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Abstract. We present a practical construction and implementation of timelock encryption,
in which a ciphertext is guaranteed to be decryptable only after some specified time has
passed. We employ an existing threshold network, the League of Entropy, implementing
threshold BLS [BLS01,Bol03] in the context of Boneh and Franklin’s identity-based encryp-
tion [BF01] (BF-IBE). At present this threshold network broadcasts BLS signatures over each
round number, equivalent to the current time interval, and as such can be considered a decen-
tralised key holder periodically publishing private keys for the BF-IBE where identities are
the round numbers. A noticeable advantage of this scheme is that only the encryptors and
decryptors are required to perform any additional cryptographic operations; the threshold
network can remain unaware of these computations and does not have to change to support
the scheme. We also release an open-source implementation of our scheme and a live web
page that can be used in production now relying on the existing League of Entropy network
acting as a distributed public randomness beacon service using threshold BLS signatures.
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1 Introduction

Timelock encryption (TLE) was first introduced on the Cypherpunks mailing list in 1993 by Tim
May [May93], the founder of the crypto-anarchist movement, and subsequently received additional
attention thanks to Rivest, Shamir and Wagner in 1996 [Riv96]. The notion of TLE can be expressed
simply: ciphertexts are guaranteed to be decryptable after a specified point in time. As the name
suggests TLE ciphertexts remain locked until the designated time, after which even the encryptor
cannot prevent decryption. Timelock encryption has also been referred to as Time-lapse encryption,
Timed-release encryption or Timed encryption.

Timelock encryption finds multiple applications:

– Sealed-bid auctions in which encrypted bids are decryptable only after the bidding period
has elapsed;

– Mitigation of preservation risk during embargo periods e.g. for legal documents, con-
fessions, or vulnerability reports with coordinated disclosure, by ensuring that a document can
only be decrypted after a given time period;

– Conditional transfers of assets by encrypting private keys to a given future time, and
relocating funds prior to release time should the wealth transfer be deemed unnecessary;

– Miner extractable value (MEV) prevention mechanism in which transactions in a
blockchain are encrypted via a timelock scheme in order to prevent miners from performing
MEV attacks.

https://research.protocol.ai/
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1.1 Prior art

Initial approaches to practical timelock encryption were founded upon proof-of-work systems, with
security guaranteed under the assumption that some puzzle requires a certain amount of sequential
computation, and therefore time, to solve. The first to take this approach, introducing the notion
of time-lock puzzles, were Rivest, Shamir and Wagner [Riv96], noting that:

“There are two natural approaches to implementing timed release crypto:

– Use “time-lock puzzles”–computational problems that cannot be solved without
running a computer continuously for at least a certain amount of time.

– Use trusted agents who promise not to reveal certain information until a specified
date.

Using trusted agents has the obvious problem of ensuring that the agents are trust-
worthy. Secret sharing approaches can be used to alleviate this concern.

”A theoretical formalisation of time-lock puzzles can be found in [BGJ+15]. Time-lock puzzles
are inherently founded in proof of work and are therefore highly sensitive to unpredictable advances
in both hardware and algorithms. For instance the LCS time-lock puzzle released in 1999 by Ron
Rivest was anticipated to remain secure for 35 years, but was successfully solved fifteen years early
in 2019 via two independent methods [csa19]: once by simply running sequential operations on a
single core of a modern CPU for 3.5 years, and again by running the computation for only 2 months
on dedicated FPGA hardware.

Rabin and Thorpe take the alternative approach and propose the idea of relying on Peder-
sen distributed key generation, Feldman verifiable threshold secret sharing, and ElGamal encryp-
tion [RT06]. Therein multiple parties implement a “Time-Lapse Cryptography Service” by pub-
lishing public keys and then releasing the related private keys at given times. To the best of our
knowledge such a Time-Lapse Cryptography Service has never been implemented and deployed in
practice. Moreover this setting requires explicit action by a threshold of members to compute the
decryption operation. In other words, the work required by the network is linear in the number of
ciphertexts to decrypt.

In [LJKW18] a timelock scheme is built on top of the concept of computational reference clocks
using extractable Witness encryption, and a practical instantiation relying on Bitcoin is presented.
However, this scheme relies on multilinear maps which have not yet been securely constructed.

In [CDK+21] IBE and Witness encryption are again used to achieve a novel notion of “Encryp-
tion to the Current Winner” (ECW) where the receiver of an encrypted message is determined
by the current state of a blockchain and is not yet known at the time of encryption. Ultimately
this scheme is then transformed to achieve a different notion of “Encryption to the Future” (EtF)
towards parties selected at arbitrary points in the future, unlike classical timelock or Timelapse
encryption where any party knowing the ciphertext can decrypt once the specified time has passed.
In direct contrast to our timelock definition which permits anyone to decrypt after the designated
time, in EtF only some party with certain rights (the future winner) not yet determined in the
present can decrypt ciphertexts. Notice that the setting is also quite different between both works,
assuming dynamic committees with the strong assumption that “YOSO”—You Only Speak Once.
This has not yet been implemented nor deployed in practice to the extent of our knowledge.
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Threshold networks have also been used as an encryption “recipient.” For example, Fer-
veo [Ano21] and Shutter [shu22] are systems where users encrypt their transactions for threshold
networks (which can also be the validator set of a blockchain). Once encrypted transactions are
included in a block, they get decrypted by the network, thereby preventing front-running. In com-
parison, our scheme does not rely on the threshold network to perform an operation per ciphertext,
rather simply to emit one value per round and the decryption happens publicly. Anyone can compute
a valid decryption of a ciphertext encrypted for this round.

1.2 Our contributions

We present, implement and benchmark a secure timelock encryption (TLE) scheme from the League
of Entropy (LoE) [LoE20], a production-ready randomness beacon currently deployed over drand
nodes [dra]. Our timelock encryption scheme permits encryption under existing public parameters,
previously generated and utilized by the existing threshold network, such that ciphertexts can
be decrypted by any party given only certain time-related information already broadcast by that
network. We provide the first implementation and benchmarks for this approach.

League of Entropy: The LoE is a threshold network in which each member holds a share of an un-
known secret, that was generated via a Distributed Key Generation [DKG] procedure. Periodically
the network computes and broadcasts a threshold BLS signature over the round number associated
with the current timestamp. Verification simply involves the round number, the network public key
and the signature. The LoE has been in production since 2020, at the time of writing is composed
of 23 nodes operated by different companies, universities & foundations), and is already used by
large networks, e.g. Filecoin. The LoE has, since deployment, had 100% uptime.

Identity Based Encryption: IBE is an encryption paradigm which replaces public keys with
public identity strings, e.g. emails, names, addresses, etc. At any point some trusted party, holding
a master secret key, can compute and distribute the corresponding secret key to enable decryption.
We exploit an equivalence between IBE and TLE to construct our scheme [CHKO08].

Timelock Encryption: The key insight to bind these two mechanisms is to view a BLS signature
on an identity as the corresponding private key, as in Boneh and Franklin’s IBE [BF01]. Timelock
encryption is then achieved by employing their IBE to encrypt under the round number as the
public identity string. As that round number is associated to a unique timestamp, this is equivalent
to encrypting under the associated time. When the BLS signature on that round number is released
by the LoE then anyone can use that signature to decrypt messages. This approach has several
advantages:

– Based on a proven, production-ready system: The LoE has been consistently and suc-
cessfully running for over two years. Every 30 seconds the LoE broadcasts randomness, without
any downtime. New nodes are regularly onboarded to further increase the safety and liveness
guarantees. The security of our scheme relies only on the existing, proven, production-ready
system (beyond any computational assumptions, of course).

– No cooperation is required from the network: the LoE is unaware of any encryption/de-
cryption based on the network. Only the clients will need to perform cryptographic work to
encrypt and decrypt, and anyone can build a system satisfying their own specific needs (distri-
bution of the ciphertexts, etc.)
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– Ciphertexts are publicly decryptable: any party, internal or external to the existing system,
can decrypt a message as soon as they access the corresponding signature. Decryption does not
require any participation by the original author after the ciphertext has been released. In fact,
we do not loose any functionality; to modify this publicly decryptable scheme into one which
designates a specific decrypter, the encrypter needs only to encrypt a standard public key
encryption ciphertext.

2 Preliminaries

2.1 Groups & Computational Assumptions

Bilinear Maps. A type-III bilinear group is described via (e, p,G1,G2,GT , G1, G2, GT ) where
G1,G2 are additive groups with generators G1, G2 respectively and GT is a multiplicative group
with generator GT , each of prime order p. The deterministic pairing map e : G1 × G2 → GT is

bilinear meaning ∀(a, b) ∈
(
Z∗
p

)2
: e(aG1, bG2) = e(G1, G2)

ab, and non-degenerate meaning that
e(G,H) = 1 implies either G or H are 0 in their respective groups. We also require computability
meaning that membership testing, group operations, and the pairing are efficiently computable and
all elements are represented in linear size. Additionally, type-III bilinear groups require that there
is no efficiently computable mapping between G1 and G2.

Decisional, Computational and Gap Diffie-Hellman. Consider a finite cyclic group G of prime
order q ∈ P with generator g. The Computational Diffie-Hellman (CDH) problem is to compute, for

random h, h′ ∈ G the element h̄ = glogg(h)·logg(h
′). The Decisional Diffie-Hellman (DDH) problem

is, given the h, h′, to distinguish such an element h̄ from a random group element.
The CDH (resp. DDH) assumption in G is that there does not exist a probabilistic polynomial

time algorithm solving CDH (resp. DDH) in G that achieves a probability of success non-negligibly
greater than an algorithm which merely outputs random guesses. A group G is called a Gap Diffie-
Hellman (GDH) group if there exists a probabilistic polynomial time algorithm VG,g solving the
DDH problem, but the CDH assumption holds.3

(Co-)Bilinear Diffie-Hellman. Let bg = (e, p,G1,G2,GT , G1, G2, GT ) be a description of a type-
III bilinear group. For random a, b, c ∈ Z∗

q and (P,Q) ∈ G1 × G2 the Co-Bilinear Diffie-Hellman

(CBDH) problem is to compute the element e(P,Q)abc given the elements (P, aP, bP,Q, aQ, cQ).
The CBDH assumption in bg is that no probabilistic polynomial time algorithm A can solve the
CBDH problem in bg.

2.2 Threshold BLS Signatures

Boneh-Lynn-Shacham (BLS) signatures [BLS01] are digital signatures provably secure under the
GDH assumption on the underlying group. The BLS signature admits a (t, n) threshold construc-
tion [Bol03] in which the signing key is jointly generated by n nodes such that a signature can be
interactively generated by at least t of those nodes. We recall the construction below.

Threshold Key Generation is the distributed key generation protocol (DKG) for discrete log-
arithm based systems by Gennaro et al. [GJKR99]. Each node i locally outputs their share si of

3 We also refer to GDH as a computational assumption, corresponding to the CDH assumption in a group
that provably admits an efficient algorithm for DDH.
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the joint private key s ∈ Z∗
p, and we assume that the public keys Pi = siG1 ∈ G1 are public.

The algorithm outputs a joint public key P = sG1 ∈ G1. The sharing is such that the secret s
can be constructed by any subset of nodes I ⊆ N = {1, . . . , n} such that |I| ≥ t via Lagrange
interpolation [lag]:

P = sG1 =
∑
i∈I

(
siLi(0)

)
G1 ∈ G1

where Li(x) is the i-th Lagrange polynomial defined over the set I.

Threshold Signing Recall that the BLS signature of a message M is π = sH(M) for H : {0, 1}∗ →
G2 a secure hash to curve function onto G2. To generate this signature distributively, each partic-

ipating node computes and broadcasts their share of the signature π
(i)
ρ = siH(M) on the message

M . Signatures can then be reconstructed by any node (optionally) after verifying the partial signa-
tures under the public key of the associated node i. The final signature under the network public
key P can then be computed from any t verifying partial signatures:

π =
∑
i∈I

(
π(i)
ρ Li(0)

)
= sH(M) ∈ G2

where Li(x) is the i-th Lagrange polynomial defined over the set I

Security of standard BLS is reducible to the gap diffie-hellman assumption on the underlying
group. Threshold-BLS provably satisfies the following two desirable properties: (1) existential un-
forgeability meaning that given oracle access to both key generation and signatures the adversary
cannot produce a verifying signature on a new message, and (2) robustness meaning that an adver-
sary cannot prevent key generation or signing. While unforgeability of (t, n)-BLS can be obtained for
any t < n, robustness (which is required in our application) is proven against malicious probabilistic
polynomial time adversaries corrupting less than t ≤ n

2 nodes.

2.3 Identity-Based Encryption

Identity-based encryption (IBE) [BF01] is a variant of public key encryption in which public “iden-
tity” strings function as public keys. With an IBE scheme one can encrypt a message M to an
identity ID which can be decrypted with a related decryption key skID issued by a trusted party to
the owner of that identity.

Definition 1 (Identity-Based Encryption). An identity-based encryption scheme EIBE is a
tuple of four algorithms:

SetUp(1λ)→ (pp,msk): Setup is a randomized algorithm which takes as input the security parameter
λ and outputs public parameters pp and a master secret key msk.

Extract(pp,msk, ID)→ skID: extract is a randomized algorithm which takes as input the public pa-
rameters pp, the master secret key msk and an identity string ID ∈ 0, 1∗, and output a private
decryption key skID.

Encrypt(pp, ID,M)→ C: encryption is a randomized algorithm which takes as input the public pa-
rameters pp, an identity string ID and a message M and outputs a ciphertext C.

Decrypt(pp, skID, C)→ {M ′,⊥}: decryption takes as input the public parameters pp, a private key
skID and a ciphertext C and outputs either a message M ′ or an error ⊥.
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Security for IBE is generally defined as either semantic security under chosen plaintext or cho-
sen ciphertext attack, called CPA and CCA respectively. The corresponding security games closely
resemble those for public key encryption; an adversary against CPA is asked to break indistin-
guishability given adaptive access to Extract, whereas an adversary against CCA is additionally
provided adaptive access to Decrypt.

Boneh and Franklin provide schemes satisfying both security requirements, reducing security
to the co-BDH assumption for type-III bilinear groups. We only note that the BF-IBE Extract
algorithm essentially outputs a BLS signature on the hash of the public identity string, and therefore
the master secret key is a BLS secret key. We omit the exact construction as our tTLB scheme
presented in Section 5 is equivalent to the Boneh-Franklin CCA-secure IBE scheme (BF-IBE) under
three modifications: (1) our scheme is instantiated over type-III bilinear groups, (2) we flip the pairing
and switch membership of the public key to G1, and (3) our master secret key is decentralized via
threshold-BLS.

3 Timelock Encryption

Agent-based TLE. As mentioned, Timelock Encryption (TLE) is a cryptographic primitive with
which ciphertexts can only be decrypted after the specified time. At present TLE comes in two
distinct flavors: agent-based, in which a trusted agent is employed to guarantee decryptability of
ciphertexts, and puzzle-based, in which ciphertexts are decryptable with the solution of a puzzle
which is assumed to take some amount of time to solve. We adopt the agent-based approach to TLE
– Definition 2 assumes a trusted agent to periodically publish time-related decryption keys at each
time interval.

Publicly Decryptable TLE. Traditionally TLE ciphertexts are encrypted to both a time ρ and
the public key pk of a designated decryptor, such that decryption requires both the decryptor’s
secret key sk and the time-related key πρ. In contrast our TLE definition stipulates that ciphertexts
are decryptable by any party given only πρ. We refer to the former as designated-decryptor TLE
and the latter as publicly decryptable TLE. As this work focuses entirely on agent-based publicly-
decryptable TLE these qualifiers are often dropped, except when necessary.

Agent-based Publicly Decryptable TLE Definition. Definition 2 specifies the algorithms
which constitute a TLE scheme. First, setup is performed by the agent via the SetUp algorithm,
which outputs an agent secret key and public parameters. At each time interval ρ the agent runs
the RoundKey algorithm and publishes the output round-related decryption key πρ. Encryption and
decryption can be run by any party, as outlined.

Definition 2 (Timelock Encryption (TLE) Scheme). A Timelock Encryption scheme T is
a tuple of polynomial-time algorithms:

SetUp(1λ)→ (pp, ask): the probabilistic setup algorithm takes as input the security parameter λ and
computes the public parameters pp and master secret key ask.

RoundKey(pp, ask, ρ)→ πρ: the round key algorithm takes as input the public parameters pp, the
master secret key ask and the round number ρ and outputs the round key πρ.

Encrypt(pp, ρ,M)→ ctρ: the probabilistic encryption algorithm takes as input the public parameters
pp, the round number ρ and a message M and outputs a ciphertext ctρ.

Decrypt(pp, πρ, ctρ)→M ′: the deterministic decryption algorithm takes as input the public param-
eters pp, the round number ρ and a ciphertext ctρ and outputs either a message M ′.
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Correctness. Perfect TLE correctness requires that for every pair (pp, ask) output by SetUp:

Decrypt(RoundKey(ask, ρ),Encrypt(ρ,M)) = M

Indistinguishability. A variety of security models for TLE were analyzed in [CV19], the most
relevant being semantic security against adaptive chosen-ciphertext and chosen-plaintext attacks,
denoted TLE-CCA and TLE-CPA respectively. In both attacks an adversary is given a ciphertext
encrypted under an adversarially chosen round and must determine which of two adversarially
chosen messages was encrypted. Conventionally the distinction between CPA and CCA security
hinges upon oracle access, as is the case for TLE; a TLE-CPA adversary is permitted adaptive
access to an oracle outputting round keys for arbitrary times RK, whereas an adversary against
TLE-CCA is additionally granted adaptive access to a decryption oracle Dec.

Time. One primary obstacle to modeling time-related cryptographic primitives is the formalization
of time. We manage to circumvent this problem entirely. In our TLE definition each time interval
corresponds to an incremental round number ρ, and in our indistinguishability security experiments
this abstract representation of time is decoupled from “real” time by neglecting to enforce that the
oracle ORK be queried sequentially. Essentially by providing an adversary with keys corresponding to
arbitrary rounds we simultaneously eliminate the structure that correlates with time and strengthen
our security guarantees. We use the terms round and time interchangeably throughout the text.

ExpTLE-IND
T ,A (λ)

Exp
TLE-{CPA, CCA }
T ,A (λ)

b←$ {0, 1};QRK, QD ← ∅
pp, ask← SetUp(1λ)

(m0,m1, ρ
∗)← ARK, Dec (pp)

ctbρ∗ ← Encrypt(pp, ρ∗,mb)

b′ ← ARK, Dec (ctbρ∗)

assert |m0| = |m1| ∧ ρ∗ /∈ QRK

assert (ctbρ∗ , ρ
∗) /∈ QD

Return (b′ = b)

RKpp,ask(ρ): round key oracle

QRK ← QRK ∪ {ρ}
Return RoundKey(pp, ask, ρ)

Decpp,ask(ρ, ctρ) : decryption oracle

QD ← QD ∪ {ρ, ctρ}
Return Decrypt(pp,RoundKey(pp, ask, ρ), ctρ)

Fig. 1: The timelock encryption indistinguishability security experiments.

Definition 3 (TLE Indistinguishability (TLE-⋆-security)). Let T be a timelock encryption
scheme satisfying Definition 2 and let the security experiment ExpTLE-INDT ,A (λ) be as in Figure 1. For
⋆ ∈ {CPA,CCA} we say that T is TLE-⋆ secure if for all PPT adversaries A the advantage of A as
defined below is negligible in λ:

AdvTLE-⋆
T ,A (λ) :=

∣∣∣∣12 − ExpTLE-⋆T ,A (λ)

∣∣∣∣
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4 Threshold Timelock Encryption: Definition & Model

Threshold-TLE. We adapt Definition 2 of TLE to threshold timelock encryption (tTLE), in
which a threshold network acts as the trusted agent. Definition 4 employs threshold cryptography to
decentralize the algorithms of SetUp and RoundKey into interactive protocols tSetUp and tRoundKey
to be run by a set of parties.

Model. We assume a set of n parties P = {P1, . . . , Pn} functioning as the decentralized agent,
equipped with a complete network of peer-to-peer channels. We assume a partially synchronous
setting, in which messages for each protocol round are received within a specified time but the
adversary is permitted to speak last.

Notation. A set of parties P1, . . . , Pn with private inputs x1, . . . , xn and common input x executing
protocol Π with transcript trans, and terminating with both private local honest party outputs
y1, . . . , yn and global public output Y is written:

(trans, Y, (y1, . . . , yn))← Π⟨P1(x1), . . . Pn(xn),A⟩(x)

Threshold Timelock Encryption Definition. Definition 4 specifies the protocols and algorithms
which constitute a tTLE scheme. Here, both setup and round key are interactive protocols between
stateful parties which essentially share the TLE agent secret key. Encryption and decryption can
be run by any party, independent of their participation in setup.

Definition 4 (Threshold Timelock Encryption (tTLE) Scheme). A Threshold Timelock
Encryption scheme T is a pair of interactive algorithms and a pair of polynomial-time algorithms:

Π-tSetUp(1λ, th)→ (pp,mpk): the interactive setup protocol is executed by a set of n parties P
which as input the security parameter and the threshold th and publicly outputs parameters pp
and a master public key mpk.

Π-tRoundKey(pp, ρ)→ πρ: the interactive round key protocol is executed by a subset of parties P
which takes as input the public parameters pp, the round number ρ and publicly outputs the
round key πρ.

Encrypt(pp, ρ,M)→ ctρ: the non-interactive encryption algorithm takes as input the public param-
eters pp, the round number ρ and a message M and outputs a ciphertext ctρ.

Decrypt(pp, πρ, ctρ)→M ′: the non-interactive decryption algorithm takes as input the public pa-
rameters pp, the round key πρ and a ciphertext ctρ and outputs a message M ′.

Correctness & Robustness. Definition 5 outlines the robustness requirement for tTLE, essen-
tially stating that an adversary corrupting at most t parties can neither prevent setup nor round
key computation. This requirement is especially useful for the tTLE primitive as a threshold agent
neglecting to compute and output round keys can prevent any and all decryption arbitrarily.

Definition 5 (tTLE Robustness). Let T be a threshold timelock encryption scheme as in Def-
inition 4, where the agent is realized by a set of n parties P. We say that T is robust if for all
n = n(λ), for all thresholds t <

⌊
n
2

⌋
and for all malicious polynomial time adversaries A statically

corrupting at most t parties the protocols tSetUp and tRoundKey complete successfully.
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Then, perfect correctness for tTLE requires that for all pp,mpk output by the setup protocol
and all decryption keys πρ output by the round key protocol the following holds:

Decrypt(pp, πρ,Encrypt(pp, ρ,M)) = M

Indistinguishability. The tTLE indistinguishability experiments are similar to those for TLE.
The adversary is first permitted to corrupt a subset of the parties C ⊆ P, then plays these parties
during an execution of setup thereby jointly generating the public parameters and the master public
key. The modifications to the round key and decryption oracles are further described below.

Interactive Round Key Oracle. Security is defined against an adversary granted access to the
stateful threshold round key oracle tRK. This oracle engages in polynomially many, potentially
interleaved, executions of the round key protocol with the adversary, playing the queried subset of
honest parties. The protocol executions can exist in parallel and are identified via an adversarially
chosen session identifier. An initial query of the form (sid, T, ρ) merely begins the protocol execution.
The adversary can behave arbitrarily during the executions, sending messages on behalf of any
corrupted party.

Interactive Setup and the Decryption Oracle. Robustness guarantees that an adversary can
neither prevent setup nor round key computation. In light of the robustness requirement we ob-
serve that such an adversary cannot prevent setup in the indistinguishability game from terminating
successfully. Additionally, with access to the local outputs of the honest parties during setup the
decryption oracle can exclusively play honest parties in a successful execution of the round key pro-
tocol to facilitate decryption.4 Therefore, we can expect that these protocols terminate successfully
during the experiment in Figure 2, assuming that the adversary has corrupted no more than the
threshold number of parties.

Definition 6 (tTLE Indistinguishability (tTLE-⋆-security)). Let T be a threshold timelock
encryption scheme as in Definition 4 and let the security experiment ExptTLE-INDT ,P,A (λ, t) be as in
Figure 2. For ⋆ ∈ {CPA,CCA} we say that T is tTLE-⋆ secure if T for all |P| = n(λ), for all
thresholds t <

⌊
n
2

⌋
and for all polynomial-time static malicious adversaries corrupting at most t

parties the advantage of the adversary as defined below negligible in λ:

AdvtTLE-⋆
T ,P,A(λ, t) :=

∣∣∣∣12 − ExptTLE-⋆T ,P,A(λ, t)

∣∣∣∣
Definition 7 (tTLE Security). Let T be a threshold timelock encryption scheme as in Defini-
tion 4. We say that T is secure if T satisfies correctness, robustness and indistinguishability.

5 Our Threshold Timelock Encryption Scheme

Our threshold timelock encryption scheme is a direct application of Boneh and Franklin’s IBE [BF01]
with the following key differences:

– We instantiate BF-IBE over type-III bilinear groups, as described in section 6 of [BF01].
– The trusted third party, or the agent, is replaced with a threshold network implementing

BLS [Bol03].
– The network public key is an element of G1 (as opposed to G2), with membership of every other

element flipped correspondingly.
4 We implicitly assume that the oracles have access to the state of every honest party simulated in the
experiment.
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ExptTLE-⋆T ,A (λ,P, t)

Exp
tTLE-{CPA, CCA }
T ,A (λ,P, t)

C ← A(1λ);H ← P \ C; b←$ {0, 1}
QRK,QtRK, QD ← ∅
(pp,mpk)← Π-tSetUp⟨H,A⟩(1λ, t)

// adversary executes setup with H

(m0,m1, ρ
∗)← AtRK, Dec (pp,mpk)

ctbρ∗ ← Encrypt(pp, ρ∗,mb)

b′ ← AtRK, Dec (ctbρ∗)

assert |m0| = |m1| ∧ ρ∗ /∈ QRK

assert (ctbρ∗ , ρ
∗) /∈ QD

Return (b′ = b)

tRK(sid, T, ρ): round key oracle

If (ρ, sid, T ) /∈ QtRK :

QtRK ← QtRK ∪ {(sid, ρ, T )};QRK ← QRK ∪ {ρ}
πρ ← Π-tRoundKey⟨(H ∩ T ),A⟩(pp, ρ)
// oracle executes roundkey with A

Else: continue execution identified by sid

Return (sid, πρ)

Dec(ρ, ctρ) : decryption oracle

QD ← QD ∪ {(ctρ, ρ)}
πρ ← Π-tRoundKey⟨H⟩(pp, ρ)

// oracle generates the round key

If unsuccessful: Return query-fail

Return Decrypt(pp, πρ, ctρ)

Fig. 2: The threshold timelock encryption indistinguishability security experiments.

5.1 The tTLE Construction

The Set Up & Round Key Protocols.We assume access to a type-III bilinear group (e,G1,G2, p)
with security parameter λ, along with four cryptographically secure hash functions:5

H1 : {0, 1}∗ → G2

H2 : GT → {0, 1}ℓ
H3 : {0, 1}ℓ × {0, 1}ℓ → Z∗

p

H4 : {0, 1}ℓ → {0, 1}ℓ

Generators for G1 and G2 are sampled as G1, G2 respectively.

Π-tSetUp(1λ, t): As opposed to sampling an agent secret key at random from Z∗
p and setting the

public key to P = sG1 as in BF-IBE the n parties P run the (t, n)-threshold distributed key
generation protocol of Gennaro et al. [GJKR99]. After setup each of the n parties locally output their
private share si of the agent secret key s. The public output is the network public key P = sG1 ∈ G1

and each party’s public key Pi = siG1. The public parameters are set to the following:

pp = ((e,G1,G2, p), (G1, G2, H, P ), (t, n), ℓ, (H1, H2, H3, H4))

Π-tRoundKey(pp, ρ): the round key protocol is then the threshold BLS signing algorithm, using the
keys generated at setup. Each party in any qualified subset I ⊆ N = {1, . . . , n} with combined set of

shares S ′ = {si|i ∈ I} locally computes a signature on the round number ρ as π
(i)
ρ = siH1(ρ). Each

5 “Cryptographically secure” informally denotes collision, preimage and second-preimage resistant hash
functions.
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partial signature can be verified against the public key of the party and aggregated via Lagrange
interpolation, as explained in 2.2.

The Encryption & Decryption Algorithms. The encryption of a message M ∈ {0, 1}ℓ to round
number ρ is done via Algorithm 1, and decryption is done via Algorithm 2 Given a ciphertext ctρ
and the round key πρ anyone, even parties not in P, can decrypt via Algorithm 2. Encryption and
decryption are exactly the CCA-secure variant of BF-IBE. Informally, a ciphertext ctρ is composed
of U the ephemeral public key for the encrypter, W a one time pad encryption of the message M ,
and V a commitment to (the preimage of) the one time pad with decommitment information r.

Towards intuition, one can consider the computation of element PKρ = e(P,H1(ρ))
r in encryp-

tion step 3 of Algorithm 1 and e(U, πρ) in decryption step 3 of Algorithm 2 as two distinct ways to
compute the same shared secret e(G1, H1(ρ))

rs which can be used to unpad the random σ.

Algorithm 1 Encryption

1: procedure Enc(pp, ρ,M)
2: Parse pp→

(
bg, P,H = (H1, H2, H3, H4)

)
3: PKρ ← e(P,H1(ρ)) ▷ round public key
4: σ ←$ {0, 1}ℓ ▷ nonce
5: r ← H3(σ,M)
6: U ← rG1 ▷ ephemeral public key
7: V ← σ ⊕ H2

(
(PKρ)

r
)

▷ hiding commitment to nonce σ
8: W ←M ⊕ H4(σ) ▷ one-time-pad
9: return

(
ct = (U, V,W ), τ = r

)
10: end procedure

Algorithm 2 Decryption

1: procedure Dec(pp, ρ, πρ, ctρ)
2: Parse ctρ → (U, V,W )
3: σ′ ← V ⊕ H2(e(U, πρ))
4: M ′ ←W ⊕ H4(σ

′)
5: r ← H3(σ

′,M)
6: if U = rG1 then
7: return M ′

8: else
9: return ⊥

10: end if
11: end procedure

Correctness & Security. We demonstrate the correctness of the scheme and claim to satisfy
security. The robustness of our scheme is inherited from that of threshold BLS and CCA security
is inherited from the underlying IBE. A full proof will appear in the final version of the paper.

Computation of σ:
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σ = V ⊕H2(e(U, πρ))

= σ ⊕H2((PKρ)
r)⊕H2(e(rG1, sH1(ρ)))

= σ ⊕H2(e(G1, H1(ρ))
rs)⊕H2(e(G1, H1(ρ))

rs)

= σ

Computation of M :

M = W ⊕H4(σ) = M ⊕H4(σ)⊕H4(σ) = M

CCA Validity check:

U = rG1 = H3(σ,M)G1 = U

Theorem 1 (tTLE-CCA Security). The tTLE scheme T = {Π-tSetUp, Π-RoundKey,Enc,Dec}
specified above achieves tTLE security in the random oracle model for all polynomial-sized sets of

parties P against static malicious polynomial-time adversaries corrupting at most t <
⌊
|P|
2

⌋
parties

under the Gap Diffie-Hellman and co-Bilinear Diffie-Hellman assumptions.

5.2 Optimizations

Precomputations for encryption Note that the “round public key” for round ρ, PKρ, is the same
for all ciphertexts encrypted towards ρ, and requires to compute a pairing operation e(P,H1(ρ)).
This is quite costly and can hurt using this scheme at scale. On constrained devices, or on blockchain
systems, this step can be optimised by precomputing the round public keys of epochs.

Preprocessing Note that the first step of the decryption neither needs to be done online nor
verified. We take steps towards preventing malleability attacks; the following modifications prevent
an attacker from manipulating a ciphertext to change the decrypted message. In this section we do
not modify encryption, only decryption.

We first introduce explicit roles to distinguish between the relevant actors:

1. encrypter: the party running the encryption algorithm
2. helper: a party running precomputation, i.e. expensive operations to aid with decryption
3. decrypter: the party running the decryption algorithm, potentially on-chain

Signature Embedding In this model the encrypter will prefix the message M with a signature
πM = Sig(M) from a secure signature scheme satisfying integrity and authenticity, and instead
encrypts the resulting M ′:

M ′ = πM || M

The encrypter will also sign the outer ciphertext. In the context of an on-chain transaction, the
outer signature is done by signing the transaction.
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Precomputations for decryption Once the helper has access to the information πρ associated
to the round ρ it precomputes the following for each encrypted transactions related to ρ:

σi = V ⊕H2(e(Ui, πρ))

and submits these precomputations to the decrypter. In the context of blockchain, the helper basi-
cally submits the preprocessed elements in batch.

Decryption and fault handling The decrypter (the block verification/execution layer) decrypts
all the messages with a valid outer signature:

M ′
i = Wi ⊕ σi

and verifies if the embedded signature πM is valid. Note that here only the computationally cheap
XOR operation is necessary.

If this signature verification passes, the decrypter outputs the message Mi. If signature veri-
fication fails, the decrypter must determine whether the encrypter or the helper is dishonest, i.e.
whether the signature or the σi given is incorrect. First, the decrypter regenerates the random mask
value ri and performs the standard final decryption check:

Ui = H4(σi,M
′
i)G1

If the check passes: the encryption steps are correct but the encrypter has inserted an invalid
signature into the message and, in this case, the decryption should be discarded. If the check fails:
the ciphertext has been tampered with, i.e. the helper has been misbehaving. In this case the
decrypter has to run the full decryption algorithm alone from the original ciphertext. Note that in
the context of blockchain good behaviour can be incentivised by, for example, slashing any block
producer that includes invalid σi.

5.3 Generalisation to public witness encryption

While our system relies on the notion of “rounds” serving as identities in an IBE scheme, a gener-
alisation in which any other message is signed by the threshold network is possible.

Public Decryption Service: A threshold network can follow commands from a central authority
(e.g. a smart contract) where each ciphertext is submitted with explicitly associated conditions.
We associate a string to each potential set of conditions that encrypters may use. For example,
the conditions ”currentRound > 100 && poolTokens > 999” are a mixture of both time and
financial conditions. These conditions are associated to a unique string S which is to be used as
the identity/public key in the cryptosystem. Then, when these conditions are met, and only then,
the threshold network releases the BLS signature over S, effectively releasing the IBE private key
associated with the identity S. At this point, any third party can decrypt any ciphertext associated
with S. Note here again that the advantage compared to regular public key encryption is that the
work of the threshold network, for a given condition / identity, is constant with respect to the
number of ciphertexts associated with any given condition, since any party can perform decryption
once provided with the relevant IBE decryption key (or signature).
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6 Implementation

In this section, we cover the implementation of our scheme in practice.

6.1 The League of Entropy

Since our solution leverages a threshold network of mutually untrusting parties, in which we only
trust that there is never a threshold t of malicious nodes, any practical instantiation requires such
a network.

Thankfully, in 2019, the League of Entropy was launched and participants, including a diverse
set of companies, individuals and universities, are running drand nodes to provide a distributed,
public, verifiable randomness beacon service based on threshold BLS signatures. The League of
Entropy group key is generated using Pedersen Distributed Key Generation, which means it was
never in memory on any given device. Since then, their network has grown to 23 nodes, spanning
multiple disjoint organisations, data centres (ensuring that no more than 30% of the nodes are
running on AWS or any cloud provider), jurisdiction and geographical localisations (LoE contains
at least one node in each of the US, South America, Europe and Asia). The current threshold is 13
and the network has been providing signed random beacons with 100% uptime since the launch of
their mainnet network in August 2020. It powers large networks such as the Filecoin network where
it is used as a randomness source for the leader election protocol. It is also known to have been
used for covid-related random sampling, and other use cases where public, verifiable randomness is
desirable, including gambling systems and sortitions.

Previously, all drand beacons formed a “chain” by being linked to each other through their
signatures: the signature of beacon bi+1 was produced by signing the message m||bi. More recently,
drand has set up a new network in which new random beacons are not linked to previous beacons,
allowing anyone to know in advance the message being signed: it is simply the round number of
that beacon. We can leverage this fact and treat the round number as the identity in our scheme
to achieve timelock encryption in practice.

6.2 Implementation

We have implemented our scheme by implementing the CCA version FullIdent of the IBE scheme
from [BF01] and adding it to the Go cryptography library named Kyber [tt22], as well as to our own
timelock library in Typescript [MR22]. Being able to rely on existing libraries to perform the BLS
12-381 curve operations in both cases, as detailed below in 6.3, has allowed our implementations of
IBE to be very concise, in less than 150 lines of code.

Relying on these IBE implementations, we provide an open-source Go timelock library, tlock,
as well as a CLI-tool, tle, to perform timelock encryption [RG22], and a Typescript library, tlock-
js [MR22], along with a demo website [MAGR22] that enables you to test timelock encryption and
decryption locally in your browser.

Our timelock libraries are using the age framework [Val19] to encrypt the data itself and use
our tTLE scheme to “wrap” the corresponding symmetric key, effectively allowing us to encrypt
arbitrarily-sized data while only time-locking a symmetric key, as is usually done with public-
key encryption schemes and known as “hybrid encryption”. Doing so, and relying on our IBE
implementation, has allowed our timelock logic to have a minimal code footprint again, in less than
200 lines of code.
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We are relying on the existing drand HTTP API endpoints to retrieve the necessary BLS
signatures of random beacons produced by the League of Entropy.

6.3 Benchmarks

Since we have produced two different, interoperable implementations: a Go one, and a Typescript
(TS) one, we can compare them to get a sense of the performances one can expect when doing
timelock encryption. Since our schemes relies on pairing-based cryptography, and we are relying on
we chose to instantiate it on the pairing-friendly curve BLS 12-381.

For our Go version, we are relying on the kilic [kil] implementation of BLS 12-381, and for our
TS version, we are relying on the noble framework implementation [Mil].

After publicly releasing our timelock libraries, we were made aware of a third-party implemen-
tation in Rust of our scheme [Lui]. We are not including it in the below table, since we did not
test interoperability, but its performance surprisingly seemed in line with that of our Typescript
implementation.

The following table shows the speed of the different operations we perform, for each library:

Go TS

Pairing 1133 op/s 73 op/s

Key encryption 539 op/s 26 op/s

Key decryption 1014 op/s 56 op/s

Table 1: Benchmarks of the main operations in our timelock implementations, done on commodity
hardware (AMD Ryzen 9 5900X 12-Core processor)

Typescript slower by nature compared to a compiled languages such as Go renders the two
implementation hardly comparable, however both are fast enough to make timelock encryption
usable in practice without a user noticing, since the slowest operation is currently taking 38ms,
which is roughly the threshold at which users start to be able to notice latency [EYAE99].

6.4 Tradeoffs: G1 vs G2

The BLS signature scheme can be instantiated in two different ways, depending on which group we
want to instantiate public keys and signatures:

(a) π ∈ G1, P ∈ G2

(b) π ∈ G2, P ∈ G1

This can have significant performance and size consequences, since e.g. when using the BLS
12-381 curve, the group G2 is defined over an extension field of degree 2 compared to the group G1,
meaning coordinates in G2 are twice the size of coordinates in G1.

Signature Tradeoffs: The option (a) gives a shorter signature size, as well as an easier ‘hash-to-
curve‘ method (which is important in the context of onchain verification), for a larger public key.
The option (b) gives a larger signature size, and a more computationally intensive ‘hash-to-curve‘
method but uses a smaller public key. Only considering signature consideration, the option (a) is
usually the most optimal one.
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Encryption Tradeoffs: Our encryption scheme lies in the same group as where the public key lies,
hence it is strictly better to use option (b) given its group operations are strictly cheaper than G2.

Tension between encryption vs signature: For signature, it’s usually best to use option (a) (in the
context of onchain verification) but for encryption it’s best to use option (b). Currently, LoE is set
on the (b) method but is planning to switch to (a) to alleviate the cost of verifying randomness
onchain. The performance of the scheme will be impacted but there are further optimizations we
can do on the decryption part. For example, the decryption check U = rG2 can be optimized given
it’s a fixed based scalar multiplication. Note there is no ‘hash-to-curve‘ required for decryption so
decryption should still remain relatively performant.

7 Future Work

Batch decryption: Decryption requires one pre-computed pairing and one individual pairing per
decryption. A pairing can be costly and thus a method for batch decryption would be beneficial to
using this method at scale for every round and multiple transactions.

One advantage that we have over the “generic” identity-based setting is that every ciphertext
is encrypted under the same “ID”. The main problem is that each encryption uses an individual
r = H3(σ,M) where both σ and M are different per user.

Ideally we could use unified “randomness” that is exclusively dependent upon round number
but this is unlikely to achieve CCA security. A more realistic goal is to settle for a linear number
of operations which are less expensive than n pairings, i.e. O(n) field operations would drastically
improve decryption time.

Random Linear Combinations: We could trade off n pairings for n GT computations. The
prover already performs the pairing operations but randomises them and only gives the result.
The random component can be computed publicly from the set of ciphertexts and thus the verifier
merely aggregates individual results and checks if the output is consistent with what the prover
sent.

Batch scalar multiplication: We could offer a ”BatchVerify” API call that batches the scalar mul-
tiplication checks, using Multiple Scalar Multiplication (MSM) operations, such as the Pippenger
algorithm [Boo17].

Chosen-Plaintext Secure Implementation: The current scheme and implementation are an-
alyzed with respect to the CCA-secure variant of BF-IBE. We intend to leverage the fact that
TLE-CCA security is unnecessary for publicly decryptable TLE, especially under our threshold as-
sumptions. In which case, it is possible to implement a CPA variant of BF-IBE to achieve significant
improvements in efficiency.

Quantum-resistant threshold network: To date there are not many threshold signature [CS19]
or identity-based encryption algorithms which are quantum-resistant. A quantum-computer would
currently be able to defeat both the BLS and IBE schemes underlying our timelock solution, and
therefore completely compromise all encrypted data. It would be interesting to look into possible
alternatives that would enable a practical and quantum resistant threshold network to provide
timelock capabilities.
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