
Lattice-based Programmable Hash Functions
and Applications

Jiang Zhang1, Yu Chen1,2, and Zhenfeng Zhang3

1 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
2 Key Laboratory of Cryptologic Technology and Information Security of Ministry of
Education, School of Cyber Science and Technology, Shandong University, Qingdao

266237, China
3 Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences, China

jiangzhang09@gmail.com, yuchen.prc@gmail.com, zfzhang@tca.iscas.ac.cn

Abstract. Driven by the open problem raised by Hofheinz and Kiltz
(Journal of Cryptology, 2012), we study the formalization of lattice-based
programmable hash function (PHF), and give three types of concrete
constructions by using several techniques such as a novel combination of
cover-free sets and lattice trapdoors. Under the Inhomogeneous Small In-
teger Solution (ISIS) assumption, we show that any (non-trivial) lattice-
based PHF is a collision-resistant hash function, which gives a direct
application of this new primitive.

We further demonstrate the power of lattice-based PHF by giving
generic constructions of signature and identity-based encryption (IBE)
in the standard model, which not only provide a way to unify several
previous lattice-based schemes using the partitioning proof techniques,
but also allow us to obtain new short signature schemes and IBE schemes
from (ideal) lattices. Specifically, by instantiating the generic construc-
tions with our Type-II and Type-III PHF constructions, we immediately
obtain two short signatures and two IBE schemes with asymptotically
much shorter keys. A major downside which inherits from our Type-II
and Type-III PHF constructions is that we can only prove the security
of the new signatures and IBEs in the bounded security model that the
number Q of the adversary’s queries is required to be known in advance.
Another downside is that the computational time of our new signatures
and IBEs is a linear function of Q, which is large for typical parameters.

To overcome the above limitations, we also give a refined way of
using Type-II and Type-III PHFs to construct lattice-based short signa-
tures with short verification keys in the full security model. In particular,
our methods depart from the confined guessing technique of Böhl et al.
(Eurocrypt’13) that was used to construct previous standard model short
signature schemes with short verification keys by Ducas and Micciancio
(Crypto’14) and by Alperin-Sheriff (PKC’15), and allow us to achieve
much tighter security from weaker hardness assumptions.

Content

1 Introduction . 1

1.1 Our Contributions . 3

1.2 Additions to the Conference Version . 3

1.3 Techniques . 4

1.4 Short Signatures . 7

1.5 Identity-based Encryption . 10

1.6 Other Related Work . 12

2 Preliminaries . 13

2.1 Notation . 13

2.2 Lattices and Gaussian Distributions . 14

2.3 Rings and Trapdoors . 16

2.4 LWE and (I)SIS Problems . 17

2.5 Digital Signatures . 18

2.6 Identity-based Encryption . 19

3 Programmable Hash Functions from Lattices . 20

3.1 Type-I Construction . 21

3.2 Type-II Construction . 22

3.3 Type-III Construction . 24

3.4 Improved Type-III Construction for v < n . 28

3.5 Collision-Resistance and High Min-Entropy 31

4 Short Signatures from Lattice-based PHFs . 34

4.1 A Generic Signature Scheme from Lattice-based PHFs 34

4.2 Improved Short Signature on General Lattices 36

5 Fully-secure Short Signatures from PHFs . 39

5.1 A Fully-secure Short Signature on General Lattices 39

5.2 A Fully-secure Short Signature on Ideal Lattices 43

6 IBE from Lattice-based PHFs . 46

6.1 A Generic IBE scheme from Lattice-based PHFs 46

6.2 The Security Proof . 47

6.3 Instantiations . 53

6.4 Extensions . 53

7 Conclusions and Open Problems . 54

1 Introduction

As a primitive capturing the partitioning proof techniques, programmable hash
function introduced by Hofheinz and Kiltz [35] is a powerful tool to construct
provably secure cryptographic schemes in the standard model. Informally, a PHF
H = {HK} is a keyed group hash function over some finite group G, which can
work in two (statistically) indistinguishable modes depending on how the key is
generated: if the key K is generated in the normal mode, then the hash function
behaves normally and maps an input X into a group element HK(X) ∈ G; while
if the key K ′ is generated in the trapdoor mode, then with the help of some
trapdoor information td it can additionally output a secret pair (aX , bX) such
that HK′(X) = gaXhbX holds for some prior fixed group generators g, h ∈ G.
More formally, let u, v ∈ Z be some positive integers, H is said to be (u, v)-
programmable if given any inputs X1, . . . , Xu and Y1, . . . , Yv satisfying Xi ̸= Yj

for any i and j, the probability Pr[aX1
= · · · = aXu

= 0 ∧ aY1
, . . . , aYv

̸= 0] ≥
1/poly(κ) for some polynomial poly(κ) in the security parameter κ, where the
probability is over the random coins used in generating K ′ and td. This feature
gives a partition of all inputs in terms of whether aX = 0, and becomes very
useful in security proofs when the discrete logarithm (DL) is hard in G [35].

Since its introduction, PHFs have attracted much attention from the research
community [58,33,36,28,17], and had been used to construct many cryptographic
schemes (such as short signature schemes [34]) in the standard model. However,
both the definition and the constructions of traditional PHFs seem specific to
hash functions defined over groups where the “DL problem” is hard. This might
be the reason why almost all known PHFs were constructed from “DL groups”.
Actually, it was left as an open problem [36] to find instantiations of PHF from
different assumptions, e.g., lattices.

Facing the rapid development of quantum computers, the past decade has
witnessed remarkable advancement in lattice-based cryptography. Nevertheless,
the silhouette of lattice-based PHFs is still not very clear. At Crypto 2013, Freire
et al. [28] extended the notion of PHF to the multilinear maps setting. However,
recent study shows that there is a long way to go before obtaining a practical and
secure multilinear maps from lattices [29,21,18,20,37]. An intriguing question of
great interest is to construct lattice-based PHFs or something similar based on
standard hard lattice problems.

Lattice-based Short Signatures. It is well-known that digital signature
schemes [41] can be constructed from general assumptions, such as one-way
functions. Nevertheless, these generic signature schemes suffer from either large
signatures or large verification keys, thus a main open problem is to reduce the
signature size as well as the verification key size. The first direct constructions
of lattice-based signature schemes were given in [45,31]. Later, many works (e.g.,
[44,24,7]) significantly improved the efficiency of lattice-based signature schemes
in the random oracle model. In comparison, the progress in constructing efficient
lattice-based signature schemes in the standard model was relatively slow. At

1

Eurocrypt 2010, Cash et al. [16] proposed a signature scheme with a linear num-
ber of vectors in the signatures. The first standard model short signature scheme
with signatures consisting of a single lattice vector was due to Boyen [13], which
was later improved by Micciancio and Peikert [47]. However, the verification keys
of both schemes in [13,47] consist of a linear number of matrices.

In 2013, Böhl et al. [9] constructed a lattice-based signature scheme with
constant verification keys by introducing the confined guessing proof technique.
Later, Ducas and Micciancio [26] adapted the confined guessing proof technique
to ideal lattices, and proposed a short signature scheme with logarithmic ver-
ification keys. Alperin-Sheriff [6] constructed a short signature with constant
verification keys based on a stronger hardness assumption by using the idea
of homomorphic trapdoor functions [32]. Due to the use of the confined guess-
ing technique, the above three signature schemes [9,26,6] shared two undesired
byproducts. First, the security can only be directly proven to be existentially
unforgeable against non-adaptive chosen message attacks (EUF-naCMA). Even
if an EUF-naCMA secure scheme can be transformed into an EUF-CMA secure
one by using known techniques such as chameleon hash functions [42], in the
lattice setting [26] this usually introduces an additional tag to each signature
and roughly doubles the signature size. Second, a reduction loss about (Q2/ϵ)c

for some parameter c > 1 seems unavoidable, where Q is the number of sign-
ing queries of the forger F , and ϵ is the success probability of F . Therefore, it
is desirable to directly construct an EUF-CMA secure scheme that has short
signatures, short verification keys, as well as a relatively tight security proof.

Identity-based Encryption from Lattices. Shamir [52] introduced identity-
based encryption (IBE) in 1984, but the first realizations were due to Boneh
and Franklin from pairings [11] and Cocks from quadratic residues [19]. In the
lattice setting, Gentry et al. [31] proposed the first IBE scheme based on the
learning with errors (LWE) assumption in the random oracle model. Later, sev-
eral works [3,16,59,25] were dedicated to the study of lattice-based (hierarchical)
IBE schemes also in the random oracle model. There were a few works focusing
on designing standard model lattice-based IBE schemes [2,3,16]. Concretely, the
scheme in [3] was only proven to be selective-identity secure in the standard
model. By using standard complexity leverage technique [10], one can generally
transform a selective-identity secure IBE scheme into a fully secure one. But the
resulting scheme has to suffer from a reduction loss proportional to L, where L
is the number of distinct identities for the IBE system and is independent from
the number Q of the adversary’s private key queries in the security proof. Since
L is usually super-polynomial and much larger than Q, the above generic trans-
formation is a very unsatisfying approach [30]. In [2,16], the authors showed how
to achieve full security against adaptive chosen-plaintext and chosen-identity at-
tacks, but both standard model fully secure IBE schemes in [2,16] had large
master public keys consisting of a linear number of matrices. In fact, Agrawal,
Boneh and Boyen left it as an open problem to find fully secure lattice-based
IBE schemes with short master public keys in the standard model [2].

2

1.1 Our Contributions

Because of the (big) differences in the algebraic structures between lattices and
DL groups, the traditional definition of PHFs does not seem to work on lattices.
This makes it highly non-trivial to find instantiations of traditional PHFs on
lattices. In this paper, we introduce the notion of lattice-based programmable
hash function (PHF). Although our lattice-based PHF has gone beyond the
realm of traditional PHFs, we prefer to still name it as PHF because it inherits
the concept of traditional PHFs and aims at capturing the partitioning proof
trick on lattices. By carefully exploiting the algebraic properties of lattices, we
give three types of concrete constructions of lattice-based PHFs.

Under the Inhomogeneous Small Integer Solution (ISIS) assumption, we show
that any (non-trivial) lattice-based PHF is collision-resistant. This gives a direct
application of lattice-based PHFs. We further demonstrate the power of lattice-
based PHFs by showing a generic way to construct short signature schemes.
We also give a generic IBE scheme from lattice-based PHFs. Moreover, our IBE
scheme can be extended to support hierarchical identities, and achieve chosen
ciphertext security.

We find that lattice-based PHFs are implicitly used as the backbones in the
signature schemes [13,47] and the IBE schemes [2]. Therefore, our results provide
a way to unify and clarify those lattice-based cryptographic schemes using the
partitioning proof strategy. Furthermore, by instantiating the generic schemes
with our Type-II and Type-III PHF constructions, we immediately obtain several
new short signature schemes and IBE schemes with shorter keys. A drawback
inherited from our concrete Type-II and Type-III PHF constructions of using
cover-free sets is that we can only prove the security of those schemes in a
bounded security model which requires the number Q of the adversary’s queries
to be known in advance. Another downside is that the computational time of
our new signatures and IBEs is a linear function of Q, and thus is very large for
typical choice of parameters.

To remove the above limitations, we also propose two concrete short signature
schemes with shorter verification keys and relatively tighter reductions in the
full security model by combining the confined guessing technique in [9] with our
Type-II and Type-III PHFs. Comparisons between our schemes and previous
ones will be given in Section 1.4 and Section 1.5.

1.2 Additions to the Conference Version

This article is a significantly extended and improved version of the conference
paper [60]. In addition to providing full proofs for some theorems, we also add
the following contributions to this new version:

Extending to ideal lattices. We extend the definition and the concrete con-
structions of lattice-based PHF given in [60] to general rings so that they are
more compatible to ideal lattices.

3

New lattice-based PHFs. In addition to two concrete PHF constructions
in [60], we give a new (namely, Type-III) construction of lattice-based PHF on
ideal lattices, which achieves constant keys and thus is O(log n) times smaller
than previous ones. We also present an improved and optimized Type-III PHF
construction for some restricted but useful parameters.

Two fully-secure short signatures. In addition to a new short signature
instantiated from the generic construction in [60] and our new Type-III PHF,
we also propose two signature schemes in the full security model by combining
the confined guessing technique in [9] with our Type-II and Type-III PHFs,
which seem to be asymptotically the best known lattice-based short signatures
with shorter keys in terms of the reduction loss and the hardness parameter in
the full security model.

Improved generic IBE construction. We present an improved and simplified
generic construction of IBE from lattice-based PHFs, which removes the high
min-entropy requirement on the underlying lattice-based PHFs [60], and thus
supports more flexible choices of parameters. By instantiating it with our Type-
III PHF, we immediately obtain a new IBE scheme with constant master public
keys from ideal lattices (in the bounded security model as that in [60]).

1.3 Techniques

We introduce the notion of lattice-based PHFs by carefully exploiting the specific
algebraic structure of lattices. Formally, our notion of lattice-based PHFs is
defined over some ring R, which can be either the integer ring Z for general
lattices or the polynomial ring R = Z[x]/(xn + 1) for ideal lattices. By Rq

we denote the quotient ring R/qR. As the traditional PHFs, our lattice-based
PHF H = {HK} can work in two modes. Given a key K generated in either the
normal mode or the trapdoor mode, the hash function HK maps its input X ∈ X
into a matrix HK(X) ∈ Rn×m

q for some positive n,m, q ∈ Z. In the trapdoor
mode, there additionally exists a secret trapdoor td allowing to compute matrices
RX ∈ Rm̄×m

q and SX ∈ Rn×n
q for some integer m̄ ∈ Z, such that HK(X) =

ARX + SXB ∈ Rn×m
q holds with respect to user-specified “generators” A ∈

Rn×m̄
q and B ∈ Rn×m

q . For non-triviality, we require that the keys generated
in the two modes are statistically indistinguishable (even conditioned on the
matrix A that was used to generate the trapdoor mode key), and that the two
“generators”A ∈ Rn×m̄

q andB ∈ Rn×m
q have essential differences for embedding

hard lattice problems. More precisely, in our definition A ∈ Rn×m̄
q is required

to be uniformly distributed (and thus can be used to embed the ISIS problem
over R), while B ∈ Rn×m

q is a trapdoor matrix that allows to efficiently sample
short vector e ∈ Rm satisfying Be = v for any vector v ∈ Rn

q .
In order to explore the differences between A ∈ Rn×m̄

q and B ∈ Rn×m
q in the

security reduction, we require that the largest singular value s1(RX) of RX is
small, and that SX ∈ In∪{0} where In is the set of invertible matrices in Rn×n

q .

4

More concretely, for any positive integer u, v ∈ Z and real β ∈ R, a (u, v, β)-
PHF H should satisfy the following two conditions: 1) s1(RX) ≤ β holds for any
input X; and 2) given any inputs X1, . . . , Xu and Y1, . . . , Yv satisfying Xi ̸= Yj

for any i and j, the probability Pr[SX1 = · · · = SXu = 0 ∧ SY1 , . . . ,SYv ∈ In]
is at least 1/poly(κ), where the probability is taken over the random coins in
producing td and K ′. Besides, if the second condition only holds for some prior
fixed X1, . . . , Xu (chosen before generating the trapdoor mode key K ′), we say
that the hash function H is a weak (u, v, β)-PHF.

Looking ahead, if the trapdoor mode keyK ′ is generated by usingA ∈ Rn×m̄
q

and trapdoor matrix B ∈ Rn×m
q , then for any input X the matrix AX :=

(A∥HK′(X)) = (A∥ARX+SXB) ∈ Rn×(m̄+m)
q has a trapdoor RX with respect

to tag SX . The programmability comes from the fact that such a trapdoor
enables us to sample short vector e satisfying AXe = v for any vector v ∈ Rn

q

when SX is invertible, and loses this ability when SX = 0. This gives us the
possibility to adaptively embed the ISIS problem depending on each particular
input X. Since this feature is only useful when the key K ′ is used together with
the “generator” A ∈ Rn×m̄

q , we require the keys in both modes to be statistically
indistinguishable even conditioned on the information of A.

Type-I PHF Construction. Our Type-I PHF construction is a high-level ab-
straction of the functions that were (implicitly) used in both signature schemes
(e.g, [13,9,47]) and encryption schemes (e.g., [2,47]). Formally, let E be an en-
coding function from some domain X to (Rn×n

q)ℓ, where ℓ is an integer. Then,
for any input X ∈ X , the Type-I PHF construction H = {HK} from X to Zn×m

q

is defined as HK(X) = A0 +
∑ℓ

i=1 CiAi, where K = (A0,A1, . . . ,Aℓ) and
E(X) = (C1, . . . ,Cℓ). For appropriate choices of parameters and encoding func-
tion E, the literature (implicitly) showed that the Type-I construction satisfies
our definition of lattice-based PHFs. Concretely, if one sets R = Z,X = {0, 1}ℓ,
and E(X) = ((−1)X1 ·In, . . . , (−1)Xℓ ·In) for any input X = (X1, . . . , Xℓ), where
In is the n× n identity matrix. Then, the instantiated PHF is exactly the hash
functions that were used to construct the signature scheme in [13] and the IBE
scheme in [2]. Since the Type-I PHF construction is independent from the par-
ticular choice of B ∈ Rn×m

q , it allows us to use any trapdoor matrix B when
generating the trapdoor mode key. However, such a construction has a large key
size, i.e., the number of matrices in the key is linear in the input length ℓ.

Type-II PHF Construction. Our Type-II PHF construction has keys only con-
sisting of O(log ℓ) matrices, which substantially reduces the key size by using
a novel combination of the cover-free sets and the publicly known trapdoor
matrix B = G in [47], where G = In ⊗ gT ∈ Rn×nk

q , k = ⌈log2 q⌉ and

g = (1, 2, . . . , 2k−1)T ∈ Rk
q . Concretely, for any positive L ∈ Z, by [L] we

denote the set {0, 1, . . . , L − 1}. Recall that if CF = {CFX}X∈[L] is a family
of v-cover-free sets over domain [N] for some integers v, L,N ∈ Z, then for any
subset S ⊆ [L] of size at most v and any Y /∈ S, there is at least one element
z∗ ∈ CFY ⊆ [N] that is not included in the union set ∪X∈SCFX . The property of

5

cover-free sets naturally gives a partition of [L], and was first used in construct-
ing traditional PHFs in [34]. However, a direct application of the cover-free sets
in constructing (lattice-based) PHFs will result in a very large key size (which is
even worse than that of the Type-I PHF). Actually, for an input size L = 2ℓ, the
key of the PHF in [34] should contain an associated element for each element
in [N], where ℓ is the input length and N = O(v2ℓ). We solve this problem
by using the nice property of G and the binary representation of the cover-free
sets. Formally, let G−1(C) be the binary decomposition of some matrix C. By
the definition of G, we have G ·G−1(C) = C. Now, we set the key K of the
Type-II PHF as K = (A, {Ai}i∈{0,...,µ−1}), where µ = ⌈log2 N⌉ = O(log ℓ) for
some prior fixed polynomial v = poly(ℓ) in the input length ℓ. Given an input
X ∈ [L] = [2ℓ], we first map X into the corresponding set CFX ∈ CF . Then, for
each z ∈ CFX ⊆ [N], we “recover” an associated matrixAz = Func(K, z, 0) from
K and the binary decomposition (b0, . . . , bµ−1) of z, where Func is recursively
defined as

Func(K, z, i) =

{
Aµ−1 − bµ−1G, if i = µ− 1
(Ai − biG) ·G−1(Func(K, z, i+ 1)), otherwise

Finally, we output the hash value HK(X) = A+
∑

z∈CFX
Az.

In the trapdoor mode, we randomly choose a “target” element z∗ ∈ [N], and

set A = ÂR− (−1)c ·G and Ai = ÂRi + (1− b∗i) ·G for all i ∈ {0, . . . , µ− 1},
where (b∗0, . . . , b

∗
µ−1) is the binary decomposition of z∗ and c is the number of

1’s in the vector (b∗0, . . . , b
∗
µ−1). By doing this, we have that Az = ÂR̂z + ŜzG

holds for some matrices R̂z and Ŝz =
∏µ−1

i=0 (1− b∗i − bi) ·In, where (b0, . . . , bµ−1)
is the binary decomposition of z. This means that Ŝz = 0 for any z ̸= z∗, and
Ŝz∗ = (−1)c · In. By the definition of HK(X) = A+

∑
z∈CFX

Az, we have that

HK(X) = ÂR̂X + ŜXG holds for some matrices R̂X = R +
∑

z∈CFX
R̂z and

ŜX = −(−1)c · In +
∑

z∈CFX
Ŝz. Obviously, we have that ŜX = 0 if and only if

z∗ ∈ CFX , otherwise ŜX = −(−1)c · In. By the property of the cover-free sets,
there is at least one element in CFY ⊆ [N] that is not included in the union set
∪X∈SCFX for any S = {X1, . . . , Xv} and Y /∈ S. Thus, if z∗ is randomly chosen
and is statistically hidden in the key K = (A, {Ai}i∈{0,...,µ−1}), we have the

probability that HK(Xi) = ÂR̂Xi
−(−1)c ·G for all Xi ∈ S and HK(Y) = ÂR̂Y ,

is at least 1/N = 1
O(v2ℓ) . This gives a (1, v, β)-PHF for any arbitrarily chosen

but prior fixed v = poly(κ) and some polynomially bounded β = poly(κ).

Type-III PHF Construction. The above two types of PHF constructions can
be instantiated on either the integer ring R = Z for general lattices or the
polynomial ring R = R = Z[x]/(xn + 1) for ideal lattices. Our Type-III PHF
construction is specific on polynomial ring R = R. Recall that the core idea of
our Type-II construction is to homomorphically evaluate a comparison function
over [N] (recall that Ŝz =

∏µ−1
i=0 (1 − b∗i − bi) · In), which in turn is realized by

6

multiplying µ = ⌈log2 N⌉ bit-comparison functions

f(b∗i , bi) = 1− b∗i − bi =

{
0, if b∗i ̸= bi
±1, otherwise

for all i ∈ [log2 N]. The use of bit-comparison functions is simply because we
want to ensure the magnitude of s1(RX) for all input X is upper bounded by
some small parameter β. Since we need one matrix to encode each b∗i (namely,

Ai = ÂRi + (1− b∗i) ·G) in the keys, this immediately leads to at least log2 N
matrices in the Type-II PHF keys. We now show how to obtain a PHF with
constant keys by adapting the techniques in [1]. Specifically, as shown in [1], we
can cheaply evaluate a comparison function over [2n] in ring Rq = Zq[x]/(x

n+1)
with n being a power of 2 and odd integer q. In more detail, for any a, b ∈ [2n],
we have that

f(a, b) =
1

2n

2n−1∑
i=0

(xa−b)i =

{
0, if a ̸= b
1, otherwise

By replacing the underlying bit-comparison function in our Type-II PHF con-
struction with the above comparison function f(a, b) ∈ Rq for any a, b ∈ [2n], we
immediately obtain a Type-III PHF construction which reduces the number of
matrices in the keys from log2 N to log2n N , and thus has constant keys for any
N = poly(n). The downside is that the parameter β for the Type-III PHF is at
least n times larger than that of the Type-II PHF. However, for the setting of
N ≤ n2, we also present an improved Type-III PHF construction with constant
keys by using a different way to homomorphically evaluate the same comparison
function, so that the resulting parameter β is asymptotically equal to that of
our Type-II PHF construction.

1.4 Short Signatures

We now outline the idea on how to construct a generic signature scheme SIG
from lattice-based PHFs in the standard model. Let n, m̄,m′, ℓ, q be some posi-
tive integers, and let m = m̄+m′. Given a lattice-based PHF H = {HK} from
{0, 1}ℓ to Rn×m′

q , let B ∈ Rn×m′

q be a trapdoor matrix that is compatible with
H. Then, the verification key of the generic signature scheme SIG consists of a
uniformly distributed (trapdoor) matrix A ∈ Rn×m̄

q , a uniformly random vector
u ∈ Rn

q , and a random key K for H, i.e., vk = (A,u,K). The signing key is a
trapdoor R of A that allows to sample short vector e satisfying Ae = v for any
vector v ∈ Rn

q . Given a message M ∈ {0, 1}ℓ, the signing algorithm first com-
putes AM = (A∥HK(M)) ∈ Rn×m

q , and then uses the trapdoor R to sample a
short vector e ∈ Rm satisfying AMe = u by employing the sampling algorithms
in [31,16,47]. Finally, it returns σ = e as the signature on the message M . The
verifier accepts σ = e as a valid signature on M if and only if e is short and
AMe = u. The correctness of the generic scheme SIG is guaranteed by the nice
properties of the sampling algorithms in [31,47].

In addition, if H = {HK} is a (1, poly, β)-PHF for some real β, we can
show that under the ISIS assumption over R, the above signature scheme SIG

7

is existentially unforgeable against chosen message attacks (EUF-CMA) in the
standard model as long as the forger F makes at most polynomial number Q =
poly(n) of signing queries. Intuitively, given an ISIS challenge instance (Â, û) in
the security reduction, the challenger first generates a trapdoor mode key K ′

for H by using (Â,B). Then, it defines vk = (Â, û,K ′) and keeps the trapdoor
td of K ′ private. For message Mi in the i-th signing query, we have AMi

=
(Â∥HK′(Mi)) = (Â∥ÂRMi

+ SMi
B) ∈ Rn×m

q . By the programmability of H,
with a certain probability we have that SMi is invertible for all the Q signing
messages {Mi}i∈{1,...,Q}, but SM∗ = 0 for the forged message M∗. In this case,
the challenger can use RMi

to perfectly answer the signing queries, and use the
forged message-signature pair (M∗, σ∗) to solve the ISIS problem by the equation

u = AM∗σ∗ = Â(Im̄∥RM∗)σ∗.
Each signature in the generic scheme SIG only has a single vector, which is

as short as that in [13,47]. In fact, our generic scheme SIG encompasses the two
signature schemes from [13,47] in the sense that both schemes can be seen as the
instantiations of SIG using the Type-I PHF construction. Due to the inefficiency
of the concrete PHFs, both schemes [13,47] had large verification keys consisting
of a linear number of matrices. By instantiating SIG with our efficient Type-
II and Type-III PHF constructions, we can obtain concrete signatures SIG1
with logarithmic verification keys on general lattices and SIG2 with constant
verification keys on ideal lattices, respectively. But because we can only show
that our Type-II and Type-III PHF constructions are (1, v, β)-PHFs for some
arbitrary but prior fixed polynomial v = poly(n), both SIG1 and SIG2 are only
provably secure in the q-bounded EUF-CMA security model (i.e., EUF-qCMA),
which requires the number Q of the adversary’s signing queries is known in
advance (so that we can set a polynomial v ≥ Q for the security proof). Moreover,
both SIG1 and SIG2 have security proofs with reduction loss about nQ2, and
the parameter β̄ for the underlying ISIS assumption contains a factor of Q2.
By carefully combining our Type-II PHF with a simple weak Type-I PHF and
introducing a very short tag to each signature, we can obtain an improved short
signature scheme SIG3 with logarithmic verification keys in the standard model,
which further cuts down the reduction loss by a factor of Q and the parameter
β̄ for the underlying ISIS assumption by a factor of Q2. However, SIG3 also
shares the same limitation as SIG1 and SIG2: it is also only provably secure in
the EUF-qCMA model.

In order to remove the above limitation, we further construct two new sig-
natures SIG4 and SIG5, which are provably secure in the standard EUF-CMA
model, and achieve the same asymptotically reduction loss Q·Õ(n) and hardness
parameter β̄ = Õ(n5.5) as SIG3.4 At a high level, we basically replace the weak
Type-I PHF in SIG3 with a set of weak PHFs to realize the confined guessing
technique [9] so that a tag space with super-polynomial size can be used to han-
dle all polynomially bounded Q = poly(n) (note that the size of the tag space in
SIG3 is required to be slightly larger than Q for a tighter reduction, and thus
can only be determined after knowing Q), while at the same time achieving the

4 We write f(n) = Õ(g(n)) if f(n) = O(g(n) · logc(n)) for some constant c.

8

same asymptotic reduction loss as SIG3. More concretely, we will reuse the sub-
routines of our Type-II and Type-III PHFs to compute a set of index functions
corresponding to the length of the sub-tags used in generating a signature so
that we can dynamically choose an appropriate guessing space for the challenge
tag in the security proof. The main reason that we can obtain a much better
reduction loss than that of [9] is because our Type-II and Type-III PHFs essen-
tially imply the existence of tag-based signatures supporting any polynomially
large (but prior fixed) tag-collision parameter v, say, v = ω(log n). In partic-
ular, this large tag-collision parameter v allows us to choose a small guessing
space for the challenge tag in the security proof, which immediately gives a large
guessing probability (and thus a small overall reduction loss). In contrast, the
lattice-based signature in [9] only supports a very small tag-collision parameter
v = 1, which requires a more complex strategy to choose a much larger guessing
space for the challenge tag in the security proof. We note that our improvement
on the reduction loss is not obtained without a price: the computational time of
our signatures SIG4 and SIG5 is a linear function of v.

In Table 1, we give a (rough) comparison of lattice-based signature schemes in
the standard model. For simplicity, the message length is set to be n. Let constant
c > 1 and d = O(logc n) be the parameters for the use of the confined guessing
technique in [9,26,6]. We compare the size of verification keys and signatures
in terms of the number of “basic” elements as in [26,6]. On general lattices,
the “basic” element in the verification keys is a matrix over Zq whose size is
mainly determined by the underlying hard lattices, while the “basic” element
in the signatures is a lattice vector. On ideal lattices, the “basic” element in
the verification keys can be represented by a vector. Almost all schemes on
general lattices such as [16,13,47,9,6] can be instantiated from ideal lattices,
and thus roughly saves a factor of n in the verification key size. However, the
schemes marked with ‘∗’ from ideal lattices have no realizations over general
lattices. We ignore the constant factors in the table to avoid clutter. Since all
schemes only have a single “basic” element in the signing keys, we also omit the
corresponding comparison in the size of signing keys for succinctness. Finally, we
note that the signature scheme in [47] (marked with ‘†’) is essentially identical
to the one in [13] except that an improved security reduction under a weaker
assumption was provided. As shown in Table 1, the scheme in [6] only has a
constant number of “basic” elements in the verification key. However, because
a large (I)SIS parameter β̄ = Õ(d2d · n5.5) is needed (which requires a super-
polynomial modulus q > β̄), the actual bit size to represent each “basic” element
in [6] is at least O(d) = O(log n) times larger than that in [26] and our scheme
SIG4 (we also note that the modulus q for our SIG1 and SIG∗2 is also very
large as the corresponding ISIS parameter β̄ depends on Q2). Even if we do not
take account of the reduction loss, the bit size of the verification key in [6] is
already as large as that in [26] and our scheme SIG4. Moreover, compared to
all known standard model signature schemes, our scheme SIG5 simultaneously
achieves constant verification keys, short signatures and the tightest reduction.

9

Table 1. Rough comparison of lattice-based signatures in the standard model (Since
all schemes only have a single “basic” element in the signing keys, we also omit the
corresponding comparison in the size of signing keys for succinctness. The reduction
loss is the ratio ϵ/ϵ′ between the success probability ϵ of the forger and the success
probability ϵ′ of the reduction. Real β̄ is the parameter for the (I)SIS problem, and
“Security” denotes the security notion that is achieved by the corresponding schemes.
Constant c > 1 and d = O(logc n) are the parameters in [9,26,6]. The scheme in [14]
requires the existence of a PRF that can be computed by a NC1 circuit with input
length ℓ = poly(n) and depth c′ log ℓ for some c′ > 1. The constant parameter r can
be any integer r ≥ 1 for our scheme SIG∗2. Since the (I)SIS parameter β̄ for our SIG1
and SIG∗2 is a quadratic function of Q, we need to use a large modulus q > β̄)

Schemes Verification key Signature Reduction loss (I)SIS param β̄ Security

LM08 [45] ∗ 1 logn Q Õ(n2)

EUF-CMA

CHKP10 [16] n logn Q Õ(n1.5)

Boyen10 [13] n 1 Q Õ(n3.5)

MP12 [47] † n 1 Q Õ(n2.5)

BHJ+14 [9] 1 d (Q2/ϵ)c Õ(n2.5)

DM14 [26] ∗ d 1 (Q2/ϵ)c Õ(n3.5)

AS15 [6] 1 1 (Q2/ϵ)c Õ(d2d · n5.5)

BL16 [14] n 1 n Õ(ℓ4c
′
· n3.5)

KONT20 [39] ∗ d, n 1 (Q/n)c, Q/n Õ(n3.5)

Our SIG1 logn 1 n ·Q2 Q2 · Õ(n5.5)

EUF-qCMAOur SIG∗2 r 1 n ·Q2 Q2 · Õ(n7.5+2/r)

Our SIG3 logn 1 Q · Õ(n) Õ(n5.5)

Our SIG4 logn 1 Q · Õ(n) Õ(n5.5)
EUF-CMA

Our SIG∗5 1 1 Q · Õ(n) Õ(n5.5)

1.5 Identity-based Encryption

At STOC 2008, Gentry et al. [31] constructed a variant of the LWE-based public-
key encryption (PKE) scheme [51]. Informally, the public key of their scheme [31]
contained a matrix A and a vector u, and the secret key was a short vector e
satisfying Ae = u. Recall that in our generic signature scheme SIG, any valid
message-signature pair (M,σ) under the verification key vk = (A,u,K) also
satisfies an equation AMσ = u, where AM = (A∥HK(M)). This observation
allows to give a generic IBE scheme IBE from lattice-based PHFs by combining
our generic signature scheme SIG with the PKE scheme in [31]. Concretely, let
the master public key mpk and the master secret key msk of the IBE system
be the verification key vk and the secret signing key sk of SIG, respectively,
i.e., (mpk,msk) = (vk, sk). Then, for each identity id, we simply generate a
“signature” skid = σ on id under the master public key mpk as the user private
key, i.e., Aidskid = u, where Aid = (A∥HK(id)). Finally, we run the encryption

10

Table 2. Rough Comparison of lattice-based IBEs in the standard model (Since all the
schemes only have a single “basic” element in both the master secret key and the user
private key, we omit them in the comparison for succinctness. The reduction loss is the
ratio ϵ/ϵ′ between the success probability ϵ of the attacker and the success probability
ϵ′ of the reduction. Real α is the parameter for the LWE problem, and “security”
standards for the corresponding security model for security proofs. The scheme in [14]
requires the existence of a PRF that can be computed by a NC1 circuit with input
length ℓ = poly(n) and depth c′ log ℓ for some c′ > 1. poly(n) (resp. superpoly(n))
represents fixed but large polynomial (resp. super-polynomial). The parameter t =
poly(n) > Q denotes the running time of the adversary in [38]. The constant r satisfies
n1/r > 3 + r in [1]. The constant r′ can be any integer r′ ≥ 1 for our scheme IBE∗2)

Schemes Master public key Ciphertext Reduction loss LWE param 1/α Security

ABB10a [3] n3 n2 1 Õ(n2n) IND-sID-CPA

ABB10b [2] n 1 Q Õ(n2)

IND-ID-CPA

CHKP10 [16] n n Q2 Õ(n1.5)

Yamada16 [56] n1/c 1 n(Q/ϵ)c nω(1)

BL16 [14] n 1 n superpoly(n)

KY16 [40] n1/c 1 Qc2+c/(nc2−1ϵc
2+c−1) n2.5+2µ

Yamada17 [57] (logn)2 1 n2 ·Q/ϵ poly(n)

JKN21 [38] logn 1 Õ(n6) t2/ϵ

ALWW21 [1] ω(1) 1 n1/r ·Q Õ(n7.5+4/r)

Our IBE1 logn 1 n ·Q2 Q2 · Õ(n6.5)
IND-qID-CPA

Our IBE∗2 r′ 1 n ·Q2 Q2 · Õ(n8.5+2/r′)

algorithm of [31] with “public key” (Aid,u) as a sub-routine to encrypt plaintexts
under the identity id. It is easy to show that the above construction is correct.

The problem is how to rely the security of the above IBE scheme on the LWE
assumption. In the conference version [60], we resort to PHFs with an enhanced
property called high min-entropy, which basically requires that the properties of
PHFs still hold if some information related to the trapdoor is leaked. In this ver-
sion, we improve the generic IBE scheme IBE from lattice-based PHFs, which
removes the requirement of the high min-entropy property, and makes it easier
to be instantiated from ideal lattices (because the high min-entropy property
in [60] is obtained by applying the generalized leftover hash lemma [23] which
is typically not applicable on general polynomial rings). By instantiating IBE
with our Type-II and Type-III PHF constructions, we immediately obtain stan-
dard model IBE schemes IBE1 with logarithmic master public keys on general
lattices and IBE2 with constant master public keys on ideal lattices, respec-
tively. Similarly for our signatures from generic constructions, both IBE1 and
IBE2 is only provably secure in the q-bounded security model, namely, IND-
qID-CPA. Although one can remove this dependence on Q by setting a default
super-polynomial Q, e.g., Q = 2ω(logn), the computational time of the resulting
schemes will also be a linear function of such Q.

In Table 2, we give a (rough) comparison of lattice-based IBEs in the standard
model. For simplicity, the identity length is set to be n. (Note that one can use

11

a collision-resistant hash function with output length n to deal with identities
with arbitrary length.) Similarly, we compare the size of master public keys and
ciphertexts in terms of the number of “basic” elements. On general lattices,
the “basic” element in the master public keys is a matrix, while the “basic”
element in the ciphertexts is a vector. If instantiated from ideal lattices, the
“basic” element in the master public keys can be represented by a vector, and
thus roughly saves a factor of n in the master public key size. We ignore the
constant factor in the table to avoid clutter. Compared to other fully secure IBE
schemes in the standard model, our schemes IBE1 and IBE2 have very short
master public key. However, such an improvement is not obtained without a
penalty: in addition to the IND-qID-CPA security model, the security loss and
the hardness parameter for the underlying (ring-)LWE assumptions also depend
on the maximum number Q of the adversary’s user key extraction queries.

Since both the improvement and the downside are inherited from our con-
crete Type-II and Type-III PHF constructions, this situation can be immediately
changed if one can find a better lattice-based PHF. In particular, it is worth to
note that after the publication of our conference paper, several works [57,38,1]
had constructed much more efficient IBEs with shorter master public keys in
the full security model by implicitly constructing lattice-based PHFs with nice
features and shorter parameters.

1.6 Other Related Work

Hofheinz and Kiltz [35] first introduced the notion of PHF based on group hash
functions, and gave a concrete (2, 1)-PHF instantiation. Then, the work [34]
constructed a (u, 1)-PHF for any u ≥ 1 by using cover-free sets. Later, Yamada
et al. [58] reduced the key size from O(u2ℓ) in [34] to O(u

√
ℓ) by combining the

two-dimensional representation of cover-free sets with the bilinear groups, where
ℓ was the bit size of the inputs. At CRYPTO 2012, Hanaoka et al. [33] showed
that it was impossible to construct algebraic (u, 1)-PHF over prime order groups
in a black-box way such that its key has less than u group elements.5 Later,
Freire et al. [28] got around the impossibility result of [33] and constructed a
(poly, 1)-PHF by adapting PHFs to the multilinear maps setting. Despite its
great theoretical interests, the current state of multilinear maps might be a big
obstacle in any attempt to securely and efficiently instantiate the PHFs in [28].
More recently, Catalano et al. [17] introduced a variant of traditional PHF called
asymmetric PHF over bilinear maps, and used it to construct (homomorphic)
signature schemes with short verification keys.

All the above PHF constructions [35,34,58,28,17] seem specific to groups with
nice properties, which might constitute a main barrier to instantiate them from
lattices. Although several lattice-based schemes [2,16] had employed a similar
partitioning proof trick as that was captured by the traditional PHFs, it was still

5 Informally, an algorithm is algebraic if there is a way to compute the representation
of a group element output by the algorithm in terms of its input group elements [12].

12

an open problem to formalize and construct PHFs from lattices [36]. We put for-
ward this study by introducing the lattice-based PHF and demonstrate its power
in constructing lattice-based signatures and IBEs in the standard model. Our
PHFs also provide a modular way to investigate several existing cryptographic
constructions from lattices [2,13,47].

2 Preliminaries

2.1 Notation

Let κ be the natural security parameter, and all other quantities are implicitly
dependent on κ. The function logc denotes the logarithm with base c, and we
use log to denote the natural logarithm. The standard notation O,ω are used to
classify the growth of functions. If f(n) = O(g(n) · logc(n)) for some constant
c, we write f(n) = Õ(g(n)). By poly(n) we denote an arbitrary function f(n) =
O(nc) for some constant c. A function f(n) is negligible in n if for every positive
c, we have f(n) < n−c for sufficiently large n. By negl(n) we denote an arbitrary
negligible function. A probability is said to be overwhelming if it is 1− negl(n).
The notation← denotes randomly choosing elements from some distribution (or
the uniform distribution over some finite set). If a random variable x follows
some distribution D, we denote it by x ∽ D.

By R (resp. Z) we denote the set of real numbers (resp. integers). For any
positive N ∈ Z, the notation [N] denotes the set {0, 1, . . . , N − 1}. Vectors
are used in the column form and denoted by bold lower-case letters (e.g., x).
Matrices are treated as the sets of column vectors and denoted by bold capital
letters (e.g., X). The concatenation of the columns of X ∈ Rn×m followed by
the columns of Y ∈ Rn×m′

is denoted as (X∥Y) ∈ Rn×(m+m′). For any element
0 ≤ v ≤ q and integer b ≥ 2, we denote BitDecompq,b(v) as the k-dimensional bit-
decomposition of v in base b, where k = ⌈logb q⌉. We usually omit the subscript
b in BitDecompq,b if b = 2 for simplicity. By ∥ · ∥ and ∥ · ∥∞ we denote the l2
and l∞ norm, respectively. The norm of a matrix X is defined as the norm of its
longest column (i.e., ∥X∥ = maxi ∥xi∥). The largest singular value of a matrix
X is s1(X) = maxu ∥Xu∥, where the maximum is taken over all unit vectors u.

We say that a hash function H : Zn
q → Zn×n

q is an encoding with full-rank
differences (FRD) if the following two conditions hold: 1) for any u ̸= v, the
matrix H(u)−H(v) ∈ Zn×n

q is invertible over Zn×n
q ; and 2) H is computable in

polynomial time in n log q. As shown in [2,22], FRD encodings supporting the
exponential size domain Zn

q can be efficiently constructed. We say that set S
does not cover set T if there exists at least one element t ∈ T such that t /∈ S.
Let CF = {CFX}X∈[L] be a family of subsets of [N]. The family CF is said
to be v-cover-free over [N] if for any subset S ⊆ [L] of size at most v, then the
union ∪X∈SCFX does not cover CFY for all Y /∈ S. Besides, we say that CF
is η-uniform if every subset CFX in the family CF = {CFX}X∈[L] have size
η ∈ Z. Furthermore, there exists an efficient algorithm to generate cover-free
sets [27,43].

13

Lemma 1. There is a deterministic polynomial time algorithm that takes two
integers L = 2ℓ and v ∈ Z as inputs, returns an η-uniform, v-cover-free sets
CF = {CFX}X∈[L] over some [N], where N ≤ 16v2ℓ and η = N/4v.

2.2 Lattices and Gaussian Distributions

Anm-dimensional full-rank lattice Λ ⊂ Rm is the set of all integral combinations
of m linearly independent vectors B = (b1, . . . ,bm) ∈ Rm×m, i.e., Λ = L(B) =
{
∑m

i=1 xibi : xi ∈ Z}. For x ∈ Λ, define the Gaussian function ρs,c(x) over Λ ⊆
Zm centered at c ∈ Rm with parameter s > 0 as ρs,c(x) = exp(−π∥x− c∥2/s2).
Let ρs,c(Λ) =

∑
x∈Λ ρs,c(x), and define the discrete Gaussian distribution over

Λ as DΛ,s,c(y) =
ρs,c(y)
ρs,c(Λ) , where y ∈ Λ. The subscripts s and c are taken to be

1 and 0 (resp.) when omitted. The following result was proved in [48,31,50].

Lemma 2. For any positive integer m ∈ Z, vector y ∈ Zm and large enough
s ≥ ω(

√
logm), we have that

Pr
x←DZm,s

[∥x∥ > s
√
m] ≤ 2−m and Pr

x←DZm,s

[x = y] ≤ 21−m.

Following [47,26], we say that a random variableX over R is subgaussian with
parameter s if for all t ∈ R, the (scaled) moment-generating function satisfies
E(exp(2πtX)) ≤ exp(πs2t2). If X is subgaussian, then its tails are dominated by
a Gaussian of parameter s, i.e., Pr[|X| ≥ t] ≤ 2 exp(−πt2/s2) for all t ≥ 0. As a
special case, any B-bounded symmetric random variableX (i.e., |X| ≤ B always)
is subgaussian with parameter B

√
2π. Besides, we say that a random matrix X

is subgaussian with parameter s if all its one-dimensional marginals uTXv for
unit vectors u,v are subgaussian with parameter s. In such a definition, the
concatenation of independent subgaussian vectors with parameter s, interpreted
either as a vector or as a matrix, is subgaussian with parameter s. In particular,
the distribution DΛ,s for any lattice Λ ⊂ Rn and s > 0 is subgaussian with
parameter s. For random subgaussian matrix, we have the following result from
the non-asymptotic theory of random matrices [53].

Lemma 3. Let X ∈ Rn×m be a random subgaussian matrix with parameter s.
There exists a universal constant C ≈ 1/

√
2π such that for any t ≥ 0, we have

s1(X) ≤ C · s · (
√
m+

√
n+ t) except with probability at most 2 exp(−πt2).

We also have the following useful lemma from [40], which basically says that
we can re-randomize an unknown Gaussian variable.

Lemma 4 ([40]). Let n,m, q > 0 be integers. Let b ∈ Zm
q be arbitrary and x←

DZm,r with r ≥ max{ω(
√
log n), ω(

√
logm)}. Then, for any matrix R ∈ Zn×m

and real σ > s1(R), there exists a PPT algorithm ReRandZ(R,b + x, r, σ) that
outputs b′ = Rb+ x′ ∈ Zn

q where x′ is distributed statistically close to DZn,2rσ.

Let A ∈ Zn×m
q be a matrix for some positive n,m, q ∈ Z, consider the

following two lattices: Λ⊥q (A) = {e ∈ Zm s.t. Ae = 0 mod q} and Λq(A) =

14

{y ∈ Zm s.t. ∃s ∈ Zn, AT s = y mod q}. By definition, we have Λ⊥q (A) =

Λ⊥q (CA) for any invertible C ∈ Zn×n
q . We have several useful facts for Gaussian

distributions from [50,31,47].

Lemma 5. For any positive integer n, prime q > 2, sufficiently large m =
O(n log q) and real s ≥ ω(

√
logm), we have that for a uniformly random matrix

A← Zn×m
q , the following facts hold:

– for variable e ∼ DZm,s, the distribution of u = Ae mod q is statistically
close to uniform over Zn

q ;

– for any c ∈ Rm and every y ∈ Λ⊥q (A), Prx←D
Λ⊥

q (A),s,c
[x = y] ≤ 21−m;

– for any fixed u ∈ Zn
q and arbitrary v ∈ Rm satisfying Av = u mod q,

the conditional distribution of e ∼ DZm,s given Ae = u mod q is exactly
v +DΛ⊥

q (A),s,−v.

Trapdoors. In 1999, Ajtai [5] proposed the first trapdoor generation algorithm
to output an essentially uniform trapdoor matrix A that allows to efficiently
sample short vectors in Λ⊥q (A). This trapdoor generation algorithm had been
improved in [47]. Let In be the n×n identity matrix. We now recall the publicly
known trapdoor matrix Gb in [47]. Formally, for any prime q > 2, integers
n ≥ 1, b ≥ 2 and k = ⌈logb q⌉, define Gb = (In, bIn, . . . , b

k−1In) ∈ Zn×nk
q .6 We

usually omit the subscript b in Gb if b = 2. Then, the lattice Λ⊥q (G) has a

publicly known short basis Tb ∈ Znk×nk with ∥Tb∥ ≤ max{
√
b2 + 1,

√
k}. For

any vector u ∈ Zn
q , the basis Tb ∈ Znk×nk

q can be used to sample short vector

e ∼ DZnk,s satisfying Gbe = u for any s ≥ ω(
√
log n) in quasi-linear time.

Besides, we can also deterministically compute a short vector v = G−1b (u) ∈ Znk
b

such that Gbv = u.

Definition 1 (G-trapdoor [47]). For any integers n, m̄, q ∈ Z, k = ⌈logb q⌉,
and matrix A ∈ Zn×m̄

q , the G-trapdoor for A is a matrix R ∈ Z(m̄−nk)×nk

such that A
[
R
Ink

]
= SGb for some invertible tag S ∈ Zn×n

q . The quality of the

trapdoor is measured by its largest singular value s1(R).

If R is a G-trapdoor forA, one can obtain a G-trapdoor R′ for any extension
(A∥B) by padding R with zero rows. In particular, we have s1(R

′) = s1(R).

Besides, the rows of
[
R
Ink

]
in Definition 1 can appear in any order, since this

just induces a permutation of A’s columns [47].

Proposition 1 ([47]). Given any integers n ≥ 1, q > 2, sufficiently large
m̄ = O(n log q) and a tag S ∈ Zn×n

q , there is an efficient randomized algo-
rithm TrapGenZ(1

n, 1m̄, q,S) that outputs a matrix A ∈ Zn×m̄
q and a G-trapdoor

R ∈ Z(m̄−nk)×nk
q with quality s1(R) ≤

√
m̄ ·ω(

√
log n) such that the distribution

of A is negl(n)-far from uniform and A
[
R
Ink

]
= SGb, where k = ⌈logb q⌉.

6 Note that this definition of Gb is equivalent to Gb = Ik ⊗ (1, b, . . . , bk−1)T in [47]
under the column permutation.

15

In addition, given a G-trapdoor R of A ∈ Zn×m̄
q for some invertible tag

S ∈ Zn×n
q , any U ∈ Zn×n′

q for some integer n′ ≥ 1 and real s ≥ s1(R)·ω(
√
log n),

there is an algorithm SampleDZ(R,A,S,U, s) that samples from a distribution
within negl(n) statistical distance of E ∼ (DZm̄,s)

n′
satisfying AE = U.

2.3 Rings and Trapdoors

Rings. Let n be a power of 2, and define the cyclotomic ring R = Z[x]/(xn +1).
For any integer q > 0, define Rq = Zq[x]/(x

n + 1) analogously. As in [26], we
require that xn+1 does not split into low degree polynomials modulo the prime
factors of q.

Lemma 6 ([26]). Let n ≥ 4 be a power of 2, q ≥ 3 a power of 3, and Rq =
Zq[x]/(x

n + 1). Then, any nonzero polynomial t ∈ Rq of degree d < n/2 and
coefficients in {-1,0,1} is invertible in Rq.

Let ϕ : R→ Zn be the coefficient embedding that maps a polynomial into its
coefficient vector (in the column form). Then, we define the norm of a polynomial
a ∈ R as the (Euclidean) norm of its coefficient vector, i.e., ∥a∥ = ∥ϕ(a)∥. By
identifying R with Zn under the map ϕ, the discrete Gaussian distribution over
R can be defined as DR,s = DZn,s.

Trapdoors over rings. We can also identity R = Z[x]/(xn + 1) with the sub-
ring of anti-circulant matrices in Zn×n by viewing each ring element a ∈ R as
a linear transformation b → a · b over the coefficient embedding of R, i.e., by
treating a as a matrix in Zn×n such that the i-th column is the coefficient of
a · xi mod f(x) where i ∈ {0, . . . , n − 1}. Formally, we let Rot : R → Zn×n be
the ring homomorphism that maps a polynomial into its anti-circulant matrix,
i.e., Rot(a) = (ϕ(a), ϕ(ax), . . . , ϕ(axn−1)) ∈ Zn×n. The definition of Rot can be
naturally extended to vectors and matrices over R in a coordinate-wise way.

Lemma 7 ([26]). Let n ≥ 4 be a power of 2, q ≥ 3 a power of 3, and Rq =
Zq[x]/(x

n + 1). Let m, k > 0 be integers, and let s > 0 be a real. Then, if
R← (DR,s)

m×k, with overwhelming probability we have s1(R) = s1(Rot(R)) ≤
s
√
n ·O(

√
m+

√
k + ω(

√
log n)).

We also have the following Corollary of Lemma 4 for the ring setting.

Lemma 8. Let n,w, k, q > 0 be integers. Let b ∈ Zw
q be arbitrary and x ←

(DR,r)
w with r ≥ max{ω(

√
log kn), ω(

√
logwn)}. Then, for any R ∈ Rk×w

q and
real σ > s1(R), there exists a PPT algorithm ReRandR(R,b+x, r, σ) that outputs
b′ = Rb+ x′ ∈ Rk

q where x′ is distributed statistically close to (DR,2rσ)
k.

Let A ∈ R1×m̄
q , define two lattices Λ⊥q (A) = {e ∈ Rm̄ s.t. Ae = 0} and

Λq(A) = {y ∈ Rm̄ s.t. ∃x ∈ Rq, ATx = y}. We have that Λ⊥q (A) and

Λq(A) over R are equivalent to Λ⊥q (Rot(A)) and Λq(Rot(A
T)T) over Znm̄ un-

der the map ϕ : R → Zn, respectively. The G-trapdoor notion can be eas-
ily extended to the ring setting. Let k be an integer and let q = 3k. Let

16

G3 = (1, 3, . . . , 3k−1)T ∈ R1×k
q be the public primitive vector, we have that

Rot(G3) = (In, 3In, . . . , 3
k−1In) ∈ Zn×nk

q . We have the following results.

Proposition 2 ([47,26]). Given any integers n,w, k ≥ 1, q = 3k, sufficiently
large m̄ = w + k and a tag h ∈ Rq, there is an efficient randomized algorithm
TrapGenR(1

n, 1m̄, q, h) that outputs a matrix A ∈ R1×m̄
q and a G-trapdoor R ∈

Rw×k
q with quality s1(R) ≤ s

√
n · O(

√
w +

√
k + ω(

√
log n)) · ω(

√
log nw) such

that the distribution of a is negl(n)-far from uniform and A
[
R
Ik

]
= hG3.

In addition, given a G-trapdoor R of A ∈ R1×m̄
q for some invertible tag

h ∈ Rq, any U ∈ R1×n′

q for some integer n′ ≥ 1 and real s ≥ s1(R) · ω(
√
log n),

there is an algorithm SampleDR(R,A, h,U, s) that samples from a distribution
within negl(n) statistical distance of E ∼ (DR,s)

m̄×n′
satisfying AE = U.

Lemma 9 ([26]). Let n ≥ 4 be a power of 2, q ≥ 3 a power of 3, Rq =
Zq[x]/(x

n + 1). Let integers w ≥ 2⌈log2 q⌉ + 2 and real s ≥ ω(
√
log nw). With

overwhelming probability over the choice of A ← R1×w
q , if r ← (DR,s)

w, then
Ar is within negligible statistical distance from uniform distribution over Rq.

2.4 LWE and (I)SIS Problems

In this paper, let ring R be either the integer ring Z or the polynomial ring
Z[x]/(xn+1) with n being a power of 2. Let Rq = R/(qR) be the quotient ring.

Learning with Errors (LWE) over ring R. For any positive integer n, q, real
α > 0, and any vector s ∈ Rn

q , the distribution As,α over Rn
q × Rq is de-

fined as As,α = {(a,aT s + x) : a ← Rn
q , x ← DR,αq}, where DR,αq is the

discrete Gaussian distribution over R with parameter αq. For m independent
samples (a1, y1), . . . , (am, ym) from As,α, we denote it in matrix form (A,y) ∈
Rn×m

q × Rm
q , where A = (a1, . . . ,am) and y = (y1, . . . , ym)T . We say that

an algorithm solves the LWEq,α problem over ring R if, for uniformly random
s← Rn

q , given polynomial samples from As,α it outputs s with noticeable prob-
ability. The decisional variant of LWE is that, for a uniformly random s← Rn

q ,
the solving algorithm is asked to distinguish As,α from the uniform distribu-
tion over Rn

q ×Rq (with only polynomial samples). For certain modulus q, the
average-case decisional LWE problem is polynomially equivalent to its worst-case
search version [51,46].

Note that the above LWE definition with R = Z actually refers to the stan-
dard LWE problems in [51]. Moreover, the setting with R = R refers to the
standard ring-LWE problems [46].

Small Integer Solutions (SIS) over ring R. The Small Integer Solution (SIS)
problem was first introduced by Ajtai [4]. Formally, given positive n,m, q ∈ Z,
a real β > 0, and a uniformly random matrix A ∈ Rn×m

q , the SISq,m,β problem
over R asks to find a non-zero vector e ∈ Rm such that Ae = 0 mod q and
∥e∥ ≤ β. In [31], Gentry et al. introduced the ISIS problem, which was an

17

inhomogeneous variant of SIS. Specifically, given an extra random syndrome
u ∈ Rn

q , the ISISq,m,β problem over R asks to find a vector e ∈ Rm such that
Ae = u and ∥e∥ ≤ β.

2.5 Digital Signatures

A digital signature scheme SIG = (KeyGen,Sign,Verify) consists of three PPT
algorithms. Taking the security parameter κ as input, the key generation algo-
rithm outputs a verification key vk and a secret signing key sk, i.e., (vk, sk)←
KeyGen(1κ). The signing algorithm takes vk, sk and a message M ∈ {0, 1}∗ as
inputs, outputs a signature σ on M , briefly denoted as σ ← Sign(sk,M). The
verification algorithm takes vk, message M ∈ {0, 1}∗ and a string σ ∈ {0, 1}∗
as inputs, outputs 1 if σ is a valid signature on M , else outputs 0, denoted
as 1/0 ← Verify(vk,M, σ). For correctness, we require that for any (vk, sk) ←
KeyGen(1κ), any message M ∈ {0, 1}∗, and any σ ← Sign(sk,M), the equation
Verify(vk,M, σ) = 1 holds with overwhelming probability, where the probability
is taken over the choices of the random coins used in KeyGen, Sign and Verify.

The standard security notion for digital signature scheme is the existential
unforgeability against chosen message attacks (EUF-CMA), which (informally)
says that any PPT forger, after seeing valid signatures on a polynomial number
of adaptively chosen messages, cannot create a valid signature on a new message.
Formally, consider the following game between a challenger C and a forger F :

KeyGen. The challenger C first runs (vk, sk) ← KeyGen(1κ) with the security
parameter κ. Then, it gives the verification key vk to the forger F , and keeps
the signing secret key sk to itself.

Signing. The forger F is allowed to ask the signature on any message M . The
challenger C computes and sends σ ← Sign(sk,M) to the forger F . The
forger can repeat this any polynomial number of times.

Forge. F outputs a message-signature pair (M∗, σ∗). LetQ be the set of all mes-
sages queried by F in the signing phase. If M∗ /∈ Q and Verify(vk,M∗, σ∗) =
1, the challenger C outputs 1, else outputs 0.

We say that F wins the game if the challenger C outputs 1. The advantage
of F in the above security game is defined as Adveuf-cma

SIG,F (1κ) = Pr[C outputs 1].

Definition 2 (EUF-CMA Security). Let κ be the security parameter. A sig-
nature scheme SIG is said to be existentially unforgeable against chosen message
attacks (EUF-CMA) if the advantage Adveuf-cma

SIG,F (1κ) is negligible in κ for any
PPT forger F .

In a modified security game of existential unforgeability against non-adaptive
chosen message attacks, F is asked to output all the messagesQ = {M1, . . . ,MQ}
for signing queries before seeing the verification key vk, and is given vk and the
signatures {σ1, . . . , σQ} on all the queried messages at the same time (i.e., there
is no adaptive signing query phase). The resulting security notion defined us-
ing the modified game as in Definition 2 is denoted as EUF-naCMA. One can

18

transform an EUF-naCMA secure signature scheme into an EUF-CMA secure
one [9,26] by using chameleon hash functions [42]. Besides, if the number of the
signing queries allowed for the adversary is upper bounded by some (arbitrary)
polynomial that needs to be fixed before the key generation phase in the security
game, the resulting security notion is denoted as EUF-qCMA.

2.6 Identity-based Encryption

An identity-based encryption (IBE) scheme consists of four PPT algorithms
IBE = (Setup,Extract,Enc, Dec). Taking the security parameter κ as input, the
randomized key generation algorithm Setup outputs a master public key mpk
and a master secret key msk, denoted as (mpk,msk) ← Setup(1κ). The (ran-
domized) extract algorithm takes mpk,msk and an identity id as inputs, out-
puts a user private key skid for id, briefly denoted as skid ← Extract(msk, id).
The randomized encryption algorithm Enc takes mpk, id and a plaintext M
as inputs, outputs a ciphertext C, denoted as C ← Enc(mpk, id,M). The de-
terministic algorithm Dec takes skid and C as inputs, outputs a plaintext M ,
or a special symbol ⊥, which is denoted as M/⊥ ← Dec(skid, C). In addition,
for all (mpk,msk) ← Setup(1κ), skid ← Extract(msk, id) and any plaintext M ,
we require that Dec(skid, C) = M holds for any C ← Enc(mpk, id,M) with
overwhelming probability.

The standard semantic security of IBE was first introduced in [11]. Formally,
consider the following game played by an adversary A.
Setup. The challenger C first runs Setup(1κ) with the security parameter κ.

Then, it gives the adversary A the master public key mpk, and keeps the
master secret key msk to itself.

Phase 1. The adversary is allowed to query the user private key for any iden-
tity id. The challenger C runs skid ← Extract(msk, id) and sends skid to
the adversary A. The adversary can repeat the user private key query any
polynomial number of times.

Challenge. The adversary A outputs a pair of challenge plaintext (M0,M1)
and a challenge identity id∗ with a restriction that id∗ is not used in the
user private key query in phase 1. The challenger C first chooses a uniformly
random b∗ ← {0, 1}, and then computes Cb∗ ← Enc(mpk, id∗,Mb∗). Finally,
it sends Cb∗ as the challenge ciphertext to A.

Phase 2. The adversary can adaptively make more user private key queries
with any identity id ̸= id∗. The challenger C responds as in Phase 1.

Guess. Finally, A outputs a guess b ∈ {0, 1}. If b = b∗, the challenger C outputs
1, else outputs 0.

The advantage ofA in the above security game is defined as Advind-id-cpaIBE,A (κ) =

|Pr[b = b∗]− 1
2 |.

Definition 3 (IND-ID-CPA Security). We say an IBE scheme IBE is IND-

ID-CPA secure if for any PPT adversary A, its advantage Advind-id-cpaIBE,A (κ) is
negligible in κ.

19

In the security game against chosen ciphertext attacks (i.e., IND-ID-CCA),
the adversary is also allowed to make decryption queries in both Phase 1 and
Phase 2 such that it can obtain the decrypted results from any identity-ciphertext
pair (id, C) ̸= (id∗, Cb∗). Besides, the paper [15] also introduced a weaker security
notion, known as selective-identity security, by using a modified security game,
where the adversary is asked to output the challenge identity id∗ before seeing
the master public key in the setup phase, and is restricted to make user private
key query for id ̸= id∗ in both Phase 1 and Phase 2. The resulting security notion
defined using the modified game as in Definition 3 is denoted as IND-sID-CPA.
Furthermore, if the number of the private key queries allowed for the adversary
is upper bounded by some (arbitrary) polynomial that needs to be fixed before
the key generation phase in the security game, the resulting security notion is
denoted as IND-qID-CPA.

3 Programmable Hash Functions from Lattices

Let ℓ,m, m̄, n, n̄, q, u, v ∈ Z be some polynomials in the security parameter κ.
Let ring R be either the integer ring Z or the polynomial ring Z[x]/(xn+1). Let
Rq = R/(qR) be the quotient ring. We now give the definition of lattice-based
programmable hash functions (PHF). By In̄ we denote the set of invertible ma-
trices in Rn̄×n̄

q . A hash function H : X → Rn̄×m
q defined over the ring R consists

of two algorithms (H.GenR,H.EvalR). Given the security parameter κ, the prob-
abilistic polynomial time (PPT) key generation algorithm H.GenR(1

κ) outputs
a key K, i.e., K ← H.GenR(1

κ). For any input X ∈ X , the efficiently determin-
istic evaluation algorithm H.EvalR(K,X) outputs a hash value Z ∈ Rn̄×m

q , i.e.,
Z = H.EvalR(K,X). For simplicity, we write HK(X) = H.EvalR(K,X).

Definition 4 (Lattice-based Programmable Hash Functions). A hash
function H : X → Rn̄×m

q defined over ring R is a (u, v, β, γ, δ)-PHF if there
exist a PPT trapdoor key generation algorithm H.TrapGenR, and an efficiently
deterministic trapdoor evaluation algorithm H.TrapEvalR such that for a uni-
formly random matrix A← Rn̄×m̄

q and a (public) trapdoor matrix B ∈ Rn̄×m
q ,7

the following properties hold:

Syntax: The PPT algorithm (K ′, td) ← H.TrapGenR(1
κ,A,B) outputs a key

K ′ together with a trapdoor td. Moreover, for any input X ∈ X , the de-
terministic algorithm (RX ,SX) = H.TrapEvalR(td,K ′, X) returns RX ∈
Rm̄×m

q and SX ∈ Rn̄×n̄
q such that s1(RX) ≤ β and SX ∈ In̄ ∪{0} hold with

overwhelming probability over the trapdoor td that is produced along with K ′.

Correctness: For all possible (K ′, td) ← H.TrapGenR(1
κ,A,B), all X ∈ X

and its corresponding (RX ,SX) = H.TrapEvalR(td,K ′, X), we have HK′(X)
= H.EvalR(K ′, X) = ARX + SXB.

7 A general trapdoor matrix B is used for utmost generality, but the publicly known
trapdoor matrix B = G in [47] is recommended for both efficiency and simplicity.

20

Statistically close trapdoor keys: For all (K ′, td)← H.TrapGenR(1
κ,A,B)

and K ← H.GenR(1
κ), the statistical distance between (A,K ′) and (A,K)

is at most γ.

Well-distributed hidden matrices: For all (K ′, td)← H.TrapGenR(1
κ,A,B),

any inputs X1, . . . , Xu, Y1, . . . , Yv ∈ X such that Xi ̸= Yj for any i, j, let
(RXi ,SXi) = H.TrapEval(td,K ′, Xi) and (RYi ,SYi) = H.TrapEvalR(td,K ′,
Yi). Then, we have that

Pr[SX1
= · · · = SXu

= 0 ∧ SY1
, . . . ,SYv

∈ In̄] ≥ δ,

where the probability is over the trapdoor td produced along with K ′.

If γ is negligible and δ > 0 is noticeable, we simply say that H is a (u, v, β)-PHF.
Furthermore, if H is a (u, v, β)-PHF for every polynomial u (resp. v) in κ, we
say that H is a (poly, v, β)-PHF (resp. (u, poly, β)-PHF).

A weak programmable hash function is a relaxed version of PHF, where
theH.TrapGen algorithm additionally takes a listX1, . . . , Xu ∈ X as inputs such
that the well-distributed hidden matrices property holds in the following sense:
For all (K ′, td) ← H.TrapGen(1κ,A,B, {X1, . . . , Xu}), any inputs Y1, . . . , Yv ∈
X such that Yj /∈ {X1, . . . , Xu} for all j, let (RXi

,SXi
) = H.TrapEval(td,K ′, Xi)

and (RYi
,SYi

) = H.TrapEval(td,K ′, Yi), we have that Pr[SX1
= · · · = SXu

=
0 ∧ SY1 , . . . ,SYv ∈ In] ≥ δ, where the probability is over the trapdoor td pro-
duced along with K ′.

Besides, a hash function H : X → Rn̄×m
q can be a (weak) (u, v, β)-PHF for

different parameters u and v, since there might exist different pairs of trapdoor
key generation and trapdoor evaluation algorithms for H. If this is the case, one
can easily show that the keys output by these trapdoor key generation algorithms
are statistically indistinguishable by definition.

3.1 Type-I Construction

We describe the Type-I construction of lattice-based PHFs in the following.

Definition 5. Let ℓ, n̄,m, q ∈ Z be some polynomials in the security parameter
κ. Let E be a deterministic encoding from X to (Rn̄×n̄

q)ℓ, the hash function

H = (H.Gen,H.Eval) with key space K ⊆ (Rn̄×m
q)ℓ+1 is defined as follows:

– H.Gen(1κ): Randomly choose (A0, . . . ,Aℓ)← K, return K = {Ai}i∈{0,...,ℓ}.
– H.Eval(K,X): Let E(X) = (C1, . . . ,Cℓ), return Z = A0 +

∑ℓ
i=1 CiAi.

We note that the above hash function has actually been (implicitly) used to
construct both signatures (e.g, [13,9,49]) and encryptions (e.g., [2,47]). Let In̄
be the n̄× n̄ identity matrix in Rn̄×n̄. In the following theorems, we summarize
several known results which were implicitly proved in [13,2,47].

21

Theorem 1. Let K = (Zn̄×m
q)ℓ+1 and X = {0, 1}ℓ. In addition, given an input

X = (X1, . . . , Xℓ) ∈ X , the encoding function E(X) returns Ci = (−1)Xi ·In̄ for
i = {1, . . . , ℓ}. Then, for large enough integer m = O(n log q), the instantiated
hash function H over ring R = Z of Definition 5 is a (1, poly, β)-PHF for some
β ≤
√
ℓm · ω(

√
log n).

Theorem 2. For large enough m = O(n̄ log q), the hash function H over R = Z
given in Definition 5 is a weak (1, poly, β, γ, δ)-PHF with β ≤

√
ℓm · ω(

√
log n̄),

γ = negl(κ), and δ = 1 when instantiated as follows:

– Let K = (Zn̄×m
q)2 (i.e., ℓ = 1) and X = Zn̄

q . Given an input X ∈ X , the
encoding E(X) returns H(X) where H : Zn̄

q → Zn̄×n̄
q is an FRD encoding.

– Let K = (Zn̄×m
q)ℓ+1 and X = {0, 1}ℓ. Given an input X = (X1, . . . , Xℓ) ∈ X ,

the encoding E(X) returns Ci = Xi · In̄ for all i ∈ {1, . . . , ℓ}.

We first note that the above two theorems can be easily extended to R =
R. Besides, unlike the traditional PHFs [35,34,17] where a bigger u is usually
better in constructing short signature schemes, our lattice-based PHFs seem
more useful when the parameter v is bigger (e.g., a polynomial in κ). There
is a simple explanation: although both notions aim at capturing some kind of
partitioning proof trick, i.e., each programmed hash value contains a hidden
element behaving as a trigger of some prior embedded trapdoors, for traditional
PHFs the trapdoor is usually triggered when the hidden element is zero, while in
the lattice setting the trapdoor is typically triggered when the hidden element is
a non-zero invertible one. This also explains why previous known constructions
on lattices (e.g., the instantiations in Theorem 1 and Theorem 2) are (weak)
(1, poly, β)-PHFs for any polynomial v = poly(κ) ∈ Z and real β ∈ R.

3.2 Type-II Construction

Let integers ℓ, m̄, n, n̄, q, u, v, L,N be some polynomials in the security parameter
κ, and let k = ⌈log2 q⌉. We now exploit the nice property of the publicly known
trapdoor matrix B = G ∈ Rn̄×n̄k

q to construct more efficient PHF from lattices
for an arbitrary but fixed polynomial v = poly(κ).

Definition 6. Let n, q ∈ Z be some polynomials in the security parameter κ.
For any ℓ, v ∈ Z and L = 2ℓ, let N ≤ 16v2ℓ, η ≤ 4vℓ and CF = {CFX}X∈[L]

be defined as in Lemma 1. Let µ = ⌈log2 N⌉ and k = ⌈log2 q⌉. Then, the hash
function H = (H.GenR,H.EvalR) from [L] to Rn̄×n̄k

q is defined as follows:

– H.Gen(1κ): Randomly choose Â,Ai ← Rn̄×n̄k
q for i ∈ {0, . . . , µ− 1}, return

the key K = (Â, {Ai}i∈{0,...,µ−1}).
– H.Eval(K,X): Given the key K = (Â, {Ai}i∈{0,...,µ−1}) and an integer X ∈

[L] as inputs, first compute Bz = CompN ({Ai}0≤i≤µ−1, z) for all z ∈ CFX

as shown in Fig. 1. Then, return Z = Â+
∑

z∈CFX
Bz.

22

CompN ({Ai}0≤i≤µ−1, z)

(b0, . . . , bµ−1) := BitDecompN (z)

Bz := Aµ−1 − bµ−1 ·G

For i = µ− 2, . . . , 0

Bz := (Ai − bi ·G) ·G−1(Bz)

Return Bz

TcompN ({Ai,Ri}0≤i≤µ−1, z)

(b0, . . . , bµ−1) := BitDecompN (z)

Bz := Aµ−1 − bµ−1 ·G
Rz := Rµ−1

Sz := (1− b∗µ−1 − bµ−1) · In
For i = µ− 2, . . . , 0

Bz := (Ai − bi ·G) ·G−1(Bz)

Rz := Ri ·G−1(Bz) + (1− b∗i − bi) ·Rz

Sz := (1− b∗i − bi) · Sz

Return (Rz,Sz)

Fig. 1. The Algorithms Used in Definition 6 and Theorem 3

In the following, we now show that for any prior fixed v = poly(κ), the
hash function H with R = Z given in Definition 6 is a (1, v, β)-PHF for some
polynomially bounded β ∈ R. We also note that similar results can also be
obtained for R = R.

Theorem 3. For any ℓ, v ∈ Z and L = 2ℓ, let N ≤ 16v2ℓ, η ≤ 4vℓ and CF =
{CFX}X∈[L] be defined as in Lemma 1. Then, for large enough m̄ = O(n̄ log q),
the hash function H with R = Z in Definition 6 is a (1, v, β, γ, δ)-PHF with β ≤
µvℓm̄1.5 · ω(

√
log m̄), γ = negl(κ) and δ = 1/N − negl(κ), where µ = ⌈log2 N⌉.

In particular, if we set ℓ = n̄ and v = ω(log n̄), then β = Õ(n̄2.5), and the
key of H only consists of µ = O(log n̄) matrices.

Proof. We now construct a pair of trapdoor algorithms for H as follows:

– H.TrapGenZ(1
κ,A,G): Given a uniformly random A ← Zn̄×m̄

q and a ma-

trix G ∈ Zn̄×n̄k
q for sufficiently large m̄ = O(n̄ log q) as inputs, let s =

ω(
√
log m̄) ∈ R satisfy the requirement in Lemma 5. Randomly choose

R̂,Ri ← (DZm̄,s)
n̄k for i ∈ {0, . . . , µ − 1}, and an integer z∗ ← [N].

Let (b∗0, . . . , b
∗
µ−1) = BitDecompN (z∗), and let c be the number of 1’s in

the vector (b∗0, . . . , b
∗
µ−1). Then, compute Â = AR̂ − (−1)c ·G and Ai =

ARi + (1 − b∗i) ·G. Finally, return the key K ′ = (Â, {Ai}i∈{0,...,µ−1}) and
the trapdoor td = (R̂, {Ri}i∈{0,...,µ−1}, z∗).

– H.TrapEvalZ(td,K ′, X): Given the trapdoor td = (R̂, {Ri}i∈{0,...,µ−1}, z∗)
for the key K ′ = (Â, {Ai}i∈{0,...,µ−1}) and an input X ∈ [L] as inputs,
the algorithm first computes CFX by Lemma 1. Then, let (b∗0, . . . , b

∗
µ−1) =

BitDecompN (z∗), and compute (Rz,Sz) = TcompN ({Ai,Ri}0≤i≤µ−1, z) for
all z ∈ CFX as shown in Fig. 1. Finally, return RX = R̂+

∑
z∈CFX

Rz and
SX = −(−1)c · In +

∑
z∈CFX

Sz.

Since s ≥ ω(
√
log m̄) and R̂,Ri ← (DZm̄,s)

n̄k, each matrix in the key K ′ =

(Â, {Ai}i∈{0,...,µ−1}) is statistically close to uniform over Zn̄×n̄k
q by Lemma 5.

23

Using a standard hybrid argument, it is easy to show that the statistical dis-
tance γ between (A,K ′) and (A,K) is negligible, where K ← H.Gen(1κ). In
particular, this means that z∗ is statistically hidden in K ′.

For correctness, we first show that Bz = ARz + SzG always holds during
the computation of Tcomp. By definition, we have that Bz = Aµ−1− bµ−1 ·G =
ARz + SzG holds before entering the loop. Assume that Bz = ARz + SzG
holds before entering the j-th (i.e., i = j) iteration of the loop, we now show
that the equation Bz = ARz + SzG still holds after the j-th iteration. Since
Aj − bj · G = ARj + (1 − b∗j − bj) · G, we have that Bz := (Aj − bj · G) ·
G−1(Bz) = ARj ·G−1(Bz)+(1− b∗j − bj) · (ARz+SzG). This means that if we

set Rz := Rj ·G−1(Bz)+(1−b∗j−bj)·Rz and Sz := (1−b∗j−bj)·Sz, the equation

Bz = ARz+SzG still holds. In particular, we have that Sz =
∏µ−1

i=0 (1−b∗i−bi)·In̄
holds at the end of the inner loop. It is easy to check that Sz = 0 for any z ̸= z∗,
and Sz = (−1)c · In̄ for z = z∗, where c is the number of 1’s in the binary vector
(b∗0, . . . , b

∗
µ−1) = BitDecompN (z∗). The correctness of the trapdoor evaluation

algorithm follows from that fact that Z = H.Eval(K ′, X) = Â+
∑

z∈CFX
Bz =

AR̂− (−1)c ·G+
∑

z∈CFX
(ARz +SzG) = ARX +SXB. In particular, we have

that SX = −(−1)c · In̄ if z∗ /∈ CFX , else SX = 0.
Since s1(G

−1(Bz)) ≤ n̄k by the fact that G−1(Bz) ∈ {0, 1}n̄k×n̄k, and

s1(R̂), s1(Ri) ≤ (
√
m̄+

√
n̄k) · ω(

√
log m̄) by Lemma 3, we have that s1(Rz) ≤

µm̄1.5 ·ω(
√
log m̄) holds except with negligible probability for any z ∈ CFX . Us-

ing |CFX | = η ≤ 4vℓ, the inequality s1(RX) ≤ µvℓm̄1.5 ·ω(
√
log m̄) holds except

with negligible probability for any X ∈ [L]. Besides, for any X1, Y1, . . . , Yv ∈ [L]
such that X1 ̸= Yj for all j ∈ {1, . . . , v}, there is at least one element in
CFX1

⊆ [N] that does not belong to the union set ∪j∈{1,...,v}CFYj
. This is

because the family CF = {CFX}X∈[L] is v-cover-free. Since z
∗ is randomly cho-

sen from [N] and is statistically hidden in the key K ′, the probability Pr[z∗ ∈
CFX1

∧ z∗ /∈ ∪j∈{1,...,v}CFYj
] is at least 1/N − negl(κ). Thus, we have that

Pr[SX1 = 0 ∧ SY1 = · · · = SYv = −(−1)c · In ∈ In] ≥ 1/N − negl(κ). □

3.3 Type-III Construction

In this section, we present a PHF construction with constant keys over rings,
which is inspired by the homomorphic equality testing algorithm [1]. At a high

level, our construction heavily relies on the function (2n)−1
∑2n−1

i=0 xi in Rq =
Z[x]/(xn + 1), where n is a power of 2 and q is an odd integer. In particular,
given any z∗, z ∈ [N] for some N ≤ 2n, we have that

fz∗,2n(z) = (2n)−1
2n−1∑
i=0

(xz∗−z)i =

{
1, if z∗ = z;

0, otherwise.

By using the fact that fz∗,2n(z) =
∑2n−1

i=0

(
(2n)−1x−zi

)
xz∗i =

∑2n−1
i=0 c(z, 2n, i)ui

for some c(z, 2n, i) = (2n)−1x−zi, u = xz∗
, the authors [1] proposed a homomor-

phic equality testing algorithm which, given an encoding of u = xz∗
for some

24

unknown z∗ ∈ [N] and a public integer z ∈ [N], outputs an encoding of fz∗,2n(z),
by homomorphically evaluating fz∗,2n(z) with 2n homomorphic multiplications
and 2n− 1 homomorphic additions.

First, we observe that it is possible to reduce the number of homomorphic
multiplications if N ≪ 2n. Let d be a factor of 2n such that d/2 < N ≤ d. Then,
for any z∗, z ∈ [N], we have that

fz∗,d(z) = d−1
d−1∑
i=0

(x
2n
d (z∗−z))i =

d−1∑
i=0

c(z, d, i)ui =

{
1, if z = z∗;

0, otherwise,

where c(z, d, i) = d−1x−
2n
d zi, u = x

2n
d z∗

. Clearly, given encoding of u = x
2n
d z∗

for some unknown z∗ ∈ [N] and a public integer z ∈ [N], the function fz∗,d(z)
can be evaluated with at most d < 2N homomorphic multiplications.

Second, we can essentially extend the above technique to N > 2n. Let d be a
factor of 2n, and let e+1 = ⌈logd N⌉ ∈ Z. Note that for any integer z ∈ [N], there
exists a unique integer vector (ze, . . . , z0) ∈ [d]e+1 such that z =

∑e
j=0 zjd

j . Let
de be a factor of 2n such that de/2 ≤ ⌊N/de⌋ < de ≤ d. Then, given integers
z∗ =

∑e
j=0 z

∗
j d

j , z =
∑e

j=0 zjd
j ∈ [N], we have that

gz∗,N,d(z) = fz∗
e ,de(ze) ·

e−1∏
j=0

fz∗
j ,d

(zj) =

{
1, if z = z∗;

0, otherwise.

Third, the above technique can be further extended to deal with set inclusion
relation. Specifically, given z∗ =

∑e
i=0 z

∗
j d

j ∈ [N] and any set S ∈ [N]η, we have
that

gz∗,N,d(S) =
∑
z∈S

gz∗,N,d(z) =

{
1, if z∗ ∈ S;

0, otherwise.

Now, we are ready to present our Type-III PHF construction, which is essen-
tially a deterministic algorithm that homomorphically evaluates the function
gz∗,N,d(S).

Definition 7. Let n be a power of 2, and let q = 3k for some integer k. Let
Rq = Zq[x]/(x

n + 1). For any ℓ = O(n), v = poly(n) ∈ Z and L = 2ℓ, let
N ≤ 16v2ℓ, η ≤ 4vℓ and CF = {CFX}X∈[L] be defined as in Lemma 1. Let d ≥ 2
be a factor of 2n, and let e+1 = ⌈logd N⌉. Let de ≥ 2 be a factor of 2n such that
de/2 ≤ ⌊(N−1)/de⌋ < de ≤ d. Then, the hash function H = (H.GenR,H.EvalR)
from [L] to R1×k

q is defined as follows:

– H.GenR(1
κ): Randomly choose Â,Ai ← R1×k

q for 0 ≤ i ≤ e, return the key

K = (Â, {Ai}).
– H.EvalR(K,X): Given the key K = (Â, {Aj}) and an integer X ∈ [L]

as inputs, compute Uz = RcompN,d({Aj}0≤j≤e, de, z) ∈ R1×k
q for all z as

shown in Fig. 2. Then, return Z = Â+
∑

z∈CFX
Uz.

25

RcompN,d({Ai}0≤i≤e, de, z)

Let z =
∑e

i=0 zid
i, where zi ∈ [d]

Let di = d for 0 ≤ i ≤ e− 1

For i = 0, · · · , e :

Âi = Ai · x
− 2n

di
zi

Ui,di−1 = d−1
i G3

For j = di − 2, · · · , 0 :

Ui,j = ÂiG
−1
3 (Ui,j+1) + d−1

i G3

Uz = U0,0

For i = 1, · · · , e :

Uz = Ui,0G
−1
3 (Uz)

Return Uz

TRcompN,d({Ai, R̂i}0≤i≤e, de, z)

Let z =
∑e

i=0 zid
i, where zi ∈ [d]

Let di = d for 0 ≤ i ≤ e− 1

For i = 0, · · · , e :

Âi = Ai · x
− 2n

di
zi

Ui,di−1 = d−1
i G3, Ri,di−1 = 0, hi,di−1 = d−1

i

For j = di − 2, · · · , 0 :

Ui,j = ÂiG
−1
3 (Ui,j+1) + d−1

i G3

Ri,j = x
− 2n

di
ziR̂iG

−1
3 (Ui,j+1) + x

2n
di

(z∗i −zi)Ri,j+1

hi,j = x
2n
di

(z∗i −zi)hi,j+1 + d−1
i

Uz = U0,0,Rz = R0,0, hz = h0,0

For i = 1, · · · , e :

Uz = Ui,0G
−1
3 (Uz)

Rz = Ri,0G
−1
3 (Uz) + hi,0Rz, hz = hi,0hz

Return (Rz, hz)

Fig. 2. The Algorithms Used in Definition 7 and Theorem 4

We now show that for any prior fixed v = poly(κ), the hash function H given
in Definition 7 is a (1, v, β)-PHF for some polynomially bounded β ∈ R.

Theorem 4. Let n be a power of 2, and let q = 3k for some integer k. Let
Rq = Zq[x]/(x

n + 1). For any ℓ = O(n), v ≤ poly(n) ∈ Z and L = 2ℓ, let
N ≤ 16v2ℓ, η ≤ 4vℓ and CF = {CFX}X∈[L] be defined as in Lemma 1. Let
w = 2⌈log2 q⌉+2. Let d ≥ 2 be a factor of 2n, and let e+1 = ⌈logd N⌉. Let de ≥ 2
be a factor of 2n such that de/2 ≤ ⌊(N−1)/de⌋ < de ≤ d. Then, the hash function
H in Definition 7 is a (1, v, β, γ, δ)-PHF with β ≤ vℓn2.5k2ed ·ω(

√
log n log nw),

γ = negl(κ) and δ = 1/N − negl(n).
In particular, if we set ℓ = n and d = n1/c, then β = v · Õ(n3.5+1/c), and

the key of H only consists of a constant number ⌈logd N⌉+1 of elements in Rk
q .

Moreover, if ℓ = n and v = ω(log n), then by setting d = 2n we can have that
β = Õ(n3.5), and that the key of H only consists of 3 elements in R1×k

q .

Proof. We now construct a pair of trapdoor algorithms for H as follows:

– H.TrapGenR(1
κ,A,G3): Given a uniformly random A← R1×w

q and matrix

G3 ∈ R1×k
q for w = 2⌈log2 q⌉ + 2 as inputs, let s = ω(

√
log nw) ∈ R satisfy

the requirement in Lemma 9. Randomly choose R̂, R̂i ← (DR,s)
w×k for

0 ≤ i ≤ e, and an integer z∗ =
∑e

i=0 z
∗
i d

i ← [N], where z∗e ∈ [de] and z∗i ∈ [d]

for 0 ≤ i ≤ e − 1. Then, compute Â = AR̂ −G3, Ai = AR̂i + x
2n
d z∗

i G3

for 0 ≤ i ≤ e − 1, and Ae = AR̂e + x
2n
de

z∗
eG3. Finally, return the key

K ′ = (Â, {Ai}) and the trapdoor td = (R̂, {R̂i}, z∗).
– H.TrapEvalR(td,K ′, X): Given the trapdoor td = (R̂, {R̂i}, z∗) for the key

K ′ = (Â, {Ai}) and an integer X ∈ [L] as inputs, compute (Rz, hz) =

26

TRcompN,d({Ai, R̂i}0≤i≤e, de, z) for all z ∈ CFX as shown in Fig. 2. Then,

return RX = R̂+
∑

z∈CFX
Rz and SX = −1 +

∑
z∈CFX

hz.

Since s = ω(
√
log nw) and R̂, R̂i ← (DR,s)

w×k for 0 ≤ i ≤ e, each vector in

the key K ′ = (Â, {Ai}) is statistically close to uniform over Rk
q by Lemma 9.

Using a standard hybrid argument, it is easy to show that the statistical dis-
tance γ between (A,K ′) and (A,K) is negligible, where K ← H.Gen(1κ). In
particular, this means that z∗ is statistically hidden in K ′.

For correctness, it suffices to show that Uz = ARz + hzG3 holds for all
(Rz, hz) = TRcompN,d({Ai, R̂i}0≤i≤e, de, z). First, we show thatUi,0 = ARi,0+

hi,0G3 always holds for all 0 ≤ i ≤ e. Note that Ai = AR̂i + x
2n
d z∗

i G3 for

0 ≤ i ≤ e − 1 and Ae = AR̂e + x
2n
de

z∗
eG3. By the definition of di = d for

all 0 ≤ i ≤ e − 1 and Âi = Ai · x−
2n
di

zi for all 0 ≤ i ≤ e, we have that

Âi = AR̂i · x−
2n
di

zi + x
2n
di

(z∗
i−zi)G3 for all 0 ≤ i ≤ e. Since we always have

Ui,di−1 = AiRi,di−1+hi,di−1G3, by induction it suffices to show that ifUi,j+1 =
AiRi,j+1 + hi,j+1G3 holds for some 0 ≤ j ≤ di − 2, then Ui,j = AiRi,j +

hi,jG3 also holds. Since Ui,j = ÂiG
−1
3 (Ui,j+1) + d−1i G3, we have that Ui,j =

A(x
− 2n

di
ziR̂iG

−1
3 (Ui,j+1) + x

2n
di

(z∗
i−zi)Ri,j+1) + (x

2n
di

(z∗
i−zi)hi,j+1 + d−1i)G3 =

ARi,j + hi,jG3, where Ri,j = x
− 2n

di
ziR̂iG

−1
3 (Ui,j+1) + x

2n
di

(z∗
i−zi)Ri,j+1 and

hi,j = x
2n
di

(z∗
i−zi)hi,j+1 + d−1i . Because s1(G

−1
3 (U)) ≤ 3nk for any U ∈ R1×k

q ,

we have that s1(Ri,j) ≤ 3nk · s1(R̂i) + s1(Ri,j+1). By induction, we have

that Ui,0 = ARi,0 + hi,0G3 holds for s1(Ri,0) ≤ 3nk(di − 1) · s1(R̂i) and

hi,0 = d−1i

∑di−1
j=0 x

2n
di

(z∗
i−zi)j = fz∗

i ,di
(zi).

Now, we show that Uz = ARz +hzG3 always holds during the second loop.
Note that for each z ∈ CFX , we have that Uz = U0,0,Rz = R0,0, hz = h0,0

before entering the loop. By the analysis above, we always have that Uz =
ARz + hzG3 before entering the second loop, where hz = fz∗

0 ,d0
(z0). By the

definition thatUz = Ui,0G
−1
3 (Uz) and hi,0 ∈ {0, 1} we have thatUz = (ARi,0+

hi,0G3)G
−1
3 (Uz) = A(Ri,0G

−1
3 (Uz) + hi,0Rz) + hi,0hzG3. This means that

Uz = ARz+hzG3 always holds during the computation. By induction, we have
that s1(Rz) ≤

∑e
i=1 3nk · s1(Ri,0) + s1(R0,0) ≤ 9n2k2

∑e
i=1(di − 1) · s1(R̂i) +

3nk(d0− 1) · s1(R̂0) and hz =
∏e

i=0 fz∗
i ,di(zi) = gz∗,N,d(z) after the second loop.

Finally, note that Â = AR̂−G3, by the additive homomorphism property,
we have that Z = ARX+hXG3 always holds, where RX = R̂+

∑
z∈CFX

Rz and

hX = −1+
∑

z∈CFX
hz = −1+gz∗,N,d(CFX). This means that s1(RX) ≤ s1(R̂)+

|CFX | ·(9n2k2
∑e

i=1(di−1) ·s1(R̂i)+3nk(d0−1) ·s1(R̂0)). Since R̂, R̂i ← Dw×k
R,s

and w = k = O(log q) = O(log n), by Lemma 7 we have that s1(R̂), s1(R̂i) ≤
s
√
n · O(

√
w +

√
k + ω(

√
log n)) ≤ s

√
n · ω(

√
log n) holds except with negli-

gible probability. This means that s1(RX) ≤ |CFX | · 9n2.5k2eds · ω(
√
log n).

Since |CFX | ≤ 4vℓ and s = ω(
√
log nw), we have that s1(RX) ≤ vℓn2.5k2ed ·

ω(
√
log n log nw). Besides, because CF = {CFX}X∈[L] is v-cover-free, we have

that for any X1, Y1, . . . , Yv ∈ [L] such that X1 ̸= Yj for all j ∈ {1, . . . , v}, there

27

is at least one element in CFX1
⊆ [N] that does not belong to the union set

∪j∈{1,...,v}CFYj
. Since z∗ is randomly chosen from [N] and is statistically hid-

den in the key K ′, the probability Pr[z∗ ∈ CFX1 ∧ z∗ /∈ ∪j∈{1,...,v}CFYj] is
at least 1/N − negl(n). Since hX = −1 + gz∗,N,d(CFX), which is equal to 0 if
z∗ ∈ CFX and −1 otherwise, we have that Pr[hX1

= 0 ∧ hY1
= · · · = hYv

=
−1] ≥ 1/N − negl(n).

The second claim follows from the fact that logd N is a constant for prior
fixed v = poly(n). The third claim follows from the fact that s1(RX) ≤ s1(R̂) +

|CFX | · (9n2k2
∑e

i=1(di − 1) · s1(R̂i) + 3nk(d0 − 1) · s1(R̂0)) = Õ(n3.5) for the
setting of e = 1, d0 = 2n and d1 = ω(log n). □

3.4 Improved Type-III Construction for v < n

In this section, we present an improved Type-III PHF construction with constant
keys over rings, which allows us to obtain better parameters by using another way
to compute the function gz∗,N,d(CFX). This improvement is basically due to the
asymmetry between homomorphic multiplications and homomorphic additions.

Recall that given integers z∗ =
∑e

j=0 z
∗
j d

j , z =
∑e

j=0 zjd
j ∈ [N], we have

that

gz∗,N,d(z) = fz∗
e ,de

(ze) ·
e−1∏
j=0

fz∗
j ,d

(zj) =

{
1, if z = z∗;

0, otherwise.

By using the fact that fz∗
j ,d

(zj) =
∑d−1

i=0 c(zj , d, i)u
i, where c(zj , d, i) = d−1x−

2n
d zji,

u = x
2n
d z∗

j . We can rewrite the function gz∗,N,d(z) as

gz∗,N,d(z) = fz∗e ,de(ze) ·
e−1∏
j=0

fz∗j ,d(zj)

= d−1
e

de−1∑
ie=0

(x
2n
de

(z∗e−ze))ie ·
e−1∏
j=0

d−1
d−1∑
ij=0

(x
2n
d

(z∗j −zj))ij


=

de−1∑
ie=0

c(ze, de, ie)x
2n
de

z∗e ie ·
e−1∏
j=0

 d−1∑
ij=0

c(zj , d, ij)x
2n
d

z∗j ij


=

de−1∑
ie=0

 d−1∑
ie−1=0

(
· · ·

(
d−1∑
i0=0

C(z,N, d, i)x
2n
d

z∗0 i0

)
· · ·

)
x

2n
d

z∗e−1ie−1

x
2n
de

z∗e ie

where C(z,N, d, i) = c(ze, de, ie)
∏e−1

j=0 c(zj , d, ij) = d−1e d−ex−
2n
de

zeie− 2n
d

∑e−1
j=0 zjij

and i =
∑e

j=0 ijd
j . Thus, given encodings of x

2n
de

z∗
e and {x 2n

d z∗
j }e−1j=0, one can

evaluate gz∗,N,d(z) by using ded
e < 2N homomorphic multiplications.

Similarly, given z∗ =
∑e

i=0 z
∗
j d

j ∈ [N] and any set S ∈ [N]η, we an rewrite
the function

gz∗,N,d(S) =
∑
z∈S

gz∗,N,d(z) =

{
1, if z∗ ∈ S;

0, otherwise.

28

as

gz∗,N,d(S) =
∑
z∈S

gz∗,N,d(z)

=
∑
z∈S

de−1∑
ie=0

 d−1∑
ie−1=0

(
· · ·

(
d−1∑
i0=0

C(z,N, d, i)x
2n
d

z∗0 i0

)
· · ·

)
x

2n
d

z∗e−1ie−1

x
2n
de

z∗e ie

=

de−1∑
ie=0

 d−1∑
ie−1=0

(
· · ·

(
d−1∑
i0=0

∑
z∈S

C(z,N, d, i)x
2n
d

z∗0 i0

)
· · ·

)
x

2n
d

z∗e−1ie−1

x
2n
de

z∗e ie

=

de−1∑
ie=0

 d−1∑
ie−1=0

(
· · ·

(
d−1∑
i0=0

C(S,N, d, i)x
2n
d

z∗0 i0

)
· · ·

)
x

2n
d

z∗e−1ie−1

x
2n
de

z∗e ie

where C(S,N, d, i) =
∑

z∈S C(z,N, d, i) and i =
∑e

j=0 ijd
j . Clearly, given en-

codings of x
2n
de

z∗
e and {x 2n

d z∗
j }e−1j=0, we can still evaluate gz∗,N,d(S) by using

ded
e < 2N homomorphic multiplications. Now, we give our improved Type-III

PHF construction.

Definition 8. Let n be a power of 2, and let q = 3k for some integer k. Let
Rq = Zq[x]/(x

n + 1). For any ℓ = O(n), v = poly(n) ∈ Z and L = 2ℓ, let
N ≤ 16v2ℓ, η ≤ 4vℓ and CF = {CFX}X∈[L] be defined as in Lemma 1. Let
d = 2n, and let e + 1 = ⌈logd N⌉. Let de ≥ 2 be a factor of 2n such that
de/2 ≤ ⌊(N − 1)/de⌋ < de. Then, the hash function H = (H.GenR,H.EvalR)
from [L] to R1×k

q is defined as follows:

– H.GenR(1
κ): Randomly choose Â,Ai ← R1×k

q for 0 ≤ i ≤ e, return the key

K = (Â, {Ai}).
– H.EvalR(K,X): Given the key K = (Â, {Ai}) and an integer X ∈ [L] as

inputs, compute ÛX = rec-RcompK,X(e, 0, de) ∈ R1×k
q as shown in Fig. 3,

and return Z = Â+ ÛX .

We now show that for any prior fixed v = poly(κ), the hash function H given
in Definition 8 is a (1, v, β)-PHF for some polynomially bounded β ∈ R.

Theorem 5. Let n be a power of 2, and let q = 3k for some integer k. Let
Rq = Zq[x]/(x

n + 1). For any ℓ = O(n), v ≤ poly(n) ∈ Z and L = 2ℓ, let
N ≤ 16v2ℓ, η ≤ 4vℓ and CF = {CFX}X∈[L] be defined as in Lemma 1. Let
w = 2⌈log2 q⌉ + 2. Let d = 2n, and let e + 1 = ⌈logd N⌉. Let de ≥ 2 be a
factor of 2n such that de/2 ≤ ⌊(N − 1)/de⌋ < de. Then, the hash function
H in Definition 8 is a (1, v, β, γ, δ)-PHF with β ≤ v2n1.5ℓk · ω(

√
log n log nw),

γ = negl(κ) and δ = 1/N − negl(n).

In particular, if we set ℓ = n and v = ω(log n), then β = Õ(n2.5), and the
key of H only consists of 3 elements in R1×k

q .

29

rec-RcompK,X(r, i, t) :

If r = 0 :

Ur,i,t−1 = C(CFX , N, d, di+ t− 1)G3

For j = t− 2, · · · , 0 :

Ur,i,j = ArG
−1
3 (Ur,i,j+1) + C(CFX , N, d, di+ j)G3

Else:

Ur,i,t−1 = rec-RcompK,X(r − 1, di+ t− 1, d)

For j = t− 2, · · · , 0 :

Ur,di+j,0 = rec-RcompK,X(r − 1, di+ j, d)

Ur,i,j = ArG
−1
3 (Ur,i,j+1) +Ur,di+j,0

Return Ur,i,0

rec-TRcomptd,K,X(r, i, t) :

If r = 0 :

Ur,i,t−1 = C(CFX , N, d, di+ t− 1)G3

Rr,i,t−1 = 0, hr,i,t−1 = C(CFX , N, d, di+ t− 1)

For j = t− 2, · · · , 0 :

Ur,i,j = ArG
−1
3 (Ur,i,j+1) + C(CFX , N, d, di+ j)G3

Rr,i,j = R̂rG
−1
3 (Ur,i,j+1) +Rr,i,j+1x

2n
t

z∗r

hr,i,j = hr,i,j+1x
2n
t

z∗r + C(CFX , N, d, di+ j)

Else:

(Ur,i,t−1,Rr,i,t−1, hr,i,t−1) = rec-TRcomptd,K,X(r − 1, di+ t− 1, d)

For j = t− 2, · · · , 0 :

(Ur−1,di+j,0,Rr−1,di+j,0, hr−1,di+j,0) = rec-TRcomptd,K,X(r − 1, di+ j, d)

Ur,i,j = ArG
−1
3 (Ur,i,j+1) +Ur−1,di+j,0

Rr,i,j = R̂rG
−1
3 (Ur,i,j+1) +Rr,i,j+1x

2n
t

z∗r +Rr−1,di+j,0

hr,i,j = hr,i,j+1x
2n
t

z∗r + hr−1,di+j,0

Return (Ur,i,0,Rr,i,0, hr,i,0)

Fig. 3. The Recursive Algorithms Used in Definition 8 and Theorem 5

Proof. We now construct a pair of trapdoor algorithms for H as follows:

– H.TrapGenR(1
κ,A,G3): Given a uniformly random A← R1×w

q and matrix

G3 ∈ R1×k
q for w = 2⌈log2 q⌉ + 2 as inputs, let s = ω(

√
log nw) ∈ R satisfy

the requirement in Lemma 9. Randomly choose R̂, R̂i ← (DR,s)
w×k for

0 ≤ i ≤ e, and an integer z∗ =
∑e

i=0 z
∗
i d

i ← [N], where z∗e ∈ [de] and z∗i ∈ [d]

for 0 ≤ i ≤ e − 1. Then, compute Â = AR̂ − G3,Ai = AR̂i + x
2n
d z∗

i G3

for 0 ≤ i ≤ e − 1, and Ae = AR̂e + x
2n
de

z∗
eG3. Finally, return the key

K ′ = (Â, {Ai}) and the trapdoor td = (R̂, {Ri}, z∗).
– H.TrapEvalR(td,K ′, X): Given the trapdoor td = (R̂, {Ri}, z∗) for the key

K ′ = (Â, {Ai}) and an integer X ∈ [L] as inputs, compute (ÛX , R̂X , ĥX) =
rec-TRcomptd,K′,X(e, 0, de) ∈ Rk

q as shown in Fig. 3, and return (RX , hX) =

(R̂+ R̂X ,−1 + ĥX) ∈ Rw×k
q ×Rq.

Since s = ω(
√
log nw) and R̂, R̂i ← (DR,s)

w×k for 0 ≤ i ≤ e, each vector in

the key K ′ = (Â, {Ai}) is statistically close to uniform over R1×k
q by Lemma 9.

Using a standard hybrid argument, it is easy to show that the statistical dis-
tance γ between (A,K ′) and (A,K) is negligible, where K ← H.Gen(1κ). In
particular, this means that z∗ is statistically hidden in K ′.

For correctness, it is easy to check that given the same inputs (td,K ′, X),
both rec-RcompK′,X(e, 0, de) and rec-TRcomptd,K′,X(e, 0, de) essentially compute
Ur,i,j the same way for all possible (r, i, j), and thus will output the same Ue,0,0.

This means that we only have to show that ÛX = AR̂X + ĥXG3 = ARe,0,0 +
he,0,0G3 = Ue,0,0 holds for all (Ue,0,0,Re,0,0, he,0,0) = rec-TRcomptd,K′,X(e, 0, de).
We prove this claim by induction.

First, we show that U0,i,0 = AR0,i,0 + h0,i,0G3 always holds for all possi-
ble choices of (i, t) and (U0,i,0,R0,i,0, h0,i,0) = rec-TRcomptd,K′,X(0, i, t). Note
that we always have U0,i,t−1 = AR0,i,t−1 + h0,i,t−1G3 during the computation
of rec-TRcomptd,K′,X(0, i, t). By induction it suffices to show that if U0,i,j+1 =
AR0,i,j+1 + h0,i,j+1G3 holds for some 0 ≤ j ≤ t − 2, then U0,i,j = AR0,i,j +

30

h0,i,jG3 also holds. Since U0,i,j = A0 ·G−13 (U0,i,j+1) +C(CFX , N, d, di+ j)G3

and A0 = AR̂0 + x
2n
t z∗

0G3, we have that U0,i,j = A(R̂0G
−1
3 (U0,i,j+1) +

R0,i,j+1x
2n
t z∗

0) + (h0,i,j+1x
2n
t z∗

0 + C(CFX , N, d, di + j))G3, which is equivalent

to AR0,i,j + h0,i,jG3, where R0,i,j = R̂0G
−1
3 (U0,i,j+1) + R0,i,j+1x

2n
t z∗

0 and

h0,i,j = h0,i,j+1x
2n
t z∗

0 +C(CFX , N, d, di+j). Because s1(G
−1
3 (U)) ≤ 3nk for any

U ∈ R1×k
q , we have that s1(R0,i,j) ≤ 3nk · s1(R̂0) + s1(R0,i,j+1). By induction,

we have that U0,i,0 = AR0,i,0+h0,i,0G3 holds for s1(R0,i,0) ≤ 3nk(t−1)·s1(R̂0)

and h0,i,0 =
∑t−1

j=0 C(CFX , N, d, di+ j)x
2n
t z∗

0 j .
Now, we show that if there exists some 1 ≤ r ≤ e such that Ur−1,i′,0 =

ARr−1,i′,0 + hr−1,i′,0G3 holds for all possible choices of (i′, t′) and (Ur−1,i′,0,
Rr−1,i′,0, hr−1,i′,0) = rec-TRcomptd,K′,X(r− 1, i′, t′), then we have that Ur,i,0 =
ARr,i,0+hr,i,0G3 holds for all possible choices of (i, t) and (Ur,i,0,Rr,i,0, hr,i,0) =
rec-TRcomptd,K′,X(r, i, t). By definition we have (Ur,i,t−1,Rr,i,t−1, hr,i,t−1) =
(Ur−1,di+t−1,0,Rr−1,di+t−1,0, hr−1,di+t−1,0) = rec-TRcomptd,K′,X(r− 1, di+ t−
1, d). This means that Ur,i,t−1 = ARr,i,t−1+hr,i,t−1G3 and that s1(Rr,i,t−1) =

s1(Rr−1,di+t−1,0). Similarly, we haveUr−1,di+j,0 = AR̂r−1,di+j,0+hr−1,di+j,0G3

for all 0 ≤ j ≤ t−2 by assumption. SinceUr,i,j = ArG
−1
3 (Ur,i,j+1)+Ur−1,di+j,0,

we have that Ur,i,j = A(R̂rG
−1
3 (Ur,i,j+1) + Rr,i,j+1x

2n
t z∗

r + Rr−1,di+j,0) +

(hr,i,j+1x
2n
t z∗

r +hr−1,di+j,0)G3, which is equivalent to ARr,i,j +hr,i,jG3, where

Rr,i,j = R̂rG
−1
3 (Ur,i,j+1)+Rr,i,j+1x

2n
t z∗

r +Rr−1,di+j,0 and hr,i,j = hr,i,j+1x
2n
t z∗

r

+hr−1,di+j,0. Note that s1(Rr,i,j) ≤ 3nk ·s1(R̂r)+s1(Rr,i,j+1)+s1(Rr−1,di+j,0).
By induction, we have that Ur,i,0 = ARr,i,0 + hr,i,0G3 holds for s1(Rr,i,0) ≤
3nk(t−1)s1(R̂r)+

∑t−1
j=0 s1(Rr−1,di+j,0), and hr,i,0 =

∑t−1
j=0 hr−1,di+j,0(x

2n
t z∗

r)j .
In all, for any (Ue,0,0,Re,0,0, he,0,0) = rec-TRcomptd,K′,X(e, 0, de), we have

that Ue,0,0 = ARe,0,0+he,0,0G3 holds, where s1(Re,0,0) = 3nk(de− 1)s1(R̂e)+∑e
j=1 3nkded

j−1(d − 1)s1(R̂e−j) and he,0,0 = gz∗,N,d(CFX). Since R̂, R̂i ←
Dw×k

R,s and w = k = O(log q) = O(log n), by Lemma 7 we have s1(R̂), s1(R̂i) ≤
s
√
n ·O(

√
w +
√
k + ω(

√
log n)) ≤ s

√
n · ω(

√
log n) except with negligible prob-

ability. This means that s1(Re,0,0) ≤ 3n1.5k(2N − 1)s · ω(
√
log n) < 6n1.5kNs ·

ω(
√
log n). Since N ≤ 16v2ℓ and s = ω(

√
log nw), we have s1(Re,0,0) ≤ v2n1.5ℓk ·

ω(
√
log n log nw). Similarly, because CF = {CFX}X∈[L] is v-cover-free, for any

X1, Y1, . . . , Yv ∈ [L] such that X1 ̸= Yj for all j ∈ {1, . . . , v}, there is at least one
element in CFX1

⊆ [N] that does not belong to the union set ∪j∈{1,...,v}CFYj
.

Since z∗ is randomly chosen from [N] and is statistically hidden in the key K ′,
the probability Pr[z∗ ∈ CFX1 ∧ z∗ /∈ ∪j∈{1,...,v}CFYj] is at least 1/N − negl(n).
Since he,0,0 = gz∗,N,d(CFX), which is equal to 1 if z∗ ∈ CFX and 0 otherwise,
we have Pr[hX1

= 0 ∧ hY1
= · · · = hYv

= 1] ≥ 1/N − negl(n).
The second claim follows from the fact that ℓ = n and v = ω(log n). □

3.5 Collision-Resistance and High Min-Entropy

Collision-Resistance. Let H = {HK : X → Y}K∈K be a family of hash
functions with key space K. We say that H is collision-resistant if for any PPT

31

algorithm C, its advantage

AdvcrH,C(κ) = Pr[K ← K; (X1, X2)← C(K, 1κ) : X1 ̸= X2 ∧HK(X1) = HK(X2)]

is negligible in the security parameter κ.

Theorem 6. Let n, n̄, v, q ∈ Z and β̄, β ∈ R be polynomials in the security
parameter κ. Let H = (H.GenR,H.EvalR) be a (1, v, β, γ, δ)-PHF defined over
R with γ = negl(κ) and noticeable δ > 0. Then, for large enough m̄,m ∈ Z
and v ≥ 1, if there exists an algorithm C breaking the collision-resistance of
H, there exists an algorithm B solving the ISISq,m̄,β̄ problem over R for β̄ =

β
√
mn ·ω(

√
log nn̄) with probability at least ϵ′ ≥ (ϵ−γ)δ, where n = 1 if R = Z.

Proof. If there exists an algorithm C breaking the collision-resistance of H with
advantage ϵ, we now construct an algorithm B that solves the ISISq,m̄,β̄ problem.
Let B ∈ Rn̄×m

q be any trapdoor matrix that allows to efficiently sample short

vector v ∈ Rm such that ∥v∥ ≤
√
mn · ω(

√
log nn̄) and Bv = u′ for any

u′ ∈ Rn̄
q . Formally, given an ISISq,m̄,β̄ challenge instance (A,u) ∈ Rn̄×m̄

q ×Rn̄
q .

The algorithm B computes (K ′, td)← H.TrapGenR(1
κ,A,B), and sends K ′ as

the hash key to C. Since the statistical distance between K ′ and the real hash key
K is at most γ = negl(κ), the probability that given the key K ′ the algorithm
C(K ′, 1κ) outputs two elements X1 ̸= X2 satisfying HK′(X1) = HK′(X2), is
at least ϵ − γ. By the correctness of H, we know that there exist two tuples
(RX1

,SX1
) and (RX2

,SX2
) such that HK′(X1) = ARX1

+ SX1
B = ARX2

+
SX2B = HK′(X2). In addition, by the well-distributed hidden matrices property
of H, the probability Pr[SX1 = 0 ∧ SX2 ∈ In] is at least δ. In other words, the
equation ARX1

= ARX2
+ SX2

B holds with probability at least (ϵ − γ)δ. If
this is the case, B outputs x = (RX1

− RX2
)v, where v ∈ Rm

q is sampled by

using the trapdoor of B such that ∥v∥ ≤
√
mn ·ω(

√
log nn̄) and Bv = S−1X2

u. By
Ax = SX2

Bv = u, we have that x is a solution of Ax = u. In addition, since
s1(RX1

), s1(RX2
) ≤ β by assumption, we have ∥x∥ ≤ β

√
mn · ω(

√
log nn̄). This

completes the proof. □

High Min-Entropy. Let H : X → Rn̄×m
q be a (1, v, β, γ, δ)-PHF with γ =

negl(κ) and noticeable δ > 0. Note that the well-distributed hidden matrices
property of H holds even for an unbounded algorithm A that chooses {Xi} and
{Yj} after seeing K ′. For any noticeable δ > 0, this can only happen when the
decomposition HK′(X) = ARX + SXB is not unique (with respect to K ′) and
the particular pair determined by td, i.e., (RX ,SX) = H.TrapEval(td,K ′, X),
is information-theoretically hidden from A. We now introduce a property called
high min-entropy to formally capture this useful feature.

Definition 9 (PHF with High Min-Entropy). Let H : X → Rn̄×m
q be a

(1, v, β, γ, δ)-PHF with γ = negl(κ) and noticeable δ > 0. Let K be the key space
of H, and let H.TrapGenR and H.TrapEvalR be a pair of trapdoor generation

32

and trapdoor evaluation algorithms for H. We say that H is a PHF with high
min-entropy if for uniformly random A ∈ Rn̄×m̄

q and (publicly known) trapdoor
matrix B ∈ Rn̄×m

q , the following conditions hold

1. For any (K ′, td) ← H.TrapGenR(1
κ,A,B),K ← H.GenR(1

κ), any X ∈ X
and any w ∈ Zm̄

q , the algorithm H.TrapEvalR(td,K,X)R is well-defined,

and the statistical distance between (A,K ′, (R′X)Tw) and (A,K,RT
Xw) is

negligible in κ, where (R′X ,S′X) = H.TrapEvalR(td,K ′, X), and (RX ,SX) =
H.TrapEvalR(td,K,X).

2. For any (K ′, td) ← H.TrapGenR(1
κ,A,B), any X ∈ X , any uniformly

random v ∈ Zm̄
q , and any uniformly random u ← Zm

q , the statistical dis-

tance between (A,K ′,v, (R′X)Tv) and (A,K ′,v,u) is negligible in κ, where
(R′X ,S′X) = H.TrapEvalR(td,K ′, X).

Remark 1. First, since s1(R
′
X) ≤ β holds with overwhelming probability, we

have that ∥(R′X)Tw∥ ≤ β∥w∥. Thus, the first condition implicitly implies that
∥RT

Xw∥ ≤ β∥w∥ holds with overwhelming probability for any K ← H.Gen(1κ),
X ∈ X , and (RX ,SX) = H.TrapEval (td,K,X). Second, we note that the well-
distributed hidden matrices property of PHF only holds when the information
(except that is already leaked via the key K ′) of the trapdoor td is hidden.
This means that it provides no guarantee when some information of RX for any
X ∈ X (which is usually related to the trapdoor td) is given public. However,
for a PHF with high min-entropy, this property still holds when the information
of RT

Xv for a uniformly random vector v is leaked.

For appropriate choices of parameters, the work [2] implicitly showed that
the Type-I PHF construction satisfied the high min-entropy property. Now, we
show that our Type-II PHF construction with R = Z also has the high min-
entropy property. The setting for R = R may also be obtained for parameters
such that the leftover hash lemma is applicable.

Theorem 7. Let integers n̄, m̄, q be some polynomials in the security parameter
κ, and let k = ⌈log2 q⌉. For any ℓ, v ∈ Z and L = 2ℓ, let N ≤ 16v2ℓ, η ≤ 4vℓ
and CF = {CFX}X∈[L] be defined as in Lemma 1. Then, for large enough

m̄ = O(n̄ log q), the hash function H : [L] → Rn̄×n̄k
q with R = Z given in

Definition 6 (and proved in Theorem 3) is a PHF with high min-entropy.

Proof. For any w ∈ Zm̄
q , let fw : Zm̄×n̄k

q → Zn̄k
q be the function defined by

fw(X) = XTw ∈ Zn̄k
q . By the definition of H.TrapGenZ in Theorem 3, for

any (K ′, td) ← H.TrapGenZ(1
κ,A,G), we have td = (R̂, {Ri}i∈{0,...,µ−1}, z∗).

Denote I = {fw(R̂), {fw(Ri)}i∈{0,...,µ−1})}. First, it is easy to check that the

algorithm H.TrapEvalZ(td,K,X) is well-defined for any K ∈ K = Zn̄×n̄k
q and

X ∈ X . In addition, given I = {fw(R̂), {fw(Ri)}i∈{0,...,µ−1})} and (K,X, z∗) as
inputs, there exists a public algorithm that computes RT

Xw by simulating the
algorithm Tcomp in Theorem 3, where (RX ,SX) = H.TrapEvalZ(td,K,X). To

33

prove that H satisfies the first condition of high min-entropy, it suffices to show
that K ′ is statistically close to uniform over (Zn̄×n̄k

q)µ+1 conditioned on I and

z∗ (recall that the real key K of H is uniformly distributed over (Zn̄×n̄k
q)µ+1 by

Definition 6). Since each matrix in the key K ′ always has a form of AR̃ + bG
for some randomly chosen R̃← (DZm̄,s)

n̄k, and a bit b ∈ {0, 1} depending on a
random z∗ ← [N]. Using a standard hybrid argument, it is enough to show that
conditioned on A and fw(R̃), AR̃ is statistically close to uniform over Zn̄×n̄k

q .

Let f ′w : Zm̄
q → Zq be defined by f ′w(x) = xTw, and let R̃ = (r1, . . . , rn̄k).

Then, fw(R̃) = (f ′w(r1), . . . , f
′
w(rn̄k))

T ∈ Zn̄k
q . By Lemma 2, the guessing prob-

ability γ(ri) is at most 21−m̄ for all i ∈ {1, . . . , n̄k}. By the generalized leftover
hash lemma in [23], conditioned on A and f ′w(ri) ∈ Zq, the statistical distance

between Ari ∈ Zn̄
q and uniform over Zn̄

q is at most 1
2 ·

√
21−m̄ · qn̄ · q, which

is negligible if we set m̄ = O(n̄ log q) > (n̄ + 1) log q + ω(log n̄). Using a stan-
dard hybrid argument, we have that conditioned on A and fw(R̃), the matrix
AR̃ = (Ar1∥ . . . ∥Arn̄k) is statistically close to uniform over Zn̄×n̄k

q .
Now, we show that H satisfies the second condition in Definition 9. By

Theorem 3 for any input X and (RX ,SX) = H.TrapEval(td,K ′, X), we al-

ways have that RX = R̂ + R̃ for some R̃ that is independent from R̂. Let
RT

Xv = R̂Tv + R̃Tv = û + ũ, it suffices to show that given K ′ and v, the ele-

ment û = R̂Tv is uniformly random. Since R̂ ← (DZm̄,s)
n̄k for s ≥ ω(

√
log m̄)

is only used to generate the matrix Â = AR̂ − (−1)c · G in the key K ′, we

have that for large enough m̄ = O(n̄ log q), the pair (AR̂, ûT = vT R̂) is sta-
tistically close to uniform over Zn̄×n̄k

q × Zn̄k
q by the fact in Lemma 5.8 Thus,

RT
Xv = R̂Tv + R̃Tv is statistically close to uniform over Zn̄k

q . This completes
the proof 7. □

Remark 2. Our initial attempt to introduce the high min-entropy property in [60]
is mainly for the generic construction of IBE from lattice-based PHFs. Although
our improved IBE construction given in Sec. 6 does not need the high min-
entropy in the security proof, we would like to still keep the definition of min-
entropy property and we believe that it may be useful for other applications.

4 Short Signatures from Lattice-based PHFs

In this section, we first give a generic construction of signatures from PHFs,
and then we give two improved signatures by using the concrete Type-II and
Type-III PHF constructions, respectively.

4.1 A Generic Signature Scheme from Lattice-based PHFs

Let integers ℓ, n,m′, q ∈ Z, β ∈ R be some polynomials in the security parameter
κ, and let k = ⌈log2 q⌉. Let ring R be either the integer ring Z or the polynomial

8 This is because one can first construct a new uniformly random matrix A′ by ap-
pending the row vector vT to the rows of A, and then apply the fact in Lemma 5.

34

ring Z[x]/(xn +1) with n being a power of 2. Let Rq = R/(qR) be the quotient
ring. Let n = 1 if R = Z. Let H = (H.GenR,H.EvalR) be a PHF from {0, 1}ℓ to
Rn̄×m′

q . Let m̄ = O(n̄ log q), m = m̄ +m′, and large enough s > max(β,
√
m) ·

ω(
√
log n) ∈ R be the system parameters. Our generic signature scheme SIG =

(KeyGen,Sign,Verify) is defined as follows.

KeyGen(1κ): Given a security parameter κ as inputs, first compute (A,R) ←
TrapGenR(1

n̄, 1m̄, q, In̄) such that A ∈ Rn̄×m̄
q , R = R(m̄−n̄k)×n̄k

q , and ran-
domly choose u ← Rn̄

q . Then, compute K ← H.Gen(1κ), and return a pair
of verification key and secret signing key vk = (A,u,K) and sk = (vk,R).

Sign(sk,M ∈ {0, 1}ℓ): Given sk = R and a message M as inputs, compute
AM = (A∥HK(M)) ∈ Rn̄×m

q , where HK(M) = H.Eval(K,M) ∈ Rn̄×m′

q .
Then, compute e← SampleDR(R,AM , In̄,u, s), and return σ = e.

Verify(vk,M, σ): Given vk, a message M and a vector σ = e as inputs, compute
AM = (A∥HK(M)) ∈ Rn̄×m

q , where HK(M) = H.Eval(K,M) ∈ Rn̄×m′

q .
Return 1 if ∥e∥ ≤ s

√
mn and AMe = u, else return 0.

The correctness of our scheme SIG can be easily checked. Besides, the
schemes with linear verification keys in [13,47] can be seen as instantiations
of SIG with the Type-I PHF construction in Theorem 1.9 Since the size of the
verification key is mainly determined by the key size of H, one can instantiate H
with our efficient Type-II and Type-III PHF constructions. As for the security,
we have the following theorem.

Theorem 8. Let ℓ, n̄, m̄,m′, q ∈ Z and β̄, β, s ∈ R be some polynomials in the
security parameter κ, and let m = m̄ + m′. If H = (H.GenR,H.EvalR) be a
(1, poly, β, γ, δ)-PHF from {0, 1}ℓ to Rn̄×m′

q with γ = negl(κ) and noticeable δ >

0. Then, for large enough m̄ = O(n̄ log q) and s > max(β,
√
m) ·ω(

√
log m̄) ∈ R,

if there exists a PPT forger F breaking the EUF-CMA security of SIG with non-
negligible probability ϵ > 0, there exists an algorithm B solving the ISISq,m̄,β̄ over

R problem for β̄ = βs
√
mn ·ω(

√
log m̄) with probability at least ϵ′ ≥ ϵδ−negl(κ).

Moreover, if H = (H.GenR,H.EvalR) is a (1, v, β, γ, δ)-PHF for some prior
fixed polynomial v = poly(n), then the resulting signature scheme is secure
against any PPT forger making at most Q ≤ v signing queries (namely, it sat-
isfies the EUF-qCMA security).

Since a proof sketch is given in Section 1.4, we omit the details of the proof.
Let SIG1 denote the signature scheme obtained by instantiating SIG with our
Type-II (1, v, β)-PHF construction with R = Z in Definition 6. Then, the verifi-
cation key of SIG1 has O(log n) matrices in Zn×nk

q and each signature of SIG1
consists of a single lattice vector.

Corollary 1. Let n, q ∈ Z be polynomials in the security parameter κ. Let m̄ =
O(n log q), v = poly(n) and ℓ = n. If there exists a PPT forger F breaking

9 Note that the scheme in [13] used a syndrome u = 0, we prefer to use a random
chosen syndrome u← Zn

q as that in [47] for simplifying the security analysis.

35

the EUF-qCMA security of SIG1 with non-negligible probability ϵ and making
at most Q ≤ v signing queries, then there exists an algorithm B solving the
ISISq,m̄,β̄ problem over R = Z for β̄ = v2 · Õ(n5.5) with probability at least
ϵ′ ≥ ϵ

16nv2 − negl(κ).

Similarly, let SIG2 denote the signature scheme obtained by instantiating
SIG with our Type-III (1, v, β)-PHF construction with R = R in Definition 8.
Then, the verification key of SIG2 has O(1) matrices in R1×k

q and each signature
of SIG2 consists of a single ring vector.

Corollary 2. Let n, q ∈ Z be polynomials in the security parameter κ. Let m̄ =
O(n log q), v = poly(n) and ℓ = n. If there exists a PPT forger F breaking
the EUF-qCMA security of SIG2 with non-negligible probability ϵ and making
at most Q ≤ v signing queries, then there exists an algorithm B solving the
ISISq,m̄,β̄ problem over R = R for β̄ = v2 · Õ(n7.5+2/c) with probability at least
ϵ′ ≥ ϵ

16nv2 − negl(κ).

4.2 Improved Short Signature on General Lattices

Since both SIG1 and SIG2 have reduction loss about 16nv2, by the requirement
that v ≥ Q for security proof, our improvement requires the ISISq,m̄,β̄ problem

over R to be hard for β̄ = Q2 · Õ(n5.5) for SIG1 or β̄ = Q2 · Õ(n7.5+2/c) for
SIG2, which means that the modulus q should be much bigger than Q2. Even
though q is still a polynomial of n in an asymptotic sense, it might be very large
in practice. In this section, we give an improved signature scheme SIG3 from
our Type-II PHF with R = Z, which removes the direct dependency on Q from
β̄ by introducing a short tag about O(logQ) bits to each signature. For example,
this only increases about 30 bits to each signature for a number Q = 230 of the
forger’s signing queries.

At a high level, our basic idea is to relax the requirement on a (1, v, β)-PHF
H = {HK} so that a much smaller v = ω(log n) can be used by employing a
simple weak PHF H′ = {H′K′} (recall that v ≥ Q is required in the generic
scheme SIG). Concretely, for each message M to be signed, instead of using
HK(M) in the signing algorithm of SIG, we choose a short random tag t, and
compute H′K′(t)+HK(M) to generate the signature on M . Thus, if the trapdoor
keys of both PHFs are generated by using the same “generators” A and G, we
have that H′K′(t) + HK(M) = A(R′t + RM) + (S′t + SM)G, where H′K′(t) =
AR′t + S′tG and HK(M) = ARM + SMG. Moreover, if we can ensure that
S′t + SM ∈ In when S′t ∈ In or SM ∈ In, then SM is not required to be
invertible for all the Q signing messages. In particular, v = ω(log n) can be used
if the probability that S′t +SM ∈ In is invertible for all the Q signing messages,
and S′t∗ + SM∗ = 0 for the forged signature on the pair (t∗,M∗), is noticeable.

Actually, the weak PHF H′ and the (1, v, β)-PHF H = (H.Gen,H.Eval) are,
respectively, the first instantiated Type-I PHF H′ with R = Z in Theorem 2 and
the Type-II PHF H = (H.Gen,H.Eval) with R = Z given in Definition 6. Since
H′ is very simple, we directly plug its construction into our signature scheme

36

SIG2. Specifically, let n, q ∈ Z be some polynomials in the security parameter
κ, and let k = ⌈log2 q⌉, m̄ = O(n log q),m = m̄ + nk and s = Õ(n2.5) ∈ R.
Let H : Zn

q → Zn×n
q be the FRD encoding in [2] such that for any vector

v = (v, 0 . . . , 0)T ,v1,v2 ∈ Zn
q , we have that H(v) = vIn and H(v1) +H(v2) =

H(v1+v2) hold. For any t ∈ {0, 1}ℓ with ℓ < n, we naturally treat it as a vector
in Zn

q by appending it (n− ℓ) zero coordinates. The weak PHF H′ from {0, 1}ℓ
to Zn×nk

q has a form of H′K′(t) = A0 +H(t)G, where K ′ = A0. We restrict the

domain of H′ to be {0} × {0, 1}ℓ for ℓ ≤ n − 1 such that S′t + SM is invertible
when (S′t,SM) ̸= (0,0). Our signature scheme SIG3 = (KeyGen,Sign,Verify) is
defined as follows.

KeyGen(1κ): Given a security parameter κ as inputs, first compute (A,R) ←
TrapGen(1n, 1m̄, q, In) such that A ∈ Zn×m̄

q , R = Z(m̄−nk)×nk
q . Randomly

choose A0 ← Zn×nk
q ,u ← Zn

q . Finally, compute K ← H.Gen(1κ), return
vk = (A,A0,u,K) and sk = (vk,R).

Sign(sk,M ∈ {0, 1}n): Given the secret key sk and a message M as inputs,
randomly choose t← {0, 1}ℓ, and compute AM,t = (A∥(A0 +H(0∥t)G) +
HK(M)) ∈ Zn×m

q , where HK(M) = H.Eval(K,M) ∈ Zn×nk
q . Then, compute

e← SampleD(R,AM,t, In,u, s), and return the signature σ = (e, t).
Verify(vk,M, σ): Given vk, messageM and σ = (e, t) as inputs, computeAM,t =

(A∥(A0 +H(0∥t)G)+HK(M)) ∈ Zn×m
q , where HK(M) = H.Eval(K,M) ∈

Zn×nk
q . Return 1 if ∥e∥ ≤ s

√
m and AM,te = u. Otherwise, return 0.

Since R is a G-trapdoor of A, by padding with zero rows it can be extended
to a G-trapdoor for AM,t with the same quality s1(R) ≤

√
m ·ω(

√
log n). Since

s = Õ(n2.5) > s1(R) · ω(
√
log n), the vector e output by SampleD follows the

distribution DZm,s satisfying AM,te = u. In other words, ∥e∥ ≤ s
√
m holds with

overwhelming probability by Lemma 2. This shows that SIG3 is correct.
Note that if we set v = ω(log n), the key K only has µ = O(log n) number of

matrices in Zn×nk
q and each signature consists of a vector plus a short ℓ-bit tag.

We have the following theorem for security.

Theorem 9. Let ℓ, m̄, n, q, v,Q ∈ Z be polynomials in the security parameter
κ. Let ℓ = O(log n) depending on Q and v = ω(log n), if there exists a PPT
forger F breaking the EUF-qCMA security of SIG3 with non-negligible prob-
ability ϵ and making at most Q signing queries, there exists an algorithm B
solving the ISISq,m̄,β̄ problem for β̄ = Õ(n5.5) with probability at least ϵ′ ≥

ϵ
16·2ℓnv2 − negl(κ) = ϵ

Q·Õ(n)
.

Proof. We now give the construction of algorithm B, which simulates the attack
environment for F , and solves the ISISq,m̄,β̄ problem with probability at least

ϵ
Q·Õ(n)

. Formally, B first randomly chooses a vector t′ ← {0, 1}ℓ and hopes

that F will output a forged signature with tag t∗ = t′. Then, B simulates the
EUF-qCMA game as follows:

37

KeyGen. Given an ISISq,m̄,β̄ challenge instance (A,u) ∈ Zn×m̄
q × Zn

q , the al-

gorithm B first randomly chooses R0 ← (DZm̄,ω(
√
logn))

nk, and computes
A0 = AR0 − H(0∥t′)G. Then, compute (K ′, td) ← H.TrapGen(1κ,A,G)
as in Theorem 3. Finally, set vk = (A,A0,u,K

′) and keep (R0, td) private.
Signing. Given a message M , the algorithm B first randomly chooses a tag t←
{0, 1}ℓ. If t has been used in answering the signatures for more than v mes-
sages, B aborts. Otherwise, B computes (RM ,SM) = H.TrapEval(td,K ′,M)
as in Theorem 3. Then, we have AM,t = (A∥(A0+H(0∥t)G)+HK′(M)) =
(A∥A(R0+RM)+(H(0∥t)−H(0∥t′)+SM)G). Since SM = bIn = H(b∥0) for
some b ∈ {−1, 0, 1}, we have that Ŝ = H(0∥t)−H(0∥t′)+SM = H(b∥(t−t′))
holds by the homomorphic property of the FRD encoding H in [2]. B dis-
tinguishes the following two cases:
– t ̸= t′ or (t = t′ ∧ b ̸= 0): In both cases, we have that Ŝ is invert-

ible. In other words, R̂ = R0 + RM is a G-trapdoor for AM,t. Since

s1(R0) ≤
√
m · ω(

√
log n) by Lemma 3 and s1(RM) ≤ Õ(n2.5), we have

s1(R̂) ≤ Õ(n2.5). Then, compute e ← SampleD(R̂,AM,t, Ŝ,u, s), and

return the signature σ = (e, t). If we set an appropriate s = Õ(n2.5) ≥
s1(R̂) · ω(

√
log n), then B can generate a valid signature on M with

overwhelming probability by Proposition 1.
– t = t′ ∧ b = 0: B aborts.

Forge. After making at most Q signing queries, F outputs a forged signa-
ture σ∗ = (e∗, t∗) on message M∗ ∈ {0, 1}n such that ∥e∗∥ ≤ s

√
m and

AM∗,t∗e
∗ = u, where AM∗,t∗ = (A∥(A0+H(0∥t∗)G)+HK′(M∗)) ∈ Zn×m

q .
The algorithm B computes (RM∗ ,SM∗) = H.TrapEval(td,K ′,M∗), and
aborts the simulation if t∗ ̸= t′ or SM∗ ̸= 0. Else, we have AM∗,t∗ =

(A∥A(R0 +RM∗)) = (A∥AR̂), where R̂ = R0 +RM∗ . Finally, B outputs

ê = (Im̄∥R̂)e∗ as its own solution.

By the definition of the ISISq,m̄,β̄ problem, (A,u) is uniformly distributed

over Zn×m̄
q × Zn

q . Since R0 ← (DZm̄,ω(
√
logn))

nk, we have that A0 ∈ Zn×nk
q is

statistically close to uniform over Zn×nk
q by Lemma 5. In addition, by Theorem 3

the simulated keyK ′ is statistically close to the real keyK. Thus, the distribution
of the simulated verification key vk is statistically close to that of the real one.

Let M1, . . . ,Mu be all the messages in answering the signing queries that B
happens to use the same tag t = t′, and let (RMi

,SMi
) = H.TrapEval(td,K ′,Mi)

for i ∈ {1, . . . , u}. Then, the algorithm B will abort in the simulation if and only
if either of the following two conditions hold:

– Some tag t is used in answering the signatures for more than v messages,
– SMi

is not invertible for some i ∈ {1, . . . , u}, or SM∗ ̸= 0, or t∗ ̸= t′.

Since the forger F will make at most Q = poly(κ) signing queries, we can
choose ℓ = O(log n) such that Q

2ℓ
≤ 1

2 . Note that B always randomly chooses a

tag t ← {0, 1}ℓ for each signing message, the probability that B uses any tag
t in answering the signatures for more than v messages is less than Q2 · (Q

2ℓ
)v

by a similar analysis in [35], which is negligible by our setting of v = ω(log n).

38

In particular, the probability that B will use the same tag t = t′ in answering
the signatures for u ≥ v messages is also negligible. Conditioned on u ≤ v, the
probability that SMi is invertible for all i ∈ {1, . . . , u} and SM∗ = 0 (using the
fact thatM∗ /∈ {M1, . . . ,Mu}) is at least δ = 1

16nv2−negl(κ) by Theorem 3. Note
that t′ is randomly chosen and is statistically hidden from F , the probability
Pr[t∗ = t′] is at least 1

2ℓ
− negl(κ). Thus, if the forger F can attack the EUF-

qCMA security of SIG3 with probability ϵ in the real game, then it will also
output a valid forgery (M∗, e∗) in the simulated game with probability at least
(ϵ − Q2(Q

2ℓ
)v) · δ · (1

2ℓ
− negl(κ)) = ϵ

2ℓ·16nv2 − negl(κ) = ϵ
Q·Õ(n)

(note that F ’s
success probability ϵ might be correlated with the first abort condition).

Now, we show that ê = (Im̄∥R̂)e∗ is a valid solution to the ISISq,m̄,β̄ instance
(A,u). By the conditions in the verification algorithm, we have that AM∗,t∗e

∗ =
u and ∥e∗∥ ≤ s

√
m. Since s1(R0) ≤

√
m·ω(

√
log n) by Lemma 3 and s1(RM∗) ≤

β = Õ(n2.5) by Theorem 3, we have that ∥ê∥ ≤ Õ(n2.5) · s
√
m = Õ(n5.5) = β̄.

This finally completes the proof. □

5 Fully-secure Short Signatures from PHFs

The three concrete signature schemes (i.e., SIG1,SIG2 and SIG3) given in the
above section can only achieve a weak EUF-qCMA security because we have to
set the scheme parameter depending on the number Q of the adversary’s signing
queries. For SIG3, this dependence is somewhat loose, because there is only one
parameter ℓ = O(log n) (i.e., the tag length) that directly depends on Q due
to the requirement Q/2ℓ < 1/2 in the security proof, and SIG3 can be easily
made to achieve the full EUF-CMA security with a choice of ℓ = ω(log n) such
that Q/2ℓ = negl(n) < 1/2 holds for any polynomially-bounded Q. The main
problem is that the resulting security proof becomes less interesting due to the
super-polynomial factor 2ω(logn) in the reduction loss.

In this section, we give two new signature schemes from the Type-II and
Type-III PHFs, which have similar structures to SIG3 but directly achieve full
EUF-CMA security with asymptotically the same key sizes and reduction loss.
Technically, we will replace the simple weak PHF component in SIG3 with a
set of weak PHFs to realize the confined guessing technique [9] such that we can
somehow dynamically set an appropriate “tag length” after knowing the number
Q of the signing queries in the security proof.

5.1 A Fully-secure Short Signature on General Lattices

Let ℓ = ω(log n) < n be a function depending on the security parameter κ, and
let d = ⌈log ℓ⌉. For any vector t ∈ {0, 1}ℓ, let tj ∈ {0, 1}j be the binary vector
consisting of the first j bits of t (which means that tℓ = t). Let H : Zn

q → Zn×n
q

be the FRD encoding in [2] such that for any vector v = (v, 0 . . . , 0)T ,v1,v2 ∈
Zn
q , we have that H(v) = vIn and H(v1)+H(v2) = H(v1+v2) hold. For any t ∈
{0, 1}ℓ′ with ℓ′ < n, we naturally treat it as a binary vector in Zn

q by appending

39

it (n− ℓ′) zero coordinates. Our signature scheme SIG4 = (KeyGen,Sign,Verify)
is defined as follows.

KeyGen(1κ): Given a security parameter κ as input, first compute (A,R) ←
TrapGen(1n, 1m̄, q, In) such that A ∈ Zn×m̄

q , R = Z(m̄−nk)×nk
q . Randomly

choose Ai ← Zn×nk
q for i ∈ {0, 1, . . . , d}, and u ← Zn

q . Finally, compute
K ← H.Gen(1κ), return vk = (A, {Ai}0≤i≤d,u,K) and sk = (vk,R).

Sign(sk,M ∈ {0, 1}n): Given the secret key sk and a message M as inputs,
randomly choose a tag t ← {0, 1}ℓ, let tj ∈ {0, 1}j be the binary vector

consisting of the first j bits of t, where 1 ≤ j ≤ ℓ. Then, compute Âj =
Compℓ({Ai}0≤i≤d−1, j) for all 1 ≤ j ≤ ℓ as shown in Fig. 1, and

AM,t = (A∥(Ad +

ℓ∑
j=1

Âj ·G−1(H(0∥tj)G) + HK(M)) ∈ Zn×m
q ,

where HK(M) = H.Eval(K,M) ∈ Zn×nk
q . Finally, compute and return the

signature σ = (e, t), where e← SampleD(R,AM,t, In,u, s).

Verify(vk,M, σ): Given vk, message M and σ = (e, t) as inputs, compute Âj =
Compℓ({Ai}0≤i≤d−1, j) for all 1 ≤ j ≤ ℓ as shown in Fig. 1, and

AM,t = (A∥(Ad +

ℓ∑
j=1

Âj ·G−1(H(0∥tj)G) + HK(M)) ∈ Zn×m
q ,

where HK(M) = H.Eval(K,M) ∈ Zn×nk
q . Return 1 if ∥e∥ ≤ s

√
m and

AM,te = u. Otherwise, return 0.

Since R is a G-trapdoor of A, by padding with zero rows it can be extended
to a G-trapdoor for AM,t with the same quality s1(R) ≤

√
m̄ ·ω(

√
log n). Since

s = Õ(n2.5) > s1(R) · ω(
√
log n), the vector e output by SampleD follows the

distribution DZm,s satisfying AM,te = u. In other words, ∥e∥ ≤ s
√
m holds with

overwhelming probability by Lemma 2. This shows that SIG4 is correct.

Note that if we set v = ω(log n), the key K only has µ = O(log n) number of
matrices in Zn×nk

q and each signature consists of a vector plus a short ℓ-bit tag.
This means that the total number of matrix in the verification key is at most
d+ 2 + µ = O(log n). We have the following theorem for security.

Theorem 10. Let ℓ, m̄, n, q, v ∈ Z be polynomials in the security parameter κ.
Let ℓ = ω(log n), v = ω(log n), d = ⌈log ℓ⌉. Then, if there exists a PPT forger F
breaking the EUF-CMA security of SIG4 with non-negligible probability ϵ and
making at most Q = poly(n) signing queries, there exists an algorithm B solving
the ISISq,m̄,β̄ problem with probability at least ϵ′ ≥ ϵ

64·Q·nv2 − negl(κ) for some

β̄ = Õ(n5.5).

40

Proof. We now give the construction of algorithm B, which simulates the attack
environment for F , and solves the ISISq,m̄,β̄ problem with probability ϵ′. Since
the number Q of the adversary’s signing queries is bounded by a polynomial,
there must exist an index 1 ≤ j∗ ≤ ℓ = ω(log n) such that Q

2j∗
≤ 1/2 < Q

2j∗−1 .

The algorithm B first randomly chooses a vector t′ ← {0, 1}j∗ , and hopes that
F will output a forged signature with a tag t∗ whose first j∗ bits are extactly t′

(namely, t∗j∗ = t′). Then, B simulates the EUF-CMA game as follows:

KeyGen. Given an ISISq,m̄,β̄ challenge instance (A,u) ∈ Zn×m̄
q ×Zn

q , the algo-

rithm B first randomly chooses Ri ← (DZm̄,ω(
√
logn))

nk for 0 ≤ i ≤ d. Then,
let (b∗0, . . . , b

∗
d−1) = BitDecompκ(j

∗), and compute Ai = ARi + (1 − b∗i)G
for 0 ≤ i ≤ d − 1 and Ad = ARd − (−1)c · H(0∥t′)G, where c is the
number of 1’s in the binary vector (b∗0, . . . , b

∗
d−1). Next, compute (K ′, td)←

H.TrapGen(1κ,A,G) as in Theorem 3. Finally, set vk = (A, {Ai}0≤i≤d,u,K ′)
and keep ({Ri}0≤i≤d, td) private.

Signing. Given a message M , the algorithm B first randomly chooses a tag
t ← {0, 1}ℓ. Let tj ∈ {0, 1}j be the binary vector consisting of the first j
bits of t, where 1 ≤ j ≤ ℓ. If tj∗ has been used in generating the signa-

tures for more than v messages, B aborts. Otherwise, B computes Âj =
Compℓ({Ai}0≤i≤d−1, j) for all 1 ≤ j ≤ ℓ as shown in Fig. 1, (RM ,SM) =
H.TrapEval(td,K ′,M), and

AM,t = (A∥(Ad +

ℓ∑
j=1

Âj ·G−1(H(0∥tj)G) + HK′(M)).

Let (R̂j , Ŝj) = Tcompℓ({Ai,Ri}0≤i≤d−1, j) for all 1 ≤ j ≤ ℓ, by the proof

of Theorem 3, we have that Âj = AR̂j + Ŝj . In particular, we have that

s1(R̂j) ≤ dm̄1.5 · ω(
√
log m̄) and that Ŝj = (−1)c · In for j = j∗, and Ŝj = 0

otherwise. This means that we have AM,t = (A∥AR̂+ ŜG), where

R̂ = Rd +
∑ℓ

j=1 R̂j ·G−1(H(0∥tj)G) +RM ,

Ŝ = −(−1)c ·H(0∥t′) + (−1)c ·H(0∥tj∗) + SM .

Since SM = bIn = H(b∥0) for some b ∈ {−1, 0, 1}, we have that Ŝ =
H(b∥(−1)c · (tj∗ − t′)) holds by the homomorphic property of the FRD
encoding H in [2]. B distinguishes the following two cases:

– tj∗ ̸= t′ or (tj∗ = t′∧b ̸= 0): In both cases, we have that Ŝ is invertible. In

other words, R̂ is a G-trapdoor for AM,t. Since s1(Ri) ≤
√
m̄·ω(

√
log n)

by Lemma 3 and s1(RM) ≤ Õ(n2.5), we have s1(R̂) ≤ Õ(n2.5). Then,

compute e ← SampleD(R̂,AM,t, Ŝ,u, s), and return the signature σ =

(e, t). If we set an appropriate s = Õ(n2.5) ≥ s1(R̂) · ω(
√
log n), then B

can generate a valid signature on M with overwhelming probability by
Proposition 1.

– tj∗ = t′ ∧ b = 0: B aborts.

41

Forge. After making at most Q signing queries, F outputs a forged signa-
ture σ∗ = (e∗, t∗) on message M∗ ∈ {0, 1}n such that ∥e∗∥ ≤ s

√
m and

AM∗,t∗e
∗ = u, where

AM∗,t∗ = (A∥(Ad +

ℓ∑
j=1

Âj ·G−1(H(0∥t∗j)G) + HK′(M∗)) ∈ Zn×m
q .

The algorithm B computes (RM∗ ,SM∗) = H.TrapEval(td,K ′,M∗), and
aborts the simulation if t∗j∗ ̸= t′ or SM∗ ̸= 0. Else, we have

AM∗,t∗ = (A∥A(Rd +

ℓ∑
j=1

R̂j ·G−1(H(0∥t∗j)G) +RM∗)) = (A∥AR̂∗),

where R̂∗ = R0 +
∑ℓ

j=1 R̂j · G−1(H(0∥t∗j)G) + RM∗ . Finally, B outputs

ê = (Im̄∥R̂∗)e∗ as its own solution.

By the definition of the ISISq,m̄,β̄ problem, (A,u) is uniformly distributed

over Zn×m̄
q × Zn

q . Since Ri ← (DZm̄,ω(
√
logn))

nk, we have that Ai ∈ Zn×nk
q

is statistically close to uniform over Zn×nk
q by Lemma 5, where 0 ≤ i ≤ d. In

addition, by Theorem 3 the simulated PHF keyK ′ is statistically close to the real
key K. Thus, the distribution of the simulated verification key vk is statistically
close to that of the real one.

Let M1, . . . ,Mu be all the messages in the signing queries that B hap-
pens to use t′ ∈ {0, 1}j∗ in generating the signatures, and let (RMi ,SMi) =
H.TrapEval(td,K ′,Mi) for i ∈ {1, . . . , u}. Then, B will abort in the simulation
if and only if either of the following two conditions hold:

– Some tj∗ ∈ {0, 1}j
∗
has been used in generating the signatures for more than

v messages;
– SMi

is not invertible for some i ∈ {1, . . . , u}, or SM∗ ̸= 0, or t∗j∗ ̸= t′.

Note that B always randomly chooses a tag t← {0, 1}ℓ for each signing message,
the probability that the same tj∗ ∈ {0, 1}j

∗
is used in generating the signatures

for more than v messages is less than Q2 · (Q
2j∗

)v by a similar analysis in [35],

which is negligible by our setting of Q
2j∗
≤ 1/2 and v = ω(log n). In particular,

the probability that B will use t′ ∈ {0, 1}j∗ in generating the signatures for
u ≥ v messages is also negligible. Conditioned on u ≤ v, the probability that
SMi

is invertible for all i ∈ {1, . . . , u} and SM∗ = 0 (using the fact that M∗ /∈
{M1, . . . ,Mu}) is at least δ = 1

16nv2 − negl(κ) by Theorem 3. Note that t′ is
randomly chosen and is statistically hidden from F , we have that the probability
Pr[t∗j∗ = t′] is at least 1

2j∗
− negl(κ). Thus, if the forger F can break the EUF-

CMA security of SIG4 with probability ϵ in the real game, then it will also
output a valid forgery (M∗, e∗) in the simulated game with probability at least
(ϵ−Q2(Q

2j∗
)v) · δ · (1

2j∗
− negl(κ)) = ϵ

2j∗ ·16nv2 − negl(κ) ≥ ϵ
64·Q·nv2 − negl(κ).

42

Now, it suffices to show that ê = (Im̄∥R̂∗)e∗ is a valid solution to the
ISISq,m̄,β̄ instance (A,u). By the verification algorithm, we have thatAM∗,t∗e

∗ =

u and ∥e∗∥ ≤ s
√
m. Since s1(Ri) ≤

√
m ·ω(

√
log n) by Lemma 3 and s1(RM∗) ≤

β = Õ(n2.5) by Theorem 3, we have that s1(R̂
∗) ≤ Õ(n2.5) and that ∥ê∥ ≤

Õ(n2.5) · s
√
m = Õ(n5.5) = β̄. This completes the proof. □

Remark 3. Our construction of SIG4 essentially supports to use a tag of length
up to ℓ = n− 1. In particular, we still have O(log n) number of matrices in the
verification key and Õ(n) bits in the signature for the choice of ℓ = n−1, but the
ISIS parameter β̄ for the security proof of Theorem 10 will increase by roughly a
factor of n. We set ℓ = ω(log n) because 1) it is sufficient to handle any adversary
making a polynomially bounded number Q = poly(n) of signing queries, and 2) it
allows to obtain a better asymptotic parameter for the underlying ISIS problem.
We also note that it is possible to make a trade-off between the ISIS parameter
and the reduction loss by using a different way to parse the tag space {0, 1}ℓ as
for the confined guessing technique in [9].

5.2 A Fully-secure Short Signature on Ideal Lattices

Following the same idea of SIG4, we can also construct a fully secure signature
scheme with constant verification keys from the Type-III PHF. Formally, let
n, k ∈ Z be some polynomials in the security parameter κ, and let q = 3k, w =
⌈log2 q⌉+2, m̄ = w+k,m = m̄+k and s = Õ(n2.5) ∈ R. Let Rq = Zq[x]/(x

n+1),
and let ℓ = ω(log n) < n

2 . For any t ∈ {0, 1}ℓ, let tj ∈ {0, 1}j be the binary string
consisting of the first j bits of t (which means that tℓ = t). Let d ≥ 2 be a factor
of 2n such that d/2 ≤ ℓ < d. For any t ∈ {0, 1}ℓ′ with ℓ′ < n, we naturally treat
it as a polynomial of degee at most ℓ′ − 1 in Rq with the canonical coefficient
embedding. Let H = (H.GenR,H.EvalR) be the improved Type-III PHF given
in Definition 8. Our signature scheme SIG5 = (KeyGen,Sign,Verify) is defined
as follows.

KeyGen(1κ): Given a security parameter κ as input, the key generation algorithm
first computes (A,R) ← TrapGenR(1

n, 1m̄, q, 1) such that A ∈ R1×m̄
q ,R =

Rw×k
q . Randomly choose A0,A1 ← R1×k

q and u ← Rq. Finally, compute
K ← H.GenR(1

κ), and return vk = (A,A0,A1, u,K) and sk = (vk,R).
Sign(sk,M ∈ {0, 1}n): Given the secret key sk and a message M as inputs,

randomly choose a bit sting t ∈ {0, 1}ℓ, let tj ∈ {0, 1}j be the binary string

consisting of the first j bits of t. Then, compute Âj = Rcompℓ,d(A0, d, j) for
all 1 ≤ j ≤ ℓ. Next, compute

AM,t = (A∥(A1 +

ℓ∑
j=1

Âj ·G−13 (xtjG3) + HK(M))) ∈ R1×m
q ,

where HK(M) = H.EvalR(K,M) ∈ R1×k
q . Finally, compute and return the

signature σ = (e, t), where e← SampleDR(R,AM,t, 1, u, s) ∈ Rm
q .

43

Verify(vk,M, σ): Given vk, message M and σ = (e, t) as inputs, compute Âj =
Rcompℓ,d(A0, d, j) for all 1 ≤ j ≤ ℓ. Next, compute

AM,t = (A∥(A1 +

ℓ∑
j=1

Âj ·G−13 (xtjG3) + HK(M))) ∈ R1×m
q ,

where HK(M) = H.EvalR(K,M) ∈ R1×k
q . Return 1 if ∥e∥ ≤ s

√
mn and

AM,te = u. Otherwise, return 0.

Since R is a G-trapdoor of A, by padding with zero rows it can be ex-
tended to a G-trapdoor for AM,t with the same quality s1(R) ≤ (

√
nw+

√
nk+

ω(
√
n log n)) · ω(

√
log nw). Since s = Õ(n2.5) > s1(R) · ω(

√
log n), the vector e

output by SampleDR follows the distribution (DR,s)
m satisfying AM,te = u. In

other words, ∥e∥ ≤ s
√
mn holds with overwhelming probability by Lemma 2.

This shows that SIG5 is correct.
Note that if we set v = ω(log n) in Definition 8, the key K only has 3 vectors

of R1×k
q and each signature consists of a vector in Rm

q plus a short ℓ-bit tag. Set
w = ⌈log2 q⌉+ 2 ≤ 2k, we have the verification key having at most 8 vectors in
R1×k

q . We have the following theorem for security.

Theorem 11. Let ℓ, m̄, n, q, v ∈ Z be polynomials in the security parameter κ.
Let ℓ = ω(log n), v = ω(log n). Then, if there exists a PPT forger F breaking the
EUF-CMA security of SIG5 with non-negligible probability ϵ and making at most
Q = poly(n) signing queries, there exists an algorithm B solving the ISISq,m̄,β̄

problem over R for β̄ = Õ(n5.5) with probability at least ϵ′ ≥ ϵ
64·Q·nv2 −negl(κ) =

ϵ
Q·Õ(n)

.

Proof. The proof is very similar to that of Theorem 9. Formally, we now construct
an algorithm B, which simulates the attack environment for F , and solves the
ISISq,m̄,β̄ problem over R with probability at least ϵ

Q·Õ(n)
. Let 1 ≤ j∗ ≤ ℓ be the

smallest integer such that Q/2j
∗ ≤ 1/2 < Q/2j

∗−1. B first randomly chooses a
bit sting t′ ∈ {0, 1}j∗ , and hopes that F will output a forged signature with tag
t∗ such that t∗j∗ = t′. Then, B simulates the EUF-CMA game as follows:

KeyGen. Given an ISISq,m̄,β̄ challenge instance (A, u) ∈ R1×m̄
q × Rq, the al-

gorithm B first randomly chooses R0,R1 ← (DR,ω(
√
lognm̄))

m̄×k, and com-

putes A0 = AR0+x
2n
d j∗G3,A1 = AR1−xt′G3. Then, compute (K ′, td)←

H.TrapGenR(1
κ,A,G3) as in Theorem 5. Finally, set vk = (A,A0,A1, u,K

′)
and keep (R0,R1, td) private.

Signing. Given a message M , the algorithm B first randomly choose a bit sting
t ∈ {0, 1}ℓ, let tj ∈ {0, 1}j be the binary string consisting of the first j bits of
t. If tj∗ has been used in answering the signatures for more than v messages,

B aborts. Otherwise, compute Âj = Rcompℓ,d(A0, d, j) for all 1 ≤ j ≤ ℓ.

44

Next, compute

AM,t = (A∥(A1 +

ℓ∑
j=1

Âj ·G−13 (xtjG3) + HK′(M))) ∈ R1×m
q ,

where HK(M) = H.EvalR(K,M) ∈ R1×k
q . For all 1 ≤ j ≤ ℓ, let (R̂j , ĥj) =

TRcompℓ,d(A0,R0, d, j) and (RM , hM) = H.TrapEvalR(td,K ′,M). By the

proof of Theorem 4 we have ĥj = 1 if and only if j = j∗, and 0 otherwise.
Thus, we have

AM,t = (A∥A(R1 +

ℓ∑
j=1

R̂jG
−1
3 (xtjG3) +RM) + (x(tj∗ − t′) + hM)G3).

B distinguishes the following two cases:
– tj∗ ̸= t′ or (tj∗ = t′ ∧ hM ̸= 0): In both cases, we have that ĥ = x(tj∗ −

t′)+hM is invertible by Lemma 6, because ĥ has coefficients in {−1, 0, 1}
(note that hM ∈ {0, 1}) and has degree at most ℓ < n/2. In other words,

R̂ = R0 +
∑ℓ

j=1 R̂jG
−1
3 (xtjG3) +RM is a G-trapdoor for AM,t. Since

s1(R0) ≤ (
√
w +
√
k + ω(

√
log n)) · ω(

√
log nm̄) by Lemma 7, s1(R̂j) ≤

Õ(n1.5) by the proof of Theorem 4, and s1(RM) ≤ Õ(n2.5), we have

s1(R̂) ≤ Õ(n2.5). Then, compute e ← SampleDR(R̂,AM,t, ĥ, u, s), and

return the signature σ = (e, t). If we set an appropriate s = Õ(n2.5) ≥
s1(R̂) · ω(

√
log n), then B can generate a valid signature on M with

overwhelming probability by Proposition 2.
– tj∗ = t′ ∧ hM = 0: B aborts.

Forge. After making at most Q signing queries, F outputs a forged signa-
ture σ∗ = (e∗, t∗) on message M∗ ∈ {0, 1}n such that ∥e∗∥ ≤ s

√
mn and

AM∗,t∗e
∗ = u, where

AM∗,t∗ = (A∥(A1 +

ℓ∑
j=1

Âj ·G−13 (xt∗jG3) + HK′(M∗))) ∈ R1×m
q .

For all 1 ≤ j ≤ ℓ, let (R̂j , ĥj) = TRcompℓ,d(A0,R0, d, j) and (RM∗ , hM∗) =
H.TrapEvalR(td,K ′,M∗). The algorithm B aborts the simulation if t∗j∗ ̸= t′

or hM∗ ̸= 0. Else, we have

AM∗,t∗ = (A∥A(R1 +

ℓ∑
j=1

R̂j ·G−13 (xt∗jG3) +RM∗)) = (A∥AR̂),

where R̂ = R0 +
∑ℓ

j=1 R̂j · G−13 (xt∗jG3) + RM∗ . Finally, B outputs ê =

(Im̄∥R̂)e∗ as its own solution.

By the definition of the ISISq,m̄,β̄ problem over R, (A, u) is uniformly dis-

tributed over R1×m̄
q × Rq. Since R0 ← (DR,ω(

√
lognm̄))

m̄×k, we have that A0 ∈

45

R1×k
q is statistically close to uniform over R1×k

q by Lemma 9. In addition, by
Theorem 5 the simulated key K ′ is statistically close to the real key K. Thus,
the distribution of the simulated verification key vk is statistically close to that
of the real one.

Let M1, . . . ,Mu be all the messages in the signing queries that B hap-
pens to use t′ ∈ {0, 1}j∗ in generating the signatures, and let (RMi

, hMi
) =

H.TrapEval(td,K ′,Mi) for i ∈ {1, . . . , u}. Then, B will abort in the simulation
if and only if either of the following two conditions hold:

– Some tj∗ ∈ {0, 1}j
∗
has been used in generating the signatures for more than

v messages;
– hMi

= 0 is not invertible for some i ∈ {1, . . . , u}, or hM∗ ̸= 0, or t∗j∗ ̸= t′.

Note that B always randomly chooses a tag t← {0, 1}ℓ for each signing message,
the probability that the same tj∗ ∈ {0, 1}j

∗
is used in generating the signatures

for more than v messages is less than Q2 · (Q
2j∗

)v by a similar analysis in [35],

which is negligible by our choices of Q
2j∗
≤ 1/2 and v = ω(log n). In particular,

the probability that B will use t′ ∈ {0, 1}j∗ in generating the signatures for u ≥ v
messages is also negligible. Conditioned on u ≤ v, the probability that hMi

= 1
for all i ∈ {1, . . . , u} and hM∗ = 0 (using the fact that M∗ /∈ {M1, . . . ,Mu})
is at least δ = 1

16nv2 − negl(κ) by Theorem 5. Note that t′ is randomly chosen
and is statistically hidden from F , we have that the probability Pr[t∗j∗ = t′] is at

least 1
2j∗
− negl(κ). Thus, if the forger F can break the EUF-CMA security of

SIG5 with probability ϵ in the real game, then it will also output a valid forgery
(M∗, e∗) in the simulated game with probability at least (ϵ−Q2(Q

2j∗
)v) ·δ ·(1

2j∗
−

negl(κ)) = ϵ
2j∗ ·16nv2 − negl(κ) ≥ ϵ

64·Q·nv2 − negl(κ).

Now, it suffices to show that ê = (Im̄∥R̂∗)e∗ is a valid solution to the
ISISq,m̄,β̄ instance (A,u). By the conditions in the verification algorithm, we

have that AM∗,t∗e
∗ = u and ∥e∗∥ ≤ s

√
m. Since s1(R1) ≤

√
m · ω(

√
log n)

by Lemma 3, s1(R̂j) ≤ Õ(n1.5) by the proof of Theorem 4 and s1(RM∗) ≤
β = Õ(n2.5) by Theorem 5, we have that s1(R̂

∗) ≤ Õ(n2.5) and that ∥ê∥ ≤
Õ(n2.5) · s

√
m = Õ(n5.5) = β̄. This completes the proof. □

Remark 4. Similar to SIG4, our construction of SIG5 also supports to use a
tag of length up to ℓ = n/2 − 1 with a price of increasing the underlying ISIS
parameter β̄ by a factor of at most n in the security proof.

6 IBE from Lattice-based PHFs

In this section, we give a generic IBE scheme from Lattice-based PHFs.

6.1 A Generic IBE scheme from Lattice-based PHFs

Let integers n, n̄,m′, ℓ, v, β, q be polynomials in the security parameter κ, and
let k = ⌈log2 q⌉. Let ring R be either the integer ring Z or the polynomial ring

46

Z[x]/(xn + 1). Let Rq = R/(qR) be the quotient ring. Let n = 1 if R = Z. Let
H = (H.GenR,H.EvalR) be a PHF defined over ring R from {0, 1}ℓ to Zn̄×m′

q .

Let n = 1 if R = Z. We set the user identity space as {0, 1}ℓ and the message
space as Rn̄

2 . Let integers m̄ = O(n̄ log q),m = m̄+m′, α ∈ R, and large enough
s > max(β,

√
m)·ω(

√
log nn̄) be the system parameters. Our generic IBE scheme

IBE = (Setup,Extract,Enc,Dec) is defined as follows.

Setup(1κ): Given a security parameter κ as input, the algorithm first computes

(A,R) ← TrapGenR(1
n̄, 1m̄, q, In̄) such that A ∈ Rn̄×m̄

q , R = R(m̄−n̄k)×n̄k
q .

Randomly choose U ← Rn̄×n̄
q , and compute K ← H.GenR(1

κ). Finally,
return (mpk,msk) = ((A,K,U),R).

Extract(msk, id ∈ {0, 1}ℓ): Given msk and a user identity id as inputs, compute
Aid = (A∥HK(id)) ∈ Rn̄×m

q , where HK(id) = H.EvalR(K, id) ∈ Rn̄×m′

q .
Then, compute Eid ← SampleDR(R,Aid, In,U, s), and return skid = Eid ∈
Rm×n̄.

Enc(mpk, id ∈ {0, 1}ℓ,M ∈ Rn̄
2): Givenmpk, id and plaintextM as inputs, com-

pute Aid = (A∥HK(id)) ∈ Rn̄×m
q , where HK(id) = H.EvalR(K, id) ∈

Rn̄×m′

q . Then, randomly choose s ← Rn̄
q , x0 ← (DR,αq)

n̄,x1 ← (DR,αq)
m̄,

and x2 ← (DR,2αβq)
m′

. Finally, compute and return the ciphertext C =
(c0, c1), where

c0 = UT s+ x0 +
q

2
M, c1 = AT

ids+
(
x1
x2

)
.

Dec(skid,C): Given skid = Eid and a ciphertext C = (c0, c1) under identity
id as inputs, compute b = c0 − ET

idc1 ∈ Rn̄
q . Then, compute M = ⌊ 2qb⌉

mod 2 ∈ Rn̄
2 . Finally, return the plaintext M ∈ Rn̄

2 .

By the correctness of SampleDR we know that AidEid = U and ∥Eid∥ ≤
s
√
mn̄ hold with overwhelming probability. One can easily show that the de-

cryption algorithm is correct for appropriate choices of parameters.

6.2 The Security Proof

For security, we show that under the LWE assumption over R, our generic IBE
scheme IBE is provably secure in the standard model.

Theorem 12. Let n̄, q,m′ ∈ Z and α, β ∈ R be polynomials in the security
parameter κ. Let H = (H.GenR,H.EvalR) be any (1, poly, β, γ, δ)-PHF defined
over R from {0, 1}ℓ to Rn̄×m′

q , where γ = negl(κ) and δ > 0 is noticeable. Then,
if there exists a PPT adversary A breaking the IND-ID-CPA security of IBE with
non-negligible advantage ϵ and making at most polynomially bounded number
Q of user private key queries, there exists an algorithm B solving the LWEq,α

problem over R with advantage at least ϵ′ ≥ ϵδ/2− negl(κ).
Moreover, if H = (H.GenR,H.EvalR) is a (1, v, β, γ, δ)-PHF for some prior

fixed polynomial v = poly(n), then the resulting IBE scheme is secure against
any PPT adversary making at most Q ≤ v user private key queries (namely, it
satisfies the IND-qID-CPA security).

47

Proof. In the following, we use a sequence of games from Games 0 to 6: Game 0
is exactly the real security game as in Definition 3 where the challenger honestly
encrypts the challenge plaintext, while Game 6 is a random game where the
challenge ciphertext is independent from the challenge plaintext. The security
is established by showing that if A can succeed in Game 0 with non-negligible
advantage ϵ, then it can also succeed in Game 6 with non-negligible advantage,
which is contradictory to the fact that Game 6 is a random game. Let B ∈ Zn̄×m′

q

be any trapdoor matrix that allows to efficiently sample short vector v satisfying
Bv = u for any u ∈ Rn̄

q , by using the trapdoor delegation techniques in [2].

Game 0. The challenger C honestly simulates the IND-ID-CPA security game
for A as follows:

Setup. First compute (A,R)← TrapGenR(1
n̄, 1m̄, q, In̄) such that A ∈ Rn̄×m̄

q ,

R = R(m̄−n̄k)×n̄k
q . Then, randomly choose U ← Rn̄×n̄

q , and compute K ←
H.GenR(1

κ). Finally, send the master public key mpk = (A,K,U) to the
adversary A, and keep the master secret key R private.

Phase 1. Upon receiving the user private key query with identity id ∈ {0, 1}ℓ,
compute the hash value Aid = (A∥HK(id)) ∈ Rn̄×m

q , where HK(id) =

H.Eval(K, id) ∈ Rn̄×m′

q . Then, compute Eid ← SampleDR(R,Aid, In̄,U, s),
and send the user private key skid = Eid ∈ Rm×n̄ to the adversary A.

Challenge. At some time, the adversary A outputs a challenge identity id∗

and a pair of challenge plaintexts (M0,M1) ∈ Rn̄
2 ×Rn̄

2 with the restriction
that it never obtains the user private key of id∗ in Phase 1. The challenger
C randomly chooses a bit b∗ ← {0, 1}, s ← Rn̄

q , x0 ← (DR,αq)
n̄,x1 ←

(DR,αq)
m̄, and x2 ← (DR,2αβq)

m′
. Then, it sets Cb∗ = (c∗0, c

∗
1), where

c∗0 = UT s+ x0 +
q

2
Mb∗ , c∗1 = AT

id∗s+
(
x1
x2

)
,

where Aid∗ = (A∥HK(id∗)) ∈ Rn̄×m
q and HK(id∗) = H.Eval(K, id∗) ∈

Rn̄×m′

q . Finally, it sends the challenge ciphertext Cb∗ to the adversary A.
Phase 2. A can adaptively make more user private key queries with any identity

id ̸= id∗. The challenger C responds as in Phase 1.
Guess. Finally, A outputs a guess b ∈ {0, 1}. If b = b∗, the challenger C outputs

1, else outputs 0.

Denote Fi as the event that C outputs 1 in Game i for i ∈ {0, 1, . . . , 5}.

Lemma 10. |Pr[F0]− 1
2 | = ϵ.

Proof. This lemma immediately follows from the fact that C honestly simulates
the attack environment for A, and outputs 1 if and only if b = b∗. □

Game 1. This game is identical to Game 0 except that C changes the guess
phase as follows.

48

Guess. Finally, the adversary A outputs a guess b ∈ {0, 1}. Let id1, . . . , idQ be
all the identities in the user private queries, and let id∗ be the challenge iden-
tity. Denote I∗ = {id1, . . . , idQ, id∗}, the challenger C computes (td,K ′) ←
H.TrapGenR(1

κ,A,B) and (Ridi ,Sidi) = H.TrapEvalR(td,K ′, idi). Then,
it defines the following function

τ(td,K ′, I∗) =

{
0, if Sid∗ = 0, and Sidi

is invertible for all i ∈ {1, . . . , Q}
1, otherwise,

Then, C proceeds the following steps:

1. Abort check: If τ(td,K ′, I∗) = 1, the challenger C aborts the game,
and outputs a uniformly random bit.

2. Artificial abort: Fixing I∗ = {id1, . . . , idQ, id∗}, let p be the probabil-
ity p = Pr[τ(td′,K ′, I∗) = 0] over the random choice of (td′,K ′). Then,
the challenger C samples O(ϵ2 log(ϵ−1)δ−1 log(δ−1)) times the probabil-
ity p by independently running (td′,K ′) ← H.TrapGenR(1

κ,A,B) and
evaluating τ(td′,K, I∗) to compute an estimate p′.10 Let δ be the param-
eter for the well-distributed hidden matrices property of H, if p′ > δ, the

challenger C aborts with probability p′−δ
p′ , and outputs a uniformly ran-

dom bit.

Finally, if b = b∗, the challenger C outputs 1, else outputs 0.

Remark 5. As in [54,8,2,16,28], this seemingly meaningless artificial abort stage
is necessary for our later refinements. Looking ahead, in the following games the
challenger C can continue the simulation only when the identities id1, . . . , idQ, id

∗

will not cause an abort (in the abort check stage). Since the success probability
of the adversary A might be correlated with the probability that C aborts, it
becomes complicate when we try to rely the success probability of C (in solving
the underlying LWE problems) on the success probability of the adversary A
(in attacking the IBE scheme). In [54], Waters introduced the artificial abort to
force the probability that C aborts to be independent of A’s particular queries. In
certain cases, Bellare and Ristenpart [8] showed that the artificial abort can be
avoided. Because our construction uses general lattice-based PHFs as a “black-
box”, we opt for the Waters approach and introduce an artificial abort. Besides,
we clarify that there is no artificial abort involved in our generic signature scheme
because any valid forgery can be publicly checked by the challenger C. Similar
argument can be found in [54].

Lemma 11. If H is a (1, poly, β, γ, δ)-PHF, then |Pr[F1]− 1
2 | ≥

1
2ϵδ.

10 In general, the sampling procedure generally makes the running time of C dependent
on the success advantage ϵ of A, but for concrete PHFs (e.g., the construction in
Theorem 3), it is possible to directly calculate the probability p.

49

Proof. Let QID = ({0, 1}ℓ)Q+1 be the set of all Q + 1 tuples of identities.
Let Q(I) be the event that the adversary A uses the first Q identities in I =
{id1, . . . , idQ, id∗} ∈ QID for user private key queries, and the last one for the
challenge identity. Let Fi(I) ⊆ Q(I) be the event that the challenger C outputs
1 in Game i when Q(I) happens, where i ∈ {0, 1}. Let E be the event that C
aborts in Game 1. Then, by the definition we have the following facts:∑

I∈QID Pr[Q(I)] = 1

Pr[Fi] =
∑

I∈QID Pr[Fi(I)]

Pr[Fi] = Pr[Fi ∧ E] + Pr[Fi ∧ ¬E]
Pr[Q(I)] = Pr[Q(I) ∧ E] + Pr[Q(I) ∧ ¬E]

Besides, by the description of Game 1, we have that Pr[F1(I)∧E] = 1
2 Pr[Q(I)∧E]

and Pr[F1(I)∧¬E] = Pr[F0(I)∧¬E] = Pr[F0(I)] Pr[¬E|Q(I)] hold. By a simple
calculation, we have

|Pr[F1]− 1
2 | = |

∑
I∈QID(Pr[F1(I) ∧ E] + Pr[F1(I) ∧ ¬E])− 1

2 |
= |

∑
I∈QID(Pr[F1(I) ∧ ¬E]− 1

2 Pr[Q(I) ∧ ¬E])|
= |

∑
I∈QID(Pr[F0(I)]− 1

2 Pr[Q(I)]) Pr[¬E|Q(I)]|.

Since Pr[Fi(I)] ≤ Pr[Q(I)], we have |Pr[F0(I)− 1
2 Pr[Q(I)]| ≤

1
2 Pr[Q(I)] holds.

Let η(I) = Pr[¬E|Q(I)]. Let ηmax = maxI∈QID η(I) and ηmin = minI∈QID η(I).
Then, we have

|Pr[F1]− 1
2 | = |

∑
I∈QID(Pr[F0(I)]− 1

2 Pr[Q(I)])(ηmin + η(I)− ηmin)|
≥ ηmin|

∑
I∈QID(Pr[F0(I)]− 1

2 Pr[Q(I)])|
−|

∑
I∈QID(Pr[F0(I)]− 1

2 Pr[Q(I)])|(η(I)− ηmin)

≥ ηmin|Pr[F0]− 1
2 |

−
∑

I∈QID |Pr[F0(I)]− 1
2 Pr[Q(I)]|(η(I)− ηmin)

≥ ηmin|Pr[F0]− 1
2 | −

1
2

∑
I∈QID Pr[Q(I)](ηmax − ηmin)

= ηmin|Pr[F0]− 1
2 | −

1
2 (ηmax − ηmin).

Since C always samples O(ϵ2 log(ϵ−1)δ−1 log(δ−1)) times the probability p to
compute p′, we have that Pr[p′ > p(1 + ϵ

8)] < δ ϵ
8 and Pr[p′ < p(1 − ϵ

8)] < δ ϵ
8

hold by the Chernoff bounds. Since p ≥ δ, we have

ηmax ≤ max(δ
(1− ϵ

8)
, (1− δ ϵ

8)p
δ

p(1− ϵ
8)
) = δ

(1− ϵ
8)
,

ηmin ≥ (1− δ ϵ
8)p

δ
p(1+ ϵ

8)
= (1− δ ϵ

8)
δ

(1+ ϵ
8)
.

By Lemma 10, |Pr[F0]− 1
2 | = ϵ holds. Then, we have

|Pr[F1]− 1
2 | ≥ ηmin|Pr[F0]− 1

2 | −
1
2 (ηmax − ηmin)

≥ 1
2ϵδ.

50

This completes the proof of Lemma 11. □

Game 2. This game is identical to Game 1 except that the challenger C changes
the setup phase as follows.

Setup. First compute (A,R) ← TrapGen(1n̄, 1m̄, q, In̄) such that A ∈ Rn̄×m̄
q ,

R = R(m̄−n̄k)×n̄k
q . Then, randomly choose U← Rn̄×n̄

q , and compute (K ′, td)
← H.TrapGenR(1

κ,A,B). Finally, send mpk = (A,K ′,U) to the adversary
A, and keep the master secret key R and the trapdoor td private.

Lemma 12. If H is a PHF, then |Pr[F2]− Pr[F1]| ≤ negl(κ).

Proof. By Definition 4, we have that the statistical distance between (A,K ′) and
(A,K) is negligible for anyK ← H.GenR(1

κ), (K ′, td)← H.TrapGenR(1
κ,A,B).

This means that the master public key mpk in Game 2 is statistically close to
that in Game 1. Thus, we have |Pr[F2]− Pr[F1]| ≤ negl(κ). □

Game 3. This game is identical to Game 2 except that the challenger C changes
the way of generating the user private keys and the challenge ciphertext as
follows.

Phase 1. Upon receiving the user private key query with identity id ∈ {0, 1}ℓ,
compute Aid = (A∥HK′(id)) ∈ Rn̄×m

q , where HK′(id) = H.EvalR(K ′, id) ∈
Rn̄×n̄k

q . Then, compute (Rid,Sid) = H.TrapEvalR(td,K ′, id). If Sid is not
invertible, the challenger C outputs a uniformly random bit and aborts the
game. Otherwise, compute Eid ← SampleDR(Rid,Aid,Sid,U, s), and send
skid = Eid ∈ Rm×n to A.

Challenge. This phase is the same as in Game 2 except that the challenger
directly aborts and outputs a uniformly random bit if Sid∗ ̸= 0, where
(Rid∗ ,Sid∗) = H.TrapEvalR(td,K ′, id∗). Otherwise, it randomly chooses a
bit b∗ ← {0, 1}, s ← Rn̄

q , x0 ← (DR,αq)
n̄,x1 ← (DR,αq)

m̄. Then, it sets
Cb∗ = (c∗0, c

∗
1 = (c∗1,0, c

∗
1,1)), where

c∗0 = UT s+x0+
q

2
Mb∗ , c

∗
1,0 = AT s+x1, c

∗
1,1 = ReRandR((Rid∗)T , c∗1,0, αq, β).

Finally, it sends the challenge ciphertext Cb∗ to the adversary A.
Phase 2. A can adaptively make more user private key queries with any iden-

tity id ̸= id∗. The challenger C responds as in Phase 1.

Lemma 13. If H is a (1, poly, β, γ, δ)-PHF, then Pr[F3] = Pr[F2]− negl(κ).

51

Proof. Note that both stages of the abort check and the artificial abort in Game
3 and Game 2 are identical. By the fact that the same abort conditions as in the
abort check stage are examined when generating the user private keys and the
ciphertext C1 = (c∗0, c

∗
1), the challenger C in Game 3 will abort with the same

probability as that in Game 2. Besides, if C does not abort in Game 3, we have
that Sid∗ = 0 and Sid is invertible for any id in the user private key queries. In
this case, C can use the SampleDR algorithm to successfully generate the user
private keys by the fact that s1(Rid) ≤ β and s > max(β,

√
m) · ω(

√
log nn̄).

Moreover, if Sid∗ = 0, we have HK′(id∗) = ARid∗ . In this case, the challenge
ciphertext Cb∗ = (c∗0, c

∗
1 = (c∗1,0, c

∗
1,1)) in Game 2 has the following form:

c∗0 = UT s+ x0 +
q

2
Mb∗ , c

∗
1,0 = AT s+ x1, c

∗
1,1 = (Rid∗)T (AT s) + x2,

where s ← Rn̄
q , x0 ← (DR,αq)

n̄,x1 ← (DR,αq)
m̄, and x2 ← (DR,2αβq)

m′
. Since

s1(Rid∗) ≤ β, we have that the challenge ciphertext C1 = (c∗0, c
∗
1 = (c∗1,0, c

∗
1,1))

in Game 2 is statistically close to that in Game 3 by the property of ReRandR.
Thus, if C does not abort during the game, then Game 3 is statistically close to

Game 2 in the adversary A’s view. In all, we have that Pr[F3] = Pr[F2]−negl(κ)
holds. □

Game 4. This game is identical to Game 3 except that the challenger C changes
the setup and the challenge phases as follows.

Setup. First randomly choose A ← Rn̄×m̄
q , U ← Rn̄×n̄

q , and compute (K ′, td)
← H.TrapGenR(1

κ,A,G). Then, send mpk = (A,K ′,U) to the adversary
A, and keep the trapdoor td private.

Challenge. This phase is the same as in Game 3 except that the challenger
generates the ciphertext Cb∗ = (c∗0, c

∗
1 = (c∗1,0, c

∗
1,1)) as follows: randomly

choose vectors b0 ← Rn̄
q ,b1 ← Rm̄

q , and compute

c∗0 = b0 +
q

2
Mb∗ , c

∗
1,0 = b1, c

∗
1,1 = ReRand((Rid∗)T ,b1, αq, β),

where (Rid∗ ,Sid∗) = H.TrapEval(td,K ′, id∗).

Lemma 14. If the advantage of any PPT algorithm B in solving the LWEq,α

problem is at most ϵ′, then we have that |Pr[F4]− Pr[F3]| ≤ ϵ′ holds.

Proof. We construct an algorithm B for the LWEq,α over R as follows. Given the

LWEq,α challenge instance (Û, b̂0) ∈ Rn̄×n̄
q ×Rn̄

q and (Â, b̂1) ∈ Rn̄×m̄
q ×Rm̄

q . B
simulates the security game for the adversary A the same as in Game 3 except
that it replaces (A,U) in the setup phase and (b0,b1) in the challenge phase

with (Â, Û) and (b̂0, b̂1), respectively.

It is easy to check that if (Û, b̂0) ∈ Rn̄×n̄
q ×Rn̄

q and (Â, b̂1) ∈ Rn̄×m̄
q ×Rm̄

q are
valid LWE tuples, then A is in Game 3, otherwise A is in Game 4. This means

52

that B is a valid LWE distinguisher, which implies that both |Pr[F4]−Pr[F3]| ≤ ϵ′

holds by our assumption. □

Lemma 15. Pr[F4] =
1
2 .

Proof. The claim follows from the fact that b0 is uniformly random. □

By Lemma 11∼13, we have |Pr[F3]− 1
2 | ≥

1
2ϵδ − negl(κ). By Lemma 15, we

have Pr[F4] =
1
2 . By the fact that |Pr[F4]− Pr[F3]| ≤ ϵ′ in Lemma 14, we have

ϵ′ ≥ ϵδ
2 −negl(κ) holds. This completes the proof of the first claim in Theorem 12.

The second claim directly follows from the fact that the adversary will only make
at most Q ≤ v user private key queries. □

6.3 Instantiations

By instantiating the generic IBE scheme IBE with our Type-II (1, v, β)-PHF in
Definition 6, we can obtain an IBE scheme with master public key containing
O(log n) number of matrices. Let IBE1 be the instantiated scheme.

Corollary 3. If there exists a PPT adversary A breaking the IND-qID-CPA
security of IBE1 with non-negligible advantage ϵ and making at most Q ≤ v
user private key queries, then there exists an algorithm B solving the LWEq,α

problem over R = Z with advantage at least ϵ′ ≥ ϵ
32nv2 − negl(κ).

Similarly, by instantiating the generic IBE scheme IBE with our Type-III
(1, v, β)-PHF with R = R in Definition 8, we can obtain an IBE scheme with
master public key containing constant number of matrices. Let IBE2 be the
instantiated scheme.

Corollary 4. If there exists a PPT adversary A breaking the IND-qID-CPA
security of IBE2 with non-negligible advantage ϵ and making at most Q ≤ v
user private key queries, then there exists an algorithm B solving the LWEq,α

problem over ring R = R with advantage at least ϵ′ ≥ ϵ
32nv2 − negl(κ).

6.4 Extensions

Hierarchical IBE. Using the trapdoor delegation techniques in [2,16,47], one
can extend our generic IBE scheme IBE into a generic hierarchical IBE (HIBE)
scheme. We now give a sketch of the construction. For identity depth d ≥ 1,
we include d different PHF keys {Ki}i∈{1,...,d} in the master public key, and
the “public key” Aid for any identity id = (id1, . . . , idd′) with depth d′ ≤ d
is defined as Aid = (A∥HK1

(id1)∥ · · · ∥HKd′ (idd′)). Then, one can use Aid to
encrypt plaintexts the same as in our generic IBE scheme. In order to enable the
delegation of user private keys, the user private key should be replaced by a new
trapdoor extended by the trapdoor of A using the algorithms in [2,16,47]. We

53

note that as previous schemes using similar partitioning techniques [2,16], such
a construction seems to inherently suffer from a reduction loss depending on the
identity depth d in the exponent. It is still unclear whether one can adapt the
dual system of Waters [55] to construct lattice-based (H)IBEs with tight security
proofs.

Chosen Ciphertexts Security. Obviously, one can use the CHK technique in [15]
to transform a CPA secure HIBE for identity depth d to a CCA secure HIBE
for identity depth d − 1, by appending each identity in the encryption with
the verification key of a one-time strongly EUF-CMA signature scheme. In our
case, one can obtain an IND-ID-CCA secure IBE scheme by using a two-level
IND-ID-CPA HIBE scheme. Since the CHK technique only requires “selective-
security” to deal with the one-time signature’s verification key, we can construct
a more efficient CCA secure IBE scheme by directly combining a normal PHF
with a weak one. Since a weak PHF is usually simpler and more efficient, the
resulting IBE could be more efficient than the one obtained by directly applying
the CHK technique to a two-level fully secure HIBE scheme. We now give the
sketch of the improved construction. In addition to a normal PHF key K in the
master public key of our generic IBE scheme IBE , we also include it a weak
PHF key K1. When generating user private key for identity id, we compute
a new trapdoor of Aid = (A∥HK(id)) as the user private key, by using the
trapdoor delegation algorithms in [2,16,47]. In the encryption algorithm, we
generate a one-time signature verification key vk (for simplicity we assume the
length of vk is compatible with the weak PHF), and uses the matrix Aid,vk =
(Aid∥HK1(vk)) = (A∥HK(id)∥HK1(vk)) to encrypt the plaintext as IBE .Enc.
The decryption algorithm is the same as IBE .Dec except that it first computes
the “user private key” for Aid,vk from the user private key of Aid.

7 Conclusions and Open Problems

We proposed the notion of lattice-based PHFs and three types of concrete con-
structions. We showed that under the ISIS assumption, any non-trivial lattice-
based PHFs imply a collision-resistant hash function. We provided a generic
signature scheme from lattice-based PHFs, which encompassed the lattice-based
signature schemes in [13,47]. By instantiating the generic scheme with our ef-
ficient lattice-based PHF constructions, we immediately obtained lattice-based
short signature schemes with short verification keys. Furthermore, we showed
how to combine different lattice-based PHFs to construct short signature schemes
from weaker assumptions. We also constructed a generic construction of IBE
scheme from lattice-based PHFs. By instantiating the generic IBE scheme with
our efficient lattice-based PHF constructions, we obtained IBE scheme with short
master public keys in the standard model. We also showed how to extend our
(generic) IBE scheme into a (generic) HIBE scheme and how to achieve CCA
security.

54

One interesting problem is to give a simpler formalization of PHFs that
captures both the DL setting and the lattice setting. Another interesting problem
is to find more (efficient) constructions/applications of lattice-based PHFs.

Acknowledgments. We thank the anonymous reviewers for helpful comments on
earlier versions of our paper. Jiang Zhang, the corresponding author, is supported
by the National Natural Science Foundation of China (Grant Nos. 62022018,
61932019) and the National Key Research and Development Program of China
(Grant No. 2022YFB2702000). Yu Chen is supported by the National Key Re-
search and Development Program of China (Grant No. 2021YFA1000600), the
National Natural Science Foundation of China (Grant Nos. 62272269, 61932019),
and Taishan Scholar Program of Shandong Province. Zhenfeng Zhang is sup-
ported by the National Key Research and Development Program of China (No.
2022YFB2701600).

References

1. Abla, P., Liu, F.H., Wang, H., Wang, Z.: Ring-based identity based encryption –
asymptotically shorter mpk and tighter security. In: Nissim, K., Waters, B. (eds.)
Theory of Cryptography. pp. 157–187. Springer International Publishing, Cham
(2021)

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010, LNCS, vol. 6110, pp. 553–572. Springer
(2010)

3. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010, LNCS, vol.
6223, pp. 98–115. Springer (2010)

4. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC ’96. pp. 99–108. ACM (1996)

5. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) Automata, Languages and Programming,
LNCS, vol. 1644, pp. 706–706. Springer (1999)

6. Alperin-Sheriff, J.: Short signatures with short public keys from homomorphic
trapdoor functions. In: Katz, J. (ed.) PKC 2015, LNCS, vol. 9020, pp. 236–255.
Springer (2015)

7. Bai, S., Galbraith, S.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014, LNCS, vol. 8366, pp.
28–47. Springer International Publishing (2014)

8. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: Simplified proof
and improved concrete security for Waters’ IBE scheme. In: Joux, A. (ed.) EURO-
CRYPT 2009, LNCS, vol. 5479, pp. 407–424. Springer (2009)

9. Böhl, F., Hofheinz, D., Jager, T., Koch, J., Seo, J., Striecks, C.: Practical signatures
from standard assumptions. In: Johansson, T., Nguyen, P. (eds.) EUROCRYPT
2013, LNCS, vol. 7881, pp. 461–485. Springer (2013)

10. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology
– EUROCRYPT 2004, LNCS, vol. 3027, pp. 223–238. Springer (2004)

55

11. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001, LNCS, vol. 2139, pp. 213–229. Springer (2001)

12. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring. In:
Nyberg, K. (ed.) EUROCRYPT ’98, LNCS, vol. 1403, pp. 59–71. Springer (1998)

13. Boyen, X.: Lattice mixing and vanishing trapdoors: A framework for fully secure
short signatures and more. In: Nguyen, P., Pointcheval, D. (eds.) PKC 2010, LNCS,
vol. 6056, pp. 499–517. Springer (2010)

14. Boyen, X., Li, Q.: Towards tightly secure lattice short signature and id-based en-
cryption. In: ASIACRYPT 2016. pp. 404–434. Springer (2016)

15. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004, LNCS, vol.
3027, pp. 207–222. Springer (2004)

16. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010, LNCS, vol. 6110, pp.
523–552. Springer (2010)

17. Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private:
Constructions and applications to (homomorphic) signatures with shorter public
keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, LNCS, vol. 9216, pp.
254–274. Springer (2015)

18. Cheon, J., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
LNCS, vol. 9056, pp. 3–12. Springer (2015)

19. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding, LNCS, vol. 2260, pp. 360–363. Springer
(2001)

20. Coron, J.S., Gentry, C., Halevi, S., Lepoint, T., Maji, H., Miles, E., Raykova, M.,
Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: New MMAP attacks
and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, LNCS,
vol. 9215, pp. 247–266. Springer (2015)

21. Coron, J.S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers.
In: Canetti, R., Garay, J. (eds.) CRYPTO 2013, LNCS, vol. 8042, pp. 476–493.
Springer (2013)

22. Cramer, R., Damg̊ard, I.: On the amortized complexity of zero-knowledge proto-
cols. In: Halevi, S. (ed.) CRYPTO 2009, LNCS, vol. 5677, pp. 177–191. Springer
(2009)

23. Dodis, Y., Rafail, O., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM Journal on Computing
38, 97–139 (2008)

24. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Canetti, R., Garay, J. (eds.) CRYPTO 2013, LNCS, vol.
8042, pp. 40–56. Springer (2013)

25. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, LNCS, vol.
8874, pp. 22–41. Springer (2014)

26. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model.
In: Garay, J., Gennaro, R. (eds.) CRYPTO 2014, LNCS, vol. 8616, pp. 335–352.
Springer (2014)

27. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered
by the union of r others. Israel Journal of Mathematics 51(1-2), 79–89 (1985)

56

28. Freire, E., Hofheinz, D., Paterson, K., Striecks, C.: Programmable hash functions
in the multilinear setting. In: Canetti, R., Garay, J. (eds.) CRYPTO 2013, LNCS,
vol. 8042, pp. 513–530. Springer (2013)

29. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In:
Johansson, T., Nguyen, P. (eds.) EUROCRYPT 2013, LNCS, vol. 7881, pp. 1–17.
Springer (2013)

30. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) Advances in Cryptology – EUROCRYPT 2006, LNCS, vol. 4004,
pp. 445–464. Springer (2006)

31. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008. pp. 197–206. ACM (2008)

32. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: STOC 2015. pp. 469–477. ACM (2015)

33. Hanaoka, G., Matsuda, T., Schuldt, J.: On the impossibility of constructing efficient
key encapsulation and programmable hash functions in prime order groups. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012, LNCS, vol. 7417, pp. 812–831.
Springer (2012)

34. Hofheinz, D., Jager, T., Kiltz, E.: Short signatures from weaker assumptions.
In: Lee, D., Wang, X. (eds.) ASIACRYPT 2011, LNCS, vol. 7073, pp. 647–666.
Springer (2011)

35. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008, LNCS, vol. 5157, pp. 21–38. Springer (2008)

36. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. Jour-
nal of Cryptology 25(3), 484–527 (2012)

37. Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.S. (eds.)
EUROCRYPT 2016, LNCS, vol. 9665, pp. 537–565. Springer (2016)

38. Jager, T., Kurek, R., Niehues, D.: Efficient adaptively-secure ib-kems and vrfs via
near-collision resistance. In: Garay, J.A. (ed.) Public-Key Cryptography – PKC
2021. pp. 596–626. Springer International Publishing, Cham (2021)

39. Kajita, K., Ogawa, K., Nuida, K., Takagi, T.: Short lattice signatures in the stan-
dard model with efficient tag generation. In: Nguyen, K., Wu, W., Lam, K.Y.,
Wang, H. (eds.) Provable and Practical Security. pp. 85–102. Springer Interna-
tional Publishing, Cham (2020)

40. Katsumata, S., Yamada, S.: Partitioning via non-linear polynomial functions: more
compact ibes from ideal lattices and bilinear maps. In: International Conference on
the Theory and Application of Cryptology and Information Security. pp. 682–712.
Springer (2016)

41. Katz, J.: Digital Signatures. Springer (2010)
42. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000.
43. Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting prob-

lems without computational assumptions. In: CRYPTO ’99. pp. 609–623. Springer
(1999)

44. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012, LNCS, vol. 7237, pp. 738–755. Springer
(2012)

45. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-
natures. In: Canetti, R. (ed.) Theory of Cryptography, LNCS, vol. 4948, pp. 37–54.
Springer (2008)

46. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010, LNCS, vol. 6110, pp. 1–23.
Springer (2010)

57

47. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012, LNCS, vol. 7237,
pp. 700–718. Springer (2012)

48. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput. 37, 267–302 (April 2007)

49. Nguyen, P., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices.
In: Katz, J. (ed.) PKC 2015, LNCS, vol. 9020, pp. 401–426. Springer (2015)

50. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) Theory of Cryptography,
LNCS, vol. 3876, pp. 145–166. Springer (2006)

51. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005. pp. 84–93. ACM (2005)

52. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.,
Chaum, D. (eds.) CRYPTO ’84, LNCS, vol. 196, pp. 47–53. Springer (1984)

53. Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices.
arXiv preprint arXiv:1011.3027 (2010)

54. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005, LNCS, vol. 3494, pp. 114–127. Springer (2005)

55. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009, LNCS, vol. 5677, pp. 619–
636. Springer (2009)

56. Yamada, S.: Adaptively secure identity-based encryption from lattices with asymp-
totically shorter public parameters. In: Annual International Conference on the
Theory and Applications of Cryptographic Techniques. pp. 32–62. Springer (2016)

57. Yamada, S.: Asymptotically compact adaptively secure lattice ibes and verifiable
random functions via generalized partitioning techniques. In: Annual International
Cryptology Conference. pp. 161–193. Springer (2017)

58. Yamada, S., Hanaoka, G., Kunihiro, N.: Two-dimensional representation of cover
free families and its applications: Short signatures and more. In: Dunkelman, O.
(ed.) CT-RSA 2012, LNCS, vol. 7178, pp. 260–277. Springer (2012)

59. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012, LNCS, vol. 7417,
pp. 643–662. Springer (2012)

60. Zhang, J., Chen, Y., Zhang, Z.: Programmable hash functions from lattices:
Short signatures and IBEs with small key sizes. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, LNCS, vol. 9816, pp. 303–332. Springer, Heidelberg (2016)

58

	Lattice-based Programmable Hash Functions and Applications
	Introduction
	Our Contributions
	Additions to the Conference Version
	Techniques
	Short Signatures
	Identity-based Encryption
	Other Related Work

	Preliminaries
	Notation
	Lattices and Gaussian Distributions
	Rings and Trapdoors
	LWE and (I)SIS Problems
	Digital Signatures
	Identity-based Encryption

	Programmable Hash Functions from Lattices
	Type-I Construction
	Type-II Construction
	Type-III Construction
	Improved Type-III Construction for v < n
	Collision-Resistance and High Min-Entropy

	Short Signatures from Lattice-based PHFs
	A Generic Signature Scheme from Lattice-based PHFs
	Improved Short Signature on General Lattices

	Fully-secure Short Signatures from PHFs
	A Fully-secure Short Signature on General Lattices
	A Fully-secure Short Signature on Ideal Lattices

	IBE from Lattice-based PHFs
	A Generic IBE scheme from Lattice-based PHFs
	The Security Proof
	Instantiations
	Extensions

	Conclusions and Open Problems

