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Abstract—Privacy-preserving machine learning (PPML) tech-
niques have gained significant popularity in the past years. Those
protocols have been widely adopted in many real-world security-
sensitive machine-learning scenarios. Secure comparison is one of
the most important non-linear operations in PPML. In this work,
we focus on maliciously secure comparison in the 3-party MPC
over ring Z2` setting. In particular, we propose a novel constant
round sign-bit extraction protocol in the preprocessing model. The
communication of its semi-honest version is only 12.5% of the
state-of-the-art (SOTA) constant-round semi-honest comparison
protocol by Zhou et al. (Bicoptor, S&P 2023); communication
complexity of its malicious version are approximately 25% of
the SOTA by Patra and Suresh (BLAZE, NDSS 2020), for
` = 64. Finally, the resulting ReLU protocol outperforms the
SOTA secure ReLU evaluation solution (Bicoptor, S&P 2023) by
6× in the semi-honest setting and 20× in the malicious setting,
respectively.

I. INTRODUCTION

In the era of big data, privacy protection, and compliance
continues to be a matter of paramount concern among individ-
uals and organizations alike. The need for privacy-preserving
mechanisms has intensified with the rise of various pri-
vacy regulations, such as GDPR. Privacy-preserving machine
learning (PPML) is an emerging privacy-enhancing technique
that enables secure data mining and machine learning while
maintaining the privacy and confidentiality of the underlying
data.

Secure multi-party computation (MPC) [42], [18], [5] allows
n parties to jointly evaluate certain functions without revealing
their private inputs, and it is a typical cryptographic approach
to realize PPML [33], [35], [10], [38], [31], [41] in the multi-
server setting. (This work focuses on 3-party MPC, denoted
as 3-PC.) A number of works [36], [32], [38], [37], [34],
[24], [28], [40], [41], [33], [12], [27], [35], [26] utilizes secure
multi-party computation techniques to achieve efficient PPML,
including traditional machine learning models such as decision
trees and logistic regression, as well as neural network models
like ResNet and VGG, and text generation models like GPT-2
and Llama. According to their benchmark reports, the PPML
cost of non-linear layers has become the main performance
bottleneck.

Secure comparison plays a critical role in evaluating those
PPML non-linear functions; for example, the activation func-
tions used in machine learning, such as Rectified Linear Unit
(ReLU), and MaxPool. A typical PPML approach is to use
piecewise polynomials to approximate arbitrary non-linear
functions [24], [25], [36]. The main idea of these methods

lies in using comparisons to determine the interval in which
the data resides and subsequently selecting the appropriate
polynomial evaluation result. Besides, comparisons are also
widely used in traditional machine learning tasks, such as
decision trees, k-means clustering, and more.

In the literature, the existing comparison protocols can be
broadly divided into constant-round [7] and non-constant-
round [22], [36], [33], [13]. Empirically, constant-round pro-
tocols often incur higher communication costs, whereas non-
constant-round protocols can achieve reduced communication
by sacrificing the round complexity. The trade-off between
communication and round complexity for some representa-
tive protocols is depicted in Fig. I, including constant-round
protocols like garbled circuits (GC), function secret sharing
(FSS), and specialized protocols like CryptFlow, SecureNN,
and Bicoptor; as well as non-constant-round protocols such
as Falcon and general secret-sharing transformation-based
protocols.

For constant-round protocols, GC and FSS only require one-
round communication in the online phase (an extra round
in the offline is needed). Bicoptor requires two communi-
cation rounds without preprocessing. However, the overall
communication cost of all these protocols are quit heavy.
Let Z2` be the ring. Garbled circuits and function secret
sharing (in particular, its distributed comparison function,
DCF) require O(`κ) communication, where κ is the security
parameter. Bicoptor [46] realizes O(`2) communication cost
comparison protocol based on probabilistic truncation, and it
costs O(`2) communication. Nevertheless, when analyzing its
specific overhead, it amounts to `(` + λ), where λ is the
security parameter. Considering ` = 64 and a 64-bit truncation
error, its communication cost can even exceed that of DCF.
In addition, CryptFlow and SecureNN represent another type
of constant-round protocol with communication requirements
significantly lower than the two-round protocols. Nevertheless,
CryptFlow and SecureNN require 10 rounds to complete a
comparison. When considering ` = 64, their round count
approaches that of logarithmic-round protocols in most cases.

Turning to non-constant-round protocols, a typical approach
is to evaluate comparison circuits using Boolean circuits. For
specific types of comparison circuits, employing a parallel
prefix adder (PPA) ensures logarithmic rounds and O(` log `)
communication. If a standard full adder is used, it achieves
nearly the minimal communication cost (3` in the 3-PC
setting) with linear rounds (` rounds). Other implementations,
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Fig. 1: Comparison of communication and round between prior
non-linear protocols and ours. The exact costs of each protocol
are depicted in Table I.

such as Falcon or the Brent-Kung algorithm-based PPA, can
reduce communication to O(`) (with a corresponding coeffi-
cient significantly greater than 3), while still maintaining log-
arithmic rounds. Nevertheless, even logarithmic rounds entail
considerable performance overhead in high-latency network
environments due to the increased number of communication
rounds. To the best of our knowledge, current research lacks a
focus on comparison protocols that achieve both low constant
rounds and minimal communication overhead.(Cf Appendix. B
for related work)

Our results. In this work, we aim to reduce the commu-
nication overhead of the 3-PC comparison protocol while
maintaining a low number of communication rounds. Fig. I
depicts the comparison of the theoretical overhead (passively
secure version) between our protocol and other protocols.
Our protocol achieves communication cost close to that of
logarithmic-round protocols while keeping low communica-
tion round. At the same time, we apply this protocol to
the malicious security while maintaining the constant round
complexity. The underlying secret sharing scheme of our 3-
PC protocol originates from a variant of the replicated secure
sharing (RSS) [12]; that is, to share x ∈ Z2` , P0 holds (r1, r2),
P1 holds (m := x − r, r1), and P2 holds (m := x − r, r2),
where r := r1 + r2.

One-round semi-honest secure sign-bit extraction. The secure
comparison problem in the 3-PC over ring Z2` setting is
equivalent to the sign-bit (i.e. the left-most bit) extraction
problem; namely, let sign(x) denotes the sign-bit of x ∈ Z2` ,
and we have x ≥ 0 iff sign(x) = 0.

Intuitively, our 1-round sign-bit extraction protocol works
as follows. Given x ∈ Z2` , let x̂ := x− 2`−1 · sign(x) denote
the value x after removing its sign-bit. Alternatively, we write
x = sign(x)‖x̂. According to our secret sharing scheme, x =
m + r mod 2`, where m := sign(m)‖m̂ and r := sign(r)‖r̂.
The sign-bit of x sign(x) := sign(r)⊕sign(m)⊕(m̂ ?

≥ 2`−1−r̂)
where the boolean check (m̂ ?

≥ 2`−1 − r̂) represents the carry
bit from m̂ + r̂. Since sign(r) is known to P0 and sign(m)
is known to both P1 and P2, our main task is to obliviously

determine (m̂ ?
≥ 2`−1 − r̂), where 2`−1 − r̂ is held by P0 and

m̂ is held by both P1 and P2.
Let s := m̂⊕ (2`−1− r̂). It is easy to see that, from left to

right, the first non-zero bit of s indicates the left-most position
where 2`−1 − r̂ and m̂ differ, when they are viewed as two
binary vectors. Denote the ζ-th bit of m̂ as m̂ζ . We have
m̂ζ = (m̂ ?

≥ 2`−1 − r̂).
Without considering security, m̂ζ can be determined through

the following steps. (i) Compute s′ as the prefix-sum of s, i.e.,
s′i :=

∑i
k=0 sk for i ∈ Z`. (ii) Compute s′′i := s′i−2si+1. We

argue that s′′ will only contain one zero at the position of the
first non-zero bit of s. Indeed, it converts all the prefix zero bits
of s′ to 1 (namely, if s′i = 0∧si = 0 then s′′i = 1); it converts
the first non-zero bit of s′ to 0 (namely, if s′i = 1∧si = 1 then
s′′i = 0); it converts the suffix bits to non-zero values (namely,
in case si = 0, s′i ≥ 1, we have s′′i = s′i − 2si + 1 ≥ 2;
in case si = 1, s′′i ≥ 2, we have s′′i = s′i − 2si + 1 ≥ 1).
(iii) P1 and P2 opens m̂ and s′′ to P0; P0 then locates ζ as
the position of the only zero bit in s′′, and outputs m̂ζ as the
sign-bit extraction (a.k.a. comparison) result.

Achieving malicious security. We adopt SPDZ style IT-secure
MAC [16] and the dual execution technique [23] for malicious
security. We overcome the one-bit leakage introduced by dual
execution and realize a efficient constant-round actively secure
sign-bit extraction protocol. Our main observation is that if
we introduce an IT-secure MAC (Cf. TABLE. II, below) to
the share of s′′ on top of the semi-honest version, P0 can
verify the correctness of s′′ through the MAC check, which
prevents malicious P1 or P2 from tampering with s′′. Next,
since there is at most one malicious adversary among the 3
parties under static corruption, we can adopt the dual execution
paradigm [23] and perform the verification protocol twice, but
switch the role of the players, i.e., we nominate a different
party to play the role of the P0 and let him generate an IT-
secure MAC and check the execution correctness. The com-
parison result shall be accepted if and only if both verifications
pass.

Performance. Table I depicts the performance comparison
between our protocols and SOTA 3-PC-based ReLU protocols.
As we can see, our protocols achieve a significant performance
improvement compared to other protocols.

Semi-honest secure sign-bit extraction. Our comparison
(a.k.a. sign-bit extraction) protocol can be further used as
the essential building block of the ReLU and MaxPool
evaluations. For the semi-honest (passive) setting, compared
with CrypTFlow [27] (8-round with 6` log ` + 14` bits
of communication) and Bicoptor [46] (2-round with the
(λ + `)(2 + `) bits of communication, λ is the security
parameter such that the error probability is bounded by
21−λ), our solution demonstrates a significant improvement,
i.e., 1-round with 2` log ` communication. Specifically, when
` = 64 and λ = 64, our protocol reduces the communication
cost by 88% from SOTA (Bicoptor), resulting in a 6×
speedup in real-world benchmark tests.

Actively secure sign-bit extraction. Our actively (mali-
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TABLE I: Comparison of 3-PC based ReLU. (` is the ring size, `∗ is the security parameter for truncation error 21−`∗ , κ = 128
is the computational security parameter of GC, and λ = 7 is the statistical security parameter for soundness error 2−(λ log `+λ).)

Protocol Offline Online Malicious
Communication (bits) Rounds Communication (bits)

ABY3[33] 60` 3 + log ` 45` X
BLAZE[35] 5κ`+ 6`+ κ 4 κ`+ 6` X
Fantastic-3PC[15] - 3 + log ` 114`+ 6κ+ 1 X
SWIFT[26] 21` 3 + log ` 16` X
Falcon[41] - 5 + log ` 32` X
Bicoptor[46] 0 2 (`∗ + `)(2 + `) ×
CryptFlow[27] - 10 (6 log `+ 19)` ×
SecureNN[40] - 10 (8 log `+ 24)` ×
Edabits[17] - 5 + log ` 80` X
DCF[19], [7] (`+ 2)κ 1 2` ×
Ours (Semi-honest) (`− 1) log `+ 2` 2 2`(log `+ 1) + 2` ×
Ours (Malicious) 2((λ+1)(`−1) log `+(`−

1) log `+ 2`
3 4`(log `+ 1) + 8` X

ciously) secure sign-bit extraction protocol requires amortized
3-round with 4` log ` + 10` bits communication in online
phase, and 10` + 6`(λ + 1) log ` bits communication in
offline phase where λ is the statistical security parameter
such that the soundness error is 2−(λ log `+λ). To the best of
our knowledge, our maliciously secure protocol significantly
reduces communication of SOTA constant-round maliciously
secure solutions. Compared with BLAZE [35] (5-round with
5κ`+6`+κ bits of communication in the offline phase and 4-
round and κ`+6` bits of communication in the online phase),
our protocol reduces the communication by 75% in the online
phase and 60% in the offline phase, when ` = 64, κ = 128
and λ = 7 (with statistical soundness error 2−49). Besides,
the computational cost of our protocol is significantly lower
than that of BLAZE which is based on Garbled Circuit. Our
benchmark demonstrates that our protocol achieves a 20×
speedup over BLAZE.

II. PRELIMINARIES

Notation. Let P := {P0, P1, P2} be the three MPC parties.
We assume the ring size is Z2` := {0, . . . , 2` − 1} for range
[0, 2`−1) ∪ [−2`−1,−1] and represent the negative integers in
[−2`−1,−1] as [2`−1, 2` − 1]. This encoding sets the the first
bit as the sign bit. In our work, we choose the finite field
Zp, where p is the largest prime in the interval (`, 2`]. For
a vector x = (x(0), ..., x(n−1)), the subscript x(i) denotes its
i-th element. When processing the bits of x ∈ Z2` , we abuse
the representation of subscripts xi to denote the ith bit from
big-endian. We denote γ(x) = α · x as the MAC of the field
element x where α is the MAC key. Considering our field Zp is
small, we take λ numbers of MAC keys for soundness, namely,
γ(x) := (α0 · x, . . . , αλ−1 · x), and we represent ith MAC as
γ(x)i := αi · x. We denote sign(x) as the sign-bit of x and
x̂ as the value dropping the sign-bit, namely, x = sign(x)||x̂.
We use ηj,k to denote the common seed held by both Pj and
Pk. Our protocol contains five types of secret sharing:
- [·]k-sharing: We define [·]k-sharing over ring Z2` as [x]k :=

([x]k−1 ∈ Z2` , [x]k+1 ∈ Z2`) where x = [x]k−1 + [x]k+1

(mod 2)`. Pj for j ∈ {0, 1, 2}/k holds share [x]j .

- 〈·〉k-sharing: We define 〈·〉k-sharing over ring Z2` as
〈x〉k := (mx, [rx]k) where rx is a fresh random value
and x = mx + rx. Pj for j ∈ {0, 1, 2}/k hold (mx ∈
Z2` , [rx]j ∈ Z2`) and Pk holds ([rx]k−1, [rx]k+1).

- J·Kk-sharing: It is the finite field version of [·]k. We define
JxKk := (JxKk+1 ∈ Zp, JxKk−1 ∈ Zp) where x = JxKk+1 +
JxKk−1 (mod p). Pj for j ∈ {k+1, k−1} hold share JxKj .

- 〈〈·〉〉k-sharing: It is the finite field version of 〈·〉k. We define
〈〈x〉〉k := (JrxKk,mx) where x = mx + rx (mod p). Pj for
j ∈ {0, 1, 2}/k hold (mx ∈ Zp, JrxKj ∈ Zp) and Pk holds
(JrxKk−1, JrxKk+1).

- ‖ · ‖λ,k-sharing: We define ‖ · ‖λ,k-sharing over finite
field Zp as ‖x‖λ,k := (JxKk, {JαjKk, Jγ(x)jKk}j∈Zλ). In
our sign-bit verification protocol, one party Pk holds
{αj}j∈Zλ which are the plaintext of MAC keys, and the
other parties Pi for i ∈ {k − 1, k + 1} hold the share
(JxKi, {JαjKi, Jγ(x)jKi}j∈Zλ).
Table II gives several secret sharing structures for different

values of k. Note that in the definition above, k is used
to indicate which party takes on the asymmetric role. For
example, in the replicated secret sharing schemes 〈x〉0 and
〈x〉1, 〈x〉0 denotes that P0 holds the plaintext rx while P1 and
P2 hold the corresponding secret shares, whereas 〈x〉1 denotes
that P1 holds the complete rx while P0 and P2 hold the
secret shares. We denote the replicated secret sharing fragment
as 〈x〉0 := (mx, [rx]2, [rx]1), where the element at index i
indicates the share fragment unknown to Pi. Similarly, we have
〈x〉1 := ([rx]2,mx, [rx]1). We use hollow brackets J·K and 〈〈·〉〉
to denote the field version of [·]-sharing and 〈·〉-sharing. For
‖·‖λ,k, the superscript λ, k denotes that Pk holds λ MAC keys
α0, . . . , αλ−1, and the other parties hold the corresponding
secret share over Zp. Since all MACs are verified at the end
of the protocol execution, the MAC keys can be reused. We
let any two secret shares ‖x‖λ,k and ‖y‖λ,k for the same key
holder Pk use the same MAC keys. For simplicity, we ignore
the superscript such as [·], 〈·〉 when semantics are clear. In our
description, by default 〈·〉 refers to 〈·〉0.

All the aforementioned secret-sharing forms have the linear
homomorphic property. That is, [x]+ [y] = ([x]1 +[y]1, [x]2 +
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TABLE II: Some secret share structure of our protocols.

JxKp,0 ‖x‖λ,0 〈〈x〉〉0 [x]0 [x]1 〈x〉0 〈x〉1

P0 − {αj}j∈Zλ (JrxK1, JrxK2 ∈ Zp) − [x]0 ∈ Z2` ([rx]1, [rx]2 ∈ Z2` ) ([rx]0,mx)

P1 JxK1 ∈ Zp (JxK1, {JαjK1, Jγ(x)jK1}j∈Zλ ) (JrxK1,mx = rx + x) [x]1 ∈ Z2` − ([rx]1,mx = rx + x) ([rx]0, [rx]2 ∈ Z2` )

P2 JxKp2 ∈ Zp (JxK2, {JαjKp1, Jγ(x)jK
p
2}j∈Zλ ) (JrxK2,mx = rx + x) [x]2 ∈ Z2` [x]2 ∈ Z2` ([rx]2,mx = rx + x) ([rx]2,mx)

[y]2) and c·[x] = (c·[x]1, c·[x]2) and [x]+c = ([x]1 +c, [x]2),
where c is a public value. The same linear operations apply
to 〈·〉, J·K, and other variants. For ‖ · ‖, we have ‖x‖+ ‖y‖ =
(JxK + JyK, {JαjK, Jγ(x)jK + Jγ(y)jK}j∈Zλ), c · ‖x‖ = (c ·
JxK, {JαjK, c ·Jγ(x)jK}j∈Zλ) and c+‖x‖ = (c+JxK, {JαjK, c ·
JαjK + Jγ(x)jK}j∈Zλ).

Secret Sharing. Let Π[·], ΠJ·K, and Π〈·〉 denote the correspond-
ing secret sharing protocols of [·], J·K and 〈·〉. By Πk

[·](x) with
specified input x, we mean that x is shared by Pk; by Πk

[·]
without input, we mean the parties jointly generate a shared
random value. We utilize pseudorandom generators (PRG) to
reduce the communication [43]. In our protocol description,
when we let parties Pj and Pk pick random values together,
we mean that these parties invoke PRG with seed ηj,k. The
brief sketch of secret sharing schemes is as follows.
• [x]k ← Πk

[·](x): (Generate shares of x.)
- Pk and Pk+1 pick random value [x]k+1 ∈ Z2` with seed

ηk,k+1;
- Pk sends xk−1 = x− [x]k+1 (mod 2`) to Pk−1.

• [x]k ← Πk
[·]: (Generate shares of a random value.)

- Pk and P1 pick random value [x]k+1 ∈ Z2` with seed
ηk,k+1;

- Pk and P2 pick random value [x]k−1 ∈ Z2` with seed
ηk,k−1;

- Pk calculates x = [x]k+1 + [x]k−1.
• JxKk ← Πk

J·K(x): (Generate shares of x.)
- Pk and Pk+1 pick random value JxKk+1 ∈ Zp with seed

ηk,k+1;
- Pk sends JxKk−1 = x− JxKk+1 (mod p) to Pk−1.

• JxKk ← Πk
J·K: (Generate shares of a random value.)

- Pk and Pk+1 pick random value JxKk+1 ∈ Zp with seed
ηk,k+1;

- Pk and Pk−1 pick random value JxKk−1 ∈ Zp with seed
ηk−1,k;

- Pk calculates x = JxKk+1 + JxKpk−1.
• 〈x〉k ← Πk

〈·〉(x): (Generate shares of x.)
- All parties perform [rx]k ← Πk

[·] in the offline phase,
and Pk holds both seeds of [rx]k+1 and [rx]k−1 generation;

- Pk send mx = x− [rx]k+1− [rx]k−1 to Pk−1 and Pk+1.
• 〈x〉k ← Πk

〈·〉: (Generate shares of a random value.)
- All parties perform [rx]k ← Πk

[·] in the offline phase;
- Pk+1 and Pk−1 pick random value mx with seed

ηk+1,k−1.

Verifiability of share reconstruction. Note that the shared
form 〈·〉 has the verifiable reconstruction property against a
single malicious party. To be precise, for shared value, 〈x〉,
a single active adversary cannot deceive the honest parties
into accepting an incorrect reconstruction result x + e with

FMult interacts with the parties in P and the adversary S.
• Upon receiving

(Input, sid, (mx,k−1,mx,k+1,my,k−1,my,k+1)) from Pk
for k ∈ Z3, FMult does:
– if any input messages of two parties is inconsistant, abort;
– compute
z = (mx,0 +mx,1 +mx,2) · (my,0 +my,1 +my,2)
(mod R);

• Upon receiving (Output, sid, abort) from S, if abort = 1,
FMult abort, else picks mz,0 ← ZR and mz,1 ← ZR.

• calculate mz,2 = z −mz,0 −mz,1 (mod R), send
(Output, sid, (mz,k−1,mz,k+1)) to Pk for k ∈ Z3.

Functionality FMult[R]

Fig. 2: The ideal functionality FMult.

a non-zero error e. This is because any two honest parties
can collaboratively reconstruct the secret, and invalid shares
will be detected by the honest parties. In addition, the shared
form ‖ · ‖k also maintains the verifiability when one of Pk−1,
Pk+1 is malicious, since Pk can verify the correctness of the
share via MAC checks. We apply the hash function H to
reduce the communication cost during the reconstruction of
〈x〉 [14], where the duplicated messages will be aggregated
into a single hash message. Formally, the verifiable reconstruct
protocol ΠRec is described as follows:

• x← ΠRec(〈x〉):
- P0 sends [rx]1 to P2 and [rx]2 to P1;
- P1 sends mx to P0 and H([rx]1) to P2;
- P2 sends H(mx) to P0 and H([rx]2) to P1;

If the received messages from the other parties are
inconsistent, Pi output abort. Otherwise Pi output x =
mx + [rx]1 + [rx]2.

• x← Πk
Rec(〈x〉): All parties send their shares (or the hash

value) to Pk. If the received messages from the other
parties are inconsistent, Pk output abort. Otherwise Pk
output x = mx + [rx]1 + [rx]2.

• x← Πk
Rec(‖x‖):

- Each party Pi for i 6= k sends its shares
JxKi, {Jγ(x)jKi}j∈Zλ to Pk;

- Pk reconstructs x and {γ(x)j}j∈Zλ , aborts if any
γ(x)j 6= αj · x for j ∈ Zλ.

Preprocessing. We follow the “preprocessing” paradigm [6]
which splits the protocol into two phases: the preprocessing/of-
fline phase is data-independent and can be executed without
data input, and the online phase is data-dependent and is
executed after data input. Specifically, all the items rx of share
〈x〉 of our protocols can be generated in the circuit-depend
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offline phase. What the parties need to do in the online phase
is to collaborate in computing mx for P1 and P2.

Multiplication Gate. We adopt the multiplication protocol
ΠMult of ASTRA[12], which is secure under the semi-honest
setting. For multiplication z = x · y with input 〈x〉, 〈y〉 and
output 〈z〉, all parties first generate [rz]← Π[·] for the output
wire in the offline phase. To calculate mz for P1 and P2 in
the online phase, it can be written as

mz = xy − rz = (mx + rx)(my + ry)− rz
= mxmy +mxry +myrx + rxry − rz .

[Γ′] = mxmy +mx[ry] +my[rx] can be calculated by P1 and
P2 locally and [Γ] = [rx ·ry]− [rz] can be secret shared by P0

to P1 and P2 in the preprocessing phase. In the online phase,
P1 and P2 calculate and reconstruct [mz] = [Γ′] + [Γ].

Inner Product Gate. For the replicated secret share 〈·〉, the
communication cost of any dimension inner product equals
to single multiplication. For inner product z =

∑N
i=1 xi · yi

with two input vector {〈xi〉}i∈ZN , {〈yi〉}i∈ZN and output inner
product result 〈z〉, all parties first generate [rz]← Π[·](rz) for
the output wire in the offline phase. To calculate mz for P1

and P2 in the online phase, it can be written as

mz =

N∑
i=1

xi · yi + rz =

N∑
i=1

(mxi + rxi)(myi + ryi)− rz

=

N∑
i=1

(mximyi +mxiryi +myirxi) +

N∑
i=1

rxi · ryi − rz .

Similarly, [Γ′] =
∑N
i=1mximyi +mxi [ryi ] +myi [rxi ] can be

calculated by P1 and P2 locally and [Γ] = [
∑N
i=1 rx ·ry]− [rz]

can be secret shared by P0 to P1 and P2 in the preprocessing
phase. In the online phase, P1 and P2 calculate and reconstruct
[mz] = [Γ′] + [Γ].

Batch Verification of Multiplication for Malicious Security.
A series of works [21], [8], [30], [29] realize the maliciously
secure multiplication protocol. Some of these works [8], [30],
[29] introduce batch verification of replicated multiplication
triples at sublinear cost, achieving O(log(N)) communication
overhead for N multiplication triples. Once amortized, this
overhead becomes negligible. Moreover, this batch verifi-
cation technique can be directly applied to inner product
computations. Some approaches [9], [8] focus on fields, while
others [29] extend batch verification to rings. We use FMult to
denote an actively secure multiplication functionality for both
rings and fields, with FMult[p] for a field and FMult[2

`] for a
ring. In our cost analysis, we treat FMult for multiplication and
inner products in the same way as in the semi-honest setting.

Reshare. To ensure the randomness of secret-shared protocol
outputs and to enable secure evaluation of subsequent gates,
re-randomization is required after specific protocol steps. We
employ the resharing technique whose functionality is illus-
trated in Fig 3. In our implementation, we use a PRG to
generate correlated randomness for locally generating secret

FMult interacts with the parties in P and the adversary S.
• Upon receiving

(Input, sid, (mx,k−1,mx,k+1,my,k−1,my,k+1)) from Pk
for k ∈ Z3, FReshare computes x = mx,0 +mx,1 +mx,2;

• picks mz,0,mz,1 ← Z2` , mz,2 = x−mz,0 −mz,1
(mod R), send (Output, sid, (mz,k−1,mz,k+1)) to Pk via
private delayed channel for k ∈ Z3.

Functionality FReshare

Fig. 3: The ideal functionality FReshare.

shares of zero, 〈0〉, and perform re-randomization by locally
adding these zero shares to the original secret shares.

Security Model. We analyze the security of our pro-
tocols in the well-known Universal Composibility (UC)
framework [11], which follows the simulation-based security
paradigm. The adversary A is allowed to partially control the
communication tapes of all uncorrupted machines, that is, it
sees all the messages sent from and to the uncorrupted ma-
chines and controls the sequence in which they are delivered.
Then, a protocol Π is a secure realization of the functionality
F , if it satisfies that for every PPT adversary A attacking an
execution of Π, there is another PPT adversary S (simulator)
attacking the ideal process that uses F where the executions
of Π with A and that of F with S makes no difference to any
PPT environment Z .

The idea world execution. In the ideal world, the parties
P := {P0, P1, P2} only communicate with the ideal func-
tionality F with the excuted function f . All parties send their
share to F , F calculate and output the result depending on
the adversary S.

The real world execution. In the real world, the parties
P := {P0, P1, P2} communicate with each other via secure
channel functionality Fsc for the protocol execution Π. Our
protocols work in the pre-processing model, but, for simplicity,
we analyze the offline and online protocols together as a
whole.

Definition 1. We say protocol Π UC-secure realizes func-
tionality F if for all PPT adversaries A there exists a PPT
simulator S such that for all PPT environment Z it holds:

RealΠ,A,Z(1κ) ≈ IdealF,S,Z(1κ)

III. SECURE SIGN-BIT EXTRACTION

In this section, we propose a novel sign-bit extraction
protocol ΠSignBit. For sign-bit extraction function z = sign(x),
protocol ΠSignBit outputs 〈z〉 from input 〈x〉. In Sec. IV, we
apply it to the actively secure setting.

A. Protocol Overview

Our goal is to design a low-round protocol for sign-bit
extraction. Given x = mx + rx, the problem of extracting
the sign bit can be reduced to a secure comparison. Since
sign(x) = sign(mx + rx), the sign bit of x is effectively
determined by the sign bits of mx and rx, together with the
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P0

P1 P2

a

b b

[a]2[a]1

cmp(a, b)

P0

P1 P2

b b

[C]← f([a], b)

[C]1 [C]2

g(C) = cmp(a, b)

Fig. 4: The structure of our protocol.

carry bit resulting from the addition of their lower bits (i.e.,
excluding the sign bits). Let mx := sign(mx)||m̂x and rx :=
sign(rx)||r̂x, where m̂x and r̂x denote the lower `− 1 bits of
mx and rx, respectively. The expression (m̂x + r̂x > 2`−1)
captures whether a carry is generated from the addition of
these lower bits. Formally:

sign(x) :=

P0 holds r̂x,P1 and P2 hold m̂x︷ ︸︸ ︷
(m̂x + r̂x

?
≥ 2`−1)

⊕
P0 locally evaluate︷ ︸︸ ︷

sign(rx) ⊕
P1 and P2 locally evaluate︷ ︸︸ ︷

sign(mx)

(1)

Specifically, sign(rx) can be locally evaluated by P0, while
sign(mx) can be locally evaluated by P1 and P2. The re-
maining term, m̂x + r̂x

?
≥ 2`−1—which, given r̂x < 2`−1,

is equivalent to m̂x
?
≥ 2`−1 − r̂x—is handled via a secure

comparison protocol, where P1 and P2 hold m̂x and P0 holds
2`−1 − r̂x. For simplicity, we denote a := 2`−1 − r̂x and
b := m̂x in the following explanation.

A straightforward approach for comparing a and b is for P0

to secret share a with P1 and P2, who then jointly compute the
secure comparison cmp(a, b). However, conventional secure
comparison protocols incur significant round complexity and
communication overhead, even when b is known to P1 and P2.
As illustrated in Fig. 4, we leverage P0 as an auxiliary server to
accelerate the secure comparison cmp(a, b) performed by P1

and P2. With assistance from P0, we design a protocol wherein
P1 and P2 compute shared intermediate values, denoted as C
in Fig. 4, which are generated by applying a linear function
f to ([a], b). These intermediate values, termed “comparison
materials”, can be used to detect the result of cmp(a, b) via
a detection function g, such that g(C) yields the comparison
outcome.

Direct evaluation of g(C) over secret shares is expensive.
However, due to the presence of P0, we can reveal the com-
parison materials C to P0, allowing it to perform the detection
locally. Since P0 does not collude with P1 or P2, privacy is
preserved as long as C does not reveal any information about
the private input b. Once g(C) is computed, P0 re-shares the
result as replicated secret shares, producing the final output.

To improve clarity, we outline the underlying logic for
constructing the comparison materials. The comparison of a
and b is first transformed into identifying the position of the
first non-zero bit in the bitwise XOR of a and b, denoted as
m = a⊕b. When a < b, the bit at position ζ (i.e., the index of
the first non-zero bit in m) satisfies bζ = 1; otherwise, bζ = 0.

0 1 32 332 4 443

1 0 43 421 5 534

mi

m′i

si = m′i − 2mi + 1

0 1 00 011 0 010

m′i =
∑i
k=0mkPrefix sum

First Non-Zero Bit

Uniquely Zero Term

Fig. 5: Transform first non-zero bit detection to the identifying
position of the uniquely zero term.

If a = b, then m is an all-zero vector. To address this case, we
append a 1 to a and a 0 to b, ensuring a 6= b. We then transform
the binary vector m into another vector s, where the position
of the first non-zero bit in m corresponds to a zero in s, i.e.,
sζ = 0 while all other positions in s contain non-zero values,
i.e., si 6= 0 for any other position i. Finally, we design an
oblivious list randomization that converts s and b into random
lists u. These random lists are constructed in a way that only
reveals bζ , the bit at position ζ in b. In the subsequent sections,
we present the detailed protocol construction following the
above design.
Step 1: First Non-zero Bit Detection. We begin by transform-
ing the comparison problem a ?

< b into the task of identifying
the first non-zero bit position. Specifically, we aim to deter-
mine bζ , where ζ ∈ Z` is the index of the first non-zero bit
in the list L1 := {mi}i∈Z` . To this end, P0 first performs bit-
decomposition on a, producing the bit vector {a0, . . . , a`−1},
and secret shares each bit to P1 and P2. Given these shares,
P1 and P2 locally compute the bitwise XOR m := a ⊕ b,
where each bit mi = ai ⊕ bi, and ai, bi denote the i-th bits
of a and b, respectively. It follows that the comparison result
a ?
< b is equivalent to bζ , where ζ is the smallest index such

that mζ 6= 0.
Setp 2: Uniquely Zero Value Identification. To detect the
first non-zero position in m, we transform the problem into
detecting a unique zero value. This process is illustrated in
Fig. 5. Let L1 := {mi}i∈Z` be the bit vector obtained in
Step 1. We compute a prefix sum vector m′i =

∑i
t=0mt

for each index i. By construction, all m′i = 0 until the
first 1-bit in m, after which m′i ≥ 1. We then define a
transformation si = m′i − 2mi + 1 for each i, obtaining the
list L2 := φ(L1) := {si}i∈Z` . This transformation achieves
the following properties:
• If mi = 0 and m′i = 0, then si = 1.
• If mi = 1 and m′i = 1, then si = 0 (identifies the first

non-zero bit).
• If mi = 0 and m′i ≥ 1, then si = m′i + 1 ≥ 2.
• If mi = 1 and m′i ≥ 2, then si = m′i − 1 ≥ 1.

Hence, the resulting list L2 contains a unique zero at index
ζ, the first non-zero bit of m, and all other entries are strictly
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w0

w1

w`−1

. . .
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s1(0)

s`−1

. . .×

1− b0

1− b1

1− b`−1

. . . +

u0

u1

u`−1

. . .

π

×

w0

w1

w`−1

. . .

b0

b1

b`−1

. . . ×

Fig. 6: Oblivious list transformation, transform b and s to
random list u, where bζ for sζ = 0 can be detected by
predicate bζ = (ui = 0).

positive. To ensure correctness under modular arithmetic and
avoid unintended wrap-around, all computations are performed
in a prime field Zp where p > `+ 1. We formally define the
transformation as:

L2 = φ(L1) :=

{(
i∑
t=0

mt

)
− 2 ·mi + 1 mod p

}
i∈Z`

.

We summarize the correctness of this transformation in The-
orem 1.

Theorem 1. Let L := (m0, . . . ,m`−1) ∈ {0, 1}` be a binary
vector. There exists a linear transformation φ such that φ(L) =
(s0, . . . , s`−1) ∈ Z`p satisfies:
• Let i∗ ∈ Z` be the index of the first non-zero bit in L,

that is, mi∗ = 1 ∧ ∀i < i∗ : mi = 0.
• si∗ = 0 and sj 6= 0 for all j 6= i∗.

Proof. Cf Appendix. A

To ensure mi operates over the field Zp, we let P0 in step
1 secret share JaiK over Zp, and other two parties perform
JmiK = JaiK + bi− 2biJaiK to calculate mi = ai⊕ bi. It holds
that a ?

< b := {bζ |sζ = 0, si ∈ L2}.
Step 3: Oblivious List Randomization. At this point, the
list L2 := {si ∈ Zp}i∈Z` and the bit string b cannot be
directly revealed to P0 due to privacy concerns. To address
this, we perform an oblivious randomization process that
hides the information of b. Fig. 6 illustrates this procedure.
The idea is to transform L2 and b into a randomized list
L3 := {ui ∈ Zp}i∈Z` , such that L3 allows detection of bζ
through a public function g(L3), while preserving the secrecy
of b. Let wi ∈ Z∗p be a random nonzero scalar and π : [`]→ [`]
a random permutation. For each index i, we define:

uπ(i) =

{
wi · si (mod p) bi = 0
wi bi = 1

.

and its corresponding detection function is defined to return
a positive result if the sequence L3 contains the element 0,
namely,

g(u) =

{
0 ∃ui = 0
1 ∀ui 6= 0

.

Intuitively, this transformation masks each si using a ran-
dom scalar wi and permutes the resulting list using π to
conceal the location of the zero. Depending on bi, we output

either wi · si (preserving zero) or wi (random nonzero). In
particular:
• If bζ = 0, then uπ(ζ) := wζ · sζ (mod p) = 0 which

implies 0 ∈ {ui}i∈Z` , and hence uπ(ζ) = 0, resulting in
g(L3) = 0.

• If bζ = 1, then uπ(ζ) = wζ 6= 0 which implies 0 /∈
{ui}i∈Z` , so g(L3) = 1.

Masking bζ to Prevent Leakage. Revealing L3 := {ui}i∈Z`
directly to P0 would disclose the comparison result. To miti-
gate this, a binary mask ∆ ∈ {0, 1} is introduced and held by
P1 and P2. During the construction of L3, P1 and P2 replace
bi with ∆⊕ bi, such that the final output satisfies:

a ?
< b = g(L3)⊕∆.

As a result, P0 holds t := g(L3), and P1, P2 each hold the
bias ∆, forming a Boolean secret sharing of the comparison
outcome. This mechanism naturally integrates with sign-bit
extraction. Given that sign(x) = sign(rx) ⊕ sign(mx) ⊕ bζ ,
each party can locally compute sign(rx)⊕t and sign(mx)⊕∆
to obtain boolean secret sharing of the sign-bit extraction.

The Second Round: obtaining 〈·〉-shared result. If the out-
put is required in the form of 〈·〉-secret sharing, an additional
round of interaction is needed, with a communication cost of
2` bits for resharing. Let z := bζ and 〈z〉 := {mz, [rz]} denote
the replicated share of z. Given that z = t⊕∆ = ∆+t−2t·∆
and r′ ∈ Z2` be a random value generated via the offline
phase. Then,
mz = ∆ + t− 2t ·∆− rz

= ∆ + r′ + t(1− 2∆)− r′ − rz
= ∆ + r′︸ ︷︷ ︸

[·]-shared

+ (t− r′)︸ ︷︷ ︸
P0 holds

· (1− 2∆)︸ ︷︷ ︸
P1/P2 holds

− 2 ·∆ · r′ − rz︸ ︷︷ ︸
[·]-shared

.
(2)

During the offline phase, the parties jointly sample [r′] and
[rz] using Π[·]. Then, P1 and P2 locally compute Γ = ∆ +
r′−2 ·∆ · r′− rz in shared form [·] and reconstruct Γ without
leak information about r′. In the online phase, P0 can directly
send m′ = t − r′ to P1 and P2. Finally, P1 and P2 locally
calculate mz = m′ · (1− 2∆) + Γ.

B. Concrete Construction

By filling in some detailed descriptions, we complete our
protocol, which is depicted in Fig. 7. Next, we will explain
our protocol step by step as follows.
• In the offline phase, P1 and P2 generate ∆ to mask the

sign-bit and Γ for the second round resharing. P0 split the
sign-bit of rx and the remain part r̂x. As mentioned before,
the sign-bit sign(x) equal to (m̂x+r̂x ≥ 2`−1)⊕sign(rx)⊕
sign(mx). P0 bit-extract 2`−1 − r̂x for the comparison
m̂x + r̂x ≥ 2`−1, and share each bit in the field Zp.

• In steps 1-3, P1 and P2 set JmiKp, where mi represents
the i-th bit of m̂x ⊕ (2`−1 − r̂x). The transformation can
be locally performed. Moreover, we set m̂x,` = 1 and
Jrx,`K = J0K to ensure that protocol output equals to 1
when m̂x + r̂x = 2`−1.
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Pj and Pk hold the common seed ηj,k ∈ {0, 1}λ.
Input : 〈·〉-shared value of x.
Output : 〈·〉-shared value of z = sign(x).
Preprocessing:
- All parties perform [r′], [rz ]← Π[·];
- Pi, for i ∈ {1, 2} generates the same random value ∆ ∈ {0, 1}

via PRF with seed η1,2 and reveals
[Γ] = ∆ + [r′]− 2∆ · [r′] + [rz ] to each other.

- P0 does:
1) calculate r̂x = rx − sign(rx) · 2`−1 ∈ Z2`−1

2) extract 2`−1 − r̂x as {rx,0, . . . , rx,`−2}
3) perform Jrx,iKp ← ΠpJ·K(rx,i) for i ∈ Z`−1, taking the

biggest prime of p ∈ (`, 2log `+1];

Online:
- Pj , for j ∈ {1, 2} does:

1) set m̂x = mx − sign(mx) · 2`−1 and bitexact it as
{m̂x,i ∈ {0, 1}}i∈Z`−1

while
∑`−2
i=0 2`−2−im̂x,i = m̂x;

2) set m̂x,`−1 = 1 and Jrx,`−1K = J0K;
3) set JmiKp = m̂x,i + Jrx,iKp − 2m̂x,i · Jrx,iKp for i ∈ Z`.
4) pick same random values {wi}i∈Z` ∈ (Z∗p)2` via PRF with

seed η1,2;
5) calculate Jm′iK

p =
∑i
t=1JmtKp − 2 · JmiKp + 1 and

JuiKp = wi · Jm′iKp · (1⊕ sign(mx)⊕ m̂x,i ⊕∆) + wi ·
(sign(mx)⊕ m̂x,i ⊕∆) for i ∈ Z`;

6) pick a random permutation π via PRF with seed η1,2 and
permute the list {JûiKp}i∈Z` = π({JuiKp}i∈Z` );

7) reveal {JûiKp}i∈Z` to P0;
- P0 sets t = sign(rx) if ∃ûi = 0 for i ∈ Z` else
t = 1⊕ sign(rx) to Pj , for j ∈ {1, 2}; %output binary share
(∆, t)

- P0 sends m′ = t− r′ to P1 and P2;
- Pj , for j ∈ {1, 2} sets mz = m′ − 2∆ ·m′ + Γ;
- All parties invoke FReshare to re-randomize 〈z〉 = ([rz ],mz).

Protocol ΠSignBit(〈x〉)

Fig. 7: The Sign-bit Extraction Protocol.

• In step 5, P1, P2 transfer JmiKp to Jm′iKp via the transfor-
mation φ and generate the aforementioned lists {ui}i∈Z` .
Considering (m̂x+ r̂x ≥ 2`−1)⊕ sign(rx)⊕ sign(mx), we
let P1 and P2 further XOR the sign-bit of mx, such that
P0 will output sign(mx)⊕m̂x,ζ⊕∆ rather than m̂x,ζ⊕∆.

• In step 6, P1, P2 random shuffle the list {ui}i∈Z` with the
same permutation π.

• In step 7, P1, P2 open {ui}i∈Z` to P0. P0 can draw the
conclusion based on observations of {ui}i∈Z` : if there
exist i that ui = 0, then sign(mx) ⊕ m̂x,ζ ⊕ ∆ = 0,
otherwise sign(mx)⊕ m̂x,ζ ⊕∆ = 1.

• For the second round of online phase, P0 further XOR
sign(rx) to get sign(rx)⊕ sign(mx)⊕ m̂x,ζ ⊕∆ which is
the masked value of sign-bit, stemming from sign(x) =
sign(rx)⊕ sign(mx)⊕m̂x,ζ . Now, P1 and P2 hold ∆. We
use the aforementioned reshare technique to transfer the
XOR shared value {sign(x)⊕∆,∆} to 〈·〉-shared value,
with one round and 2` communication.

Efficiency. Our sign-bit extraction protocol ΠSignBit costs 1
round with communication of (` − 1) log ` bits in the offline
phase and requires 1 rounds with communication of 2` log `

FSignBit interacts with the parties in P and the adversary S.
Input:
• Upon receiving (Input, sid, (mk−1,mk+1)) from Pk for
k ∈ Z3, send (Input, sid, Pk) to S and record
(mk−1,mk+1) ∈ (Z2` )

2;
Execution:
• Compute z := sign(m0 +m1 +m2);
• Pick random u1, u2 ← Z2` , set u := u0 + u1 and
u2 := z − u;

• Send (Output, sid, (uk−1, uk+1)) to Pk for k ∈ Z3.

Functionality FSignBit[Z2` ]

Fig. 8: The ideal functionality FSignBit.

bits in the online phase to output a boolean shared result;
costs 1 round with communication of (`− 1) log `+ 2` bits in
the offline phase and requires 2 rounds with communication
of 2` log ` + 2` bits in the online phase to output 〈·〉-shared
result.

Security. We analyze the security of our sign-bit extraction
protocol in the UC framework. We define the functionality
FSignBit for our sign-bit extraction in Fig. 8.

Theorem 2. The protocol ΠSignBit as depicted in Fig. 7 UC
realizes FSignBit in the FReshare-hybrid model against semi-
honest PPT adversaries who can statically corrupt up to one
party.

Proof. To prove Thm. 2, we construct a PPT simulator S,
such that no non-uniform PPT environment Z can distinguish
between the ideal world and the real world. We consider the
following cases:

Case 1: P0 is corrupted.
Simulator: The simulator S internally runs A, forwarding

messages to/from Z and simulates the interface of honest P1,
P2. S simulates the following interactions with A.
• Upon receiving {Jrx,iKp1}i∈Z`−1

, [r′]1 form corrupted P0

to P1, and {Jrx,iKp2}i∈Z`−1
, [r′]2 form corrupted P0 to P2,

S picks random list {ûi}i∈Z` as following steps:
– Set ûi ← Z∗p.
– Pick coin← {0, 1}.
– Pick index← Z`.
– If coin equal 1, set ûindex = 0.
– Send {ûi}i∈Z` to P0.

• Upon receiving m′ from corrupted P0 to P1 and P2,
S sends (Input, sid, [rx]1, [rx]2) to FSignBit and receives
(Output, sid, [r′z]1, [r

′
z]2);

• Upon receiving (Input, sid, [rz]1, [rz]2) from corrupted
P0 to internal FReshare, S sends (Output, sid, [r′z]1, [r

′
z]2)

as output of FReshare;
Indistinguishability. The indistinguishability is proven

through a series of hybrid worlds H0,H1.
Hybrid H0: It is the real protocol execution

RealΠSignBit,A,Z(1κ).
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Hybrid H1: It is same as H0 except that in H1, list ûi reveal
to P0 are picked as follow
• Set ûi ← Z∗p.
• Pick coin← {0, 1}.
• Pick index← Z`.
• If coin equal 1, set ûindex = 0.

rather than JuiKp = π(wi · Jm′iKp · (1 ⊕ sign(mx) ⊕ m̂x,i ⊕
∆) + wi · (sign(mx)⊕ m̂x,i ⊕∆)).
H1 is same as ideal world IdealF,S,Z(1κ)

Claim 1. If PRF(Zp)p is the secure permutation with adver-
sarial advantage AdvPRF(Zp)p (1κ, A), then H1 and H0 are
indistinguishable with advantage ε = AdvPRF(Zp)p (1κ,A).

Proof. It is easy to verify the outputs of H1 and H1 are same.
For the real-world list JuiKp = π(wi · Jm′iKp · (1⊕ sign(mx)⊕
m̂x,i ⊕ ∆) + wi · (sign(mx) ⊕ m̂x,i ⊕ ∆)), it only contains
zero when both m′i = 0 and sign(mx)⊕ m̂x,i⊕∆ = 0, which
happens with a probability of 1/2 (Since ∆ is choosen uni-
formly at random and unknown to the adversary). Apart from
the uncertain zero, every other element is selected uniformly
at random from Z∗p. The list ûi in hybrid H1 keep the same
distribution. The permutation π, derived from PRFZpp in the
real-world execution, is replaced by a truly random choice
in the hybrid—namely, index ← Z`. As a result, the overall
distinguishing advantage is bounded by ε = Adv

PRFZpp (1κ,A).

Case 2: P1(or P2) is corrupted.
Simulator: The simulator S internally runs A, forwarding

messages to/from Z and simulates the interface of honest P0,
P2. S simulates the following interactions with A.
• S generate [r′]1 using PRF with seed η0,1.
• S picks [Γ]2 ← Z2` and acts as P2 to send it to P1.
• Upon receiving [Γ]1 from P1, S picks Jrx,iK1 ← Zp for
i ∈ Z` and acts as P0 to send it to P1.

• Upon receiving {JûjK1}j∈Z∗`+1
from corrupted P1 to P0,

S does.
– Invoke PRF with η1,2 to generate permutation π,
{wi}i∈Z` ∈ (Z∗p)`, ∆ ∈ Z2.

– Calculate {JuiK1}i∈Z` = π−({JûiK1}i∈Z`).
– Calculate m̂′x,i via {JuiK1}i∈Z`+1

, wi,∆ and Jrx,iK1

– Set mx = mx,0||m̂′x,1|| . . . ||m̂′x,`−1.
– Act as the corrupted P1 (P2) to send

(Input, sid,mx) to the external FSignBit and receive
(Output, sid, [r′z]1,m

′
z);

– Pick random m′ ← Z2` and act as P0 send to corrupted
P1.

• Upon receiving (Input, sid, [rz]1,mz) from corrupted P1

to internal FReshare, S sends (Output, sid, [r′z]1,m
′
z) as

output of FReshare;
Indistinguishability. The indistinguishability is proven

through a series of hybrid worlds H0,H1.
Hybrid H0: It is the real protocol execution

RealΠSignBit,A,Z(1κ).

Input : N numbers of ‖ · ‖-shared value.
Output : Pk receive {x(i)}i∈ZN .
Execution:
- Pk−1 and Pk+1 reveal {x(i)}i∈ZN to Pk;
- Pk picks λ random value {wj ∈ Z∗p}j∈Zλ and send them to
Pk−1 and Pk+1.

- Pk−1 and Pk+1 do
– calculate JtjK =

∑N−1
i=0 (wj)

i · Jγ(x(i))jK for j ∈ Zλ.
– reveal {tj}j∈Zλ to P0.

- Pk caclualtes t̂j = αj ·
∑N−1
i=0 (wj)

i · x(i) and abort if exist
t̂j 6= tj for any j ∈ Zλ.

- Pk outputs {x(i)}i∈ZN .

Protocol Πk
BatchRec({‖x(i)‖k}i∈ZN )

Fig. 9: The Batch Verifiable Reconstruction Protocol

Hybrid H1: It is same as H0 except that in H1, Jrx,iK1, m′

and [Γ]2 are picked uniformly random instead of calculating
from rx,j , t− r′, ∆ + [r′]2 − 2∆ · [r′]2 + [rz]2.

Hybrid H1 is same as ideal world IdealF,S,Z .

Claim 2. If PRFZp and PRFZ
2` are the secure pseudorandom

functions with adversarial advantage AdvPRFZp (1κ,A) and
advantage Adv

PRF
Z
2`

(1κ,A), then H1 and H0 are indistin-
guishable with advantage ε = ` · AdvPRFZp (1κ,A) + 2 ·
Adv

PRF
Z
2`

(1κ,A).

Proof. It is easy to verify the outputs of the real world
and ideal world are consistent. In the real world, secret
share of rx,j is generated by PRFZp which is indistin-
guishable from Jrx,iK1 randomly picked by S with advan-
tage AdvPRFZp (1κ,A). Considering such a procedure repeat
` times, the advantage is ` · AdvPRFZp (1κ, A). Similarly,
∆ + [r′]2 − 2∆ · [r′]2 + [rz]2 is calcualted by random value
generated by PRFZ

2` which is indistinguishable from [Γ]2 with
advantage Adv

PRF
Z
2`

(1κ, A); m′ = t − r′ can be view as
ciphertext masked by PRFZ

2` output r′. Therefore,H1 andH0

are indistinguishable with advantage ε = `·AdvPRFZp (1κ,A)+
2 · Adv

PRF
Z
2`

(1κ,A).

This concludes the proof.

The ReLU Construction. We construct the semi-honest
ReLU protocol ΠReLU based on the protocol ΠSignBit (see
Appendix A for details). The ReLU function can be expressed
as w = x · (1 − sign(x)) = x − x · sign(x), which can be
evaluated by combining ΠMult and ΠSignBit. However, we aim
to eliminate the extra round of invoking ΠMult by embedding
its communication round into ΠSignBit. Let 〈z〉 = ΠSignBit(〈x〉)
and 〈w〉 = ΠMult(〈x〉, 〈z〉), we have:

mw = mxmz +mxrz +mzrx + rxrz − rw
= mxmz +mxrz + (m′ − 2∆m′ + Γ)rx + rxrz − rw
= mxmz +mxrz + (1− 2∆)(m′rx + r′′) + Γ′

where m′, ∆, and Γ are fresh random values introduced in
ΠSignBit, and we used the fact that mz = m′ − 2∆m′ + Γ as

9



defined in ΠSignBit. We denote Γ′ = Γ · rx − (1 − 2∆)r′′ +
rx · rz − rw, where r′′ is a fresh random used to protect the
privacy of rw. We let P1 and P2 calculate [Γ′] = Γ · [rx] −
(1 − 2∆)[r′′] + [rx · rz] − [rw] locally in the offline phase.
P1 and P2 reveal [Γ′′] = mx · [rz] + [Γ′] to each other in the
first round of ΠSignBit. For item (1−2∆)(m′rx+r′′), P0 send
m′′ = m′rx + r′′ to P1 and P2. Then P1, P2 locally calculate
mw = mx·mz+Γ′′+(1−2∆)m′′. Our ReLU protocol requires
1 rounds with (`− 1) log `+ 2` bits of communication in the
preprocessing phase and requires 2 rounds with 2` log ` + 4`
bits of communication in the online phase. In Appendix. A, we
discuss other PPML operators constructed using our protocol
ΠSignBit.

Fig. 10: Apply IT-mac in our comparison protocol.

IV. ACHIEVING MALICIOUS SECURITY

Given a sign-bit extraction pair {〈x〉, 〈z〉} with z = sign(x),
a malicious adversary could potentially inject faults to cause
sign(x) 6= z. To counter such attacks, we incorporate several
mechanisms into the protocol to detect malicious behavior.

Our maliciously secure protocol is illustrated in Fig. 11.
We observe a clear asymmetry between P0 and P1/P2 in
our semi-honest protocol, the malicious version benefits from
this asymmetry. Notably, P0’s role facilitates efficient integrity
verification by embedding IT-MACs [16] into the input layer,
as shown in the overall architecture of Fig. 10.

In the passively secure version, during the offline phase, P0

sends secret shares of rx,i; during the online phase, P1 and P2

reveal the comparison result u to P0, who checks the result and
sends the masked outcome m′ back. In the malicious setting,
P0 additionally shares rx,i · α together with rx,i. Meanwhile,
P1 and P2 compute m′ · α alongside m′. Upon receiving m′,
P0 can validate it by checking its MAC tag, thus ensuring
correctness if P1 or P2 are corrupted.

The more challenging case arises when P0 is malicious. In
particular, the integrity of the value t (the masked comparison
result) becomes difficult to guarantee. While zero-knowledge
proofs could theoretically validate correctness, the non-linear
operations involved incur significant overhead. To address
this, we adopt the dual execution paradigm [23], [20], which
validates correctness by executing the protocol twice with
switched roles. After the first execution, P0 holds t = z ⊕∆,
and P1, P2 hold ∆. Then the roles of P0 and P1 are swapped,
resulting in P1 holding t′ = z ⊕∆′, and P0, P2 holding ∆′.
This approach enables cross-checks to detect inconsistencies:
• If P0 attempts to alter ∆′, P2—who also holds ∆′—can

detect it.

• If P0 tampers with t, the inconsistency is caught by
verifying whether t⊕∆ = t′ ⊕∆′.

• Likewise, any manipulation of the outputs by P1 or P2

can also be detected through similar consistency checks.
Another point to note is that the typical dual execution protocol
will introduce a one-bit leakage.
Avoiding One-bit Leakage. A malicious adversary can exploit
probabilistic behavior to perform a selective failure attack. For
example, a corrupted P0 may inject an error e into the input x
during the generation of Jrx,iK in Step (3) of the preprocessing
phase (Fig. 7). During dual execution, the adversary can
infer whether the modified input x + e changes the sign-
bit by observing whether the two executions yield consistent
results. Similarly, a corrupted P1 or P2 could inject faults into
mx while computing the comparison material ui, affecting
the output z = sign(x). If the protocol only verifies the
correctness of the final output—without checking intermediate
computations—such one-bit leakage becomes unavoidable. In
our approach, we employ a step-by-step correctness check to
avoid one-bit leakage.
Step-by-step Correctness. Below, we analyze the commu-
nication messages of the ΠSignBit protocol step by step, and
explain how we ensure the correctness of its computation:
• Jrx,iK: We employ an actively secure multiplication pro-

tocol FMult to generate Jrx,iK.
• JûiK: We employ IT-MAC to ensure the correctness of

JûiK.
• t: The final output t is validated using the dual execution

paradigm.
It is important to emphasize that, once IT-MACs are intro-

duced for Jrx,iK, the MAC generation must also be carried
out using a maliciously secure multiplication protocol FMult.
Otherwise, a corrupted P0 could inject errors into the MACs
to launch a selective failure attack. Following we will provide
a detailed breakdown of how the combination of FMult, IT-
MACs, and dual execution ensures the correctness of each
message and prevents malicious tampering throughout the
protocol.
Maliciously Secure Additively Share Generation. We aim
to generate the pair {Jrx,iK}i∈Z`−1

, and [rx] under maliciously
secure model, such that rx = 2`−1 −

∑`−1
i=0 2i · Jrx,iK +

2`−1 · sign(rx) holds. Our strategy proceeds in three steps:
(1) generate secret shares of each bit rx,i under both 〈〈·〉〉 and
〈·〉; (2) use 〈rx,i〉 to calculate r̂x = 2`−1 −

∑`−1
i=0 2i · Jrx,iK

and rx = r̂x+ 2`−1 · sign(rx); (3) convert 〈rx〉 and 〈〈rx,i〉〉 into
2PC shares [rx] and Jrx,iK via local computation. To securely
generate two types share of rx,i, we let P0 and P1 locally
generate a random bit d1,i, unknown to P2, by setting the
shares they both hold to random bit (i.e., setting [rd]1 ← {0, 1}
for 〈d〉) and the other shares to 0. We denote a list of such
boolean value as {d1,i}i∈Z` . Similarly, P0 and P2 generate
another random bit d2,i, unknown to P1. Next, we compute
rx,i = d1,i ⊕ d2,i using an actively secure protocol. Notably,
the local random secret shares d1,i and d2,i can be treated
as valid shares over any ring or field. If the XOR operation
is computed in Z2` , we obtain shares 〈rx,j〉; if performed in
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Pj and Pk hold the common seed ηj,k ∈ {0, 1}κ, P0 holds the MAC keys α := (α0, . . . , αλ−1) ∈ Zλp , P1 holds α′ := (α′0, . . . , α
′
λ−1) ∈

Zλp , all parties hold 〈〈α〉〉0 and 〈〈α′〉〉1, P1 and P2 hold JαK0, P0 and P2 hold Jα′K1.
Input : 〈·〉-shared value of x.
Output : 〈·〉-shared value of sign(x).
Offline:
- P1 and P2 generate the same random value ∆ ∈ {0, 1} via PRF with seed η1,2 and all parties set 〈∆〉0 := (∆, 0, 0).
- P0 and P2 generate the same random value ∆′ ∈ {0, 1} via PRF with seed η0,2 and all parties set 〈∆′〉1 := (0,∆′, 0).
- P0 and Pj for j ∈ {1, 2} pick random bit list {dj,i}i∈Z` ← Z`2 via PRF with seed η0,1 and η0,2;
- P1 and Pj for j ∈ {0, 2} pick random bit list {cj,i}i∈Z` ← Z`2 via PRF with seed η0,1 and η1,2;
- For i ∈ Z`, all parties set:

1) 〈d1,i〉0 = (0, 0, d1,i), 〈d2,i〉0 = (0, d2,i, 0), 〈c0,i〉1 = (0, 0, c0,i), 〈c2,i〉1 = (c2,i, 0, 0);
2) 〈〈d1,i〉〉0 = (0, 0, d1,i), 〈〈d2,i〉〉0 = (0, d2,i, 0), 〈〈c0,i〉〉1 = (0, 0, c0,i), 〈〈c2,i〉〉1 = (c2,i, 0, 0);

- All parties invoke FMult[2
`] and FMult[p] to calculate

1) 〈〈r̂x,i〉〉0 = 〈〈d1,i〉〉0 + 〈〈d2,i〉〉0 − 2〈〈d1,i〉〉0 · 〈〈d2,i〉〉0 and 〈〈r̂′x,i〉〉
0 = 〈〈c0,i〉〉1 + 〈〈c2,i〉〉1 − 2〈〈c0,i〉〉1 · 〈〈c2,i〉〉1, for i ∈ Z`−1;

2) 〈〈γ(r̂x,i)i〉〉0 = 〈〈r̂x,i〉〉0 · 〈〈αi〉〉0 and 〈〈γ(r̂′x,i)i〉〉
1 = 〈〈r̂′x,i〉〉

1 · 〈〈α′i〉〉
1, for i ∈ Z`−1 and i ∈ Zλ−1;

3) 〈rx〉0 = 2`−1 −
∑`−2
i=0 2i(〈d1,i〉0 + 〈d2,i〉0 − 2〈d1,i〉0 · 〈d2,i〉0) + 2`−1(〈d1,i〉0 + 〈d2,i〉0 − 2〈d1,i〉0 · 〈d2,i〉0);

4) 〈r′x〉1 = 2`−1 −
∑`−2
i=0 2i(〈c0,i〉1 + 〈c2,i〉1 − 2〈c0,i〉1 · 〈c2,i〉1) + 2`−1(〈c1,i〉1 + 〈c2,i〉1 − 2〈c0,i〉1 · 〈c2,i〉1);

- All parties set [rx]0 := ([rrx ]01 +mrx , [rrx ]02), Jrx,iK0 := (Jrrx,iK
0
1 +mrx,i , Jrrx,iK

0
2) and

Jγ(rx,i)lK0 := (Jrγ(rx,i)lK
0
1 +mγ(rx,i)l , Jrγ(rx,i)lK

0
2) for i ∈ Z`−1, l ∈ Zλ−1, similar to [r′x]1, Jr′x,iK

1 and Jγ(r′x,i)iK
1;

- All parties set ‖rx,i‖λ,0 := (Jrx,iK0, {JαlK0, Jγ(rx,i)lK0}l∈Zλ ) and ‖rx,i‖λ,1 := (Jrx,iK1, {JαlK1, Jγ(rx,i)lK1}l∈Zλ );
Online:
- P1 and P2 both calculate δ := mx − [r′x]12 and send it to P0, P0 and P1 both calculate δ′ := [rx]01 − [r′x]10 and send it to P2;
- P0 sets m′x = [rx]01 + [rx]02 − [r′x]10 + δ if received δ from P1 and P2 are consistant, else abort;
- P2 sets m′x = [rx]02 +mx − [r′x]12 + δ′ if received δ′ from P0 and P1 are consistant, else abort;
- Pj , for j ∈ {1, 2} does:

1) set m̂x = mx − sign(mx) · 2`−1 and bitexact it as {m̂x,i ∈ {0, 1}}i∈Z`−1
while

∑`−2
i=0 2`−2−im̂x,i = m̂x;

2) set m̂x,`−1 = 1 and ‖rx,`−1‖ = ‖0‖0;
3) set ‖mi‖0 = m̂x,i + ‖rx,i‖0 − 2m̂x,i · ‖rx,i‖0 for i ∈ Z`.
4) pick same random values {wi}i∈Z` ∈ (Z∗p)2` via PRF with seed η1,2;
5) calculate ‖m′i‖0 =

∑i
t=1 ‖mt‖0 − 2 · ‖mi‖0 + 1 and

‖ui‖0 = wi · ‖m′i‖0 · (1⊕ sign(mx)⊕ m̂x,i ⊕∆) + wi · (sign(mx)⊕ m̂x,i ⊕∆) for i ∈ Z`;
6) pick a random permutation π via PRF with seed η1,2 and permute the list {‖ûi‖0}i∈Z` = π({‖ui‖0}i∈Z` );
7) invoke ΠBatchRec(‖ûi‖0) to reconstruct list {ûi}i∈Z` and P0 holds ûi;

- Similiar to above steps, P0 and P2 calculate ‖û′i‖1 and send to P1 for reconstruction.
- P0 sets t = sign(rx) if ∃ûi = 0 for i ∈ Z` else t = sign(rx)⊕ 1; all parties invoke [t]0 ← Π0

[·](t) and set 〈t〉0 := (0, [t]02, [t]
0
1).

- P1 sets t′ = sign(r′x) if ∃û′i = 0 for i ∈ Z` else t′ = sign(r′x)⊕ 1; all parties invoke [t′]1 ← Π1
[·](t
′), set 〈t′〉1 := ([t′]12, 0, [t

′]10).
- All parties invoke FMult to calculate 〈z〉 = 〈t〉+ 〈∆〉 − 2〈t〉 · 〈∆〉 and 〈z′〉 = 〈t′〉+ 〈∆′〉 − 2〈t′〉 · 〈∆′〉.
- All parties call 〈r〉 ← Π〈·〉 and invoke FMult to calculate 〈c〉 = (〈z〉 − 〈z′〉) · (2 · 〈r〉+ 1);
- All parties reveal c← ΠRec(〈c〉), abort if c 6= 0.
- All parties invoke FReshare re-randomize 〈z〉.

Protocol ΠVSignBit(〈x〉0)

Fig. 11: Actively secure sign-bit extraction protocol.

Zp, the result is a valid secret share in Zp. In particular, P0

and P1 jointly generate a random bit string {d1,i}i∈Z` using
seed η0,1, P0 and P2 jointly generate {d2,i}j∈Z` with seed
η0,2. By setting 〈d1,i〉 := (0, 0, d1,i), 〈〈d1,i〉〉 := (0, 0, d1,i),
〈d2,i〉 := (0, d2,i, 0) and 〈〈d2,i〉〉 := (0, d2,i, 0), we obtain shares
of d1,i and d2,i in both Z2` and Zp. For rx,i = d1,i ⊕ d2,i,
we use maliciously secure multiplication FMult, leveraging the
identity rx,i = d1,i + d2,i − 2 · d1,i · d2,i. After that, both P1

and P0 add mx to [rx]1, converting 〈rx〉 and 〈〈rx,i〉〉 into 2PC
share [rx] and Jrx,iK.

IT-MAC and Batch MAC Verification. We use IT-MAC
to ensure the correctness of ûi’s calculation, while P0 holds
the MAC key, to verify ûi. In our actively secure proto-

col, we use ‖rx,i‖ instead of [rx,i] to compute ûi. After
reconstructing ‖ûi‖, P0 can use the MAC key it holds to
verify the correctness. As previously discussed, we need to
ensure the correct generation of the MAC. To achieve this, we
use aforementioned actively secure additively share generation
method to produce the MAC. During the setup phase, we
generate MAC keys [α]0 and 〈α〉0 simultaneously. In the
offline phase, we use FMult to compute the MAC 〈γ(rx,j)〉
on 〈α〉 and 〈rx,j〉. Afterward, through local computation,
we securely convert 〈γ(rx,j)〉 into the additive secret share
[γ(rx,j)].

In addition, we employ the batch MAC verification to reduce
the communication of reconstruction. The principle is that all
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FVSignBit interacts with the parties in P and the adversary S.
Input:
• Upon receiving (Input, sid, (r1, r2)) from P0, send

(Input, sid, P0) to S and record (r1, r2) ∈ (Z2` )
2;

• Upon receiving (Input, sid, (mj , rj)) from Pj , j ∈ Z2, send
(Input, sid, Pj) to S and record (mj , rj) ∈ (Z2` )

2;
Execution:
• Compute z := sign(m1 − r1 − r2);
• Pick random u1, u2 ← Z2` , set u := u1 +u2 and w := z+u;
• Send (Output, sid, (u1, u2)) to P0, (Output, sid, (w, u1)) to
P1, (Output, sid, (w, u2)) to P2 via private delayed channel.

Functionality FVSignBit[Z2` ]

Fig. 12: The ideal functionality FVSignBit.
TABLE III: Boolean shares after dual execution.

P 0 P 1 P 2
First Execution t = z ⊕∆ ∆ ∆
Second Execution ∆′ t′ = z ⊕∆′ ∆′

MAC verifications can be combined into a single message for
one-time verification. In such a scenario, if the data volume
is sufficiently large, the communication overhead during the
MAC verification phase becomes negligible when amortized.
For N pairs of ‖·‖-shared value ‖x(0)‖, . . . , ‖x(N−1)‖, P1 and
P2 partially open secret value x(i) (without the MACs) to P0.
We let P0 generate a public λ-dimension random list {wk ∈
Zp}k∈Zλ and send the list to P1 and P2. With the random list,
the N pairs of MACs can be combined to λ pairs, that is,
‖tk‖ =

∑N−1
i=0 (wk)i · ‖x(i)‖ for k ∈ Zλ. Instead of verifying

n pairs of share, P0 only needs to verify α · tk = γ(tk) for
k ∈ Zλ, where n� λ. Note that, the batch MAC verification
requires an additional round for the MAC opening.

Dual Execution. As previously discussed, we employ dual
execution to detect malicious behavior from P0. A naive
approach is to directly treat 〈x〉0 as 〈x〉1 and rerun the
protocol. However, since 〈x〉1 considers the original mx as
[rx]2, and it must be generated during the online phase, this
shifts many operations that were previously done offline into
the online phase, incurring substantial online overhead. Our
solution is to reshare 〈x〉0 into 〈x〉1 during the online phase.
Specifically, we generate [rx]0 and [r′x]1 in the offline phase.
Then, during the online phase, we compute m′x for 〈x〉1 from
mx, rx, and r′x, with the relationship m′x + r′x = mx + rx.
In the online phase, P0 and P2 need to compute m′x =
mx + [rx]01 + [rx]02 − [r′x]10 − [r′x]12. Since P0 already holds
[r′x]10, [rx]01, and [rx]02, we only need to send δ = mx− [r′x]12 to
P0. Specifically, we let P1 calculate and transmits δ, and P2

sends the corresponding hash H(δ). P0 then verify correctness
and compute the correct m′x. Similarly, P2 already has mx,
[rx]02, and [r′x]12. The other parties need only send [rx]01− [r′x]10
to P2. The resharing introduces only a single round of 2`
communication cost.

By executing the protocol on 〈x〉0 and 〈x〉1 separately, and
after completing the checks on the list ûi , we obtain the

TABLE IV: Maximum Pairwise Communication of Compari-
son Protocols under 64-bit with 216 number of elements. We
evaluated the overhead of Bicoptor at an error rate of 2−64.

Round Communication
DCF [19] 2 139.26MB
Bicoptor [46] 2 134.218MB
Falcon [41] 11 5.24MB
Ours 3 17.39MB

secret-sharing states shown in Table III (t = z ⊕ ∆, ∆, and
t′ = z ⊕∆′, ∆′). Next, to securely convert these two binary
secret shares into 〈·〉-sharing, we evaluate z = t ⊕ ∆, z′ =
t′ ⊕∆′, and β(z− z′) = 0 under the 〈·〉-sharing scheme with
FMult. Note that by treating both 〈x〉0 and 〈x〉1 as replicated
secret shares, multiplication can be performed directly using
FMult.
Security. Fig. 12 depicts the functionality of actively secure
sign-bit extraction. In this functionality, we allow the adversary
to abort and terminate execution through private delayed
channel.

Theorem 3. The protocol ΠVSignBit as depicted in Fig. 11 UC-
realizes FVSignBit in the (FMult. FReshare)-hybrid model against
malicious PPT adversaries who can statically corrupt up to
one party.

Proof. See Appendix B.

Efficiency. Considering the amortized overhead, the MAC
verification for ΠBatchRec(‖ûi‖) in the online phase can be
consolidated and carried out collectively during the verification
phase instead of after each operation. Similarly, the zero
check for ΠRec(〈c〉) can be merged into a single ciphertext
in the verification phase (cf. Appendix A, ΠZeroCheck). Under
amortization, our actively secure protocol requires just three
rounds of 4` log `+10`-bit communication in the online phase
and 10`+6`(λ+1) log `-bit communication in the offline phase
(take λ = 7 for soundness error 2−49).

V. IMPLEMENTATION AND BENCHMARKS

In this section, we evaluate our protocols in both the semi-
honest and malicious settings. For the semi-honest version, we
compare the communication and running time of our protocol
with the DCF solution [7], Falcon [41] and Bicoptor [46].
For the malicious version, we compare our protocol with
Falcon[41], Edabit[17] and BLAZE [35].
Benchmark Setting. As a baseline, we used the open-source
FSS library [3] to evaluate DCF [7] and re-implemented Bi-
coptor [46]. For the maliciously secure protocol BLAZE [35],
we re-implemented it based on the garbled circuits from
emp-toolkit [2] and incorporated support for the half-gate
optimization [45]. We directly used the code provided by
Falcon [4] to benchmark both its semi-honest and malicious
versions. All the benchmark code [1] can be found on the
anonymous GitHub repository. In our benchmark setting, we
take the size of the ring ` = 64. Our experiments are
performed in a local area network, using software to simulate
three network settings: local-area network (LAN, RTT: 1ms,
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Comparison of Online Phase Running Time for Semi-honest Secure Protocols

(a) LAN (b) MAN (c) WAN
Comparison of Overall Running Time for Semi-honest Secure Protocols

(d) LAN (e) MAN (f) WAN
Comparison of Overall Running Time for Maliciously Secure Protocols

(g) LAN (h) MAN (i) WAN

Fig. 13: Run-time of ReLU in LAN/MAN/WAN setting. Here, “Ours” refers to our protocols; DCF refers to [19]; Falcon
refers to [41]; Bicoptor refers to [46]; For the malicious setting, we take λ = 7 for our protocol with soundness error 2−49

bandwidth: 10Gbps), metropolitan-area network (MAN, RTT:
100ms, bandwidth: 1000Mbps), and wide-area network (WAN,
RTT: 200ms, bandwidth: 100Mbps) and executed on a desktop
with Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz running
Ubuntu 18.04.2 LTS; with 48 CPUs, 128 GB Memory.

Comparison of Semi-honest Secure Protocols. Table. IV
shows the overall communication cost with 2` number of
elements generated by different protocols during actual ex-
ecution. As expected, our protocol requires 8 fewer rounds of
communication compared to logarithmic-round protocols like
Falcon, and the communication volume is 87% lower than
that of constant-round protocols such as DCF and Bicoptor.
Subfigures (a)-(c) of Fig. 13 show the performance of different
protocols in the online phase under the semi-honest model.
We evaluated our protocols under two settings: the two-round
protocol that outputs 〈·〉 secret shares and a one-round protocol
that outputs Boolean secret shares. Under LAN settings, where

computation dominates runtime, our protocol, Bicoptor, and
Falcon exhibit similar performance. Bicoptor achieves slightly
better results due to its marginal computational advantage. In
MAN and WAN settings, where communication cost becomes
significant, our protocol outperforms others in the online
phase. Notably, among constant-round protocols, our approach
is 6× faster than Bicoptor and 24× faster than DCF when the
input size exceeds 212. For our one-round version, it achieves
13× speedup over Bicoptor at an input size of 214 under WAN.
Compared to the logarithmic-round protocol Falcon [41], our
protocol achieves an order-of-magnitude speedup for input
sizes below 212 in both MAN and WAN settings. However,
when the input size is sufficiently large (e.g., 218), the cost
becomes communication-bound, and logarithmic-round proto-
cols like Falcon can offer some advantage.

Subfigures (d)-(f) of Fig. 13 illustrate the overall runtime.
Similar to the online phase, under LAN settings, our protocol,
Bicoptor, and Falcon exhibit similar performance, while DCF
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Fig. 14: Execution breakdown of comparison protocols run under LAN and MAN settings( Taking 212 size input). The timeline
on the X-axis represents the running time for each local computation or communication.

is significantly slower due to its high computational cost.
Since our two-round protocol require an additional offline
round compared to Bicoptor, it is slightly slower than Bicoptor
in MAN and WAN settings when the input size is small.
However, our one-round protocol has the same communication
rounds as Bicoptor, resulting in similar runtime for small
inputs. When the input size exceeds 214, our two-round version
outperforms Bicoptor by 5× and DCF by 20×. Similarly,
compared to typical logarithmic-round protocols Falcon, our
protocol shows a clear advantage for smaller inputs, achieving
up to 5× better performance than Falcon when the input size
is less than 216.

Fig. 14 compares the computation and communication costs
of DCF, Falcon, and our protocol across various network
environments and It visually demonstrates how our protocol’s
performance changes under varying network conditions. In the
LAN setting, our protocol performs slightly worse than the
Bicoptor and Falcon protocols. As the network quality wors-
ens, communication overhead becomes the primary bottleneck,
significantly affecting the overall protocol performance. In
contrast, DCF suffers from both extremely high computational
and communication overheads, making it considerably slower
than the other protocols in any network scenario. Our protocol
incurs higher local computation costs compared to Falcon and
Bicoptor, which may be due to our specific code implemen-
tation. Adopting more efficient computational schemes could
potentially improve the performance of our protocol.

Comparison of Maliciously Secure Protocols. Subfigures
(g)-(i) of Fig. 13 present the performance comparison of ma-
liciously secure protocols ΠVSignBit, Falcon and BLAZE [35]
under LAN, MAN and WAN setting. In the LAN setting, our
protocol is slightly slower than Falcon due to its slightly higher
computational overhead. In contrast, BLAZE incurs signifi-
cantly higher overhead than both Falcon and our protocol, as
it requires extensive garbled circuit evaluations. In the MAN
and WAN settings, our protocol significantly outperforms both
Falcon and BLAZE. For small-scale datasets, our protocol
achieves up to 3× the performance of Falcon. Compared to
BLAZE, which is also a constant-round protocol, our protocol
is at least an order of magnitude faster, regardless of whether

the setting is MAN or WAN. Although the performance
advantage of our protocol over Falcon decreases as the input
size grows, it still achieves nearly 2× the performance of
Falcon at a scale of 218. Given that typical use cases for non-
linear protocols—such as activation functions like ReLU— 218

is already more than sufficient.
VI. RELATED WORK

To evaluate non-linear functions such as ReLU and Max-
pool, protocols like [33], [26], [34] employ the A2B paradigm,
which is a conversion process that transforms arithmetic secret
sharing into boolean secret sharing. Subsequently, they utilize
this boolean secret-sharing scheme to evaluate corresponding
non-linear functions. Typically, this approach need to introduce
log ` rounds of communication. Escudero [17] et al. applied a
paradigm similar to A2B in the dishonest majority setting.
Furthermore, in protocols such as [33], [35], [12], garbled
circuits are employed for evaluating non-linear functions. The
use of garbled circuits introduces a significant amount of addi-
tional communication overhead, particularly in the presence of
a malicious threat model. In contrast, the protocols described
in [40], [27] tackle the sign-bit extraction problem with a
constant round communication overhead, while they require a
substantial communication overhead of 10 rounds, which can
be even larger than log ` rounds when ` is small. In addition,
Function Secret Sharing [7] provides another constant-round
approach by encoding the data into correlated randomness
during the offline phase, allowing the computing parties to
evaluate comparisons using the correlated randomness in the
online phase. On the other hand, Bicoptor [46] implements
comparison through a truncation protocol. Their approach
performs local truncation ` times, followed by involving a third
party to verify if the result contains zero items. This scheme
realizes two rounds with `2 bits of communication. However,
this approach has not been applied to malicious threat models.

VII. CONCLUSION

In this work, we innovate novel semi-honest and maliciously
secure sign-bit extraction protocols. The benchmark results
show that our protocols have significant performance im-
provements over the state-of-the-art works, i.e., Bicoptot [46],
Falcon [41], FSS [7].
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APPENDIX

Batch Zero Checking Protocol. The values of N secret shares
(〈c0〉, . . . , 〈cN−1〉) can be checked if all equal zero using
a single ciphertext. For simplicity, we represent 〈ci〉 :=
(ci,0, ci,1, ci,2) where ci,0 := mci , ci,1 := [rci ]2 and ci,2 :=
[rci ]1. G is a PRG and K is common key all parties agreed.
For each share 〈ci〉 := (ci,0, ci,1, ci,2), let Pk compute c′i,k =
G(K, ci,k−1 + ci,k+1), and Pk−1 and Pk+1 compute c′i,k =
G(K,−ci,k). Then, sum the N new messages as c′k =

∑
c′i,k.

By opening c′0, c
′
1, and c′2 to each other and checking for

consistency, it is possible to securely determine whether all ci
are zero, even if one party behaves maliciously. For simplicity,
consider the security against P0 being malicious. P1 and P2
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For simplicity, we represent 〈ci〉 := (ci,0, ci,1, ci,2) where
ci,0 := mci , ci,1 := [rci ]2 and ci,2 := [rci ]1. G is a PRG.
Input : 〈·〉-shared value of x
Output : 1 if c0, . . . , cN−1 all equal to zero, otherwise, 0
Execution:
• All parties agree a common key K
• Each party Pk sets c′k =

∑N
i=0 G(K, ci,k−1 + ci,k+1); Pk−1

and Pk+1 set c′k =
∑N
i=0 G(K,−ci,k)

• Each party send c′0, c′1, c′2 to each others; If any message is
inconsistent, output 0, else output 1.

Protocol ΠZeroCheck(〈c0〉, . . . , 〈cN−1〉)

Fig. 15: The Zero Check Protocol ΠZeroCheck.

can verify the consistency of c′1 and c′2 based on their own
values, without relying on P0’s input. It is worth noting that
directly checking for zero by computing a linear combination
over the secret shares 〈ci〉, such as c =

∑
βici, and then

check c = 0, is insecure. This is because the ring structure
may cause certain errors such as 2`−1 to cancel out during
the linear combination, leading to incorrect results pass the
verfication.
Secure ReLU Protocol. The ReLU of x is calculated by w =
x·(1−sign(x)) = x−x·sign(x), which can be implemented by
combining ΠMult with ΠSignBit. However, it requires an addi-
tional round for multiplication. We observe that the additional
round can be eliminated by executing multiplication at the
same round of sending back m′ in ΠSignBit. We construct the
semi-honest ReLU protocol ΠReLU ( Fig. 16) from ΠSignBit.
Considering 〈z〉 = ΠSignBit(〈x〉) and 〈w〉 = ΠMult(〈x〉 · 〈z〉),
we have:

mw = mxmz +mxrz +mzrx + rxrz − rw
= mxmz +mxrz + (m′ − 2∆m′ + Γ)rx + rxrz − rw
= mxmz +mxrz + (1− 2∆)(m′rx + r′′) + Γ′

m′, ∆, Γ are the fresh random values mentioned in ΠSignBit

and it hold mz = m′ − 2∆m′ + Γ in ΠSignBit. We denote
Γ′ = Γ · rx − (1− 2∆)r′′ + rx · rz − rw, where r′′ is a fresh
random introduced to protect the privacy of rw. We let P1 and
P2 calculate [Γ′] = Γ·[rx]−(1−2∆)[r′′]+[rx·rz]−[rw] locally
in the offline phase. P1 and P2 reveal [Γ′′] = mx · [rz] + [Γ′]
to each other in the first round of ΠSignBit. For item (1 −
2∆)(m′rx+r′′), P0 send m′′ = m′rx+r′′ to P1 and P2. Then
P1, P2 locally calculate mw = mx ·mz + Γ′′ + (1− 2∆)m′′.
Note that reveal m′′ and Γ′′ will not leak any information,
since the P1 and P2 cannot extract additional information of
rx, rz , rw besides of mw, with the fresh random value r′′.
Our ReLU protocol requires 1 rounds and communication of
(`− 1) log `+ 2` bits in the preprocessing phase and requires
2 rounds and communication of 4` log ` + 4` bits in the
online phase. The malicious version of ReLU can be achieved
through verifying 〈z〉 = sign(〈x〉) and 〈w〉 = ΠMult(〈x〉, 〈z〉)
respectively.
Secure Maxpool protocol. Our Maxpool scheme is con-
structed by comparison great(x, y) = x ?

≥ y and maximum

max(x1, . . . , xn). In the case of signed numbers x and y,
great(x, y) can be implemented by invoking the ΠVSignBit

three times. That is, great(x, y) = (sign(x) ⊕ sign(y)) ·
sign(y − x) + (1⊕ sign(x)⊕ sign(y)) · sign(y). For unsigned
number x and y which sign(x) = 0 and sign(y) = 0, we
have great(x, y) = sign(y − x). We have observed that after
applying Maxpool in the ReLU layer, the sign-bit of the data
becomes 0. Therefore, we only need to calculate sign(y− x).

There are two approaches to evaluate max(x1, . . . , xn).
One is to evaluate max(x1, . . . , xn) by max(x1, . . . , xn) =∑n
i=1(Πn

j=1,j 6=igreat(xi, xj) ·xi), which perform Θ(n2) com-
parisons in the constant round. The other is to search
for the maximum value through the binary tree, i.e. re-
duce n-dimension maximum to 2-dimension by expending
max(x1, . . . , xn) = max(max(x1, x2), . . . , v(xn−1, xn)). This
method requires Θ(log n) rounds to perform a total of n− 1
times 2-dimension maximum. We observe that the Maxpool
procedure may re-use some comparison outcomes more than
once while performing the aforementioned maximum opera-
tion, depending on the kernel shape and stride. For instance,
we assume zi,j is the result element of performing (2, 2)-
kernel shape and 1-stride Maxpool over an a×b-dimension ma-
trix requires where zi,j = max(xi,j , xi,j+1, xi+1,j , xi+1,j+1)
and zi,j+1 = max(xi,j+1, xi,j+2, xi+1,j+1, xi+1,j+2). Both
zi,j and zi,j+1 needs the outcome of great(xi,j+1, xi+1,j+1).
We adopt the binary tree solution for its property to eliminate
the repeated comparison due to storing the temporary compar-
ison result.

The 2-dimension maximum max(xi, xj) can be calculated
as (xi − xj) · great(xi, xj) + xj , i.e. (xi − xj) · sign(xj −
xi) +xj . In the previous chapter, we implemented f(x) = x ·
sign(x) in two rounds by introducing 2` bits of communication
overhead in the online phase. We use it to evaluate max(xi, xj)
by max(xi, xj) = xj − f(xj − xi). We apply this approach
to evaluate Maxpool, which requires (`− 1) log `+ 2` bits of
communication cost in the setup phase and (n− 1)(1` log `+
2`) bits in the online phase. Analogously, the malicious version
of Maxpool can be achieved through verifying sign-bit-exact
and multiplication respectively.

A. The proof of Theorem 1.

Theorem 1. Let L := (L0, . . . , L`−1) ∈ {0, 1}` be a binary
vector. There exists a linear transformation φ such that φ(L) =
(L′0, . . . , L

′
`−1) satisfies:

• Let i∗ ∈ Z` be the index of the first non-zero bit in L,
that is, Li∗ = 1 ∧ ∀i < i∗ : Li = 0.

• L′i∗ = 0 and L′j 6= 0 for all i 6= i∗.

Proof. Consider the transformation φ(L) := (L′0, . . . , L
′
`−1)

such that L′i =
∑i
t=0 Lt − 2 · Li + 1 for i ∈ Z`. Let si :=∑i

t=0 Lt be the prefix-sum of L and L′ = φ(L) = si − 2 ·
Li + 1. We argue that L′ will only contain one zero at the
position i∗, where L′i 6= 0 for all i 6= i∗. Indeed, it converts
all the prefix zero bits of L to 1 (namely, if si = 0 ∧ Li = 0
then L′i = 1); it converts the first non-zero bit of L to 0
(namely, if si∗ = 1 ∧ Li∗ = 1 then L′i∗ = 0); it converts
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TABLE V: The communication cost of our protocols. (Offline.Com./Online.Com./Com.: the communication cost of offline/on-
line and malicious phase. Rounds: the communication rounds of the online phase. ` is the ring size. λ:the statistical security
parameter. n:the MaxPool size.)

Operation Execution(Semi-honest) Verification

Offline.Com.(bit) Rounds Online.Com.(bit) Rounds Com.(bit)

Sign-bit Extraction (`− 1) log `+ 2` 2 2` log `+ 4` 3 4` log `+ 10`

ReLU (`− 1) log `+ 4` 2 ` log `+ 4` 3 4` log `+ 13`

MaxPool (n− 1)((`− 1) log `+ 2`) logn (n− 1)`(log `+ 2) 2 logn (n− 1)(4` log `+ 13`)

Input : 〈·〉-shared value of x.
Output : 〈·〉-shared values of z = sign(x) and w = ReLU(x).
Preprocessing:
- All parties perform [r′′], [r′], [rz ], [rw]← Π[·];
- Pi, for i ∈ {1, 2} pick ∆ ∈ {0, 1} and reveal

[Γ] = ∆ + [r′]− 2∆ · [r′] + [rz ] to each other;
- Pi, for i ∈ {1, 2} calculate

[Γ′] = Γ · [rx]− (1− 2∆)[r′′] + [rx · rz ]− [rw];
- P0 does:

1) calculate r̂x = −rx − sign(−rx) · 2`−1 ∈ Z2` ;
2) extract 2`−1 − 1− r̂x as {rx,0, . . . , rx,`−2};
3) perform Jrx,iKp ← ΠpJ·K(rx,i) for i ∈ Z`−1, taking the

biggest prime of p ∈ (`, 2log `+1];
4) perform [rx · rz ]← Π[·](rx · rz);

Online:
- Pj , for j ∈ {1, 2} does:

1) set m̂x = mx − sign(mx) · 2`−1 and bitexact it as
{m̂x,i ∈ {0, 1}}i∈Z` while

∑`−1
i=0 2`−1−im̂x,i = m̂x;

2) set m̂x|` = 0 and Jrx,`K = J1K;
3) set JmiKp = m̂x,i + Jrx,jKp − 2m̂x,i · Jrx,iKp for i ∈ Z`.
4) pick same random values {wi, w′i ∈ Z∗p}i∈Z` via PRF with

seed η1,2;
5) calculate Jm′iK

p =
∑i
t=1JmtKp − 2 · JmiKp + 1 and

JuiKp = wi · Jm′iKp · (1⊕ sign(mx)⊕ m̂x,i ⊕∆) + wi ·
(sign(mx)⊕ m̂x,i ⊕∆) for i ∈ Z`;

6) pick a random permutation π via PRF with seed η1,2 and
permute the list {JûiKp}i∈Z` = π({JuiKp}i∈Z` );

7) reveal {JûiKp}i∈Z` to P0 and reveal Γ′′ = mx · [rz ] + [Γ′]
to each other simultaneously;

- P0 sets m′ = sign(−rx)− r′ if ∃ûi = 0 for i ∈ Z`, else
m′ = (1⊕ sign(−rx))− r′;

- P0 sets m′′ = m′ · rx + r′′;
- P0 sends m′ and m′′ to Pj , for j ∈ {1, 2};
- Pj , for j ∈ {1, 2} sets mz = m′ − 2∆ ·m′ + Γ and
mw = mxmz + (1− 2∆)m′′ + Γ′′;

- All parties output 〈z〉 := ([rz ],mz) and 〈w〉 := ([rw],mw).

Protocol ΠReLU(〈x〉)

Fig. 16: The 2-round ReLU Protocol.

the suffix bits to non-zero values (namely, in case Li = 0,
si ≥ si∗ + Li = 1, we have L′i = si − 2Li + 1 ≥ 2; in case
Li = 1, si ≥ si∗ + Li = 2, we have L′i = si − 2Li + 1 ≥ 1).

This concludes our proof.

B. The proof of Theorem 3.

Theorem 3. Let PRFZp and PRFZ
2` be the secure pseudo-

random functions. The protocol ΠVSignBit as depicted in Fig. 11
UC-realizes FVSignBit in the FMult-hybrid model against ma-

licious PPT adversaries who can statically corrupt up to one
party.

Proof. To prove Thm. 3, we construct a PPT simulator S ,
such that no non-uniform PPT environment Z can distinguish
between the ideal world and the real world. We consider the
following cases:

Case 1: P0 (or P1) is corrupted.
Simulator: The simulator S internally runs A and simulates
FMult, forwarding messages to/from Z and simulates the inter-
face of honest P1, P2. S simulates the following interactions
with A.
• S holds seeds η0,1 and η0,2;
• S generates {d1,i}i∈Z` , {c0,i}i∈Z` with seed η0,1;
• S generates ∆′, {d2,i}i∈Z` with seed η0,2;
• Upon receiving (Input, sid) from FVSignBit, S set mail =

0.
• Pick random [rΓ′ ]2, play the role of P1 and P2 and send

[rΓ′ ]2 to P0;
• Upon receiving the messages (d1,i, 0), (0, d2,i), (0, c0,i)

from P0 send to internal FMult, check if the messages is
correct, abort if not;

• S picks random value c2,i ← {0, 1}, for i ∈ Z`;
• S inputs (0, 0, d1,i), (0, d2,i, 0), (0, 0, c0,i) and (c2,i, 0, 0)

to internal FMult and forword results 〈〈r̂x,i〉〉00, 〈〈r̂′x,i〉〉
0
0,

〈〈γ(r̂x,i)i〉〉00, 〈〈γ(r̂′x,i)i〉〉
1
0, 〈rx〉00, 〈r′x〉10 to P0;

• S sets [rx]0 := ([rx]01, [rx]02) = ([rrx ]01 +mrx , [rrx ]02) and
sends (Input, sid, ([rx]1, [rx]2)) to FVSignBit; sets rx =
[rx]01 + [rx]02;

• S picks random δ ← Z2` and play the role of P1 and P2

to send it to corrupted P0.
• Upon receiving δ′ from P0 send to P2, check if it equals

to [rx]01 − [r′x]11. If [rx]01 − [r′x]11 6= δ′, abort.
• Upon receiving ‖û′i‖ from P0 send to P1, check whether

it is calculated by correct m′x and ‖r′x,j‖0. Abort if
checking fail.

• S picks random list {ûi}i∈Z` as following steps:
– Set ûi ← Z∗p.
– Pick coin← {0, 1}.
– Pick index← Z`.
– If coin equal 1, set ûindex = 0.
– Calculate γ(ûj) for each ûj using MAC keys α;
– Send {ûj}j∈Z` and γ(ûj) to the corrupted P0;

• Upon receiving [t]01 and [t]02 from corrupted P0, pick
random [t′]10 and play as P1 to send it to P0;

• S calculates t = [t]01+[t]02, if t 6= sign(rx)⊕1⊕(∃ûi = 0),
set mail = 1.
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• Upon receiving 〈t〉0, 〈∆〉0, 〈t′〉0 and 〈∆〉′0 from corrupted
P0, check if
– 〈t〉0 := ([t]01, [t]

0
2);

– 〈∆〉00 := (0, 0);
– 〈t′〉0 := ([t]′10 , 0);
– 〈∆′〉10 := (0,∆′);

• If the check fails, abort; otherwise, pick random 〈z〉0 :=
([z]1, [z]2), 〈z′〉0 := ([z′]1, [z

′]2) as the FMult output and
send them to corrupted P0, pick 〈c〉0 := ([c]1, [c]2) as the
FMult output and send them to P0.

• If mail = 1, S picks random number r ← Z2` and set
c = (2 · r + 1)(t − sign(rx) ⊕ 1 ⊕ (∃ûi = 0)), reveals c
to P0 and aborts,

• If mail = 0, S reveals c = 0 to P0;
• Upon receiving 〈c〉0 from P0 to P1 and P2, abort if it is

inconsistent with previously exchanged messages;
• Upon receiving 〈z〉0 from P0 to FReshare, abort if it is

inconsistent with previously exchanged messages;
• S let FVSignBit output, receive 〈ẑ〉0 and take as the output

of FReshare send to P0;
Indistinguishability. The indistinguishability is proven

through a series of hybrid worlds H0,H1.
Hybrid H0: It is the real protocol execution

RealΠVSignBit,A,Z(1κ).
Hybrid H1: It is modified from H0 in that 〈〈r̂x,i〉〉00, 〈〈r̂′x,i〉〉

0
0,

〈〈γ(r̂x,i)i〉〉00, 〈〈γ(r̂′x,i)i〉〉
1
0, 〈rx〉00, 〈r′x〉10 sent to P0 is calculated

through FMult using random share (c2,i, 0, 0) sampled by S;
Hybrid H2: It is modified from H1 in that δ sent to P0

is randomly sampled and the correctness of δ′ is checked by
[rx]01 − [r′x]11 6= δ′;

Hybrid H3: It is modified from H2 in that the correctness
of ‖û′i‖0 is checked by m′x and ‖r′x,j‖0 rather than MAC
verification;

Hybrid H4: It is the same as H3 except that ‖ûi‖ sent to
P0 is generated as following:
• Set ûi ← Z∗p.
• Pick coin← {0, 1}.
• Pick index← Z`.
• If coin equal 1, set ûindex = 0.
• Calculate γ(ûj) for each ûj using MAC keys α;
• Send {ûj}j∈Z` and γ(ûj) to the corrupted P0;
Hybrid H5: It hybrid differs from H4 in that:

1) [t′]10 sent to P0 is randomly sampled;
2) set the dual execution flag mail ∈ {0, 1} by checking

t = sign(rx)⊕ 1⊕ (∃ûi = 0).
Hybrid H6: It is modified from H5 in that

1) S performs direct validity checks on the shares 〈t〉0,
〈∆〉0, 〈t′〉0, rather than performs FMult;

2) 〈c〉0 sent to P0 is randomly sampled by S , rather than
outputted by FMult;

Hybrid H7: It is modified from H6 in that S chooses
whether to output c as zero or a randomly sampled non-zero
value through the dual execution flag mail ∈ {0, 1}, instead
of deriving c via the computation (z − z′) · r.

Hybrid H8: It is the ideal world IdealFVSignBit,S,Z(1κ) which
is modified from H7 in that (1) S performs direct validity
checks on 〈c〉0 rather than employs the replicated share
verification mechanism, (2) S performs direct validity checks
on 〈z〉0 and outputs 〈ẑ〉0 sourced from FVSignBit rather than
performs FReshare.

Claim 3. If PRF(Zp)p is the secure permutation with
adversarial advantage AdvPRF(Zp)p (1κ,A), then the
ideal world IdealFVSignBit,S,Z(1κ) and the real world
RealΠVSignBit,A,Z(1κ) are indistinguishable with advantage
e = AdvPRF(Zp)p (1κ,A) + 1

2λ(log `+1) .

Proof. H0 and H1 are indistinguishable. The executions in
both worlds are indistinguishable to P0’s view, since the value
c2,i is inherently uniformly random from P0’s perspective.
H1 and H2 are indistinguishable. Since [r′x]12 = c0 ⊕

c2 − [r′x]10 where c2 is a uniformly random value unknown to
P0, [r′x]12 maintains perfect randomness from P0’s perspective.
δ = mx − [r′x]12 can be viewed as uniformly random to P0.
H2 and H3 are indistinguishable with advantage

1
2λ(log `+1) . If corrupted P0 can distinguish H2 and H5

we can construct a adversary to pass the MAC verification
with introducing error. Informally, for λ MAC keys over Zp,
namely, α0, . . . , αλ−1, and the errors e, e0, . . . , eλ−1 over Zp,
the probability e · (α0, . . . , αλ−1) = (e0, . . . , eλ−1) is p−λ.
Taking p ≈ 2log `+1, it equals to 1

2λ(log `+1) .
H3 and H4 are indistinguishable with advantage

AdvPRF(Zp)p (1κ,A) for the secure permutation PRF(Zp)p .
This part admits a proof structure similar to Theorem 2.
H4 and H5 are indistinguishable. Since [t′]12 is uniformly

random to P0, [r′x]11 = t′ − [r′x]12 is also uniformly random to
P0.
H5 andH6 are indistinguishable. Corrupted P0 submitting

invalid 〈t〉0, 〈∆〉0 and 〈t′〉0 will trigger abortion in both
worlds;
H6 and H7 are indistinguishable. Considering P0 intro-

duce even error e on t in H6, it will make c = (z− z′)(2 · r+
1) = e(1− 2∆)(2 · r+ 1) = e(2 · r′+ 1), and in such case, S
picks random r′ is random in P0’s view.
H7 and H8 (IdealFVSignBit,S,Z(1κ)) are indistinguishable.

By configuring the output of FReshare to be the same as
FVSignBit’s output, the ideal world IdealFVSignBit,S,Z(1κ) achieve
same output as the real world.

The overall advantage is e = AdvPRF(Zp)p (1κ,A) +
1

2λ(log `+1) .

Case 2: P2 is corrupted.
Simulator: The simulator S internally runs A, forwarding

messages to/from Z and simulates FMult, forwarding messages
to/from Z and simulates the interface of honest P0, P1. S
simulates the following interactions with A.

• S holds seeds η1,2 and η0,2, receives mx from Z;
• S generates {d2,i}i∈Z` with seed η0,2;
• S generates {c2,i}i∈Z` and ∆ with seed η1,2;

18



• Upon receiving the messages (0, d2,i), (0, c2,i) from P2

send to internal FMult, check if the messages is correct,
abort if not;

• S picks random value c0,i ← {0, 1}, d1,i ← {0, 1}, for
i ∈ Z`;

• S inputs (0, 0, d1,i), (0, d2,i, 0), (0, 0, c0,i) and (c2,i, 0, 0)
to internal FMult and forword results 〈〈r̂x,i〉〉02, 〈〈r̂′x,i〉〉

0
2,

〈〈γ(r̂x,i)i〉〉02, 〈〈γ(r̂′x,i)i〉〉
1
2, 〈rx〉02, 〈r′x〉12 to P2;

• S sets [rx]0 := ([rx]01, [rx]02) = ([rrx ]01 +mrx , [rrx ]02);
• S picks random δ′ ← Z2` and play the role of P0 and
P1 to send it to corrupted P2.

• Upon receiving δ from P2 send to P0, check if it equals
to mx − [r′x]12. If mx − [r′x]12 6= δ, abort.

• Upon receiving ‖ûi‖ from P2 send to P0, check whether
it is calculated by correct mx and ‖rx,j‖2. Abort if
checking fail.

• Upon receiving ‖û′i‖ from P2 send to P1, check whether
it is calculated by correct m′x and ‖r′x,j‖2. Abort if
checking fail.

• S randomly samples [t]02 ← Z2` , [t′]12 ← Z2` play as P0

and P1 to send them to corrupted P2;
• Upon receiving 〈t〉2, 〈∆〉2, 〈t′〉2 and 〈∆〉′2 from corrupted
P2, check if
– 〈t〉2 := (0, [t]02);
– 〈∆〉02 := (0,∆);
– 〈t′〉2 := ([t]′12 , 0);
– 〈∆′〉12 := (0,∆′);

• If the check fails, abort; otherwise, pick random 〈z〉2 :=
([z]0, [z]1), 〈z′〉2 := ([z′]0, [z

′]1) as the FMult output and
send them to corrupted P0, pick 〈c〉2 := ([c]0, [c]1) as the
FMult output and send them to P0.

• S reveals c = 0 to P0;
• Upon receiving 〈c〉0 from P0 to P1 and P2, abort if it is

inconsistent with previously exchanged messages;
• Upon receiving 〈z〉2 from P2 to FReshare, abort if it is

inconsistent with previously exchanged messages;
• S let FVSignBit output, receive 〈ẑ〉2 and take as the output

of FReshare send to P0;

Indistinguishability. The indistinguishability is proven
through a series of hybrid worlds H0,H1.

Hybrid H0: It is the real protocol execution
RealΠVSignBit,A,Z(1κ).

Hybrid H1: It is modified from H0 in that 〈〈r̂x,i〉〉02, 〈〈r̂′x,i〉〉
0
2,

〈〈γ(r̂x,i)i〉〉02, 〈〈γ(r̂′x,i)i〉〉
1
2, 〈rx〉02, 〈r′x〉12 sent to P2 is calculated

through FMult using random share (0, 0, c0,i) and (0, 0, c1,i)
sampled by S;

Hybrid H2: It is modified from H1 in that δ′ sent to P2

is randomly sampled and the correctness of δ is checked by
mx − [r′x]12 6= δ;

Hybrid H3: It is modified from H2 in that the correctness of
‖ûi‖2 and ‖û′i‖2 is checked by mx, ‖rx,j‖0 and m′x, ‖r′x,j‖0
rather than MAC verification;

Hybrid H4: It hybrid differs from H3 in that [t]02 and [t′]12
sent to P2 is randomly sampled;

Hybrid H5: It is modified from H4 in that S performs direct
validity checks on the shares 〈t〉2, 〈∆〉2, 〈t′〉2, 〈∆′〉2 and send
random share 〈z〉2, 〈z′〉2 to P2 rather than performs FMult;

Hybrid H6: It is modified from H5 in that S directly reveals
[c]2 = −[c]1 − [c]0 to corrupted P2;

Hybrid H7: It is the ideal world IdealFVSignBit,S,Z(1κ) which
is modified from H6 in that (1) S performs direct validity
checks on 〈c〉2 rather than employs the replicated share
verification mechanism, (2) S performs direct validity checks
on 〈z〉2 and outputs 〈ẑ〉2 sourced from FVSignBit rather than
performs FReshare.

Claim 4. If PRF(Zp)p is the secure permutation with
adversarial advantage AdvPRF(Zp)p (1κ,A), then the
ideal world IdealFVSignBit,S,Z(1κ) and the real world
RealΠVSignBit,A,Z(1κ) are indistinguishable with advantage
e = AdvPRF(Zp)p (1κ,A) + 1

2λ(log `+1) .

Proof. H0 and H1 are indistinguishable. The executions in
both worlds are indistinguishable to P0’s view, since the value
c2,i is inherently uniformly random from P0’s perspective.
H1 and H2 are indistinguishable. Since [rx]01 and [r′x]10 are

perfect randomness from P2’s perspective. δ′ = [rx]01 − [r′x]10
can be viewed as uniformly random to P0.
H2 and H3 are indistinguishable with advantage

1
2λ(log `+1) . Similarly, if corrupted P2 can distinguish H4 and
H5 we can construct a adversary to pass the MAC verification
with introducing error, which equals to 1

2λ(log `+1) .
H3 and H4 are indistinguishable. Since [t]01 and [t′]10 are

uniformly random to P2, [t]02 = t′ − [t]01 and [t′]12 = t′ − [t′]10
are also uniformly random to P2.
H4 andH5 are indistinguishable. Corrupted P2 submitting

invalid 〈t〉2, 〈∆〉2, 〈t′〉2 and 〈∆′〉2 will trigger abortion in both
worlds;
H5 and H6 are indistinguishable. If corrupted P2 does not

trigger abortion in the previous steps, it will receive c = 0.
H6 and H7 (IdealFVSignBit,S,Z(1κ)) are indistinguishable.

By configuring the output of FReshare to be the same as
FVSignBit’s output, the ideal world IdealFVSignBit,S,Z(1κ) achieve
same output as the real world.

The overall advantage is e = AdvPRF(Zp)p (1κ,A) +
1

2λ(log `+1) .
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