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Abstract. Explainable AI (XAI) refers to the development of AI sys-
tems and machine learning models in a way that humans can understand,
interpret and trust the predictions, decisions and outputs of these mod-
els. A common approach to explainability is feature importance, that is,
determining which input features of the model have the most signifi-
cant impact on the model prediction. Two major techniques for comput-
ing feature importance are LIME (Local Interpretable Model-agnostic
Explanations) and SHAP (SHapley Additive exPlanations). While very
generic, these methods are computationally expensive even in plaintext.
Applying them in the privacy-preserving setting when part or all of the
input data is private is therefore a major computational challenge. In
this paper, we present XorSHAP - the first practical privacy-preserving
algorithm for computing SHAP values for decision tree ensemble mod-
els in the semi-honest Secure Multiparty Computation (SMPC) setting

with full threshold. Our algorithm has complexity O(TM̃D2D), where T
is the number of decision trees in the ensemble, D is the depth of the de-
cision trees and M̃ is the maximum of the number of features M and 2D

(the number of leaf nodes of a tree), and scales to real-world datasets.
Our implementation is based on Inpher’s Manticore framework and si-
multaneously computes (in the SMPC setting) the SHAP values for 100
samples for an ensemble of T = 60 trees of depth D = 4 and M = 100
features in just 7.5 minutes, meaning that the SHAP values for a single
prediction are computed in just 4.5 seconds for the same decision tree
ensemble model. Additionally, it is parallelization-friendly, thus, enabling
future work on massive hardware acceleration with GPUs.

Keywords: Explainable AI, model explainability, gradient boosting decision
trees, SHAP values, secure multiparty computation

1 Introduction

1.1 Motivation

Explainable AI (XAI) refers to the design and development of AI systems and
machine learning methods that allow for human understanding and interpreta-
tion of the decisions and predictions made by these models [Mol22]. It provides
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insights into how a model generates its predictions, which features it considers
important as well as the reasoning behind the decisions. The main challenge
of explainable AI is thus to create explainable models without compromising
model accuracy. This is particularly important in areas such as finance, health-
care, manufacturing, etc.

While explaining the decision may be transparent for simple models such as
linear and logistic regression, the more complex the model becomes, the more
difficult it is to explain its predictions.

There are several approaches to model explainability:

– Feature importance: this approach determines the relative importance or
contribution of each feature in the prediction of a model.

– Local explainability: a method that provides explanations for individual pre-
dictions, showing which features had the most significant impact on the
specific instance.

– Rule extraction: deriving interpretable rules or decision trees that mimic
complex machine learning models.

Additionally, techniques such as LIME (Local Interpretable Model-agnostic
Explanations) [RSG16] (as well as the official github repository1 and SHAP
(SHapley Additive exPlanations) [LL17] generate explanability metrics at the
instance level considering contributions of individual features.

Explainable AI is an important aspect of Trustworthy AI, a broader concept
aiming at developing, building and deploying reliable, ethical, transparent and
accountable AI systems. Trustworthty AI encapsulates various principles and
guidelines to address the following objectives:

1. Ethical and responsible AI,
2. Transparency and explainability,
3. Fairness and bias mitigation,
4. Robustness and reliability,
5. Privacy and data protection,
6. Accountability and governance.

The recently voted EU AI Act [Act23] is a regulatory framework proposed
by the European Union (EU) to ensure the proper use of Trustworthy AI. It
emphasizes the importance of providing explanations for AI decisions, especially
in high-risk applications and recognizes that individuals should have the right
to understand the logic, significance, and consequences of automated decisions
that affect them. This is particularly relevant in areas such as finance, healthcare,
industrials and legal domains where the impact of AI decisions can be significant.

In the context of the EU AI Act, using techniques like SHAP values can help
fulfill the requirement of providing meaningful explanations for AI decisions.
By understanding explainability metrics such as SHAP values, stakeholders can
gain insights into how specific features influence the model’s predictions and

1 https://github.com/marcotcr/lime
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make informed judgments about the fairness, bias, or potential risks associated
with the AI system.

The computation of SHAP values can be rather expensive since it involves
computing predictions with models built on every possible subset of features.
This can become particularly challenging and even infeasible for models with
large number of features and samples. One often uses approximation methods
such as Monte Carlo or sampling subsets of features [LEL18, SK14]. The com-
plexities can become even higher if the input data is sensitive - in use case that
occurs very often in healthcare, financial technology as well as manufacturing
where the combination of explainability and privacy of the input data is partic-
ularly relevant.

Thus, the problem of designing and implementing efficient and scalable privacy-
preserving algorithms for computing feature importance metrics such as SHAP
values is of primary importance for Trustworthy AI.

1.2 Our contributions

In this paper, we address the above problem for decision tree ensemble models
in the Secure Multiparty Computation (SMPC) setting. More specifically, we
propose a privacy-preserving algorithm for computing SHAP values, XorSHAP,
based on the Manticore framework [BCD+23] for secure multiparty compu-
tation in the semi-honest setting. Our algorithm is inspired by the TreeSHAP

algorithm [LEL18] but relies on several data-independent (oblivious) operations
such as additions, multiplications, divisions, comparisons as well as sorting per-
mutations.

Our algorithm is applicable to the most generic data distribution setup where
input data comes from two or more private data sources and is either horizontally
split among the owners (i.e., every owner has different samples/rows sharing
the same features/columns), vertically split (every owner has complete set of
features for all the samples/rows) or any combination of the two. The goal is
to compute SHAP values for a given decision tree ensemble model in the MPC
setting using the fully stacked dataset and without revealing private information.
Although the private data owners may play the role of the compute parties in
some setting, this is not a strict requirement. In fact, the Manticore framework
supports scenarios where private data owners secret share data among a set
of compute parties that is not necessarily the same as the set of data owners.
The currently used security model is semi-honest, that is, the players execute
the exact steps of the algorithm with full-threshold security meaning that if all
players except one decide to collude, the data of the non-colluding player is still
protected.

Just as in TreeSHAP, the major complexity gain comes from the fact that,
instead of summing over all subsets of {1, . . . ,M} (thus, introducing a factor 2M

in the complexity), one sums over all 2D possible paths in the tree and then over
all subsets of the set of feature indices of the split nodes in the path (a set
of size at most D). Our main contribution is in the way we make that part
oblivious, thus, resulting in complexity that no longer has the large exponential
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factor 2M where M is the number of features, thus, resulting in total complexity
of O(TM̃D2D), where T is the number of trees, D is the depth of each binary

decision tree in the ensemble model and M̃ = max(M, 2D).
The efficiency of our privacy-preserving approach uses several key ideas and

techniques: 1) efficient oblivious permutations and oblivious sorting algorithms;
2) computing the path conditional probabilities W`,S in data-independent man-
ner using the set of distinct feature indices for a given path (a set of cardinality
at most D), a slightly extended set of cardinality exactly D and a special or-
dering on the power set of the extended set from Section 3.2.2. The latter is
described precisely in Lemma 6.

Finally, we demonstrate the efficiency and scalability of XorSHAP in practice
by implementing it on the [BCD+23] framework for secure multiparty compu-
tation and by presenting some preliminary benchmarks. The data presented in
Section 5 shows that the run-time scales linearly with both the number of trees T
as well as the number of samples M . For a decision tree ensemble model with
T = 60 trees of depth D = 4 and M = 100 features, the computation of the
SHAP values for 100 samples takes a little more than 7 minutes on Intel Xeon
E5-2666 v3 @ 2.90GHz CPU with 32GB RAM and network that has a through-
put of 120Mbps and a latency of 0.3ms.

1.3 Prior art

While initial attempts have been made to address the question of privacy-
preserving explainable AI, this area of research on the intersection of machine
learning and data privacy is relatively nascent and will likely grow with the
expanding interest on Trustworthy and Ethical AI.

Prior work have been made to introduce differential privacy in XAI and more
specifically, in the computation of SHAP values to preserve the privacy of the
input data [WAYS22].

Another important research direction has been in the area of federated ma-
chine learning. In [Wan19], the author proposes a method for computing feature
importance via SHAP values in the setting of vertical federated learning with
two parties, host and guest, where the host owns part of the features, the guest
owns the remaining features and the host wants to interpret a specific prediction
the model makes. In order for the host achieve the latter, the guest à priori
needs to send the feature importance for its entire feature space to the host
which may reveal too much information to the host. The idea of [Wan19] is to
replace the feature space with a single unified federated feature, letting the host
compute a metric for its own feature space together with that single federated
feature. While this is not computing exactly the SHAP model explainability
metrics, experiments show that it gives some approximate information matching
the feature importance one would get by using the entire feature space of the
guest.

In addition, the recent work [BIS+22] attempts to compute SHAP values
for both horizontally or vertically partitioned data via an explainable data col-
laboration framework based on the model-agnostic additive feature attribution
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algorithm KernelSHAP in the privacy-preserving distributed machine learning
setting. The starting point is that, in a horizontal federated learning scenario
where each party owns part of the samples, a given party may have a biased view
of the samples. Similarly, in a vertical federated learning scenario, the individual
parties have a partial view of the feature space. The first proposed algorithm,
Horizontal DC-SHAP, addresses the challenge with the discrepancies among the
contributing parties by using a sharable anchor dataset to produce consistent
explanation across all collaborators. In the vertical scenario, the authors pro-
pose two different algorithms Vertical DC-SHAP (i) and (ii) depending on
the use case: 1) feature attribution is requested at a third party for the entire set
of features; 2) feature attribution is requested by one of the users for the partial
set of features.

There have been some attempts to compute SHAP values in the secure mul-
tiparty computation setting in the context of data valuation and data market-
places [TLL+22]. Recall that data valuation refers to the task of fairly compen-
sating data owners for their contributions in the data marketplace and a suitable
profit-sharing and fair scheme comes from Shapley values and cooperative game
theory. The proposed secure multiparty computation approach relies on active
learning, that is, a machine learning algorithm that is allowed to query the user
or an external data source to label data points. While interesting as a use case
and an approach, this method is not quite applicable to capture the very generic
setting where no active learning is assumed.

As far as we are aware, our work is the first attempt to compute feature
importance metrics such as SHAP values for decision tree ensemble models in the
most generic SMPC setting with additive secret sharing and no active learning.

1.4 Organization of the paper

The paper is organized as follows: in Section 2 we recall some background on
the general theory of Shapley values from cooperative game theory (see Sec-
tion 2.1). We then specialize this theory to the case of binary decision trees in
Section 2.2. We also recall some basic background on Secure Multiparty Com-
putation with additive secret sharing in Section 2.3 as well as the Manticore

framework [BCD+23] and its security model. The main algorithm XorSHAP is
presented in Section 3. We complete the paper by proper complexity analysis
(presented in Section 4) as well as implementation and benchmarks (in Sec-
tion 5).

2 Background and Preliminaries

2.1 Background on Shapley values and SHAP

Shapley values are a concept from cooperative game theory originally introduced
by Lloyd Shapley [Sha53] and used to allocate the total contribution or payoff
of a group to its individual members.
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2.1.1 Marginal contributions. Shapley values are formally defined in terms
of expected total payoffs of subsets of players in cooperative game theory, that is,
in terms of a function v that assigns to each coalition S of players the worth v(S)
of that coalition. In machine learning, the analogue of players are model features
and the worth function is obtained using the prediction function of a model as
follows: given a subset S of features, a model f with M features as well as a
sample x = (x1, . . . , xM ), we define the worth function

fS(x) := E[f(ξ)|ξS = xS ], (1)

where the conditional expectation is interpreted as follows: we fix the value for
feature j to xj for all j ∈ S and use random values for the features j /∈ S. In
practice, given a training set of samples, one computes the expectation as the
average over these samples.

The conditional expectation fS(x) represents the total value of the coalition S
of players. One uses that to define the marginal contribution of a player i /∈ S
simply as fS∪{i}(x)− fS(x).

2.1.2 Definition of SHAP values. Given the model f and the sample x =
(x1, . . . , xM ), for each feature index i = 1, . . . ,M , we define the SHAP value as

φi(x) =
∑

S⊂{1,...,M}\{i}

|S|!(M − 1− |S|)!
M !

(
fS∪{i}(x)− fS(x)

)
, (2)

that is, the weighted average of all marginal contributions of feature i (the subsets
S = ∅ and S = {1, . . . ,M}\{i} have the largest weight, whereas subsets of size
b(M−1)/2c and d(M−1)/2e respectively have the smallest weight). Computing
this näıvely is infeasible as the sum is over an exponential number of subsets
and for each subset, one needs to estimate the model prediction over the entire
training set over which we estimate the expectation.

2.1.3 Computing SHAP values in the generic case In general (for ar-
bitrary models), an exact computation of SHAP values is often infeasible as the
definition requires summing over exponentially many coalitions of features - in
our case, 2M . In practice, SHAP values are usually approximated by sampling
random coalition of features and summing over the marginal contributions for
these subsets.

One way to approximate SHAP values is via Monte–Carlo simulations
[SK14]. More specifically, this approximation method samples random feature
coalitions representing random subsets of features by generating random per-
mutations or random combinations of features and then computes the marginal
contribution of each feature not included in the coalition, thus computing the
chain in prediction when the feature joins the coalition. It then averages the
computed marginal contributions across the sampled coalitions to provide an
approximation for the SHAP value for each feature. This method has a trade-
off between the number of random coalitions sampled and the accuracy of the
SHAP values.
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2.2 SHAP values for decision trees

Even if computing SHAP values in the model-agnostic case is quite expensive,
specializing to decision tree models provides some significant performance ad-
vantages which we now explain.

2.2.1 Binary decision trees. Let M be a fixed positive integer (the number
of features). A binary decision tree of depth D on the feature space RM consists
of 2D−1 inner nodes (referred to as non-leaf nodes or split nodes) and 2D outer
nodes (referred to as leaf nodes). We denote by N the set of inner nodes and
by LD (or simply L) the set of leaf nodes. Associated to each inner node n ∈ N
is a pair (jn, tn) of a feature index jn ∈ {1, . . . ,M} and a threshold tn (a real
number). Associated to each leaf node ` ∈ L is a weight w` (a real number). We
thus represent a tree as

Tree = (TreeStructure, TreeWeights),

where
TreeStructure = ((j1, t1), . . . , (j2D−1, t2D−1))

is the list of pairs associated to the (list) of inner nodes and

TreeWeights = (w1, . . . , w2D )

is the list of weights.
As described in [DDG+22, §2], given a sample x = (x1, . . . , xM ) and a tree

Tree, there is a recursive evaluation function eval(x, Tree) which, for a fixed tree
Tree, yields a piecewise constant function Tree : RM → R. We let ŷ be the esti-
mate for the response variable y. Given a tree ensemble {Tree(1), . . . , Tree(T )}
and a learning rate parameter η, one defines the predictions on x recursively as

ŷ(t) = ŷ(t−1) + η Tree(t)(x) ∈ R. (3)

The reason for the learning rate η is to dampen the contribution of the new tree
added to the current model. Often, one takes η = 1 to obtain the total prediction
on x as

ŷ(T ) =

T∑
t=1

Tree(t)(x) ∈ R. (4)

2.2.2 SHAP values for decision trees. Since Shapley values are linear
in the worth function v and since the prediction of a tree ensemble model is a
linear combination of the evaluation of its trees, by linearity of the mathematical
expectation it suffices to explain how to compute the SHAP values for a single
tree.

We now explain how to explicitly compute the conditional expectation for
a decision tree via a recurrence formula. Let Tree be a binary decision tree of
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depth D on M features, and let x = (x1, . . . , xM ) be a sample of M feature
values to be interpreted (or explained). For a subset S ⊂ {1, . . . ,M} of feature
indices, consider the conditional expectation E[Tree(ξ) | ξS = xS ] as in (1). It
can be computed as

E[Tree(ξ) | ξS = xS ] = GS(x;nroot),

where, for a given node n of the tree, GS(x;n) is recursively defined as:

GS(x;n) =


wn if n is a leaf node,

(xjn < tn) ? GS(x;nleft) : GS(x;nright) else if jn ∈ S,
cnleft

cn
GS (x;nleft) +

cnright

cn
GS (x;nright) else.

(5)
Here, cn is the cover of node n, i.e., the number of samples that are visiting
node n upon evaluation. It is computed as the Hamming weight of the instance
vector IVn of that node (the characteristic vector of the subset of samples visit-
ing n).

Remark 1. For now we assume that cn > 0 for all node n of the tree. We will
explain in Section 3.3 how to remedy this assumption.

Given a leaf node ` ∈ LD, we use P` = {n(`)0 , . . . , n
(`)
D−1} for the (ordered) set

of D split nodes in the path leading from the root n
(`)
0 to leaf `. We also define

J` = {j(`)0 , . . . , j
(`)
D−1} to be the (ordered) multi-set of D feature indices for the

split nodes in P`. Finally, let F` be the set of distinct feature indices for the split
nodes of the path leading to leaf ` (we thus have |F`| ≤ D).

Definition 1. We call a path P` consistent with respect to the pair (x, S) of a
sample and a feature subset S if for every node n ∈ P` such that jn ∈ S, the child
node determined by the condition xjn < tn coincides with the node of P` ∪ {`}
that succeeds n in the path. Otherwise, the path is called inconsistent.

In what follows, it is important to distinguish the following metric

W`,S(x) :=


∏
n∈P`

jn /∈S

cnchild

cn
if P` is consistent with (x, S),

0 else.
(6)

Given a subset S and a leaf node `, W`,S computes the proportion of paths
(conditional on xS , the subset S of fixed feature values for S) that flows down
to leaf node `. The conditional expectation is then simply given by

E[Tree(ξ) | ξS = xS ] =
∑
`∈L

W`,S(x) · w`. (7)
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Substituting (7) into the definition (2) of SHAP value yields

φi(x) =
∑

S⊂{1,...,M}\{i}

|S|!(M − 1− |S|)!
M !

∑
`∈L

(
W`,S∪{i}(x)−W`,S(x)

)
· w`

=
∑
`∈L

 ∑
S⊂{1,...,M}\{i}

|S|!(M − 1− |S|)!
M !

(W`,S∪{i}(x)−W`,S(x))

 · w`.(8)

2.2.3 KernelSHAP and TreeSHAP. The framework SHAP for interpreting pre-
dictions was first introduced in [LL17] and was based on Shapley values. Since
the latter are very expensive to compute, several approximations have been pro-
posed.

The KernelSHAP method originally described in [LL17, §4] is model agnostic
and is based on approximating SHAP values by sampling subsets of features
containing the given feature and averaging.

In the specific case of decision trees, however, the complexity of KernelSHAP
is O(T2D+M ) where T is the number of trees in the ensemble, D is the tree
depth and M is the total number of features.

An alternative algorithm for computing SHAP values in the case of decision
trees is TreeSHAP [LEL18, LEC+20]. The algorithm has complexity O(T2DD2)
and is asymptotically faster than KernelSHAP (we are assuming that the num-
ber of features M is asymptotically much larger than D2). There are further
refinements to the algorithm [Yan21] resulting in FastTreeSHAP v.1 (a 1.5x
speedup and the same memory overhead as TreeSHAP) and FastTreeSHAP v.2

(a 3x speedup with via some preprocessing and a slightly larger memory over-
head). Furthermore, GPUTreeSHAP proposed in [MFH22] provides a more scalable
version of TreeSHAP resulting in a 20x speedup.

2.3 Secure Multiparty Computation

Multiparty computation (MPC) is a method for cryptographic computing allow-
ing several parties holding private data to evaluate a public function on their
aggregate data while revealing only the output of the function and nothing else.
Recent advances in the area make these protocols practical and suitable for real-
world applications such as machine and statistical learning [BLW08, BCG+17,
BCD+23,DPSZ12,EGK+20,Kel20,KOS16,KPR18,MR18,MZ17,WGC19].

In general, our XorSHAP algorithm is agnostic to underlying MPC method
or framework. The choice of the Manticore MPC framework in our implemen-
tation is favorable for several reasons: 1) it provides access to boolean arith-
metic as well as arithmetic with real numbers represented using modular in-
tegers [BCD+23] or the prior floating-point numbers framework [BCG+17]; 2)
the real number representation of Manticore via modular integers guarantees
information-theoretically security; 3) Manticore provides oblivious sorting and
oblivious permutations functionality. There are, however, other MPC libraries
that support Boolean and real number arithmetic such as SCALE-MAMBA [aM23],
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SecureML [MZ17], ABY [PSSY21,MR18] as well as SPDZ-2K [CDE+18]. In Manticore,
computations are split into offline and online phases. The offline phase gener-
ates random precomputed data without accessing the private data and can be
performed either interactively by techniques such as oblivious transfer or by an
independent party, different from the compute parties, known as trusted dealer.
In the former case, the MPC protocol is slower but the security model is stronger.
In the latter case, the offline phase is significantly accelerated but in order to
protect the privacy of the input data, the trusted dealer is assumed not to collude
with any of the compute parties. In addition, to ensure security against mali-
cious external adversaries, all communications between the trusted dealer as well
as all communication between the players during the online phase is end-to-end
encrypted.

2.4 Secret sharing of binary decision trees

In the setting that we will apply our algorithm, there are different possibilities
for the decision tree ensemble model. It can be proprietary model for a given
party, or it can already be computed with a privacy-preserving algorithm such
as XorBoost [DDG+22] or any other privacy-preserving algorithm. We refer
to [DDG+22, §2.4] for details on how one can secret share a decision tree model.
Note that, depending on the training algorithm, the column index j can be
represented either in arithmetic shares or in Boolean shares. This is the reason
why in the discussions in Section 3, we make no assumption on the secret sharing
method (arithmetic or Boolean) and present a generic arithmetic-to-Boolean
conversion method in Lemma 1.

Note that the actual representation of arithmetic secret shares varies depend-
ing on the SMPC implementation or framework used. For example, for most of
the applications Manticore relies on a particular representation of real num-
bers with modular integers that can differ from other schemes such as SPDZ.
Our algorithms are agnostic to the particular instantiation of arithmetic secret
sharing.

3 XorSHAP: Privacy-preserving TreeSHAP

In this section, we present the main contribution of this paper – an algorithm,
XorSHAP that is a privacy-preserving variant of the TreeSHAP method [LEL18].

Our main mathematical result that yields our privacy-preserving algorithm
is Theorem 2 - a data-independent formula for the SHAP values. Applying that
formula in the secure multiparty computation setting requires the following op-
erations:

– Additions of secret shared numbers (over both R and Z/2Z),
– Multiplications of secret shared numbers (over R and F2),
– Private divisions of secret shared numbers (over R)
– Comparisons of secret shared real numbers,
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– Sorting and argsort of secret shared real-valued vectors,
– Applying secret shared sorting permutations.

Unless otherwise stated, all subsequent variables are secret and all operations
are data-independent.

3.1 Notations.

In order to present the algorithm, we use the notations introduced in Sec-
tion 2.2.2, particularly, P`, J` and F`. We also introduce some extra notation
that is relevant for data-independent representation of the various structures
and hence, for an SMPC-friendly algorithm.

Given a binary decision tree of depth D, recall that L = LD denotes the
set of leaf nodes of the tree. We assume that sample x is drawn from a dataset
with M features. For a given leaf node ` ∈ L, define

– P`: a binary matrix of size M × D whose columns are the binary feature
selector vectors for the split nodes of the path leading to leaf ` (here, a
feature with index 1 ≤ j ≤M is encoded with the binary column vector

bj := (0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
M−j

)t.

Thus, P` = concat(bj : j ∈ J`). The matrix P` is helpful for a secret shared
representation of the set J`.

– F`: the characteristic vector of the set F`, i.e., a binary (column) vector of
size M whose jth entry is 1 if j ∈ F` (i.e., feature j appears as a splitting
feature in the path leading to leaf `) and 0 otherwise.

– o` = (o
(`)
n : n ∈ P`): a binary (column) vector of size D, where o

(`)
n = 1

if evaluating node n on the sample x yields the child node that is in the

path P` ∪ {`}; otherwise o
(`)
n = 0. For simplicity, we also write o`,d = o

(`)

n
(`)
d

for the dth component of o`.

– z` = (z
(`)
n : n ∈ P`): a (column) vector of real numbers of size D correspond-

ing to the cover ratios of the nodes in the path P` ∪ {`}; i.e., for node n,

z(`)n =
cnchild

cn
,

where nchild is the successor node of n in P` ∪ {`}. For simplicity, we also

write z`,d = z
(`)

n
(`)
d

for the dth component of z`. We compute z
(`)
n using the

private division algorithm from [BCD+23].

The following lemma is straightforward so we omit the proof:

Lemma 1. For secret shared index j ∈ {1, . . . ,M} (in arithmetic secret shares),
one can compute Boolean shares for bj as follows:

1. Arithmetic-to-Boolean conversion of secret shares for j;
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2. One-hot binary decoder circuit applied to the binary expansion of j.

For a basic reference on one-hot binary decoder circuits, see [DH12, §8.1].

Next, the lemma below computes the characteristic vector F` in a less effi-
cient, but data independent manner:

Lemma 2. F` is obtained from P` by OR-ing the columns, i.e.,

F` =
∨
j∈J`

bj .

Remark 2. Note that F` =
∨
j∈F`

bj , however the right-hand side cannot be
computed in a data-independent way since F` is not known.

Finally, we will need to compute the vector o` in a data-independent manner.
This is achieved by the following:

Lemma 3. We compute o`,d as follows: let (j, t) be the feature index and thresh-

old associated to node n
(`)
d , and let β = (xj < t) ∈ {0, 1}. Let nchild be the

successor node of n
(`)
d in P` ∪ {`} and let nleft and nright be the left and right

children nodes of n
(`)
d respectively (when looking at the whole tree). Then:

o`,d =

{
β if nchild = nleft,

¬β if nchild = nright.

3.2 XorSHAP.

Let x be a fixed sample. For what follows we will simply write W`,S instead
of W`,S(x). With the notation introduced in Section 3.1 we can express W`,S as:

Lemma 4.

W`,S =
∏
n∈P`
jn∈S

o(`)n
∏
n∈P`

jn /∈S

z(`)n .

Proof. P` is consistent with (x, S) if and only if
∏
n∈P`
jn∈S

o
(`)
n = 1.

Remark 3. Lemma 4 does not provide a way to obliviously compute W`,S . In-
stead of the costly (in a data-independent approach) evaluation of the criteria
jn ∈ S (respectively jn 6∈ S), our approach is based on a specific linear ordering
of the subsets of F` (or even a slightly larger set), see Lemma 6.

The algorithm XorSHAP is based on the following theorem:
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Theorem 1. The SHAP values for a binary decision tree can be computed as
follows:

φi(x) =
∑
`∈L
i∈F`

 ∑
S⊂F`\{i}

|S|!(|F`| − 1− |S|)!
|F`|!

·W`,S

 · t(`)i · w`, (9)

where t
(`)
i =

∏
n∈P`
jn=i

o(`)n /z(`)n − 1.

Proof. Since W`,S∪{i} = W`,S whenever i 6∈ F`, summation in (8) simplifies to

φi(x) =
∑
`∈L
i∈F`

 ∑
S⊂{1,...,M}\{i}

|S|!(M − 1− |S|)!
M !

(W`,S∪{i} −W`,S)

 · w`. (10)

Following the proof of [Yan21, Thm. 1], (10) reduces to

φi(x) =
∑
`∈L
i∈F`

 ∑
S⊂F`\{i}

|S|!(|F`| − 1− |S|)!
|F`|!

(W`,S∪{i} −W`,S)

 · w`. (11)

Note that

W`,S∪{i} =
∏
n∈P`

jn∈S∪{i}

o(`)n
∏
n∈P`

jn /∈S∪{i}

z(`)n

=
∏
n∈P`
jn∈S

o(`)n
∏
n∈P`

jn /∈S

z(`)n
∏
n∈P`
jn=i

o(`)n /z(`)n

= W`,S ·
∏
n∈P`
jn=i

o(`)n /z(`)n

and hence,

W`,S∪{i} −W`,S = W`,S · t(`)i ,

which concludes the proof. For implementation aspects it is worth noting thatW`,S

depends on S but not on i, while t
(`)
i depends on i but not on S.

Remark 4. The problem with the above version of the theorem in the privacy-
preserving setting is that it is data dependent:

i) The definition of o
(`)
n depends on the value of the predicate; Lemma 3 shows

how to obliviously compute o
(`)
n .

13



ii) The condition i ∈ F` depends on knowing F`, which we do not. We will

therefore define a vector t` of size M with t`,i = t
(`)
i if i ∈ F` and t`,i = 0

otherwise. Lemma 8 shows how to obliviously compute t`. We can then
rewrite (9) as

φi(x) =
∑
`∈L

 ∑
S⊂F`\{i}

|S|!(|F`| − 1− |S|)!
|F`|!

·W`,S

 · t`,i · w`. (12)

Note that if a leaf ` is such that i 6∈ F`, then the inner sum needs to exclude
the summand where S = F` because (|F`|−1−|S|)! is not well-defined. This
is addressed in Section 3.2.4.

iii) To compute the inner sum, one needs to consider a (potentially) larger set
R` ⊃ F` of size D, see Section 3.2.1, and sum over all 2D subsets of R`.
We do not know the set R`, all we know is it contains F`. We will then
make use of obliviously computed characteristic vectors to annihilate the
contribution of subsets that violate the condition S ⊂ F` \ {i} (assuming
i ∈ F` - otherwise t`,i annihilates the inner sum algothether, see ii)).

The main contribution of this work is Theorem 2, a data-independent version
of Theorem 1.

3.2.1 Size reduction. SHAP values are originally defined as sums over sub-
sets of {1, . . . ,M} (see Definition 2) which introduces an overhead of 2M in the
complexity of computing them. The main observation of TreeSHAP, Theorem 1,
is that by changing the index of summation in (8) (i.e., summing over the leaves
` ∈ L first), for each leaf `, it suffices to sum only over the subsets of the set F`
(which has size at most D). This essentially yields a plaintext version of the
TreeSHAP algorithm. The challenge of designing a data-independent privacy-
preserving algorithm is that we do not know the exact size of F`. Therefore, the
best we can do in a privacy-preserving setting is to reduce the overhead to 2D

for each leaf ` (instead of 2|F`|) by considering a possibly larger subset R` ⊃ F`
of {1, . . . ,M} (see below for the exact definitions) of cardinality exactly equal
to D (i.e., a cardinality that is data independent). As D � M in most of the
practical applications, this is still a major gain in complexity.

Our approach is based on sorting permutations and reduces the characteristic
vector F` of F` (a binary vector of size M) to a vector R` of size D that encodes
the same information as F`. Let SM be the set of permutations in M letters
and let σF`

∈ SM be a permutation that sorts (in ascending order) the binary
vector F`. Note that σF`

(F`) ∈ {0, 1}M consists of M − |F`| 0’s followed by |F`|
1’s. We denote by R` ∈ {0, 1}D the vector formed by the lastD entries of σF`

(F`).
We call a valid index any of the |F`| indices in F` (equivalently, the position

of the 1 in F` respectively R` it corresponds to). Otherwise, we call an index
invalid ; there are D− |F`| invalid indices in R`, and we denote by I` = R` \ F`
the set of invalid indices of R`. Note that the order of the valid indices in R`
depends on the choice of σF`

and hence, does not yield useful information about

14



any natural order of the indices in the path (e.g., the top-to-bottom order of the
nodes in the path).

The concept of valid indices will be used to encode the subsets S ⊂ F` in the
inner sum of (9) in a way that does not require knowing F`. One way to get a
data-independent algorithm for computing (9) is to rewrite the inner sum as a
sum over all 2D subsets of R` and make sure the contribution to the sum of any
subset containing invalid indices is 0. We formalize this intuition in Theorem 2
below after introducing the required notions.

3.2.2 Ordering the power set P (R`). We now introduce a convenient
linear ordering on the power set P (R`) of R` that is induced by the choice
of σF`

(i.e., is non-canonical) satisfying the following properties:

i) The first subset in the ordering is the entire set R` and the last subset is the
empty set.

ii) The power set P (F`) corresponds to the last 2|F`| subsets whereas the first
2D − 2|F`| subsets contain invalid indices.

iii) The order of indexing of P (R`) depends on σF`
and is therefore non-canonical;

yet, ii) always holds.
iv) The cardinality of a subset S ⊂ R` is recovered explicitly from the binary

expansion of its index in the linear ordering.

Let {τ1, . . . , τD} be the elements of R` with ordering determined by the per-
mutation σF`

. Note that the first D−|F`| indices are invalid and the last |F`| are
valid. The subset corresponding to position s = 1, . . . , 2D in the linear ordering
of P (R`) is the one whose characteristic vector is equal to the binary expansion
of 2D − s (msb-to-lsb binary representation). The cardinality of the subset can
thus be obtained as the sum of the bits of the binary expansion. For instance, if
D = 3 then the ordering is the following:

{τ1, τ2, τ3}, {τ1, τ2}, {τ1, τ3}, {τ1}, {τ2, τ3}, {τ2}, {τ3},∅.

E.g., for s = 2, the binary expansion of 8 − 2 is 110 and hence the 2nd subset
in the ordering is {τ1, τ2}. Note that this ordering is agnostic to the presence of
invalid indices (which is secret information).

3.2.3 Computing W`,S. Let O` ∈ {0, 1}D be the binary vector given by

O`,d =


∏

n∈P`
jn=τd

o
(`)
n if τd is a valid index,

1 otherwise.

and let Z` ∈ [0, 1]D be the vector given by

Z`,d =


∏

n∈P`
jn=τd

z
(`)
n if τd is a valid index,

1 otherwise.
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Lemma 5. We obliviously compute O` and Z` as:

O` = πD ◦ σF`

(
D∏
k=1

(
o`,k−1 · P (k)

` + (1− P (k)
` )

))

and

Z` = πD ◦ σF`

(
D∏
k=1

(
z`,k−1 · P (k)

` + (1− P (k)
` )

))
,

respectively, where P
(k)
` is the kth column of P` and πD : RM → RD is the

projection onto the last D coordinates.

Proof. Let τd be a valid index, that is, Td := {1 ≤ k ≤ D : j
n
(`)
k−1

= τd} is non-

empty. Moreover, for all k ∈ Td we have P
(k)
` = bτd (the only non-zero entry is

at position τd), and for all k ∈ {1, . . . , D} \ Td the τdth entry of P
(k)
` , which we

denote by P
(k)
`,τd

, is 0. Hence,∏
n∈P`
jn=τd

o(`)n =
∏
k∈Td

o`,k−1

=

D∏
k=1

(
o`,k−1 · P (k)

`,τd
+ (1− P (k)

`,τd
)
)
,

and πD ◦ σF`
sends the τdth entry of a vector of size M to the dth entry of a

vector of size D.
For an invalid index τd one observes that P

(k)
`,τd

= 0 for all k = 1, . . . , D and
hence,

D∏
k=1

(
o`,k−1 · P (k)

`,τd
+ (1− P (k)

`,τd
)
)

= 1,

which concludes the proof for O`. The proof for Z` is identical.

Remark 5. The (plaintext) definition (6) of W`,S applies to subsets S ⊂ F`. We
can naturally extend this definition to S ⊂ R` by setting W`,S := W`,S∩F`

and
note that Lemma 4 still holds.

Let W
P (R`)
` ∈ [0, 1]2

D

be the vector whose Sth entry is W`,S (when indexing
the power set P (R`) by the subsets of R` as described in Section 3.2.2).

Lemma 6. We obliviously compute W
P (R`)
` as:

W
P (R`)
` =

D∏
d=1

concatd(O`,d, Z`,d),

where concatd(a, b) = (a, . . . , a︸ ︷︷ ︸
2D−d

, b, . . . , b︸ ︷︷ ︸
2D−d

, . . . , a, . . . , a︸ ︷︷ ︸
2D−d

, b, . . . , b︸ ︷︷ ︸
2D−d

) ∈ R2D .
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Proof. According to Lemma 4 and Remark 5, for any subset S ⊂ R`,

W`,S =
∏
n∈P`
jn∈S

o(`)n
∏
n∈P`

jn /∈S

z(`)n .

Fix a subset S ⊂ R` with corresponding position 1 ≤ s ≤ 2D, and let bD−1 · · · b0
be the binary expansion of 2D − s. Recall that τ1 ∈ S ⇔ bD−1 = 1, τ2 ∈ S ⇔
bD−2 = 1, etc. Since O`,d =

∏
n∈P`
jn=τd

o
(`)
n and Z`,d =

∏
n∈P`
jn=τd

z
(`)
n if τd is a valid

index (and O`,d = Z`,d = 1 if τd is an invalid index), one deduces that

W`,S =

D∏
d=1

(bD−d ? O`,d : Z`,d).

Moreover, the sth entry of concatd(a, b) equals a if and only if (2D − s) / 2D−d

is odd (Euclidean division) if and only if bD−d = 1, which concludes the proof.

3.2.4 Computing Shapley weights. To filter subsets that contain valid
indices only, we need to make the following definition:

Definition 2. Let S ⊂ R`. The Shapley weight of S with respect to F` is

CS =

{
|S|!(|F`|−1−|S|)!

|F`|! if S ( F`
0 otherwise.

Remark 6. The reason why we exclude S = F` is the inner summation of (12).
If i ∈ F` then S ⊂ F` \ {i} implies S ( F`, and if i 6∈ F` then the case S = F`
would yield factorial of a negative number.

Since F` and |F`| are not known a priori, we first compute a larger public
matrix C of size 2D ×D whose dth column C(d) is the vector of the 2D Shapley
weights (one for each subset S ⊂ R`) for the case |F`| = d. In a second step we
compute δ|F`|, the secret characteristic vector of |F`|, and obliviously select the
correct column of C.

We compute the sth entry C
(d)
s of the dth column of C as

C(d)
s =

{ |S|!(d−1−|S|)!
d! if s > 2D − 2d + 1
0 otherwise,

for all d = 1, . . . , D and all s = 1, . . . , 2D, where the cardinality of the corre-
sponding subset S at position s is given by property iv) from Section 3.2.2. Note
that the matrix C is pre-computed (it is the same for all i ∈ {1, . . . ,M} and for
all ` ∈ L).

We are now interested in obliviously computing the secret-shared, one-hot
encoding (indicator) vector δ|F`| of the secret cardinality |F`|, that is, the binary
vector of size D that has a single 1 at the |F`|th position. This is done via the
following simple lemma:
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Lemma 7. If R`,d denotes the dth entry of the vector R` = (0, . . . , 0︸ ︷︷ ︸
D−|F`|

, 1, . . . , 1︸ ︷︷ ︸
|F`|

)

then

δ|F`| = (R`,D ⊕R`,D−1, . . . , R`,2 ⊕R`,1, R`,1)t ∈ {0, 1}D.

Since we have R` available in secret shares, the above lemma yields secret
shares for δ|F`|. Finally, we compute C(|F`|), the |F`|th column of C, as

C(|F`|) =

D∑
d=1

δ|F`|,d · C
(d) ∈ [0, 1]2

D

. (13)

3.2.5 Computing t`. Let t` ∈ [−1, N − 1]M be the vector with ith entry
given by

t`,i =


∏
n∈P`
jn=i

o
(`)
n /z

(`)
n − 1 if i ∈ F`

0 otherwise,

where N is the number of samples the tree model was trained with.

Lemma 8. We obliviously compute t` as:

t` =

D∏
k=1

(
o`,k−1 · z−1`,k−1 · P

(k)
` + (1− P (k)

` )
)
− 1,

where P
(k)
` is the kth column of P`.

Proof. For all i = 1, . . . ,M , let Ti := {1 ≤ k ≤ D : j
n
(`)
k−1

= i}. For all k ∈ Ti

we have P
(k)
` = bi (the only non-zero entry is at position i), and for all k ∈

{1, . . . , D} \ Ti the ith entry of P
(k)
` , which we denote by P

(k)
`,i , is 0. Hence, if

i ∈ F` then∏
n∈P`
jn=i

o(`)n /z(`)n − 1 =
∏
k∈Ti

o`,k−1 · z−1`,k−1 − 1

=

D∏
k=1

(
o`,k−1 · z−1`,k−1 · P

(k)
`,i + (1− P (k)

`,i )
)
− 1.

And if i 6∈ F` then Ti = ∅ and hence,

D∏
k=1

(
o`,k−1 · z−1`,k−1 · P

(k)
`,i + (1− P (k)

`,i )
)
− 1 =

D∏
k=1

1− 1 = 0.
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3.2.6 Putting everything together. For i ∈ {1, . . . ,M}, let I
(i)
` ∈ {0, 1}2

D

be the indicator vector of {S ⊂ R` : i 6∈ S}, i.e., I
(i)
`,s = 1 if and only if i 6∈ S,

where S ⊂ R` is the subset corresponding to position s.

Lemma 9. We have

I
(i)
` = ¬

(
D⊕
d

concatd(η
(i)
`,d, 0)

)
,

where η
(i)
` = πD ◦ σF`

(0, . . . , 0︸ ︷︷ ︸
i−1

, F`,i, 0, . . . , 0︸ ︷︷ ︸
M−i

)

 ∈ {0, 1}D.

Theorem 2. We obliviously compute (in SMPC) secret shares for φi(x) as fol-
lows:

φi(x) =
∑
`∈L

 2D∑
s=1

I
(i)
`,s · C

(|F`|)
s ·WP (R`)

`,s

 · t`,i · w`. (14)

Proof. We want to show that (14) computes (9). For all leaves ` ∈ L we have
t`,i = 0 whenever i ∈ {1, . . . ,M} \ F` and hence, (9) reduces to

∑
`∈L

 ∑
S⊂F`\{i}

|S|!(|F`| − 1− |S|)!
|F`|!

·W`,S

 · t`,i · w`.
Regarding the inner sum, for each leaf ` ∈ L, the subsets S ( F` corre-

spond to the positions s = 2D − 2|F`| + 2, . . . , 2D with respect to the ordering

defined in Section 3.2.2. Moreover, C
(|F`|)
s = 0 for s = 1, . . . , 2D − 2|F`| + 1 and

C
(|F`|)
s = |S|!(|F`|−1−|S|)!

|F`|! for s = 2D − 2|F`| + 2, . . . , 2D. Note that the Shapley

weight depends on the cardinality of S only, which by iv) of Section 3.2.2 is
uniquely determined by the position s in the ordering (and not the ordering

itself). Since W
P (R`)
` is ordered in a way that respects iv) of Section 3.2.2, for

each subset S ( F` the quantity W`,S is multiplied with the right Shapley weight
|S|!(|F`|−1−|S|)!

|F`|! .

Finally, the characteristic vector I
(i)
` annihilates the contribution of all sub-

sets S that contain i, which concludes the proof.

3.3 XorSHAP for the 0-cover case.

As pointed out in Remark 1, the definition of W`,S(x), see (6), is only valid
if all split nodes n have positive cover (i.e., cn > 0). In a plaintext training
algorithm, any split node with 0-cover will be removed during pruning. This,
however, modifies the tree structure. A full binary tree of depth D is a tree with
2D − 1 split nodes and 2D leaf nodes. In order for XorSHAP to work correctly in
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the presence of 0-cover nodes, the full binary trees of the model are supposed to
be pruned during training in a way that preserves the tree structure.

By pruning a node of a decision tree we mean the process of replacing the
subtree rooted at that node by a leaf node with some specified weight.

Definition 3. Let Pruning be any plaintext pruning algorithm. Its tree structure-
preserving counterpart PruningFBT is the following algorithm: suppose that Pruning
replaces the subtree rooted at a node n by a single leaf node with some weight w;
then, PruningFBT is the algorithm that keeps the binary subtree rooted at n and
only replaces all leaf weights of that subtree by w.

A pruned full binary tree by a PruningFBT is thus still a full binary tree,
however, as soon as a sample evaluates through a split node n that got pruned
the predicted value no longer depends on the taken sub-path starting from n.
While evaluating a FBT-pruned full binary tree Tree that contains 0-cover nodes
is straightforward, computing the conditional expectation E[Tree(ξ) | ξS = xS ]
is not.

Let Tree be a pruned full binary tree (it may contain 0-cover nodes). We
define G′S(x;n), a generalization of GS(x;n), see (5), as

G′S(x;n) =



wn if n is a leaf node,

G′S(x;nright) else if cnleft
= 0,

G′S(x;nleft) else if cnright
= 0,

(xjn < tn) ? G′S(x;nleft) : G′S(x;nright) else if jn ∈ S,
cnleft

cn
G′S (x;nleft) +

cnright

cn
G′S (x;nright) else.

(15)

Lemma 10. Let Tree be a full binary tree containing 0-cover nodes and let
Pruning be a plaintext pruning algorithm, with PruningFBT its tree structure
preserving counterpart. If G′S(x;nroot) is computed with PruningFBT(Tree) then

E[Pruning(Tree)(ξ) | ξS = xS ] = G′S(x;nroot).

Proof. Suppose that sample x evaluates through a split node n with non-zero
cover, however a child node of n has zero cover. Without loss of generality assume
that cnleft

= 0. Since Pruning replaces n by a leaf node (say with weight w),
all leaf nodes of the full subtree of PruningFBT(Tree) with root n will have
weight w. A simple induction then shows that G′S(x;nright) = w.

We can extend Definition 1 to a notion of consistency between a path P` and
a pair (x, S) of a sample and a feature subset to the case where a full binary
tree contains 0-cover nodes.

Definition 4. We call a path P` consistent with respect to the pair (x, S) if
every node in P`∪{`} has non-zero cover and if for every node n ∈ P` such that
jn ∈ S, either the child node determined by the condition xjn < tn coincides with
the node of P`∪{`} that succeeds n in the path or the child node determined by the
condition ¬(xjn < tn) has zero cover. Otherwise, the path is called inconsistent.
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The quantity W`,S , see (6), can naturally be extended to the case of full
binary trees containing 0-cover nodes, with the notion of consistency introduced
in Definition 4.

It remains to show how to obliviously evaluateG′S(x;n) for a pruned oblivious
(i.e., full binary) tree Tree. Note that only the weights of leaves whose path is
consistent with (x, S) contribute to G′S(x;n). Unlike eval(x, Tree), which can
be obliviously computed from the secret bits β = (xj < t), see [DDG+22], one
needs to consider more than the bits β to evaluate G′S(x;n). Recall that for the
evaluation of GS(x;n), one computes o` from the bits β only, see Lemma 3.

Given a leaf node ` ∈ L, let P` be the path of split nodes leading to `.

We define õ` = (õ
(`)
n : n ∈ P`), similar to o`, where õ

(`)
n = 1 if the successor

node nchild of n in P` ∪ {`} has non-zero cover and either evaluating node n on
the sample x yields nchild or the sibling node of nchild (when looking at the whole

tree) has zero cover; otherwise õ
(`)
n = 0.

Lemma 11.
W`,S(x) =

∏
n∈P`
jn∈S

õ(`)n
∏
n∈P`

jn /∈S

z(`)n . (16)

Proof. If P`∪{`} contains a 0-cover node then the path is inconsistent with (x, S).
In this case, let n be the unique node in the path with non-zero cover and whose
successor node nchild has zero cover (a child of a 0-cover node has zero cover,

so n is unique in the path). If jn ∈ S then õ
(`)
n = 0, else z

(`)
n =

cnchild

cn
= 0.

If P`∪{`} does not contain any 0-cover node then P` is consistent with (x, S)

if and only if
∏
n∈P`
jn∈S

õ
(`)
n = 1.

Note that for any 0-cover split node n the ratio z
(`)
n is not well-defined. A

data-oblivious division algorithm is expected to return arbitrary output if the
denominator is 0 and hence, the presence of 0-cover split nodes in the path does
not invalidate Lemma 11.

It remains to show how to obliviously compute õ`. One then applies Lemma 5
and Lemma 6 with õ` to obliviously compute φi(x) as in Theorem 2. Fix an
index d. As in Lemma 3, let (j, t) be the feature index and threshold associated

to node n
(`)
d , and let β = (xj < t) ∈ {0, 1}. Let nleft and nright be the left

and right children nodes of n
(`)
d respectively (when looking at the whole tree).

Consider the following bits

γleft = ((cnleft
== 0) ? 0 : ((cnright

== 0) ? 1 : β))

and
γright = ¬γleft ⊕ (cnleft

== 0) ∧ (cnright
== 0),

which can be computed obliviously.

Lemma 12.

õ`,d =

{
γleft if nchild = nleft

γright if nchild = nright
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Proof. We have:

– if cnleft
> 0 and cnright

> 0 then γleft = β and γright = ¬β,
– if cnleft

> 0 and cnright
= 0 then γleft = 1 and γright = 0,

– if cnleft
= 0 and cnright

> 0 then γleft = 0 and γright = 1,
– if cnleft

= 0 and cnright
= 0 then γleft = 0 and γright = 0.

4 Complexity Analysis

For analyzing the complexity of XorSHAP, consider a model consisting of a sin-
gle tree. For an arbitrary tree ensemble model, one can simply multiply the
complexity by the number T of decision trees in the ensemble.

Below, we describe in detail the complexities of the various computations
needed in the different sections of Section 3.

§3.1
– There are 2D−1 binary matrices P` of sizeM×D and 2D−1 binary matrices F`

of size M × 1 (obtained by OR-ing the columns of P`). The number is 2D−1

since sibling leaves share the same path of split nodes.
– Computing all 2D o`’s requires a total of 2D−1 comparisons of the form tn <
xjn .

– Computing all 2D z`’s requires one private division between two vectors of
size 2D−1×1 (there is a relation between the cover ratio of a left child node
and the cover ratio of its right sibling node, so it suffices to compute the left
ratios only).

§3.2.1
– The 2D−1 permutations σF`

are obtained by sorting the 2D−1 binary vec-
tors F`. Note that σF`

(F`) is a by-product of the sorting algorithm from
[BCD+23], and R` can therefore be computed locally.

§3.2.3
– There are 2D binary vectors O` of size D× 1, requiring D ANDs between a

bit and a binary vector of size M × 1, D − 1 ANDs between binary vectors
of size M × 1 and one call to σF`

each.
– There are 2D vectors Z` of size D × 1, requiring D multiplications between

a scalar and a binary vector of size M × 1, D − 1 multiplications between
vectors of size M × 1 and one call to σF`

each.

– There are 2D vectors W
P (R`)
` of size 2D × 1, requiring D− 1 multiplications

between vectors of size 2D × 1 each.
§3.2.4

– C is a publicly computed matrix of size 2D ×D.
– There are 2D binary vectors δ|F`| of size D×1, which can be computed locally

from the binary vector R`. There are 2D vectors C |F`| of size 2D × 1 which
are computed as the matrix multiplication between the public matrix C and
the secret vector δ|F`|.

§3.2.5
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– First, we need to compute all inverse cover ratios 1/z
(`)
n , which requires

two private divisions between two vectors of size 2D − 1 × 1 (unlike for the
computation of z`, there is no easily computable relation between the inverse
cover ratio of a left child node and the inverse cover ratio of its right sibling
node).

– There are 2D vectors t` of size M × 1, requiring D multiplications between
two scalars, D multiplications between a scalar and a binary vector of size
M × 1 and D − 1 multiplications between vectors of size M × 1 each.

§3.2.6

– Computing the M2D−1 binary vectors η
(i)
` respectively I

(i)
` requires M2D−1

permutations of binary vectors of size M × 1, the remaining computations
can be performed locally.

– Finally, (14) is computed with: for each of the 2D leaves ` the inner sum
requires 2 ·2D scalar multiplications, and the outer sum requires 2 ·2D scalar
multiplications. That is, a total of 2D+1(2D + 1) scalar multiplications.

Comparison of the above-listed complexities shows that the bottlenecks are:

– Computing all Z`’s from Section 3.2.3 is O(MD2D),

– Computing W
P (R`)
` from Section 3.2.3 is O(D22D),

– Computing C |F`| from Section 3.2.4 is O(D22D),
– Computing all t`’s is O(MD2D),
– Computing (14) is O(22D+1).

Hence, if M̃ = max(M, 2D), then XorSHAP runs in

O(TM̃D2D)

multiplications, where T is the number of trees.

5 Implementation and Benchmarks

We have implemented the above algorithm on the Manticore framework [BCD+23].
The offline phase (generation of random precomputed data) is performed by the
trusted dealer. The benchmarks were run in a 2-party scenario with input data
already provided in secret shares across the two parties (i.e., simulating any
kind of partition). We vary the number of trees T , the tree depth D, the number
of features M as well as the number of testing samples (simultaneous compu-
tation of the SHAP values). The benchmarks include offline and online phase
and were run on an Intel Xeon E5-2666 v3 @ 2.90GHz CPU with 32GB RAM.
Over all runs, the L∞-distance between the SHAP values computed in MPC and
the baseline plaintext computation with the classical SHAP implementaiton2 is
around 10−13.

2 See https://shap.readthedocs.io/en/latest/ as well as the function
shap.TreeExplainer.shap values(x).
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In Table 1 and Table 2, we provide benchmarks (offline/online runtime and
number of outgoing connections) and (network transfer per party and memory
overhead) respectively, across different values of T for simultaneous computa-
tions of 20 samples/predictions, for M = 20 features and binary trees of depth
D = 6. Similarly, in Table 3 and Table 4, we provide the same type of data for
varying number of features M .

Figure 1 and Figure 2 show the total runtime for varying number of trees
and tree depth, and varying number of features and number of simultaneous
evaluations respectively. The time on the y-axis consists of the offline compute
time plus the online compute time plus and estimate of the network transfer
time. The latter is computed by using the network transfer (offline triplet size
and online network size), number of outgoing connections, the throughput and
the latency of the network. The estimation uses a network whose throughput is
120Mbps and whose latency is 0.3ms.

T offline compute time (in s) online compute time (in s) number of outgoing connections

100 97 95 334
80 75 74 334
60 57 55 334
40 37 36 334
20 17 14 334

Table 1. #samples = 20, M = 20, D = 6

T network transfer (in MB, per party, offline + online) memory offline (in MB) memory online (in MB)

100 5329 3867 11679
80 4263 3112 9379
60 3196 2346 7056
40 2131 1572 4744
20 1065 806 2430

Table 2. #samples = 20, M = 20, D = 6

6 Conclusion

The proposed XorSHAP is one of the first attempt to compute Shapley values in
an efficient and scalable fashion for decision tree ensemble models in the generic
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M offline compute time (in s) online compute time (in s) number of outgoing connections

100 64 60 399
80 50 49 379
60 38 38 356
40 26 25 336
20 15 14 313

Table 3. D = 4, T = 60, #samples = 100

M network transfer (in MB, per party, offline + online) memory offline (in MB) memory online (in MB)

100 4606 2834 5836
80 3751 2277 4691
60 2897 1739 3554
40 2043 1191 2444
20 1189 632 1295

Table 4. D = 4, T = 60, #samples = 100

Fig. 1.

secure multiparty computation setting. On a decision tree ensemble model with T
binary decision trees, with M features in depth D, our algorithm has a run-
time O(TM̃D2D) where M̃ = max(M, 2D), thus, being linear in the number of
features.

We implemented XorSHAP using the Manticore framework for Secure Mul-
tiparty Computation (SMPC) with additive secret sharing using modular real
secret shares and Boolean secret shares. The implementation scales to real-world
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Fig. 2.

datasets and is already part of Inpher XOR Platform for privacy-preserving com-
putations.

Note that the current implementation of XorSHAP takes the input in the
most general form, namely, in secret shares. A promising future direction of
research would be to understand how one can scale the algorithm in the cases
when the data is either horizontally or vertically split across multiple parties by
using local plaintext computations at the distinct parties, thus minimizing the
overhead from the more expensive SMPC operations. This is closer to a typical
federated machine learning scenario and is often expected to be much easier to
scale than scenarios where the inputs are secret shared.

Finally, the parallelization-friendly nature of our method opens another fu-
ture research direction on massively scaling the computation using hardware
acceleration with GPUs. One specific line of research along these lines is finding
privacy-preserving variants of GPUTreeSHAP proposed in [MFH22].
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