party computation. Instead, one of
the shares is hard-wired into the computed function, making its identity secret, whereas [IKOS07] compute a public
function by emulating multiple parties “in-the-head”.

5We note that a similar construction could be obtained from the paradigm of [IKOS07] by instantiating an appropri-
ate 2-party protocol from FHE.
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ZKPs from Game-Based Primitives

Let R = R (x,w) be an NP-relation with verification circuit C (·, ·). The ZKP uses a non-
interactive, game-based primitive P = (Gen,Enc,Eval,Dec) as a building block, and is executed
between a prover P with input (x,w) ∈ R and a verifier V with input x.

1. Witness secret sharing: P additively shares w by picking w1, w2 uniformly at random
subject to w = w1 ⊕ w2, and commits to w1, w2. Let C̃ (u) := C (x,w1 ⊕ u).

2. Setup: P executes Gen to generate keys, and any public parameters needed for the execu-
tion of P, and commits to the randomness used by Gen, and its output.

(This step might depend on C̃, and consequently also on w1, but not on w2.)

3. Witness encoding: P generates an encoding c of w2 using Enc, and commits to c and any
randomness used for encoding.
(This step depends on w2, but not on w1.)

4. Evaluation: P homomorphically evaluates C̃ on w2, by executing Eval on c, to obtain an
encoded outcome c′, and commits to c′ and any randomness used for evaluation.

(This step depends on C̃, and consequently also on w1, but depends only on a
computationally-hiding encoding of w2.)

5. Verification: V randomly chooses one of the four steps of homomorphic evaluation and
checks that it was executed correctly, as follows:

(a) Checking setup: P decommits w1, the randomness used to execute Gen, as well as
all keys and public parameters, and V check that Gen was executed correctly.

(b) Checking witness encoding: P decommits w2, c, the randomness used for encoding,
as well as the keys needed for encoding (as generated in Step 2), and V checks that
Enc was executed correctly.

(c) Checking evaluation: P decommits c, c′, w1, and the randomness used for evalua-
tion, and V checks that Eval was executed correctly.

(d) Checking output: P decommits c′, and any keys needed for decoding (as generated
in Step 2), and V checks that c′ decodes to 1.

Figure 1: ZKP Abstraction (Informal, see Figure 4 and Section 4)

phically evaluate C̃ on c, to obtain a ciphertext c′. P commits to c′ and the randomness rC used for
evaluation. During verification, V performs one of the following. (1) Checking setup (Step 5a), by
reading rG, pk, sk and checking the execution of Gen. (2) Checking encryption (Step 5b), by read-
ing rE , w2, pk, c and checking the execution of Enc. (3) Checking evaluation (Step 5c), by reading
rC , w1, pk, c, c

′ and checking the execution of Eval. (4) Checking decryption (Step 5d), by reading
sk, c′ and checking that c′ decrypts to 1.

Analysis. We give a high-level intuition for the security of our paradigm; full proofs (relying
on the specific properties of the underlying primitives) appear in Section 4. Completeness, when
P,V are honest, follows directly from the (perfect) correctness of the underlying primitive.6 As
for soundness, any x /∈ L is rejected with constant probability. Indeed, the witness sharing step
(Step 1) binds P to some “witness” w∗ = w∗1 ⊕w∗2, for which C (x,w∗) = 0 (because x /∈ L), and in

6See Section 4 for a generalization to imperfect correctness; e.g., in the HSS-based construction of Theorem 4.1.
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particular C̃∗ (w∗2) = 0 where C̃∗ (u) := C (x,w∗1 ⊕ u). Therefore, if P executed Steps 2-4 correctly
(for C̃∗), then the output will decode to 0, in which case V rejects if he performs Step 5d, which
happens with probability 1/4. Otherwise, P cheated in one of Steps 2-4, which will be detected if
V checks the corresponding computation in Step 5 (which happens with probability 1/4).

Finally, zero-Knowledge follows from the input and function privacy of the underlying prim-
itive. The high-level (though somewhat inaccurate) idea is to describe a simulator Sim which
guesses in advance which of the substeps of Step 5 will be carried out by (the possibly malicious)
V∗, committing to “correct” values for that step, and dummy values for the other steps. If Sim
had guessed correctly, it can continue the simulation; otherwise, it rewinds V∗. Since the verifier
has only four possible choices, in expectation, Sim succeeds in completing the simulation with
overwhelming probability.

We now explain how Sim generates the committed values. The setup and witness encoding
checks (Steps 5a-5b) depend only on w1 and w2 (respectively). Therefore, these steps can be simu-
lated separately by picking w1 or w2 uniformly at random (which is identical to their distribution
in the real execution because each witness share in isolation is independent of w). Once w1 (re-
spectively, w2) have been fixed, the keys (respectively, witness encoding) can then be honestly
generated from this witness share. Moreover, the input privacy of the underlying primitive guar-
antees that Sim can simulate the evaluation check in Step 5c. Indeed, this step depends only on
an encoding c of w2, which is computationally indistinguishable from the encoding of any other
value. Thus, to simulate this step, the simulator can choose a random w1, and indistinguishability
between the real and simulated views reduces to indistinguishability between the encodings of
two different messages. Finally, by function privacy, the output check (Step 5d) can be simulated
by generating an encoding of 1.

The (simplified) ZK analysis provided here gives a flavor of how the splitting of w into two
witness shares is used in the proof. The actual proofs are more intricate and depend on the spe-
cific notion of input and function privacy guaranteed by the underlying primitive. We refer the
interested reader to Section 4 for the complete proofs.

Extension to k-Party Primitives. The ZKP construction of Figure 1 is based on a 1-party primitive,
namely a primitive in which a single party performs the evaluation, as is the case in FHE and FE.
However, our paradigm generalizes to k-distributed primitives in which evaluation is distributed
between multiple parties, each generating an output share, where the output can later be recovered
from all shares. (See Figure 4 in Section 3 for the full description.) This flexibility of our paradigm
allows us to use a wider range of underlying primitives, and, in particular, enables us to obtain
the succinct ZKPs of Corollary 1.2, which are based on 2-party HSS schemes. While we can rely
on a k-distributed primitive for any k ≥ 1, using k > 2 does not seem to be useful for constructing
succinct ZKPs. Therefore, in the following, we focus on the case that k = 2. (The case of k = 1 was
already discussed above.)

In a 2-distributed primitive, Gen generates a public state pk, as well as secret keys sk1, sk2 for
the parties, and the evaluation is distributed between two parties, each using its secret key ski
to homomorphically compute an output share yi from the encoded inputs. Output decoding is
possible given both output shares y1, y2. Therefore, using a 2-distributed primitive requires the
following changes to the ZKP described in Figure 1. First, the setup step (Step 2) generates the
public state pk and both secret keys sk1, sk2. Second, the evaluation step (Step 4) is performed
twice (once with each key ski) to generate a pair of output shares y1, y2. P then commits to all
these values. Moreover, to check the evaluation (Step 5c), V picks i ← {1, 2} and checks the
execution of Eval with ski. Finally, to check the output value (Step 5d) P decommits y1, y2. (See
Figure 4 for a more detailed description.)
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Variants and Extensions. We described our abstraction for public-key 1- and 2-distributed prim-
itives with perfect correctness, but our paradigm is flexible and can be instantiated using a wide
range of primitives. As discussed above, we can use k-distributed primitives also for k > 2. We
can further support secret-key primitives (see, e.g., the FE-based construction of Section 4.3), as
well as primitives with a correctness error (see, e.g., the HSS-based construction of section 4.1).
This latter case is handled by having P,V engage in a coin-tossing protocol before Step 2, which
results in P holding a random string r and V holding a commitment to it. This protocol can be
trivially realized in the FCom-hybrid model with nearly no overhead in communication. Some of
our constructions do not require the function-privacy property of the underlying primitive. In
particular, this is the case for our RE-based construction (Section 4.4).

Black-Box Commit-and-Prove. We extend our ZKP paradigm to Commit-and-Prove (C&P) func-
tionalities that support an iterative commit phase. More specifically, a C&P protocol for a relation
R is executed between P,V with common input x, and consists of an iterative Commit phase,
followed by a Prove phase. In the ith round of the commit phase, V sends a message zi, following
which P commits to a message yi. In the Prove phase following l commit rounds, P proves that
((x, z1, . . . , zl), (y1, . . . , yl)) ∈ R. Roughly, the C&P construction is obtained by having P repeat
the witness sharing phase of Step 1 (Figure 1) for every message yi, committing to shares yi1, y

i
2.

Then, the Prove phase is executed by repeating Steps 2-5 of Figure 1 for the circuit

C̃ ′ (u1, . . . , ul) := C
((

x, z1, . . . , zl
)
,
(
y11 ⊕ u1, . . . , y

l
1 ⊕ ul

))
where C denotes the verification circuit of R. This construction is described in Section 5 (see
also Figure 12). Instantiating the generic C&P construction with randomized encodings as the
underlying primitive yields a C&P protocol which makes a black box use of OWFs.

Succinct ZKP Constructions. An important advantage of the C&P construction is that the iter-
ative nature of the Commit phase allows us to apply it to interactive protocols. In particular, we
obtain a generic compiler from any public-coin IP for a language L to a ZKP for L, as follows. In
the Commit phase, P and V emulate the original IP protocol, except that P commits to her mes-
sages (instead of sending them directly to V). The Prove phase is then executed for the relation
consisting of all accepting transcripts. That is, C is taken to be the circuit which the IP verifier
applies to the transcript to determine his output. Importantly, the communication complexity of
the ZKP scales with the sum of the communication complexity of the IP, and the communication
complexity of the Prove phase (which depends only on the size of the verification circuit of the
IP verifier). By applying this compiler to the IPs of Ben-Or et al. [BGG+88] and Goldwasser et
al. [GKR15] we obtain the new black-box ZKPs from OWFs of Corollaries 1.6 and 1.7, respectively.
Furthermore, we show that our C&P can also be used to compile IOPs into ZKPs. Applying this
compiler to the succinct IOPs of [RR20] gives our succinct ZKPs of Corollary 1.8, that make a black
box use of OWFs. This improves a recent result of [NR22], who achieve a (tighter) non-black-box
compilation in the OWF. We note that obtaining the ZKPs of Corollaries 1.2-1.5 reduces to in-
stantiating the generic construction of Theorem 1.1 with a primitive with appropriate efficiency
guarantees. In particular, the communication complexity of the ZKP scales with the sum of the
key length, encoding length, and the randomness complexity of the underlying primitive.

1.3 Related Works

Interactive (Oracle) Proofs and Short Zero-Knowledge Proofs. Ben-Or et al. [BGG+88] showed
a general compiler transforming any interactive proof system to one that is also zero-knowledge,
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assuming only the existence of one-way functions. In particular, as a corollary, they showed that
every language in PSPACE has a zero-knowledge proof. Kalai and Raz [KR08], and indepen-
dently Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS07], gave the first doubly-efficient (zero-
knowledge) interactive proof for NP relations computable by AC0 circuits. While the work of
[IKOS07] achieved communication complexity n · poly(κ) where n is the length of the witness,
[KR08] achieved a communication of poly(n, κ). In an influential work, Goldwasser Kalai and
Rothblum gave the first (doubly-efficient) interactive proof for all bounded-depth computations
computable by a logspace-uniform circuit [GKR15] with communication complexity d · poly logS
where d is the depth of the circuit and S is its size. An important feature of their construction
was succinct verification, where the verifier’s runtime was m · poly(d, log(m)), where m is the in-
stance length. Applying the Ben-Or et al. compilation [BGG+88] technique to their protocol, they
obtained as a corollary a ZKP for NP languages whose corresponding relation is computable by
logspace-uniform circuits with communication complexity n ·poly(κ, d). Implicit in their construc-
tion is a protocol for (polynomial-time) uniform circuits with the same communication complexity
where the verifier’s runtime is quasi-linear in circuit size.7 While such a construction is not a use-
ful interactive proof for a language in P when compiled using [BGG+88], it yields a non-trivial
short zero-knowledge proof for NP-languages whose relations can be computed by polynomial-
time uniform bounded-depth circuits.

Reingold, Rothblum, and Rothblum gave a constant-round IP for bounded-space computa-
tions [RRR16] with communication complexity mδ · poly(S) and verification time mδ · poly(S) +
Õ(m) for any constant δ ∈ (0, 1) and language computable in space S. Similar to [GKR15], they
compiled their IP to obtain a ZKP for NP languages with corresponding relations that can be com-
puted via a space-bounded Turing machine. Goldreich and Rothblum [GR20] tightened the results
of [RRR16] for AC0[2] and NC1 by providing a constant-round IP with communication mδ+o(1) and
verification time m1+o(1). Ron-Zewi and Rothblum [RR20] gave a succinct IOP for NP languages
whose relation can be computed in mζ-space for some fixed constant ζ ∈ (0, 1) where the commu-
nication complexity is (1 + ϵ)n for a constant ϵ ∈ (0, 1) (assuming the witness is larger than the
instance), with constant query complexity. Nassar and Rothblum [NR22] showed how to compile
this protocol into a zero-knowledge proof, with essentially no overhead in the communication
complexity. The result of [GR20] yields constant-round ZKPs for (polynomial-time uniform) NC1

with communication complexity n ·poly(κ), making non-black box use of OWFs.8 We note that Xie
et al. [XZZ+19] design ZK-IOPs that work for GKR-style protocols (i.e., where the verifier needs
to evaluate a low-degree extension of the wiring predicate), that are black-box in the underlying
OWF, but whose length is polynomial in the witness length n. On the other hand, our compiler of
Section 5 uses the underlying IP/IOP as a black-box, and can therefore be applied to any IP/IOP.

The round complexity in all these works, except [IKOS07], scales with the size/depth of the
verification circuit for the relation, whereas the round complexity in our ZKPs from DCR (Corol-
lary 1.2) is bounded by a universal constant, independent of the circuit depth.

Going beyond one-way functions, the work of [GGI+15] shows how to design a ZKP for all
NP approaching witness length based on fully-homomorphic encryption schemes.

Other Black-Box Transformations. The work of Hazay and Venkitasubramaniam [HV16] used
MPC-in-the-Head to compile 2PC protocols into zero-knowledge proofs. While their constructions

7The reason the protocol requires logspace-uniformity is to provide an efficient way for the verifier to evaluate a
point on the low-degree extension of the circuit wiring predicate. If the circuit class was just polynomial-time uniform,
the verifier would need time that is quasi-linear in the size of the predicate.

8[GR20] provide a constant-round protocol for sufficiently uniform (i.e., adjacency predicate) circuits in NC1. How-
ever, following the observation made on the protocol of [GKR15], the protocol of [GR20] also yields a constant-round
protocol for polynomial-time uniform NC1 with short communication.
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do not yield succinct proofs, they achieve other features such as input-delayed proofs and adap-
tive zero-knowledge. Their work provided a general framework for designing zero-knowledge
proofs from randomized-encodings. Their 2PC-in-the-head paradigm was later used by Brakerski
and Yuen [BY22] to obtain a quantum-secure zero-knowledge proof by first designing a quantum-
secure randomized encoding (actually, a garbled circuit) and then applying the compiler. Ishai et
al. [IKP+16] provide a different compiler for 2PC protocols by designing a framework of black-box
compilers.

Restricting to black-box constructions from one-way functions and succinct proofs, only the
work of [IKOS07] provides a construction for NP-languages whose relation can be computed by an
AC0 circuit. Several works design zero-knowledge variants of IOPs, referred to as ZK-IOPs, for cir-
cuit SAT (or its generalization to R1CS) [BCGV16, BCG+17a, BCF+17, BBHR19, BCR+19, BCL22]
or based on the GKR protocol [WTS+18, BBHR19, XZZ+19, ZLW+21], but none yield succinct
proofs. The GKR-based ZK-IOPs of Xie et al. [XZZ+19] can be compiled into ZKP with commu-
nication complexity poly(n, κ) and logarithmic rounds for NC1 circuits, and it is conceivable that
a similar technique could be used to compile the protocols of [RRR16, GR20], perhaps with com-
munication complexity poly(n, κ) and constant rounds. It is plausible that this communication
can be brought down further to n · poly(κ) by using the ZK variant of the code-switching tech-
nique of [RR20] from [BCL22], thus providing an alternative path to obtain Corllary 1.3. However,
this approach will only apply to GKR-style protocols, whereas our approach is more general and
works for any IOP while preserving the efficiency parameters.

Black-Box Commit and Prove. The (single) commit-and-prove functionality dates back to the
work of Goldreich et al. [GMW87] and was formalized in [CLOS02]. Implicit in [IKOS07] was the
first black-box commit-and-prove protocol based on collision-resistant hash functions. Follow-up
works have optimized the round complexity and achieved other features such as adaptive secu-
rity. [GLOV12, GOSV14, OSV15, HV16, KOS18, HV18] improved the concrete round complexity
and also constructed zero-knowledge argument systems from one-way functions.

Homomorphic Secret Sharing (HSS). HSS were introduced by [BGI16a], who constructed a
2-party HSS scheme for polynomial-length deterministic branching programs with an inverse-
polynomial correctness error, assuming the DDH assumption. Using this result in our HSS-based
ZKPs (Figure 5, Section 4.1) would result in a ZKP with inverse polynomial simulation error. In-
stead, we rely on the HSS scheme of [RS21] for polynomial-length branching programs (with
negligible correctness error) which are based on the DCR assumption. A similar HSS construction
was provided in [OSY21].

Function Secret Sharing (FSS) was introduced by [BGI15], though the special case of Dis-
tributed Point Functions was studied already in [GI14]. FSS constructions are known either
from OWFs, for restricted classes of functions (e.g., point functions [GI14, BGI15, BGI16b], in-
tervals [BGI15, BGI16b], or decision trees [BGI16b]); or for broader classes of functions (even arbi-
trary polynomial-time functions) assuming much stronger assumptions (e.g., obfuscation [BGI15]
or variants of FHE [DHRW16, BGI15]). Instantiating our FSS-based ZKPs (Figure 6, Section 4.2)
with state-of-the-art FSS does not yield new ZKPs.

Functional Encryption (FE). Functional encryption, introduced in [BSW11, O’N10], is a gener-
alization of (public-key) encryption in which function keys can be used to compute a function of
the plaintext directly from the ciphertext (without knowledge of the decryption key). Instantiating
our construction (Figure 7, Section 4.3) with the state-of-the-art FE for circuits from [GWZ22] (that
gives rate-1 ciphertext size based on indistinguishability obfuscation) does not give new ZKPs due
to the large secret keys.
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Randomized Encoding (RE). Formalized in the works of [IK00, IK02, AIK06], randomized encod-
ing explores to what extent the task of securely computing a function can be simplified by settling
for computing an “encoding” of the output. Loosely speaking, a function f̂(x, r) is said to be a
randomized encoding of a function f if the output distribution depends only on f(x). One of the
earliest constructions of a randomized encoding for Boolean circuits is that of “garbled circuits”
and originates in the work of Yao [Yao86]. Additional variants have been considered in the litera-
ture in the early works of [Kil88, FKN94]. Instantiating our paradigm with RE (Figure 8, Section
4.4) implies a theorem proven in [HV16].

Laconic Function Evaluation (LFE). Introduced in [QWW18], Laconic function evaluation (LFE)
is a dual primitive to fully homomorphic encryption (FHE) where a receiver holds the description
of a large circuit C, which she can compress to a short digest. A sender can then use this digest to
encrypt his input x, which the receiver can decrypt to learn C(x) and nothing else. Quach et al.
built LFE for general circuits under the learning with errors (LWE) assumption, where the com-
munication complexity and the running time of the encryption algorithm only grow polynomially
with the depth of the circuit. Following that, Dottling et al. extended this work, obtaining LFE
for Turing machines [DGM23] and LFE with optimized parameters [DKL+23]. Our construction
(Figure 9 , Section 4.5) inherits the communication complexity of [QWW18, DKL+23].

Fully Homomorphic Encryption (FHE). First constructed by Gentry [Gen09], fully homomorphic
encryption is a public-key encryption scheme allowing arbitrary computations to be performed on
ciphertexts. That is, given a function f and a ciphertext ct encrypting a message m, it is possible to
compute a ciphertext ct′ that encrypts f(m), without knowing the secret decryption key. FHE can
be constructed based on LWE where the approximation factor in the underlying lattice problem
can be polynomial [BV14]. Instantiating our construction (Figure 10, Section 4.6) with a rate-1
FHE scheme (e.g., using hybrid encryption) that can evaluate all polynomial-sized circuits, gives
constant-round ZKPs for all NP languages with total communication complexity O(n).

1.4 Paper Organization

In Section 2, we introduce basic preliminaries and security definitions. In Section 3 we introduce
our abstraction. In Section 4 we instantiate our abstraction with various primitives and prove
Corollaries 1.2-1.5. In Section 5 we generalize the abstraction of Section 3 to capture commit-and-
prove functionalities, use it to design black-box compilers from IPs and IOPs to ZKPs and prove
Corollaries 1.6, 1.7 and 1.8.

2 Preliminaries

Notation. Let κ denote the security parameter, and G denote a finite abealian group. We use PPT
to denote probabilsitic polynomial time computation. For a distribution D, sampling according to
D is denote by X ← D, or X ∈R D. For a pair D,D′ of distributions, we use D ≈ D′ to denote
that they are computationally indistinguishable. We assume familiarity with standard notions
of Turing machines, probabilistic polynomial-time and bounded-space computations.9 When we
refer to Turing Machines running in time t(n) and/or space s(n), we assume t(·) and s(·) are
time-constructible and space-constructible (respectively).

9We will assume the multi-tape formulation to capture sub-linear space computations.
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Complexity Classes. A language L is in NP if there is a polynomial-time computable relation RL
that consists of pairs (x,w), such that x ∈ L if and only if there exists a w such that (x,w) ∈ RL.
We denote the instance size |x| by m, and the witness size |w| by n.

A circuit ensemble {Cm}∞m=1 is a family of circuits indexed by an integer m, where Cm is a
circuit that accepts inputs of length m. AC0 consists of ensembles of Boolean circuits with poly-
nomial size, constant depth, and unbounded fan-in. For i ∈ N, NCi contains the ensembles of
constant fan-in Boolean circuits where the mth circuit is of depth logi(m), and NC = ∪i∈NNCi .
The notion of circuit uniformity describes the complexity of generating the description of the mth

circuit on input 1m. For example, a popular uniformity notion is log-space uniformity, where there
should exist a log-space Turing machine that, on input 1m, outputs a description of Cm. Similarly,
polynomial-time uniform means there exist a polynomial p(m) and a Turing machine that on in-
put 1m runs in time p(m) and outputs a description of the circuit Cm. In this work we focus on NP
languages whose relations can be expressed via circuits in a particular complexity class (e.g., AC0

or NC1).

Assumptions. Our HSS-based construction relies on the DCR hardness assumption [Pai99] that
holds in the presence of non-uniform adversaries and a properly generated RSA number (namely,
a product of two random safe primes10 of the same length).

Definition 2.1 (Non-uniform DCR [Pai99]). The Decisional Composite Residuosity (DCR) assumption
states that the uniform distribution over Z∗N2 is indistinguishable from the uniform distribution on the sub-
group of perfect powers of N in Z∗N2

11 in the presence of non-uniform adversaries, for a properly generated
RSA number N .

2.1 Commitment Schemes

Our constructions are proven in the FCOM-hybrid model depicted in Figure 2, where our commu-
nication complexity analysis only counts the lengths of committed/decommitted messages.

Functionality FCOM

Functionality FCOM communicates with sender sender and receiver receiver, and adversary Sim.

1. Upon receiving input (commit, sid,m) from sender where m ∈ {0, 1}t, internally record
(sid,m) and send message (sid, sender, receiver) to the adversary. Upon receiving approve
from the adversary send sid, to receiver. Ignore subsequent (commit, ., ., .) messages.

2. Upon receiving (reveal, sid) from sender, where a tuple (sid,m) is recorded, send message
m to adversary Sim and receiver. Otherwise, ignore.

Figure 2: The string commitment functionality.

Remark 2.1 (Commitment Schemes). We use the commitment-hybrid model to emphasize that our con-
structions rely on the underlying commitment instantiation in a black-box manner. However, analogously
to [IKOS07], the ideal commitment primitive in all our protocols can be instantiated with any statistically-
binding commitment protocol. We recall that rate-1 non-interactive perfectly-binding commitment schemes
can be constructed based on one-way permutations (or injective one-way functions), whereas two-round

10A safe prime is a prime number of the form 2p+ 1, where p is also a prime.
11We say that t ∈ Z∗

N2 is a perfect power of N if there exists r ∈ Z∗
N such that t = rN mod Z∗

N2 .
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statistically binding commitment schemes can be constructed based on one-way functions [Nao91]. In par-
ticular, we can use the above bit-commitments to commit to a PRG seed and then use the seed to commit
to an arbitrarily long message m. This hybrid mode implies a commitment length of O(κ2 + |m|) bits in
O(1) rounds (independent |m|). Furthermore, the binding property is inherent from the binding property
of the underlying bit-commitment, whereas hiding is derived from the hiding of the bit-commitment and the
pseudorandomness of the PRG.

2.2 Zero-Knowledge Proofs (ZKPs)

A zero-knowledge proof system for an NP language L is a protocol between a prover P and a
computationally bounded verifier V where P wishes to convince V of the validity of some public
statement x. Namely, P wishes to prove that there exists a witness w such that (x,w) ∈ R, where
R is an NP relation for verifying membership in L. More formally, We denote by ⟨A(w), B(z)⟩(x)
the random variable representing the (local) output of machine B when interacting with machine
A on common input x, when the random-input to each machine is uniformly and independently
chosen, and A has an auxiliary input w.

Definition 2.2 (Interactive Proof (IP)). A pair of interactive PPT machines (P,V) is called a (1 − δ)-
complete, (1 − ε)-sound Interactive Proof (IP) system for a language L if the following two conditions
hold:

• (1− δ)-completeness: For every x ∈ L,

Pr[⟨P,V⟩(x) = 1] ≥ 1− δ.

where ⟨P,V⟩(x) denotes the output of V after he interacts with P on common input x.

• (1− ε)-soundness: For every x /∈ L and every interactive machine P∗,

Pr[⟨P∗,V⟩(x) = 1] ≤ ε.

Definition 2.3 (µ-Zero-knowledge). Let (P,V) be an interactive proof system for some language L. We
say that (P,V) is computational zero-knowledge with µ-simulation error if for every PPT interactive
machine V∗ there exists a PPT algorithm Sim such that for every PPT distinguisher D,∣∣∣∣Pr[D(⟨P,V∗⟩(x)) = 1]− PrD(⟨Sim⟩(x)) = 1]

∣∣∣∣ ≤ µ(n)

where ⟨Sim⟩(x) denotes the output of Sim on x and n is the witness length.

Notation 1. We say that a proof system is a (1− ε)-sound ZKP if it is a (1− δ)-complete, (1− ε)-sound
ZKP with µ simulation error, for δ, µ = negl (n), where n is the witness length.

2.3 Interactive Oracle Proofs (IOP)

Interactive Oracle Proofs (IOPs) [BCS16, RRR16] are proof systems that combine aspects of Inter-
active Proofs (IPs) [Bab85, GMR85] and Probabilistically Checkable Proofs (PCPs) [BFLS91, AS98,
ALM+98]. They also generalize Interactive PCPs (IPCPs) [KR08]. In this model, similar to the PCP
model, the verifier does not need to read the whole proof, and instead can query the proof at some
locations, while similar to the IP model, there are several interaction rounds between the prover
and verifier. More specifically, a public-coin k-round IOP has k rounds of interaction, where in
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the ith round the verifier sends a uniformly random message mi to the prover, and the prover
responds with a proof oracle πi. Once the interaction ends, the verifier makes some queries to the
proofs π1, . . . , πk (via oracle access), and either accepts or rejects. More formally,

Definition 2.4 (Interactive Oracle Proofs). A k-round q-query public-coin IOP system for a language L
is a pair of PPT algorithms (P,V) satisfying the following properties:

• Syntax: On common input x and prover input w, P and V run an interactive protocol of k rounds.
In each round i, V sends a uniformly random message mi and P generates a proof oracle πi, to which
V has oracle access. Let π := (π1, π2, . . . , πk). Following the kth round, V makes q queries to π, and
either accepts or rejects.

• (1− δ)-completeness: For every x ∈ L,

Pr[⟨P,Vπ⟩(x) = 1] ≥ 1− δ.

where ⟨P,Vπ⟩(x) denotes the output of V after he interacts with P on common input x, and Vπ
denotes that V has oracle access to π.

• (1− ε)-soundness: For every x /∈ L, every interactive machine P∗, and every proof π̃

Pr[⟨P∗,V π̃⟩(x) = 1] ≤ ε.

2.4 Homomorphic Secret Sharing (HSS)

Homomorphic secret sharing is an alternative approach to FHE, allowing for homomorphic eval-
uation to be distributed among two parties who do not interact with each other. We follow the
definition from [BCG+17b].

Definition 2.5 (Homomorphic Secret Sharing with δ error). A (2-party, public-key) Homomor-
phic Secret Sharing (HSS) scheme for a class of circuits C with output group G consists of algorithms
(Gen,Enc,Eval) with the following syntax:

• Gen(1κ) is a key generation algorithm, which on input a security parameter 1κ outputs a public key
pk and a pair of evaluation keys (ek0, ek1).

• Enc(pk, x) is an encryption algorithm which given public key pk and secret input value x ∈ {0, 1}n,
outputs a ciphertext ct. We assume the input length n is included in ct.

• Eval(b, ekb, (ct1, . . . , ctm), C) is an evaluation algorithm, which on input party index b ∈ {0, 1},
evaluation key ekb, ciphertexts cti, and a circuit C ∈ C with m inputs and n′ output bits, the
homomorphic evaluation algorithm outputs yb ∈ G, constituting party b′s share of an output y ∈ G
where G is an abelian group.

The scheme is required to satisfy the following semantic properties:

• Correctness: For all security parameters κ, all circuits C ∈ C, and all inputs x1, . . . , xm, we have:

Pr

y1 ⊕ y2 = C (x1, . . . , xm) :

(pk, ek1, ek2)← Gen (1κ)

∀1 ≤ j ≤ m,
(
cj1, c

j
2

)
← Enc (pk, xj)

∀i ∈ {1, 2}, yi ← Eval
(
i, eki, c

1
i , . . . , c

m
i , C

)
 ≥ 1− δ (κ)

where the probability is over the randomness of Gen,Enc and Eval.
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• Security: For every x, x′ ∈ {0, 1}n the distribution ensembles Cb(κ, x) and Cb(κ, x
′) are computa-

tionally indistinguishable in the presence of non-uniform distinguishers, where Cb(κ, x) is obtained
by sampling (pk, (ek0, ek1))← Gen(1κ), sampling ctx ← Enc(pk, x), and outputting (pk, ekb, ctx).
Cb(κ, x

′) is generated similarly.

Remark 2.2 (Single ciphertext.). Our ZK construction (Section 4.1) requires a simpler definition where
Eval is invoked on a single ciphertext.

2.5 Fully Homomorphic Encryption (FHE)

First constructed by Gentry [Gen09], fully homomorphic encryption is a public-key encryption
scheme allowing arbitrary computations to be performed on ciphertexts. That is, given a func-
tion f and a ciphertext ct encrypting a message m, it is possible to compute a ciphertext ct′ that
encrypts f(m), without knowing the secret decryption key. We give a formal definition below,
following [Hal17].

Definition 2.6 (Fully Homomorphic Encryption). Let {Mκ}κ∈N be a message domain. A Fully Ho-
momorphic Encryption (FHE) scheme consists of four procedures (Gen,Enc,Dec,Eval):

• Gen(1κ, 1τ ) takes as input a security parameter κ and another parameter τ , and outputs a pub-
lic/secret key-pair (pk, sk).

• Enc(pk,m) takes as input the public key pk and a plaintext m ∈ Kκ, and outputs a ciphertext ct.

• Dec(sk, ct) takes as input the secret key sk and a ciphertext ct, and outputs a plaintext m.

• Eval(pk, C, ct) takes as input a public key pk, a circuit C and a ciphertext ct, and outputs another
ciphertext ĉt.

We note here that τ is a parameter used to capture the family of circuits admitted by the FHE
scheme. For example, a leveled fully homomorphic encryption scheme [BV14, BGV14] is captured
by requiring the FHE scheme to evaluate any circuit C of depth at most τ . In the most general case
(which is the case used in this work) where the class of circuits contains all Boolean circuits, the
parameter τ can be dropped.

Definition 2.7 (Correctness). Let (Gen,Enc,Dec,Eval) be a homomorphic encryption scheme and C =
{Cτ}τ∈N be some circuit family. We say that the scheme is (perfectly) correct for C if the following holds for
any κ, τ ∈ N:

• For every and m ∈Mκ,

Pr
[
Dec(sk, c) = m : (pk, sk)← Gen(1κ, 1τ ); c← Enc(pk,m)

]
= 1

• For every C ∈ Cτ , and every plaintext m ∈Mκ in the domain of C,

Pr
[
Dec(sk, ct′) = C(m) : (pk, sk)← Gen(1κ, 1τ ); ct← Enc(pk,m) ct′ ← Eval(pk, C, ct)

]
= 1
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Definition 2.8 (Security). Let FHE = (KeyGen,Enc,Dec,Eval) be a homomorphic encryption scheme,
and let A be an adversary. For every two plaintexts m0,m1 ∈ Mκ, the advantage of A w.r.t. FHE is
defined as

AdvFHEA (1κ) =

∣∣∣∣Pr [A(pk, ct) = 1 :
1τ ← A(1κ), (sk, pk)← KeyGen(1κ, 1τ ),

ct← Enc(pk,m0)

]
− Pr

[
A(pk, ct) = 1 :

1τ ← A(1κ), (sk, pk)← KeyGen(1κ, 1τ ),
ct← Enc(pk,m1)

]∣∣∣∣
The scheme FHE is secure if, for every PPT adversary A, the advantage AdvFHEA (1κ) is negligible in κ.

Our construction relies on circuit privacy, formalized as follows:

Definition 2.9 (Circuit privacy). A fully homomorphic encryption scheme FHE = (Gen,Enc,Eval,Dec)
over a message spaceMκ is circuit private for C = {Cτ}τ∈N if there exists an efficient simulator Sim such
that for every τ ∈ N, any C ∈ Cτ , and any input m for C, it holds that

Sim (1κ, 1τ ,m,C (m)) ≈ Real (C,m) ,

where

Real (C,m) :=
{(

r, r′, ct′
)
: (pk, sk) = Gen (1κ, 1τ ; r) , ct = Enc

(
pk,m; r′

)
, ct′ ← Eval (pk, C, ct)

}
r,r′

.

Finally, we require a compactness property which guarantees that the decryption algorithm’s
complexity is independent of whether the decrypted the ciphertext is fresh or obtained via an
execution of Eval.

Definition 2.10 (Compactness). A homomorphic encryption scheme FHE = (Gen,Enc,Eval,Dec) for C
is compact if there exists a fixed polynomial bound B(·) such that for all κ, τ ∈ N, any circuit C ∈ C with
a single output, and plaintext m ∈Mκ, it holds that

Pr

[ ∣∣ct′∣∣ ≤ B(κ) :
(sk, pk)← Gen(1κ, 1τ ),

ct← Enc(pk,m), ct′ ← Eval(pk, C, ct)

]
= 1

2.6 Functional Encryption (FE)

Functional encryption (FE) is a generalization of (public-key) encryption in which function keys
can be used to compute a function of the plaintext directly from the ciphertext (without knowledge
of the decryption key). For our ZKP abstraction, it suffices to consider a single key symmetric-
key variant. We follow the security definition from [BNPW20], slightly simplified to our simpler
setting (single-input functions and security against a single key). We further require function
privacy, which we elaborate on below.

Definition 2.11 (Single-input secret-key functional encryption). Let {Mκ}κ∈N be a message do-
main, Y = {Yκ}κ∈N a range, and F = {Fκ}κ∈N a class of single-input functions f : Mκ → Yκ.
A single-input secret-key functional encryption scheme for M,Y,F is a tuple of algorithms SKFE =
(Setup,Gen,Enc,Dec) where:

• Setup(1κ) takes as input the security parameter and outputs a master secret key msk.

• Gen(msk, f) takes as input the master secret msk and a function f ∈ F and outputs a secret key skf
for f .
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• Enc(msk,m) takes as input the master secret key msk, and a message m ∈ Mκ, and outputs a
ciphertext ct.

• Dec(skf , ct) takes as input the secret key skf for a function f ∈ F and a ciphertext ct, and outputs
some y ∈ Y , or ⊥.

We also require the following (1 − δ)-correctness property: For all m ∈ Mκ and any function f ∈ Fκ,
we have that

Pr

Dec(skf , ct) = f(m)

∣∣∣∣∣∣
msk← Setup(1κ)
skf ← Gen(msk, f)
ct← Enc(msk,m)

 ≥ 1− δ

We will need the following notion of security against adversaries that obtain a single function
key:

Definition 2.12 (Selectively secure single-key SKFE). We say that a tuple of algorithms SKFE =
(Setup,Gen,Enc,Dec) is a selectively secure single-key secret-key functional encryption scheme for
M,Y,F , if it satisfies the following requirement, formalized by the experiment ExptSKFEA (1κ, b) between an
adversary A and a challenger:

• The adversary submits a pair of messages (m0,m1) to the challenger.

• The challenger runs msk← Setup(1κ).

• The challenger generates ciphertexts ct← Enc(msk,mb), and gives ct to A.

• A is allowed to make a function query, sending a function f ∈ F to the challenger. The challenger
responds with skf ← Gen(msk, f).

• A outputs a guess b′ for b.

• The output of the experiment is b′ if the adversary’s query is valid, namely f(m0) = f(m1). Other-
wise, the experiment’s output is set to be ⊥.

We say that the functional encryption scheme is selectively secure for a single key if, for all polynomial-size
adversaries A, there exists a negligible function negl(κ), such that,

AdvSKFEA =

∣∣∣∣Pr[ExptSKFEA (1κ, 0) = 1]− Pr[ExptSKFEA (1κ, 1) = 1]

∣∣∣∣ ≤ negl(κ)

Our construction requires function privacy, namely the functional encryption scheme should
only reveal to a decryptor the function output and nothing more [AAB+13, BS15]. This is for-
malized as follows. Let Encb denote an encryption oracle which on input (msk,m0,m1) outputs
Enc(msk,mb). Similarly, let Genb denote a key generation algorithm which on input (msk, f0, f1)
outputs Gen(msk, fb).

Definition 2.13 (Valid function-privacy adversary). A non-uniform polynomial-size algorithm A is a
valid function-privacy adversary if for all private-key functional encryption schemes SKFE = (Setup,Gen,
Enc,Dec), for all κ ∈ N and b ∈ {0, 1}, and for all (f0, f1) and (m0,m1) with which A queries the oracles
Gen and Encb, respectively, the following three conditions hold:

1. f0(m0) = f1(m1).
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2. The messages m0 and m1 have the same length.

3. The descriptions of the functions f0 and f1 have the same length.

Definition 2.14 (Full function privacy). A private-key functional encryption scheme SKFE =
(Setup,Gen,Enc,Dec) over a message space M,Y,F is fully function private if for any valid function-
privacy adversary A, there exists a negligible function negl(κ) such that

AdvFPSKFE,A = Pr[AGen0(msk,·,·),Enc0(msk,·,·)(κ) = 1]− Pr[AGen1(msk,·,·),Enc1(msk,·,·)(κ) = 1]

where the probability is taken over the choice of msk← Setup(1κ) and over the randomness of A.

Remark 2.3 (One-time access.). Our construction (Section 4.3) requires a simpler definition that allows
the adversary one-time access to each of the oracles in Definition 2.14.

2.7 Randomized Encoding (RE)

We review the Randomized Encoding (RE) definition [IK00, AIK04]. Intuitively, an RE f̂ (x, r)
of a function f allows for efficient decoding of f(x) while hiding all other information about x
and f . Following the initial definitions of [IK00, AIK04], Applebaum et al. [AIKW13] introduced
the measures of offline and online complexities of an encoding, where the offline complexity refers
to the number of bits in the output of f̂(x, r) that solely depend on r, and the online complexity
refers to the number of bits that depend on both x and r. The motivation for their work was
to construct online efficient randomized encodings, where the online complexity is close to the
input size of the function. This is formalized by requiring two functions f̂off and f̂on written as
f(x; r) = (f̂off(r), f̂on(x; r)) where f̂off on input r outputs the offline encoding, f̂on on input x and
the same randomness r outputs the online encoding, and the decoder receives both parts of the
encoding. The following definition is produced almost verbatim from [AIK04].

Definition 2.15 (Randomized Encoding). Let f : {0, 1}n → {0, 1}ℓ be a function. Then functions
f̂off : {0, 1}m → {0, 1}soff and f̂on : {0, 1}n × {0, 1}m → {0, 1}son are said to be a δ-correct and ε-private
randomized encoding of f , if there exist a pair of randomized algorithms, decoder Dec and simulator Sim,
for which the following hold:

• δ-correctness: For any input x ∈ {0, 1}n

Pr[Dec((f̂off(r), f̂on(x; r))) ̸= f(x)] ≤ δ

where the probability is over the choice of r.

• ε-privacy: For any x ∈ {0, 1}n and any PPT algorithm Adv∣∣∣∣Pr[Adv(Sim(f(x))) = 1]− Pr[Adv((f̂off(r), f̂on(x; r))) = 1]

∣∣∣∣ ≤ ε.

Online complexity of RE. One natural way to instantiate the paradigm is using an offline/online
RE variant. By offline (resp. online) complexity, we mean the size of f̂off (resp. f̂on). If the online
complexity is smaller than the circuit size (corresponding to the function description), we say the
RE is succinct. For example, the standard garbling scheme meets this requirement. Specifically, the
offline phase can be viewed as the garbled circuit, whereas the online phase, given an input x, is
the set of keys corresponding to the bits of x. Furthermore, the online complexity is proportional
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to the input size of the function alone. Privacy-wise, we view the online encoding as independent
of the encoded function f while only the offline encoding relies on f . This notion is denoted by one
universality where the computation of the online part corresponds to some universal computation.
Unlike prior applications, we do not require adaptive privacy, as the input statement is known
when creating the encoding.

2.8 Function Secret Sharing (FSS)

Function Secret Sharing (FSS) provides a way for additively secret-sharing a function from a given
function family F . We consider the formalization from [BGI16b] specified as follows. A function
family is defined by a pair F = (PF , EF ), where PF ⊆ {0, 1}∗ is an infinite collection of function
descriptions f̂ , and EF : PF × {0, 1}∗ → {0, 1}∗ is a polynomial-time algorithm defining the
function described by f̂ . Concretely, each f̂ ∈ PF describes a corresponding function f : Df → Rf

defined by f(x) = EF (f̂ , x), by default Df = {0, 1}n for a positive integer n, and Rf is a finite
Abelian group, denoted by G (and we denote the group operation by ⊕). Their FSS definition
captures the allowable leakage by a function Leak : {0, 1}∗ → {0, 1}∗, where Leak(f̂) is interpreted
as the partial information about f̂ that can be leaked. In this paper, Leak returns only the input
domain Df and the output domain Rf . Finally, we use a two-party FSS definition, yet our result
extends to more than two parties; nevertheless, increasing the number of parties does not seem
useful in this context (specifically, towards decreasing the communication complexity of ZKPs).

Definition 2.16 (FSS: Syntax). A 2-party Function Secret Sharing (FSS) scheme is a pair of algorithms
(Gen,Eval) with the following syntax:

• Gen(1κ, f̂) is a PPT key generation algorithm, which on input 1κ (security parameter) and f̂ ∈
{0, 1}∗ (description of a function f ), outputs a pair of keys (k1, k2). We assume that f̂ explicitly
contains an input length 1n and group description G.

• Eval(i, ki, x) is a polynomial-time evaluation algorithm, which on input i ∈ {1, 2} (party index), ki
(key defining fi : {0, 1}n → G) and x ∈ {0, 1}n (input for fi) outputs a group element yi ∈ G (the
value of fi(x), the i-th share of f(x)).

Definition 2.17 (FSS: Security). Let F = (PF , EF ) be a function family and Leak : {0, 1}∗ → {0, 1}∗
be a function specifying the allowable leakage. A two-party secure FSS for F with leakage Leak is a pair
(Gen,Eval) as in Definition 2.16, satisfying the following requirements,

• Correctness: For all f̂ ∈ PF describing f : {0, 1}n → G, and every x ∈ {0, 1}n, if (k1, k2) ←
Gen(1κ, f̂) then Pr[

⊕2
1=1 Eval(i, ki, x) = f(x)] = 1.

• Secrecy:12 For every i ∈ {1, 2} and every pair f0, f1 ∈ F of function descriptions for which
Leak (f0) = Leak (f1), it holds that

Real0 ≈ Real1

where Realb is defined as follows:

– (k1, k2)← Gen(1κ, f̂b),

– Output ki.
12We provide an indistinguishability-based security property that suffices for our construction and is implied by the

simulation-based definition from [BGI16b].
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2.9 Laconic Function Evaluation (LFE)

Laconic function evaluation (LFE) [QWW18] is a dual primitive to fully homomorphic encryption
(FHE). Namely, it considers a scenario where a receiver holds the description of a large circuit C,
which she can compress to a short digest. A sender can then use this digest to encrypt his own
input x. The receiver can then decrypt the ciphertext to learn C(x) and nothing else. Unlike FHE,
where the receiver’s overhead is proportional to a short input, LFE implies that the sender’s work
grows with a short input. A prominent application of LFE is secure two-party computation, where
the communication complexity is O(|x|+|output|)·poly(κ, d) where d is the depth of the circuit and
output is the length of the output f(x). We use the definition from [QWW18], which considers LFE
for a class of circuits C that associates every circuit C ∈ C with some circuit parameters C.params.
More specifically, the class considered in [QWW18] is the class of all circuits with C.params =
(1n, 1d) consisting of the input size n and the depth d of the circuit.

Definition 2.18 (Laconic Function Evaluation (LFE)). A laconic function evaluation (LFE) scheme for
a class of circuits C consists of four algorithms crsGen,Comp,Enc and Dec.

• crsGen(1κ, params) takes as input the security parameter 1κ and circuit parameters params and out-
puts a uniformly random common random string crs of appropriate length.

• Comp(crs, C; rC) takes as input the common random string crs and a circuit C ∈ C and outputs a
digest digestC .13

• Enc(crs, digestC , x) takes as input the common random string crs, a digest digestC and a message x
and outputs a ciphertext ct.

• Dec(crs, C, ct, rC) takes as input the common random string crs, a circuit C ∈ C, a ciphertext ct,
and the randomness rC used by Comp, and outputs a message y.

We require the following properties from those algorithms:

Correctness: We require that for all κ, params and C ∈ C with C.params = params:

Pr

y = C(x)

∣∣∣∣∣∣∣∣
crs← crsGen(1κ, params)
digestC = Comp(crs, C)
ct← Enc(crs, digestC , x)

y ← Dec(crs, C, ct)

 = 1

Security: We require that there exists a PPT simulator Sim such that for all stateful PPT adversary Adv,
we have: ∣∣∣∣Pr [EXPReal

LFE(1
κ) = 1

]
− Pr

[
EXPIdeal

LFE (1
κ) = 1

]∣∣∣∣ ≤ negl(κ)

for the experiments EXPReal
LFE and EXPIdeal

LFE defined in Figure 3.

13We consider a randomized compress algorithm due to requiring function hiding; see discussion below.
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The experiments EXPReal

LFE and EXPIdeal

LFE for LFE security

EXPReal

LFE :

1. params← A(1κ)

2. crs← crsGen(1κ, params)

3. x∗, C ← A(crs) :
C ∈ C, C.params = params

4. digestC = Comp(crs, C; rC)

5. ct← Enc(crs, digestC , x
∗)

6. Output A(ct, rC)

EXPIdeal

LFE :

1. params← A(1κ)

2. crs← crsGen(1κ, params)

3. x∗, C ← A(crs) :
C ∈ C, C.params = params

4. digestC = Comp(crs, C; rC)

5. ct← Sim(crs, C, digestC , C(x∗))

6. Output A(ct, rC)

Figure 3: LFE Security Experiments

Function-Hiding LFE. Our construction requires an additional function hiding property, guaran-
teeing that the digest reveals no information about the circuit C. In this case, the compression
function uses private randomness to decrypt ciphertexts created under this digest. Quach et al.
show in [QWW18] a generic way to convert any LFE scheme with a deterministic compression
function and without function hiding into one which has a randomized compression function
and is also statistically function hiding, where the decryption algorithm also uses randomness r
specified below for the compression function. More formally,

Definition 2.19 (LFE Function privacy). An LFE scheme (crsGen,Comp,Enc) is function private if for
every pair of functions C0, C1 ∈ C and every params,

{crs,Comp(crs, C0; r)}crs←crsGen(1κ,params),r ≈ {crs,Comp(crs, C1; r)}crs←crsGen(1κ,params),r

where r is a uniformly sampled string of an appropriate length.

3 ZKPs from Game-Based Primitives

In this section we describe our abstraction, which uses non-interactive game-based primitives to
design ZKPs. In Section 4 we instantiate this abstraction with various primitives. The abstraction
is given in Figure 4.

At a high level, the building block is a k-distributed, game-based, non-interactive primitive.
More specifically, the primitive should support homomorphic evaluation which is distributed be-
tween k parties. The primitive consists of the following algorithms:

1. A key generation algorithm Gen that generates a public state pk and secret keys sk1, . . . , skk
for the k parties.

2. An Encoding algorithm Enc which, given a message w, the public key pk, and a secret key
ski, generates an encoding ci of w with respect to ski.

3. An evaluation procedure Eval which, given the public state pk (and possibly also ski), an
encoding ci of w, and a circuit C, generates an output share yi of C(w).
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4. An output decoder Dec which, given the k output shares y1, . . . , yk, can decode the output.
(We note that decoding might require knowledge of the secret keys sk1, . . . , skk.)

Roughly, the primitive is required to satisfy the following semantic properties:

1. Correctness: evaluation over encoded inputs yields the correct output. That is, if the input
is encoded using Enc, and the output shares are computed from the input encodings using
Eval, then Dec decodes the correct output.

2. Input privacy: the encodings semantically hide the secret input.

3. Function privacy: the output of Eval hides all information about the computed function,
except for the output of the computation.

4 Zero-Knowledge Proof Constructions

In this section, we instantiate our paradigm with several cryptographic primitives to obtain differ-
ent ZKPs. Specifically, in Section 4.1 we instantiate the paradigm with an HSS scheme and obtain
constant-round, black-box ZKPs for NC1 assuming the DCR assumption, proving Corollary 1.2;
In section 4.2 we instantiate the paradigm with FSS; in Section 4.3 we construct ZKPs from FE; in
Section 4.4 we construct ZKPs from REs, and prove Corollary 1.5; and in Section 4.5, we give a
construction from LFEs. Our constructions are described in the FCom-hybrid model, and use the
underlying cryptographic primitive (as well as any instantiation of the commitment oracle) as a
black box.

Remark 4.1 (On using k-distributed primitives for k > 2). Some of our constructions (e.g. the HSS-
and FSS-based constructions) are based on k-distributed primitives for k ≥ 2. For simplicity, we chose to
describe these constructions for the special case that k = 2, but they naturally extend to any k ≥ 2. We
note that choosing k = 2 also results in lower communication complexity in the resultant ZKP. This is not
only because the communication complexity scales with k, but also because the most efficient HSS and FSS
schemes to date are in the 2-party setting.

Recall from Section 3 that in our protocols, we secret share the NP witness w into two additive
secret shares w = w1⊕w2, hard-wire w1 into the verification circuit C, and then (homomorphically)
evaluate this circuit Cx,w1 (u) = C (x,w1 ⊕ u) on the second witness share w2. Therefore, we will
need the underlying primitive to support homomorphic computations over circuits of the form
Cx,w1 , for any possible witness share w1. More specifically, we will use the following circuit class
which, intuitively, contains all the circuits of the form Cx,w1 , where w1 has the same length as a
witness w for x.

Notation 2. Let R = R (x,w) be an NP relation, with verification circuit C, and let L denote the corre-
sponding NP language. For x ∈ L, we define the following class of circuits:

C̃ (C) = {Cx,w1 (u) = C (x,w1 ⊕ u) :

∃w,w1 ∈ {0, 1}∗ s.t. (x,w) ∈ R ∧ |w| = |w1|} .
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ZKP Abstraction

Let P = (Gen,Enc,Eval,Dec) be a k-party primitive as described above. The ZKP for an NP-
relation R = R (x,w) with verification circuit C (·, ·) is executed between a prover P that has
input (x,w) ∈ R and a verifier V that has input x. The parties have access to an ideal commitment
functionality FCom.

1. Witness secret sharing: P additively shares w by picking w1, w2 uniformly at random
subject to w = w1 ⊕ w2, and uses FCom to commit to w1, w2.

Additionally, P defines C̃ (u) := C (x,w1 ⊕ u).

2. Randomness generation: P and V run a coin tossing protocol to generate randomness r
for Gen,Enc and Eval. At the end of this phase, P knows r, and V holds a commitment to
r. (This can be easily done using FCom.) The bits of r are used by P in the following steps
when executing a randomized algorithm of P.a

3. Setup: P executes Gen to generate a public state pk (which might be empty), and k secret
states sk1, . . . , skk. This step might depend on C̃ (and consequently also on w1). P sends
pk to V (in the clear), and uses FCom to commit to sk1, . . . , skk.

4. Witness encoding: P uses pk, sk1, . . . , skk to generate encoding c1, . . . , ck of w2, and uses
FCom to commit to these encodings.

5. Evaluation: For each i ∈ [k], P executes Eval using ci, C̃, pk and ski (as appropriate) to
generate an output share yi of C̃ (w2), and uses FCom to commit to these output shares.

6. Verification: V checks that one of the three steps (Steps 3-5) was executed correctly, or that
the output is 1 (each check is performed with probability 1/4). Specifically, this is done as
follows:

(a) Checking setup: P decommits the randomness used to execute Gen, as well as
sk1, . . . , skk, w1, and V checks that Gen was executed correctly.

(b) Checking witness encoding: P decommits the randomness used for encoding, as
well as w2, c1, . . . , ck and all the keys in {sk1, . . . , skk} which are used by Enc, and V
checks that Enc was executed correctly on these values.

(c) Checking evaluation: V picks i ← [k], and P decommits the randomness used for
the ith execution of Eval, as well as to ski, ci and yi, and one of w1, w2 (if it is needed for
evaluation), and V checks that the ith execution of Eval was done correctly on these
values.

(d) Checking output decoding: P decommits y1, . . . , yk, and all the keys in
{sk1, . . . , skk} which are used by Dec, and V uses Dec to decode the output y from
y1, . . . , yk, and checks that y = 1.

aThis step is needed only when P has imperfect correctness, otherwise P can choose the random bits on
her own.

Figure 4: ZKP Construction from Game-Based Secure Primitives

4.1 Zero-Knowledge Proofs from Homomorphic Secret Sharing (HSS)

The construction uses a 2-party Homomorphic Secret Sharing (HSS) scheme HSS =
(HSS.Setup,HSS.Enc,HSS.Eval). Since this is a 2-distributed primitive, the Setup phase (Step 3
in Figure 5) generates a public key pk and a pair of evaluation keys ek1, ek2. Moreover, the witness
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encoding step generates a pair of witness ciphertexts c1, c2, and the evaluation algorithm is exe-
cuted with each pair of evaluation key and ciphertext, generating an output share yi. The output
is decoded by computing y = y1 ⊕ y2, so the prover need not perform this step (V can check the
output directly by reading y1, y2, see Step 6d in Figure 5).

ZKP from Homomorphic Secret Sharing

Let HSS = (HSS.Gen,HSS.Enc,HSS.Eval) be a homomorphic secret sharing scheme. The ZKP for
an NP-relation R = R (x,w) with verification circuit C (·, ·) is executed between a prover P that
has input (x,w) ∈ R and a verifier V that has input x. The scheme is parameterized by a security
parameter κ, and both parties have access to an ideal commitment functionality FCom.

1. Witness secret sharing: P additively shares w by picking w1, w2 uniformly at random
subject to w = w1 ⊕ w2, and uses FCom to commit to w1, w2.

Additionally, P defines C̃ (u) := C (x,w1 ⊕ u).

2. Randomness generation: P and V run a coin tossing protocol to generate randomness
rG, rE , r1, r2 for HSS.Gen,HSS.Enc and the two executions of HSS.Eval, at the end of which
the randomness is known to P , and V holds commitments to it.

3. Setup: P executes (pk, ek1, ek2) = HSS.Gen (1κ; rG) to generate a public encryption key pk,
and evaluation keys ek1, ek2, and uses FCom to commit to ek1, ek2. P sends pk to V in the
clear.

4. Witness encryption: P computes a pair of ciphertexts (c1, c2) = HSS.Enc (pk, w2; rE) of
w2, and uses FCom to commit to c1, c2.

5. Evaluation: For i = 1, 2, P computes the ith output share yi = HSS.Eval
(
i, eki, ci, C̃; ri

)
of C̃ (w2), and uses FCom to commit to yi.

6. V performs one of the following verification steps (each with probability 1/4):

(a) Checking setup: P decommits rG, ek1, ek2, and V checks that HSS.Gen was executed
correctly.

(b) Checking witness encryption: P decommits rE , w2, c1, c2, and V checks that
HSS.Enc was executed correctly on these values.

(c) Checking evaluation: V chooses i ← {1, 2}, P decommits ri, eki, ci, yi and w1, and
V checks that HSS.Eval was executed correctly on these values.

(d) Checking decoding: P decommits y1, y2, and V checks that y1 ⊕ y2 = 1.

Figure 5: A ZKP from HSS

Theorem 4.1 (ZKPs from HSS). LetR = R (x,w) be an NP-relation with verification circuit C, and let κ
be a security parameter. Let HSS = (HSS.Gen,HSS.Enc,HSS.Eval) be an HSS scheme with δ error for the
class C̃ (C) of circuits (see Notation 2) with output group G. The ZKP of Figure 5, when instantiated with
HSS, is a (1 − δ/4)-complete, (1 − ε)-sound ZKP, with δ + negl (κ) simulation error, in the FCom-hybrid
model, where ε = max {3/4 + δ/4, 7/8}. Furthermore, the ZKP uses HSS as a black-box.

Moreover, assume that:

• Evaluation and public keys generated by HSS.Gen have length ℓk (κ),

• Ciphertexts generated by HSS.Enc have length ℓc (κ,m) (m denotes the length of the encrypted mes-
sage),
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• And the executions of HSS.Gen,HSS.Enc and (the two executions of) HSS.Eval each consume ℓr (κ)
random bits,

ThenP,V exchange at most 4ℓr (κ)+ℓk (κ)+3 bits, at most 2n+4ℓr (κ)+2·ℓk (κ)+2·ℓc (κ, n)+2 log |G|
bits are committed, and at most n+ ℓr (κ)+2 · ℓc (κ, n)+2 · ℓk (κ)+2 log |G| bits are decommitted, where
n denotes the witness length.

Proof: Given an ideal commitment functionality, Step 2 can be executed with perfect security.
Therefore, we assume that rG, r1, r2 are uniformly random in the following.

(1 − δ/4)-Completeness. When both parties are honest, verification can fail only due to a cor-
rectness error of the HSS (see Definition 2.5), which causes y1 ⊕ y2 ̸= 1. (Indeed, all other steps in
the proof are deterministic given the randomness generated in Step 2.) Since the HSS is executed
with uniformly random bits, the correctness of the HSS scheme guarantees that y1 ⊕ y2 ̸= 1 only
with probability δ. Since V checks that y1 ⊕ y2 = 1 if and only if he chooses to perform Step 6d, V
rejects only with probability δ/4.

(1−ε)-Soundness. Assume that x /∈ L. Let w∗1, w
∗
2 denote the witness shares whichP committed

to in Step 1, and let w∗ := w∗1 ⊕ w∗2, then C (x,w∗) = 0. We consider two possible cases. First, if
P executed Steps 3-5 honestly, then y1 ⊕ y2 = 1 only with probability δ. This follows from the
correctness of the HSS scheme since it is executed with uniformly random bits. Therefore, if V
chooses to check Step 6d, he rejects with probability at least 1− δ. Since Step 6d is performed with
probability 1/4, in this case V accepts with probability at most 1− (1− δ)/4 = 3/4 + δ/4.

Second, assume that P cheated in one of the Steps 3-5. Since the execution of each of these
steps is deterministic (given the appropriate randomness from {rG, r1, r2}), then if V checks that
step, he will reject. More specifically, if P cheated in Step 3 or Step 4, then V will accept with
probability at most 3/4. If P cheated in Step 5 then P cheated in the execution of HSS.Eval for
i = 1 or i = 2, and this will be detected by V if he chooses to execute Step 6c with i, so, in this case,
V accepts with probability at most 7/8. Overall, V accepts with probability max {3/4 + δ/4, 7/8}.

Zero-Knowledge. Let V∗ be a (possibly malicious) PPT verifier. We describe a simulator Sim for
V∗. Sim, on input 1κ, x, operates as follows.

1. Picks i← {1, 2}. (Intuitively, Sim guesses that if V∗ will choose to perform Step 6c, it will be
with index i.)

2. Executes Steps 1-4 honestly with V∗, using an arbitrary string w∗ as the witness.

3. Executes Step 5 honestly for i, and sets y3−i := 1 ⊕ yi (in particular, y1 ⊕ y2 = 1). Sim then
commits to y1, y2 as the honest prover does.

4. When V∗ makes his choice in Step 6:

(a) If V∗ chose Step 6c with 3 − i then Sim rewinds V∗ back to Step 1 of the simulation,
unless rewinding has already occurred κ times, in which case Sim halts with no output.

(b) Otherwise, Sim honestly completes the proof by decommitting the appropriate values.

We claim that the real and simulated views – denoted Real and Ideal respectively – are com-
putationally indistinguishable. To prove this, we show that both are computationally close to the
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following hybrid distribution H. H is generated by having Sim secret share the actual witness w
when executing Step 1 of the proof. The rest of the simulation is carried out as described above.

Bounding the computational distance between Real andH. The two differences between Real
and H are: (1) in H, the simulator may abort the simulation in Step 4a; and (2) in Real, y3−i
was generated as the output of HSS.Eval, whereas in H it is generated as y3−i := 1⊕ yi. We claim
first that (1) happens only with probability 2−κ. Indeed, the choice that V∗ makes in Step 4 of
the simulation is independent of i (because the commitments are ideal). Therefore, the fact that
i is random guarantees that rewinding occurs in Step 4a of the simulation only with probability
1/2 (only if V∗ chooses 3 − i, which happens with probability at most 1/2 because i is random).
Therefore, the probability of κ rewinds is 2−κ.

Therefore, bounding the computational distance conditioned on the event that Sim did not
abort in H suffices. We can further condition on the witness shares w1, w2, which are identically
distributed in both cases. In this case, yi is also identically distributed in both cases (since it
was generated from w1, w2 given the committed randomness) so we can further condition on yi.
Consequently, the only difference is in the distribution of y3−i, which is included in the view if V∗
chooses to execute Step 6d. Notice that if the output shares satisfy y1 ⊕ y2 = 1, conditioning on
yi determines y3−i. This is always the case in H, and is also the case in Real, unless a correctness
error occurred in the execution of HSS. That is, unless a correctness error occurred, y3−1 = 1 ⊕ yi
also in Real, namely H and Real would be identically distributed. By the correctness of HSS, a
correctness error occurs only with probability δ. We conclude that the computational distance
between Real, Ideal is 2−κ + δ.

Bounding the computational distance between Ideal andH. The only difference between the dis-
tributions is the witness shares w1, w2 (and any values computed from them), which in H are
random secret shares of the actual witness w, and in Ideal are secret shares of some arbitrary w∗.
Since the commitments are ideal, these are identically distributed in both views. We consider the
following possible cases, based on which check V∗ chooses to perform in Step 6 of the proof.

Case (1): checking Step 6a. This step is independent of the witness shares, and therefore, in this
case,H and Ideal are identically distributed.

Case (2): checking Step 6b. This step is independent of w1. Notice that w2 is uniformly random
in both distributions when considered separately from w1. Therefore, H and Ideal are identically
distributed in this case.

Case (3): checking Step 6c. Notice that by the definition of Sim, in this case V∗ chose to check i
(i.e., not 3− i, otherwise Sim would have rewinded or aborted, and in this caseH, Ideal would be
identically distributed). Since w1 is identically distributed in both distributions, we will analyze
this case conditioned on w1 and show that computational indistinguishability of H, Ideal follows
from the security of HSS. More specifically, we show that conditioned on V∗ checking Step 6c
(with index i), a distinguisherD betweenH, Ideal will enable distinguishing between encryptions
of the witness share w2 in Ideal, and the witness share w′2 in H, and this contradicts the security
of HSS (Definition 2.5). We describe a distinguisher D′ between such encryptions, with w1 hard-
wired into it. D′ on input the public key pk, evaluation key eki, and a ciphertext c (generated either
as c← HSS.Enc (pk, w2) or c← HSS.Enc (pk, w′2)) picks randomness r for HSS.Eval, computes yi =
HSS.Eval

(
i, eki, c, C̃; r

)
(D′ can compute C̃ because it knows w1), runsD on (pk, eki, c, w1, yi, r) and

outputs whatever D outputs.14 Notice that if c encrypts w2 then D is executed with a sample from
Ideal, otherwise D is executed with a sample from H, and so D′ obtains the same distinguishing

14We note that D′ does not need to generate the commitments - these do not contribute to distinguishability because
the commitments are ideal.
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advantage as D. The security of HSS guarantees that this advantage is negl (κ).
Case (4): checking Step 6d. We show that the views, in this case, are deterministically computable

from the views in case (3), and therefore computational indistinguishability follows from the anal-
ysis of case (3). In case (4), y3−i is generated in the same way in both H, Ideal: y3−i := 1 ⊕ yi.
Therefore, it is computable deterministically from the view of case (3) (in which y1 was generated
from an encryption of w2 in Ideal and from an encryption of w′2 inH).

In summary, by the triangle inequality, the computational distance between Real and Ideal is
δ + negl (κ).

Communication complexity. The communication between the parties consists of both direct
messages and committed/decommitted messages. In the analysis, we use the fact that in the
FCom-hybrid model, tossing r coints in Step 2 can be implemented with r bits of direct commu-
nication, and r committed and decommitted bits. (Indeed, P can commit to r random bits, then
V sends his own r random bits to P in the clear, and P uses the XOR of these random strings.
Decommitment consists of revealing the r bits that P committed to.) Therefore, the direct commu-
nication between P,V consists of 4ℓr (κ) bits sent by V in Step 2, ℓk (κ) bits sent by P in Step 3 (the
pk), and at most 3 bits sent by V in Step 6 to specify his choice. Therefore, the direct communica-
tion consists of 4ℓr (κ) + ℓk (κ) + 3 bits. The committed messages consist of commitments to the
two witness shares w1, w2 in Step 1 (2n bits in total), commitments to 4ℓr (κ) random bits during
the coin tossing of Step 2, the commitments to the keys ek1, ek2 generated in Step 3 (2 · ℓk (κ) bits in
total), the commitments to the pair c1, c2 of witness ciphertexts generated in Step 4 (2 · ℓc (κ, n) bits
in total), and the commitments to the two output shares y1, y2 generated in Step 5 (2 log |G| bits in
total), a total of 2n+4ℓr (κ)+2 · ℓk (κ)+2 · ℓc (κ, n)+2 log |G| bits. The decommitments consists of
the openings of the values needed to perform Step 6, which consists of revealing at most one wit-
ness share (n bits), at most two ciphertexts (2 · ℓc (κ, n) bits) and evaluation keys (2 · ℓk (κ) bits), the
randomness needed for one execution of Setup,Enc or Eval (at most ℓr (κ) bits), and the two output
shares (2 log |G| bits). Therefore, P decommits at most n+ ℓr (κ) + 2 · ℓc (κ, n) + 2 · ℓk (κ) + 2 log |G|
bits.

4.1.1 Constant-Round ZKPs Approaching Witness Length

We use our HSS-based ZKP construction (Figure 5 and Theorem 4.1) to design constant-round
ZKPs for NC1 whose total communication complexity (in the plain model) is quasi-linear in the
witness length. The construction is based on the DCR assumption (Definition 2.1). This can be
thought of as a scaling-up of a similar result by [IKOS07] who obtain such ZKPs for AC0 based on
OWFs, and a scaling-down of a result by [GKR15] who obtain ZKPs for NC based on OWFs with
the same communication complexity, but whose round complexity scales with the depth of the
circuit. See Section 1.3 for further discussion.

Our construction relies on the following result of Roy and Singh [RS21]:

Theorem 4.2 ([RS21]). Assuming the DCR hardness assumption (Definition 2.1), there exists an HSS
scheme for the class of polynomial size Boolean branching programs with output group G of size |G| =
2O(κ), with O(κ) output shares, O(κ) key sizes, poly(κ) randomness and a negligible correctness error,
where κ is the security parameter.

Instantiating the ZKPs of Theorem 4.1 with the HSS scheme of Theorem 4.2, yields Corol-
lary 1.2.
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Proof of Corollary 1.2 Notice first that ifR ∈ NC1 with a verification circuit C, then C̃ (C) ⊆ NC1.
Since NC1 circuits can be emulated with a poly-sized Boolean branching program, the HSS scheme
from Theorem 4.2 can be used in Construction 5. Completeness and ZK follow directly from The-
orem 4.1 because the HSS of Theorem 4.2 has negligible correctness error. The soundness error
ε of Theorem 4.1 is max{3/4 + negl (κ) , 7/8} = 7/8 due to the same reason. By Theorem 4.1, the
communication complexity in the FCom-hybrid model consists of poly (κ) bits of direct communi-
cation, 2n + poly (κ) committed bits, and at most n + poly (κ) decommitted bits. By Remark 2.1,
committing and decommitting a single bit requires poly (κ) communication. Overall, the commu-
nication complexity is therefore n ·poly (κ). As for the round complexity, the protocol has 5 rounds
in the commitment-hybrid model; when implementing the commitment, the round complexity
increases, but is still bounded by a universal constant (independent of the number of committed
bits, i.e., the circuit depth).

4.2 Zero-Knowledge Proofs from Function Secret Sharing (FSS)

The construction uses a 2-party Function Secret Sharing (FSS) scheme FSS = (FSS.Gen,FSS.Eval).
Since this is a 2-distributed primitive, the setup phase generates two function keys f1, f2, and the
evaluation algorithm is executed with each of the function keys, generating an output share yi.
The output is decoded by computing y = y1 ⊕ y2, so the prover need not perform this step (V
can check the output directly by reading y1, y2, see Step 5c in Figure 6). We note that the witness
encoding phase (Step 4 in Figure 4), as well as its verification (Step 6b in Figure 4) is empty.

Remark 4.2 (On using perfect FSS). The standard FSS definition (e.g., [BGI16b]) – and, to the best of
our knowledge, all current FSS constructions – is with respect to perfect correctness. In this case, P can
choose the randomness for the FSS algorithms on her own (since no “bad” choice can violate soundness).
We, therefore, describe the FSS-based ZKP construction without the randomness generation phase (Step 2
of Figure 4). This simplifies the construction and demonstrates the use of primitives with perfect correctness
within our abstraction. We note that the construction naturally extends to imperfect FSS schemes by relying
on a randomness generation phase, and the analysis is similar to the HSS case.

Theorem 4.3 (ZKPs from FSS). Let R = R (x,w) be an NP-relation with verification circuit C, and let
κ be a security parameter. Let FSS = (FSS.Gen,FSS.Eval) be an FSS scheme for the class C̃ (C) of circuits
(see Notation 2) with output group G. The ZKP of Figure 6, when instantiated with FSS, is a perfectly
complete, 1/6-sound ZKP, in the FCom-hybrid model. Furthermore, the ZKP uses FSS as a black-box.

Moreover, assume that:

• Function keys generated by FSS.Gen have length ℓk (κ),

• And the executions of FSS.Gen and (the two executions of) FSS.Eval each consume ℓr (κ) random
bits,

Then P,V exchange 2 bits, at most 2n + 3ℓr (κ) + 2ℓk (κ) + 2 log |G| bits are committed, and at most
n+ ℓr (κ) + 2ℓk (κ) + 2 log |G| bits are decommitted, where n denotes the witness length.

Proof: We first prove that the proof satisfies the properties of a ZKP, then analyze the communi-
cation complexity.

Completeness. When both parties are honest, the checks V performs in Steps 5a and 5b always
pass. Completeness, therefore, follows directly from the perfect correctness of the FSS scheme
(Definition 2.17), which guarantees that y1 ⊕ y2 = C̃ (w2) = C (x,w1 ⊕ w2) = C (x,w) = 1.
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ZKP from Function Secret Sharing

Let FSS = (FSS.Gen,FSS.Eval) be a function secret sharing scheme. The ZKP for an NP-relation
R = R (x,w) with verification circuit C (·, ·) is executed between a prover P that has input
(x,w) ∈ R and a verifier V that has input x. The scheme is parameterized by a security pa-
rameter κ, and both parties have access to an ideal commitment functionality FCom.

1. Witness secret sharing: P additively shares w by picking w1, w2 uniformly at random
subject to w = w1 ⊕ w2, and uses FCom to commit to w1, w2.

Additionally, P defines C̃ (u) := C (x,w1 ⊕ u).

2. Randomness generation: P chooses randomness rG, r1, r2 for FSS.Gen and the two exe-
cutions of FSS.Eval, and uses FCom to commit to rG, r1, r2.

3. Setup: P executes (f1, f2) = FSS.Gen
(
1κ, C̃; rG

)
to generate function keys f1, f2, and

uses FCom to commit to f1, f2.

4. Evaluation: For i = 1, 2, P computes the ith output share yi = FSS.Eval (i, fi, w2; ri) of
C̃ (w2), and uses FCom to commit to yi.

5. V performs one of the following verification steps (each with probability 1/3):

(a) Checking setup: P decommits rG, w1, f1, f2, and V checks that FSS.Gen was exe-
cuted correctly.

(b) Checking evaluation: V chooses i ← {1, 2}, P decommits ri, fi, w2 and yi, and V
checks that FSS.Eval was executed correctly on these values.

(c) Checking decoding: P decommits y1, y2, and V checks that y1 ⊕ y2 = 1.

Figure 6: A ZKP from FSS

1/6-Soundness. Assume that x /∈ L. Let w∗1, w
∗
2 denote the witness shares which P committed

to in Step 1, and let w∗ := w∗1 ⊕ w∗2, then C (x,w∗) = 0. We consider two possible cases. First, if P
executed Steps 3 and 4 honestly, then y1 ⊕ y2 = 0 by the perfect correctness of FSS. Since V checks
that y1 ⊕ y2 = 1 if he chooses to perform Step 5c, which happens with probability 1/3, V rejects
with probability at least 1/3 in this case.

Second, assume that P cheated in Step 3 or 4. Since the execution of each of these steps is
deterministic (given the appropriate randomness from {rG, r1, r2}), then if V checks that step, he
will reject. Specifically, if P cheated in Step 3, then V will accept with probability at most 2/3. If P
cheated in Step 4, then P cheated in the execution of FSS.Eval for i = 1 or i = 2, and this will be
detected by V if he chooses to execute Step 5b with i, so, in this case, V accepts with probability at
most 5/6. Overall, V accepts with probability at most 5/6.

Zero-Knowledge. Let V∗ be a (possibly malicious) PPT verifier. We describe a simulator Sim for
V∗. Sim, on input 1κ, x, operates as follows.

1. Picks i← {1, 2}. (Intuitively, Sim guesses that if V∗ will choose to perform Step 5b, it will be
with index i.)

2. Executes Steps 1-3 honestly with V∗, using an arbitrary string w∗ as the witness.

3. Executes Step 4 honestly for i, and sets y3−i := 1 ⊕ yi (in particular, y1 ⊕ y2 = 1). Sim then
commits to y1, y2 as the honest prover does.
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4. When V∗ makes his choice in Step 5:

(a) If V∗ chose Step 5b with 3 − i then Sim rewinds V∗ back to Step 1 of the simulation,
unless rewinding has already occurred κ times, in which case Sim halts with no output.

(b) Otherwise, Sim honestly completes the proof by decommitting the appropriate values.

We claim that the real and simulated views – denoted Real and Ideal respectively – are com-
putationally indistinguishable. To prove this, we show that both are computationally close to the
following hybrid distribution H. H is generated by having Sim secret share the actual witness w
when executing Step 1 of the proof. The rest of the simulation is carried out as described above.

Real ≈ H. The two differences between Real and H are: (1) in H, the simulator may abort the
simulation in Step 4a; and (2) in Real, y3−i was generated as the output of HSS.Eval, whereas inH
it is generated as y3−i := 1⊕ yi. We claim first that (1) happens only with probability 2−κ. This is
because i is uniformly random, and the analysis is similar to the proof of Theorem 4.1.

Therefore, it suffices to prove that Real ≈ H conditioned on the event that Sim did not abort
in H. We can further condition on the witness shares w1, w2, which are identically distributed in
both cases. In this case, yi is also identically distributed in both cases (since it was generated from
w1, w2 given the committed randomness) so we can further condition on yi. Consequently, the
only difference is in the distribution of y3−i, which in H is set to be 1 ⊕ yi. However, the perfect
correctness of FSS guarantees that in Real, y3−i = C (x,w1 ⊕ w2) ⊕ yi = 1 ⊕ yi (the rightmost
equality holds because (x,w) ∈ R), so y3−i is also identically distributed in both distributions.

Ideal ≈ H. The only difference between the distributions is the witness shares w1, w2 (and any
values computed from them), which inH are random secret shares of the actual witness w, and in
Ideal are secret shares of some arbitrary w∗. Since the commitments are ideal, we note that these
are identically distributed in both views, and we ignore them in the following. We consider the
following possible cases, based on which check V∗ chooses to perform in Step 5 of the proof.

Case (1): checking Step 5a. This step is independent of w2. Notice that w1 is uniformly random
in both distributions when considered separately from w2. Therefore, H and Ideal are identically
distributed in this case.

Case (2): checking Step 5b. Notice that by the definition of Sim, in this case V∗ chose to check i
(i.e., not 3− i, otherwise Sim would have rewinded or aborted, and in this caseH, Ideal would be
identically distributed). Since w2 is identically distributed in both distributions, we will analyze
this case conditioned on w2 and show that computational indistinguishability of H, Ideal follows
from the security of FSS. More specifically, we show that conditioned on V∗ checking Step 5b (with
index i), a distinguisher D between H, Ideal will enable distinguishing between a function key of
Cx,w1 (·) in Ideal, and a function key of Cx,w′

1
(·) inH (here, w1, w

′
1 denote the first secret share of the

witness in Ideal,H respectively), which contradicts the security of FSS (Definition 2.17) because
both circuits have the same leakage. We describe a distinguisher D′ that distinguishes between
such function keys, that has w2 hard-wired into it. D′ on input the function key fi (generated either
by running FSS.Gen (1κ, Cx,w1) or FSS.Gen (1κ, Cx,w1)) picks randomness r for FSS.Eval, computes
yi = FSS.Eval (i, fi, w2; r), runs D on (fi, w2, yi, r) and outputs whatever D outputs. Notice that if
fi is a key of Cx,w1 then D is executed with a sample from Ideal, otherwise D is executed with a
sample from H, and so D′ obtains the same distinguishing advantage as D. The security of FSS
guarantees that this advantage is negl (κ).

Case (3): checking Step 5c. We show that the views, in this case, are deterministically computable
from the views in case (2), and therefore computational indistinguishability follows from the anal-
ysis of case (2). In case (3), y3−i is generated in the same way in both H, Ideal: y3−i := 1 ⊕ yi.
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Therefore, it is computable deterministically from the view of case (2) (in which yi was generated
from a function key of Cx,w1 in Ideal, and a function key of Cx,w′

1
inH).

Communication complexity. The communication between the parties consists of both direct
messages and committed/decommitted messages. The direct communication between P,V con-
sists only of V’s two selection bits in Step 5. The committed messages consist of commitments to
the two witness shares w1, w2 in Step 1 (2n bits in total), commitments to 3ℓr (κ) random bits which
P sampled in Step 2, the commitments to the function keys f1, f2 generated in Step 3 (2 · ℓk (κ) bits
in total), and the commitments to the two output shares y1, y2 generated in Step 4 (2 log |G| bits in
total), a total of 2n+3ℓr (κ) + 2ℓk (κ) + 2 log |G| bits. The decommitments consists of the openings
of the values needed to perform Step 5, which consists of revealing at most one witness share (n
bits), at most two function keys (2 · ℓk (κ) bits), the randomness needed for one execution of Gen
or Eval (at most ℓr (κ) bits), and the two output shares (2 log |G| bits). Therefore, P decommits at
most n+ ℓr (κ) + 2ℓk (κ) + 2 log |G| bits.

4.3 Zero-Knowledge Proofs from Functional Encryption (FE)

The construction uses a secret-key functional encryption scheme FE =
(FE.Setup,FE.Gen,FE.Enc,FE.Dec).15 Notice that this is a 1-distributed primitive. Therefore,
the Setup phase generates a single secret key msk, the witness encoding consists of a single
ciphertext, and Evaluation is only performed once. Additionally, in the construction, the Setup
phase (Step 3 in Figure 4) consists of executing both the setup FE.Setup and the key generation
FE.Gen algorithms, and the output decoding check step (Step 6d in Figure 4) is empty. Moreover,
since the evaluation step (decoding C (x,w) from an encryption of w2 and a function key for
C̃ (·) = Cx,w1 (·)) is deterministic, V can perform this step on his own, so the evaluation step in the
proof (Step 5 in Figure 4) is also empty.

Theorem 4.4 (ZKPs from Function-Hiding Secret-Key FE). LetR = R (x,w) be an NP-relation with
verification circuit C, and let κ be a security parameter. Let FE = (FE.Setup,FE.Gen,FE.Enc,FE.Dec)

be a (1 − negl(κ))-correct fully function-private single-input secret-key FE scheme for the class C̃ (C) of
circuits (see Notation 2). The ZKP of Figure 7, when instantiated with FE, is a (2/3 + negl (κ))-sound
ZKP with δ + negl (κ) simulation error, in the FCom-hybrid model, where n denotes the witness length.
Furthermore, the ZKP uses FE as a black-box.

Moreover, assume that:

• Keys generated by FE.Setup and FE.Gen have length ℓk (κ),

• Ciphertexts generated by FE.Enc have length ℓc (κ,m) (m denotes the length of the encrypted mes-
sage),

• And the executions of FE.Setup,FE.Gen,FE.Enc each consume ℓr (κ) random bits,

Then P,V exchange at most 3ℓr (κ)+2 bits, at most 2n+3ℓr (κ)+2 · ℓk (κ)+ ℓc (κ, n) bits are committed,
and at most n+ 2ℓr (κ) + ℓc (κ, n) + 2ℓk (κ) bits are decommitted, where n denotes the witness length.

Proof: Given an ideal commitment functionality, Step 2 can be executed with perfect security.
Therefore, in the following, we assume that rS , rG, rE are uniformly random.

15The construction naturally generalizes to using public-key FE, similar to the FHE-based construction. We chose
to use secret-key FE to show that secret key FE suffices for our paradigm, and to demonstrate how to instantiate our
paradigm with a secret-key primitive.
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ZKP from Functional Encryption

Let FE = (FE.Setup,FE.Gen,FE.Enc,FE.Dec) be a secret-key functional encryption scheme. The
ZKP for an NP-relationR = R (x,w) with verification circuit C (·, ·) is executed between a prover
P that has input (x,w) ∈ R and a verifier V that has input x. The scheme is parameterized by a
security parameter κ, and both parties have access to an ideal commitment functionality FCom.

1. Witness secret sharing: P additively shares w by picking w1, w2 uniformly at random
subject to w = w1 ⊕ w2, and uses FCom to commit to w1, w2.

Additionally, P defines C̃ (u) := C (x,w1 ⊕ u).

2. Randomness generation: P and V run a coin tossing protocol to generate randomness
rS , rG, rE for FE.Setup,FE.Gen and FE.Enc, at the end of which the randomness is known
to P , and V holds commitments to it.

3. Setup: P executes msk = FE.Setup (1κ; rS) to generate a master key msk (there is no
public key in this case). Then, P generates an evaluation decryption key skC by executing
skC = FE.Gen

(
msk, C̃; rG

)
, and uses FCom to commit to msk, skC .

4. Witness encryption: P computes the ciphertext c = FE.Enc (msk, w2; rE) of w2, and uses
FCom to commit to c.

5. V performs one of the following verification steps (each with probability 1/3):

(a) Checking setup: P decommits rS , rG, w1,msk and skC , and V checks that FE.Setup
and FE.Gen were executed correctly.

(b) Checking witness encoding: P decommits rE ,msk, w2 and c, and V checks that
FE.Enc was executed correctly on these values.

(c) Checking evaluation: P decommits skC , c, and V checks that FE.Dec (skC , c) = 1.

Figure 7: A ZKP from Secret-Key Functional Encryption

(1 − negl(n))-Completeness. When both parties are honest, verification can fail only due to a
correctness error of FE, which causes FE.Dec (skC , c) ̸= C̃ (w2). (Indeed, all other steps in the
proof are deterministic given the randomness generated in Step 2.) Since these executions are
with uniformly random bits, the correctness of FE guarantees that Pr

[
FE.Dec (skC , c) = C̃ (w2)

]
≥

1− negl (n). This completes the completeness proof, because C̃ (w2) = C (x,w1 ⊕ w2) = C (x,w).

1/3 − negl (n)-Soundness. Assume that x /∈ L. Let w∗1, w
∗
2 denote the witness shares which P

committed to in Step 1, and let w∗ := w∗1 ⊕ w∗2, then C (x,w∗) = 0. We consider two possible
cases. First, if P executed Steps 3 and 4 honestly, then Pr [FE.Dec (skC , c) = 0] ≥ 1 − negl (κ) by
the correctness of FE. Namely, if V performs Step 5c (which happens with probability 1/3), he will
check that FE.Dec (skC , c) = 1, and therefore reject with probability at least 1− negl (κ). Therefore,
in this case V accepts with probability at most 1− (1− negl (κ))/3 = 2/3 + negl (κ) in this case.

Second, assume that P cheated in Step 3 or 4. Since the execution of each of these steps is
deterministic (given the appropriate randomness from {rS , rG, rE}), then if V checks that step, he
will reject. Therefore, V accepts with probability at most 1− 1/3 = 2/3.
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Zero-Knowledge. Let V∗ be a (possibly malicious) PPT verifier. We describe a simulator Sim for
V∗. Sim, on input 1κ, x, operates as follows.

1. Picks i ← {1, 2, 3}. (Intuitively, Sim guesses which of the possible three checks in Step 5 V∗
will choose to perform.)

2. Executes Steps 1, 2 and 4 honestly with V∗, using an arbitrary string w∗ as the witness. Let
w∗1, w

∗
2 denote the secret shares of w∗ used by Sim in this step.

3. Executes Step 3 honestly with V , except for the following modification. If i ̸= 3, then Sim
generates the decryption key for the circuit C∗ := Cx,w∗

1
. Otherwise, Sim generates the de-

cryption key for the circuit C ′whose size is the same as C∗, but such that C ′ always outputs 1.

4. When V∗ makes his choice in Step 5:

(a) If V∗ chose the “right” sub-step of Step 5 (as determined by i) then Sim honestly com-
pletes the proof by decommitting the appropriate values.

(b) Otherwise, Sim rewinds V∗ back to Step 1 of the simulation, unless rewinding has al-
ready occurred κ times, in which case Sim halts with no output.

We claim that the real and simulated views – denoted Real and Ideal respectively – are com-
putationally indistinguishable. To prove this, we show that both are computationally close to the
following hybrid distribution H. H is generated by having Sim secret share the actual witness w
(and use these witness shares throughout the simulation), and additionally, always generate a de-
cryption key for C̃ in Step 3 of the simulation. The rest of the simulation is carried out as described
above.

Bounding the computational distance between Real andH. The two differences between Real
andH are: (1) inH, the simulator may abort the simulation in Step 4b; and (2) in Real, the output
is generated as the output of C̃, which might be 0 with probability at most δ (due to the correct-
ness error of FE). The analysis is similar to the proof of Theorem 4.1. Specifically, (1) happens only
with probability 2−Ω(κ), because i is uniformly random. As for (2), conditioned on the event that
Sim did not abort inH, and on the witness shares w1, w2 (which are identically distributed in both
distributions), the only difference between Real,H is when i = 3 and due to a correctness error of
FE, so overall the computational distance between Real, Ideal is negl(κ) + δ.

Ideal ≈ H. There are two differences between the distributions: (1) the witness shares (and any
values computed from them), which inH are random secret shares of the actual witness w, and in
Ideal are secret shares of some arbitrary w∗. (2) The decryption key, which in H is generated for
C̃, whereas in Ideal it is generated for C ′ when i = 3. We consider the following possible cases,
based on which check V∗ chooses to perform in Step 5 of the proof.

Case (1): checking Step 5a. This step is independent of w2 and w∗2. Notice that w1, w
∗
1, when con-

sidered separately from w2, w
∗
2 (respectively), are uniformly random in both distributions. There-

fore, in this case,H and Ideal are identically distributed.
Case (2): checking Step 5b. This step is independent of w1 and w∗1; therefore, similar to case (1)

above, in this case,H and Ideal are identically distributed.
Case (3): checking Step 5c. We show that computational indistinguishability follows from the

full function privacy of FE (Definition 2.14). More specifically, we show that conditioned on V∗
checking Step 5c, a distinguisher D between H, Ideal will enable distinguishing between a func-
tion descryption key for C ′ in Ideal, and a function decryption key for C̃ in H, given also an
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encryption of a witness share, in the function privacy game of Definition 2.14. We describe a non-
uniform adversary A in the function-privacy FE game, with the witness w hard-wired. First, A
randomly additively shares w as w = w1⊕w2. Then,A asks its oracles Encb,Genb for an encryption
of w2, and a function decryption key for either C ′ or C̃. It obtains the ciphertext c and function
decryption key sk from its oracles. Then,A runsD on input c, sk and outputs whateverD outputs.
Notice that if sk was generated for C ′, then D is executed with a sample from Ideal; otherwise, D
is executed with a sample from H. So the advantage of A in the function privacy game is exactly
the distinguishing advantage of D. The function privacy of FE guarantees that this advantage is
negl (κ).

Communication complexity. The communication between the parties consists of both direct
messages and committed/decommitted messages. Similar to the proof of Theorem 4.1, we use
the fact that in the FCom-hybrid model, tossing r coins in Step 2 can be implemented with r bits
of direct communication, and r committed and decommitted bits. Therefore, the direct commu-
nication between P,V consists of 3ℓr (κ) bits sent by V in Step 2, and 2 bits sent by V in Step 5
to specify his choice. The committed messages consist of commitments to the two witness shares
w1, w2 in Step 1 (2n bits in total), commitments to 3ℓr (κ) random bits during the coin tossing
of Step 2, the commitments to the keys msk, skC generated in Step 3 (2 · ℓk (κ) bits in total), and
the commitment to the witness ciphertext generated in Step 4 (ℓc (κ, n) bits in total), a total of
2n+ 3ℓr (κ) + 2 · ℓk (κ) + ℓc (κ, n) bits. The decommitments consists of the openings of the values
needed to perform Step 5, which consists of revealing at most one witness share (n bits), at most
one ciphertext (ℓc (κ, n) bits), at most two keys (2 · ℓk (κ) bits), and the randomness needed for the
execution of at most two of Setup,Gen or Enc (at most 2ℓr (κ) bits). Therefore, P decommits at
most n+ 2ℓr (κ) + ℓc (κ, n) + 2 · ℓk (κ) bits.

4.4 Zero-Knowledge Proofs from Randomized Encoding (RE)

The construction uses an offline-online variant of a Randomized Encoding (RE) scheme f̂ . The
setup phase generates the randomness used by the offline and online algorithms f̂off , f̂on, and the
evaluation algorithm is executed with both offline and online encodings, generating an output
y ∈ {0, 1}. The output is decoded by V , so the prover need not compute this step as part of the
proof, see Step 2(d)ii in Figure 8.

Theorem 4.5 (ZKPs from RE). Let R = R (x,w) be an NP-relation with verification circuit C. Let
f̂ be a RE scheme with δ correctness and ε privacy for the class C̃ (C) of circuits (see Notation 2). The
ZKP of Figure 8, when instantiated with f̂ , is a (1− δ/3)-complete, (2/3 + δ/3)-sound ZKP, with (δ + ε)

simulation error, in the FCom-hybrid model. Furthermore, the ZKP uses f̂ as a black-box.
Moreover, assume that:

• Offline and online encoding complexities are ℓoff (κ) and ℓon (κ, n), respectively,

• And the executions of f̂off(r) and f̂on(x,w2; r) consume a total of ℓr (κ) random bits,

Then P,V exchange at most ℓr (κ) + 2 bits, at most 2n+ ℓr (κ) + ℓoff (κ) + ℓon (κ, n) bits are committed,
and at most n+ ℓr (κ) + ℓoff (κ) + ℓon (κ, n) bits are decommitted, where n denotes the witness length.

Proof: Given an ideal commitment functionality, Step 2 can be executed with perfect security.
Therefore, we assume that r is uniformly random in the following.
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ZKP from Randomized Encoding

The ZKP for an NP-relation R = R (x,w) with verification function f (·, ·) is executed between a
prover P that has input (x,w) ∈ R and a verifier V that has input x. The scheme is parameterized
by a security parameter κ, and both parties have access to an ideal commitment functionality
FCom.

1. Witness secret sharing: P additively shares w by picking w1, w2 uniformly at random
subject to w = w1 ⊕ w2, and uses FCom to commit to w1, w2.
Additionally, P defines the function fw1

to be fw1
(x, u) = R(x,w1 ⊕ u).

2. Randomness generation: P and V run a coin tossing protocol to generate randomness r
for the setup and the witness encoding steps, at the end of which r is known to P , and V
holds a commitment to r.

3. Setup: Let (f̂off , f̂on) be a randomized encoding of the function fw1
(·, ·) with decoder Dec.

P generates Foff = f̂off(r) and uses FCom to commit to Foff .

4. Witness Encoding: P computes Fon = f̂on(x,w2; r) and uses FCom to commit to Fon.

5. V performs one of the following verification steps (each with probability 1/3):

(a) Checking setup: P decommits r, w1, and Foff , and V checks that Foff = f̂off(r).

(b) Checking witness encoding: P decommits Fon, r and w2, and V checks that Fon =

f̂on(x,w2; r).

(c) Checking evaluation: P decommits Foff , Fon, and V computes y = Dec(Foff , Fon) and
checks that y = 1.

Figure 8: A ZKP from Randomized Encoding

(1− δ/3)-Completeness. When both parties are honest, verification can fail only due to the cor-
rectness error of the RE (see Definition 2.15), which causes Dec (Foff , Fon) ̸= fw1 (x,w2) = f (x,w).
Since the RE is executed with uniformly random bits, the correctness of the RE scheme guarantees
that this happens only with probability δ. Since V checks that Dec (Foff , Fon) ̸= fw1 (x,w2) if and
only if he chooses to perform Step 5c, V rejects only with probability δ/3.

(2/3 + δ/3)-Soundness. Assume that x /∈ L. Let w∗1, w
∗
2 denote the witness shares which P

committed to in Step 1, and let w∗ := w∗1 ⊕ w∗2, then f (x,w∗) = 0. We consider two possible
cases. First, if P executed Steps 3-4 honestly, then y = 1 only with probability δ. This follows from
the correctness of the RE scheme since it is executed with uniformly random bits. Therefore, if V
chooses to check Step 5c, he rejects with probability at least 1− δ. Since Step 5c is performed with
probability 1/3, in this case V accepts with probability at most 1− (1− δ)/3 = 2/3 + δ/3.

Second, assume thatP cheated in one of the Steps 3-4. Since the execution of each of these steps
is deterministic (given randomness r), then if V checks that step, he will reject. The probability of
catching the prover in each step is 1/3 as verifying all these three computations is done through
Steps 2(d)i-2(d)ii. Overall, V accepts with probability max {2/3 + δ/3, 1/3} = 2/3 + δ/3.

Zero-Knowledge. Let V∗ be a (possibly malicious) PPT verifier. We describe a simulator Sim for
V∗. Sim, on input 1κ, x, operates as follows.
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1. Sim honestly participates in the randomness generation carried out in Step 2. Let r denote
the outcome of this execution.

2. Picks i← [3]. (Intuitively, Sim guesses that if V∗ will choose to perform Step 5, it will perform
the ith sub-step.)

(a) If i = 1 (resp. i = 2), then Sim chooses a random share wi and honestly creates the
offline (resp. online) encoding using r, and commits to wi and to an arbitrary offline
(resp. online) encoding in Step 3 (resp. 4).16

(b) If i = 3, then Sim picks a random w1 and invokes the simulator SimRE for the ran-
domized encoding of function fw1(·, ·), giving 1 to SimRE as the output of fw1 . Let f̂Sim
denote the output of SimRE, then Sim commits to f̂Sim.

3. When V∗ makes his choice j in Step 5:

(a) If V∗ chose j ̸= i then Sim rewinds V∗ back to Step 2 of the simulation, unless rewinding
has already occurred κ times, in which case Sim halts with no output.

(b) Otherwise, Sim honestly completes the proof by decommitting the appropriate values.

The three differences between the real and simulated executions are: (1) the simulator may abort
the simulation in Step 3a; (2) the real execution may fail due to a correctness error, whereas the
output in the simulation is always 1, and (3) the simulator simulates the randomized encoding
whenever the choice bit of V∗ is i = 3. We claim first that (1) happens only with probability
2−κ. Indeed, the choice that V∗ makes in Step 3 of the simulation is independent of i (because the
commitments are ideal). Therefore, the fact that i is random guarantees that rewinding occurs in
Step 3a of the simulation only with probability 2/3 (only if V∗ chooses i ̸= j, which happens with
probability at most 2/3 because i is random). Therefore, the probability of κ rewinds is (2/3)−κ.

Next, we note that (2) happens with probability ≤ δ as it only happens due to the correctness
error. More specifically, consider a hybrid execution H which is identical to Real, except that the
output of the RE is always 1. Clearly, the difference between Real andH is δ.

Finally, we prove that the execution in H is computationally indistinguishable from the simu-
lation conditioned on the event that the simulator did not abort. Note first that the simulation is
perfect in Steps 5a and 5b as the witness shares w1 and w2, when considered separately from the
other share, are uniformly random, and therefore the simulator can emulate either the offline or
the online encoding perfectly. Next, we consider the case that i = 3. Assume that a distinguisher
D distinguishes the real and simulated executions with probability greater than ε for an infinite se-
quence of statements. We construct a distinguisher D′ for breaking the privacy of the randomized
encoding (Definition 2.15). Given an encoding (f̂ ′off , f̂

′
on), D′ emulates the view of V by repeat-

ing the simulator’s steps for the case that the verifier’s challenge is i = 3, namely, decomitting
(f̂ ′off , f̂

′
on). It then invokes D on V’s view and outputs whatever D does. Note that distinguish-

ing the two views directly translates to distinguishing the real encoding from the simulated one
(because inH, even the real encoding always outputs 1) with the same probability ε.

Communication complexity. The communication between the parties consists of both direct
messages and committed/decommitted messages. Similar to the proof of Theorem 4.1, we use
the fact that in the FCom-hybrid model, tossing r coins in Step 2 can be implemented with r bits of

16We note that for i = 2 the online encoding can be generated from w2 alone, because the online encoding is inde-
pendent of the function, see Section 2.7.
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direct communication, and r committed and decommitted bits. Therefore, the direct communica-
tion between P,V consists of ℓr (κ) bits sent by V in Step 2, and 2 bits sent by V in Step 5 to specify
his choice. The committed messages consist of commitments to the two witness shares w1, w2 in
Step 1 (2n bits in total), commitments to ℓr (κ) random bits during the coin tossing of Step 2, and
the commitments to the encodings generated in Steps 3 and 4 (ℓoff (κ) + ℓon (κ, n) bits in total), a
total of 2n + ℓr (κ) + ℓoff (κ) + ℓon (κ, n) bits. The decommitments consist of the openings of the
values needed to perform Step 5, which consists of revealing at most one witness share (n bits),
the two encodings (ℓoff (κ)+ ℓon (κ, n) bits), and the randomness needed to generate the encodings
(ℓr (κ) bits). Therefore, P decommits at most n+ ℓr (κ) + ℓoff (κ) + ℓon (κ, n) bits.

Remark 4.3 (Security in the uniform model). Note that our reduction to the privacy of the underlying
RE is uniform. This is because for i = 1, 2, the offline/online setting guarantees that each encoding depends
either on the function description (i.e., w1) or its input (i.e., w2), but not both. Furthermore, the RE
simulator is independent of both (depending only on the function’s output, which is 1).

Remark 4.4 (On the RE instantiations). The most common RE instantiation is based on garbling schemes
[Yao86, BHR12], which rely on one-way functions. Garbling schemes exist for any language L in NP with
a short online complexity that grows with the input and witness lengths. Perfectly correct garbling schemes
can be constructed based on the point-and-permute optimization [BMR90]. Therefore, we can avoid the
coin tossing step and let the prover choose the coin tossing herself (similar to the FSS-based construction,
figure 6). The randomness complexity of garbling schemes is proportional to their offline complexity, which
grows with the underlying circuit description. Therefore, the proof size is O(κ|C|), even when instantiated
with the state-of-the-art garbling scheme for Boolean circuits [RR21], and is based on one-way functions.

Perfectly private RE exists for the class of polynomial size branching programs [IK02]. We can therefore
achieve perfect ZKPs for this class in the FCOM-hybrid model with O(ℓ2) communication complexity where
ℓ is the size of the branching program computing the function Fn → F, for an arbitrary F.

Instantiating the ZKPs of Theorem 4.5 with the perfectly correct RE variant of [Yao86], reproves
Corollary 1.5.

4.5 Zero-Knowledge Proofs from Laconic Function Evaluation (LFE)

The construction uses a function hiding laconic function evaluation scheme LFE =
(LFE.crsGen, LFE.Comp, LFE.Enc, LFE.Dec), where the digest of the function does not leak
any information about the function. The setup phase generates the randomness used by
LFE.crsGen, LFE.Comp, LFE.Enc. The output is decoded by V , so the prover need not compute
this step as part of the proof, see Step 5c in Figure 9.

Theorem 4.6 (ZKPs from LFE). Let R = R (x,w) be an NP-relation with verification circuit C. Let
LFE = (LFE.crsGen, LFE.Comp, LFE.Enc, LFE.Dec) be a secure function hiding LFE scheme for the class
C̃ (C) of circuits (see Notation 2). The ZKP of Figure 9, when instantiated with LFE, is a 2/3-sound ZKP
in the FCom-hybrid model. Furthermore, the ZKP uses LFE as a black-box.

Moreover, assume that:

• The crs and the digest have lengths ℓcrs (κ) and ℓdigest (κ, |C|), respectively,

• Ciphertexts have length ℓct (κ, params),

• And the executions of each of LFE.crsGen, LFE.Comp, LFE.Enc consume ℓr(κ,m) bits, where m
denotes the size of the compressed circuit.
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ZKP from Laconic Function Evaluation

Let LFE = (LFE.crsGen, LFE.Comp, LFE.Enc, LFE.Dec) be a laconic function evaluation scheme.
The ZKP for an NP-relation R = R (x,w) with verification circuit C (·, ·) is executed between a
prover P that has input (x,w) ∈ R and a verifier V that has input x. The scheme is parameterized
by a security parameter κ and params, and both parties have access to an ideal commitment
functionality FCom.

1. Witness secret sharing: P additively shares w by picking w1, w2 uniformly at random
subject to w = w1 ⊕ w2, and uses FCom to commit to w1, w2.

Additionally, P defines C̃ (u) := C (x,w1 ⊕ u).

2. Randomness generation: P and V run a coin tossing protocol to generate randomness
rG, rC , rE for crsGen,Comp and Enc, at the end of which rG, rC , rE are known to P , and V
holds a commitment to them.

3. Setup: P executes crs = LFE.crsGen (1κ, params; rG) to generate a uniformly random
common random string crs. Then, P generates a digest digestC̃ by executing digestC̃ =

LFE.Comp
(
crs, C̃; rC

)
, and uses FCom to commit to crs, digestC̃ .

4. Witness encryption: P computes the ciphertext ct = LFE.Enc
(
crs, digestC̃ , w2; rE

)
of w2,

and uses FCom to commit to ct.

5. V performs one of the following verification steps (each with probability 1/3):

(a) Checking setup: P decommits rG, rC , crs, w1 and digestC̃ , and V checks that crs =

crsGen(1κ, params; rG) and that digestC̃ = LFE.Comp
(
crs, C̃; rC

)
.

(b) Checking witness encryption: P decommits rE , crs, digestC , w2 and ct, and V checks
that ct = LFE.Enc

(
crs, digestC̃ , w2; rE

)
.

(c) Checking evaluation: P decommits crs, ct, w1 and rC , and V checks that
LFE.Dec

(
crs, C̃, ct, rC

)
= 1.

Figure 9: A ZKP from Laconic Function Evaluation

ThenP,V exchange at most 3ℓr (κ)+2 bits, at most 2n+3ℓr (κ)+ℓcrs (κ)+ℓdigest (κ, |C|)+ℓct (κ, params)
bits are committed, and at most n+2ℓr (κ)+ℓcrs (κ)+ℓdigest (κ, |C|)+ℓct (κ, params) bits are decommitted,
where n denotes the witness length.

Proof: Given an ideal commitment functionality, Step 2 can be executed with perfect security.
Therefore, we assume that rG, rC , rE are uniformly random in the following.

Perfect completeness. Completeness follows directly from the perfect correctness of the LEF
scheme.

2/3-Soundness. Assume that x /∈ L. Let w∗1, w
∗
2 denote the witness shares which P committed to

in Step 1, and let w∗ := w∗1⊕w∗2, then C (x,w∗) = 0. We consider three cases; (1) the prover defines
an incorrect crs crs or digest digestC in Step 3, (2) the prover incorrectly encrypts w2 in Step 4, or
(3) the decryption of ciphertext ct does not equal 1. The probability of catching the prover in any
of these three cases is 1/3 as verifying all these three computations is done through Steps 5a-5c.
Therefore, the soundness error is 2/3.
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Zero Knowledge. Let V∗ be a (possibly malicious) PPT verifier. We describe a simulator Sim for
V∗. Sim, on input 1κ, x, operates as follows.

1. Sim picks two random strings wSim
1 and wSim

2 , and emulates committing to them using FCOM.

2. Sim honestly participates in the randomness generation carried out in Step 2. Let rG, rC , rE
denote the outcome of this execution.

3. Sim computes the setup phase in Step 3 by invoking LFE.crsGen(1κ, params; rG), receiving crs.
Sim further computes the digest by running digest

C̃
= LFE.Comp(crs, C̃; rC) and commits to

these two outcomes (where C̃ is embedded with wSim
1 ).

4. Picks i← [3]. (Intuitively, Sim guesses that if V∗ will choose to perform Step 5, it will be with
index i.)

(a) If i = 1, then Sim continues to the next step.

(b) If i = 2, then Sim honestly creates the ciphertext ct = LFE.Enc
(
crs, digest

C̃
, wSim

2 ; rE
)

and commits to ct.

(c) If i = 3, then Sim invokes the simulation SimLFE for the laconic function evaluation of
circuits C̃ (·) = CwSim

1
(x, ·) (the existence of SimLFE is guaranteed by Definition 2.18) on

input (crs, C̃, digest
C̃
, 1). Let ctSim denote the output of SimLFE, then Sim commits to

ctSim.

5. When V∗ makes his choice j in Step 5:

(a) If V∗ chose j ̸= i then Sim rewinds V∗ back to Step 4 of the simulation, unless rewinding
has already occurred κ times, in which case Sim halts with no output.

(b) Otherwise, Sim honestly completes the proof by decommitting the appropriate values.

The differences between the real and simulated executions are: (1) the simulator may abort the
simulation in Step 5a; (2) the simulator uses an incorrect input wSim

2 to compute ciphertext ct in
Step 4b (i.e., a wSim

2 such that wSim
1 ⊕wSim

2 is not a valid witness) and (3) the simulator simulates the
ciphertext ct whenever the choice bit of V∗ is i = 3 in Step 4c. We claim first that (1) happens only
with probability 2−κ. Indeed, the choice that V∗ makes in Step 5 of the simulation is independent
of i (because the commitments are ideal). Therefore, the fact that i is random guarantees that
rewinding occurs in Step 5a of the simulation only with probability 2/3 (only if V∗ chooses i ̸= j,
which happens with probability at most 2/3 because i is random). Therefore, the probability of κ
rewinds is (2/3)−κ.

Next, we prove that the real execution is computationally indistinguishable from the simula-
tion conditioned on the event that the simulator did not abort. In more detail, we provide a case
analysis based on whether i = 2 or i = 3 (When i = 1, the simulation is perfect because the
simulated values depend only on wSim

1 , which is distributed identically to the real world when
considered in isolation from wSim

2 ). Assume first that i = 2 and that a distinguisher D distin-
guishes the two executions with probability greater than ε for an infinite sequence of statements.
We construct a distinguisher D′ which breaks the function privacy of the laconic function eval-
uation scheme (Definition 2.19). Fix an input statement x∗ and two circuits C0, C1 for which C0

denotes the circuit C̃, and C1 denotes the simulated circuit. Note that the simulated circuit is
hardcoded with a random wSim

1 such that wSim
1 ⊕ wSim

2 does not equal a valid witness w. Then,
by the assumption, D distinguishes the real from the simulated view when the verifier’s input
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is x∗, and the digest is computed either based on C0 or C1. Let (crs, digestC̃) denote the input
of the distinguisher D′. Then D′ computes Steps 1-2 as in the simulation. It then computes
ct = LFE.Enc

(
crs, digestC̃ , w

Sim
2 ; rE

)
and commits to crs, digestC̃ and ct. Upon receiving the chal-

lenge i = 2, D′ decommits rE , crs, digestC , wSim
2 and ct. It then invokes D on V’s view and outputs

whatever D does. Note that distinguishing the two views directly translates to distinguishing the
real digest from the simulated one with the same probability ε.

Finally, assume that i = 3 and that a distinguisher D distinguishes the two executions with
probability greater than ε for an infinite sequence of statements. We construct a distinguisher
D′ for breaking the security of the laconic function evaluation scheme (Figure 3). Fix an input
statement x∗, then, by the assumption, D distinguishes the real from the simulated view when
the verifier’s input is x∗ and the ciphertext ct is computed either based on the real or the ideal
experiment. Let ct denote the input of the distinguisher D′. Then D′ computes Step 1 of the
simulation. Upon receiving the challenge i = 3, D′ decommits rE , crs, digestC̃ , w

Sim
1 , ct and rC .

It then invokes D on V’s view and outputs whatever D does. Note that distinguishing the two
views directly translates to distinguishing the real ciphertext from a simulated one with the same
probability ε.

Communication complexity. The communication between the parties consists of both direct
and committed/decommitted messages. Similar to the proof of Theorem 4.1, we use the fact
that in the FCom-hybrid model, tossing r coins in Step 2 can be implemented with r bits of di-
rect communication, and r committed and decommitted bits. Therefore, the direct communica-
tion between P,V consists of 3ℓr (κ) bits sent by V in Step 2, and 2 bits sent by V in Step 5 to
specify his choice. The committed messages consist of commitments to the two witness shares
w1, w2 in Step 1 (2n bits in total), commitments to 3ℓr (κ) random bits during the coin tossing
of Step 2, and the commitments to the crs, digest, and encoding generated in Steps 3 and 4
(ℓcrs (κ)+ℓdigest (κ, |C|)+ℓct (κ, params) bits in total), a total of 2n+3ℓr (κ)+ℓcrs (κ)+ℓdigest (κ, |C|)+
ℓct (κ, params) bits. The decommitments consist of the openings of the values needed to perform
Step 5, which consists of revealing at most one witness share (n bits), the crs, digest and witness
encoding (ℓcrs (κ) + ℓdigest (κ, |C|) + ℓct (κ, params) bits), and the randomness needed to execute at
most two of LFE.crsGen, LFE.Comp and LFE.Enc (2ℓr (κ) bits). Therefore, P decommits at most
n+ 2ℓr (κ) + ℓcrs (κ) + ℓdigest (κ, |C|) + ℓct (κ, params) bits.

Remark 4.5 (Security in the uniform model). Similarly to Remark 4.3, our reduction to the privacy
of the underlying LFE is also uniform. This is because for i = 1, 2, the offline/online setting guarantees
that each encoding depends either on the function description (i.e., w1) or its input (i.e., w2), but not both.
Furthermore, the reduction to circuit privacy only requires the knowledge of w1, whereas the reduction to
the LFE security only depends on w2.

Remark 4.6 (On the LFE instantiations). LFE can be constructed under the LWE assumption [QWW18]
for polynomial-size circuits. The size of the digest, the complexity of the encryption algorithm, and the
size of the ciphertext only scale with the depth, not the size, of the circuit. In particular, for a circuit
C : {0, 1}k ← {0, 1}ℓ of size |C| and depth d, and for security parameter κ, Quach et al. construct an
LFE where the size of the digest is poly(κ) and the size of the ciphertext is O(κ + ℓ) · poly(κ, d). This
result is qualitatively weaker than our FHE-based construction as it relies on a stronger noise requirement
(sub-exponential modulus-to-noise ratio), and the communication complexity depends on the depth of the
circuit.
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4.6 Zero-Knowledge Proofs from Fully Homomorphic Encryption (FHE)

The construction uses a circuit-private fully homomorphic encryption scheme FHE =
(FHE.Gen,FHE.Enc,FHE.Eval,FHE.Dec). Notice that this is a 1-distributed primitive. Therefore,
the Setup phase (Step 3 of Figure 10) generates a single secret key sk, and the witness encryption
(Step 4) consists of a single ciphertext. Additionally, in the verification phase, checking the setup
phase consists of executing the key generation FHE.Gen algorithm, checking the witness encryp-
tion phase consists of verifying the encryption of the witness share w2 using algorithm FHE.Enc,
checking the evaluation phase consists of executing algorithm FHE.Eval, and checking the decryp-
tion phase consists of evaluating FHE.Dec on the output ciphertext. This is described in Figure 10.

ZKP from Fully Homomorphic Encryption

Let FHE = (FHE.Gen,FHE.Enc,FHE.Eval,FHE.Dec) be a fully homomorphic encryption scheme.
The ZKP for an NP-relation R = R (x,w) with verification circuit C (·, ·) is executed between a
prover P that has input (x,w) ∈ R and a verifier V that has input x. The scheme is parameter-
ized by a security parameter κ, and both parties have access to an ideal commitment functional-
ity FCom.

1. Witness secret sharing: P additively shares w by picking w1, w2 uniformly at random
subject to w = w1 ⊕ w2, and uses FCom to commit to w1, w2.

Additionally, P defines C̃ (u) := C (x,w1 ⊕ u).

2. Randomness generation: P and V run a coin tossing protocol to generate randomness
rG, rE , r

′
E for FHE.Gen,FHE.Enc and FHE.Eval, at the end of which the randomness is

known to P , and V holds commitments to it.

3. Setup: P executes (pk, sk) = FHE.Gen (1κ, 1τ ; rG) to generate a public-key secret-key pair,
sends pk to V , and uses FCom to commit to sk.

4. Witness encryption: P computes the ciphertext ct = FHE.Enc (pk, w2; rE) of w2, and uses
FCom to commit to ct.

5. Evaluation: P computes ct′ = FHE.Eval
(
pk, C̃, ct; r′E

)
and uses FCom to commit to ct′.

6. V performs one of the following verification steps (each with probability 1/4):

(a) Checking setup: P decommits rG and sk, and V checks that Gen was executed cor-
rectly.

(b) Checking witness encryption: P decommits rE , w2 and ct, and V checks that
FHE.Enc was executed correctly on these values.

(c) Checking evaluation: P decommits w1, r
′
E , ct and ct′, and V checks that ct′ =

FHE.Eval
(
pk, C̃, ct; r′E

)
.

(d) Checking decryption: P decommits sk, ct′, and V checks that FHE.Dec (sk, ct′) = 1.

Figure 10: A ZKP from Fully Homomorphic Encryption

Theorem 4.7 (ZKPs from Circuit-Private FHE). Let R = R (x,w) be an NP-relation with verification
circuit C, and let κ be a security parameter. Let FHE = (FHE.Gen,FHE.Enc,FHE.Eval,FHE.Dec) be a
secure and correct circuit-private FHE scheme for the class C̃ (C) of circuits (see Notation 2). Then the ZKP
of Figure 10, when instantiated with FHE, is a 3/4-sound ZKP, in the FCom-hybrid model. Furthermore,
the ZKP uses FHE as a black-box.
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Moreover, assume that:

• Keys generated by FHE.Gen have length ℓk (κ),

• The ciphertext generated by FHE.Enc has length ℓc (κ,m) (m denotes the length of the encrypted
message),

• And the execution of FHE.Gen,FHE.Enc,FHE.Eval each consume ℓr (κ) random bits,

Then P,V exchange at most 3ℓr (κ) + ℓk (κ) + 2 bits, at most 2n+ 3ℓr (κ) + ℓk (κ) + ℓc (κ, n) + ℓc (κ, 1)
bits are committed, and at most n + ℓr (κ) + ℓk (κ) + ℓc (κ, n) + ℓc (κ, 1) bits are decommitted, where n
denotes the witness length.

Proof sketch. Given an ideal commitment functionality, Step 2 can be executed with perfect
security. Therefore, in the following, we assume that rG, rE , r′E are uniformly random.

Perfect completeness follows directly from the perfect correctness of the FHE scheme.

3/4-Soundness. Assume that x /∈ L. Let w∗1, w
∗
2 denote the witness shares which P committed to

in Step 1, and let w∗ := w∗1 ⊕w∗2, then C (x,w∗) = 0. We consider four cases; (1) the prover defines
an incorrect pair of keys (pk, sk) in Step 3, (2) the prover incorrectly encrypts w2 in Step 4, (3) the
evaluation of ciphertext ct does not yield ciphertext ct′ in Step 5, or (4) the decryption of ct′ ̸= 1.
The probability of catching the prover in any of these three cases is 1/4 as verifying all these four
computations is done through Steps 6a-6d (where in case (4) we use the perfect correctness of
FHE). Therefore, the soundness error is 3/4.

Zero Knowledge. The proof follows a similar outline to the proof of Theorem 4.6. More specifi-
cally, the simulator honestly executes Steps 1-4, using an arbitrary witness. Then, it picks i ← [4]
and proceeds as follows. If i = 1 or i = 2, then it can complete the simulation. If i = 3, Sim hon-
estly executes Eval on the encryption ct generated in Step 4 (for the simulated secret share w2), and
indistinguishability reduces to the security of FHE (Definition 2.8), which guarantees that PPT dis-
tinguishers cannot distinguish between ciphertexts generated from real or simulate witness shares
w2.

Finally, if i = 4, indistinguishability follows from the circuit privacy of FHE (Definition 2.9).
Indeed, the simulator can use the simulator SimFHE for FHE, whose existence is guaranteed by
Definition 2.9, to simulate the output ciphertext ct′. More specifically, Sim emulates SimFHE with
input w2, 1 to obtain a simulated ciphertext c̃t and uses it to complete the simulation. (Here, we
also use the perfect correctness of FHE, which guarantees that if x ∈ L then the output ciphertext
in the real execution always decrypts to 1, so SimFHE is emulated with the correct output.) To see
that the simulated view is indistinguishable from the real view, conditioned on i = 4, consider a
hybrid distribution H which is generated identically to the simulation, except that the simulator
is given the actual witness w, and uses a sharing of w to simulate the view. Then H is identically
distributed to the simulated view (conditioned on i = 4) since both are generated similarly from
a uniformly random witness share w2. (w2 is uniformly random in both distributions because,
conditioned on i = 4, the distributions are independent of w1.) Finally, conditioned on i = 4, H
is indistinguishable from the view in the real execution due to the circuit privacy of FHE. Indeed,
given a distinguisher D between these distributions, we can construct a distinguisher D′ between
the real and simulated distributions in the circuit privacy property of Definition 2.9. D′, give the
randomness rG used to generate the keys, and a ciphertext ct′ (which is either real or simulated),
uses rG to generate the secret key sk, executes D on sk, ct′, and outputs whatever D outputs. If
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D′’s input is the real view, then the input of D is distributed as in the real execution in Defini-
tion 2.9. Otherwise, D is executed with the hybrid distribution. Therefore, D′ obtains the same
distinguishing advantage as D.

Communication Complexity. The communication between the parties consists of both direct and
committed/decommitted messages. Similar to the proof of Theorem 4.1, we use the fact that
in the FCom-hybrid model, tossing r coins in Step 2 can be implemented with r bits of direct
communication, and r committed and decommitted bits. Therefore, the direct communication
between P,V consists of 3ℓr (κ) bits sent by V in Step 2, the public key (ℓk (κ) bits), and 2 bits
sent by V in Step 6 to specify his choice. The committed messages consist of commitments to
the two witness shares w1, w2 in Step 1 (2n bits in total), commitments to 3ℓr (κ) random bits
during the coin tossing of Step 2, the commitment to sk (ℓk (κ) bits), and the commitments to
the ciphertexts ct, ct′ generated in Steps 4 and 5 (ℓc (κ, n) + ℓc (κ, 1) bits in total), a total of 2n +
3ℓr (κ) + ℓk (κ) + ℓc (κ, n) + ℓc (κ, 1) bits. The decommitments consist of the openings of the values
needed to perform Step 6, which consists of revealing at most one witness share (n bits), the secret
key sk (ℓk (κ) bits), the randomness needed to execute one of FHE.Gen,FHE.Enc or LFE.Eval (ℓr (κ)
bits), and the two ciphertexts ct, ct′ (ℓc (κ, n) + ℓc (κ, 1) bits). Therefore, P decommits at most
n+ ℓr (κ) + ℓk (κ) + ℓc (κ, n) + ℓc (κ, 1) bits.

Theorem 4.7, when instantiated with a rate-1 FHE scheme (e.g., using hybrid encryption) that
can evaluate all polynomial-sized circuits, gives a constant-round ZKP for all NP languages with
total communication complexity O(n) + poly(κ). This gives Corollary 1.4.

5 Generalization to Commit-and-Prove Functionalities

In this section, we generalize our ZKP abstraction (Figure 4) to capture commit-and-prove (C&P)
functionalities. Our C&P supports an iterative commit phase. The C&P abstraction is described
in Figure 11, and uses a primitive (Gen,Enc,Eval,Dec) (similar to the ZKP abstraction of Figure 4).
Then, we instantiate our abstraction using REs (Section 5.1) and use this construction (Figure 12)
to compile any public-coin IP to a ZKP in the FCom-hybrid model.

5.1 Instantiating Commit-and-Prove using Randomized Encoding

We generalize our RE-based ZKPs of Section 4.4 to fit our commit-and-prove abstraction (Fig-
ure 11). This is described in Figure 12. We will need the following notation, which generalizes the
circuit class of Notation 2.

Notation 3. Let R = R (x,w) be an NP relation, with verification circuit C, and let L denote the corre-
sponding NP language. For x ∈ L, and y1, . . . , yl ∈ {0, 1}∗, we define the circuit

Cx,y1,...,yl (u1, . . . , ul) = C
(
x,

(
y1 ⊕ u1, . . . , y

l ⊕ yl

))
.

We define the following class of circuits:

C̃′ (C) =
{
Cx,y1,...,yl (u1, . . . , ul) :

∃w, y1, . . . , yl ∈ {0, 1}∗ s.t. (x,w) ∈ R ∧ |w| =
l∑

i=1

∣∣yi∣∣ }
.
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Commit-and-Prove Abstraction

Let P = (Gen,Enc,Eval,Dec) be a k-party primitive, and κ be a security parameter. The Commit-
and-Prove protocol for an NP-relation R with verification circuit C (·, ·) is executed between a
prover P and a verifier V . The parties have a public input x, and P might also have a private
input w. The parties have access to an ideal commitment functionality FCom.

1. Commit Phase: Repeat the following l times, for some l = poly (κ), where in the ith
iteration:

(a) Verifier public message: V sends a message zi to P .

(b) Witness secret sharing: P uses z1, . . . , zi−1 and w to generate the ith witness yi,
additively shares yi by picking yi1, y

i
2 uniformly at random subject to yi = yi1 ⊕ yi2,

and uses FCom to commit to yi1, y
i
2.

2. Prove Phase: this phase is executed for the instance
(
x, z1, . . . , zl

)
(known to both parties)

with witness
(
y1, . . . , yl

)
. The goal is forP to prove to V that

((
x, z1, . . . , zl

)
,
(
y1, . . . , yl

))
∈

R.
P and V execute steps 2-6 of Figure 4 for the instance

(
x, z1, . . . , zl

)
with committed witness(

y11 , y
1
2 , . . . , y

l
1, y

l
2

)
. More specifically:

• Let C̃ ′ (u1, . . . , ul) := C
((
x, z1, . . . , zl

)
,
(
y11 ⊕ u1, . . . , y

l
1 ⊕ ul

))
, then the setup phase

(Step 3 in Figure 4) might depend on C̃ ′ (and consequently also on y11 , . . . , y
l
1).

• In the witness encoding step (Step 4 in Figure 4) the encodings are of
(
y12 , . . . , y

l
2

)
.

• The evaluation step is executed as in Step 5 of Figure 4. Notice that this results in
output shares yi of C̃ ′ (y12 , . . . , yl2).

• The verification step (Step 6 in Figure 4) is executed with the following modifications:

(a) In Step 6a of Figure 4, P decommits to y11 , . . . y
l
1 (instead of w1).

(b) In Step 6b of Figure 4, P decommits to y12 , . . . y
l
2 (instead of w2).

(c) In Step 6c of Figure 4, P decommits to one of
(
y11 , . . . , y

l
1

)
or

(
y12 , . . . y

l
2

)
(instead

of one of w1 or w2, respectively).

Figure 11: Commit-and-Prove Construction from Game-Based Secure Primitives

5.1.1 From IPs to ZKPs, Black Box

As an application of our commit-and-prove construction (Section 5.1), we can compile any public-
coin IP to a ZKP in the FCom-hybrid model, as we now explain.

The “notarized envelopes” technique, originating from the work of Ben-Or et al. [BGG+88],
can be used to compile an IP for any language L to a ZKP for L, by having P commit to her
message in each round (instead of sending it in the clear), and finally using a ZKP to prove to V
that had she opened the committed messages, the original IP verifier would have accepted (given
his random challenges in each round). The key observation is that even for L /∈ NP, the statement
proved in zero-knowledge at the end of the protocol is in NP, so any standard ZKP (e.g., one based
on OWFs) can be used. We follow the same compilation paradigm, but use our commit-and-prove
construction to obtain a black-box construction (whereas the original compiler of [BGG+88] is non-
black-box in the commitment scheme). This is formalized in the following remark and theorem,
where for a language L, we use RL,V to denote the corresponding polynomial-time relation that
V checks at the end of the compiled protocol for L.
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Commit-and-Prove from Randomized Encodings

Let R, C and κ be as in Figure 11. The Commit-and-Prove protocol for R is executed between
P,V with public input x. P might also have a private input w, and both parties have access to an
ideal commitment functionality FCom.

1. The Commit Phase is executed as in Figure 11.
Let f(x,z1,...,zl),y1

1 ,...,y
l
1

be defined as

f(x,z1,...,zl),y1
1 ,...,y

l
1
(u1, . . . , ul) := C(x,z1,...,zl),y1

1 ,...,y
l
1
(u1, . . . , ul)

(see Notation 3 and Figure 11).

2. The Prove Phase is executed as follows:

(a) Randomness generation: P and V run a coin tossing protocol to generate random-
ness r for the setup and the witness encoding steps, at the end of which r is known
to P , and V holds a commitment to r.

(b) Setup: Let (f̂off , f̂on) be a randomized encoding of the function
f(x,z1,...,zl),y1

1 ,...,y
l
1
(·, . . . , ·) with decoder Dec. P generates Foff = f̂off(r) and

uses FCom to commit to Foff .

(c) Witness Encoding: P computes Fon = f̂on(y
1
2 , . . . , y

l
2; r) and uses FCom to commit to

Fon.

(d) V performs one of the following verification steps (each with probability 1/3):

i. Checking setup: P decommits r, y11 , . . . , y
l
1 and Foff , and V checks that Foff =

f̂off(r).
ii. Checking witness encoding: P decommits Fon, r and y12 , . . . , y

l
2, and V checks

that Fon = f̂on(y
1
2 , . . . , y

l
2; r).

iii. Checking evaluation: P decommits Foff , Fon, and V computes y = Dec(Foff , Fon)
and checks that y = 1.

Figure 12: A Commit-and-Prove Construction from Randomized Encodings

Remark 5.1 (Applying C&P to IPs). Our C&P construction of Figure 12 can be applied to any public-
coin IP ⟨PIP,VIP⟩ for a language L, as follows. In the commit phase, P and V emulate PIP,VIP, respectively.
The messages zi which V sends to P consist of the random challenges which VIP sends to PIP, and the
witnesses yi which P commits to are PIP’s messages in the IP. In the prove phase, P proves to V that((
x, z1, . . . , zl

)
,
(
y1, . . . , yl

))
∈ RL,VIP .

Theorem 5.1 (Compiling IPs to ZKPs, Black Box). Let ⟨PIP,VIP⟩ be a (public-coin) interactive proof
system for L with εIP soundness error, and let C be the verification circuit of the relation RL,VIP . Let f̂ be
an RE scheme with δ correctness and ε privacy for the class C̃′ (C) of circuits (see Notation 3). Then the C&P
of Figure 12, when applied to ⟨PIP,VIP⟩ (as in Remark 5.1), gives a (1− δ/3)-complete, (εIP +2/3+ δ/3)-
sound ZKP for L, with ε simulation error, in the FCom-hybrid model.

Moreover, assume that:

• Offline and online encoding complexities are ℓoff (κ) and ℓon (κ, t), respectively (where t denotes the
length of the input in the online phase),

• And the executions of f̂off(r) and f̂on
((
x, z1, . . . , zl

)
,
(
y11, . . . , y

l
1

)
; r
)

consume a total of ℓr (κ)
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random bits,

Then P commits and decommits to at most O(CC(m)+ ℓr(κ)+ ℓoff(κ)+ ℓon(κ,CC(m)+m)) bits, and P
and V exchange at most CC(m) + ℓr(κ) + 2 bits, where CC(m) denotes the communication complexity of
⟨PIP,VIP⟩ on inputs of length m.

Proof Sketch. Completeness. follows essentially as in Section 4.4.

Soundness follows from the soundness of the underlying IP system. Indeed, in the FCom-hybrid
model, at the end of the commit phase, P is committed to the IP messages, namely a transcript for
the IP has been fixed. Except with probability εIP, this transcript is not in RL,VIP . Conditioned on
this event, we can follow the soundness analysis of Section 4.4 to show that in this case,V accepts
with probability at most 2/3+δ/3. Using a union bound, we can conclude that the verifier accepts
with probability at most εIP + 2/3 + δ/3.

Zero-Knowledge follows essentially the same way as in Section 4.4. More specifically, the simula-
tor guesses the verifier’s challenge, and for the guess i = 1 or i = 2, it honestly creates the offline
or online encoding, respectively. For the guess i = 3, it uses the simulator of the randomized en-
coding to generate an encoding that evaluates to 1. Finally, it rewinds the verifier if the challenge
differs from the guess.

The communication between the parties involves both direct messages and commit-
ted/decommitted messages. The only difference from the analysis of Section 4.4 is the additional
communication during the commit phase (due to multiple commitment rounds), as well as the
fact that the “witnesses” (and all values computed from them) are now longer.If CC(m) denotes
the communication of the original interactive proof, then the commit phase of the compiled pro-
tocol will involve O(CC(m)) committed and decommitted bits, and the online encoding is applied
to inputs of length at most CC(m) +m.

Instantiating FCom with a statistically-binding commitment scheme (that can be based on
OWFs), and applying Theorem 5.1 to the (doubly-efficient) interactive proof system of [Sha90,
LFKN90], we obtain Corollary 1.6 that establishes a folklore result.

Black-Box ZKPs for NP. Using the same compilation technique, we can compile (doubly-
efficient) interactive proof systems17 for languages computable by a polynomial-sized family of
circuits C, to a ZKP for NP-languages whose verification circuit belongs to C.

In more detail, our starting point is a public-coin interactive proof for a language L which
is polynomial-time computable by a family of circuits C. In such proofs, the verifier’s messages
consist of random coins, and at the end of the interaction the verifier applies a polynomial-time
computation CV to his input x and the transcript (V’s random coins, and the prover’s messages)
to determine his outcome. We denote by RL,VIP the polynomial-time relation of all satisfying
inputs of CV . Notice that this proof system can be adapted to NP-languages whose corresponding
relation R is computable by the same class C, as follows. The prover, on input an instance x and
witness w, provides w to V in the first round of the protocol, and the parties then execute the
interactive proof for the language L′ that contains all (x,w) for which R(x,w) = 1. By definition,
L′ is computable by C. Applying our ZKP compiler to this modified version of the IP, the prover
will first commit to secret shares of w, exactly as she commits to the messages of the IP. More
specifically, given a doubly-efficient proof system ⟨PIP,VIP⟩ for languages computed by a family

17A doubly-efficient proof system is a proof system with the additional requirement that the honest prover is PPT,
where for NP-languages this holds when the prover is given as input also the NP-witness w for x ∈ L.
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of circuits C, the ZKP for NP languages with verification circuits in C is defined as follows. P and
V have common input x, and P additional receives w attesting to x ∈ L.

• P secret shares the witness w as w1 ⊕ w2 and commits to them using FCom.

• P,V execute the Commit Phase as in the protocol from the proof of Theorem 5.1, where P
uses PIP to generate the messages in each round for the instance (x,w) (w.r.t the polynomial-
time computable language L whose verification circuit belongs to C). Let C describe the
circuit that VIP would have executed at the end of the protocol on instance (x,w).

• In the Prove Phase, the prover’s goal is to prove that C
(
x,w, z1, . . . , zl, y1, . . . , yl

)
= 1. P

defines the function fx,w1,z1,...,zl,y11 ,...,y
l
1

as

fx,w1,z1,...,zl,y11 ,...,y
l
1
(u, u1, . . . , ul)

:= C
(
x,w1 ⊕ u, z1, . . . , zl, y11 ⊕ u1, . . . , y

l
1 ⊕ ul

)
.

The analysis of this protocol follows essentially in the same way as that of Theorem 5.1. Ap-
plying this compiler to the GKR protocol [GKR15] yields the following corollary. First, we recall
the result from [GKR15] and then present our corollary.

Theorem 5.2 (Interactive Proofs for Bounded-Depth Computations [GKR15]). Let L be a language
that can be computed by a family of O(log(S(m)))-space uniform boolean circuits of size S(m) = poly(m)
and depth d(m) where m is the instance size. Then, there exists a public-coin IP for L with communication
complexity d(m) · poly(log(S(m)), and soundness error 1/2. In addition, the size of the verification circuit
of the relationR′L,VIP is m · poly(log(d(m)), log(S(m))) and the prover runs in poly(m) time.

In [GKR15], they show how this interactive proof can be compiled to a ZKP for bounded-
depth NP-relations, however, their compilation follows the paradigm of [BGG+88] that relies on
the underlying OWF in a non-black-box manner. We can obtain a ZKP with the same efficiency
parameters as [GKR15] by relying on our transformation from this section. Thus, our transforma-
tion can be viewed as a black-box alternative to [BGG+88]. We remark that compiling the [GKR15]
protocol requires a slight variant of the transformation of [BGG+88] as it requires the verifier to
locally compute some information to achieve the necessary succinctness (c.f. Proof of Theorem
5.2 [GKR15]). Nevertheless, the same variation can be applied to our transformation to obtain the
following corollary.

Corollary 5.3 (Succinct ZKPs for Bounded-Depth NP). Assume OWFs exist. Let κ(m) ≥ log(m) be a
security parameter, and L be an NP-language whose corresponding relation R can be computed on length-
m inputs and length n = n(m) witnesses by a logspace-uniform family of Boolean circuits of size poly(m)
and depth d(m). Then L has a public-coin d(m)-round 1/2-sound zero-knowledge proof in which the prover
runs in time poly(m,κ(m)) (given a witness), the verifier runs in time m·poly(n(m), κ(m), d(m)), and the
communication complexity is n(m) · poly(κ(m), d(m)). Moreover, the protocol uses the underlying OWF
as a black-box. When d(m) = logi(m), the circuit class becomes NC, and the communication complexity
can be written as n(m) · poly(κ(m)).

The proof of Corollary 5.3 is a simpler variant of the proof of Corollary 5.7 below. We therefore
defer the proof of Corollary 5.3 until after the proof of Corollary 5.7.

We note that applying the above transformation to the GKR protocol [GKR15] directly will not
achieve the desired soundness. Instead we first repeat the GKR protocol in parallel O(1) times to
reduce the soundness error, and then repeat the compiled protocol sequentially O(1) times. The
communication complexity of the compiled protocol is dominated by the size of the verification
circuit C which is ℓon(κ,CC(m))) = n · poly(κ, d(m)).
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5.1.2 From IOPs to ZKPs, Black Box

Next, we show that our compiler from the previous section extends to (public coin) Interactive
Oracle Proofs (IOPs) (Section 2.3). Recall that in a public-coin IOP, in each interaction round the
prover transmits a (proof) oracle, and the verifier responds with a random challenge. Finally, the
verifier makes few oracle queries to determine his output.

A Naive Approach. The natural approach towards extending the compiler from IPs to IOPs is to
simply commit in each round to the entire proof oracle, where the NP-relation which V verifies
at the end relies on the entire proof oracle. However, this results in a verification circuit whose
size scales with the entire oracle length, in contrast to the complexity of the original IOP verifier
VIOP, which scales only with the number of queries he made to the oracle. Therefore, this naive ap-
proach eliminates the efficiency gains of using an oracle proof. Consequently, the main challenge
in this setting is to have the final verification circuit depend only on the actual symbols which VIOP

queried from the proof oracles. Roughly speaking, this can be achieved by having the prover com-
mit to each proof oracle symbol separately in each interaction round. This allows P to selectively
decommit the proof symbols which VIOP queries, and so the final verification circuit depends only
on these symbols (instead of on the entire oracle). The overhead of such a compilation will be κ
per proof symbol since each proof symbol needs to be individually committed.

A More Efficient Solution. Instead, we use a slight variant of the above, that allows us to compile
an IOP to ZKP in theFCom-hybrid model with (1+γ) overhead, for an arbitrary constant γ > 0. We
extend the framework of Nassar and Rothblum [NR22], who provide a compilation with similar
parameters, but rely on the underlying OWF in a non-black-box manner.

In more detail, before the Commit phase, P samples two keys K0,K1 for a Pseudo-Random
Function (PRF) F and commits to them via FCom. Then, in each round i of the Commit Phase,
the prover masks the proof oracle Πi and sends the masked proof to V in the clear (instead of
separately committing to the symbols of Πi, as in the naive approach). More precisely, in round i,
P sets Π0

i := (FK0(i, j))1≤j≤|Πi| and Π1
i := Πi ⊕ Π0

i , and then send Π1
i ⊕ R1

i to V , where the jth bit
of R1

i is set as FK1(i, j).
18

In the Prove Phase, the prover defines the circuit in the same manner as in the transformation
from IPs (Section 5.1.1), with the only exception that instead of including the entire shares of the
oracles, we only include the shares of the symbols queried by VIOP. When P has to decommit one
of the two shares, say the bth share, she additionally decommits to the PRF key Kb, and V can then
compute on his own the responses to the oracle queries by either computing Π0

i or unmasking
Π1

i ⊕R1
i (with R1

i computed from the PRF key K1), depending on whether he choses to check the
offline or online encoding, respectively.

This results in a ZKP whose overall communication complexity is CC(m)) + poly(κ) for the
Commit phase, and the communication cost of proving in ZK that the verification circuit outputs
1 for the Prove phase, where CC(m) is the communication complexity of the original IOP.

Given an IOP for a language L, let R′L,VIOP
denote the NP-relation corresponding to the

polynomial-time algorithm executed by the IOP verifier VIOP at the end of the IOP protocol.
Namely,R′L,VIOP

is the predicate that takes as an input the statement (containing the original state-

18An earlier version of this work used a slight variant of this construction, where Π0
i ,Π

1
i were a random additive

sharing of Π, and P sent to V the strings Π0
i ⊕ R0

i and Π1
i ⊕ R1

i , where the jth bit of Rb
i is set as FKb(i, j). This earlier

construction obtains a worse overhead (of roughly 2). We thank Ron Rothblum for suggesting the more efficient sharing
procedure described above. We also note that we could have used a similar sharing procedure in the other constructions
described in this work, but that would not lead to better results as the overhead in the other constructions is already
ω(1).
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ment x ∈ L, along with VIOP’s challenges in the IOP, and the oracle queries made by VIOP), and the
witness (consisting of the oracle responses to these queries). We obtain the following theorem.

Theorem 5.4 (Compiling IOPs to ZKPs). Let ⟨PIOP,VIOP⟩ be a public-coin q-query IOP system for a
language L with εIOP soundness error, and let C be the verification circuit of the relation R′L,VIOP

. Let f̂
be an RE scheme with δ correctness and ε privacy for the class C̃′ (C) of circuits (see Notation 3). The
ZKP described in Figure 12, when applied to ⟨PIOP,VIOP⟩ (as described above), gives a (1− δ/3)-complete,
(εIOP + 2/3 + δ/3)-sound ZKP for L, with ε simulation error, in the FCom-hybrid model.

Moreover, assume that:

• Offline and online encoding complexities are ℓoff (κ) and ℓon (κ, t), respectively (where t denotes the
length of the input in the online phase),

• And the executions of f̂off and f̂on consume a total of ℓr (κ) random bits,

Then P commits and decommits to at most poly(κ) +O(ℓr(κ) + ℓoff(κ) + ℓon(κ,m+ q)) bits, and P and
V exchange at most poly(κ) + CC(m) + ℓr(κ) bits, where CC(m) denotes the communication complexity
of ⟨PIOP,VIOP⟩ on inputs of length m.

Proof Sketch: Completeness and soundness follow similar to the proof of Theorem 5.1. Zero-
knowledge also follows similarly to Theorem 5.1, except that we need to account for the different
secret sharing used to share the oracle messages. Specifically, while in the IP setting each of Π0

i ,Π
1
i

on its own was uniformly random (and, in particular, information-theoretically independent of Πi), in
the IOP setting each Πb

i is only computationally independent of Πi. That is, on its own, each Πb
i is

computationally indistinguishable from a uniformly random string. Therefore, ZK follows from
a standard hybrid argument in which, for j = 1 or j = 2 (i.e., if the verifier chooses to check the
offline or online encoding, respectively), we first replace Πj−1

i with a uniformly random string
(using the security of the PRF), then apply the argument from the proof of Theorem 5.1 to the
resultant hybrid distribution.

As for the communication complexity, it consists of both committed/decommited messages,
as well as direct messages. Regarding committed messages, P commits to the length-poly(κ) PRF
keys, to ℓr(κ) bits (to establish randomness for the prove phase), and to ℓoff(κ) and ℓon(m+ q) bits
during the prove phase, where m is the length of the instance and q is the number of queries made
by the verifier. As for direct communication, P,V exchange poly(κ) bits to commit P to the PRF
keys, as well as CC(m) bits during the Commit phase (to commit to the shares Π1

i ), and ℓr(κ)-bits
(for randomness generation) during the Prove phase.

We obtain our next corollary by applying our compiler to the succinct IOP of [RR20]. First,
we present the result of [RR20] on succinct IOPs for bounded-space NP relations, as presented
in [NR22] (adapted to be consistent with our notations).

Theorem 5.5 (Corollary 5.6 of [NR22], restated – Succinct IOPs for Bounded-Space Relations).
There exists a fixed constant ζ > 0 such that the following holds. Let L ∈ NP with a corresponding
relation RL in which the instances have length m and witnesses have length n such that n ≤ m and
RL can be decided in poly(m) time and mζ-space. Then for any constant γ ∈ (0, 1) and any function
ε = ε(k) ∈ (0, 1) there exists a constant β′ such that for any β ∈ (0, β′) there exists an IOP for L with
communication complexity (1+γ) ·n+O(log(1/ε)) ·γ ·mβ , query complexity O(log(1/ε)) and soundness
error ε. In addition, the size of the verification circuit of the relation R′L,VIOP

is mβ and the prover runs in
poly(m) time.
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Applying our compiler to the succinct IOP from Theorem 5.5 we obtain the following corollary.

Corollary 5.6 (Succinct ZKPs for Bounded-Space NP). Assume OWFs exist, and let κ be a security
parameter. Then there exists a fixed constant ζ > 0 such that the following holds. Let R be an NP relation
with length-m instances and length-n witnesses such that n ≤ m, decidable in poly(m) time and mζ space.
Then for any constant γ ∈ (0, 1) there exists a constant β′ such that for any β ∈ (0, β′) there exists a
public-coin 1/2-sound ZKP for R with (1 + γ) · n +mβ · poly(κ) communication complexity. Moreover,
the ZKP uses the underlying OWF as a black box. Furthermore, the verifier runs in time poly(m) and the
prover runs in poly(m) time.

Proof Sketch. The proof follows almost directly by plugging the IOPs of Theorem 5.5, with
a constant ε, into Theorem 5.4, so we only analyze the communication complexity. Using an
RE scheme based on garbling circuits, we have ℓr (κ) = poly (κ), ℓoff (κ) = poly (κ) · |f |, and
ℓon (κ, t) = t · poly (κ), where |f | is the size of the circuit computing f . Moreover, since f com-
putes the verification circuit ofR′L,VIOP

, whose size (and in particular, input size) is mβ , the offline-
and online-encodings have length mβ · poly (κ). Moreover, the communication complexity of
the IOP is (1 + γ)n + O(mβ). Therefore, the overall communication complexity of the ZKP is
(1 + γ)n+mβ · poly(κ) (see also Remark 2.1).

ZKPs for NC1, Black-Box from OWFs. Finally, as noted in Section 1.3, the protocols of [GKR15,
GR20] provide short proofs for (polynomial-time) uniform NC1. More formally, we have the fol-
lowing corollary.

Corollary 5.7 (Restatement of Corollary 1.3). Assume that OWFs exist. Then any NP-relation in
(polynomial-time uniform) NC1 has a constant-round ZKP with 1/2 soundness error and n · poly (κ) com-
munication complexity, where n denotes the witness length, and κ is the security parameter. Moreover, the
ZKP uses the OWF as a black box.

We prove Corollary 5.7 by applying (a slight variant of) our compiler of Theorem 5.4 to the
perfectly-correct RE variant of [Yao86] and to the IPs of [GKR15, GR20]. We therefore first recall
these works.

Goldwasser et al. [GKR15] constructed the first (doubly efficient) interactive proofs for
bounded-depth computations. The same work also showed how to compile the same interac-
tive proof into a zero-knowledge proof for languages in NP whose relation can be computed via a
bounded-depth circuit. We recall this theorem next:

Theorem 5.8 (Theorem 5.1 in [GKR15]). Assume OWFs exist, and let κ(m) ≥ log(m) be a security
parameter. Let L be a polynomial-time uniform language in NP, whose relation R can be computed on
inputs of length m with witnesses of length n = n(m) by Boolean circuits of size poly(m) and depth d(m).
Then L has a zero-knowledge proof (making non-black-box use of the OWF) in which:

1. The prover runs in time poly(m) (given a witness), and the verifier runs in time poly(m) and space
O(log(m)).

2. The protocol has perfect completeness and soundness 1/2.

3. The protocol is public-coin, has O(d(m)) rounds, and communication complexity n ·
poly(κ(m), d(m)).
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When applied to NC1-computations, the communication complexity is n · poly(κ). Their con-
struction relied on the transformation of Ben Or et al. [BGG+88], and resulted in a protocol that
relies on the underlying OWF in a non-black-box way. At a high-level, we achieve a protocol with
same (asymptotic) efficiency by relying on our RE-based IP transformation to ZKP.

Proof of Corollary 5.7 (Sketch). We apply (a slight variant of) the compiler of Theorem 5.4 to
the perfectly-correct RE variant of [Yao86], and to the IPs obtained as part of the ZKP construction
of [GKR15, GR20] (stated in Theorem 5.8 above). We therefore first explain how the ZKP protocol
of [GKR15] works.

In the ZKPs of Theorem 5.8, the prover and verifier on inputs (x,w) and x, respectively,
run the interactive proof for bounded-depth computations of [GKR15], where the prover in each
step of the protocol commits to her message (instead of sending it in the clear), and the verifier
supplies random coins in each round. Let the transcript be (r1, c1 = Commit(m1), . . . , rℓ, cℓ =
Commit(mℓ)), where ℓ = O(d). Next, the prover and verifier perform some local com-
putation to compute O(d) values α1, . . . , αO(d).19 The prover’s goal is now to convince
the verifier that (r1, c1, . . . , rℓ, cℓ, α1, . . . , αO(d)) ∈ L′, where L′ ∈ NP consists of instances
(r1, c1, . . . , rℓ, cℓ, α1, . . . , αO(d)) such that: (1) there exist m1, . . . ,md that are valid decommitments
to c1, . . . , cℓ; and (2) (r1,m1, . . . , rℓ,mℓ, α1, . . . , αO(d)) satisfies a predicate that depends on the ver-
ification predicate of the underlying interactive proof for bounded depth computations.20 For our
purposes it suffices to know that the predicate is of size n·poly(κ, d) (see [GKR15] for more details).

We can apply our compiler of Theorem 5.4 to the IP described above and to the perfectly-
correct RE variant of [Yao86], to obtain constant soundness error (we reduce it to 1/2 by a constant
number of sequential repetitions of the basic ZKP; this does not affect the asymptotic complexity).
More specifically, since (similar to [GKR15]) we need to accommodate the local computations
performed by the prover and verifier at the end of the protocol (namely, the values α1, . . . , αO(d)),
we need to use a slight variant of the compiler in which α1, . . . , αO(d) are hardcoded into the
function f used in the Prove Phase of the protocol.

The offline and online complexity of the RE is bounded by n · poly(κ, d). The direct communi-
cation between the prover and verifier includes the interaction during the IP (this communication
is n · poly(κ, d)), so the overall communication is n · poly(κ, d). This yields an O(d)-round protocol
with the same efficiency as [GKR15] that uses the underlying OWF as a black-box (see also para-
graph below on non-black-box alternatives). If we instead rely on the constant-round protocol
of [GR20, Thm. 4], we can achieve the same result with O(1) rounds, since the protocol of [GR20]
follows the same template as that of [GKR15]. This will result in a constant-round ZKP for NC1

whose communication is bounded by n · poly(κ), and uses the underlying OWF as a black-box.

A Non-Black-Box Alternative. As noted above, the protocols of [GKR15, GR20] (specifi-
cally, their variant described in the proof of Corollary 5.7 above) give ZKPs as in Theorem 5.8
(for [GR20], the ZKP is constant round), i.e., with the same efficiency properties as the ZKPs of
Corollary 5.7. Importantly, those ZKPs use the underlying OWF in a non black-box way (whereas
the ZKPs of Corollary 5.7 are black-box). Specifically, applying the Ben-Or et al. [BGG+88] trans-
formation to [GR20] (i.e., proving that had the prover opened the commitments, the IP verifier

19In slightly more detail, they compute values related to low-degree extensions of the input statement x and wiring
predicates of the underlying relation.

20Jumping ahead, [GKR15] complete the protocol using a standard ZKP a-la [BGG+88], resulting in a non-black-box
protocol. See paragraph below on non-black-box alternatives for more details.
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would have accepted) gives a ZKP for (polynomial-time) uniform NC1 with communication com-
plexity proportional to n · poly(κ) where the underlying OWF is used in a non-black-box manner.

Proof of Corollary 5.3 (Sketch). The proof of this corollary follows essentially the same
approach as the proof of Corollary 5.7 above, the only difference is that when the NP rela-
tion can be generated by a logspace-uniform circuit, the verifier’s runtime can be reduced to
m · poly(n(m), κ(m), d(m)). In slight more detail, the reason that the verification is not succinct
in Corollary 5.7 is that the verifier needs to compute α1, . . . , αO(d) on his own, which can require
time proportional to the size of the circuit. For logspace-uniform circuits, [GKR15] show that the
verifier does not have to compute the values α1, . . . , αO(d) on his own. The prover can instead
provide these values and give a short proof that they are correct.21
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