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Abstract. Multi-signatures allow to combine individual signatures from
different signers on the same message into a short aggregated signature.
Newer schemes further allow to aggregate the individual public keys, such
that the combined signature gets verified against a short aggregated key.
This makes them a versatile alternative to threshold or distributed sig-
natures: the aggregated key can serve as group key, and signatures under
that key can only be computed with the help of all signers. What makes
multi-signatures even more attractive is their simple key management, as
users can re-use the same secret key in several and ad-hoc formed groups.
In that context, it will be desirable to not sacrifice privacy as soon as
keys get re-used and ensure that users are not linkable across groups. In
fact, when multi-signatures with key aggregation were proposed, it was
claimed that aggregated keys hide the signers’ identities or even the fact
that it is a combined key at all. In our work, we show that none of the
existing multi-signature schemes provide these privacy guarantees when
keys get re-used in multiple groups. This is due to the fact that all known
schemes deploy deterministic key aggregation. To overcome this limita-
tion, we propose a new variant of multi-signatures with probabilistic yet
verifiable key aggregation. We formally define the desirable privacy and
unforgeability properties in the presence of key re-use. This also requires
to adapt the unforgeability model to the group setting, and ensure that
key-reuse does not weaken the expected guarantees. We present a simple
BLS-based scheme that securely realizes our strong privacy and security
guarantees. We also formalize and investigate the privacy that is possible
by deterministic schemes, and prove that existing schemes provide the
advertised privacy features as long as one public key remains secret.

1 Introduction

When cryptographic signatures and keys are used to protect high-value assets,
it is often desirable to protect the access not only with a single, but with multi-
ple keys. One of the most prominent applications of multi-key signing is public
ledgers such as Bitcoin. Initially, a naive version of “multi-signatures” was pro-
posed, where a single public key that protects an account gets replaced with a
set of public keys, and transactions from that account require a set of respective
signatures [1]. The key drawback of this approach is that signature and public
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Fig. 1: Group signing approaches for the public ledger use case. Each figure presents a
scenario which shows a public ledger with three users, Alice, Bob, and Charlie (from left
to right) who hold accounts for user sets {Alice}, {Alice,Bob}, and {Bob,Charlie}.
“DKG” and “KAg” stand for a distributed key generation protocol and the key agg-
regation process of multi-signatures with key aggregation, respectively.

key size, as well as signature verification costs, are linear in the group size. To
improve the efficiency of the naive approach, the use of threshold signatures,
such as Boldyreva’s BLS-based scheme [11] or Schnorr-based FROST [24], was
suggested in the Bitcoin standard [39].

Challenges in Key Management. While threshold signatures are more efficient
than the naive approach, they come with challenges in key management – in
particular in settings where a user is not part of a single signing group only, but
wants to sign in multiple groups. Such a scenario is depicted in Figure 1, where
Figure 1a employs the naive approach and Figure 1b shows the implementation
using threshold signatures.

In the naive solution, a group public key is simply the set of individual public
keys. Thus, users could use the same secret key for multiple purposes and e.g.,
rely on a trusted hardware token to protect their individual long-term key. With
threshold signatures, users need to manage individual key material for each group
they are part of. For threshold signatures, this even requires a trusted dealer or
an interactive key generation protocol.

In particular when dealing with end-users and not machines, convenient yet
secure key management is crucial, and users should ideally be able to use a single
long-term key for multiple accounts. In fact, this has very recently triggered
a series of works, multi-verse threshold signatures (MTS), which allow signers
to use a single long-term key to derive multiple “group” keys (or combined
signatures) for arbitrary threshold structures [6, 23, 18]. However, all schemes
require some level of interaction in the key aggregation algorithm and have a
different focus from our work. We give a more detailed comparison in Section 1.3
and also include MTS in Table 2 for completeness.
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Our work focuses on another – and conceptually much simpler – group signing
solution: multi-signatures. They provide the long-term key support of the naive
approach while enjoying the same compactness benefits as threshold signatures
(but give up on the threshold setting).

Multi-Signatures with Key Aggregation. Multi-signatures enable the efficient agg-
regation of individual signatures of n signers, each having an individual long-
term key pair, on the same message m. The aggregated signature σ can be
efficiently verified to be valid for all n signers. Secure multi-signatures have been
constructed mostly from BLS, e.g., [36] and Schnorr signatures [10].

Originally, multi-signatures only considered the aggregation of signatures,
but in 2019, Maxwell et al. [30] proposed a protocol that additionally combines
the individual public keys into a short aggregated key apk. Verification of a
multi-signature σ from n signers then requires only the aggregated public key
apk. Computing apk needs to be done only once per group and several signatures
of the same “group” can be verified using apk without needing the individual
keys. After the initial work, several other schemes with key aggregation have been
proposed [12, 19, 20, 25, 28, 9, 26, 32, 35]. These works were inspired by the public
ledger application and have already seen real-world adoption. For instance, there
is a proposal to include the multi-signature scheme MuSig2 of Nick et al. [32]
into the Bitcoin standard. Another ledger technology, Cardano is also about to
support MuSig2 [2]. Figure 1c shows how multi-signatures with key aggregation
can be used in a public ledger to form group keys. Instead of creating dedicated
secret keys for each group, signers can re-use a single key in multiple groups.

1.1 Ad-Hoc Group Signing with Long-Term Keys

The flexibility and convenience of multi-signatures bear the question of whether
they already provide the optimal solution for applications that require compact
group signing with long-term keys. We argue that this is not the case for existing
multi-signatures, as unforgeability is not guaranteed to hold if keys are re-used,
and any reasonable privacy is even impossible.

We start with a discussion of the desirable unforgeability and privacy guaran-
tees in the context of flexible group signing with long-term keys, and explain
what is satisfied by existing multi-signatures. For completeness, we also show
in Table 2 how this compares to threshold signatures (that lack key re-use or
simple verification) and the naive solution (allowing key re-use, but lacking com-
pactness/efficiency).

From a practical perspective, we are interested in group signing solutions
with the following properties:

Single long-term key: All users have an individual long-term key pair ski, pki
that they generate (and use) autonomously. There is no trusted entity or joint
protocol needed for key generation.

Ad-hoc groups: Users can use their single key to dynamically join groups,
and do so repeatedly. A group is represented through an aggregated public
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key apk that is derived from a set of public keys PK = {pki}. Signatures
that verify under that group key can only be derived from the individual
signatures of all members.

Standard verification: Verification of the groups’ signature must be (some-
what) compatible with standard verification (e.g. Schnorr, ECDSA, or BLS).

Efficiency: A group’s signature and public key size, and verification time must
be independent of the group size.

In terms of security, we require the unforgeability of the groups’ signatures.
The challenge hereby is to understand and formalize the impact of re-using the
same individual secret key in different signing groups. For applications such
as public ledgers, it will be important that individual signature contributions
are strictly bound to the group they were intended for. Otherwise, a signature
m := ”Send $10 to Eve” created by Alice to confirm the money transfer from
her joint account with Bob, could be re-used to retrieve money from her in-
dividual account. Thus, for our group context, we require a strong variant of
unforgeability:

Group unforgeability: It is infeasible to create a signature for message m and
a group apk, when not all signers provided a signature for m and apk.

In existing works, this aspect is often not very explicit. While some target and
realize group unforgeability [9, 26, 32, 35, 34, 38], other works consider a weaker
notion where signature contributions are not bound to a particular group [12,
19, 20, 25, 28]. Thus, only some of the existing schemes provide the security that
is necessary for public ledger applications, and developers must carefully read
and understand the analyzed unforgeability guarantees. As a side contribution,
our work conceptualizes the different unforgeability notions and also shows how
weaker schemes can be lifted to achieve group unforgeability.

Note that group unforgeability also implicitly covers non-frameability, i.e., an
honest user cannot be framed to be part of a group (i.e., apk) and participated
in group signing, when she never did so. This is again crucial when dealing with
long-term keys that will be clearly associated to individuals or legal entities,
and gets re-used across groups. For the new type of multi-signatures we intro-
duce here, this aspect requires more care and will therefore be discussed more
explicitly throughout our work (yet formally is implied by group unforgeability).

The Need for Privacy. While the usage of multiple keys increases security, re-
vealing information about this distribution might not be desired. For instance,
revealing how many (and which) keys protect certain assets tells the adversary
how many keys he has to compromise and possibly which are used more often
and might be an easier or more lucrative target.

Most threshold signatures naturally hide who contributed to a particular
signature, and multi-signatures with key aggregation gives rise to similar privacy
features as they represent a signer group with a constant size public key. In the
case of group signing with an n-out-of-n structure, the desire for privacy might
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be surprising at first. In the end, all signers must contribute to the signature,
and one might think there is no need or chance for privacy at all.

However, one must distinguish between in- and outsiders here. Of course,
the members of the group want to be aware who their co-signers are and there
will be no privacy towards these insiders. To outsiders, i.e., non-group members,
who only consume group keys and group signatures, this information is often not
necessary. We believe that hiding information about the key structure should be
the default, unless required otherwise.

In fact, Maxwell et al. [30] already advertised three privacy properties that
multi-signatures with key aggregation allegedly provide: they do not leak any
information about 1) the number of individual signers, 2) the identity of indi-
vidual signers or 3) even whether a key and a corresponding signature are an
aggregated key and signature, or standard ones. Previous works on aggregated
signatures that implicitly used key aggregation also informally claimed similar
features, e.g., that key aggregation hides the structure of the signers [3, 37].

Having a single long-term key that is used in different groups now even
amplifies the need for privacy. Re-using the same key – which will be desirable
from a usability perspective – must not make the user’s signature contributions
traceable and linkable across groups. Thus, we set the privacy requirements as
follows:

Outsider privacy: An aggregated public key apk (and corresponding signa-
tures) leak no information about the underlying signers.

Unlinkability: The usage of the same long-term key in different groups cannot
be linked. In fact, even when repeatedly signing with the same set of signers
PK, users can decide to do so under the same apk or generate fresh apk’s.
Signatures under different apk’s are fully unlinkable, i.e., they hide that they
were generated by the same set of signers. This unlinkability holds for anyone
that is not an insider in both groups.

No Privacy Yet. So far, no formal treatment of the already advertised privacy
features for multi-signatures with key aggregation exist. However, even with-
out having a formal model, it is easy to see that none of the existing schemes
achieves any of the aforementioned privacy properties: all existing schemes have
deterministic key aggregation. This makes any privacy properties of the aggrega-
ted keys (and associated signatures) impossible in a setting where the adversary
knows the signers’ individual public keys. Thus, privacy for such schemes can
only hold in a model where at least some of the public keys (and their signa-
tures) are considered to be secret. Given that a core benefit of multi-signatures
is their flexible use, i.e., using the same long-term key for different group signing
activities, assuming that public keys remain secret is clearly neither desirable
nor realistic.

In summary, existing multi-signatures – despite being an attractive candidate
for group signing – do not provide the privacy (and sometimes even security)
guarantees that are needed in applications such as a public ledger. Therefore,
our work addresses the following question:
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Simple
Vrfy

Compact Key
Re-Use

Group
Unf

Privacy

Naive Approach w. Key Prefix ✓ ✗ ✓ ✓ ✗

Threshold Signatures ✓ ✓ ✗ ✓ ✓

Multi-Signatures with KAg. ✓ ✓ ✓ ✓✗ ✗

Multiverse Threshold Sigs ✗ ✓ ✓ ✗ ✓✗

randBLS-1 (Section 5.1) ✓ ✓ ✓ ✗ ✓

randBLS-2 (Section 5.1) ✓ ✓ ✓ ✓ ✓

Fig. 2: Overview of approaches for group signing on public ledgers (see Sec. 1.3 for a
more detailed discussion of multiverse threshold signatures). ”✓”, ”✓✗”, and ”✗” mean
the requirement is satisfied, only satisfied by some existing works, and not satisfied, re-
spectively. randBLS-1 satisfies our strongest privacy notion, i.e., aggregated signatures
are fully indistinguishable from standard BLS signatures. randBLS-2 uses key-prefixing
to achieve the desired group unforgeability, which comes for the prize of not being
identical to standard signatures. Apart from leaking the fact that signatures are aggre-
gated, it still provides the desired privacy guarantees.

How can we realize compact aggregated signatures that allow for key re-use
across groups, yet guarantee strong privacy and security?

1.2 Our Contributions

Our work answers that question by introducing a new variant of multi-signatures
that is flexible enough to realize ad-hoc group signing with long-term keys and
ensure strong privacy and unforgeability. We formally define the desired security
guarantees in a setting where long-term keys get re-used in multiple groups and
propose two simple BLS-based constructions that satisfy them. In more detail,
our work makes the following contributions:

Multi-signatures with Verifiable Key Aggregation. We introduce a new variant of
multi-signatures that comes with verifiable key aggregation (MSvKA). The core
idea is to remove the requirement that key aggregation KAg is deterministic, yet
keep a way to verify whether an aggregated public key apk belongs to a certain
set PK of public keys. We realize that by defining key aggregation to also output
a proof π along with the aggregated key. An additional algorithm VfKAg verifies
whether apk and PK belong together – but requires π as input. This allows us
to later have different security and privacy guarantees for insiders (knowing π
and wanting to verify their co-signers) and outsiders (not knowing π).

Unforgeability Framework & Transformations. As our core motivation is the
use of multi-signatures for ad-hoc group signing, we define unforgeability for
this targeted group context and in the presence of key re-use. Our framework
provides a set of definitions, depending on how explicit the user’s group intent
is supposed to be. The strongest notion in our framework (UNF-3) captures the
desired group unforgeability for insiders. It guarantees that if a signer wanted to
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contribute to a multi-signature for a particular group (expressed via apk), then
her signature share cannot be reused in any other context. Our weaker versions
(UNF-1/2) allow for more flexibility in the aggregation of individual signature
contributions, and will be the right choice when the group context is not known
when the individual signatures are computed.

We also show simple transformations to lift schemes with weak unforgeability
guarantees to their stronger versions and to translate existing unforgeability
results for deterministic schemes into our setting. Further, all our unforgeability
definitions also implicitly cover non-frameability, i.e., it is guaranteed that an
adversary cannot frame an honest user (by producing a malicious proof π) for a
group signature she never contributed to.

Privacy Framework. Our core contribution is a definitional framework that
defines the privacy guarantees users can expect, despite repeatedly using the
same secret key in different groups. We follow the initially advertised properties
and formalize three privacy goals: Set Privacy (SetPriv), Membership Privacy
(MemPriv), and Full Privacy (FullPriv). All properties guarantee that signers
can repeatedly use their long-term secret key in multiple groups without becom-
ing traceable (except to someone who is an insider in all groups). The difference
between the definitions is in what the aggregated keys and signatures are sup-
posed to hide beyond that. Our strongest goal FullPriv requires the aggregated
values to be fully indistinguishable from standard ones, whereas our weakest
guarantee (MemPriv) only focuses on hiding whether a particular user is a mem-
ber of a group or not, but signatures and keys can leak the group size or the fact
that they are aggregates. The stronger properties are harder to achieve and we
believe all definitions to have their individual benefits and applications.

All goals are stated in a strong adversarial model, where the adversary can
freely interact with all individual signers, knows all their public keys and can
request multi-signatures and even be an insider in their groups. This is what we
call the Known-Public-Key (KPK) model. We also show that no multi-signature
with deterministic key aggregation can achieve any of the privacy properties in
this strong KPK model.

New BLS Multi-Signature with Strong Privacy. As our impossibility result rules
out privacy for all existing schemes, we propose a new and simple variant of the
BLS multi-signatures from Boneh et al. [12] that turns key aggregation into a
probabilistic algorithm. We prove this scheme – called randBLS-1 – to satisfy
the strongest FullPriv-KPK privacy and UNF-1 security (in the plain public key
model). Using our generic unforgeability transform via key-prefixing, we show
how this scheme can be turned into a variant randBLS-2 that achieves UNF-3
security while satisfying MemPriv-KPK and SetPriv-KPK (but no FullPriv privacy
anymore, as it leaks the fact that it is an aggregated key/signature).

Weaker Model & Analysis of Existing Schemes. While privacy in the KPK model
is the goal we aim for and achieve with our new constructions, it is not achievable
by any existing construction due to their deterministic key aggregation: If the
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adversary knows all public keys, it is trivial to check whether an aggregated
public key corresponds to a given set of individual public keys or not. To analyze
the privacy properties of existing schemes, we also define the weaker “All-but-
one” AbOPK versions of our three privacy properties, where at least one public
key must remain secret. This secrecy requirement also comprises all (multi-)
signatures ever generated under that key, and thus any privacy in that model
should be interpreted with great care.

We then show that the most common multi-signatures based on BLS and
Schnorr signatures achieve the strongest possible privacy guarantees for a deter-
ministic scheme, which is FullPriv-AbOPK. We also translate their known unfor-
geability results into our framework and discuss how key-prefixing might boost
their unforgeability, which results in a slight privacy loss for BLS-based schemes.

1.3 Related Work

We now discuss the related work, with the most related result being for threshold
signatures. While multi-signatures might appear to be the special case of n-out-
of-n threshold signatures, they are actually considerably different. In a standard
threshold signature scheme, there exists a dedicated key generation phase for all
n signers that then can generate signatures for that particular (sub)group. In a
multi-signature, there does not exist a phase that fixes n signers, and using the
exact same setup, signers can create multi-signatures for arbitrary signer sets.

Unforgeability hierarchy for threshold signatures. A recent work on threshold
schemes by Bellare et al. [8] investigates the different levels of unforgeability
they can achieve. They propose stronger notions that guarantee that a signer,
knowing the co-signers when creating a signature, produces signature shares that
cannot be used to create a signature for any other signer set. This is similar to
the stronger unforgeability notion that already existed for multi-signature and
which we capture as MSdKA-UNF-2 and MSvKA-UNF-2/3. Their work focuses
solely on unforgeability, but does not consider privacy – which is the focus of
our work.

Accountable subgroup multi-signatures (ASM). First defined by Micali et al. [31],
ASM signatures are a special type of multi-signature that strictly binds a sig-
nature to a certain subset of signers. This notion is similar to MSvKA-UNF-2 in
Section 3, group unforgeability, or the strongest definition of Bellare et al. [8].
Still, ASM schemes focus only on accountability, whereas our focus is on achiev-
able privacy guarantees (in combination with unforgeability). Furthermore, ASM
takes the signer subset as an input to the verification algorithm. Although this
choice allows flexible threshold structures, it leaves no hope for any privacy
property.

Recently, Baldimtsi et al. proposed subset multi-signatures [7] which adds
a subset key aggregation algorithm to the subgroup multi-signatures. Thus, the
signature verification only takes an aggregated public key instead of a subset of
signers. Aggregated keys can provide threshold-like access structures in a fixed
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group to require that a message has been signed by a particular subset of the
group. Although subset multi-signatures improve ASM’s by providing compact
public keys and a simple verification algorithm, they sacrifice group unforgea-
bility. Finally, neither of the two schemes achieves the ad-hoc groups that multi-
signatures provide: they can only serve subgroups/subsets of a constant signing
group which is defined prior to any signing process.

Threshold signatures with private accountability. While traditional threshold sig-
natures offer private signatures where the signatures created by different sub-
groups are indistinguishable, ASM offer accountability. Boneh and Komlo [13],
TAPS, aims to find a more flexible option for both privacy and accountability
features of threshold signatures. Similar to threshold signatures, TAPS considers
a single signer group and applies a dedicated key generation for this group. Their
main goal is to have privacy for outsiders of the signer group (and to some extent
for insiders too), and accountability (with the help of an insider). To do so, they
introduce dedicated parties of a Combiner and Tracer each holding designated
secret keys.

Li et al. (DeTAPS, [29]) aimed to distribute the trust to the combiner and the
tracer entities by applying threshold structures. It results in requirements such as
running a private blockchain and dedicated hardware extensions for combiners.

Our privacy concerns differ from those of TAPS: the focus in TAPS is on
hiding which subset of a fixed group with an t-out-of-n structure created a certain
signature. Given that multi-signatures exclusively operate in n-out-of-n setting,
the TAPS privacy notion loses its meaning in the context of multi-signatures. The
privacy notion studied in our work assumes a setting where long-term keys exist
and can be used in multiple groups, which is an aspect which multi-signatures
naturally provide in contrast to traditional threshold signatures or TAPS. Our
privacy notion aims at hiding the structure of these multiple signing groups and
re-using keys without being linkabl.

In terms of constructions, neither [13] nor [29] has a simple verification algo-
rithm suitable for replacing a system solely relying on Schnorr or BLS signatures.

Threshold signatures with long-term secret keys. There are several recent works
that extend threshold signatures to the setting where users have long-term keys,
just as in our work, and also rely on BLS-based (threshold) signatures. Baird
et al. [6] defined multiverse threshold signature (MTS) enabling threshold sign-
ing with a single long-term secret key and allowing users to create aggregated
keys for arbitrary threshold structure t-out-of-n and an arbitrary group of sign-
ers. Lee [27] proposed another MTS construction that improves key aggregation
and signature combining performance as the main contribution. MTS aims at
threshold schemes and is more flexible in that respect than our multi-signatures.
They do not formalize or aim at privacy properties though, which is the focus
of our work. Further, they only aim at a rather weak form of unforgeability that
is similar to our UNF-1 notion, as it allows signature shares to be re-used in
different contexts.
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Concurrently, Garg et al. [23] and Das et al. [18] designed threshold signa-
ture schemes that work more classically for a fixed group of n parties, but sup-
port dynamic t values within that group by making the combine and verification
algorithms depend on the threshold t. Thus, there is only a single group in which
users have individual long-term keys (generated in a joined manner though), but
the threshold in the combination and verification can vary. Although [23] infor-
mally discusses possible privacy extensions, this is not formalized and the given
constructions do not prioritize privacy protection. Further, their unforgeability
is again similar to our weakest notion only. While this is a desired feature for
their setting, we aim at more restrictive signing, as our focus is on re-using the
same key in different groups.

Finally, we point out that none of these four works meet our simplicity re-
quirement as they use a different verification algorithm than BLS signatures,
making them unsuitable as a direct replacement in existing systems.

Signatures with Re-Randomizable Keys. Fleischhacker et al. [22] proposed the
concept of signatures with re-randomizable keys, where both the public and se-
cret key allow for consistent re-randomization. These signatures naturally lend
themselves for privacy-preserving applications and have sparked a line of re-
search [21, 4, 17, 15]. Building multi-signatures on top of signature schemes with
re-randomizable keys could be an alternative way to achieve the functionality
and privacy we aimed for, and might be an interesting direction for future work.

As demonstrated by our construction, it is not necessary though that the un-
derlying key pairs allow for such re-randomization. From a practical perspective,
our approach has two main advantages: 1) it requires a single re-randomization of
the aggregated key instead of re-randomizing all public and secret keys for each
group; 2) the long-term secret keys can be exposed through a plain sign-API,
without the need of re-randomizing the secret key before each use.

2 Preliminaries

In this chapter, we state the notations and core building blocks we use through-
out the paper. We also give a definition of multi-signatures with deterministic
key aggregation and their known unforgeability models here.

Cyclic Groups and Pairing Groups. Throughout the paper we notate a prime
order cyclic group generator GGen that outputs G = (G, g, p) and bilinear pair-

ing generator BGGen that outputs BG = (e,G, Ĝ, g, ĝ, p) for the input security
parameter. Full definitions of these algorithms are in Appendix A.

For simplicity, we directly define the co-CDH assumption [12] on pairing
groups that we will use.

Definition 1 (Co-CDH Assumption). For all PPT adversaries A it holds

that Pr
[
BG ← BGGen(1λ); a, b← Zp; Â← A(BG, ga, gb, ĝb) :Â = ĝab

]
≤ negl(λ)

10



Traditional Signature algorithms. Throughout the paper, we refer to traditional
BLS and Schnorr signing algorithms using the following syntax. The public pa-
rameters of the BLS scheme contain the description of a prime order bilinear
group BG and the public parameters of a Schnorr scheme contains the descrip-
tion of a prime order group G.
BLSSign(sk,m) : Outputs H0(m)sk.
SchnorrSign(sk,m) : For r ← Zp, R ← gr, and c ← H0(R, gsk,m), outputs

σ ← (z,R) where z = r + c · sk.

Generalized Forking Lemma. The unforgeability proof of our new multi-signature
requires the generalized forking lemma [5], for completeness we give the gener-
alized forking lemma in Appendix A.

2.1 Multi-Signatures with Deterministic Key Aggregation

In this section, we define the existing variant for multi-signature with determi-
nistic key aggregation (MSdKA) and two different versions of the unforgeability
property that have been proposed in the literature.

There is actually no common and unified definition in the literature yet, e.g.,
works such as [16, 12] do not make key aggregation or signature combination
explicit at all. As both play a key role, we model them explicitly: key aggregation
through function KAg and signature combination via the algorithm Combine.
Also, we use the name MulSign instead of Sign, since we later want to express
compatibility between a standard signing and the multi-sign operation.

Definition 2 (MSdKA with deterministic key aggregation). A multi-sig-
nature MSdKA is a tuple of algorithms (Pg,Kg,KAg,MulSign,Combine,Vf) such
that:

Pg(1λ)→ pp: Outputs public parameters pp for security parameter 1λ. We only
make pp explicit in key generation and assume it to be an implicit input to
all other algorithms.

Kg(pp)→ (sk, pk): Probabilistic key generation, outputs key pair (sk, pk).
KAg(PK)→ apk: Deterministic key aggregation, that on input a set of public

keys PK = {pki}, outputs an aggregated public key apk.
MulSign(ski, PK,m)→ si: (Possibly interactive) algorithm, that on input the

secret key ski, message m and a set of public keys PK = {pki} outputs a
signature share si.

Combine(PK, {si}pki∈PK)→ σ: On input a set of public keys PK = {pki} and
set of shares {si}pki∈PK outputs a combined signature σ for PK.

Vf(apk, σ,m)→ b: Verifies if σ is a valid signature on m for apk.

A MSdKA must be correct, meaning that every combined multi-signature
verifies correctly under the apk that belongs to the set of public keys the signa-
ture was created for. The correctness definition is in Definition 11 in Appendix
B.1, and it also relies on the deterministic behaviour of the key aggregation.
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ExpMSdKA-UNF-x
MSdKA,A

pp← Pg(1λ), (pk∗, sk∗)← Kg(pp), Q← ∅

(σ,m, PK)← AOMulSign

(pp, pk∗)

return 1 if Vf(KAg(PK), σ,m) = 1 ∧
pk∗ ∈ PK ∧ fresh(m,PK,Q) = 1

OMulSign(PKi,mi)

if pk∗ ̸∈ PKi then return ⊥
Q← Q ∪ {(mi, PKi)}
s← MulSign(sk∗, PKi,mi)

return s

UNF-x UNF-1 UNF-2

fresh(m,PK,Q) = 1 if (m, ·) ̸∈ Q (m,PK) ̸∈ Q

Fig. 3: Unforgeability for MSdKA schemes with deterministic key aggregation.

Unforgeability Notions. For multi-signatures with deterministic key aggre-
gation, there are two different variants for unforgeability. Both variants consider
a single honest user with key pk∗ that signs together with other users that are
fully controlled by the adversary. The task of the adversary is to come up with
a valid and non-trivial forgery (m,σ, PK), i.e., σ must verify correctly under
apk = KAg(PK) with pk∗ ∈ PK that includes the honest signer. The difference
in both variants is how they define a trivial forgery.

The first definition, denoted asMSdKA-UNF-1 and first proposed by [36], only
considers the message as authenticated information. That is re-using a signature
obtained via OMulSign for some (m,PK) and turning it into a valid signature for
(m,PK ′) with PK ̸= PK ′ is not considered a valid forgery. A stronger version is
MSdKA-UNF-2 (first used in [31]) which requires the tuple (m,PK) to be fresh.
This ensures that each signature contribution of the honest signer is bound to
the dedicated set PK it was intended for. Both games rely on the determinism
of KAg and are shown in Figure 3 and formally defined as follows:

Definition 3 (MSdKA Unforgeability-x). A multi-signature scheme Π is x-

unforgeable if for all PPT adversaries A Pr
[
ExpMSdKA-UNF-x

Π,A (λ) = 1
]
≤ negl(λ)

for the experiment from Figure 3.

For MSdKA, MSdKA-UNF-2 corresponds to the group unforgeability notion
we discussed in Section 1.1. It is easy to see that MSdKA-UNF-2 implies MSdKA-
UNF-1. Furthermore, MSdKA-UNF-2 is strictly stronger than MSdKA-UNF-1,
which immediately follows from the fact that there are schemes that satisfy the
weaker but not the stronger notion, such as BLS multi-signatures [12]. One can
use a signature share of some pk for message m to create a BLS multi-signature
for any set PK where pk ∈ PK. In Appendix C, we discuss the relation between
these notions, and provide a generic transformation which lifts a MSdKA-UNF-1
scheme with certain properties to a MSdKA-UNF-2 scheme, using key-prefixing.

Unforgeability (so far) requires deterministic KAg. Requiring deterministic key-
aggregation seems to be mainly an artifact of the absence of a formal treatment
of unforgeability of signatures with aggregated public keys. Even though the
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verification algorithm takes an aggregated public key apk as input, the unforgea-
bility of these schemes has still been analyzed in the traditional multi-signature
model (with no key aggregation!), where the adversary is asked to output n in-
dividual public keys, out of which at least one must be honest. Verification of
the adversary’s forgery is then done for the aggregated public key that is re-
computed from these keys, which requires that key aggregation is deterministic.

This reveals an interesting conflict of unforgeability and privacy: For unfor-
geability it will be desirable – and in fact necessary – to check whether an
aggregated key apk belongs to a certain set PK. This motivates the new type of
multi-signature that makes this verification explicit, and allows for probabilistic
schemes that will be necessary for any reasonable level of privacy.

3 Multi-Signatures with Verifiable Key Aggregation

As motivated in our introduction (and formally shown in the next section), the
current definition of multi-signatures with explicit deterministic key aggregation
makes it impossible to achieve any form of privacy when the adversary knows
all the individual public keys. We therefore introduce a more generic variant of
multi-signatures where key aggregation can be probabilistic and that allows for
explicit verification of whether an apk is valid for a particular PK.

We start by defining the new syntax and also show how every multi-signature
scheme with deterministic key aggregation can be recast in this syntax. We then
define different types of unforgeability, which now comes with one more flavour
as there is no unique binding between apk and PK anymore. Our unforgeability
model also ensures that the more flexible verification cannot be misused to frame
honest users, i.e., to incorrectly claim that an honest user is part of a group
and corresponding signatures she never contributed to. The introduction of our
privacy framework for such multi-signatures is given in the following section.

3.1 Syntax and Correctness

The first change to remove the requirement of deterministic key aggregation is
to make KAg (possibly) probabilistic. This would not be sufficient, though, as
we want to keep accountability for insiders, i.e., we need to check whether an
aggregated key apk belongs to a certain set of public keys PK.

To allow this, we change the definition of key aggregation KAg to not only
output the aggregated key apk but also a proof π. We further add an algorithm
VfKAg that allows to verify whether apk belongs to PK using π. Thus, any
insider knowing all keys and π can still verify the correctness of the key (towards
them there is no key privacy), whereas outsiders only knowing apk and PK can
(depending on the scheme) not tell whether they belong together or not.

Having no unique mapping between apk and PK anymore, as well as having
a proof π, also requires changes to MulSign and Combine. Whereas the MSdKA
version gives only PK as input to MulSign (as it uniquely defines apk), we will
need to give the sign algorithm both PK and apk. We decided not to give π
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as input or enforce MulSign to check whether the key apk is correct. Instead,
we assume signers to verify the correctness of the aggregated key explicitly (via
VfKAg), and only run MulSign on verified keys. At some point in signing, this
value π will be required though (in our concrete construction it will be the
randomness used in key aggregation). This is happening in Combine which we
give π as additional input. As Combine is run only once for a multi-signature,
this choice has benefits for efficiency and practical security considerations, as it
reduces the number of parties that need to keep and use π.

Definition 4 (MSvKA with verifiable key aggregation). A multi-signature
MSvKA is a tuple of algorithms (Pg,Kg,KAg,VfKAg,MulSign,Combine,Vf) s.t.:

Pg(1λ)→ pp: On input security parameter 1λ, it outputs public parameters pp.
Kg(pp)→ (sk, pk): Probabilistic key generation, outputs a key pair (sk, pk).
KAg(PK)→ (apk, π): (Possibly probabilistic) key aggregation, that on input a

set of public keys PK = {pki}, outputs an aggregated public key apk and a
proof of aggregation π.

VfKAg(PK, apk, π)→ b: Checks if π is a valid proof of aggregation for PK and
apk and outputs the boolean result for it.

MulSign(ski, PK, apk,m)→ si: (Possibly interactive) algorithm, that on input
the secret key ski, message m, a set of public keys PK = {pki} and aggre-
gated key apk outputs a signature share si.

Combine(PK, π, {si}pki∈PK)→ σ: On input a set of public keys PK = {pki}
and set of shares {si}pki∈PK outputs a combined signature σ for PK.

Vf(apk, σ,m)→ b: Verifies if σ is a valid signature on m for apk.

For completeness, the correctness of MSvKA is defined as in Appendix B.2
and now covers both VfKAg and Vf. Our new definition is a more general variant
of multi-signatures, and any previous scheme with deterministic key aggregation
can be turned into our more general variant as stated below. We will later show
that this transformation also preserves the unforgeability.

Construction 1 (MSdKA to MSvKA Transformation) Let Π be a MSdKA
multi signature with deterministic key aggregation, then Π ′ defined as follows is
the general MSvKA version with explicit key verification. The algorithms (Pg,Kg,
Vf) of Π ′ are the same as in Π, and the remaining algorithms are:

Π ′.KAg(PK): Set apk ← Π.KAg(PK). Set π =⊥ and output (apk, π).
Π ′.VfKAg(PK, apk, π): If apk = Π.KAg(PK) ̸= ⊥ output 1, else 0.
Π ′.MulSign(ski, PK, apk,m): Output si ← Π.MulSign(ski, PK,m).
Π ′.Combine(PK, π, {si}pki∈PK): Outputs σ ← Π.Combine(PK, {si}pki∈PK).

3.2 Unforgeability Notions

We again define all unforgeability definitions through a single game, where only
the freshness predicate differs depending on the unforgeability level. The main
game structure is similar to the definitions for deterministic schemes (Sec. 2.1):

14



the adversary gets a public key pk∗ for an honest signer and oracle access to sk∗

via the signing oracle OMulSign. This oracle expects a message m, set of public
keys PK – now along with the aggregated public key apk and a proof π which
shows that apk and PK belong together and contain pk∗. After checking the
validity of the provided proof, the oracle computes and returns the honest user’s
signature share. Further, when the adversary outputs his forgery, he must now
provide the aggregated key apk along with a proof π for the claimed group PK.
This is necessary as the winning condition will directly use apk when verifying
the signature, and we need to check that apk belongs to the group PK that
includes the honest signer, as otherwise “forging” would be trivial.

The strongest notion of our framework (MSvKA-UNF-3) guarantees that if a
signer wanted to contribute to a multi-signature for a particular group (expressed
via apk), then her signature share cannot be reused in any other context. This
is what we referred to as group unforgeability.

When aiming at a threshold/quorum setting of signatures, MSvKA-UNF-3
might not be desired though: therein a number of signers will sign the same
message, and as soon as the necessary amount exists, the aggregation into a
group signature should be possible. (So the different thresholds/quorums will be
represented by a set of possible apk’s instead of a single on.) In such a scenario,
the users are not aware of their “co-signers” upon creation of their individual
signatures. To not exclude such applications, we also translate the classic notion
of unforgeability (which was MSdKA-UNF-1 for deterministic schemes) to our
setting, which yields the weakest definition denoted as MSvKA-UNF-1. Therein,
there is no binding of a signature share or multi-signature to a particular apk
but the property ensures that an adversary cannot create a message-signature
pair that frames an honest user that has not signed the message.

For completeness, we also translate the existing unforgeability notion MSdKA
-UNF-2 that binds signatures to the set of signers, i.e., PK (but not necessarily
to apk) to our setting as MSvKA-UNF-2.

Non-Frameability. Our unforgeability notion also guarantees non-frameability,
i.e., an honest user cannot be framed (via VfKAg) for a signature she never
contributed to. This aspect is modelled by the winning condition that comprises
both verify algorithms, Vf (for signatures) and VfKAg (for the aggregated key).
The adversary could always win if he is able to output a “forgery” σ for a key apk
that he knows all secret keys for (then computing σ is trivial), yet he manages
to produce a correct proof π s.t. VfKAg(PK, apk, π) = 1 with pk∗ ∈ PK. That
is, A also wins if he produces a fraudulent proof π that frames the honest user.

Definition 5 (MSvKA Unforgeability-x). A multi-signature scheme Π is x-
unforgeable if for all PPT adversaries A in the experiment from Figure 4 it holds

that: Pr
[
ExpMSvKA-UNF-x

Π,A (λ) = 1
]
≤ negl(λ).

Relations and Transformations. It is easy to see that MSvKA-UNF-2 is
strictly stronger than MSvKA-UNF-1. For MSvKA schemes that have determi-
nistic key aggregation (which is still allowed, but not enforced) MSvKA-UNF-2

15



ExpMSvKA-UNF-x
Π,A

pp← Pg(1λ), (pk∗, sk∗)← Kg(pp), Q← ∅

(σ,m, apk, π, PK)← AOMulSign

(pp, pk∗)

return 1 if Vf(apk, σ,m) = 1

∧ VfKAg(PK, apk, π) = 1 ∧ pk∗ ∈ PK

∧ fresh(m,PK, apk,Q) = 1

OMulSign(PKi, apki, πi,mi)

if pk∗ ̸∈ PKi ∨ VfKAg(PKi, apki, πi) ̸= 1

then return ⊥
Q← Q ∪ {(mi, PKi, apki)}
s← MulSign(sk∗, PKi, apki,mi)

return s

UNF-x UNF-1 UNF-2 UNF-3

fresh(m,PK, apk,Q) = 1 if (m, ·, ·) ̸∈ Q (m,PK, ·) ̸∈ Q (m,PK, apk) ̸∈ Q

Fig. 4: Unforgeability for MSvKA schemes with verifiable key aggregation.

and MSvKA-UNF-3 are equivalent, whereas MSvKA-UNF-3 is strictly stronger
than MSvKA-UNF-2 for schemes with probabilistic KAg.

We further show how known unforgeability results for deterministic schemes
can be translated into our setting, and how MSvKA unforgeability can be lifted
from UNF-1 to UNF-3. An overview of these results is given in Figure 5.

Translating MSdKA into MSvKA Unforgeability. We start by showing that the
transformation given in Construction 1 not only transforms the syntax but also
preserves the unforgeability. The simple proof is in Appendix D.1.

Theorem 1. If Π ′ is the transformation from Construction 1 applied on a
MSdKA scheme Π, then the following holds:

– If Π is MSdKA-UNF-2 secure, then Π ′ is MSvKA-UNF-3 secure,
– If Π is MSdKA-UNF-1 secure, then Π ′ is MSvKA-UNF-1 secure.

Lifting MSvKA-UNF-1 to MSvKA-UNF-3 Security. A natural question is how
weaker versions can be lifted to the strongest one. An immediate idea is to sign
(m,PK, apk) instead of m only. Intuitively, this scheme would be UNF-3 secure
as any forgery for a message m′ ̸= m for the same PK and apk would also
become a forgery for the UNF-1 secure scheme for the message (m′, PK, apk).
However, this scheme is not useful, as it requires the knowledge of the signer set
PK during signature verification. This would immediately destroy the efficiency
and privacy features that comes with the key aggregation.

We resolve this by merely signing (m, apk), and requiring an additional prop-
erty on the underlying key aggregation mechanism. Similar to the binding prop-
erty of commitments, we call this property key binding. Key binding requires
that it is hard to find two distinct signer sets PK and PK ′ for an aggregated
key apk. This property is formally defined in Definition 14 of Appendix D. We
show that this additional assumption is sufficient for the simple key-prefixing
transformation to lift an UNF-1 secure scheme to UNF-3 security:

16



MSdKA-UNF-1 MSdKA-UNF-2

MSvKA-UNF-1 MSvKA-UNF-2 MSvKA-UNF-3

KEY-CF+Thm. 12Thm. 1
Thm. 1

KEY-BND+Thm. 2

Fig. 5: Relation among unforgeability definitions. A
x

99KB means there is a generic
construction of B from A relying on properties and/or theorems x. A→B means A
implies B (any scheme has A, also has B).

Construction 2 (UNF-1 to UNF-3 Transformation) Let Π be a MSvKA-
UNF-1 scheme. Then, we define Π ′ as stated follows: the algorithms (Pg,Kg,
KAg,Combine) of Π ′ are exactly as in Π, and the remaining algorithms are:

Π ′.MulSign(ski, PK, apk,m): Returns si ← Π.MulSign(ski, PK, apk, (apk,m)).
Π ′.Vf(apk, σ,m): Outputs b← Π.Vf(apk, σ, (apk,m)).

Theorem 2. If Π is a multi-signature that is MSvKA-UNF-1 secure and key
binding, then Π ′ from Construction 2 is MSvKA-UNF-3 secure.

The simple proof is delegated to Appendix D.2. In a nutshell, if the MSvKA-
UNF-3 adversary can provide a valid forgery on fresh (m,PK, apk), then we are
able to find either a valid MSvKA-UNF-1 forgery on message (m, apk) or a valid
collision (PK,PK ′, π, π′) against the key binding property of the scheme.

4 Privacy Framework for MSvKA

Being equipped with a definition of multi-signatures that allows probabilistic key
aggregation, we can now turn to the privacy properties that have already been
advertised for such schemes and are necessary for our envisioned application of
privacy-preserving group signing. In this section, we provide a formal privacy
framework, roughly following what was claimed in [30].

Privacy Goals. We propose a hierarchy of definitions that aim at different
strengths of privacy protection, which can be hiding the individual signers or,
in the strongest variant, even hiding the fact that the signature and key are
aggregated ones.

Full Privacy (FullPriv): One cannot tell whether a key and corresponding sig-
nature are a multi-signature with an aggregated key or stem from a standard
signature algorithm.

Set Privacy (SetPriv): An aggregated key and corresponding signatures do not
leak information about the underlying signer set (but can leak whether it is
an aggregated one).
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Membership Privacy (MemPriv): An aggregated key and corresponding sig-
natures do not leak information about individual signers (but can leak the
size of the group).

We show that FullPriv is the strongest notion and implies SetPriv, which in
turn is strictly stronger than MemPriv. An advantage of FullPriv is that it allows
for seamless integration into existing applications, as signatures and public keys
have exactly the same form as standard ones. We decided to also formalize the
weaker notions, as such strong FullPriv privacy might not be achievable (in par-
ticular for UNF-3-secure BLS signatures) or even desirable in some applications,
e.g., when it should be clearly visible that the signature is a combined one. Both,
SetPriv and MemPriv already capture the essential privacy guarantees we aimed
for in the context of privacy-friendly group signing, and it will depend on the
particular application which of the three properties is the “right” one.

Adversary Model. Given the ad-hoc nature of multi-signatures, the adversary
should be able to interact with the individual signers freely, learn all their public
keys, see their (multi)-signatures and even become insiders in some of her groups.
All that must not allow the adversary to identify the user in groups he is not
an insider in. This is what we capture as Known Public-keys (KPK) model for
all three privacy properties. We will make this KPK-model explicit, as we will
later also introduce a weaker “All-but-One” (AbOPK) model where at least one
public key and associated signatures must remain secret. This weaker model is
introduced to argue about the privacy of existing multi-signatures, as none of
them satisfies the strong KPK version due to the deterministic key aggregation.

Unlinkability. Privacy in the KPK models presented in this section also captures
unlinkability of individuals and groups. That is, if a signer re-uses the same
key in several groups, the adversary cannot link her across the groups, unless
he is an insider to all of them. Further, even the exact same group of signers
can create different apk’s and signatures when desired. Only users that know
the corresponding proof(s) π can tell that they originate from the same group,
whereas anyone not being privy of the proofs cannot tell whether two multi-
signatures stem from the same group of signers or not. Such unlinkability is
guaranteed by any of the three properties mentioned above, the difference is
merely whether signatures/keys also hide the group size or the fact that they
are an aggregated one.

4.1 Security Games

The goal of our security games is to capture the privacy guarantees towards an
outsider of a particular (challenge) group, while giving the adversary as much
knowledge and power of the individual signers and their participation in other
signing groups. An outsider of a group defined through the aggregated key apk
knows all individual public keys, and can see combined signatures for arbitrary
messages of his choice under that apk – but he does not learn the aggregation
proof π for apk nor actively participates in the group signing for this key.
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ExpX-KPKΠ,A (λ)

b← {0, 1}, pp← Pg(1λ), Q← ∅, n← A(pp), abort if n ̸> 0

(SK,PK) := ({ski}i∈[n], {pki}i∈[n])← (Kg(pp))i∈[n]

(S0, S1)← A(SK,PK) abort if |Sj \S1−j | ̸=1 for j ∈ {0, 1}

(apkb, πb)← KAg(PKSb)

b∗←AOChl(·)(apkb)

return 1 if b = b∗

OChl(m)

Σ←{MulSign(ski,PKSb ,apkb,m)}ski∈SKSb

return σ ← Combine(PKSb , πb, Σ)

Fig. 6: Game for our Set Privacy (X = SetPriv) and Membership Privacy (X =
MemPriv) definitions in the KPK model. The dashed box shows the additional con-
dition for the Membership Privacy definition.

While the adversary must be an outsider to the challenge group (there is no
privacy to insiders), he should be able to be an insider in other groups that have
a partial or even full overlap with some of the signers of the challenge group.
Such an insider might be able to learn the aggregation proofs, see the signing
protocol transcripts or even be an active signer in groups that have an overlap
with the challenge group.

A typical way to model these insider capabilities of the adversary, is to pro-
vide oracle access to all honest entities and their secret keys. Here, this would
require to define oracles for key aggregation, multi- (and individual) signing for
all possible group and corruption settings.

Another approach is to be as generous as possible, and give the adversary
all (secret) keys not strictly necessary to achieve the desired security property.
The knowledge of these keys then enable the adversary to internally run all
interactions with the honest parties himself. The advantage is that it avoids the
need to define a multitude of oracles and keep track of the made queries, which
keeps the games much simpler. It also directly highlights the keys or values that
are crucial for the targeted property.

In our work we follow the later approach, and give the adversary not only
the public keys but even the secret keys of all honest entities. Thus, the only
oracle we need to provide in our games is for the challenge group.

We start with the presentation of our definitions for set privacy (SetPriv) and
membership privacy (MemPriv). Both require the indistinguishability of two
aggregated public keys and associated signatures, and only differ in the restric-
tion on the challenge groups. Thus, we capture both through the same game and
only need to include an extra restriction when expressing the MemPriv version.

Set Privacy. Our SetPriv definition captures that an aggregate key and sig-
nature do not leak any information about the underlying signer group. This
includes membership of individual signers but also the group size, both are re-
quired to remain hidden. The corresponding game runs in three stages:
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In the first stage, the adversary just outputs a value n, which sets the num-
ber of individual keys in the system. The challenger internally generates all key
pairs and returns all key pairs (SK,PK) to the adversary. The knowledge of all
secret and public keys allows A to generate aggregated keys (and corrrespond-
ing proofs) for arbitrary groups, as well as generate individual and combined
signatures for these aggregated keys.

In the second stage, the adversary is asked to output two challenge sets
S0 and S1, which are the indices of the honest signers generated earlier. The
challenger chooses a random bit b and uses Sb to generate the challenge public
key apkb and proof πb. The adversary receives apkb (but not πb) and gets access
to a challenge oracle OChl which returns multi-signatures for apkb (and πb) for
arbitrary messages chosen by A.

As the adversary knows the secret keys of all signers, it can create aggregated
keys, signatures, and signing protocol transcripts for both S0 and S1 himself.
This models that the challenge public key and signatures must be unlinkable to
the keys and signatures that originate from the same set of signers.

Finally, the task of the adversary is to output a bit b∗ and he wins if b∗ = b,
i.e., if he can guess to which group of signers the challenge public key and
signatures belong. A scheme is said to satisfy our SetPriv definition if A’s winning
probability is negligibly better than guessing.

Membership Privacy. This property is defined identically to SetPriv, but we
no longer require the aggregated key and signature to hide the underlying group
size. Thus, what membership privacy focuses on is hiding the identity of an
individual signer within a group. To capture this (and not more), the definition
must not allow an adversary to use any other difference between the two signer
groups to infer information about a single user. We model this by asking the
adversary to output two groups S0 and S1 that are identical, except for one
user. That is, both groups must have the same size |S0| = |S1| = k and k − 1
members of the two sets must be the same. We add this check through the
additional line in the dashed box when the adversary outputs its challenge sets.
Apart from that extra check, the game and the winning condition are the same
as in SetPriv.

Definition 6 ({SetPriv,MemPriv}-KPK). A MSvKA scheme Π has property
X ∈ {SetPriv,MemPriv} in the KPK model, if for all PPT adversaries A in

ExpXΠ,A from Fig. 6 :
∣∣∣Pr[ExpXΠ,A(λ) = 1

]
− 1/2

∣∣∣ ≤ negl(λ).

Full Privacy. We now turn to our strongest privacy property. Intuitively, this
property guarantees that if the multi-signature uses the same verification algo-
rithm as their “regular signature” analogue, they do not even leak information
about whether the signature and key are aggregated ones or not.

This is a bit tricky to define though, as the definition of multi-signature
schemes does not contain an algorithm for creating “standard” signatures. Hence,
we first need to consider an additional algorithm that captures such a signing
procedure with individual keys, which we call Sign. For the majority of existing
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ExpFullPriv-KPKΠ,A (λ)

b← {0, 1}, pp← Pg(1λ), Q← ∅, n← A(pp), abort if n ̸> 0

(SK,PK) := ({ski}i∈[n], {pki}i∈[n])← (Kg(pp))i∈[n]

S∗ ← A(SK,PK)

if b = 0 then

(apk∗, π∗)← KAg(PKS∗), pk∗← apk∗

if b = 1 : (sk, pk)← Kg(pp), pk∗ ← pk

b∗ ← AOChl(·)(pk∗)

return 1 if b = b∗

OChl(m)

if b = 1 then

return σ ← Sign(sk,m)

Σ←{MulSign(ski,PKS∗,apk∗,m)}ski∈SKS∗

return σ ← Combine(PKS∗ , π∗, Σ)

Fig. 7: Our FullPriv game in the KPK model capturing that aggregate signatures and
keys are indistinguishable from standard ones.

schemes, this sign algorithm will be the standard BLS or Schnorr algorithm. The
keys for the standard sign algorithm are the ones generated via MSvKA.Kg and
it also uses the same verification algorithm MSvKA.Vf.

The detailed model is given in Def. 7 and starts by letting the adversary
determine the number of signers for which the challenger then generates the
individual keys. As in our previous models, A immediately gets the key pairs of
the signers and these can be used to run KAg, MulSign, or Sign before deciding
upon his challenge group. The main difference is in the challenge. Here the
adversary is only asked to output a single challenge group S∗ and either receives
the aggregated public key pk∗ = apk∗ of that group (if b = 0) or a freshly chosen
individual public key pk∗ = pk (if b = 1). Consequently, the challenge oracle now
either returns an aggregated signature for apk∗ or a standard signature under
sk, depending on the challenge bit.

Definition 7 (FullPriv-KPK). A MSvKA scheme Π is fully private for algorithm
Sign in the KPK model if for all PPT adversaries A in ExpFullPriv-KPKΠ,A defined in

Fig. 7 it holds that
∣∣∣Pr[ExpFullPriv-KPKΠ,A (λ) = 1

]
− 1/2

∣∣∣ ≤ negl(λ).

4.2 Impossibility Results and Relations

Before we investigate the relations among our different definitions, we want to
stress the following obvious – yet impactful – impossibility result:

Theorem 3. No MSvKA schemes with deterministic key aggregation can satisfy
the privacy properties (FullPriv,SetPriv,MemPriv) in the KPK model.

Proof. As we will show that FullPriv and SetPriv are strictly stronger than
MemPriv later in this section, we just prove that an MSvKA with determinis-
tic key aggregation cannot satisfy MemPriv-KPK. We build a MemPriv-KPK
adversary A as follows. A chooses n = 3, learns {(ski, pki)i=1,2,3}, and submits
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the challenge sets S0 = {1, 2} and S1 = {1, 3} . When A gets the challenge aggre-
gated key apkb, it checks whether apk

′ = apkb for (apk′, ) := KAg({pk1, pk2}).
If the equality holds, the adversary outputs 0, and 1 otherwise. Due to the
deterministic KAg, there is a unique aggregated key per signing group, and the
adversary wins with probability 1. ⊓⊔

Note that the impossibility result from above immediately rules out the stron-
gest privacy notions for all existing multi-signatures that follow the classic (deter-
ministic) definition from Section 2.1, which we have shown to be translatable
into the MSvKA framework in Construction 1.

Our adversarial model, granting the adversary access to all secret keys, is
stronger than the real-world scenario we have envisioned. Thus, one may question
whether the impossibility result for deterministic schemes is a consequence of
this (too) strong model, and they could actually satisfy a relaxed yet equally
meaningful security notion. It is easy to see that this is not the case, as the attack
solely uses knowledge of the public keys and the fact that apk is deterministically
derived from them. Thus, even a significantly weaker model, where we don’t give
the adversary any secret keys or even oracle access to them, could still not be
satisfied by any deterministic scheme.

Relations among Games. We now show that FullPriv is strictly stronger than
SetPriv, which in turn is strictly stronger than MemPriv. We omit the dedicated
mentioning of the KPK model here, as our results also hold for the AbOPK model
that we introduce later in this work.

Theorem 4 (FullPriv⇒ SetPriv). For any MSvKA scheme it holds that FullPriv
implies – and is strictly stronger than – SetPriv.

We need to prove two statements here: the first is that every FullPriv-secure
scheme is also SetPriv-secure; the second is that there are schemes that achieve
the SetPriv notion, but not FullPriv. The full proof is given in Appendix E.1.

The first is intuitively rather straightforward. If the aggregated key and sig-
natures are fully indistinguishable from standard signatures and keys, then the
aggregated values can not leak any information about the contained individual
signers or group size. The proof is given in Appendix E.1 and is slightly more
elaborate, as both games have different structures and challenges.

To show that there are schemes that achieve the SetPriv but not FullPriv, we
start with a scheme Π that satisfies both and transform it into Π ′ that loses
the FullPriv property but is still SetPriv secure. The idea is rather simple: Let Π ′

be exactly as Π, with the only difference that the apk′ returned from Π ′.KAg
adds an extra bit, i.e., apk′ = apk||1. All algorithms of Π ′ that work with the
aggregated key remove the last bit from apk′ and then run identically as Π. This
makes the aggregated public key clearly distinguishable from a standard one, so
Π ′ loses the FullPriv property. As the extra bit is independent of the contained
signers it does not give the adversary in the SetPriv game any advantage.
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MemPriv-AbOPK

MemPriv-KPK

SetPriv-AbOPK FullPriv-AbOPK

FullPriv-KPKSetPriv-KPK

/
/ //

/

//

Fig. 8: Relation between our definitions under different models. A→B means A implies
B (any scheme has property A, also has property B). A ̸→B means A does not imply
B (there exists a scheme s.t. has property A, but not property B). Properties with
green boxes are achievable by BLS-dMS and MuSig multi-signature schemes.

Theorem 5 (SetPriv⇒ MemPriv). For any MSvKA scheme it holds that SetPriv
implies – and is strictly stronger than – MemPriv.

We again need to prove this in two steps. The first is proving that every
SetPriv-secure scheme is also MemPriv-secure. This is straightforward, as both
properties are expressed through the same security game, except that MemPriv
makes an additional limitation on A’s choice of challenge sets.

For the proof that MemPriv does not imply SetPriv, we must come up with
a scheme that satisfies the former but not the latter. We start with a scheme Π
that has both properties and change that into Π ′. Π ′ behaves as Π, except that
key aggregation now appends the set size to the aggregated key:

Π ′.KAg(PK) : (apk, π)← Π.KAg(PK); c := |PK| ; return (apk′ := apk||c, π)

The algorithms of Π ′ taking apk′ = apk||c as input, remove the group size
c again and invoke the algorithms of Π on apk. In the MemPriv game, both
challenge sets S0 and S1 must have the same size, and thus this leaked group
size does not give the adversary any advantage, i.e., Π ′ is still MemPriv-secure.
In the SetPriv game, the adversary can now win trivially by submitting two
challenge groups of different sizes, regardless of the security of Π. We give a full
proof of this idea in Appendix E.2.

5 Our Multi-Signature Constructions

We now present our multi-signatures, which are the first schemes that achieve
privacy in the KPK model. Our first scheme (randBLS-1) is a simple modifica-
tion of the BLS multi-signature from Boneh et al. [12] and satisfies the stron-
gest privacy guarantee FullPriv-KPK. Regarding unforgeability, it only achieves
MSvKA-UNF-1 security which is the same security level as the original scheme.
Using our UNF-1 to UNF-3 transformation from Section 3, we turn this into a
variant (randBLS-2) which has the strongest unforgeability – but for the price
of losing the FullPriv property, as this now requires key-prefixing (which is not
considered standard in BLS signatures). This randBLS-2 scheme still satisfies
the SetPriv-KPK and MemPriv-KPK properties, which again improves the state
of the art for MSvKA-UNF-3 secure scheme. In fact, our randBLS-2 scheme still
provides aggregated signatures that are indistinguishable from standard BLS
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signatures with public-key prefixing. Thus, in applications where such prefixing
is done already – such as in public ledgers – this construction blends in perfectly.

5.1 Our randBLS-1 Construction

Existing constructions cannot achieve any privacy property in the KPK setting,
due to their deterministic key aggregation. Thus, the main task is to turn key
aggregation into a probabilistic algorithm that allows the verifiability of a group
only with the knowledge of a dedicated proof π. We achieve this by a simple
twist in the BLS-based multi-signature scheme of Boneh et al. [12].

Our scheme has identical key generation and signature verification algorithms
as the original BLS signature and BLS multi-signatures. The main difference is
that we include a random r in the exponent hash H1(pk, PK, r) that is used for
key aggregation and signature combination. This random r is our proof π, and
verifying an aggregated key is recomputing the product using the same (“ran-
dom”) hash. We further move the exponentiation with this hash from MulSign
to Combine, which is due to our choice to only include π in Combine but not
in MulSign (which was mainly for efficiency purposes and has no impact on the
achievable unforgeability notion).

Construction 3 (randBLS-1) Our first construction randBLS-1 uses a bilinear
group generator BGGen, two hash functions H0 : {0, 1}∗ → G and H1 : {0, 1}∗ →
Zp and is defined as follows:

Pg(1λ): Return (e,G, Ĝ, g, ĝ, p)← BGGen(1λ).

Kg(pp): Return sk ← Z∗p, pk ← ĝsk.

KAg(PK): r ← {0, 1}λ, apk ←
∏

pki∈PK pk
H1(pki,PK,r)
i . Return (apk, π := r).

VfKAg(PK, apk, π): apk′ ←
∏

pki∈PK pk
H1(pki,PK,π)
i . Return apk = apk′.

MulSign(ski, PK, apk,m): Return si ← H0(m)ski .

Combine(PK, π, {si}pki∈PK): Return σ ←
∏

pki∈PK s
H1(pki,PK,π)
i .

Vf(apk, σ,m): Return e(σ, ĝ) = e(H0(m), apk).

Unforgeability of randBLS-1. The unforgeability of BLS multi-signatures in the
plain public-key model relies on the non-linear mapping in the key aggregation
algorithm, and we must ensure that our randomization technique does not intro-
duce a weakness. As the involved randomness in key aggregation is chosen by
the adversary in our unforgeability games, he can try to perform attacks similar
to rogue-key attacks so that the resulting aggregated key would be independent
of the challenge public key pk∗. It is easy to see that this is not the case for our
scheme, as we use the involved randomness as an additional input to the random
oracle H1. Hence, even if the adversary chooses the randomness maliciously, he
still cannot manipulate H1’s output to have a specific algebraic form to cancel
pk∗ out from the aggregated keys.

Regarding the different unforgeability levels, MSvKA-UNF-1 is the best we
can hope for, as MulSign is entirely independent of PK and apk.

24



Theorem 6 (Unforgeability of randBLS-1). The randBLS-1 multi-signature
scheme in Construction 3 is MSvKA-UNF-1 secure in the ROM for qH0

and
qH1 oracle queries for random oracles H0 and H1 if the co-CDH assumption,
Definition 1, holds and p > 8qH1/µ(λ).

Proof (Sketch). Our proof closely follows the unforgeability proof of determi-
nistic BLS multi-signatures from [12]. We aim to build a co-CDH adversary
using an efficient forger A. Let us recap a proof strategy for original BLS signa-
tures first [14]: Given a co-CDH problem instance (A,B, B̂), the proof simulates
an unforgeability game for pk∗ ← B̂. We set a H0(m) query to H0(m) ← A,
and hope to get a forgery σ for the message m. For a valid forgery, we have
e(A, pk∗) = e(σ, ĝ), so σ is the solution for the given co-CDH instance.

The challenge in the multi-signature case is that the adversary does not
output a forgery for pk∗ directly, but an aggregated signature for some apk that
contains pk∗. Thus, we need a way to get a valid signature for some (pk∗)c where
c is a non-zero value (that will be known to the reduction). Our proof strategy is
as follows: We first build an algorithm B which behaves as the co-CDH solver that
uses the original BLS forger we explained above. This algorithm B only plays an
intermediate role, and its task is to get an aggregated signature and key for some
message in the simulated unforgeability game that embeds the co-CDH challenge.
Our VfKAg() algorithm ensures that the set PK and the aggregated key apk that
are chosen by the adversary satisfy that pk∗ ∈ PK and apk =

∏
pki∈PK pkai

i

for ai = H1(pki, PK, π). We then use the Generalized Forking Lemma on the
algorithm B to get two forgeries σ and σ′ for aggregated keys apk and apk′ such
that apk/apk′ = (pk∗)c for some non-zero c value. In particular, the forking
lemma gives us two forgeries for the same set PK and the proof π. Further, all
ai values above are set to the same value except the ai = H1(pki, PK, π) for
pki = pk∗. For pki = pk∗, the random oracle is programmed to another value in
the second forgery, so when we compute apk/apk′ all values except pk∗ cancel
out. Finally, as we know that e(A, apk) = e(σ, ĝ) and e(A, apk′) = e(σ′, ĝ) must
hold, we also know that e(A, apk/apk′) = e(σ/σ′, ĝ), and thus the solution for
the given co-CDH instance is (σ/σ′)1/c. The full proof is in Appendix F.1.

Privacy of randBLS-1. Our randBLS-1 construction achieves the strongest pri-
vacy notion FullPriv in the KPK model, i.e., produces indistinguishable aggre-
gated keys and signatures from standard ones generated with BLSSign. This
immediately implies that the notions of MemPriv and SetPriv are satisfied too.

Theorem 7 (Privacy of randBLS-1). The randBLS-1 scheme in Construction
3 is FullPriv-KPK secure for Sign = BLSSign in ROM for H1 as a random oracle.

Proof (Sketch). In the FullPriv-KPK game, the adversary receives either an aggre-
gated key and signatures (if b = 0) or a freshly sampled public key with the
corresponding signatures (if b = 1) and must not be able to determine b. We
prove this property through a series of games, where we end in a game where A
always receives a freshly chosen (standard) key and signatures thereof.
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First, we show that for an aggregated key apk∗ in our scheme, we can generate
a corresponding aggregated secret key ask∗ :=

∑
pki∈PKS∗ ski ·H1(pki, PKS∗ , π∗)

that we can use to answer the signing queries using the plain BLS signing al-
gorithm BLSSign(ask∗, ·), instead of aggregating individual signatures. Subse-
quently, we show through several steps that this ask∗ value is indistinguishable
from a freshly sampled secret key. It is easy to see that ask∗ (and apk∗) are
uniformly random to a party who does not know the corresponding proof π∗,
due to the random oracle involved in the computation. We then show that the
proof π∗ remains unknown to A even after outputting the challenge key and the
corresponding signatures that implicitly contain π∗, which again stems from the
random oracle property of H1. In the final game, we replace (ask∗, apk∗) with a
freshly sampled secret key, i.e., the game behaves identically for b = 0 and b = 1
and thus cannot reveal any information about the challenge bit b. The full proof
is given in Appendix F.2.

5.2 Our randBLS-2 Construction

We now show how we can increase unforgeability to MSvKA-UNF-3, for the price
of reducing privacy to SetPriv-KPK. This is done by simply applying the generic
UNF-1 to UNF-3 transformation (from Construction 2) to randBLS-1. That is,
the MulSign algorithm of our second scheme randBLS-2 now strictly binds each
signature to the intended apk by including the key in the hash.

Construction 4 (randBLS-2) The randBLS-2 is identical to randBLS-1, except
for the following two algorithms:

MulSign(ski, PK, apk,m): Return s← H0(apk,m)ski

Vf(apk, σ,m): Return e(σ, ĝ) = e(H0(apk,m), apk).

Using Theorem 2, we conclude that the randBLS-2 scheme is MSvKA-UNF-3
secure if randBLS-1 is MSvKA-UNF-1 secure and key binding. The former was
shown in Theorem 6, and thus what remains to be shown is that randBLS-1 is
key binding, i.e., an adversary cannot come up with two sets PK ̸= PK ′ that
map to the same aggregated key apk.

Theorem 8. The randBLS-1 scheme in Construction 3 is key-binding in the
ROM for H1 as a random oracle.

The simple proof is given in Appendix F.3 and mainly relies on the fact
that each aggregated key is sampled uniformly random by the random choice
of r and H1 being a random oracle, which ensures that collisions occur with
negligible probability only. We can now conclude the following:

Corollary 1 (Unforgeability of randBLS-2). The randBLS-2 scheme in Cons-
truction 4 is MSvKA-UNF-3 secure in the ROM for H0 and H1 as random oracles
if the co-CDH assumption holds and 2λ > 8qH/µ(λ) for qH oracle queries.
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As we now let Vf check the pairing for H0(apk,m) we can no longer achieve
FullPriv for the standard BLSSign algorithm anymore (which uses H0(m)). How-
ever, we still use the FullPriv game as a simple way to prove that the next level
SetPriv-KPK of privacy is satisfied: we have shown in Theorem 15 that SetPriv is
implied if a scheme satisfies FullPriv-KPK against some Sign algorithm. Thus, we
simply prove FullPriv-KPK for the modified verification equation (but run for an
individual signature, not an aggregated one) and then conclude SetPriv (which
in turn implies MemPriv) from there. The proof of the following theorem is the
same as the proof of Theorem 7 except that we use a key-prefixed version of
BLSSign instead of the standard one, and given in Appendix F.4.

Theorem 9. The randBLS-2 scheme in Construction 4 is FullPriv-KPK for the
signing algorithm Sign(sk,m):= H0(ĝ

sk,m)sk in ROM for the random oracle H1.

Using Theorem 15 we can conclude:

Corollary 2 (Privacy of randBLS-2). The randBLS-2 scheme in Construction
4 is SetPriv-KPK (and thus MemPriv-KPK) secure if H1 is a random oracle.

6 Weaker Privacy & Analysis of Existing Constructions

We have already shown that all existing multi-signature schemes cannot sat-
isfy the privacy properties defined in Section 4, due to their deterministic key
aggregation. As this is in contrast to what has been claimed, we investigate the
weaker privacy guarantees that such deterministic systems can provide. We start
by introducing our weaker “All-but-One-PK” (AbOPK) model that adapts the
FullPriv,SetPriv and MemPriv definitions by restricting the adversary to know-
ing all individual public keys, except of one. We then analyze the most common
BLS- and Schnorr-based multi-signatures and prove that they do achieve privacy
in this weaker model. An overview of the security and privacy of the existing
schemes and our new constructions is given in Table 11.

6.1 Privacy Model for Deterministic Schemes: AbOPK

As stated in Theorem 3, none of our privacy definitions is achievable when key
aggregation is deterministic: the adversary can win each game trivially by com-
paring the aggregated key(s) he can compute for the challenge set(s) with the
key he received from the challenger. To define the desirable privacy properties
in such a deterministic environment, we need to capture and exclude the trivial
yet inherent attacks imposed by this setting. This requires two changes:

– The adversary must not know all public keys anymore, i.e., at least one
public key must remain secret.

– The adversary must not be able to receive aggregate keys or multi-signatures
of the challenge group(s) outside the challenge oracle. This immediately rules
out any unlinkability guarantees.
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ExpX-AbOPK
Π,A (λ)

b← {0, 1}, pp← Pg(1λ), Q← ∅, n← A(pp), abort if n ̸> 0

(SK,PK) := ({ski}i∈[n], {pki}i∈[n])← (Kg(pp))i∈[n]

(S0, S1)← A(SK \ {sk1}, PK \ {pk1})

abort if 1 ̸∈ Sj ∨|Sj \S1−j | ̸=1 for j ∈ {0, 1}

(apkb, πb)← KAg(PKSb)

b∗←AOChl(·)(apkb)

return 1 if b = b∗

OChl(m)

Σ←{MulSign(ski,PKSb ,apkb,m)}ski∈SKSb

return σ ← Combine(PKSb , πb, Σ)

Fig. 9: Game for our Set Privacy (X = SetPriv) and Membership Privacy (X =
MemPriv) definitions in the AbOPK model. The dashed box shows the additional con-
dition for the Membership Privacy definition.

ExpFullPriv-AbOPK
Π,A (λ)

b← {0, 1}, pp← Pg(1λ), Q← ∅, n← A(pp), abort if n ̸> 0

(SK,PK) := ({ski}i∈[n], {pki}i∈[n])← (Kg(pp))i∈[n]

S∗ ← A(SK \ {sk1}, PK \ {pk1}) abort if 1 ̸∈ S∗

if b = 0 then

(apk∗, π∗)← KAg(PKS∗), pk∗← apk∗

if b = 1 : (sk, pk)← Kg(pp), pk∗ ← pk

b∗ ← AOChl(·)(pk∗)

return 1 if b = b∗

OChl(m)

if b = 1 then

return σ ← Sign(sk,m)

Σ←{MulSign(ski,PKS∗,apk∗,m)}ski∈SKS∗

return σ ← Combine(PKS∗ , π∗, Σ)

Fig. 10: Game for our Full Privacy definition in the AbOPK model.

We realize both in our “All-but-One-PK” (AbOPK) model that we can apply
to all three privacy games. In the AbOPK version of our games, the adversary
will no longer receive all public keys, but all but one. Without loss of generality,
we set pk1 to be the unknown key. We also follow the modeling choice from
Section 4 and generously give the adversary the secret key to every public key it
is allowed to know. Thus, when generating all key pairs in our games, denoted as
(SK,PK), the adversary now only gets (SK \ {sk1}, PK \ {pk1}). The AbOPK
limitation has a strong impact on the overall privacy guarantees, as the adversary
in all our games is now prevented from interacting with the holder of the “secret”
public key at all.

Definition 8 (AbOPK Models). A MSvKA scheme Π has the property X ∈
{SetPriv,MemPriv,FullPriv} in the AbOPK model, if for all PPT adversaries A it

holds that
∣∣∣Pr[ExpX-AbOPK

Π,A (λ) = 1
]
− 1/2

∣∣∣ ≤ negl(λ) where ExpX-AbOPK
Π,A is defined

in Figures 9 and 10.
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Impact of AbOPK. The most obvious change in our AbOPK model is that the
adversary no longer receives all keys (SK,PK) in the second stage of our games,
but only gets (SK \ {sk1}, PK \ {pk1}).

Another impact of our AbOPK models is that the challenge sets, that the
adversary must output in all three games, become more restrictive. As the entire
privacy now relies on the secrecy of pk1, this public key must of course be part
of the challenge sets – otherwise the adversary knows again all keys that will
be aggregated into apk∗. This is modeled through additional abort conditions
which check that 1 (as key index) is contained in all challenge sets. Putting
both limitations – on the challenge sets and keys – together, this means that the
adversary can never run any key aggregation or multi-signature algorithms for a
particular challenge group (i.e., either S0 and S1 in the MemPriv, SetPriv games
or S∗ in the FullPriv game). Thus, also schemes that create aggregate keys and
signatures that are linkable for each group PK can satisfy these weaker AbOPK
privacy notions.

Obviously, the stronger KPK models are indeed strictly stronger than the
weaker AbOPK ones. For completeness, we prove the relations in Appendix E.3.

6.2 Analysis of BLS & Schnorr Multi-Signatures

In this section, we summarize the analysis of the most common multi-signatures
schemes, BLS-based by Boneh et al. [12] and Schnorr-based MuSig by Maxwell
et al. [30]. We also note that our theorems and proofs can be easily adapted
to other Schnorr multi-signatures that have the same key aggregation technique
(e.g., [25, 32]).

BLS Multi-Signatures. In this section, we analyze the BLS multi-signature
scheme from Boneh et al. [12], restate the already known unforgeability proper-
ties in our model and prove that it can either satisfy UNF-1 and FullPriv-AbOPK,
or UNF-3 and SetPriv-AbOPK. The Construction 5 below implicitly applies our
MSdKA-to-MSvKA transformation to the original protocol from [12].

Construction 5 (BLS-dMS [12]) BLS-dMS uses hash functions H0 : {0, 1}∗ →
G, H1 : {0, 1}∗ → Zp, a bilinear group generator BGGen and is defined as follows:

Pg,Vf: same as randBLS-1.

Kg(pp): Return (sk, pk) for sk ← Zp and pk ← ĝsk.

KAg(PK): Return (apk,⊥) for apk ←
∏

pki∈PK pkH1(pki,PK).

VfKAg(PK, apk, π): Return 1 if (apk,⊥) = KAg(PK). Return 0 otherwise.

MulSign(ski, PK, apk,m): Return si ← H0(m)ski·H1(pki,PK).

Combine(PK, π, {si}pki∈PK): Return σ ←
∏

pki∈PK si.
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Unforgeability. Boneh et al. [12] proved the security of their scheme in a model
that is equivalent to what we define as MSdKA-UNF-1 security. Thus, BLS-dMS
is MSvKA-UNF-1 secure by Theorem 1.

Clearly, BLS-dMS cannot achieve any of the unforgeability notions beyond
MSvKA-UNF-1: e.g., let si = H0(m)ski·H1(pki,PK) be a share of the honest user i
for the group PK. Let further PK ′ be a set of public keys such that PK ′ ̸= PK
and pki ∈ PK ′. Then pki’s signature share on message m for PK ′ can be

computed as s′i ← s
H1(pki,PK′)·t
i for t ← H1(pki, PK)−1. Thus, BLS-dMS is not

MSvKA-UNF-2, and consequently neither UNF-3 secure.

Corollary 3. BLS-dMS scheme from Construction 5 is MSvKA-UNF-1 secure
(under the assumptions from [12]), but not MSvKA-UNF-2/3 secure.

While BLS-dMS was designed for the flexible, i.e., non-group specific us-
age, for which UNF-1 is the right unforgeability level, one can also easily lift
the scheme to achieve the stronger UNF-3 unforgeability guarantees needed for
group signing. This is again done via key-prefixing, and we present a generic
key-prefixing transformation (Cons. 7) for MSdKA which is analogous to the
transformation in Construction 2 for MSvKA. In Appendix C, we show that this
transformation is applicable to BLS-dMS to lift MSdKA-UNF-1 to MSdKA-UNF-
2 security. We have further shown our MSdKA-to-MSvKA transformation turns
MSdKA-UNF-2 into MSvKA-UNF-3 security (Thm. 1). Thus, we can conjecture
the following:

Corollary 4. BLS-dMS scheme with key-prefixing (BLS-dMS-2) is MSvKA-UNF-
3 secure (under the assumptions from [12]) and assuming H1 to be a random
oracle.

The price we pay for this transformation is that we lose any hope for the FullPriv
property, as signatures cannot be verified with the standard verification algo-
rithm anymore, but also require key-prefixing. In practical terms, the sacri-
fice is rather minor though. Although we do not provide full proof, we point
out that BLS-dMS-2 is still SetPriv-AbOPK secure (and FullPriv-AbOPK for a
non-standard sign algorithm). One can use the following proof strategy for this
statement: Having FullPriv privacy for any Sign algorithm implies SetPriv, and
we show that this holds for Sign′(sk,m) = H0(ĝ

sk,m)sk, which includes key-
prefixing in the plain signatures.

Privacy. We now show that the UNF-1 secure version of the BLS-dMS scheme
satisfies FullPriv-AbOPK privacy, i.e., produces multi-signatures and aggregate
keys that are indistinguishable from individual ones (derived via BLSSign, from
Sec. 2), if at least one public key remains unknown to the adversary.

Theorem 10. BLS-dMS scheme in Construction 5 is FullPriv-AbOPK in the
ROM for H1 as a random oracle and for Sign = BLSSign.

Proof (Sketch). The full proof is in Appendix G.1 and closely follows the privacy
proof of our randBLS-1 scheme. The main difference between our randBLS-1
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scheme and the BLS-dMS is that the aggregated key in BLS-dMS does not contain
a randomly chosen π value. This value was crucial for the privacy of our scheme,
and the only reason we can argue privacy of the deterministic variant is that
we are now in the weaker AbOPK model which relies on the public key pk1 to
be secret. Thus, pk1 essentially takes over the role of π in this proof, and we
show in a series of games how the challenge aggregated key and signatures can
be replaced by a freshly sampled public key and standard signatures.

Schnorr Multi-Signature. We now analyze Schnorr multi-signature scheme
MuSig within our unforgeability and privacy hierarchies. Recently, Schnorr multi-
signatures have seen an increasing interest, and several variants of Schnorr-based
multi-signatures exist, e.g., [12, 30, 9, 16, 25, 32]. In general, these works aim to
improve either efficiency, e.g. by reducing the number of rounds in MulSign,
or security, e.g. by providing tighter security bounds. We choose the MuSig
scheme [30] to analyze. The structure of MuSig is similar to the traditional
multi-signature scheme of Bellare and Neven [10], and thus has the best chances
for full privacy. Furthermore, MuSig is the first multi-signature scheme with
aggregation that has been proven secure (by Boneh et al. [12] and Maxwell et
al. [30], independently). We also note that our theorems and proofs can be easily
adapted to other Schnorr multi-signatures that have the same key aggregation
technique ([25, 32]). We present MuSig scheme adapted to our MSvKA syntax
in Construction 6, which again implicitly uses the MSdKA-to-MSvKA transform
from Sec. 2.1.

Construction 6 (MuSig [30]) MuSig uses a group generator GGen, three hash
functions H0,H1,H2 : {0, 1}∗ → Zp and it is defined as follows.

Pg(1λ): Returns (G, g, p)← GGen(λ).

Kg,KAg,VfKAg: same as in BLS-dMS of Cons. 5 (but now in G)

MulSign(ski, PK, apk,m): Signing algorithm is composed of 3 rounds.

Round 1. Choose ri ← Zp, and compute Ri ← gri ,ti ← H2(Ri). Send ti to
other signers and wait for tj for all j ̸= i.
Round 2. Send Ri to other signers and wait for Rj for all j ̸= i. If there
exists a j such that tj ̸= H0(Rj) then abort.
Round 3. Compute (apk′, ) ← KAg(PK), R ←

∏
pki∈PK ri, and c ←

H0(R, apk′,m). Finally, return si ← (s′i, Ri) for s
′
i ← ri+c ·ski ·H1(pki, PK).

Combine(PK, π, {si}pki∈PK): Parse si as (s′i, Ri). Return σ ← (s,R) for s ←∑
pki∈PK s′i and R←

∏
pki∈PK Ri.

Vf(apk, σ,m): Parse σ as (s,R). Return 1 if gs = apk ·RH0(R,apk,m) else 0.

Unforgeability. The original MuSig has been proven to be MSdKA-UNF-2 secure
by Maxwell et al. [30] and Bellare and Dai [9]. By relying on Theorem 1, we
conjecture the following:

Corollary 5. The MuSig scheme in Construction 6 is MSvKA-UNF-3 secure.
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Scheme Unforg. FullPriv SetPriv MemPriv

BLS-dMS [12] UNF-1 AbOPK AbOPK AbOPK

BLS-dMS + KeyPrefix (Cons. 2) UNF-3 –/(AbOPK∗) AbOPK AbOPK

MuSig [30] UNF-3 AbOPK∗ AbOPK AbOPK

Our Work (randBLS-1) UNF-1 KPK KPK KPK

Our Work (randBLS-2) UNF-3 –/(KPK∗) KPK KPK

Fig. 11: Comparison of existing and our new multi-signatures, regarding their unfor-
geability and privacy. ∗Note that there is a difference how “standard” the key-prefixing
is that all UNF-3-secure schemes require. For Schnorr signatures, such prefixing, i.e.,
including the public key in the message hash, is often considered to be the standard
– which is why MuSig achieves both UNF-3 and FullPriv security. For BLS signatures,
key-prefixing is less standard, and thus all UNF-3 secure schemes that use such prefix-
ing immediately lose the FullPriv privacy. If one considers including (a)pk in the hash
as standard for BLS too, then both UNF-3 secure BLS schemes also satisfy FullPriv.

One point to note is that this scheme already applies key prefixing, and thus
naturally achieves our strongest notions.

Privacy. Just as BLS-dMS, the Schnorr multi-signature scheme in Construction 6
also achieves FullPriv-AbOPK, i.e., produces keys and signatures that are indistin-
guishable from standard SchnorrSign ones. This again crucially relies on (at least)
one public key to remain secret.

In contrast to BLS, theMuSig scheme enjoys bothMSvKA-UNF-3 and FullPriv-
AbOPK security at the same time. However, the reason that it achieves FullPriv-
KPK is slightly subjective, as it depends on what one considers the ”stan-
dard” signature analogue for a multi-signature. As the literature widely uses the
key-prefixed Schnorr, even in the stand-alone setting, we followed that choice
and thus we can show indistinguishable from such standard signatures. If key-
prefixing becomes more standard in BLS too, then we can immediately claim
FullPriv-AbOPK for BLS-dMS-2 as well.

Theorem 11. MuSig scheme in Construction 6 is FullPriv-AbOPK in ROM for
H1 as a random oracle and for Sign = SchnorrSign.

Proof (Sketch). The proof is almost analogous to the one for BLS-dMS, as key
aggregation is identical in both schemes. What remains to be shown is that
the distributed computation of R =

∏
pki∈PK gri in MuSig is indistinguishable

from R = gr in SchnorrSign. This is straightforward, as the adversary never sees
the individual contributions of the different signers for the challenge aggregated
key. Thus FullPriv-AbOPK follows. The full proof of this theorem is available in
Appendix G.2.
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Fig. 12: Group signing using MSvKA in a public ledger.

7 Applications & Discussion

In this section, we sketch two applications that are enabled through our new
multi-signatures and discuss which of the privacy and security properties are
needed for the different scenarios. At the end, we also discuss open problems.

7.1 Public Ledgers

For the public ledger use case, we follow the simple example from the introduc-
tion. That is, we have three users – Alice, Bob, and Carol – each having their
own individual key pair, where one account is owned by Alice alone, the second
by Alice and Bob, and the third by Bob and Carol. There are in fact different
ways how our scheme could be used in this setting. The solution we sketch here
is and is summarized in Figure 12 is, to us, the most natural one.

Individual Setup. Every user generates their individual key pair, as Kg(pp) →
(skX , pkX) for X ∈ {A,B,C}. We assume all public keys are publicly known to
everyone, and the individual account by Alice is associated with pkA.

Group Setup. When Alice wants to generate a joint account with Bob, either
of them can trigger the key aggregation. We assume this is done by Alice, who
runs:

KAg({pkA, pkB})→ (apkA,B , πA,B)

Alice locally stores the tuple (Alice/Bob, apkA,B , πA,B) and sends (apkA,B ,
πA,B) to Bob. Bob, upon receiving the tuple, now verifies that this aggregated
public key is correctly formed by running:

VfKAg({pkA, pkB}, apkA,B , πA,B)→ b

If b = 1, Bob stores (Alice/Bob, apkA,B , πA,B) and puts apkA,B on the ledger
for the shared account.

For the shared account of Bob and Carol, the same procedure is used, and
the resulting apkB,C gets associated with their account. At the end, Alice keeps
(Alice/Bob, apkA,B , πA,B), Bob has (Alice/Bob, apkA,B , πA,B), (Bob/Carol,
apkB,C , πB,C) and Carol stores (Bob/Carol, apkB,C , πB,C).
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One could also assign one member of each group to be the designated com-
biner, then only this party needs to keep the associated π. Note that the values
established for each group are not security-critical – their leakage would have
no impact on the guaranteed unforgeability, only on privacy. There is no pri-
vacy towards anyone knowing the proof π, so the value should be treated with
some care but clearly does not have to be protected at the same level as the
user’s long-term secret key. What is important here is that each party stores the
approved apk for each group, as this will be needed as trusted input for each
signature contribution.

Group Signing. Whenever Alice and Bob want to make a transaction from their
shared account protected with apkA,B , both parties need to provide their signa-
ture contribution using their long-term key. Let us assume that Alice initiated
the transaction. She computes her share as:

MulSign(skA, {pkA, pkB}, apkA,B ,m)→ sA

Alice informs Bob about this request and sends him (sA,m). If Bob agrees,
he first computes his share and then combines both:

MulSign(skB , {pkA, pkB}, apkA,B ,m)→ sB

Combine({pkA, pkB}, πA,B , {sA, sB})→ σ

Bob then sends (m,σ) to the ledger to release the transaction. Signatures
for Bob/Carol are done analogously, and signatures for pkA are just standard
signatures.

Verification. Anyone on the ledger can verify the correctness of the transaction,
e.g., for apkA,B by running Vf(apkA,B , σ,m) → b. This verification does not
require any individual keys or even knowledge of who the underlying signers are.

Privacy Guarantees. If a scheme with FullPriv privacy, such as randBLS-1 is used,
then no one (except Alice and Bob) can even notice that apkA,B is an aggregated
public key. If a scheme with Set/MemPriv privacy, such as randBLS-2 is used,
then an outsider can see that this is an account controlled by multiple parties.
However, the members of that group and the size of the group are still fully
hidden. Our notion guarantees that privacy to anyone who is not part of the
group, i.e., even a malicious Carol knowing all public keys and having a joint
account with Bob cannot recognize that Bob also controls apkA,B .

If key-prefixing in BLS is also done for standard signatures on the ledger, then
aggregated keys and signatures from randBLS-2 are again fully indistinguishable
from standard ones.

Unforgeability and Non-frameability Guarantees. For this application, our stron-
gest notion UNF-3 is needed, which is satisfied only by randBLS-2. It ensures that
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all signature contributions are strictly bound to the context. That is, e.g., sig-
nature shares for apkA,B can neither be used for Alice’s private account nor for
the shared account Bob has with Carol.

Our schemes hide all information about their signers by default but also come
with dedicated key verification. It is therefore important that this verification
cannot be misused for framing attacks. Assume that Alice and Bob make a
dubious transaction from their account apkA,B , and later want to claim that
this was actually done by Carol and Dave, e.g., by coming up with a proof π∗

such that VfKAg({pkC , pkD}, apkA,B , π
∗) = 1. As non-frameability is guaranteed

by all unforgeability notions, this is infeasible for every secure MSvKA scheme.

7.2 Privacy-Preserving Authentication from Hardware Tokens

Apart from using multi-signatures to build groups of different users to cater
for an increased level of security, it can also be used to improve the individual
key management of end-users which we want to briefly sketch here. Users can
use a hardware token that contains a single (certified) key pair (skT , pkT ) and
use that to bootstrap unlinkable but hardware-protected key pairs for strong
user authentication: When the user wants to create an account with a service
provider, she creates a fresh and service-specific key pair (ski, pki), which can be
stored on an untrusted client. The user registers with the aggregated key apki
derived from pkT and pki with the service and consequently always needs both
underlying signing keys, i.e., in particular the hardware-protected one, to access
her account. If the service provider wants to be assured that the key apki is
indeed (partially) protected by hardware, the user sends both individual public
keys and the certificate of pkT to the service provider, which uses VfKAg to verify
that apki is properly formed.

This allows the user to rely on a single hardware token to create many un-
linkable account keys. If the scheme is at least MemPriv-KPK private, then an
adversary learning two account public keys apki ̸= apkj cannot tell whether they
belong to the same user or not – this even holds if A knows the user’s long-term
hardware key pkT . Having FullPriv-KPK even fully hides the fact that the user
is using such a scheme. In terms of security, the level UNF-3 is necessary here,
as it ensures that all of the user’s signatures are strictly bound to the account
key she wants to authenticate for, and cannot be used by a malicious service
provider in a phishing attempt.

In this context, one could even argue that the MemPriv-AbOPK privacy suf-
fices, as the service-specific public keys serve as internal “randomizers” by the
honest users and service providers will only need them to register and verify apki.
However, we still caution the use of the AbOPK model, as it relies on the secrecy
of public keys, which – even when being reasonable for a particular application
in theory – might be hard to guarantee in practice.

7.3 Discussion

Finally, we discuss open problems and possible directions for future work.
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Schnorr Multi-Signatures with Improved Privacy. Our work shows how strong
privacy can be achieved for BLS-based multi-signatures, and we expect that the
randomization technique can be applied analogously for Schnorr-based schemes
as well. This also requires to prove that the modified schemes are unforgeable,
which we leave as interesting future work.

Privacy Against Insiders. Our work focuses on privacy against outsiders, as this
seems to be the most basic requirement. One could further consider a more fine-
grained security notion that also considers some form of privacy towards insiders.
More precisely, our definition relies on an explicit algorithm VfKAg(PK, apk, π)
to verify whether an apk corresponds to the group PK. For some applications,
it might be desirable to remove the requirement of knowing the full set PK and
instead only verify whether a particular key pk is contained in apk or not.

Unforgeability. So far, all MSvKA-UNF-3 constructions including ours rely on
key-prefixing to bind a signature to a particular apk. Although it is not a problem
for the use cases that already employ key-prefixing such as public ledgers, there
may be use cases that do not internally employ key-prefixing. An open problem is
whether we can have MSvKA-UNF-3 secure schemes (also for Schnorr-signatures)
without key prefixing.

Further, our definition of multi-signature MSvKA brought a new intermedi-
ate level of unforgeability, MSvKA-UNF-2. Neither of the analyzed or proposed
schemes sits at that level though, they are either UNF-1 or UNF-3 secure. It
thus remains an open question, whether there are constructions that satisfy the
MSvKA-UNF-2 notion, and are possibly able to benefit from the relaxed require-
ments compared to UNF-3.
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Cyclic Groups. We will use a group generator GGen as follows for the Schnorr-
based scheme.

Definition 9 (Group Generator). A group generator GGen is a p.p.t. algo-
rithm outputs a prime order group description G ← (G, g, p) s.t. ⟨g⟩ = G is a
group of prime order p and ⌈log2 p⌉ = λ.

Pairing Groups. For BLS, we will use a bilinear pairing generator BGGen as
follows.

Definition 10 (Bilinear Pairing). For ⟨g⟩ = G, ⟨ĝ⟩ = Ĝ and GT which are

groups of prime order p, e : G× Ĝ→ GT is a bilinear pairing if it is efficiently
computable and bilinear: e(ga, ĝb) = e(g, ĝ)ab = e(gb, ĝa) ∀a, b ∈ Zp, and non-
degenerate: ⟨e(g, ĝ)⟩ = GT , so e(g, ĝ) ̸= 1GT

. A bilinear group generator BGGen

is an algorithm which outputs a bilinear pairing description BG = (e,G, Ĝ, g, ĝ, p)
such that ⌈log2 p⌉ = λ the requirements above hold.

Generalized Forking Lemma. We give the detailed definition of generalized fork-
ing lemma here. Let A be an adversary that interacts with a random oracle
H : {0, 1}∗ → Zp on input par. Let f = (ρ, h1, ..., hqH ) denote the randomness
involved in the execution of A such that ρ is the random input of A and hj is the
response of H for j’th query where qH is the maximum number of queries. Let Ω
denote the set of all vectors f . We say that A is successful if A outputs a tuple
(J, {ϕj}j∈J) where J is a non-empty multi-set of indices such that J ⊆ [qh]. A
outputs (J, {ϕj}j∈J) for J = ∅ if it fails. Let fi denote (ρ, h1, ..., hi−1). Let ϵ
denote the success probability of A’. On input par, GFA acts as follows.

Lemma 1 (Generalized Forking Lemma). Let IG be a randomized algorithm
that generates par and A be a randomized algorithm that makes at most qH oracle
queries such that A succeeds with probability ϵ. If p > 8nqH/ϵ, then GFA succeeds
with probability frk > ϵ/8.

B Correctness Definitions

The correctness definitions that belong to the traditional multi-signatures and
ours are provided in this section.

B.1 Correctness Definition of MSdKA

The correctness of a MSdKA scheme is defined as follows.

Definition 11 (MSdKA-Correctness). A multi-signature scheme MSdKA is
correct if for all λ, for all pp ← Pg(1λ), for all messages m, for all n, for all
(ski, pki)← Kg(pp) for i ∈ [n], for all si ← MulSign(ski, {pki}i∈[n],m),

Vf(KAg({pki}i∈[n]),Combine({pki}i∈[n], {si}i∈[n]),m) = 1
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GFA(par)

f = (ρ, h1, ..., hqH )← Ω

(J, {ϕj}j∈J)← A(par, f)
if j = ∅ then return ⊥
Let J = {j1, ..., jn} s.t. j1 ≤ ... ≤ jn

out = {(hj , ϕj)j∈J}, out′ = ∅
for i in {1, ..., n}

succi ← 0, k ← 0, kmax ← 8nqh/ϵ · ln(8n/ϵ)
while succi = 0 ∧ ki ≤ kmax do

f ′ ← Ω, s.t. f ′
i = fi

(J ′, {ϕ′
j}j∈J′)A(par, f ′)

if hji ̸= hj′i
∧ J ̸= ∅ ∧ ji ∈ J ′

then out′ = out′ ∪ {(h′
ji , ϕ

′
ji)}, succi = 1

if succi = 1 for i ∈ {1, ..., n} then return (out, out′)

else return ⊥

Fig. 13: Algorithm GFA for Generalized Forking Lemma

MSdKA-UNF-1 (fresh m) MSdKA-UNF-2 (fresh (m,PK))

with Key Aggr. [12, 19, 20, 25, 28] [9, 26, 32, 35, 34, 38]

without Key Aggr. [16, 5, 36] [9, 10, 30, 33]

Fig. 14: Categorization of previous works w.r.t their targeted unforgeability def-
initions

B.2 Correctness Definition of MSvKA

The correctness of a MSvKA scheme is defined as follows.

Definition 12 (MSvKA-Correctness). A multi-signature scheme MSvKA is
correct if for all λ, for all m, for all n, for all pp← Pg(1λ) for all (ski, pki)←
Kg(pp) for i ∈ [n], for all (apk, π)← KAg({pki}i∈[n]), for all si ← MulSign(ski,
{pki}i∈[n], apk,m) for i ∈ [n],

VfKAg({pki}i∈[n], apk, π) = 1 ∧ Vf(apk,Combine({pki}i∈[n], π, {si}i∈[n]),m) = 1

C MSdKA Unforgeability Relations and Transformations

This section contains full proofs and/or additional definitions related to unfor-
geability notions of MSdKA and their relations. Also, Figure 14 is presented to
recap the position of existing schemes.
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Relations and Transformations. A natural question is whether we can have
black-box construction of a MSdKA-UNF-2 scheme from a MSdKA-UNF-1 one. If
the message space allows, the straightforward way is to sign (PK,m) instead of
m. The problem with that approach is that it immediately rules out most of the
efficiency and/or privacy properties we would gain by applying key aggregation,
since the set of public keys is then necessary to verify whether the signature is
valid. Thus, to have any hope of having MSdKA-UNF-2 while also keeping any
features that come with key aggregation, one needs to bind the signature to apk
instead of PK. In fact, previous works that achieve the MSdKA-UNF-2 notion,
follow this approach and mostly sign (apk,m) [32, 9, 16].

As a side result, we present a generic transformation based on the idea of key-
prefixing for MSdKA-UNF-2 security. To capture this idea in a generic transfor-
mation, an additional property on apk and the underlying key aggregation mech-
anism. We call this property key collision-freeness and it has been internally
used in [9, 32]. Intuitively, it assures that it is infeasible for an adversary to
find two non-empty sets of public keys PK0 and PK1 such that PK0 ̸= PK1

and KAg(PK0) = KAg(PK1). This notion is formally defined and proved below
for common key aggregation mechanism that is used by the literature. We also
show that our transformation holds and provide other side-results related to key
collision-freeness.

Definition 13 (MSdKA Key Collision-Freeness). A multi-signature scheme
MSdKA is key collision-free if for all PPT adversaries A, there exists a negligible

function µ(·) such that for all λ ∈ N, Pr
[
ExpMSdKA-KEY-CF

MSdKA,A (λ) = 1
]
≤ µ(λ).

ExpMSdKA-KEY-CF
MSdKA,A (λ)

pp← Pg(1λ), (PK0, PK1)← A(pp)
return 1 if PK0 ̸= PK1 ∧ KAg(PK0) = KAg(PK1)

Construction 7 (MSdKA-UNF-1 to MSdKA-UNF-2 Transformation) Let a
MSdKA-UNF-1 multi-signature scheme Π have the aggregated key space AP and
message space M = AP ×M∗. Then, we define Π ′ with message space M∗ as
follows. The algorithms (Pg,Kg,KAg,Combine) of Π ′ are exactly as in Π, and
the remaining algorithms are:

Π ′.MulSign(ski, PK,m): apk ← Π.KAg(PK). Returns si ← Π.MulSign(ski,
PK, (apk,m)).

Π ′.Vf(apk, σ,m): Outputs b← Π.Vf(apk, σ, (apk,m)).

Theorem 12. If Π is a multi-signature scheme that is MSdKA-UNF-1 secure
and key collision-free, then Π ′ from Construction 7 is MSdKA-UNF-2 secure.

Proof. Let F ′ be a MSdKA-UNF-2 forger against Π ′. Let (σ,m, PK) be F ′’s
forgery. An MSdKA-UNF-1 forger F against Π works as follows. It runs F ′ and
answers all queries using MSdKA-UNF-1 challenger as it is defined in Const-
ruction 7. Intuitively, if F ′ forgery is for not a fresh (m, apk), it means that PK
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in the forgery is different from the one F queried, so we find a key collision.
Otherwise, we directly have the forgery for MSdKA-UNF-1.

Game0 is equivalent to the original MSdKA-UNF-2 experiment.
Game1: Let event F be the event that there is a previous query for (m,PK ′)

such that PK ̸= PK ′ and KAg(PK) = KAg(PK ′). If the event F happens
we abort. By the winning condition PK ′ ̸= PK. We can build an adversary
A against key collision freeness of the scheme using such PK ′. Hence, Pr[F ] ≤
µMSdKA-KEY-CF(λ).

|Pr[W0]− Pr[W1]| ≤ µMSdKA-KEY-CF(λ)

We can simply build an MSdKA-UNF-1 forger F against Π by simulating the
public parameters and the challenge public key identically to the MSdKA-UNF-2
forger F ′ against Π ′. To simulate F ′’s signing query OMulSign

Π′ (PKi,mi), we make

a OMulSign
Π (PKi, (KAg(PKi),mi)) query to MSdKA-UNF-1 challenger. We know

that there is no signing query to MSdKA-UNF-1 challenger for (m, apk) where
apk ← KAg(PK) in Game1. Thus, (σ, (apk,m), PK) is a valid MSdKA-UNF-1
forgery for MS.

Pr[W1] ≤ µMSdKA-UNF-1(λ)

Thus, we either have a key collision, or MSdKA-UNF-1 forgery. ⊓⊔

Key Collision-freeness and DL-based Schemes We now show that key
collision-freeness is naturally achieved by DL-based schemes, such as BLS ([12])
and Schnorr-based ([12, 32, 25]) constructions that use the key aggregation tech-
nique initially proposed in [30]. Thus, we now consider an MSdKA scheme that
works in a cyclic group (G, g, p) of prime order p with generator g and that uses
a hash function H1 : {0, 1}∗ → Zp, and where pp contains ((G, g, p),H1). We
make a minor change to the previous schemes, [12, 25, 32, 30], and assume that
the secret key is sampled from Z∗p instead of Zp. By this change, we eliminate
the case that a pk may be the identity element of the group, so it is easier to
determine the distribution of key aggregation.

Construction 8 (DL-based Key Aggregation) Let a DL-based multi-sign-
ature scheme ΠDL have the following algorithms for key generation and key agg-
regation [30] where H1 : {0, 1}∗ → Zp is a hash function:

Kg(pp): For sk ← Z∗p and pk ← gsk, outputs (sk, pk).

KAg(PK): Outputs apk where apk ←
∏

pki∈PK pk
H1(pki,PK)
i .

Theorem 13. Any DL-based multi-signature scheme MSdKA with the key gen-
eration and aggregation algorithms defined in Construction 8 is key collision-free
if H1 is a random oracle.

Proof. Intuitively, we show that each apk is uniformly random per PK in ROM.
The rest of the proof is about dividing collisions into cases such that each case
can occur with negligible probability.
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A proof in the random oracle model is provided as follows. A hash query
H1(pk, PK) is answered as follows. The proof mainly relies on the fact that
each apk is uniformly random in ROM, since public keys are generators of the
underlying group. Once we know that apk’s are uniformly random, the rest
follows from the traditional birthday problem.

– if pk ∈ PK and this is the first query for PK, set H1(pk
′, PK)← Zp for all

pk′ ∈ PK.
– if pk ∈ PK and there is a previous query for PK, answer the query using

previously set value.
– if pk ̸∈ PK, simulate the query as a uniformly random choice from Zp.

We consider three cases for the winning event of A.
Event W1: there does not exist a query for PK0.

– Let apk1 ← KAg(PK1) which has been set by the previous hash query for
PK1. As there is no query for PK0 yet, it is simulated by the verification as

apk0 ← pk
H1(pk0,PK)
0 · Z for some pk0 ∈ PK0 and for some Z. As pk0 ∈ G∗

and H1(pk0, PK0) ∈ Zp is uniformly random, apk0 is uniformly random
choice from G. Hence, Pr[W1] = 1/p

Event W2: there does not exist a query for PK1.
– Similar to the first case. Pr[W2] = 1/p.

Event W3: there exists queries for both PK0 and PK1.
– Query for PKb creates a uniformly random apkb in G. Hence, for q random
oracle queries, Pr[W3] ≤ q2/p

It is obvious that

ExpMSvKA-KEY-BND
Π,A ≤ Pr[W1] + Pr[W2] + Pr[W3]

Thus, we conclude that ExpMSvKA-KEY-BND
Π,A ≤ (q2 + 2)/p. ⊓⊔

D MSvKA Unforgeability Relations and Transformations

This section contains some additional definitions and full proofs of several the-
orems which are related to the relations and transformations among MSvKA
unforgeability definitions.

Key Binding Definition. The formal definition of the key binding property
for a MSvKA scheme is as follows.

Definition 14 (MSvKA Key Binding). A multi-signature scheme Π is key
binding if for all PPT adversaries A, there exists a negligible function µ(·) such
that for all λ ∈ N, Pr

[
ExpMSvKA-KEY-BND

Π,A (λ) = 1
]
≤ µ(λ).

ExpMSvKA-KEY-BND
Π,A (λ)

pp← Pg(1λ), (apk, PK0, PK1, π0, π1)← A(pp)
return 1 if PK0 ̸= PK1 ∧ VfKAg(PK0, apk, π0) = 1 ∧ VfKAg(PK1, apk, π1) = 1
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D.1 Proof of MSdKA to MSvKA Transformation ( Theorem 1)

We show that the Construction 1 brings MSdKA-1 and MSdKA-2 unforgeability
properties to MSvKA-1 and MSvKA-3, respectively.

Proof. First, we consider the claim that if Π is MSdKA-UNF-2, then Π ′ is
MSvKA-UNF-3 secure. Let A be an efficient adversary against MSvKA-UNF-3
of MSvKA above. Then, we build B against MSdKA-UNF-2 of MSdKA as follows.

We run A to get the challenge (pp, pk∗) and run B with the same challenges.
The signing queries are answered as follows. Like in the original oracle, we check
whether MSvKA.VfKAg(PK, apk, π) = 1 or not. If not, the oracle outputs ⊥.
Otherwise, oracle calls MSdKA.MulSign(sk∗, PK,m) and simulates the query
with its result.

In the end, if A outputs a valid forgery (σ,m, apk, π, PK), then B out-
puts (σ,m, PK). As MSdKA.KAg(·) is deterministic, there exists only a single
aggregated public key for each set PK. Thus, if (PK, apk,m) ∈ QMSvKA, then
(PK,m) ∈ QMSdKA. Furthermore, if A’s output is a valid MSvKA-UNF-3 forgery,
then VfKAg(PK, apk, π) = 1 which means apk = MSdKA.KAg(PK). Therefore,
we conclude MSdKA.Vf(MSdKA.KAg(PK), σ,m) = 1.

Now, we consider the second claim. Let A be an efficient adversary against
MSvKA-UNF-1 of MSvKA scheme. To build the MSdKA-UNF-1 adversary, we
answer the MSvKA adversary’s queries in the identical way that we explained
above. Similar to the first claim, a valid MSdKA-UNF-1 forgery can be used as
MSvKA-UNF-1 forgery, since (·, ·,m) ̸∈ QMSvKA implies (·,m) ̸∈ QMSdKA. ⊓⊔

D.2 Proof of MSvKA-UNF-1 to MSvKA-UNF-3 Transformation
(Theorem 2)

This section contains the proof of our MSvKA-UNF-1 to MSvKA-UNF-3 transfor-
mation’s security and the proof of key-binding property of randBLS-1.

Proof. This proof follows almost the same strategy as the MSdKA transfor-
mation proof in Appendix C. Let F∗ be a MSvKA-UNF-3 forger againstMSvKA∗.
Let (σ,m, apk, π, PK) be F∗’s forgery and Game0 is equivalent to the original
MSvKA-UNF-3 experiment.

Game1: Let the event F be the event that there is a previous query for
(PK ′, apk, π′,m) such that VfKAg(PK, apk, π) = VfKAg(PK ′, apk, π′) = 1. If
the event F happens we abort. By the winning condition PK ′ ̸= PK. We can
build an adversary A against key binding of the scheme using such PK ′ and π′.
Hence, Pr[F ] ≤ µMSvKA-KEY-BND().

|Pr[W0]− Pr[W1]| ≤ µMSvKA-KEY-BND(λ)

We build an MSvKA-UNF-1 forger F against Π by simulating the public pa-
rameters and the challenge public key identically to the MSvKA-UNF-3 forger
F ′ against Π ′. To simulate F ′’s signing query OMulSign

Π′ (PKi, apki, πi,mi), we

make a OMulSign
Π (PKi, apki, πi, (apki,mi)) query to MSvKA-UNF-1 challenger.
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We know that there is no signing query to MSvKA-UNF-1 challenger for the
message (apk,m) in Game1. Thus, (σ, (apk,m), apk, π, PK) is a valid MSvKA-
UNF-1 forgery for Π.

Pr[W1] ≤ µMSvKA-UNF-1(λ)

Thus, Π is either not key binding, or not MSvKA-UNF-1 secure. ⊓⊔

E Relations Among Privacy Definitons

In this section, we analyze the relations among privacy games and models. We
provide the formal proofs for the relations we claimed in Section 4.2.

E.1 Proof of Theorem 4

The claim of Theorem 4 is that FullPriv property is strictly stronger than SetPriv
property. The natural way to prove this claim is to prove two weaker claims:
all FullPriv multi-signature schemes are SetPriv, and there is a multi-signature
scheme that is SetPriv, but not FullPriv. We prove that these weaker claims hold,
and we conclude that Theorem 4 holds.

SetPriv Does Not Imply FullPriv. The following theorem shows that SetPriv
does not imply FullPriv.

Theorem 14. There exists a multi-signature scheme Π ′ such that it is SetPriv,
but it does not have FullPriv property.

Proof. Intuitively, we take a multi-signature scheme that has both properties.
Then, on top of it, we build a new multi-signature scheme such that it has
SetPriv, but does not have FullPriv. The main strategy for creating such a multi-
signature scheme is changing key spaces in a way that the distribution of key
generation and key aggregation algorithm’s outputs will be distinguishable. Let
the multi-signature scheme Π = (Pg,Kg,KAg,MulSign,Combine,Vf,VfKAg) be
a multi-signature scheme which has FullPriv property against a Sign algorithm
andMemPriv property with secret key space S and public key space P. We create
Π ′ with secret key space S × {0, 1} and public key space P × {0, 1} as follows.

Π ′.Kg(pp): Runs (sk, pk)← Π.Kg(pp), and outputs ((sk, 0), (pk, 0)).
Π ′.KAg(PK ′): Let PK be the set of pk for (pk, ·) ∈ PK ′. Then the algorithm

runs (apk, π)← Π.KAg(PK) and outputs ((apk, 1), π).
Π ′.MulSign(sk′i, PK ′, apk′,m) : Computes PK as in Π ′.KAg(). Then parses

apk′ and sk′i as (apk, ·) and (ski, ·), respectively. Finally, outputs si ←
Π.MulSign(ski, PK, apk,m).

Π ′.Combine(PK ′, π, {si}pk′
i∈PK′): Computes PK as in Π ′.KAg(). Then, com-

putes and outputs σ ← Π.Combine(PK, π, {si}pki∈PK).
Π ′.VfKAg(PK ′, apk′, π): Parses/computes PK and apk accordingly and out-

puts b← Π.VfKAg(PK, apk, π).
Π ′.Vf(apk′, σ,m): Parses apk′ as (apk, ·) and then outputs the bit b← Π.Vf(apk

σ,m).
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B

pp← ExpSetPrivΠ (λ), n← B′(pp)

(SK,PK)← ExpSetPrivΠ (n), (SK′, PK′)← {(ski, (pki, 0)) : pki ∈ PK}

(S0, S1)← B′(SK′, PK′), apk ← ExpSetPrivΠ (S0, S1)

b∗ ← B′OChl′

((apk, 1)),ExpSetPrivΠ (b∗)

OChl(m)

return σ ← OChl′(m)

Fig. 15: Adversary B against ExpSetPrivπ which simulates ExpSetPrivπ′ against B′. For
notational clarity, the common symbols of both games are differentiated with
apostrophes (e.g. OChl and OChl′).

Not FullPriv. We show that Π ′ cannot be FullPriv for any Sign(·, ·) algorithm.
In FullPriv game, if b = 0, then the adversary gets pk′ in the form of (·, 1).
Otherwise, pk′ is in the form of (·, 0). Thus, the adversary trivially wins the
game.

SetPriv. Assume there is an adversary B′ against ExpSetPrivΠ′ . Then we can build
an adversary B against ExpSetPrivΠ , using B′. We show how B can simulate the view
of B′ as in Figure 15. B simulates the additional bits in individual public keys by
simply appending 0’s to the individual public keys. Once individual public keys
are sent to B′, all other outputs of B are independent of additional bits, and B
succeeds whenever B′ succeeds. ⊓⊔

FullPriv Implies SetPriv. The following theorem shows that FullPriv implies
SetPriv.

Theorem 15. If a multi-signature scheme Π has the FullPriv property against
any Sign() algorithm, then it has the SetPriv property.

Proof. Our proof strategy is as follows. We need to prove that apkS0
← KAg(S0)

and apkS1
← KAg(S1) (also the corresponding challenge queries) are indistingu-

ishable. We do it by providing two reductions from FullPriv property. First, we
change how we set the challenge public key to be sent to the adversary if b = 1.
We do this change by relying on FullPriv property. Then, we have a game where
if b = 1, the challenge public key is a fresh individual public key, and if b = 0,
we output an aggregated public key.

Game1: As it is shown in Figure 16, we change the way we set the challenge
public key if b = 1. Another change that we have to make to have an indistin-
guishable game hop is changing OChl. Game1 responds to OChl(m) queries as
σ ← Sign(sk0,m) if b = 1. We show that this change is indistinguishable by
building a FullPriv adversary as in Figure 17a. Both Game0 and Game1 plays
SetPriv experiment identically if bSetPriv = 0, so our adversary. If bSetPriv = 1, our
AFullPriv simulates SetPriv experiment to ASetPriv relying on FullPriv experiment.
If the challenge bit of FullPriv experiment, bFullPriv = 0, then AFullPriv simulates
Game0. Otherwise, it simulates Game1. Thus, if ASetPriv can distinguish Game1

46



from Game0 with non-negligible probability, AFullPriv can win FullPriv with non-
negligible probability. In particular, |Pr[W1]− Pr[W0]| ≤ 1/2 · µFullPriv(λ)

Now, we argue that Pr[W1] is negligible by relying on FullPriv property again.
We show the FullPriv adversary in Figure 17b. One could observe that Game1’s
challenge phase is already identical to FullPriv game. We send S0 as the challenge
set to FullPriv game. If bFullPriv = 0, our adversary simulates Game1 for bSetPriv = 0.
Otherwise, it simulates Game1 for bSetPriv = 1. Thus, we guess bFullPriv as b∗.
Finally, we conclude that Pr[W1] ≤ µFullPriv(λ). ⊓⊔

ExpSetPrivΠ,A (λ)//Game1
b← {0, 1}, pp← Pg(1λ), Q← ∅, n← A(pp), abort if n ̸> 0

(SK,PK) := ({ski}i∈[n], {pki}i∈[n])← (Kg(pp))i∈[n]

(S0, S1)← A(SK,PK)

if b = 0 :

(apk0, π0)←KAg(PKS0), pk ←apk0

if b = 1 : (sk1, pk1)←Kg(pp), pk←pk1

b∗ ← AOChl(·)(pk)

return 1 if b = b∗

OChl(m)

if b = 1 then

return σ ← Sign(sk,m)

Σ←{MulSign(ski,PKS0,apk0,m)}ski∈SKS0

return σ ← Combine(PKS0 , π0, Σ)

Fig. 16: Games of proof of Theorem 15

AFullPriv // For Game0-Game1 transition

bSetPriv ← {0, 1}
if bSetPriv = 1 then

pp← ExpFullPrivΠ (λ), n← ASetPriv(pp)

(SK,PK)← ExpFullPrivΠ (n)

(S0, S1)← ASetPriv(SK,PK)

pk ← ExpFullPrivΠ (S0)

b∗ ← AOChl
FullPriv

SetPriv (pk),ExpFullPrivΠ (b∗)

else

// Run ExpSetPrivΠ identically.

(a) FullPriv adversary for Game0-Game1 tran-
sition.

AFullPriv // For Game1

pp← ExpFullPrivΠ (λ), n← ASetPriv(pp)

(SK,PK)← ExpFullPrivΠ (n)

(S0, S1)← ASetPriv(SK,PK)

pk ← ExpFullPrivΠ (S0)

b∗ ← AOChl
FullPriv

SetPriv (pk)

ExpFullPrivΠ (b∗)

(b) FullPriv adversary for Game1.

Fig. 17: FullPriv adversaries for proof of Theorem 15. For notational clarity, sym-
bols used by both games have sub indexes to indicate which game they belong.
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By Theorem 15, FullPriv property acquires another meaning. Our main aim is
having FullPriv property under different models for BLSSign and SchnorrSign
algorithms. However, having FullPriv property against any Sign() algorithm is
useful even if we do not have FullPriv property for these algorithms, as we can
use this fact to prove that the scheme has MemPriv property under the same
model.

E.2 Proof of Theorem 5

Similar to the proof of Theorem 4 in Appendix E.1, we split Theorem 5 into two
weaker claims and prove each of them.

MemPriv does not imply SetPriv. The following theorem shows thatMemPriv
does not imply SetPriv.

Theorem 16. There exists a multi-signature scheme Π ′ which is MemPriv, but
not SetPriv.

Proof. Intuitively, we take a multi-signature scheme which has both properties.
Then, on top of it, we build a new multi-signature scheme such that it has
MemPriv, but does not have SetPriv. The main strategy for creating such multi-
signature scheme is changing key spaces in a way that aggregated keys will
reveal information about the size of underlying set. Let multi-signature scheme
Π = (Pg,Kg,KAg,MulSign,Combine,Vf,VfKAg) be a multi-signature scheme
which has FullPriv property against a Sign algorithm and MemPriv property
with secret key space S and public key space P. We create Π ′ with secret key
space S × Z2λ and public key space P × Z2λ for some security parameter λ as
follows.

– Π ′.Kg(pp): Runs (sk, pk)← Π.Kg(pp) and outputs ((sk, 0), (pk, 0)).
– Π ′.KAg(PK ′): Let PK be the set of pk for (pk, ·) ∈ PK ′. Then the algorithm

runs (apk, π)← Π.KAg(PK) and outputs ((apk, |PK ′|), π).
– Π ′.MulSign(sk′i, PK ′, apk′,m): Computes PK as in Π ′.KAg(). Then parses

apk′ and sk′i as (apk, ·) and (ski, ·), respectively. Finally, outputs si ←
Π.MulSign(ski, PK, apk,m).

– Π ′.Combine(PK ′, π, {si}pk′
i∈PK′): Computes PK as in Π ′.KAg(). Then, co-

mputes and outputs σ ← Π.Combine(PK, π, {si}pki∈PK).
– Π ′.VfKAg(PK ′, apk′, π): Parses/computes PK and apk accordingly and out-

puts b← Π.VfKAg(PK, apk, π).
– Π ′.Vf(apk′, σ,m): Parses apk′ as (apk, ·) and then outputs the bit b ←

Π.Vf(apk, σ,m).

Not SetPriv. An adversary ASetPriv can easily win SetPriv as follows. ASetPriv

plays the game with the inputs n← 2, S0 ← {1}, and S1 ← {1, 2} without any
further oracle queries. The returned public key apk′ from the game is in the form
of (·, r) where r = |Sb|. As two sets have different sizes, ASetPriv wins the game
with probability 1.
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MemPriv. We show that the multi-signature scheme Π ′ is MemPriv if Π is
MemPriv. To do that, we build an adversary B against ExpMemPriv

Π using an
adversary B′ against ExpMemPriv

Π′ as in Figure 18. B simulates the view of B′
perfectly without knowing the challenge bit bMemPriv. As |S0| = |S1|, the size of
the challenge set does not reveal any information that B′ does not have. Thus,
B wins whenever B′ wins. ⊓⊔

B
pp← ExpMemPriv

Π (λ), n← B′(pp)

(SK,PK)← ExpMemPriv
Π (n), (SK′, PK′)← {(ski, (pki, 0))}pki∈PK

(S0, S1)← B′(SK′, PK′), apk ← ExpMemPriv
Π (S0, S1)

b∗ ← B′OChl′

((apk, |S0|))

ExpMemPriv
Π (b∗)

OChl′(m)

return σ ← OChl(m)

Fig. 18: Adversary B against ExpMemPriv
π which simulates ExpMemPriv

π′ against B′.
For notational clarity, the common symbols of both games are differentiated with
apostrophe (e.g. OChl and OChl′).

SetPriv implies MemPriv. The following theorem shows that FullPriv implies
SetPriv.

Theorem 17. If a multi-signature scheme Π has the SetPriv property, then it
has the MemPriv property.

Proof. We show this implication by building an adversary ASetPriv on top of an
adversary AMemPriv in Figure 19. As the original games in Figure 6 shows, SetPriv
and MemPriv games only differ for the additional abort condition in MemPriv.
Thus, the only additional step thatASetPriv performs beyond forwarding messages
is checking the validity of challenge sets forMemPriv game. This step is necessary
to simulate MemPriv game indistinguishably. Other than that, SetPriv game is
already identical to MemPriv game. ⊓⊔

E.3 Relations between KPK and AbOPK Models

For completeness, we state the formal theorem for the relation that KPK model
is strictly stronger than AbOPK model. The main difference between different
models is the amount of revealed individual public keys. It is straightforward to
show that KPK implies AbOPK and the reverse does not hold. It is also easy
to see that the implication FullPriv ⇒ SetPriv ⇒ MemPriv hold in the AbOPK
model as well. For the following analysis we therefore always prove only the
strongest privacy property that is achieved by each scheme.
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ASetPriv

pp← ExpSetPrivΠ (λ), n← AMemPriv(pp), (SK,PK)← ExpSetPrivΠ (n)

(S0, S1)← AMemPriv(SK,PK)

abort if |Sj \S1−j | ̸=1 for j ∈ {0, 1}

pk ← ExpSetPrivΠ (S0, S1), b
∗ ← AOChl

SetPriv
MemPriv(pk),Exp

SetPriv
Π (b∗)

OChl
SetPriv(m)

return σ ← OChl
MemPriv(m)

Fig. 19: Adversary for the SetPriv⇒ MemPriv implication.

Theorem 18 (KPK ⇒ AbOPK). For any MSvKA scheme and X ∈ {FullPriv,
SetPriv,MemPriv} it holds that X-KPK implies, and is strictly stronger than,
X-AbOPK.

Proof. This proof needs the correctness of two sub-claims which we investigate
below.

X-KPK Implies X-AbOPK This implication can easily be proven by showing
that if a multi-signature scheme is not X-AbOPK, then it is not X-KPK. We can
answer the queries of an X-AbOPK adversary using an X-KPK challenger. We
can output the guess bit b∗ of X-AbOPK adversary to X-KPK challenger directly.
The only difference between the models remaining is the abort case in AbOPK.
However, as AbOPK abort case is more restricted than KPK, we win against
X-KPK challenger whenever X-AbOPK adversary wins against us.

X-AbOPK Does Not Imply X-KPK We do not provide a proof for this state-
ment as existing schemes which we investigate in Section 6 already shows it. ⊓⊔

F Proofs for randBLS-1 and randBLS-2

This section presents the unforgeability and privacy proofs of our randBLS-1 and
randBLS-2 schemes.

F.1 Proof of MSvKA-UNF-1 Security (Theorem 6)

As the proof sketch explains, we build an algorithm B that will play the role of
challenger using a co-CDH instance. However, we will first apply a few changes
to the unforgeability game through a sequence of games so that B can simulate
the resulting game using the co-CDH instance.

Proof. Game1: Changes from Game0 is presented in Figure 20. This game adds a
counter to count the H0 queries and changes the way we answer the H0 queries
so that we know the discrete logarithms of output values. The counter will be
used to choose which H0 query to set an external value A in Game2. The discrete
logarithm values will be used to answer multi-signature queries without knowing
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ExpMSvKA-UNF-1
Π,A Game1 , Game2

pp← Pg(1λ), (pk∗, sk∗)← Kg(pp), Q← ∅

j0 ← 0 , k ← [qH0 ], A← G

(σ,m, apk, π, PK)← AOMulSign

(pp, pk∗)

if HT0(m) ̸= A : abort

return 1 if Vf(apk, σ,m) = 1

∧ VfKAg(PK, apk, π) = 1 ∧ pk∗ ∈ PK

∧ (m, ·, ·) ̸∈ Q

OH0(m) Game1 , Game2

if HT0(m) =⊥
HT0(m)← G

j0 ← j0 + 1, rj0 ← Zp,HT0(m)← grj0

if j0 = k : HT0(m)← A

return HT0(m)

Fig. 20: Games of randBLS-1 Unforgeability Proof

the secret key. Both changes are made to serve the upcoming proof steps and
are invisible to the adversary, Pr[W1] = Pr[W0].

Game2: In this game, we guess the message that the adversary will perform a
forgery and we abort if the forgery was not for that message. We fix the H0 query
for the guessed message to a random value A. This value will be replaced by A
value of a co-CDH instance in the upcoming steps. As our guess is independent
from the adversary’s outputs and we simulate Game1 perfectly until the abort
condition, Pr[W2] = Pr[W1]/qH0 .

Game3: The previous game hops were similar with the original BLS signa-
ture’s unforgeability proof. However, this game hop is special to multi-signature
case and it is shown in Figure 21. In this game hop, we change how we answer
H1 queries, and it will be useful to have a point that we can fork on in later
steps. Namely, whenever there is a new H1 query for a set that contains pk∗, we
set hash table not only for the queried public key, but also for the other public
keys from the set. At the end, we set the hash table for pk∗. Later, when we
fork from the point where we set the hash table for pk∗, we will be sure that the
hash table has the identical values for all other public keys in the set. As these
changes are all internal and we keep simulating all queries as uniformly random
values from Zp, Pr[W3] = Pr[W2].

ExpMSvKA-UNF-x
Π,A Game3

pp← Pg(1λ), (pk∗
, sk

∗
)← Kg(pp), Q← ∅

j0 ← 0, k ← [qH0
], A← G, j1 ← 0

(σ,m, apk, π, PK)← AOMulSign
(pp, pk

∗
)

if HT0(m) ̸= A : abort

return 1 if Vf(apk, σ,m) = 1

∧ VfKAg(PK, apk, π) = 1 ∧ pk
∗ ∈ PK

∧ (m, ·, ·) ̸∈ Q

OH1(pk, PK, π)Game3

if HT1(pk, PK, π) =⊥
if pk ∈ PK ∧ pk∗ ∈ PK then

for pki ∈ PK \ {pk∗} : HT1(pki, PK, π)← Zp

j1 ← j1 + 1,HT1(pk
∗, PK,m)← Zp

else : HT1(pk, PK, π)← Zp

return HT1(pk, PK, π)

Fig. 21: Games of randBLS-1 Unforgeability Proof

51



We will build our co-CDH adversary, but we need to explain the algorithm
B first. B takes a co-CDH instance as an input and randomness (ρ, h1, ..., hqH1

).

Then, similar with the proof original BLS signature, it sets pk∗ as B̂. Also,
B does not sample a group element A and uses the input A value. Since we
do not know the corresponding secret key for B̂, we need to answer signing
queries without a secret key. We can do this easily by using rj0 values from
H0 queries, except the H0(m) = A query. However, we do not have to sim-
ulate a signing query for this message as we know that there will not be a
signing query for this message by Game2. Thus, we simulate signing queries of
Game3 perfectly. While we answer H0 queries identically to Game3, we have a
slight change for H1 queries. We change how we set H1(pk

∗, PK, π) queries. In-
stead of sampling a fresh random value from the randomness ρ, we use hj1 val-
ues. By doing that. we will be able to fork from the points that we set this
query. As this change is also indistinguishable, we simulate H1 queries per-
fectly, too. Finally, since algorithm B simulates Game3 perfectly, we conclude

that Pr
[
res← B((A,B, B̂), (ρ, h1, ..., hqH1

)) : res ̸= (∅,⊥)
]
= Pr[W3].

B((BG, A,B, B̂), (ρ, h1, ..., hqH1
))

pp← BG, pk∗ ← B̂,Q← ∅
j0 ← 0, k ← [qH0 ], j1 ← 0

(σ,m, apk, π, PK)← AOMulSign

(pp, pk∗)

if HT0(m) ̸= A : abort

return (∅,⊥) if Vf(apk, σ,m) = 0

∨ VfKAg(PK, apk, π) = 0 ∨ pk∗ ̸∈ PK

∨ (m, ·, ·) ∈ Q

Find jf s.t. HT1(pk
∗, PK, π) = hjf

else return (J = {jf}, {σ, hjf })

OH1(pk, PK, π)

if HT1(pk, PK, π) =⊥
if pk ∈ PK ∧ pk∗∈PK then

for pki ∈ PK \ {pk∗} :

HT1(pki, PK, π)← Zp

j1 ← j1 + 1,HT1(pk
∗, PK,m)← hj1

else : HT1(pk, PK, π)← Zp

return HT1(pk, PK, π)

OH0(m)

if HT0(m) =⊥
j0 ← j0 + 1, rj0 ← Zp,HT0(m)← grj0

if j0 = k : HT0(m)← A

return HT0(m)

OMulSign(PKi, apki, πi,mi)
if pk∗ ̸∈ PKi ∨ VfKAg(PKi, apki, πi) ̸= 1

then return ⊥
Q← Q ∪ {(mi, PKi, apki)}
if HT0(mi) =⊥ : H0(mi)

s← Brmi // W.l.o.g. let H0(mi) = g
rmi

return s

Fig. 22: Algorithm B

Now, we can explain our co-CDH adversary in Figure 23. Aco-cdh takes a
co-CDH instance (BG, A,B, B̂) and runs GF with algorithm B for the input
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(BG, A,B, B̂). First, we explain how the successful output of GFB can be used
to solve the co-CDH instance. For a successful output, we have two signatures σ
and σ′ such that they are valid for the aggregated public keys apk and apk′. In
particular, we know that e(A, apk) = e(σ, ĝ) and e(A, apk′) = e(σ′, ĝ). Further-
more, we also know that two runs of algorithm B were identical up to the point
jf which is a point in a H1 query for some (pk, PK, π). As the runs were identical
up to jf , we know that the forgery is performed for the same (pk, PK, π) and
we also know that H1(pk, PK, π) queries are set to the identical values except
pk = pk∗. For pk = pk∗, H1(pk, PK, π) queries are set to a and a′ for two runs.
It means that apk/apk′ = (pk∗)a−a

′
as all other public keys cancel each other.

On the other hand, we know that a and a′ are not equal by Forking Lemma, so
pk∗ values cannot be canceled out. By using signature verification equations, we
know that e(A, apk/apk′) = e(σ/σ′, ĝ) = e(A, (pk∗)a−a

′
). Thus, we know that

(σ/σ′)1/(a−a
′) is the solution to the co-CDH instance. Finally, we conclude that

Aco-cdh succeeds whenever GFB succeeds, and GFB succeeds with the probabil-
ity Pr[W3]/8 by Generalized Forking Lemma if p > 8qH/Pr[W2]. Thus, Aco-cdh

succeeds with the probability Pr[W0]/(8 · qH0
). ⊓⊔

Aco-cdh(BG, A,B, B̂)

res← GFB(pp,A,B, B̂), if res =⊥ : abort

Parse res as (out, out′), out as {σ, a} and out′ as {σ′, a′}

return (σ/σ′)1/(a−a′)

Fig. 23: Algorithm Aco-cdh

F.2 Proof of FullPriv-KPK Property (Theorem 7)

We prove the theorem through a short sequence of games, where Game0 denotes
the game played against the original randBLS-1. In the final game, the challenge
public key and challenge oracle are entirely independent of the adversary’s output
S∗ as well as of the challenge bit b, and thus the adversary can win the FullPriv-
KPK game only with probability 1/2. Our main strategy is that setting apk∗ to
a freshly sampled public key and answering OChl queries related to apk∗ using
the corresponding secret key and BLSSign algorithm. By doing that, we will end
up in a game where regardless of what the challenge bit b is, all queries are
answered using a freshly sampled key pair and BLSSign algorithm.

Proof. Game1: Figure 24 shows the changes between Game0 and Game1. To
achieve the main goal we explained above, we need several steps. The first step
is simulating the FullPriv-KPK game without using key aggregation and multi-
signature algorithms. In Game1, we set an aggregated secret key ask∗ and apk∗

is just computed as a function of ask∗, exponentiation. Using ask∗, OChl queries
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ExpFullPriv-KPKrandBLS-1,A(λ) Game1
b← {0, 1}, pp← Pg(1λ), Q← ∅, n← A(pp), abort if n ̸> 0

(SK,PK) := ({ski}i∈[n], {pki}i∈[n])← (Kg(pp))i∈[n]

S∗ ← A(SK,PK)

if b = 0 then

π∗ ← {0, 1}λ, i← S∗, r ← H1(pki, PKS∗ , π∗)

ask∗← ski · r +
∑

j∈S∗\{i}
skj · H1(pkj , PKS∗ , π∗)

apk∗ ← ĝask
∗
, pk∗ ← apk∗

if b = 1 : (sk, pk)← Kg(pp), pk∗ ← pk

b∗ ← AOChl(·)(pk∗), return 1 if b = b∗

OChl(m)

if b = 1 then

return σ ← BLSSign(sk,m)

σ ← BLSSign(ask∗,m)

return σ

Fig. 24: Changes between Game0 and Game1 of FullPriv − KPK experiment.

can be answered using BLSSign algorithm instead of MulSign() and Combine()
algorithms even in the case that b = 0. The change in the original experiment
is invisible to the adversary as we just perform an additional computation that
does not impact the output. Furthermore, it is straightforward to observe that
the change in OChl is also perfectly indistinguishable to the adversary as the
resulting σ value due to the change in Game1 is identical to the σ value which is
computed in Game0.Thus, we conclude that Pr[W1] = Pr[W0].

In Game1, we have a game in which apk∗ is computed from a secret key ask∗

and OChl queries are answered using the same secret key and BLSSign. In the
following steps, we aim to show that the secret key ask∗ is indistinguishable
from a freshly sampled secret key.

Game2: To show that ask∗ is indistinguishable from a freshly sampled secret
key, we need to show that we do not reveal information about π∗ to the adversary
and it will take two steps. We start by adding an abort condition in this game.
Namely, if there was a H1 query before setting the challenge set S∗ which contains
π∗, then Game2 aborts. Otherwise, it plays Game1 identically. We show that this
change is indistinguishable to the adversary as it only occurs with a negligible
probability. π∗ is a freshly sampled random value, so the probability that there
is a previous query for π∗ is q/2λ. Thus, we conclude that |Pr[W2]− Pr[W1]| ≤
q/2λ.

Game3: In this game, we show that the adversary can learn the hash values
related to π∗ only with a negligible probability. In Game2, we already achieve a
game hop that the adversary did not learn any hash values related to π∗ until
the challenge phase. To show that such queries are unlikely to occur even after
the challenge phase, we add another abort condition in OH1 . According to this
condition, we abort if there are any hash queries related to π∗ after the challenge
phase. To check whether a query is before or after the challenge phase, we add
the flag Chlinit which is set to 0 by default and it is set to 1 in the challenge
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ExpFullPriv-KPKrandBLS-1,A(λ)Game1,Game2, Game3

// No change in the initialization...

S∗ ← A(SK,PK)

if b = 0 then

π∗ ← {0, 1}λ

if ∃(pk, PK′)(HT1(pk, PK′, π∗) ̸=⊥) : abort

i← S∗, r ← H1(pki, PKS∗ , π∗)

ask∗← ski · r +
∑

j∈S∗\{i}

skj · H1(pkj , PKS∗ , π∗)

apk∗ ← ĝask
∗
, pk∗ ← apk∗ ,Chlinit← 1

if b = 1 : (sk, pk)← Kg(pp), pk∗ ← pk

b∗ ← AOChl(·)(pk∗), return 1 if b = b∗

OH1(pk′, PK′, π′)

if Chlinit = 1 :

if π′ = π∗ : abort

if HT1(pk
′, PK′, π′) =⊥ :

HT1(pk
′, PK′, π′)← Zp

return HT1(pk
′, PK′, π′)

Fig. 25: Games Game1, Game2, and Game3 of FullPriv-KPK proof.

phase. We note that the game itself makes hash queries related to π∗ to compute
the aggregated secret key ask∗. However, the abort condition is only valid after
the flag Chlinit is set. Thus, these queries do not cause a trivial abort.

We argue that the abort condition that we add holds only with a negligible
probability as follows. By Game2, we already know that there is no such random
oracle query until the challenge set has been set. After that, the only value that
we use which is dependent on π∗ is ask∗. As we know that the adversary did
not call the random oracle for π∗ before we set ask∗, r = H1(pki, PKS∗ , π∗) is
uniformly random to the adversary. It follows that ski · r is uniformly random
and finally the ask∗ value is uniformly random. Thus, ask∗ does not reveal any
information about π∗. Now, we know that the oracles of Game3 except OH1 do
not reveal any information about π∗. Hence, the adversary can make an OH1

query only with the negligible probability, |Pr[W3]− Pr[W2]| ≤ q/2λ.

Game4: Finally, we can start changing the way we compute ask∗ to show
its indistinguishability from a freshly sampled key. We change how we compute
ask∗. We change ski ·r to r∗ for a uniformly random r∗. As r is uniformly random
in Zp, ski · r is perfectly indistinguishable from r∗, so Pr[W4] = Pr[W3].

Game5: In this game, we sample ask∗ uniformly from Zp. As r∗ is uniformly
random in Zp, r

∗+
∑

j∈S∗\{i} skj ·H1(pkj , PK, π∗) is perfectly indistinguishable

from ask∗ ← Zp, so Pr[W5] = Pr[W4].

Game6: Finally, we initialize key pair (ask∗, apk∗) as fresh individual key
pair. While Game5 samples ask∗ from Zp, Kg(pp) samples it from Z∗p, which is a
negligible difference. In particular, the advantage of the adversary against Game5
is |Pr[W6]− Pr[5]| ≤ 1/p.

In the final game Game6, challenge public key pk∗ and corresponding signa-
tures are computed as individual BLS signatures independently form the chal-
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ExpFullPriv-KPKrandBLS-1,A(λ)Game4, Game5 , Game6

// No change in the initialization...

S∗ ← A(SK,PK)

if b = 0 then

π∗ ← {0, 1}λ

if ∃(pk, PK′)(HT1(pk, PK′, π∗) ̸=⊥) : abort

i← S∗, r∗ ← Zp, ask
∗ ← r∗ +

∑
j∈S∗\{i}

skj · H1(pkj , PKS∗ , π∗)

ask∗ ← Zp, apk
∗ ← ĝask

∗
, (ask∗, apk∗)← Kg(pp) , pk∗ ← apk∗,Chlinit← 1

if b = 1 : (sk, pk)← Kg(pp), pk∗ ← pk

b∗ ← AOChl(·)(pk∗), return 1 if b = b∗

Fig. 26: Games Game4, Game5, and Game6 of FullPriv-KPK proof.

lenge bit b and challenge set S∗. Thus, the adversary has no more advantage
than a random guess, so Pr[W6] = 1/2. Hence, using the sequences of games, we
conclude that ∣∣∣ExpFullPriv-KPKrandBLS-1,A(λ)− 1/2

∣∣∣ ≤ 2 · q/2λ + 1/p

⊓⊔

F.3 Proof of randBLS-1’s Key Binding Property (Theorem 8)

The proof strategy is similar to the proof in Appendix C for the key collision-
freeness. We show that apk’s are distributed uniformly using the random oracle,
and collisions occur with negligible probabilities in 3 different cases.

Proof. A proof in the random oracle model is provided as follows. A hash query
H1(pk, PK, π) is answered as follows.

– if pk ∈ PK and this is the first query for such PK and π, then we set
H1(pk

′, PK, π)← Zp for all pk′ ∈ PK.
– if pk ∈ PK and there is a previous query for such PK and π, we answer the

query using the previously set value.
– if pk ̸∈ PK, simulate the query as a uniformly random choice from Zp.

We consider three cases for the winning event of A.

Event W1: There does not exist a query for PK0 and π0.
– Let apk1 ← KAg(PK1) which has been set by the previous hash query for
PK1. As there is no query for PK0 yet, it is simulated by the verification as

apk0 ← pk
H1(pk0,PK,π0)
0 ·Z for some pk0 ∈ PK0 and for some Z. As pk0 ∈ G∗

and H1(pk0, PK0, π0) ← Zp is uniformly random value, apk0 is uniformly
random choice from G. Hence, Pr[W1] = 1/p

Event W2: there does not exist a query for PK1.
– Similar to the first case. Pr[W2] = 1/p.
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Event W3: there exists queries for both PK0 and PK1.
– Query for (PKb, πb) creates a uniformly random apkb in G. Hence, for q
random oracle queries, Pr[W3] ≤ q2/p

It is obvious that

ExpMSvKA-KEY-BND
Π,A ≤ Pr[W1] + Pr[W2] + Pr[W3]

Thus, we conclude that ExpMSvKA-KEY-BND
Π,A ≤ (q2 + 2)/p. ⊓⊔

F.4 Proof of randBLS-2’s FullPriv-KPK Property (Theorem 9)

Proof. The proof is identical to the proof of randBLS-1’s FullPriv-KPK property
except that we use the related Sign instead of BLSSign.

Game1: Let ask
∗ ←

∑
skj∈SKS∗ skj ·H1(pkj , PKS∗ , π∗). This game is identical

to Game0 except the way we answer OChl queries. If b = 1, the oracle queries
are answered as they used to be. If b = 0, instead of creating a multi-signature,
we compute the output as σ ← Sign(ask∗,m). This change does not affect the
adversary’s view, so Game1 is perfectly indistinguishable from Game0.

Pr[W1] = Pr[W0]

The remaining part of the proof is identical to the related part of the proof of
Theorem 7.

G Analysis of Existing Schemes

In this section, we provide the detailed proofs of privacy properties of two existing
multi-signatures scheme in Section 6.2.

G.1 Proof of FullPriv-AbOPK for BLS-dMS ( Theorem 10)

We show that the BLS-dMS scheme satisfies FullPriv-AbOPK privacy, i.e., pro-
duces multi-signatures and aggregate keys that are indistinguishable from indi-
vidual ones (derived via BLSSign, from Sec. 2), if at least one public key remains
unknown to the adversary.

Proof. We prove the theorem through a short sequence of games, where Game0
denotes the game played against the original BLS-dMS. In the final game, the
challenge public key and challenge oracle are entirely independent of the adversary’s
output S∗ as well as of the challenge bit b, and thus the adversary can win the
FullPriv-AbOPK game only with probability 1/2. Our main strategy is that set-
ting apk∗ to a freshly sampled public key and answering OChl queries related to
apk∗ using the corresponding secret key and BLSSign algorithm. By doing that,
we will end up in a game where regardless of what the challenge bit b is, all
queries are answered using a freshly sampled key pair and BLSSign algorithm.
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ExpFullPriv-AbOPK
BLS-dMS,A (λ) Game1

b← {0, 1}, pp← Pg(1λ), Q← ∅, n← A(pp), abort if n ̸> 0

(SK,PK) := ({ski}i∈[n], {pki}i∈[n])← (Kg(pp))i∈[n]

S∗ ← A(SK,PK),abort if 1 ̸∈ Sj for j ∈ {0, 1}
if b = 0 then

r ← H1(pk1, PKS∗)

ask∗← sk1 · r +
∑

j∈S∗\{1}
skj · H1(pkj , PKS∗)

apk∗ ← ĝask
∗
, pk∗ ← apk∗

if b = 1 : (sk, pk)← Kg(pp), pk∗ ← pk

b∗ ← AOChl(·)(pk∗), return 1 if b = b∗

OChl(m)

if b = 1 then

return σ ← BLSSign(sk,m)

σ ← BLSSign(ask∗,m)

return σ

Fig. 27: Changes between Game0 and Game1 of FullPriv-AbOPK proof of
BLS-dMS. Gray highlight is used to indicate the changed code between games.

Game1: Figure 27 shows the changes between Game0 and Game1. To achieve
the main goal we explained above, we need several steps. The first step is simu-
lating FullPriv-AbOPK game without using key aggregation and multi-signature
algorithms. In Game1, we set an aggregated secret key ask∗ and apk∗ is just com-
puted as a function of ask∗, exponentiation. Using ask∗, OChl queries can be an-
swered using BLSSign algorithm instead of MulSign() and Combine() algorithms
even in the case that b = 0. The change in the original experiment is invisible to
the adversary as we just perform an additional computation that does not im-
pact the output. Furthermore, it is straightforward to observe that the change
in OChl is also perfectly indistinguishable to the adversary as the resulting σ
value due to the change in Game1 is identical to the σ value which is computed
in Game0.Thus, we conclude that Pr[W1] = Pr[W0].

In Game1, we have a game in which apk∗ is computed from a secret key ask∗

and OChl queries are answered using the same secret key and BLSSign. In the
following steps, we aim to show that the secret key ask∗ is indistinguishable
from a freshly sampled secret key.

Game2: To show that ask∗ is indistinguishable from a freshly sampled se-
cret key, we need to show that we do not reveal information about pk1 to the
adversary and it will take two steps. We start by adding an abort condition in
this game. Namely, if there was a H1 query before setting the challenge set S∗

which contains pk1, then Game2 aborts. Otherwise, it plays Game1 identically.
We show that this change is indistinguishable to the adversary as it only oc-
curs with a negligible probability. pk1 is a freshly sampled random value, so the
probability that there is a previous query for pk1 is q/p. Thus, we conclude that
|Pr[W2]− Pr[W1]| ≤ q/p.

Game3: In this game, we show that the adversary can learn the hash values
related to pk1 only with a negligible probability. In Game2, we already achieve a
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ExpFullPriv-AbOPK
BLS-dMS,A (λ)Game1,Game2, Game3

// No change in the initialization...

S∗ ← A(SK \ {sk1}, PK \ {pk1}),abort if 1 ̸∈ Sj for j ∈ {0, 1}
if b = 0 then

if ∃(PK′)(HT1(pk1, PK′) ̸=⊥) : abort

r ← H1(pk1, PKS∗)

ask∗← sk1 · r +
∑

j∈S∗\{1}

skj · H1(pkj , PKS∗)

apk∗ ← ĝask
∗
, pk∗ ← apk∗ ,Chlinit← 1

if b = 1 : (sk, pk)← Kg(pp), pk∗ ← pk

b∗ ← AOChl(·)(pk∗), return 1 if b = b∗

OH1(pk′, PK′)

if Chlinit = 1 :

if pk′ = pk1 : abort

if HT1(pk
′, PK′) =⊥ :

HT1(pk
′, PK′)← Zp

return HT1(pk
′, PK′)

Fig. 28: Games Game1, Game2, and Game3 of FullPriv-AbOPK proof of BLS-dMS.

ExpFullPriv-AbOPK
BLS-dMS,A (λ)Game4, Game5 , Game6

// No change in the initialization...

S∗ ← A(SK \ {sk1}, PK \ {pk1}),abort if 1 ̸∈ Sj for j ∈ {0, 1}
if b = 0 then

if ∃(PK′)(HT1(pk1, PK′) ̸=⊥) : abort

r∗ ← Zp, ask
∗ ← r∗ +

∑
j∈S∗\{1}

skj · H1(pkj , PKS∗)

ask∗ ← Zp, apk
∗ ← ĝask

∗
, (ask∗, apk∗)← Kg(pp) , pk∗ ← apk∗,Chlinit← 1

if b = 1 : (sk, pk)← Kg(pp), pk∗ ← pk

b∗ ← AOChl(·)(pk∗), return 1 if b = b∗

Fig. 29: Games Game4, Game5, and Game6 of FullPriv-KPK proof of BLS-dMS.

game hop that the adversary did not learn any hash values related to pk1 until
the challenge phase. To show that such queries are unlikely to occur even after
the challenge phase, we add another abort condition in OH1 . According to this
condition, we abort if there is any hash queries related to pk1 after the challenge
phase. To check whether a query is before or after the challenge phase, we add
the flag Chlinit which is set to 0 by default and it is set to 1 in the challenge phase.
We note that the game itself makes hash queries related to pk1 to compute the
aggregated secret key ask∗. However, the abort condition is only valid after the
flag Chlinit is set. Thus, these queries do not cause a trivial abort.

We argue that the abort condition that we add holds only with a negligible
probability as follows. By Game2, we already know that there is no such random
oracle query until the challenge set has been set. After that, the only value that
we use which is dependent on pk1 is ask∗. As we know that the adversary did
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not call the random oracle for pk1 before we set ask∗, r = H1(pk1, PKS∗) is
uniformly random to the adversary. It follows that sk1 · r is uniformly random
and finally the ask∗ value is uniformly random. Thus, ask∗ does not reveal any
information about π∗. Now, we know that the oracles of Game3 except OH1 do
not reveal any information about pk1. Hence, the adversary can make an OH1

query only with the negligible probability, |Pr[W3]− Pr[W2]| ≤ q/p.
Game4: Finally, we can start changing the way we compute ask∗ to show

its indistinguishability from a freshly sampled key. We change how we compute
ask∗. We change sk1 · r to r∗ for a uniformly random r∗. As r is uniformly
random in Zp, sk1 · r is perfectly indistinguishable from r∗, so Pr[W4] = Pr[W3].

Game5: In this game, we sample ask∗ uniformly from Zp. As r∗ is uniformly
random in Zp, r

∗ +
∑

j∈S∗\{i} skj · H1(pkj , PK) is perfectly indistinguishable

from ask∗ ← Zp, so Pr[W5] = Pr[W4].
Game6: Finally, we initialize key pair (ask∗, apk∗) as fresh individual key

pair. While Game5 samples ask∗ from Zp, Kg(pp) samples it from Z∗p, which is a
negligible difference. In particular, the advantage of the adversary against Game5
is |Pr[W6]− Pr[5]| ≤ 1/p.

In the final game Game6, challenge public key pk∗ and corresponding signa-
tures are computed as individual BLS signatures independently form the chal-
lenge bit b and challenge set S∗. Thus, the adversary has no more advantage
than a random guess, so Pr[W6] = 1/2. Hence, using the sequences of games, we
conclude that ∣∣∣ExpFullPriv-AbOPK

BLS-dMS,A (λ)− 1/2
∣∣∣ ≤ (2 · q + 1)/p

⊓⊔

G.2 Proof of FullPriv-AbOPK for MuSig - Theorem 11

Just as BLS-dMS, the Schnorr multi-signature scheme in Construction 6 also
achieves FullPriv-AbOPK, i.e., produces keys and signatures that are indistingu-
ishable from standard SchnorrSign ones. This again crucially relies on (at least)
one public key to remain secret.

Proof. We prove the theorem through a short sequence of games, where Game0
denotes the game played against the original MuSig. In the final game, the chal-
lenge public key and challenge oracle are entirely independent of the adversary’s
output S∗ as well as of the challenge bit b, and thus the adversary can win the
FullPriv-AbOPK game only with probability 1/2. Our main strategy is that set-
ting apk∗ to a freshly sampled public key and answering OChl queries related to
apk∗ using the corresponding secret key and SchnorrSign algorithm. By doing
that, we will end up in a game where regardless of what the challenge bit b is, all
queries are answered using a freshly sampled key pair and SchnorrSign algorithm.

Game1: Figure 30 shows the changes between Game0 and Game1. To achieve
the main goal we explained above, we need several steps. The first step is simu-
lating FullPriv-AbOPK game without using key aggregation and multi-signature
algorithms. In Game1, we set an aggregated secret key ask∗ and apk∗ is just
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ExpFullPriv-AbOPK
MuSig,A (λ) Game1

b← {0, 1}, pp← Pg(1λ), Q← ∅, n← A(pp), abort if n ̸> 0

(SK,PK) := ({ski}i∈[n], {pki}i∈[n])← (Kg(pp))i∈[n]

S∗ ← A(SK,PK),abort if 1 ̸∈ Sj for j ∈ {0, 1}
if b = 0 then

r ← H1(pk1, PKS∗)

ask∗← sk1 · r +
∑

j∈S∗\{1}
skj · H1(pkj , PKS∗)

apk∗ ← ĝask
∗
, pk∗ ← apk∗

if b = 1 : (sk, pk)← Kg(pp), pk∗ ← pk

b∗ ← AOChl(·)(pk∗), return 1 if b = b∗

OChl(m)

if b = 1 then

return σ ← BLSSign(sk,m)

σ ← SchnorrSign(ask∗,m)

return σ

Fig. 30: Changes between Game0 and Game1 of FullPriv-AbOPK proof of MuSig.
Gray highlight is used to indicate the changed code between games.

computed as a function of ask∗, exponentiation. Using ask∗, OChl queries can
be answered using SchnorrSign algorithm instead of MulSign() and Combine()
algorithms even in the case that b = 0. The change in the original experiment
is invisible to the adversary as we just perform an additional computation that
does not impact the output. The change in the original experiment is invisible
to the adversary as we just perform an additional computation that does not
impact the output. Furthermore, we can observe that the change in OChl is also
perfectly indistinguishable from Game1 as follows. A Schnorr signature σ can be
parsed as (s,R). An s value which is a part of a multi-signature is,

s =
∑

pki∈PK

si mod p

=
∑

pki∈PK

(ri + ski · c · H1(pki, PK)) mod p

= (

n∑
i=1

ri mod p+ c ·
∑

pki∈PK

ski · H1(pki, PK)) mod p

= (r + c · ask) mod p

We also know that r ←
∑n

i=1 ri is uniformly random in Zp just as in SchnorrSign.
Thus, we conclude that Pr[W1] = Pr[W0].

In Game1, we have a game in which apk∗ is computed from a secret key ask∗

and OChl queries are answered using the same secret key and SchnorrSign. In
the following steps, we aim to show that the secret key ask∗ is indistinguishable
from a freshly sampled secret key.

Game2: To show that ask∗ is indistinguishable from a freshly sampled se-
cret key, we need to show that we do not reveal information about pk1 to the
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ExpFullPriv-AbOPK
MuSig,A (λ)Game1,Game2, Game3

// No change in the initialization...

S∗ ← A(SK \ {sk1}, PK \ {pk1}),abort if 1 ̸∈ Sj for j ∈ {0, 1}
if b = 0 then

if ∃(PK′)(HT1(pk1, PK′) ̸=⊥) : abort

r ← H1(pk1, PKS∗)

ask∗← sk1 · r +
∑

j∈S∗\{1}

skj · H1(pkj , PKS∗)

apk∗ ← gask
∗
, pk∗ ← apk∗ ,Chlinit← 1

if b = 1 : (sk, pk)← Kg(pp), pk∗ ← pk

b∗ ← AOChl(·)(pk∗), return 1 if b = b∗

OH1(pk′, PK′)

if Chlinit = 1 :

if pk′ = pk1 : abort

if HT1(pk
′, PK′) =⊥ :

HT1(pk
′, PK′)← Zp

return HT1(pk
′, PK′)

Fig. 31: Games Game1, Game2, and Game3 of FullPriv-AbOPK proof of MuSig.

ExpFullPriv-AbOPK
MuSig,A (λ)Game4, Game5 , Game6

// No change in the initialization...

S∗ ← A(SK \ {sk1}, PK \ {pk1}),abort if 1 ̸∈ Sj for j ∈ {0, 1}
if b = 0 then

if ∃(PK′)(HT1(pk1, PK′) ̸=⊥) : abort

r∗ ← Zp, ask
∗ ← r∗ +

∑
j∈S∗\{1}

skj · H1(pkj , PKS∗)

ask∗ ← Zp, apk
∗ ← ĝask

∗
, (ask∗, apk∗)← Kg(pp) , pk∗ ← apk∗,Chlinit← 1

if b = 1 : (sk, pk)← Kg(pp), pk∗ ← pk

b∗ ← AOChl(·)(pk∗), return 1 if b = b∗

Fig. 32: Games Game4, Game5, and Game6 of FullPriv-KPK proof of MuSig.

adversary and it will take two steps. We start by adding an abort condition in
this game. Namely, if there was a H1 query before setting the challenge set S∗

which contains pk1, then Game2 aborts. Otherwise, it plays Game1 identically.
We show that this change is indistinguishable to the adversary as it only oc-
curs with a negligible probability. pk1 is a freshly sampled random value, so the
probability that there is a previous query for pk1 is q/p. Thus, we conclude that
|Pr[W2]− Pr[W1]| ≤ q/p.

Game3: In this game, we show that the adversary can learn the hash values
related to pk1 only with a negligible probability. In Game2, we already achieve a
game hop that the adversary did not learn any hash values related to pk1 until
the challenge phase. To show that such queries are unlikely to occur even after
the challenge phase, we add another abort condition in OH1 . According to this
condition, we abort if there is any hash queries related to pk1 after the challenge
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phase. To check whether a query is before or after the challenge phase, we add
the flag Chlinit which is set to 0 by default and it is set to 1 in the challenge phase.
We note that the game itself makes hash queries related to pk1 to compute the
aggregated secret key ask∗. However, the abort condition is only valid after the
flag Chlinit is set. Thus, these queries do not cause a trivial abort.

We argue that the abort condition that we add holds only with a negligible
probability as follows. By Game2, we already know that there is no such random
oracle query until the challenge set has been set. After that, the only value that
we use which is dependent on pk1 is ask∗. As we know that the adversary did
not call the random oracle for pk1 before we set ask∗, r = H1(pk1, PKS∗) is
uniformly random to the adversary. It follows that sk1 · r is uniformly random
and finally the ask∗ value is uniformly random. Thus, ask∗ does not reveal any
information about π∗. Now, we know that the oracles of Game3 except OH1 do
not reveal any information about pk1. Hence, the adversary can make an OH1

query only with the negligible probability, |Pr[W3]− Pr[W2]| ≤ q/p.
Game4: Finally, we can start changing the way we compute ask∗ to show

its indistinguishability from a freshly sampled key. We change how we compute
ask∗. We change sk1 · r to r∗ for a uniformly random r∗. As r is uniformly
random in Zp, sk1 · r is perfectly indistinguishable from r∗, so Pr[W4] = Pr[W3].

Game5: In this game, we sample ask∗ uniformly from Zp. As r∗ is uniformly
random in Zp, r

∗ +
∑

j∈S∗\{i} skj · H1(pkj , PK) is perfectly indistinguishable

from ask∗ ← Zp, so Pr[W5] = Pr[W4].
Game6: Finally, we initialize key pair (ask∗, apk∗) as fresh individual key

pair. While Game5 samples ask∗ from Zp, Kg(pp) samples it from Z∗p, which is a
negligible difference. In particular, the advantage of the adversary against Game5
is |Pr[W6]− Pr[5]| ≤ 1/p.

In the final game Game6, challenge public key pk∗ and corresponding signa-
tures are computed as individual Schnorr signatures independently of the chal-
lenge bit b and challenge set S∗. Thus, the adversary has no more advantage
than a random guess, so Pr[W6] = 1/2. Hence, using the sequences of games, we
conclude that ∣∣∣ExpFullPriv-AbOPK

MuSig,A (λ)− 1/2
∣∣∣ ≤ (2 · q + 1)/p

⊓⊔
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