
Fully Automated Differential-Linear Attacks
against ARX Ciphers

Emanuele Bellini1 , David Gerault1 , Juan Grados1 , Rusydi H. Makarim1 ,
and Thomas Peyrin2

1 Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE
{emanuele.bellini,david.gerault,juan.grados,rusydi.makarim}@tii.ae

2 Nanyang Technological University, Singapore
thomas.peyrin@ntu.edu.sg

Abstract. In this paper, we present a fully automated tool for differential-
linear attacks using Mixed-Integer Linear Programming (MILP) and
Mixed-Integer Quadratic Constraint Programming (MIQCP) techniques,
which is, to the best of our knowledge, the very first attempt to fully au-
tomate such attacks. We use this tool to improve the correlations of the
best 9 and 10-round differential-linear distinguishers on Speck32/64, and
reach 11 rounds for the first time. Furthermore, we improve the latest 14-
round key-recovery attack against Speck32/64, using differential-linear
distinguishers obtained with our MILP/MIQCP tool. The techniques we
present are generic and can be applied to other ARX ciphers as well.
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1 Introduction

In differential cryptanalysis, which was originally proposed in [9], the attacker
looks for a fixed input difference ∆in = P ⊕ P ′ between two plaintexts P and
P ′ that propagates with a high probability through the target cipher to a fixed
output difference ∆out = C ⊕ C ′ between the two corresponding ciphertexts

C and C ′. This so-called differential is denoted ∆in
p→ ∆out, where p is the

probability Pr[C⊕C ′ = ∆out|P ⊕P ′ = ∆in], and can be used for distinguishing
an n-bit block cipher from a random permutation when p � 21−n. In linear
cryptanalysis, which was originally proposed in [29], the attacker studies the bias
of the approximation between the parity of some plaintext and ciphertext bits,
selected via a plaintext input mask Γin and a ciphertext output mask Γout. For
a given plaintext/ciphertext pair (P,C) the bias q of this linear approximation

Γin
q→ Γout can be computed with Pr[P · Γin = C · Γout] = 1/2 + q, where

x ·y =
⊕n−1

i=0 x[i]y[i] for x, y ∈ Fn2 . It can also be used for distinguishing an n-bit
block cipher from a random permutation when |q| � 0.

Many variations of these two cryptanalysis techniques have been explored and
even combinations of them. In Differential-Linear (DL) cryptanalysis, originally
introduced in [22], an attacker seeks for a difference-mask pair (∆in, Γout) and
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studies the bias of the approximation between the parity of ciphertext difference
bits selected via the mask Γout, where the ciphertexts pairs are generated from
plaintexts pairs with input difference ∆in. The bias q′ of a DL approximation
can be computed as Pr[Γout · (C ⊕ C ′) = 0|P ⊕ P ′ = ∆in] = 1/2 + q′. Similarly
to linear cryptanalysis, if |q′| � 0, we can distinguish the targeted cipher from
a random permutation.

In this DL scenario, the cipher E is usually decomposed into two sub-ciphers

E = E2 ◦E1, with a differential ∆in
p→ ∆out for E1 and a linear approximation

Γin
q→ Γout for E2. In order to evaluate the bias q′, it is usually assumed that

E1 and E2 are independent. However, as pointed out in [8], this might not hold
true in practice and experiments are required to get a more precise estimation.
In particular, a common and handy strategy is to divide the cipher into three
parts instead of two E = E2 ◦Em ◦E1 and evaluate the correlation of the middle
layer Em experimentally [4].

As of today, the search for DL distinguishers with high correlation is mostly
done manually. Cryptanalysts spent efforts and resources finding and checking
DL correlations experimentally by using GPUs or a large number of CPUs, see
for example the DL attacks presented in [15]. In that work, the authors used
GPUs to check the complexities of their attacks with 248 samples. Also, a lot
of the community’s efforts were spent on connecting the three parts of the DL
distinguishers. For example, in [39], the authors explain that they exhausted all
middle parts with one active bit in the output of the differential part to attack
Speck32/64 using DL cryptanalysis.

In this paper, we explore how to fully automate the search for DL distinguish-
ers against Addition-Rotation-XOR (ARX) ciphers (such as Speck32/64) using
Mixed-Integer Linear Programming (MILP) and Mixed-Integer Quadratically
Constrained Programming (MIQCP) techniques, assuming that the three parts
in which the distinguisher can be divided (as described above) are independent.

1.1 Related works

There are many different techniques and automated tools in the literature for
finding differential, linear and DL distinguishers on ARX ciphers.

Finding differential or linear trails on ARX ciphers. A tool to find dif-
ferential characteristic on ARX ciphers was proposed by Biryukov et al. in [11].
This paper proposes a threshold search algorithm with the notion of partial dif-
ference distribution table (pDDT): it consists in only collecting the differences
from a DDT whose probabilities are greater than a certain threshold. In [12],
Biryukov et al. adapted Matsui’s algorithm and proposed another automatic
search algorithm to find optimal differential and linear trails on ARX ciphers.

In [21], Kai Fu et al. presented both differential and linear trails obtained
by modeling ARX ciphers with MILP techniques and they applied their tool
to the Speck family of ciphers. In parallel, Song et al. [34] used the Mouha et
al.’s framework [31] for finding differential trails on ARX ciphers by using SMT



solvers too. Using that technique and a counting procedure, they were able to
find paths for Speck with better probabilities than those presented in [21].

In [1], the authors also used MILP to search for differential trails, with dif-
ferential distinguishers against ChaCha as applications. In [20], Dwivedi et al.,
presented a technique inspired by the nested Monte-Carlo search algorithm to
find differential trails on ARX ciphers, in particular the LEA cipher.

In [27] Liu et al., presented a new technique to search for both differential
and linear trails on ARX ciphers: the idea is to split the modular additions into
small modular additions, where each of these small modular additions outputs
a carry bit. Each small component can then be treated as an S-Box. Splitting
the modular additions helps to find all the possible differential and linear trails
of larger modular additions. This allowed them to find new optimal differential
trails for Speck and HIGHT ciphers.

In [10], Biryukov et al. presented a new differential attack technique, called
meet-in-the-filter, to attack different versions of Speck. In a normal differential
attack, generally, the attacker tries to find a distinguisher with a high probability
in as many rounds as possible. However, the meet-in-the-filter technique involves
using shorter differential characteristics, which results in a more complex anal-
ysis phase of the bottom rounds. A precomputation step stores the most likely
output differences after additional rounds of the shortened differential character-
istics, and the output difference of the observed ciphertext pairs is propagated
a few rounds backwards, to check whether it forms a match with some of the
precomputed intermediate differences. Using this technique, they mount the best
key-recovery attacks in the literature for Speck.

Differential-linear distinguishers on ARX ciphers. The best distinguish-
ers and key recovery attacks against ChaCha and Salsa stream ciphers are DL
attacks. In [14], Choudhuri et al. present differential-linear distinguishers against
ChaCha and Salsa. In that work, they used the Piling-Up Lemma to find DL
distinguishers with high correlations and could mount a 6-round key-recovery
attack. In [23], Leurent improves the data complexity of the DL attack against
Chaskey by improving and using the partitioning technique presented in [7].
This technique helps to find new linear approximations for the modular addition
under certain conditions on the data used to mount the attack. These conditions
allow the creation of partitions such that some linear approximations occur with
probability one. Thus, it is possible to improve the data and time complexities
of the attacks against ARX ciphers that use these linear approximations. In
[17], Dey et al. improved these complexities by using a new Probabilistic Neu-
tral Bits (PNB) technique (originally introduced in [3] to reduce the number
of guessed key bits during a key-recovery attack). In [6], Beierle et al. improve
the complexities of these attacks against ChaCha by introducing new techniques
in the differential and linear part construction of the DL distinguishers. In [15]
Coutinho et al. present a 7-round DL distinguisher against ChaCha, by using
new linear approximations with high correlation in the linear part (found using
the Piling-Up Lemma). In [18], Dey et al. show a theoretical interpretation of



previous DL distinguishers against ChaCha and Salsa: they develop a proba-
bilistic framework focusing on the non-linear component of the ARX cipher, the
modular addition. In [26], the authors propose to replace the differential part of
the DL technique using rotational XOR differentials. A limitation of that work is
that those DL distinguishers are restricted to 1-bit output masks. This limitation
was eventually overcome in [33], where the authors construct a framework that
allows output masks with multiple active bits. They applied that framework also
(beside ChaCha) to Alzette, SipHash, and Speck. Although [18] and [33], show
theoretical interpretations for the DL distinguishers against ChaCha and Salsa,
they do not provide a tool to search for DL distinguishers automatically.

Best attacks against Speck32/64 As we mentioned before, the best key-
recovery attacks presented in the literature against Speck32/64 are those pro-
posed in [10]. Their authors showed attacks for reduced versions of Speck32/64
to 11, 12, 13, 14, and 15 rounds. In Table 1, we present a comparison between the
complexities they found and the complexities we found using our tool. Further-
more, in that table, we compare the complexities found by our tool and attacks
published before the paper [10].

To the best of our knowledge, the best distinguishers against Speck32/64 are
those presented in [33]. The authors showed distinguishers for 9 and 10 rounds.
In Table 2, we present a comparison between the complexities they found and
the complexities we found using our tool. As in Table 1, in Table 2, we also show
a comparison between the complexities found by our tool and attacks published
before the paper [33].

1.2 Our contribution

First, in order to look for DL distinguishers with high correlations, we designed
a new MILP/MIQCP model for ARX ciphers. To the best of our knowledge, this
is the first attempt to fully automate the search for DL distinguishers, helping to
avoid wasting time and resources (a drawback of previous works) and potentially
exploring a larger search space. To accomplish this, we modeled the differential
and linear parts by using MILP techniques against ARX ciphers, specifically the
ones presented in [21]. Inspired by the framework given by Coutinho et al. [16], we
have constructed a new framework to model the difference propagation between
input and output differences of a cipher. Specifically, under certain independence
assumptions, our framework models the correlation existing between a certain
input difference and each bit of its output difference. To construct this framework
we take advantage of known formulas modeling the difference propagation for
ARX components, as for example those presented for modular addition in [18].
After that, we connect the DL distinguishers parts using MILP constraints.
Finally, we designed a technique to model the objective function taking into
account the probability of the differential part, the middle part’s correlation,
and the linear part’s correlation.



Secondly, we used the earlier mentioned tool as an application to explore
DL distinguisher attacks against Speck32/64. Compared to previous DL dis-
tinguisher attacks, our attacks have better correlations and complexities. Also,
to the best of our knowledge, it is the first time a DL distinguisher reaches 11
rounds for Speck32/64.

Thirdly, we describe key-recovery attacks based on DL distinguishers and
compare them to those based on DL or linear or differential distinguishers. We
found that our DL attacks perform better than other DL attacks for Speck32/64
reduced to 13 and 14 rounds. Specifically, for 13 rounds, we improve by a factor
29 the time complexity of the best key-recovery attack based on DL distinguish-
ers. Similar behavior occurs for 14 rounds: we improve by a factor 27 the time
complexity of the best key-recovery attack based on DL distinguishers. Also, we
found that our key-recovery attack against Speck32/64 reduced to 14 rounds
has a better complexity than the best-known key-recovery attack presented in
the literature, which is an attack based on differential distinguishers. Our results
and a comparison with the state-of-the-art are given in Table 1 and in Table 2 .

Fourth, studying the previous DL attacks against Speck32/64, we noticed a
mistake in the complexities of the key-recovery attacks presented in [39]. Specif-
ically, we noticed an issue in how the authors computed their data complexities:
they forgot to multiply it by a factor representing the number of plaintexts
necessary to get the set of rights pairs satisfying the top part of the DL distin-
guishers. This oversight also affects the time complexities as they depend on the
data complexity. This issue is further confirmed by comparing with previous DL
attacks against ChaCha [6]: we notice that the steps of the technique presented in
[39] are the same as in [6], but not the complexity formulas. After correcting the
complexities, we remark that the attack for 14 rounds has now a time complexity
of 265, which is larger than a plain brute force attack.

Finally, we used CPUs to verify experimentally the correlations of our new
DL distinguishers against Speck32/64 and the complexities of our key recovery
attacks. Our MILP/MIQCP models have been implemented using MiniZinc and
solved with Gurobi. All our code is made public for the community, and it is avail-
able at https://github.com/Crypto-TII/MILP_MIQCP-differential-linear_
key-recovery_speck32.

2 Preliminaries

2.1 Notation

In this article, we will use the following notations. The addition modulo 216

(respectively, the addition in Z) of x and y will be denoted x� y (respectively,
x+y). The bitwise eXclusive-OR (XOR) operation of two words x and y of equal
size will be denoted x⊕ y. The bitwise AND operation of two words x and y of
equal size will be denoted x � y. Also, we will denote as |x| the number of bits
of x.

Xm (respectively X−m) will represent the mth 2n-bit state of Speck after m
rounds (respectively of the inverse Speck after m rounds). When discussing dif-
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Rounds Time Complexity Data Complexity Type of Attack References

13

257 225 Differential [19]

261.01 224 Differential-Linear [39]

252 224 Differential-Linear This work

250.16 231.13 Differential [10]

14

263 231 Differential [19]

262.47 230.47 Differential [35]

265 228 Differential-Linear [39]

260.99 231.75 Differential [10]

258 231 Differential-Linear This work

Table 1: Time and data complexities of our new key recovery attacks against
Speck32/64 reduced to 13 and 14 rounds, with comparison to the state-of-the-
art. The complexities of [39] have been corrected in this paper (see Section 4.1).

Rounds Practical Correlation Theoretical Correlation Complexity References

9

2−11.58 - - [39]

2−8.93 2−10.23 - [33]

2−7.3 2−11.42 213.4 This work

10

2−14.58 - - [39]

2−13.90 2−15.23 - [33]

2−12.0 2−14.12 221 This work

11 2−16.0 2−16.12 229 This work

Table 2: Comparison of the practical and theoretical correlations, as well as
the complexity of our new distinguishers, to the state-of-the-art, with a focus
on reduced Speck32/64 to 9, 10, and 11 rounds.. All distinguishers presented
in this table are DL distinguishers. Note that the complexity has been derived
from the practical correlation.

ferential attacks, the XOR-based difference observed on Xm will be denoted ∆m

and the differential starting from ∆in and ending to ∆out is denoted ∆in → ∆out.
Xm
i (respectively ∆m

i ) will stand for the ith bit of the state Xm (respectively
the state difference ∆m).

Given a set S ∈ Fn2 and a Boolean function f : Fn2 → F2, we define

Corx∈S [f(x)] :=
1

|S|
∑
x∈S

(−1)f(x).

2.2 Description of Speck

Speck and Simon are two families of lightweight block ciphers proposed by the
National Security Agency (NSA) in 2013 [5]. The members of the Speck family
are denoted as Speck 2n/mn, where 2n is the block size, and mn is the key size.
Speck is a Feistel cipher. Let (Li−1, Ri−1) be the input of the ith round, ki be



the ith round subkey, the output of the ith round (Li−1, Ri−1) is computed as
follows:

Li = F (Li−1, Ri−1)⊕ ki, Ri = (Ri−1≪ β)⊕ Li,

where F (x, y) = (x≫ α) � y, α = 7 and β = 2 if the block size is 32-bit and
α = 8 and β = 3 otherwise. The key schedule part follows a similar process
(where the round key is replaced by a constant). We refer the reader to [5] for
more details of the construction.

2.3 Continuous analysis of difference propagation

In [16] Coutinho et al., generalize cryptographic operations (such as the ARX
operations, linear layers, S-Box, etc.), allowing to express bits as probabilities
or correlations. To do this, they created continuous operators from Boolean
operators. For example, let us see how they express bits as probabilities for the
operator � by creating its continuous version. Suppose we want to compute
p3 = Pr[a � b = 1], where a and b ∈ F2 are independent random variables. If
Pr[a = 1] = p1 and Pr[b = 1] = p2, then p3 = p1p2. By using this expression, they
defined a continuous operator from �, and called it “continuous generalization of
�”. Specifically, they provide the definitions using the correlation of the random
variables instead of probabilities. More precisely, let Pr(E) be the probability of
occurrence of an event E and b ∈ F2 be a bit, then we can write Pr(b = 1) in
terms of its correlation ε as Pr(b = 1) = p = 1

2 (1 + ε).
In some papers, ε is also known as deviation, bias, or imbalance. In our

example, expressing p1, p2 and p3 as functions of their correlations, we have
p1 = 1

2 +
εp1
2 and p2 = 1

2 +
εp2
2 , where the correlations εp1 and εp2 belong to

B = {x ∈ R : − 1 ≤ x ≤ 1}. Then, they define the continuous generalization of

� as εx�Cεp2 = εp3 =
εp1 εp2+εp1+εp2−1

2 .
They generalized various cryptographic operations by assuming similar in-

dependence properties among the input variables. This enabled them to create
continuous versions of entire cryptographic algorithms. Inspired by that frame-
work, we construct continuous functions for the difference propagation of ARX
operators. Before proposing them, let us see how to construct this function for
the ARX component ⊕. Let a and b be two random and independent bits, and
let ∆a = a⊕ a′ and ∆b = b⊕ b′. If Pr(∆a = 1) =

1+εp
2 and Pr(∆b = 1) =

1+εq
2 ,

then the probability that (∆a⊕∆b)⊕(a⊕b) = 1 is
1−εpεq

2 . So, as the example of
the previous paragraph, we can express the continuous difference propagation for
⊕ in terms of their input correlations εp, εq, as −εpεq. In Definition 1, we define
more formally continuous difference propagation. From this definition, we cre-
ated propositions describing continuous difference propagations for every ARX
cipher component, and then for entire ARX ciphers. In particular, we applied
this continuous difference propagation framework to Speck32/64.

Definition 1. Let f(x1, x2, ..., xn) be a function with input variables belonging
to Fn2 , and with output in Fm2 , the continuous difference propagation of f , denoted
as fC∆(α1, α2, ..., αn), is a function that maps input variables from Bn to Bm,



and describes the correlation between an input difference for f and each bit of its
output difference. The exact form of the function fC∆(α1, α2, ..., αn) will depend
on the specific properties of the function f .

Coutinho et al. present several continuous generalizations for cryptographic
operations in [16]. As we mentioned before, in our case, these generalizations are
related to the correlation of a certain input difference propagating to a particular
bit in the output difference. Because of the linear nature of the XOR operation
and rotation operations, the formulas presented by Coutinho et al. could model
the correlation of a certain input difference propagating to a particular bit in the
output difference of these operations (values and differences are behaving iden-
tically through these functions). However, the formulas presented for modular
addition could not model the propagation of differences through such function
since it is non-linear. Instead, we use Theorem 3 and Theorem 4 presented in
[18]. These two theorems compute the probability of a certain input difference
propagating to a particular bit in the output difference for the modular addition.
In Proposition 1, Proposition 2, Proposition 3 and Proposition 4, we present the
continuous difference propagation for the XOR, majority function, rotation, and
modular addition operations, respectively.

Proposition 1 (Continuous difference propagation of XOR). Let x, y ∈
B, then the continuous difference propagation of XOR is given by x⊕C∆y = −xy.

Proof. Already shown in previous paragraphs.

Proposition 2 (Continuous difference propagation of MAJ). Let x, y
and z ∈ B, then the continuous difference propagation of the MAJ function is
given by MAJC∆(x, y, z) = 1

4 (x+ y + z + xyz).

Proof. Suppose a, b, c be three independent and randomly chosen bits. Let a′,
b′ and c′ such that Pr(a 6= a′) = p, Pr(b 6= b′) = q and Pr(c 6= c′) = r. Let
A = Pr(MAJ(a, b, c) 6= MAJ(a′, b′, c′)), then from Theorem 3 of [18], we have

A = r

(
1− (1− p) + (1− q)− (1− p)(1− q)

2

)
+ (1− r)1− (1− p)(1− q)

2
.

Replacing the probabilities with their expressions involving their respective cor-
relations x, y, z ∈ B we have Pr(A) = 1

2 + 1
8 (x+ y + z + xyz).

Proposition 3 (Continuous difference propagation of Left and Right
Rotation). Let x = (x0, · · · , xn−1) ∈ Bn and r ∈ Z such that 0 ≤ r ≤ n − 1,
then the continuous difference propagation of the rotation to the left, and to the
right, by r, respectively, is given by

(x0, · · · , xn−1)≪C∆,r = (xr, ..., xn−1, x0, ..., xr−1)

(x0, · · · , xn−1)≫C∆,r = (xn−r, ..., xn−1, x0, ..., xn−1−r)



Proposition 4 (Continuous difference propagation of the Modular Ad-
dition ). Let x and y and z ∈ Bn, then the continuous difference propagation of
the addition modulo 2n function is given by x �C∆ y = (z0, · · · , zn−1), where
zi is given recursively as follow

c0 = −1.0,

zi = xi ⊕C∆ yi ⊕C∆ ci,
ci+1 = MAJC∆(xi, yi, ci).

(1)

Proof. Follows from Proposition 1, Proposition 2 and Theorem 4 of [18].

2.4 Differential-linear attack

Differential-linear cryptanalysis was introduced by Langford and Hellman in [22]
(we will refer to this version as the classical DL attack, see left side of Figure 1).
Similarly to the boomerang attack [38], the strategy of this attack consists into
dividing a cipher E into two sub ciphers E1 and E2, such that E = E2◦E1. Then,
one looks for a differential distinguisher and a linear distinguisher for the cipher
E1 and E2 respectively. In particular, assume that the differential ∆in → ∆m

holds with probability

Pr
x∈Fn

2

[E1(x)⊕ E1(x⊕∆in) = ∆m] = p.

Moreover, let a certain linear trail Γm
E2−−→ Γout to be satisfied with correlation

Corx∈Fn
2

[〈Γm, x〉 ⊕ 〈Γout, E2(x)〉] = q.

By assuming that E1(x) and E2(x) are independent random variables, the DL
distinguisher exploits the property that

Corx∈Fn
2

[〈Γout, E(x)〉 ⊕ 〈Γout, E(x⊕∆in)〉] = pq2. (2)

Thus, by preparing εp−2q−4 pairs of chosen plaintexts (x, x̃) for x̃ = x⊕∆in,
where ε ∈ N is a small constant, one can distinguish the cipher from a Pseudo-
Random Permutation (PRP).

The aforementioned assumption sometimes overestimates, or underestimates
Equation 2. Therefore, to mitigate this issue, a common strategy (see right-
hand side of Figure 1) is to divide the cipher into three parts instead of two
E(x) = E2 ◦Em ◦E1, effectively adding a middle layer Em(x). For more details
on this strategy, see [4]. This middle part is generally evaluated experimentally.
In particular let

r = CorS [〈Γm, Em(x)〉 ⊕ 〈Γm, Em(x⊕∆m)〉] ,

where S denotes the set of samples over which the correlation is computed. Then,
the total correlation can be estimated as prq2. As in the classic DL attack,



E1 E1

∆in

E2 E2

∆m

p

Γm Γm

Γout Γout

q q

Em

E1

Em

E1

∆m

E2 E2

r

Γm Γm

Γout Γout

q q

∆in

p

Fig. 1: On the left-hand side, the structure of a classical DL distinguisher. In
this distinguisher it is assumed that E1 and E2 are independent. In the DL
distinguisher of the right side, the middle part helps to take into account the de-
pendency assumption made between E1 and E2 in the classical DL distinguisher.

by preparing εp−2r−2q−4 pairs of chosen plaintexts (x, x̃) for x̃ = x ⊕ ∆in,
where ε ∈ N is a small constant, one can distinguish the cipher from a Pseudo-
Random Permutation (PRP). We will also denote this improved DL distinguisher
as ∆in → Γout.

In [6], there is a technique that helps to reduce the DL attack complexi-
ties against ChaCha. This technique was also applied to improve the DL attack
complexities against Speck32/64 in [39]. To better understand this technique,
we need to recall the explanation presented in [6] about independent bits in the
differential part. Let us assume a cipher F can be parallelized by using two other
sub-ciphers, F0 : Fm2 → Fm2 and F1 : Fn2 → Fn2 (i.e. F = F0||F1). Also, suppose
there is a differential trail ∆in → ∆temp on F1 that occurs with probability
p. That is, Pr[F1(∆in ⊕ x) = ∆temp] = p where x ∈ Fn2 . Suppose there exists
x′ ∈ Fn2 such that F1(∆in ⊕ x′) = ∆temp. Then, due F0 and F1 independence,
we can get 2m pairs satisfying that differential trail. In fact, those pairs have
the shape (∗, x′) ∈ Fm+n

2 , where ∗ represent any vector belonging to Fm2 . So, the
number of independent bits, in this case, is m. Since the probability of finding x′

is p then the number of pairs we need to distinguish a cipher E = E2 ◦Em ◦E1

from a PRP using a distinguisher D with b independent bits in its differential
part (i.e. E1) is pr−2q−4 if 2b > r−2q−4. In the literature, the pairs (x′, ∆in⊕x′)
satisfying F1(∆in ⊕ x′) = ∆temp are known as right pairs.

The authors of [6] extended the above technique, permitting Probabilistic
Independent Bits (PIBs). Specifically, they relax the independence requirement,



allowing e bits to be independent with a probability of less than a given threshold
probability p′. Thus, we will choose a right pair with a probability of pp′. Speck
does not have any explicitly independent bits as ChaCha (in its first round), so in
[39] the authors applied this extended technique to mount DL distinguishers and
to mount key-recovery attacks. We formalize this extended technique explanation
in Algorithm 1.

Algorithm 1: Computing the right pairs

Data: A distinguisher ∆in → ∆temp → Γout of a cipher E (with key size
k), where ∆temp → Γout has a correlation of rq2. l PIBs on
∆in → ∆temp. The threshold p′ for the l PIBs.

Result: A set of plaintexts satisfying the distinguisher
1 for i← 0 to O( 1

pp′ ) do

2 x
$← Fn2 ;

3 x′ = x⊕∆in;

4 K
$← Fk2 ;

5 Y = {};
6 for j ← 0 to O(r−2q−4) do
7 Pick a bit set bs from all combinations of the l PIBs;
8 y = flip(bs, x);
9 y′ = y ⊕∆in;

10 Y = Y ∪ (y, y′);

11 if Cor(t,t′)∈Y [〈Γout, EK(t)〉 ⊕ 〈Γout, EK(t′)〉] ≈ rq2 then
12 return Y ;

2.5 MILP and MIQCP

Let k, ` be positive integers and n = k+ `. An instance of Mixed-Integer Linear
Program (MILP) is the problem of determining

min
x∈Zk×R`

x=(x1,...,xn)

{
n∑
i=1

cixi

∣∣∣∣A · xT ≤ b
}

where b ∈ Rm, c ∈ Rn and A is an m×n matrix, i.e. it is a problem of minimizing
the linear equation

∑n
i=1 cixi subject to the linear equality constraints defined by

A ·xT ≤ b. A generalization of MILP by considering the quadratic constraints is
termed Mixed-Integer Quadratic Constraint Program (MIQCP). MIQCP is not
only a generalization on the set of inequality constraints but also the objective
function, i.e. it is defined regardless of the degree of the objective function.

The use of MILP in the cryptanalysis of symmetric-key primitives was first
introduced by Mouha, Wang, Gu, and Preneel in 2011 [32]. Since then, MILP
has become a standard automated tool to search for differential and linear trails
on symmetric-key primitives [21,37,13,24,28]. So far, the use MILP in the crypt-
analysis tend to be dedicated towards a single type of attack such as differential
cryptanalysis, linear cryptanalysis, or division property.



3 Finding differential-linear distinguishers with
MILP/MIQCP solvers

We use MILP/MIQCP techniques to model the entire DL distinguishers. To
model the differential and linear parts, we use the techniques presented in [21].
Since these MILP techniques are well known, we detailed them in Appendix B.
Recall that, in the middle part, we are working with correlations, that is with
values between -1.0 and 1.0. To model the middle part, our approach consists in
modeling the propositions presented in Section 2.3, i.e. the continuous difference
propagation framework, using the MILP/MIQCP syntax over the real domain
B.

In what follows, we write a× b to represent the multiplication of a and b in
the real domain.

Constraints of MAJ. For every modular addition operation with parameters
a ∈ Bn, b ∈ Bn, c ∈ Bn, we have the following n− 1 recursive constraints.

cj =
1

4
(aj−1 + bj−1 + cj−1 + aj−1 × bj−1 × cj−1), (3)

where c0 = −1.0 and 1 ≤ j ≤ n− 1.

Constraints of Modular Addition Operation. For every modular addition oper-
ation with inputs a ∈ Bn and b ∈ Bn, c ∈ Bn and output d ∈ Bn, we have n
constraints.

dj = aj × bj × cj , (4)

where c is a vector representing the carry variables and it is computed using
MAJ constraints. Also 0 ≤ j ≤ n− 1.

Constraints of XOR Operation. For every XOR operation with input a ∈ Bn
and b ∈ Bn and output c ∈ Bn, we have n constraints.

cj = −aj × bj , (5)

for 0 ≤ j ≤ n− 1.

Constraints for R Rounds. For all rounds, we need 2n(R+1) variables belonging
to B to represent the states of Speck. We do not use any intermediate variable
for the XOR and rotation operations, while for the modular addition operation,
we only need (n− 1)R to represent the carry variables. Summing up, we have a
total of 3nR−R− 2n variables.

The count of the number of equations is as follows: nR expressions to model
the XOR operations. nR + (n − 1)R equalities to model the modular addition
operations. Summing up, we have a total of 3nR − R constraints to model the
continuous difference propagation framework for ARX ciphers.



As the reader might have noticed, the constraints presented in this section
have terms with degree greater than two. One can convert terms with degree
greater than two into quadratic terms by introducing new constraints and new
variables. For example, the constraint x×y×z = 1.0 over the real domain could
be reformulated by introducing a new variable t in the following way: x× y = t
and t×z = 1.0. Actually, this procedure is automatically performed by MiniZinc.

In order to clarify how to use the constraints of continuous difference propa-
gation, let’s take a look at an example of how a specific input difference results
in a difference propagation probability of

1+εj
2 at position j, for 0 ≤ j ≤ 15,

after one round of the Speck32/64 cipher.
Consider the input difference ID = 0001000000000000, 0101000000000000,

expressed in binary, for the Speck32/64 cipher. As previously mentioned, a value
of 1 at a specific bit indicates that there is a difference with a probability of 1,
resulting in a correlation of 1.0. In contrast, a value of 0 means that there is no
difference at that bit with a probability of 1, but in this case, the correlation is
−1.0. Therefore, the continuous difference propagation version of these bits can
be calculated using these correlation values.

a = (−1,−1,−1,+1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1) ∈ Bn,
b = (−1,+1,−1,+1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1) ∈ Bn,

where a and b represent the left and right side of the input respectively, after
translating bits to correlation values. By rotating a seven positions to the right,
and b two positions to the left, we get

a′ = (−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,+1,−1,−1,−1,−1,−1) ∈ Bn

b′ = (−1,+1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,+1) ∈ Bn.

Let’s suppose that a′j , bj , and cj are random independent variables, where c
represents the carry vector. By utilizing the MAJ constraints (Equation 3) for
a′, b, and c, we have

c0 = −1.0,

c1 =
1

4
(a′0 + b0 + c0 + a′0b0c0) =

1

4
(−1− 1− 1 + (−1)(−1)(−1)) =

−4

4
,

and so on. By continuing this calculation for all values of the carry vector, we
can obtain the final result of

c = (0.0,−0.5, 0.0,−0.984375,−0.96875,−0.9375,−0.875,−0.75,

−0.5, 0.0,−1.0,−1.0,−1.0,−1.0,−1.0,−1.0) .

Assuming that a′j , bj , and cj are independent random variables, by applying
the modular addition constraints (Equation 4) to a′, b, and c, we can calculate
the left side values after one round of Speck32/64. Specifically, we have d0 =
−1×−1×−1, d1 = −1×−1×−1, and so on, resulting in the following:



d = (0.0, 0.5, 0.0, 0.984375,−0.96875,−0.9375,−0.875,−0.75,−0.5, 0.0,

1.0,−1.0,−1.0,−1.0,−1.0,−1.0) .

Next, assuming that d and b′ are independent random variables, by applying the
XOR constraints (Equation 5) to d and b′, we can calculate the right side values
after one round of Speck32/64, which results in the following:

(−0.0, 0.5,−0.0,−0.984375, 0.96875, 0.9375, 0.875, 0.75, 0.5,

−0.0,−1.0, 1.0, 1.0, 1.0, 1.0,−1.0) .

Assuming independence as stated in Section 2.3, we can interpret the value d12
as the correlation of the input difference ID propagating to the 14th position
of the output difference d, with a correlation of 0.984375 (or a probability of
(1+0.984375)

2 ). Additionally, using the Piling-Up Lemma, we can create a DL
distinguisher by choosing d7 and d12. Under the same independence assumptions,
we can say that the input difference ID propagates to d7⊕d12 with a correlation
of 0.984375×−0.5 after one round of the Speck32/64 encryption algorithm.

Objective Function of the Differential-Linear Model. Using the framework pre-
sented in Section 2.3, we can compute the correlation of every bit on the output
for a given input difference. Recall that one can estimate the correlation of a DL
distinguisher by applying the Piling-Up lemma. In fact, assuming independence
between the output bits and knowing that the output mask is linear, we can
estimate the correlation by multiplying the correlation of the active bits in the
output mask.

In order to have a “good” distinguisher, we need a DL correlation different
from zero and as high as possible in absolute value. In other words, given the
correlation r, we need to maximize the function F (r) = |r|, where 0 < |r| ≤ 1.
To do that, it is more convenient to express r as a power of two. Since the goal
is to maximize the correlation, we need to minimize − log2(|r|). However, this
can be difficult as many optimization solvers, such as Gurobi, do not support
logarithmic functions in their objective functions. So, let |r| = 2− log2(|r|), a
crucial step is to find a linear function g to approximate − log2(|r|) such that
g(r) ≤ − log2(|r|) (i.e. a lower bound). Indeed, let us show this with the example
presented at the beginning of this section. That is, that one starting in ID and
with a output difference of d ∈ Fn2 in the left side. In Figure 2 and Figure 3,
we show two approximations for − log2(|r|). Specifically, we use g1(r) = 1 − |r|
and g2(r) = 2− 2.2|r|. The approximation of the DL correlation found by using
g1 on the output mask d7 ⊕ d12 was 1 − |0.984375 × 0.5| = 2−0.977, while the
approximation of the DL correlation found by using g2 was 2 − 2.2|0.984375 ×
0.5| = 2−0.125. That is, in this case, g2 approximates − log2(|0.984375 × 0.5|)
better than g1. So, finding a good approximation for − log2(|r|) is an important
step in our DL model. In the next paragraph, we study how to approximate the
log2 function using the first-order derivative.

Approximating f(r) = − log2(|r|) by using the first order derivative. It is com-
mon to approximate non-linear functions using piece-wise linear functions to
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Fig. 2: g1(r) = 1− |r|.
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Fig. 3: g2(r) = 2− 2.2|r|.

have functions suitable for MILP techniques [25]. So, below we explain a simple
method to approximate − log2(|r|) by using piece-wise linear functions. Specifi-
cally, to approximate − log2(|r|), we follow the next steps:

– We randomly select M points ((r0, f(r0)), . . . , (rM1, f(rM−1))) from f . After
that, we compute the first-order derivative of f in each of the M points.

– Let g′i, for 0 ≤ i ≤ M − 1 be the function corresponding to the result of
that first-order derivative. To approximate − log2(|r|) using piece-wise lin-
ear functions, we find the intersection points between the linear functions g′i.
These intersection points serve as bounds for the piece-wise linear function.
Specifically, these intersection points are the common bounds of two con-
secutive linear functions. So, we have a piece-wise linear function composed
of M linear functions. For 0 ≤ i ≤ (M − 1), we call those piece-wise linear
functions gi.

Let g be the piece-wise linear function created by using gi. For measuring the
accuracy of the approximation found by this method, we simply compute the
difference between the areas under both functions − log2(|r|) and g. In Equation
6 we show an example of this approximation by using four random points with
an error of 0.54. Also, in Figure 4, we depict this approximation.

g(x) =


−19931.57x+ 29.9, 0 ≤ x ≤ 0.001

−1.87x+ 1.82, 0.001 ≤ x ≤ 0.77

−1.87x+ 1.82, 0.77 ≤ x ≤ 0.87

−1.44x+ 1.44, 0.87 ≤ x ≤ 0.998

(6)
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Fig. 4: Approximating − log2(|r|) by using piecewise linear functions.

Experimentally, we try several piece-wise linear approximations for− log2(|r|)
by varying the number of random points. As expected, if we approximate− log2(|r|)
by using too many random points, our model’s time is affected, and if we use
only a few points, our model’s accuracy is affected. We found that 8 random
points give us a balance between time performance and accuracy. In Equation 7,
we show the piece-wise linear approximation for − log2(|r|) used in the objective
function and that gives us a good accuracy among the functions we try with
M = 8.

g(x) =



−19931.570x+ 29.897, 0 ≤ x ≤ 0.001

−584.962x+ 10.135, 0.001 ≤ x ≤ 0.004

−192.645x+ 8.506, 0.004 ≤ x ≤ 0.014

−50.626x+ 6.575, 0.014 ≤ x ≤ 0.053

−11.87x+ 4.483, 0.053 ≤ x ≤ 0.142

−8.613x+ 4.020, 0.142 ≤ x ≤ 0.246

−3.761x+ 2.825, 0.246 ≤ x ≤ 0.595

−1.444x+ 1.444, 0.595 ≤ x ≤ 0.998

(7)

Modeling the full differential-linear attack against ARX ciphers. To model the
three parts, we need to recall that we can have three parts in the DL distinguish-
ers with improved structure, namely the differential part (top part), the DL part
(middle part), and the linear part (bottom part). We show how to connect these



three parts in the MILP/MIQCP model setting. Also, since we now have three
models, here we explain the new objective function of the model, considering
these three parts. As we mentioned before, for the top part, we use the differ-
ential MILP model presented in Section B.1, and for the linear part, we use the
linear MILP model presented in Section B.2. Both models return a characteristic
(either differential or linear) and its probability for a specified number of rounds.

To connect the top part with the middle part, we need to translate the
differential output bits into numbers belonging to B. As we see in the example
at the beginning of this section, we can translate position values with active
differences to 1.0 and positions with non-active differences to−1.0. Also, recalling
that the value 1 in a specific position in the output of the differential part means
that with certainty, we know there is an active bit, so the probability is 1.0. 0
means that with certainty, we know there is no active bit in that position, so
the probability is 0.0. In other words, the correlation in that certain position
with output bit 1 is 1.0, and the correlation in that certain position with output
bit 0 is -1.0. Considering the output differences of the top part as tj ∈ F2,
for 0 ≤ j ≤ n − 1, where n is the size of the output difference. In similar
way, considering the input difference of the middle part as minput

j ∈ B, for

0 ≤ j ≤ n − 1. We create the constraints minput
j = 1.0 if tj = 0, otherwise

minput
j = −1.0. To connect the middle part with the linear part, we need to

apply the input mask of the linear part to the output of the middle part. Suppose
lj ∈ F2, for 0 ≤ j ≤ n − 1, is the input mask of the linear part. Also, suppose
moutput
j ∈ B, for 0 ≤ j ≤ n − 1 is the output of the middle part, since the

correlation of the middle part r =
∏n−1
i=0 lj ×m

output
j can not be 0, we create the

constraint r > 0.0. Additionally, we added constraints to approximate − log2(|r|)
through the function g(r) presented in equation Equation 7.

Once we have the connections among the three parts of the DL distinguisher,
we need to minimize the exponents of the three parts. Specifically, suppose x
and y are the exponents of the differential and linear part, respectively, then
we need to minimize x + g(r) + 2y, where g(r) is the approximation of the log
function explained in the previous paragraph.

4 Differential-linear attacks against Speck32/64

In this section, we review previous DL attacks against Speck32/64. Also, we show
our new DL distinguishers and key-recovery attacks against Speck32/64. For all
the key-recovery attacks presented in this section, some rounds are appended to
the end of the DL distinguisher, which is below the linear part. Afterward, some
round key bits associated with these newer rounds are guessed. The number of
these guessed key bits follows the rule presented in section 3.4 of [41].



4.1 Reviewing previous differential-linear attacks against Speck32/64

In [39], the first DL attack against Speck was presented. Specifically against
Speck32/64. Here the authors presented two DL distinguishers and used them
to mount two key-recovery attacks.

To come up with those distinguishers, they observed that good DL distin-
guishers in Speck generally have a special structure called “hourglass structure”[30].
In their distinguishers, there is only one active bit in the input of the middle part
and a high correlation in the output bits of the middle part. So, they traverse
all the middle parts with only one active bit in the input of the middle part
and search for high correlations on the output bits of the middle part. In DL
Distinguisher 1 and DL Distinguisher 2, we present those distinguishers. .

Differential-Linear Distinguisher 1 ([39]) The following 9-round DL dis-
tinguisher (

∆0
10∆

0
17∆

0
19

)
→
(
x910 ⊕ x911 ⊕ x925 ⊕ x926 ⊕ x927

)
holds with a correlation of 2−11.58.

Differential-Linear Distinguisher 2 ([39]) The following 10-round DL dis-
tinguisher(

∆0
1, ∆

0
8, ∆

0
15, ∆

0
22, ∆

0
26, ∆

0
31,
)
→
(
x1010 ⊕ x1011 ⊕ x1025 ⊕ x1026 ⊕ x1027

)
holds with a correlation of 2−14.58.

With these distinguishers, they mount two key-recovery attacks by adding
one round before (backward) and three rounds after (forward) the distinguisher.
It is possible to prepend one round before the differential part because of the
technique presented in [2]. To extend the three rounds behind, they guess b
bits by observing the three rounds appended after the DL distinguisher. Thus,
using DL Distinguisher 1 they mount a key-recovery attack against 13 rounds
of Speck. Using DL Distinguisher 2 they mount a key-recovery attack against
14 rounds of Speck. They got a key-recovery attack on 13 rounds of Speck with
data complexity of 222 and time complexity of 259. Using DL Distinguisher 2
they got a key-recovery attack on 14 rounds of Speck with data complexity of
225 and time complexity of 262. To see more details of the attack, we refer to
Appendix C.

We believe that the complexities claimed in [39] need to be corrected since
the authors did not take into account to multiply them by the number of times
required to obtain a correct right pair for the first round. Also, one can check
this by looking at Algorithm 1 and the complexities obtained in the first paper
presenting this technique against ARX ciphers [6]. So, correcting these complex-
ities and using DL Distinguisher 1 they should obtain a key-recovery attack on
13 rounds of Speck32/64 with data complexity of 224 and time complexity of
261. Also, using the method above on DL Distinguisher 2 they should obtain a
key-recovery attack on 14 rounds of Speck32/64 with data complexity of 228



and time complexity of 265. Notice that these corrections make the last time
complexity worse than brute force for Speck32/64.

Another technique to find DL distinguishers against Speck appears in [33].
Here the authors build a framework to compute the correlation of a certain
DL distinguisher. That framework is based on a technique comprising partitions
of Fn2 × Fn2 into subsets where their elements satisfy certain equations. These
equations involve the carry bits and the input and output differences of the
modular addition operation. For more detail, we refer to Section 2.2 of [33]. To
mount the distinguishers, the authors fixed the differential part to the following
4-round differential (0211, 0a04) → (0008, 0008). After that they obtained a 8-
round DL distinguisher by traversing overall 4-bit masks in the middle part.
Finally, they create a 9-round DL distinguisher by extending the linear part
by 1 round. To obtain the 10-round DL distinguisher they extended backward
the previous 9-round differential-linear distinguisher by 1 round. We refer to
Appendix C to see the details of these distinguishers.

4.2 New differential-linear attacks against Speck32/64

Using our tool, we observe that the better DL distinguishers do not always
have only a single active bit in the output of the differential part. In fact, we
found three DL distinguishers for 9, 10 and 11 rounds with 3, 2 and 3 active
bits respectively, in the output of the differential part. These distinguishers,
presented in DL Distinguisher 3, DL Distinguisher 4, and DL Distinguisher 6,
and detailed in Table 4, Table 5 and Table 7 in Appendix A, have theoretical
correlations of 2−11.42, 2−14.12, 2−16.12 respectively. In the next paragraph we
give more details about the strategies and running timing to obtain these DL
distinguishers, and an additional one with a theoretical correlation of 2−13.36,
namely DL Distinguisher 5.

To obtain DL Distinguisher 3 and DL Distinguisher 5, we try several config-
urations regarding the number of rounds for the top, middle, and bottom parts.
The configuration that gives us the best theoretical correlation was 4, 2, and 3
rounds respectively for both distinguishers. To obtain DL Distinguisher 4, we
also tried several configurations regarding the number of rounds, in this case
the best theoretical correlation was found using 3, 3, and 4 rounds respectively.
Also, to obtain DL Distinguisher 4, we needed to add a constraint regarding the
number of active bits in the input mask of the linear part. Otherwise, we get
a distinguisher with a theoretical correlation of 2−15.12 (instead of 2−14.12). To
obtain, DL Distinguisher 6, we extended DL Distinguisher 4 one round back-
ward. We also tried to search for a 12-round DL but we did not find a significant
theoretical correlation.

The timing results of the proposed tool, under the mentioned conditions, are
as follows: The time to find the optimal value for 9 rounds (DL Distinguisher 3)
was 70 minutes. The time to find the value 2−14.12 for the 10 rounds (DL Dis-
tinguisher 4) was 2 days. On the first day, we attempted to find the optimal
solution but the program did not finish. As a result, a non-optimal solution
value of 2−15.12 was obtained. To improve the results, constraints were added



on the number of active bits in the input mask of the bottom part, which is
the most expensive part in the correlation formula for DL distinguishers (see
Section 2.4) with an exponent of two. Since “good” DL distinguishers in Speck
have a hourglass structure, we constrained the number of active bits of the input
linear mask first to one, then to two, and finally to three, resulting in the values
2−14.35, 2−14.35 and 2−14.12 respectively after 2 days. We also tried constraining
the number of active bits to 4, but we did not obtain a significant correlation.
The time to find DL Distinguisher 5 was 70 minutes, the same as DL Distin-
guisher 3 since DL Distinguisher 5 is an intermediate value of the experiment
we run to obtain DL Distinguisher 3. The time to find DL Distinguisher 6 was 2
days, as to obtain this DL distinguisher we extended one round backwards from
DL Distinguisher 4.

For every distinguisher in this section, we conduct an experimental calcula-
tion of their correlations. We show them in Table 2. Also, for each distinguisher,
we conduct an experimental calculation of the correlation of the middle part.
The results of these calculations are compared to the results produced by our
tool in Table 3. As shown, our tool provides an lower bound on the experimental
results. For example, the experimental result for DL Distinguisher 3 was 0.82,
while our tool produced a result of 0.75. As expected, the difference is due to
the reliance of our tool on certain independence conditions, as stated in Propo-
sition 1, Proposition 2, Proposition 3, Proposition 4 and the Piling-Up Lemma.

DL distinguishers Experimental correlation Theoretical correlation

Middle part of DL Distinguisher 3 0.82 0.75

Middle part of DL Distinguisher 4 0.47 0.23

Middle part of DL Distinguisher 5 0.84 0.78

Middle part of DL Distinguisher 6 0.47 0.23

Table 3: Comparison between the theoretical and experimental correlations of
the middle part for every DL distinguisher.

Differential-Linear Distinguisher 3 The following 9-round DL distinguisher(
∆0

4, ∆
0
22, ∆

0
27, ∆

0
29, ∆

0
31

)
→
(
x92 ⊕ x99 ⊕ x916 ⊕ x918 ⊕ x925

)
holds with a practical correlation of 2−7.3.

Differential-Linear Distinguisher 4 The following 10-round DL distinguisher(
∆0

6, ∆
0
13, ∆

0
20, ∆

0
22, ∆

0
29

)
→
(
x102 ⊕ x106 ⊕ x1011 ⊕ x1012 ⊕ x1013⊕

x1018 ⊕ x1020 ⊕x1022 ⊕ x1027 ⊕ x1028 ⊕ x1029
)

holds with a practical correlation of 2−12.0.



We use DL Distinguisher 4 to mount a key-recovery attack on Speck32/64

reduced to 13 rounds. Precisely, it is possible to prepend one round before the
differential part using the technique presented in [2]. We can also extend two
rounds after the distinguisher, and thus guess one full round key (16 bits) and
one partial round key (12 bits), for a total of b = 28 bits. The attacks work as
follows.

1. Compute the l PIBs for the first round of the differential part. That is(
∆0

6, ∆
0
13, ∆

0
20, ∆

0
22, ∆

0
29

)
→
(
∆1

8, ∆
1
31

)
.

Experimentally, we checked that the first round of our distinguisher has a
probability of p = 2−2, and has 28 PIBs with probability p′ = 1. From those
28 PIBs, l = 21 are enough to mount the attack.

2. Use Algorithm 1 to compute the set of plaintexts P satisfying the DL dis-
tinguisher (

∆1
8, ∆

1
31

)
→

(
x102 ⊕ x106 ⊕ x1011 ⊕ x1012 ⊕ x1013 ⊕ x1018 ⊕ x1020⊕

x1022 ⊕ x1027 ⊕ x1028 ⊕ x1029
)
.

This distinguisher has a correlation of 2−10, so we have enough PIBs to
mount the attack.

3. Request the ciphertext pairs of the set P. For DL Distinguisher 4, we re-
quest ciphertext pairs generated after 13 rounds. Let C be the set of these
ciphertext pairs.

4. Initialize 2b counters to zero. For each element (Ci, C
′
i) in C, try all the 2b

possible values generated by those b key bits. Partially decrypt (Ci, C
′
i) (3

rounds backwards) to the intermediate state corresponding to the output
mask of our DL distinguisher. Compute the XOR sum of the subset of bits
contained in the output mask of DL Distinguisher 4, if the values in both
pairs are equal, increase the current counter.

5. Sort the counter by the correlation. The right sub-key is expected to be in
the first 2b values of the list.

We have that DL Distinguisher 4 allows to mount a 13 round key recovery
attack with a 10 round distinguisher. In this case we target one full round key
and 12 bits of the round key after the distinguisher, for a total of b = 28 bits.
Precisely, the data complexity of the key-recovery attack explained above is
21+21, and its time complexity is 222+28. Multiplying by 1/pp′ = 22, we got a
key-recovery attack on 13 rounds of Speck32/64 with data complexity of 222+2

and time complexity of 250+2.
Using similar strategy, but with a 9 round distinguisher, namely DL Distin-

guisher 5, we obtain a key-recovery attack targeting 3 round keys (two full round
keys and 5 bits of the round key after the distinguisher), as done in [39]. In this
case l = 19 and b = 37 obtaining a data complexity of 220.15 and a time com-
plexity of 260.15. That is, still better than the key-recovery attack for 13 rounds
presented in [39].



Differential-Linear Distinguisher 5 The following 9-round DL distinguisher(
∆0

11, ∆
0
18, ∆

0
20, ∆

0
22, ∆

0
29

)
→
(
x90 ⊕ x99 ⊕ x911 ⊕ x924 ⊕ x927

)
holds with a practical correlation of 2−12.0.

Differential-Linear Distinguisher 6 The following 11-round DL distinguisher(
∆0

2, ∆
0
20, ∆

0
25, ∆

0
27, ∆

0
29

)
→
(
x112 ⊕ x116 ⊕ x1111 ⊕ x1112 ⊕ x1113 ⊕ x1118 ⊕ x1120⊕

x1122 ⊕ x1127 ⊕ x1128 ⊕ x1129
)

holds with a practical correlation of 2−16.0.

We use DL Distinguisher 6 to mount a key-recovery attack against Speck32/64
reduced to 14 rounds. To come with this result we use the same strategy as be-
fore, where we prepend one round and append two rounds to DL Distinguisher 6
and we target b = 28 key bits. On the other hand, we have the following differ-
ences:

– l = 25 instead l = 21;
– p = 2−4, p′ = 0.499 instead of p = 2−2, p′ = 1;
– use DL Distinguisher 6 instead of DL Distinguisher 4

The data complexity of the key-recovery attack explained above is 21+25, and
its time complexity is 2(25)+28. Multiplying for 1/(pp′), we got a key-recovery
attack on 14 rounds of Speck with data complexity of 226+5 and time complexity
of 25+25+28 = 258.

Notice that, using the PIBs, we can have a better data complexity for DL
Distinguisher 3, DL Distinguisher 4, and DL Distinguisher 6 than solely applying
the formula εp−2r−2q−4 (see Section 2.4). In fact, by using the PIBs computed
above we get a data complexity of 213.4 for DL Distinguisher 3, 221 for DL Distin-
guisher 4 and 229 for DL Distinguisher 6. We summarize these data complexities
in Table 2.

5 Conclusions and future work

In this work, we considered DL attacks against ARX ciphers and how to model
these ciphers in the real domain. Specifically, we studied how to compute the cor-
relation of the output bits of a DL distinguisher modeled in the real domain. We
proposed a new automatic tool to search for DL distinguishers. This automatic
tool uses MILP and MIQCP techniques, and, to the best of our knowledge, it is
the first attempt to fully automate the search for DL distinguishers. By using
this tool, we improve previous DL distinguishers against Speck32/64 reduced
to 9 and 10 rounds. Furthermore, we reach an 11-rounds distinguisher for the
first time. Using these distinguishers, we improved previous key-recovery attacks
against Speck32/64 reduced to 14 rounds. We aimed to find DL distinguishers
for larger instances of Speck, however, our tool is currently slow and thus this is
a subject for future investigation. Since, the framework presented in Section 2.3
is generic, we believe that our tool can be applied to other ARX ciphers or even
to non-ARX ciphers, for example, SPN ciphers.
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−2−0.0 −2−0.0 −2−0.0 −2−0.0

−2−0.0 −2−0.0 −2−0.0 −2−0.0

5

2−inf 2−1.0 2−inf 2−0.0227

−2−0.0457 −2−0.0931 −2−0.1926 −2−0.415

−2−1.0 2−inf 2−0.0 −2−0.0

−2−0.0 −2−0.0 −2−0.0 −2−0.0

2−inf −2−1.0 2−inf 2−0.0227

−2−0.046 −2−0.0931 −2−0.1926 −2−0.415

−2−1.0 2−inf 2−0.0 −2−0.0

−2−0.0 −2−0.0 −2−0.0 2−0.0

6

2−inf 2−2.9896 2−inf 2−0.235

−2−0.4534 −2−0.939 −2−2.6126 2−inf

−2−8.2002 2−inf −2−0.1889 −2−0.3485

−2−0.6627 −2−1.3853 2−inf 2−1.0

2−inf −2−3.0128 2−inf 2−0.3281

−2−0.6461 −2−1.354 −2−3.6118 2−inf

2−8.2002 2−inf −2−0.1889 −2−0.3485

−2−0.6627 2−1.3853 2−inf 2−2.0

Linear Part

00010000000000000000000000100000

7 00000000000000000000000000100000

8 00000000100000000000000010000000

9 00000010000001010000001000000100

Table 4: 9-round differential-linear distinguisher for Speck32/64 with theoretical
correlation of 2−11.42 and practical correlation of 2−7.3.



Differential Part

0 00100000010100000010000001000000

1 10000000000000000000000100000000

2 00000000000000000000010000000000

3 00000100000000000001010000000000

Differential-Linear Part

−2−0.0 −2−0.0 −2−0.0 −2−0.0

−2−0.0 2−0.0 −2−0.0 −2−0.0

−2−0.0 −2−0.0 −2−0.0 −2−0.0

−2−0.0 −2−0.0 −2−0.0 −2−0.0

−2−0.0 −2−0.0 −2−0.0 2−0.0

−2−0.0 2−0.0 −2−0.0 −2−0.0

−2−0.0 −2−0.0 −2−0.0 −2−0.0

−2−0.0 −2−0.0 −2−0.0 −2−0.0

4

−2−0.415 −2−1.0 2−inf 2−1.0

2−inf 2−0.0227 −2−0.0457 −2−0.0931

−2−0.1926 −2−0.415 −2−1.0 2−inf

2−0.0 −2−0.0 −2−0.0 −2−0.0

−2−0.415 2−1.0 2−inf −2−1.0

2−inf 2−0.0228 −2−0.0457 −2−0.0931

−2−0.1926 −2−0.415 −2−1.0 2−inf

2−0.0 −2−0.0 −2−0.0 −2−0.0

5

2−8.6439 −2−7.4297 2−inf 2−2.9908

2−inf 2−0.3698 −2−0.7904 −2−1.7909

−2−3.61 2−inf −2−9.4804 2−inf

−2−0.0906 −2−0.1375 −2−0.1862 −2−0.1926

2−inf −2−8.4297 2−29.5955 −2−3.0128

2−inf 2−0.4634 2−0.9828 −2−2.2056

−2−4.6082 2−inf 2−9.4804 2−inf

−2−0.0905 2−0.1375 −2−0.6012 2−1.1926

6

2−inf −2−21.4561 2−inf −2−5.1329

2−inf 2−2.1016 −2−5.3324 2−17.5129

2−19.229 2−inf −2−18.2 2−inf

2−1.5212 −2−2.7524 −2−5.1078 2−4.8039

2−inf −2−24.4264 2−inf 2−5.5942

2−inf 2−4.3076 −2−9.9658 2−inf

2−inf 2−inf −2−18.2904 2−inf

2−2.1222 2−3.9456 2−inf 2−13.2877

Linear Part

00000000000000000000000000001000

7 00000000001000000000000000100000

8 00000000100000010100000010000001

9 00001100000000000000111000000001

10 00111000010101000011100001000100

Table 5: 10-round differential-linear distinguisher for Speck32/64 with theoret-
ical correlation of 2−14.12 and practical correlation of 2−12.0.



Differential Part

0 00100000010101000000100000000000

1 10100000010000001000000001000000

2 00000001000000000000000000000010

3 00000000000000000000000000001000

4 00000000000010000000000000101000

Differential-Linear Part

−2−0.0 −2−0.0 −2−0.0 −2−0.0

−2−0.0 −2−0.0 −2−0.0 −2−0.0

−2−0.0 −2−0.0 −2−0.0 −2−0.0

2−0.0 −2−0.0 −2−0.0 −2−0.0

−2−0.0 −2−0.0 −2−0.0 −2−0.0

−2−0.0 −2−0.0 −2−0.0 −2−0.0

−2−0.0 −2−0.0 2−0.0 −2−0.0

2−0.0 −2−0.0 −2−0.0 −2−0.0

5

−2−0.415 −2−1.0 2−inf 2−0.0227

−2−0.0457 −2−0.0931 −2−0.1926 −2−0.415

−2−1.0 2−inf 2−1.0 2−inf

2−0.0 −2−0.0 −2−0.0 −2−0.0

−2−0.415 −2−1.0 2−inf 2−0.0227

−2−0.0457 −2−0.0931 −2−0.1926 −2−0.415

2−1.0 −2−36.9324 −2−1.0 2−inf

2−0.0 −2−0.0 −2−0.0 −2−0.0

6

−2−38.2712 −2−8.1178 2−29.9588 −2−0.2004

−2−0.3746 −2−0.7286 −2−1.614 2−8.7027

−2−7.4548 2−inf 2−3.0722 2−44.5122

2−0.3661 −2−0.5778 −2−0.8301 −2−1.0

2−38.2712 2−8.1584 2−30.0046 −2−0.2935

−2−0.5673 −2−1.1437 2−2.6144 2−inf

−2−8.4804 2−inf −2−3.0734 2−44.5122

2−0.3661 −2−0.5778 −2−1.245 −2−2.0

Linear Part

00000000000000000000000000001000

7 00000000001000000000000000100000

8 00000000100000010100000010000001

9 00001100000000000000111000000001

Table 6: 9-round differential-linear distinguisher for Speck32/64 with theoretical
correlation of 2−13.36, and practical correlation of 2−12.0, used to mount a 13-
round key recovery attack.



Differential Part

0 00101010000100000000000000000100

1 00100000010100000010000001000000

2 10000000000000000000000100000000

3 00000000000000000000010000000000

4 00000100000000000001010000000000

Differential-Linear Part

−2−0.0 −2−0.0 −2−0.0 −2−0.0

−2−0.0 2−0.0 −2−0.0 −2−0.0

−2−0.0 −2−0.0 −2−0.0 −2−0.0

−2−0.0 −2−0.0 −2−0.0 −2−0.0

−2−0.0 −2−0.0 −2−0.0 2−0.0

−2−0.0 2−0.0 −2−0.0 −2−0.0

−2−0.0 −2−0.0 −2−0.0 −2−0.0

−2−0.0 −2−0.0 −2−0.0 −2−0.0

5

−2−0.415 −2−1.0 2−inf 2−1.0

2−inf 2−0.0227 −2−0.0457 −2−0.0931

−2−0.1926 2−0.415 −2−1.0 2−inf

2−0.0 −2−0.0 −2−0.0 −2−0.0

−2−0.415 2−1.0 2−inf −2−1.0

2−inf 2−0.0227 −2−0.0457 −2−0.0931

−2−0.1926 −2−0.415 −2−1.0 2−inf

2−0.0 −2−0.0 −2−0.0 −2−0.0

6

2−8.6439 −2−7.4297 2−inf 2−2.9896

2−inf 2−0.3702 −2−0.7904 −2−1.7909

−2−3.61 2−inf −2−9.4804 2−inf

−2−0.0906 −2−0.1375 −2−0.1862 −2−0.1926

2−inf −2−8.4297 2−29.5955 −2−3.0128

2−inf 2−0.4634 2−0.9828 −2−2.2056

−2−4.6082 2−inf 2−9.4804 2−inf

−2−0.0905 2−0.1375 −2−0.6012 2−1.1926

7

2−inf 2−21.4561 2−inf −2−5.1329

2−inf 2−2.1016 2−5.3335 2−17.5131

2−19.229 2−inf 2−18.2 2−inf

2−1.5212 2−2.7524 2−5.1078 2−4.8039

2−inf 2−24.4264 2−inf 2−5.5942

2−inf 2−4.3076 2−9.9658 2−inf

2−inf 2−inf 2−18.2904 2−inf

2−2.1222 2−3.9456 2−inf 2−13.2877

Linear Part

00000000000000000000000000001000

8 00000000001000000000000000100000

9 00000000100000010100000010000001

10 00001100000000000000111000000001

11 00111000010101000011100001000100

Table 7: 11-round differential-linear distinguisher for Speck32/64 with theoret-
ical correlation of 2−16.12, and practical correlation of 2−16.0.



B Finding differential and linear trails with MILP

Automated tools for finding differential and linear characteristics have become
increasingly important help for cryptanalysts and designers, as they save a lot of
time and reduce the possibility of mistakes when the modeling is not too com-
plex. Different works exist for automating the search for differential or linear
characteristics or for finding security bounds for resisting differential and linear
cryptanalysis, and among them are those using Mixed Integer Linear Program-
ming (MILP). In [32,40] were proposed methods using MILP to address the
problem of counting the minimal number of differentially and linearly active S-
boxes. This is an important problem since its solution help designers to establish
security bounds against differential and linear cryptanalysis. In [37] Sun et al.
proposed heuristic methods based on MILP to automatically search for differ-
ential characteristics, and in [36] Sun et al. improved the technique presented in
[37] by making it an exact method. Also, in [36] Sun et al. automate the search
for linear characteristics using MILP. Since then, many different improvements of
MILP models for various ciphers have been proposed, often leading to improved
cryptanalysis results.

B.1 MILP-based automatic search for differential trails

We implement a MILP-based automatic search for differential trails on Speck,
modeling their components using inequalities. In the following paragraphs, we
review the inequalities used to model each component of the Speck cipher. All
those inequalities were presented in [21].

Constraints of XOR Operation. For every XOR operation with input differences
a ∈ Fn2 and b ∈ Fn2 and output difference c ∈ Fn2 , the constraints at bit level for
j in {0 · · ·n− 1} are

d⊕j
≥ aj

d⊕j
≥ bj

d⊕j
≥ cj

aj + bj + cj ≥ 2d⊕j

aj + bj + cj ≤ 2

(8)

where d⊕j
is a dummy variable used to verify there are at least two active terms

in aj ⊕ bj = cj every time aj 6= 0, bj 6= 0, or cj 6= 0.

Constraints of Modular Addition. The authors of [21] used 13(n−1)+5 inequal-
ities to model the modular addition operation modulus 2n with input differences
a ∈ Fn2 and b ∈ Fn2 , and output difference c ∈ Fn2 . For j in {0 · · ·n − 2} these



inequalities are

aj+1 + bj+1 − cj+1 + aj + bj + cj + dj ≥ −0

aj+1 − bj+1 + cj+1 + aj + bj + cj + dj ≥ −0

−aj+1 + bj+1 + cj+1 + aj + bj + cj + dj ≥ −0

−aj+1 − bj+1 − cj+1 + aj + bj + cj − dj ≥ −3

aj+1 + bj+1 + cj+1 + aj + bj + cj − dj ≥ −0

aj+1 + bj+1 + cj+1 − aj − bj − cj + dj ≥ −6

−aj+1 − bj+1 − cj+1 + aj − bj − cj + dj ≥ −6

−aj+1 − bj+1 − cj+1 − aj + bj − cj + dj ≥ −6

−aj+1 − bj+1 − cj+1 − aj − bj + cj + dj ≥ −6

aj+1 + bj+1 + cj+1 + aj + bj − cj + dj ≥ −0

aj+1 + bj+1 + cj+1 + aj − bj + cj + dj ≥ −0

aj+1 + bj+1 + cj+1 − aj + bj + cj + dj ≥ −0

aj+1 + bj+1 − cj+1 + aj + bj + cj + dj ≥ −0.

(9)

And also the inequalities

d+ ≥ an−1
d+ ≥ bn−1
d+ ≥ cn−1

an−1 + bn−1 + cn−1 ≥ 2d+

an−1 + bn−1 + cn−1 ≤ 2,

(10)

where d+ is a dummy variable and dj in Equation 9 represents the probability
weight variable [21].

Constraints for R rounds We need 2n(R+1) variables to represent the states in R
rounds, and nR variables to represent d⊕j

in R rounds. For the modular addition
we need (n− 1)R variables to represent the probability weight variables. And R
variables to represent d+. Summing up, we need a total of 4nR+ 2n variables.

Regarding the number of inequalities, we need 5nR inequalities to model the
R XOR operations (see Equation 8); we need 13(n − 1)R + 5R inequalities to
model the constraints for the modular addition across R rounds (see Equation 9
and Equation 10). Summing up, we need a total of 18nR− 8R inequalities.

Objective Function. Let R be the number of rounds that we are modeling. Also,
let drj be the variable representing the probability weight variables at round r
and bit j. Then, we need to minimize the following expression

R∑
r=1

n−2∑
i=0

drj (11)
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Fig. 5: 1-round of Speck.

B.2 Finding linear trails with MILP solvers

This section describes a MILP model to find linear trails for Speck. The tech-
niques used to build this model are based on the work from [21].

We modeled the components of the Speck cipher using inequalities, and we
describe in this section the inequalities used to model the linear behavior of each
component.

Constraints of the XOR Operation. For every XOR operation with input masks
α ∈ Fn2 and β ∈ Fn2 and output mask γ ∈ Fn2 , the constraints at bit level for j in
{0, · · · , n− 1} are

αj = βj = γj .

Constraints of the Three-Forked Branch. For every three-forked branch with
input masks α ∈ Fn2 and β ∈ Fn2 and output mask γ ∈ Fn2 , we used the following
inequalities

d λj ≥ αj
d λj ≥ βj
d λj ≥ γj

αj + βj + cj ≥ 2d λj

αj + βj + cj ≤ 2

(12)

where d λj is a dummy variable used to verify that there are at least two active
terms in aj ⊕ bj = cj whenever aj 6= 0, bj 6= 0, or cj 6= 0.



Constraints of the Modular Addition. To model this component, we follow the
transition state approach presented in [21]. Therefore, for every modular addition
with input masks α ∈ Fn2 and β ∈ Fn2 and output mask γ ∈ Fn2 , the constraints
at bit level for i in {0, · · · , n− 1} are

si − γi − αi + βi + si+1 ≥ 0

si + γi + αi − βi − si+1 ≥ 0

si + γi − αi − βi + si+1 ≥ 0

si − γi + αi − βi + si+1 ≥ 0

si + γi − αi + βi − si+1 ≥ 0

si − γi + αi + βi − si+1 ≥ 0

γi − di + αi + βi + si+1 ≥ 0

si + γi + αi + βi + si+1 ≤ 4

sn−1 = 0.

(13)

where si is the probability weight variable [21].

Intermediate Variables. Because of the three-forked branch operation, we need
four auxiliary variables. In Figure 5, we illustrate these new auxiliary variables
and we can observe that the inequalities for the modular addition operation are
the inequalities in Equation 13 where

(α, β, γ) = (xi≫ S−α, Z1, Z3) (14)

and the inequalities for the three-forked branch operations are the inequalities
in Equation 12 where

(α, β, γ) ∈ {(yi, Z1, Z2), (Z3, Z4, xi+1)}.

Constraints for R Rounds. We need to use 2n× (R+ 1) variables to model the
input and output differences of each round; n × R variables for modeling d λof
Equation 12; (n+ 1)×R variables for modeling the probability weight variables
si Equation 13; and 4nR variables to model the intermediate variables Z1, Z2, Z3

and Z4. Summing up, this gives us a total of 8nR+ 2n+R variables.
The number of inequalities are distributed as follows: 9nR inequalities for the

modular addition operations; 5× n×R inequalities for the three-forked branch
operations. Summing up this gives us a total 14nR inequalities.

Objective Function. Let R be the number of rounds that we are modeling. Also,
let srj be the variable representing the probability weight variable at round r and
bit j of the modular addition, then according to [21], we need to minimize the
following expression

R∑
r=1

n−1∑
j=0

srj



C Previous differential-linear distinguishers

In this appendix we provide details about Differential-Linear distinguishers pre-
sented in [39] and in [33].

Using DL Distinguisher 1 and DL Distinguisher 2, Wang et al mount two
key-recovery attacks in [39]. In Figure 6, we give the details of the distinguishers’
top, middle, and bottom parts. The left side corresponds to DL Distinguisher 1,
while the right side corresponds to Differential-Linear Distinguisher DL Distin-
guisher 2. They mount these key-recovery attacks by adding one round before
(backward) and three rounds after (forward) the distinguisher. It is possible to
prepend one round before the differential part because of the technique presented
in [2]. To extend the three rounds in the forward direction, they guess b bits by
observing the three rounds appended after the DL distinguisher. Thus, using DL
Distinguisher 1 they mount a key-recovery attack against 13 rounds of Speck.
Using DL Distinguisher 2 they mount a key-recovery attack against 14 rounds
of Speck. The attacks work as follows.

1. The attack targets the round key at round 10 (only 5 bits), 11 (all 16 bits),
and 12 (all 16 bits), for a total of b = 37 bits. Compute the l PIBs for
the differential part (top part), and use Algorithm 1 to compute the set of
plaintexts P satisfying the differential-linear distinguisher. l = 21 for the
13-round attack, and l = 24 for the 14-round attack.

2. Request the ciphertext pairs of the set P. For DL Distinguisher 1 they
requested ciphertext pairs generated with 13 rounds, and for DL Distin-
guisher 2 they request ciphertext pairs generated with 14 rounds. Let C be
the set of these ciphertext pairs

3. Append three rounds at the end of DL Distinguisher 1 and DL Distin-
guisher 2, and check how many key bits are possible to guess by looking
the newer three rounds. In this case, they observed they can guess b = 28
key bits after DL Distinguisher 1 and DL Distinguisher 2.

4. Initialize 2b counters to zero. For each element (Ci, C
′
i) in C, try all the

2b possible values generated by those b bits. Partially decrypt (Ci, C
′
i) to

the intermediate state corresponding to the output mask of the differential-
linear distinguisher. Compute the XOR sum of the subset of bits contained in
that output mask, if the values in both pairs are equal, increase the current
counter. Sort the counter by the correlation. The right sub-key is expected
to be in the first 2b values of the list.



r Differential Part

0 000a 0400

1 1000 0000

Differential-Linear Part

Linear Part

8 0001 0000

9 0e00 0c00

r Differential Part

0 8440 8102

1 000a 0400

2 1000 0000

Differential-Linear Part

Linear Part

9 0001 0000

10 0e00 0c00

Fig. 6: (a) 9-round DL distinguisher for Speck32/64 presented in [39]. The ex-
perimental correlation of this distinguisher is 2−11.58. (b) 10-round DL distin-
guisher for Speck32/64 presented in [39]. The experimental correlation of this
distinguisher is 2−14.58.

r Differential Part

0 0211 0a04

4 8100 8102

Differential-Linear Part

Linear Part

8 0008 0008

9 5820 4020

r Differential Part

0 0a20 4205

1 0211 0a04

5 8100 8102

Differential-Linear Part

Linear Part

9 0008 0008

10 5820 4020

Fig. 7: (a) 9-round DL distinguisher for Speck32/64 presented in [33]. The exper-
imental correlation of this distinguisher is 2−8.93. (b) 10-round DL distinguisher
for Speck32/64 presented in [33]. The experimental correlation of this distin-
guisher is 2−13.90.
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