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Abstract. Over years of the development of secure multi-party com-
putation (MPC), many sophisticated functionalities have been made
practical and multi-dimensional operations occur more and more fre-
quently in MPC protocols, especially in protocols involving datasets of
vector elements, such as privacy-preserving biometric identification and
privacy-preserving machine learning. In this paper, we introduce a new
kind of correlation, called tensor triples, which is designed to make multi-
dimensional MPC protocols more efficient. We will discuss the generation
process, the usage, as well as the applications of tensor triples and show
that it can accelerate privacy-preserving biometric identification proto-
cols, such as FingerCode, Eigenfaces and FaceNet, by more than 1000
times, with reasonable offline costs.
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1 Introduction

1.1 Motivation

Secure multiparty computation (MPC) is one of the central subfields in cryp-
tography. MPC aims to accomplish a joint evaluation of a function over inputs
provided by multiple parties without revealing any extra information. Due to
its feature on protection of the inputs, it has been widely used in analysis and
processing of private or sensitive data held by multiple parties. Starting from
Yao’s Garbled Circuit [46], numerous advances have been made on the most
fundamental circuit-based MPC. Over years of development, circuit-based MPC
gradually gains capability of practically computing more and more sophisticated
and large-scale functions. Apart from one-dimensional numeric computation, the
necessity of handling higher dimensional operations has also become a concern.
For instance, people for years have explored the possibility of application of MPC
on privacy-preserving biometric identification [17,4,22,42,10,9,21,20,28], privacy-
preserving machine learning [35,5,29,30,27] and many other practical fields that
require an intensive use of vector and matrix operations, such as vector tensoring
and matrix multiplication. Unlike the straightforward homomorphic encryption
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methods, which often behave less computationally efficient, it is crucial to find
a way to accelerate multi-dimensional arithmetics for circuit-based MPC proto-
cols. For instance, SPDZ framework has been used to boost multi-dimensional
MPC protocols [11].

Meanwhile, apart from the classical correlation generation protocols such as
OT and Beaver triples, researchers have also attempted to find new kinds of
correlations (for example [1]) that can fulfill different needs of MPC protocols
and perform more efficiently compared to classical ways [33,2,6,7]. Among these
variants, VOLE, as an efficient way to provide correlated random vector sharings
for two parties, has been widely used as a convenient auxiliary tool to accomplish
circuit-based MPC involving multi-dimensional inputs. Therefore, we would like
to explore a way to boost MPC protocols involving multi-dimensional objects,
such as vectors and matrices, and we would like to take advantage of the corre-
lation properties of VOLE to assist the procedure.

1.2 Our Contribution

The goal of this paper is to explore a more efficient way to fulfill multi-dimensional
secure multi-party computation. In this paper, we define a new kind of cor-
related triples, called tensor triples, which can be generated using VOLE, or
alternatively RLWE-based homomorphic encryption. We will explain in detail
how tensor triples can be generated efficiently in several ways, making them
“cheap” to generate and “convenient” to use. We will also prove that this type
of triples can be used to assist the secure multi-party computation on multi-
dimensional arithmetics and accelerate MPC protocols involving vectors and
matrices. The corresponding protocols will be much more efficient both com-
putationally and communicatively compared to the usual Beaver’s method. As
a result, we discover several practical applications of tensor triples on classi-
cal privacy-preserving biometric identification and privacy-preserving machine
learning protocols. As instances, we realize implementations of three privacy-
preserving biometric identification protocols, namely FingerCode [24], Eigenfaces
[44] and FaceNet [41]. We will also analyze the performance of the implementa-
tions and prove our claim that the tensor triple method indeed provides a more
efficient way to carry out multi-dimensional MPC protocols. Our implementation
results show that the squared Euclidean distance computation in 128 queries of
batched Fingercodes against a database of 1024 only takes 0.082 seconds while
the GSHADE takes 176.64 seconds, which is more than 2000 times faster than
previous work. We also show that the squared Euclidean distance computation
in 80 queries of batched Eigenface against a database of 1000 only takes 0.032
seconds while the GSHADE takes 104 seconds, which is more than 3000 times
faster than previous work.

1.3 Related Works

Abspoel et al. in [1] proposed the concept of “outer product triple” through lin-
ear secret sharing schemes over Galois rings. The authors have also explained
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the outer product triples are useful as they can be utilized to assist the secure
multi-party computation of outer products between vectors. The definition of
outer product triple is equivalent to the notion of tensor triple we will define in
Sec. 3, but we will introduce protocols involving these triples for much broader
applications. For the parameter setting, we do not require the dimensions of
tensor triples equal to the dimensions of target vectors in computation, since the
triple generation process is in the preprocessing phase, and making the knowl-
edge of the dimensions of multi-dimensional objects occurred in MPC protocols
beforehand is unreasonable. Hence in our definition, the tensor triples can al-
ways be generated without any knowledge of the dimensions in advance. For the
generation process, we focus on the two-party case and only put interests on
the (s, s)-additive secret sharing. We propose two novel and efficient methods
based on RLWE and VOLE respectively to generate tensor triples and show in
experiments that these methods outperform all current ways to generate tensor
triples. For applications, we not only propose the secure multi-party computation
of vector outer products, but more functionalities such as matrix multiplication,
which is a much more useful functionality in practice. As we introduced in Sec.
1.1, in privacy-preserving biometric identification and privacy-preserving ma-
chine learning, the secure multi-party computation of matrix multiplication is
an indispensable ingredient of all kinds of protocols. We then further proceed
to practical usage of tensor triples by testing the efficiency of the corresponding
protocols in biometric identification.

As pointed out, the secure multi-party computation of matrix multiplication
is a crucial functionality in many areas. As we are aware, there exist a various
of works that attempt to fulfill this functionality more efficiently. The most
seemingly practical way is the realization of secure matrix computation through
the SPDZ framework (for instance [11,31]). On the other hand, our work only
uses comparatively lightweight MPC components such as VOLE to fulfill the
functionality. As a result, we will show in detailed statistics that our method
obtains a very high efficiency and outperforms the homomorphic encryption
based protocols by a large factor.

Similarly, there are multiple works aimed to accelerate the privacy-preserving
biometric identification process. For FingerCode, Eigenfaces and FaceNet, the
three protocols discussed in this paper, we are also aware of the existence of
various works and improvements. Nevertheless, we have not discovered any work
using VOLE or similar techniques to improve the efficiency. We will still discuss
them in the corresponding sections and show a detailed comparison between
different implementations.

1.4 Security Model

All protocols involved in the rest of the paper are secure against semi-honest and
computationally bounded adversaries. Such an adversary will follow the protocol
faithfully, but may try to learn information from what it sees during the protocol
procedure.
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1.5 Organization of Paper

In Sec. 2, we define necessary notions and primitives in MPC. In Sec. 3, we define
the notion of tensor triple and briefly explain the intuition and the idea how it
can be used to accelerate multi-dimensional circuit-based MPC protocols. We
then proceed to introducing several ways to generate tensor triples. The proto-
cols are focused on resolving the generation of tensor triples for two parties, as
is the usual need in most practical applications. In Sec. 4 we explain the usage
of tensor triples to accomplish MPC of basic algebraic operations for scalars,
vectors and matrices. Matrix operations. In Sec. 5, we discuss possible applica-
tions of tensor triples in practice. It should be emphasized that tensor triples
can be used to accelerate all multi-dimensional MPC protocols universally, and
the applications we list in the section are merely few instances. In Sec. 6 imple-
mentations of protocols as well as results of the experiments after the execution
are presented. It can been clearly seen that the tensor triple method provide a
significant speedup.
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2 Preliminaries and Notations

2.1 Oblivious Transfer (OT)

We provide a very brief introduction of oblivious transfer together with its mul-
tiple invariants in order to import all possible notations to be used. In an obliv-
ious trnasfer [37], the sender with a pair of messages (m0,m1) interacts with
the receiver with a choice bit b. The result ensures that the receiver learns mb

but obtains no knowledge of m1−b, while the sender obtains no knowledge of b.
In an OT extension protocol OTnl , the input of the sender is n message pairs
(mi,0,mi,1) ∈ {0, 1}2l and the input of the receiver is a string b ∈ {0, 1}n. The
result allows the receiver to learn mi,b[i] for 1 ≤ i ≤ n. In a Random OT (ROT),
the sender inputs nothing beforehand but obtains two random strings in the out-
puts as the message pair, and the receiver inputs nothing either but obtains the
choice bit together with the selected message afterwards. Similiarly, a batched
version of ROT (or also known as OT extension, see [23,25,26]) which generates
n message pairs of bit-length l is denoted by ROTnl . A correlated OT (COT)
[3,7,45] is a variant of ROT that allows the sender to pre-determine a string ∆
and obtain two correlated random strings as the message pair with their XOR
equal ∆. The extension of COT denoted by COTnm allows the sender to choose
∆ ∈ F2m . The protocol eventually provides two uniformly distributed vectors
u ∈ Fn2 ,v ∈ Fn2m to the receiver, and v⊕ (u ·∆) to the sender. A subfield vector
oblivious linear evaluation (sVOLE) protocol is a generalization of COTnm to an
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arbitrary finite base field. A vector oblivious linear evaluation (VOLE) allows
one party to obtain two vectors u,v ∈ Fnp , and the other party a scalar x ∈ Fp
and the linear evaluation ux+ v.

In further chapters, we will be mainly using the random variants of COTnm
and sVOLE functionalities defined below in Figure 1. It is not difficult to see
that RCOTnm is a special case of F p,m,n

RsVOLE when p = 2.

Functionality RCOTnm
Players: The sender S and the receiver R.
Inputs: ⊥.
Outputs:

– S outputs v ∈ Fn2m ,∆ ∈ F2m ;
– R outputs u ∈ Fn2 ,v⊕ (u ·∆) ∈ Fn2m .

Functionality F p,m,n
RsVOLE

Players: The sender S and the receiver R.
Inputs: A dimension pair (n,m).
Outputs:

– S outputs x ∈ Fpm ,v ∈ Fnpm ;
– R outputs u ∈ Fnp , xu+ v ∈ Fnpm .

Fig. 1. Functionality of RCOT and RsVOLE

VOLE protocols with semi-honest and computational security in OT-hybrid
model have been defined in [2,7]. Subfield VOLE, as an important variant of
VOLE, has also been implemented in various ways (See [6,7,40,45,12,38]).

2.2 RLWE-Based Additively Homomorphic Encryption
(RLWE-AHE)

The notion of an AHE scheme we follow is basically the same as the one in
[39], with an addition of a tensorial scalar operation which is needed for further
use. Roughly speaking, it is a scheme with “linearity”. For brevity, the detailed
definition will be introduced in Appendix B.

Instances of an AHE scheme which are not based on RLWE are [36,13,15].
While most RLWE-based instantiations of such a scheme (such as [8,18]) are
designed to be fully homomorphic, we emphasize that the additive homomor-
phicity suffices the scheme. We assume that the parameters of a RLWE-based
AHE scheme have been chosen to be large enough to allow evaluation of the
circuit for further protocols and prevent leakage through amplified ciphertext
noise from homomorphic operations.

3 Tensor Triple

3.1 Definition of Tensor Triple

In this section, we first define the notion of vector sharing.
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Definition 1. An (s, t)-secret sharing of a vector v is a set {[v]1, ..., [v]s} of s
vectors, such that there exists an efficient algorithm to reconstruct v from any t
shares [v]i1 , ..., [v]it , but there is no algorithm that can efficiently reconstruct v
from any subset of shares with fewer cardinality. We will denote a share of v by
[v] if indices are not particularly involved. The secret sharing is called linear if
[u]i+[v]i = [u+v]i. A linear (s, t)-vector sharing scheme involves s participants,
inputs a vector v, and outputs to each participant a linear (s, t)-secret sharing
of v. A vector sharing scheme is called (information-theoretically) secure, if

Pr(v = x|[v]i1 , ..., [v]it−1
) = Pr(v = x′|[v]i1 , ..., [v]it−1

)

for any subset {i1, ..., it−1} ⊂ {1, ..., s} and any x,x′ in the ambient space.

Remark 2. In the rest of the paper, we use t = s, and in the ideal setting, a vec-
tor sharing scheme over finite fields consists of a trusted party and s participants.
The trusted party takes the input v, randomly samples vectors r1, ..., rs−1 and
sends them to the first s−1 participants respectively. It then sends v−r1−...−rs−1
to the last participant. The secret vector v is therefore only recoverable by all par-
ties together.

The notion of tensor triple has been proposed in various forms (See [1]) to
more efficiently fulfill MPC of vectors. We propose the following definition to
better facilitate its properties.

Definition 3 (Tensor triple). By definition, a tensor triple (u, v,W ) consists of
data u ∈ Km, v ∈ Kn,W ∈Mm×n(K) satisfying u⊗ v = uvT = W .

Definition 4 (Tensor triple sharing). Let P1, ..., Ps be the participants of a
secure multi-party computation protocol over an ambient finite field or ring K.
By definition, a tensor triple sharing scheme provides two vectors and one matrix
[u]i ∈ Km, [v]i ∈ Kn, [W ]i ∈Mm×n(K) for the participant Pi, such that [u]i, [v]i
form secret sharings of u ∈ Km, v ∈ Kn respectively, with the relation u ⊗ v =
uvT =

∑s
i=1[W ]i. Shares of u, v and W will be denoted by [u], [v] and [W ] if

indices are not particularly involved. For our convenience, such a triple will be
called an (m,n)-triple. A tensor triple sharing scheme is called secure if the
distribution of u, v to an adversary who obtains {([u]i, [v]i, [W ]i)}i6=i∗ for any
i∗ ∈ {1, ..., s} is computationally indistinguishable from the uniform one.

3.2 Tensor Triple Generation

Now we would like to introduce multiple ways to efficiently generate tensor
triples. Figure 4 shows the ideal functionality of tensor triple generation. In
practice, the generation process can be fulfilled via Ring-LWE or subfield VOLE.
We provide below these protocols in details.

RLWE-Based Two-Party Tensor Triple Generation A batch generation
method for Beaver triples based on RLWE-AHE has been introduced in [39]. It
can be modified as dipicted in Figure 2 to generate tensor triples.
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RLWE-based tensor triple generation TT.Gen(m,n, λ)

Setup: P0 generates (pk,sk)← AHE.Gen(1λ) and publish pk.
Interacting Phase:

1. P0 samples u0 ←$ K
m,v0 ←$ K

n and encrypts them to obtain the ciphertexts

ctu ← AHE.Enc(pk,u0), ctv ← AHE.Enc(pk,v0).

P1 samples u1,←$ Km,v1 ←$ Kn, Ru ←$ Mm×n(K), Rv ←$ Mn×m(K)
and encrypts them to obtain the ciphertexts ctRu = AHE.Enc(pk, Ru), ctRv =
AHE.Enc(pk, Rv).

2. P0 sends to P1 the ciphertexts ctu, ctv;
3. By homomorphicity, P1 computes ct1 = u1 ⊗ ctv, ct2 = v1 ⊗ ctu and ctWu =

ct1 + ctRu , ctWv = ct2 + ctRv and then sends to P1 the ciphertexts ctWu , ctWv ;
4. P0 performs decryption to obtain Wu = AHE.Dec(sk, ctWu),Wv =

AHE.Dec(sk, ctWv) and then computes W0 = Wu +WT
v + u0 ⊗ v0. P1 computes

W1 = u1 ⊗ v1 −Ru −RTv .

Outputs: P0 outputs (u0,v0,W0), P1 outputs (u1,v1,W1).

Fig. 2. RLWE-based tensor triple generation

sVOLE-Based Two-Party Tensor Triple Generation An OT-based pro-
tocol for generating Beaver multiplication triples was proposed in [19]. In [16],
the authors established a more efficient protocol based on Correlated-OT exten-
sion, which has been shown to outperform the AHE based generation method. In
this section, we propose an sVOLE-based method to efficiently generate tensor
triples.

Observe that under a fixed Fp-vector space isomorphism ϕ : Fpm → Fmp (for
instance, ϕ(a0 + a1α + ... + am−1α

m−1) = (a0, ..., am−1) where Fpm is realized
through an extension Fp[α] by adding a root of an irreducible monic polynomial
of degree m), F p,m,n

RsVOLE becomes the following functionality F p,m,n
RsVOLE′ , as shown

in Figure 3.

Functionality F p,m,n
RsVOLE′

Players: Participants S,R.
Functionality: Receive (sender, sid) from S and (receiver, sid) from R, sample x ∈r
Fmp , V ∈r Fmnp ,y ∈r Fnp , compute U = x⊗y+V ∈ Fmnp , return (x, V ) to S and (y, U)
to R.

Fig. 3. Functionality of RsVOLE’

Given a protocol RsVOLE(m,n, λ) realizing F p,m,n
RsVOLE′ , we can easily formu-

late many ways to generate a tensor multiplication triple. Figure 5 shows a
straightforward method.
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Functionality F p,m,n
TTGen

Players: Participants P1, ..., Pk.
Functionality: Receive (sid, i) from Pi, sample u ∈r Fmp ,v ∈r Fnp , compute W =
u ⊗ v, securely secret share u,v,W into [u]i, [v]i, [W ]i and return to Pi the share
([u]i, [v]i, [W ]i).

Fig. 4. Functionality of tensor triple generation

sVOLE-based tensor triple generation TT.Gen(m,n, λ)

Inputs: None.
Primitive: A random subfield VOLE protocol RsVOLE(m,n, λ).
Interacting Phase:

1. P0 and P1 launch the protocol RsVOLE(m,n, λ) where P0 acts as the sender
and P1 acts as the receiver. P0 obtains x ∈r Fmp , V ∈r Fmnp and P1 obtains
y ∈r Fnp , U = x⊗ y+ V ∈ Fmnp ;

2. P0 and P1 launch the protocol RsVOLE(m,n, λ) where P0 acts as the receiver
and P1 acts as the sender. P1 obtains x′ ∈r Fmp , V ′ ∈r Fmnp and P0 obtains
y′ ∈r Fnp , U ′ = x′ ⊗ y′ + V ′ ∈ Fmnp ;

Outputs: P0 outputs (u0 = x,v0 = y′,W0 = −V + U ′ + x ⊗ y′), P1 outputs
(u1 = x′,v1 = y,W1 = U − V ′ + x′ ⊗ y).

Fig. 5. sVOLE-based tensor triple generation

In particular, when p = 2, one may also use COT protocols in an analogous
way to generate tensor triples over fields with even characteristics.

We use two ways to materialize RsVOLE(m,n, λ). The first method is to use
COT for the case when p = 2, as shown in Figure 6. The idea is similar to the
one implemented in [7], and we simply adapt it in tensor form to suit our need.

The second way is to use Silent OT (SOT). SOT procotol can be directly
used to fulfill RsVOLE(m,n, λ). We omit the details and refer to [7] for brevity.

4 Secure Multi-Dimensional Arithmetic Evaluations

In this section we will discuss various vector operations which may be performed
securely using Beaver’s method. When m = n = 1, tensor triples are simply
usual Beaver triples. Therefore they can also be used for basic arithmetics. We
mainly discuss the multi-dimensional computations below.

4.1 Linear Operations and Dot Product

As expected, additions and operations involving constants may all be computed
locally without any interaction by the homomorphicity. More specifically, the
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COT-based RsVOLE(m,n, λ)

Inputs: None.
Primitive: A random OT extension protocol and a pre-determined pseudorandom
generator PRG.
Interacting Phase:

1. The receiver R and the sender S invoke the ROT extension protocol
(preferably with extension). ROT protocol outputs to S a family of pairs
{seedi,0, seedi,1}i=1,...,n and to R its choices {yi, seedi,yi}i=1,...,n. We denote
y = (y1, ..., yn). Additionally S samples a string x←$ {0, 1}m;

2. S computes si = PRG(seedi,0)⊕ PRG(seedi,1)⊕ x for i = 1, ..., n and sends all si
to R;

3. R computes ui = PRG(seedi,yi)⊕yisi and formulates the matrix U = (uT1 , ...,uTn ).
S formulates the matrix V = (PRG(seedi,0))Ti=1,...,n.

Outputs: R outputs (y, U), S outputs (x, V ).

Fig. 6. COT-based RsVOLE

following operations are securely multi-party computable and the computation
can be done locally without any interaction:

– [a] + [b] = [a + b];
– Given a public constant vector c, [a+ c]1 = [a]1 + c, [a+ c]i = [a]i for i 6= 1.
– c[a] = [ca], where c ∈ K is a constant number;
– c · [a] = [c · a], where a ∈ Kn, and c ∈ Kn is a constant vector;
– c⊗ [a] = [c⊗ a], where c is a constant vector.

Now let us consider the dot product of two vectors a,b in the same dimension
n. Suppose we have a (n, n)-triple. First we denote a − u = s,b − v = t. By
Beaver’s method, each party may annouce its share of s and t to recover the two
vectors. Then they could securely compute the shares as

[a · b] = s · t + [u] · t + [v] · s + tr([W ]).

Note that the last term uses the fact that the trace function is linear. The
correctness can easily be verified by a direct computation.

4.2 Outer Product and Matrix Product

Figure 7 shows the ideal functionality for secure multi-party outer product com-
putation. One can use exactly the same method to fulfill the need of an outer
product. Let us suppose all parties would like to compute the outer product a⊗b
of two vectors a ∈ Km and b ∈ Kn with the help of an (m,n)-triple (u,v,W ).
First we denote a− u = s,b− v = t. Then similarly we could compute

a⊗ b = (s + u)⊗ (t + v) = s⊗ t + u⊗ t + s⊗ v +W.
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Functionality FOut

Players: Participants P1, ..., Pk.
Functionality: Receive (sid, i, [u]i, [v]i) from Pi, recover u,v from shares
(i, [u]i, [v]i), abort if the recovery fails, securely secret share u · v into [u ⊗ v]i and
return to Pi the share [u⊗ v]i.

Fig. 7. Functionality of secure outer product

Secure Multi-Party Outer Product Out(a,b)
Input: Pi inputs shares [a]i, [b]i of two vectors a ∈ Km,b ∈ Kn.
Primitive: A tensor triple generation protocol TT.Gen(m,n, λ)
Pre-processing Phase: The participants perform a TT.Gen(m,n, λ) protocol. Pi
outputs [u]i ∈ Km, [v]i ∈ Kn, [W ]i ∈Mm×n(K).
Initial Phase: Pi computes [s]i ← [a]i − [u]i and [t]i ← [b]i − [v]i.
Interacting Phase:

1. Pi annouces publicly to all parties [s]i and [t]i;
2. All parties recover s and t from the annoucement;
3. Each party Pi secretly computes [a⊗ b]i ← s⊗ t+ [u]i ⊗ t+ s⊗ [v]i + [W ]i

Outputs: Pi outputs [a⊗ b]i.

Fig. 8. Secure Multi-Party Outer Product

Therefore we could similarly make a protocol described below in Figure 8.
One thing to be noted is that the triple is not aimed at fully masking the

output matrix a ⊗ b. This output matrix has rank 1 and all entries will be
determined once the first row and the first column are determined.

Functionality FMatProd

Players: Participants P1, ..., Pk.
Functionality: Receive (sid, i, [A]i, [B]i) from Pi, recover A,B from shares
(i, [A]i, [B]i), abort if the recovery fails or A,B are not multiplicable, securely se-
cret share A ·B into [AB]i and return to Pi the share [AB]i.

Fig. 9. Functionality of secure matrix product

As a direct application of the outer product, we could now introduce a way to
securely compute a matrix product of two matrices. Figure 9 shows the function-
ality of secure multi-party matrix multiplication. In practice, we consider A ∈
Mm×k(K), B ∈Mk×n(K). First denote the columns of A by A = (a1, ...,ak),
and the rows of B by B = (b1, ...,bk)T . As is well-known, the matrix product
has the following outer product expansion formula: AB =

∑k
i=1 ai ⊗ bi. There-
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fore, it is easy to formulate a way to compute the matrix product from the outer
product primitive. All the parties may simultaneously perform k primitives to
compute each summand in the formula above and then individually add the re-
sults together without any further interaction. A protocol is described as follows
in Figure 10.

Secure Multi-Party Matrix Product MatProd(A,B)

Input: Pi inputs shares [A]i, [B]i of two matrices A ∈Mm×k(K), B ∈Mk×n(K).
Primitive: A tensor triple generation protocol TT.Gen(m,n, λ), secure outer product
Out(a,b).
Pre-processing Phase: The participants perform k times of a TT.Gen(m,n, λ) pro-
tocol. Pi outputs ([u](j)i , [v](j)i , [W ]

(j)
i ) (j = 1, ..., k).

Initial Phase: Each party Pi pairs columns of A and transposes of rows of B by
indices and obtains k pairs of vectors (al,bl), l = 1, ..., k.
Interacting Phase: All parties perform Out(al,bl) for l = 1, ..., k. Each Pi obtains
[al ⊗ bl]i.
Outputs: Pi outputs [AB]i ←

∑k
l=1[al ⊗ bl]i.

Fig. 10. Secure Multi-Party Matrix Product

4.3 Security

On the security of all protocols proposed above, the proofs are somehow evident
from the simple observation that the triple always hides perfectly the input
vectors and in none of the protocols the third matrix share is published in any
sense. This also illustrates the correct and secure usage of tensor triples, namely
to randomize the input vectors to announce, while always keeping the third
matrix share secret. The precise statements of the security are given below.

Theorem 5 ([39]). The RLWE-based tensor triple generation protocol (Figure
2) realizes the functionality F p,m,n

TTGen in the two-party setting and is semi-honest
secure.

Theorem 6 ([7]). The COT-based RsVOLE protocol (Figure 6) realizes the
functionality F p,m,n

RsVOLE′ in the two-party setting and is semi-honest secure.

Theorem 7. The sVOLE-based tensor triple generatio protocol TT.Gen() real-
izes the functionality F p,m,n

TTGen in the two-party setting and is semi-honest secure
in the F p,m,n

RsVOLE′-hybrid model.

Theorem 8. The secure outer product protocol Out() realizes the functionality
FOut and is semi-honest secure in the F p,m,n

TTGen-hybrid model.

Theorem 9. The secure matrix product protocol MatProd() realizes the func-
tionality FMatProd and is semi-honest secure in the FOut-hybrid model.
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Proof. The proofs of the three theorems 7,8,9 are given in details in Appendix
A.

4.4 Advantages of Tensor Triple

Secure multi-party matrix multiplication can also be realized using Beaver triples.
For a matrix multiplication of size (m, k) by (k, n), we need k of (m,n)-triples or
mnk Beaver triples. While the cost may not seem to differ much in low dimen-
sions, the cost of Beaver triples will increase quadratically as the size of matrices
increases. As an example, to carry out a secure multi-party matrix multiplication
between two 1024× 1024 matrices, we need 230 Beaver triples in total. Even the
generation process of this many Beaver triples is a burden to all the parties. For
instance, if we use RLWE-based method [39] for Beaver triple generation, the
communication cost reaches an astonishing 256TB. Meanwhile, the parties only
need to consume 1024 tensor triples to accomplish the computation. Due to the
batch generation nature of sVOLE, it is much easier to generate tensor triples
of the required amount.

On the other hand, the tensor multiplication triples are more flexible and
applicable for matrix operations. As mentioned in previous sections, any (n, n)-
triple can be trimmed to serve as two triples of size (s, t) and (n − s, n − t)
respectively, for any s, t < n. Therefore, secure multi-party matrix operations
with different matrix sizes can be achieved using tensor triples of a universal
size.

More importantly, when tensor triple technique is applied to achieve the
secure multi-party matrix multiplication A · B, the number of columns of A
(which equals the number of rows of B) can be arbitrary. This is extremely
convenient in some applications, for example the ones we will introduce in Sec.
5. For instance, if the parties choose to generate "matrix triples" ([X], [Y ], [Z] =
[X · Y ]) to assist the computation of matrix multiplication, since the size of
matrices may not be determined beforehand by the nature of "pre"-computation
process, the parties must choose the dimensions ofX,Y, Z large enough to satisfy
all possible needs, and this may turn out to become an overkill when the protocol
is executed. Hence it is convenient to use tensor triples, as the method does not
require the parties to know anything about k while still being able to accomplish
100% utilization of the pre-computed triples.

5 Applications

5.1 Batched Squared Euclidean Distance Computing

Squared Euclidean distance is a widely-used and crucial function in biometric
identification and machine learning. In biometric identification, it is often the
case the client needs to launch multiple queries, and the server needs to compute
the squared Euclidean distance between each query with all references in its own
dataset. This type of batched queries essentially portraits a matrix multiplication
functionality. Therefore one can use tensor triple to accelerate this process. We
will explain by presenting concrete examples as follows.
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5.2 Batched Privacy-Preserving Biometric Identification

In this chapter we show applications for vector triples on privacy-preserving bio-
metric identification protocols. Biometric identification, such as face recognition
and fingerprint recognition, often involves computation between biometric sam-
ples and references in a dataset. In this scenario, Euclidean distance computing
between a vector and a fixed family of vectors is implemented each time a query
is launched. We demonstrate tensor triples can be used for batched queries in
privacy-preserving biometric identification protocols to extremely increase the
efficiency.

FingerCode FingerCode [24,22] is a fingerprint recognition algorithm. In the
setting of FingerCode, the server holds a dataset of references Y = (yT1 , ...,yTn ) ∈
Mk×n(K). The client would like to securely make a batch of queries X =
(xT1 , ...,xTm)T ∈ Mm×k(K) for recognition. The protocol should proceed as de-
scribed below.

1. The parties obtain shares of the squared Euclidean distance between the
queries and references from the dataset. In expressions, the parties securely
compute D = DX +DY −XY ∈Mm×n(K), where

DX = (x1xT1 , ...,xmx
T
m)⊗ (1, 1, ..., 1)

and
DY = (1, 1, ..., 1)⊗ (y1y

T
1 , ...,yny

T
n ).

2. The parties securely compare entries of D with the predetermined threshold
d. Recognize xi as yj if Dij ≤ d;

Note DX and DY can be computed locally. Therefore the first step can be
fulfilled by implementing MatProd(X,Y ) using tensor triples. The second step
can be done using any regular implementation of the secure comparison protocol.

Eigenfaces Eigenfaces [44] is a classical face recognition algorithm. In the set-
ting of Eigenfaces, the server holds a dataset of Eigenfaces U = (uT1 , ...,uTn ) ∈
Mk×n(K), an average face ū ∈ Kk, and a dataset of N projected faces Y =
(yT1 , ...,yTN ) ∈ Mn×N (K). The client would like to securely make a batch of
queries X = (xT1 , ...,xTm)T ∈ Mm×k(K) for recognition. The protocol should
proceed as described below.

1. The parties subtract the average face and obtain shares of the projected
faces X̄ = (x̄T1 , ..., x̄Tm)T onto the eigenbasis. More specifically, the parties
securely compute X̄ = (X − Ū)U ∈ Mm×n(K), where Ū = (ūT , ..., ūT )T ∈
Mm×k(K);

2. The parties obtain shares of the squared Euclidean distance between the
projected faces and those in the dataset. In expressions, the parties securely
compute D = DX +DY − 2X̄Y ∈Mm×N (K), where

DX = (x̄1x̄T1 , ..., x̄mx̄
T
m)⊗ (1, 1, ..., 1)
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and
DY = (1, 1, ..., 1)⊗ (y1y

T
1 , ...,yNy

T
N ).

More specifically, they use Beaver triple to compute 〈x̄i, x̄i〉 and tensor triple
to compute X̄Y . Also note DY can be computed locally;

3. The parties securely compare entries of D with the predetermined threshold
d. Recognize xi as yj if Dij ≤ d;

FaceNet FaceNet [41] is a more recent facial recognition system based on deep
learning. It was proposed in 2015 and successfully provided a way to generate a
very high-quality mapping from face images to their vector representatives. In
its setting, the server holds a dataset of references Y = (yT1 , ...,yTn ) ∈Mk×n(K).
The client would like to securely make a batch of queries X = (xT1 , ...,xTm)T ∈
Mm×k(K) for recognition. We assume all the data have been pre-processed
through a well-trained network. The protocol should proceed as described below.

1. The parties obtain shares of the squared Euclidean distance between the
queries and references from the dataset. In expressions, the parties securely
compute D = DX +DY −XY ∈Mm×n(K), where

DX = (x1xT1 , ...,xmx
T
m)⊗ (1, 1, ..., 1)

and
DY = (1, 1, ..., 1)⊗ (y1y

T
1 , ...,yny

T
n ).

2. The parties securely compare entries of D with the predetermined threshold
d. Recognize xi as yj if Dij ≤ d;

Here again, DX and DY can be computed locally. The MPC part of the overall
protocol proceeds exactly the same as in the FingerCode case.

As a remark, the flexibility of tensor triples allows us to apply all protocols
above on a dataset of vectors in an arbitrary dimension. This is extremely useful
as dimensions of data points many vary in different settings. Therefore, tensor
triple generation may well be considered as a genuine "pre-computation" process,
as the triples generated are suitable for MPC on datasets in all dimensions.

6 Implementation and Performance

In this chapter, our implementations are based on C++. The experiments are run
on desktop with AMD 3950X CPU and 48GB RAM. We considered both simu-
lated LAN andWAN environments with 500 mbps bandwidth and 20 ms one-way
latency. The protocols are suitable for multi-threading by parallel computation,
but we measure the performance in single thread setting. The experiments are
executed 10 times and the medians of the results are presented in the following
tables. Source codes have been provided at https://github.com/lzjluzijie/triple.

https://github.com/lzjluzijie/triple
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6.1 Tensor Triple Generation

We mainly choose to use the subfield VOLE method to generate triples as it
generally have a better performance than the RLWE method. We implement
both Correlated OT based protocol and silent OT based protocol for RsVOLE.
We also use libOTe library to fulfill basic functionalities such as COT and OT
extension. For silent OT, we used the expand-convolute code from [38] with
expander weight 7 and convolution state size 24. The hamming weight of the
sparse vector in this setting is 400, which means each silent VOLE requires an
execution of an OT extension based subfield VOLE of size 400.

We present the performance as well as the corresponding communication cost
for each method in Table 1,2,3. It can be seen from the tables that COT method
is more efficient when tensor triples of small sizes are needed, while SOT method
allows generation of tensor triples of large sizes with moderate communication
cost.

Table 1. Performance of COT-based 32-bit (m,n)-tensor triple generation (in millisec-
onds). For each size we generate 1, 25, 210 number of triples (arranged in rows).

m\n 23 28 210 214

LAN WAN LAN WAN LAN WAN LAN WAN

23
10 188 10 312 12 394 53 985
14 317 23 649 60 1596 748 19153
287 5836 567 15354 1771 45577 22378 597527

28
29 654 108 1603 3906 22553
409 9356 1737 37379 85391 602922

12603 309499 57274 1181690

210
638 5530 22323 92565
14003 149363 567917 2665457
425520 4732780

We present here also a high-level analysis of the two methods. In small cases,
COT-based generation method is straightforward and faster, while it may take
a considerable amount of time for SOT-based method to finish the structure
building for the protocol. When one deals with matrices of large dimensions
or needs a large amount of tensor triples, since there is a linear overhead in
the communication cost of COT-based generation method, the data transfer
may become intolerable for the parties to generate these triples. While on the
other hand, as the communication cost of the SOT-based generation method is
sublinear asymptotically, it requires much less communication to generate all
the necessary tensor triples.

As a brief comparison, based on the performance tables provided by [39], it
takes approximately 2300 milliseconds to generate one (210, 210)-triple RLWE-
based tensor triple generation method, with a communication cost of 256MB.
We see from the example that VOLE-based generation method indeed performs
better.
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Table 2. Performance of SOT-based 32-bit (m,n)-tensor triple generation (in millisec-
onds). For each size we generate 1, 25, 210 number of triples (arranged in rows).

m\n 23 28 210 214

LAN WAN LAN WAN LAN WAN LAN WAN

23
104 529 93 528 93 576 193 691
3865 4554 3765 4651 3840 4690 7922 7972

123127 143559 122763 143203 122937 140101 257346 267526

28
593 1603 591 1646 763 1733
24532 33195 24534 32774 31096 37629
786790 1047499 788486 1052955 1006983 1193853

210
2271 4850 2647 5252
92154 137287 104976 142970

2991083 4441299 3395699 4606848

Table 3. Communication cost of 32-bit (m,n)-tensor triple generation (in megabytes).
For each size we test the cost for 1, 25, 210 number of triples (arranged in rows).

m\n 23 28 210 214

COT SOT COT SOT COT SOT COT SOT

23
0.032 1.00 0.52 1.00 2.02 1.00 32.02 1.23
0.76 32.86 16.26 32.86 64.26 32.86 1024.26 39.31
12.10 525.82 260.10 525.82 1028.10 525.82 16388.08 628.95

28
16.26 28.79 64.26 28.79 1024.26 28.99
520.01 921.21 2056.01 921.21 32776.01 927.65
8320.08 14739.36 32896.08 14739.36 - 14842.48

210
257.01 114.76 4097.02 114.96
8224.01 3672.21 131104.04 3678.65
130969.60 58755.36 - 58858.48

6.2 Matrix Multiplication

Table 4 shows the performance and the communication cost of the online phase
for our implementation of the tensor triple based secure multi-party matrix mul-
tiplication protocol.

As a comparison with previous works [14,11,31], we also provide the following
table on the performance of secure multiparty square matrix multiplication pro-
tocols. Due to a lack of source codes or problems in code running, we were not
able to individually launch experiments in these previous works under the same
environment, but we believe the statistics in the table already implies the high
efficiency of the tensor triple method. Note that our experiments are executed
with a single thread, and matrix multiplication is known to be highly paral-
lelizable. The computation can be fulfilled easily using parallel computation.
Although not given explicitly in the performance tables, parallel computation is
capable of significantly reducing the overall computational cost. Hence our per-
formance significantly outperforms all previous works listed in the table. This is
reasonable as in these previous works homomorphic encryption is heavily used,
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Table 4. Performance and communication cost of tensor triple-based 32-bit (m, k) ×
(k, n) matrix multiplication time (in milliseconds and megabytes, resp.).

k\(m,n) (23, 23) (25, 25) (28, 28) (210, 210)
LAN WAN Com. LAN WAN Com. LAN WAN Com. LAN WAN Com.

23 1 26 0.001 1 26 0.004 1 27 0.031 11 44 0.125
28 1 26 0.031 1 37 0.125 22 62 1 292 323 4
210 1 37 0.125 2 44 0.5 71 128 4 1062 1289 16

while in our work we have mainly applied VOLE which is somewhat lightweight
comparatively.

Table 5. Comparison of our performance with previous works on 128-bit sqaure matrix
multiplication of size d× d (Single thread by default, LAN environment, in seconds)

Size d [11] (16 threads) [11] SPDZ [14] [31] (16 threads) Ours Ours (Offline)
128 5.9 36.1 128 3.09 0.007 0.51
256 25.5 214.5 900 13.49 0.049 2.82
384 68.3 653.6 2808 33.6 0.158 9.22
512 138 1470 6300 67.39 0.402 18.94
1024 870 10380 44100 395.2 4.324 143.36

6.3 Batched Privacy-Preserving Biometric Identification

In this section we present performance of tensor triple based implementations
of batched queries of FingerCode [24] and Eigenfaces [44] protocols with a com-
parison of the efficiency with the GSHADE [9] protocol, and FaceNet [41] with
a comparison with the [34] protocol. For FingerCode, we use 640-dimensional
vectors of 8-bit elements, and we use 32 bits to record each square Euclidean
distance. For EigenFaces, we use 10304-dimensional vectors of 8-bit elements,
and we use 32 bits to record each square Euclidean distance. For FaceNet, the
database consists of 128-dimensional vectors of elements with floating point pre-
cision, but a truncation will be applied to all of the elements to map them into
8-bit strings, and each final square Euclidean distance consumes 64 bits. It can
be seen from the comparison the tensor triple significantly accelerates the iden-
tification process. The data for the performance of FingerCode and FaceNet
protocols are collected individually according to our experiments. The experi-
ments for all implementations are run in the same environment introduced at
the beginning of this chapter.

Table 6 shows a comparison between the performances of our FingerCode
implementation with COT-based triple generation and the one in [9]. Clearly,
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Table 6. Performance of secure squared Euclidean distance computation in batched
FingerCode protocol (128 queries)

n = 128 n = 1024

Protocol [9] Ours Ours (Offine) [9] Ours Ours (Offline)
Time (s) 154.37 0.016 1.90 176.64 0.082 15.54

Comm. (MB) 1688.71 1.25 2640.02 5379.24 5.63 20560

tensor triple method achieves a much better online performance according to the
comparison.

Table 7. Performance of Eigenfaces protocol without the secure comparison step (80
queries)

N = 320 N = 1000

Protocol Ours Ours (Offline) Ours Ours (Offline)
Time (s) 0.029 41.44 0.032 124.24

Communication (MB) 14.57 65207 14.69 202057

Table 7 shows the performance of our implementation for Eigenfaces protocol
with COT-based triple generation. As a comparison to the performance in [9],
a single query for the N = 320 case would take 0.6 seconds to fulfill, and the
corresponding communication cost is 7.7MB. When N = 1000, a single query
takes 1.6 seconds and costs 9.4MB. Although the performance in [9] takes also
the secure comparison step into consideration, it can still clearly be seen that
the tensor triple method behaves much better for batched queries.

Table 8. Performance (time in seconds) of secure squared Euclidean distance compu-
tation in batched FaceNet protocol for m queries against a database of n references

(m,n) [34] Ours (Online) Ours (Offline, COT) Ours (Offline, SOT)
(24, 24) 2.58 0.00068 0.02 -
(24, 210) 165.95 0.0055 0.378 12.00
(210, 210) 10559.68 0.25 19.456 1219.05

Table 8 shows a comparison between the performances of our FaceNet im-
plementation and the one in [34]. We achieve a significant speedup by around
10000 times.

One may argue that there is a pre-computation cost for the tensor triple
method. We shall elaborate here with two points. First, even if one considers
the generation step, the tensor triple method still performs faster under almost
all circumstances, as shown in the tables. Second, as we have pointed out, the
tensor triple method truly enables the possibility of pre-computation process
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in secure multi-party matrix computation. Compared to other protocols, for
instance GSHADE for the FingerCode protocol, there is no valid way to split
the protocol into online and offline process, as the dimensions of the matrices
is already involved in its fundamental components, such as OT. Therefore, it
should be considered fair for such comparisons in the tables we listed.

7 Conclusion

Tensor triple is a new kind of correlation which is very suitable for multi-
dimensional MPC. It can be used to accelerate many existing privacy-preserving
biometric idenfication protocols and privacy-preserving machine learning proto-
cols which mainly involve vector and matrix operations.
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APPENDIX

A Security

In this chapter we give the detailed proofs for the security of the protocols.

Theorem. The sVOLE-based tensor triple generatio protocol TT.Gen() realizes
the functionality F p,m,n

TTGen in the two-party setting and is semi-honest secure in
the F p,m,n

RsVOLE′-hybrid model.

Proof. Due to symmetry, it suffices to consider a semi-honest adversary P0. The
simulator plays the role of F p,m,n

RsVOLE′ and provides P0 with x ∈r Fmp ,y′ ∈r
Fnp , V ∈r Fmnp , U ′ ∈r Fmnp , and itself as P1 with x′ ∈r Fnp ,y ∈r Fnp . Then it
computes U = V +x⊗y and V ′ = U ′−x′⊗y′. Since in the original interaction
x,y, V, U ′ are uniformly distributed over the corresponding ambient spaces, this
hybrid is indistinguishable from the original interaction. Thus the protocol is
secure against semi-honest P0. The proof goes exactly the same way for a semi-
honest adversary P1.

Theorem. The secure outer product protocol Out() realizes the functionality
FOut and is semi-honest secure in the F p,m,n

TTGen-hybrid model.

Proof. This is obvious as the vector shares are perfectly rerandomized by the
tensor triples and thus uniformly distributed over the corresponding ambient
spaces. We emphasize the matrix share [W ] is never published in any of the
protocols throughout the paper as it shall not be, hence not affecting the protocol
security.

Theorem. The secure matrix product protocol MatProd() realizes the function-
ality FMatProd and is semi-honest secure in the FOut-hybrid model.

Proof. As pointed out in the earlier sections, FMatProd can be seen as a repetitive
application of FOut. Therefore MatProd() as an application of multiple Out()
individually realizes FMatProd.

B Additively Homomorphic Encryption (AHE)

In this section we give a detailed defintion of an AHE scheme.

Definition 10. An AHE scheme is a tuple of algorithms AHE=(Gen, Enc, Dec,
Add, ScMult, ScTensor) described as follows:

– Gen(1λ) → (pk,sk): Key Generation is a randomized algorithm that outputs
a pair of keys (pk,sk), with public key pk and secret key sk.

– Enc(pk,m)→ ct: Encryption is a randomized algorithm that takes a message
m ∈ PTn,λ and the public key pk as input, and outputs a ciphertext ct ∈
CTn,λ, where PTn,λ denotes the plaintext space of AHE for security parameter
λ and rank n, and CTn,λ the corresponding ciphertext space.
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– Dec(sk,ct)→ m: Decryption is a deterministic algorithm that takes the secret
key sk and a ciphertext ct and outputs the plaintext m.

– Add(pk, ct1, ct2)→ ct+: Addition takes two ciphertexts ct1, ct2 and the public
key pk as input, and outputs a ciphertext ct+ ∈ CTn,λ. This binary operation
with respect to ct1, ct2 will be denoted by +.

– ScMult(pk,ct, s)→ ct•: Scalar Multiplication takes a ciphertext ct ∈ CTn,λ, a
plaintext s ∈ PTn,λ and the public key pk as input, and outputs a ciphertext
ct• ∈ CTn,λ. This binary operation with respect to ct and s will be denoted
by •.

– ScTensor(pk,ct, s) → ct⊗: Scalar Tensor takes a ciphertext ct ∈ CTn,λ, a
constant vector s of dimension l and the public key pk as input, and outputs
an array of ciphertexts ct⊗ ∈ CTln,λ. This binary operation with respect to
ct and s will be denoted by s⊗ ct.

The algorithms should satisfy the following properties:

1. Correctness:
– For a generic pair of keys (pk,sk) ← Gen(1λ) and any message m, with

an overwhelming probability we have

Dec(sk,Enc(pk,m)) = m

– For a generic pair of keys (pk,sk) ← Gen(1λ) and any two ciphertexts
ct1, ct2, with an overwhelming probability we have

Dec(sk,Add(pk, ct1, ct2)) = Dec(sk, ct1) + Dec(sk, ct2)

– For a generic pair of keys (pk,sk) ← Gen(1λ), a ciphertext ct and a
plaintext scalar s, with an overwhelming probability we have

Dec(sk, ScMult(pk, ct, s)) = sDec(sk, ct)

– For a generic pair of keys (pk,sk)← Gen(1λ), a ciphertext ct and a scalar
vector s, with an overwhelming probability we have

Dec(sk, ScTensor(pk, ct, s)) = s⊗ Dec(sk, ct),

where the decryption procedure is applied to each row of the ciphertext
array.

2. Security: The scheme is required to be IND-CPA secure.

C Third-Party Tensor Triple Generation

A third-party with computational power may be eligible to provide triples for
multiple parties in a much more efficient way. This idea has been explored by
many people, such as [43,32]. The protocol described in all these papers can be
used almost directly to generate tensor triples for multiple parties (not necessar-
ily only two). The flexibility of tensor triple allows the server to provide triples
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of fixed dimensions while fulfilling the needs for all lower dimensional computa-
tions. More specifically, the dimensions of the triples may be predetermined, as
a generic (n, n)-triple could be tailored to serve as a pair of triples of dimensions
(s, t) and (n − s, n − t) for any s, t < n. this means the parties may not need
to know the precise dimensions in advance for the preprocessing procedure. A
great advantage is that a specialized server may serve as the triple generator for
multiple sets of multiple parties in order to speed up all preprocessing procedure.
The detail of the third-party generation will be provided in a follow-up paper.
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