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Abstract—The advent of transformers has brought about sig-
nificant advancements in traditional machine learning tasks.
However, their pervasive deployment has raised concerns about
the potential leakage of sensitive information during infer-
ence. Existing approaches using secure multiparty computation
(MPC) face limitations when applied to transformers due to
the extensive model size and resource-intensive matrix-matrix
multiplications. In this paper, we present BOLT, a privacy-
preserving inference framework for transformer models that
supports efficient matrix multiplications and nonlinear com-
putations. Combined with our novel machine learning opti-
mizations, BOLT reduces the communication cost by 10.91×.
Our evaluation on diverse datasets demonstrates that BOLT
maintains comparable accuracy to floating-point models and
achieves 4.8-9.5× faster inference across various network set-
tings compared to the state-of-the-art system.

Index Terms—secure multi-party computation, homomorphic
encryption, secure machine learning inference, transformer

1. Introduction

Transformer models have recently emerged as a game-
changing technology. ChatGPT [1] has made the power of
transformer-based language models accessible for everyone.
Compared to traditional supervised, task-specific learning,
large transformer models are trained on huge quantities of
unlabeled textual data and are directly useful for a wide va-
riety of applications such as translation, content generation,
or question answering. For example, they can be used in
the health care domain to identify patterns and risk factors
by analyzing electronic health records, medical literature,
and clinical notes which can significantly advance diagnosis,
treatment, and drug discovery [67], [5], [63].

Transformer is a general neural network architecture that
is characterized by the usage of attention mechanisms [72].
Attention mechanisms effectively capture relationships be-
tween tokens to model contextual information and capture
long-range dependencies in the input token sequence.

However, such powerful models do not come without
risks, especially in terms of privacy [47], [70]. ChatGPT
is an example of Machine Learning as a Service (MLaaS),
where a server (OpenAI) hosts a proprietary model, and
users input their data into the model and receive a prediction
result in return. However, the MLaaS setting raises privacy

concerns for both parties: either the user has to upload their
private data to the company’s servers, or the server needs
to store its proprietary model on the user’s edge device.
ChatGPT operates in the former setting. As a result, serious
user data privacy concerns have been raised, which even led
to a temporary ban of ChatGPT in Italy [48], [56], [46].

While privacy rights may appear to conflict with effec-
tive data analytics, we can employ a cryptographic method
known as secure multi-party computation (MPC) to safe-
guard both data and model privacy without compromis-
ing functionality. At a high level, MPC allows n parties
p1, . . . , pn with corresponding inputs x1, . . . , xn to learn
the output of a public function f(x1, . . . , xn) without re-
vealing each party’s xi to other parties. Each party’s data is
effectively “encrypted” throughout the entire computation.
At the end of the computation, each party only learns the
final result without gaining any additional information.

While MPC can be utilized for generic computation, it
often leads to substantial computation and communication
costs due to the expensive cryptographic primitives. Recent
studies have concentrated on developing optimized solutions
tailored to specific workloads for the efficient private eval-
uation and training of convolutional neural networks [50],
[51], [25], [42], [61], [4]. However, securing transformers
is especially challenging due to multiple reasons:

1) Transformers are considerably larger than convolutional
neural networks, containing hundreds of millions to bil-
lions of parameters [17], [53], [57], [58].

2) Prior works on private neural networks propose opti-
mized protocols for private matrix-vector multiplications,
but transformers necessitate large-scale matrix-matrix
multiplications.

3) Securely evaluating hundreds of thousands of inputs
for complex non-linear functions in transformers is ex-
tremely expensive.

Therefore, new protocols need to be developed for se-
curing transformer inference. To the best of our knowledge,
Iron [29] is the state-of-the-art system that investigates how
to fully preserve data privacy during standard transformer
inference. However, it falls short in offering a practical
solution due to its significant performance overhead. For
instance, our implementation of Iron requires 280.99 GB
communication for an end-to-end inference, taking 216 min-
utes for an end-to-end inference on the BERT-base model
(110 M parameters [17]) under one of the WAN settings



(100 Mbps, 80 ms). As systems and hardware continue to
evolve [64], [65], [37], [38], [69], we believe it is essential
to reduce network communication since computation can be
accelerated and parallelized. The linear and non-linear pro-
tocols along with machine learning optimizations in BOLT
significantly reduce communication while maintaining ef-
ficient computations, marking substantial progress towards
practical privacy-preserving transformer inference.
Our contributions. We propose BOLT, a novel privacy-
preserving inference system for transformer models, which
addresses the aforementioned challenges by reducing the
communication costs, and thus improves the end-to-end run-
time. BOLT guarantees the confidentiality of the client’s
input data and also protects the service provider’s intellec-
tual property – its model. BOLT integrates cryptographic
improvements, accurate and efficient approximations for
non-linear functions, and algorithmic enhancements from
the perspective of machine learning.

• Communication-optimized and computation-efficient
linear operations. The first challenge we face in BOLT
is that transformers have much more complicated linear
operations that have high multiplicative depth. Many past
secure inference protocols utilize homomorphic encryp-
tion (HE) only for plaintext-ciphertext matrix-vector mul-
tiplications, which are present in convolutional neural net-
works. Iron tackles this by using a mix of HE and MPC,
but the techniques result in high communication costs. In-
stead, BOLT’s cryptographic improvements only make use
of HE to efficiently save on communication costs. We de-
velop compute-efficient, low-depth algorithms in HE. Our
first insight is an alternative interpretation of ciphertext-
plaintext matrix-matrix multiplication that results in an
optimized packing of ciphertexts. Prior works [36], [29]
waste a part of the communication as they leave some
ciphertext slots “empty”. However, merely changing pack-
ing is not enough since it still requires many computation-
ally expensive rotations for the matrix multiplications in
transformer models. We propose a second optimization
to address this issue: we adapt the baby-step giant-step
strategy [28], [7] to our matrix multiplication algorithm
in order to reduce the number of input ciphertext rotations,
and instead and run the rotations later on partial sums of
the intermediate result. This reduces the number of cipher-
text rotations between 2.33× to 9.33× for the BERT-base
model. Finally, we design ciphertext-ciphertext matrix
multiplication algorithms that are efficient and have low
multiplicative depth in HE.

• Accurate and efficient non-linear operations. An accu-
rate and efficient protocol for non-linear operations is also
crucial. Iron shows that more than 75% of their total run-
time is attributed to non-linear layers, due to the complex
computations involved when transferring plaintext non-
linear formulas directly into MPC protocols. These in-
clude trigonometric and exponential functions which are
on their own already very expensive in MPC [60]. To
address this, we introduce two highly precise polynomial
approximations for GELU and Tanh of order 4 and 5

respectively, along with an optimized Softmax procedure.
Given that even four or five multiplications can be ex-
pensive considering input dimensions (e.g., 128 × 3072
for each GELU function in 12 layers of BERT-base), we
present an additional optimization based on [52] that is
also of independent interest for the secure computation
community: a polynomial pre-processing technique that
allows reducing the number of multiplications for the
evaluation of polynomials of order n (Horner’s scheme)
to approximately ⌈n

2 ⌉ when the polynomial’s coefficients
are known in advance.

• Machine learning optimizations. We further propose
machine learning optimizations to enhance efficiency and
accuracy. Specifically, we develop oblivious word elimina-
tion using attention scores. These scores, which measure
the correlations between input tokens, serve as a met-
ric to rank token importance. We then apply oblivious
bitonic sort to discard less contributive tokens and signif-
icantly reduce input size. Additionally, we utilize secure
computation-aware fine-tuning to bridge the gap between
secure and floating-point computations to further improve
accuracy.

Combining all our optimizations, BOLT consumes
10.91× less communication and has 4.8× to 9.5× bet-
ter total run-time than Iron in different network settings.
We consider this a big step towards practical privacy-
preserving transformer inference. We have open-sourced our
code at https://github.com/Clive2312/BOLT.

2. Background

2.1. Notation

We denote by [n] the set {0, 1, . . . , n − 1}, where n ∈
N. We use lower case bold letter such as x to represent
vectors and xi to indicate the i-th element of the vector x.
Correspondingly, X ∈ Ra×b is a matrix of a× b real values
and Xi,j is the element indexed by row i and column j of
the matrix X. ⟨u, v⟩ is the inner product and u ⊗ v is the
outer product. ⌈x⌉ is the ceiling operation on x, ⌊x⌋ is the
floor operation, and ⌈x⌋ is rounding. A multiplexer gate is
denoted by a?b : c and indicates if a is true then return b and
otherwise return c. x >> i and x << i indicate right and
left shifts of a value x by i ∈ N positions in binary. λ is the
computational security parameter. A box, e.g., A , indicates
private values, i.e., either encrypted or secret shared.

2.2. Transformers

In this paper, we focus on the BERT (Bidirectional
Encoder Representations from Transformers [17]), a widely
used transformer model. We present the BERT architecture
in Fig. 1.
Input Format. BERT receives user input as text, which is
tokenized using vocabulary and position information before
being fed into the transformer model. Each token in the
input sentence maps to a high-dimensional vector. Unlike

https://github.com/Clive2312/BOLT
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Figure 1: BERT [17]’s high-level architecture.

traditional neural networks like CNNs, the transformer’s
input is a 2D matrix rather than a 1D vector. Specifically,
for an input X ∈ Rm×d, m represents the length of tokens
and d denotes the model dimension.
Encoder. An encoder component starts with a multi-head at-
tention block followed by two normalization operations with
feed-forward layers in between. Attention layers [72] cap-
ture context and dependencies among words in a sentence.
Concretely, an input X ∈ Rm×d is fed into L “headers”.
Each header linearly projects the input using query, key, and
value parameter matrices WQ

h ,W
K
h ,WV

h ∈ Rd×d′
as well

as the respective biases BQ
h ,B

K
h ,BV

h ∈ Rd′
, where h ∈ [H],

d′ = d/H , and H is the number of heads in each multi-head
attention layer. The result of the projections are Qh,Kh and
Vh ∈ Rm×d′

. In BERT-base, m = 128, d = 768, H = 12
and L = 12. Next, the attention score Atth ∈ Rm×d′

is
computed before being fed into a feed-forward network:

Atth = Softmax(
Qh ×KT

h√
d

)×Vh, (1)

where the Softmax function is defined as:

Softmax(X)i,j =
eXi,j∑

j∈[d] e
Xi,j

, i ∈ [m], j ∈ [d] (2)

Then the attention results are concatenated as Att =
Concat({Atth}h∈[H]), where Att ∈ Rm×d. Further, the
attention value is normalized across the layer:

LayerNorm(X)i,j =
γj(Xi,j − µi)

σi
+ βj , (3)

where i ∈ [m], j ∈ [d], µ ∈ Rm is the mean, and σ ∈ Rm

is the variance. γ ∈ Rd and β ∈ Rd are model parameters.
Transformers employ the GELU activation function be-

tween the feed-forward layers due to its favorable curvature
and non-monotonicity properties [31], [32]:

GELU(x) =
1

2
x · (1 + erf(

x√
2
)), (4)

where the Gauss error function is erf(x) = 2√
π

∫ x

0
e−t2dt.

Pooler and classifier. For downstream tasks, the output of
the L encoder layers is fed into a pooler and classifier layer,
and Tanh is usually used as the activation function. The first
token of the encoding result (corresponding to the first row
of the result matrix) is a special token that is being utilized
as the input of pooler and classifier, which output the result.
Fine-tuning. BERT is an encoder model trained on a large
public dataset. To enhance its performance on downstream
tasks, it requires fine-tuning on smaller datasets, which may
be private or contain sensitive information. Fine-tuning is
more cost-effective than training and typically results in
good accuracy after several epochs.

2.3. Cryptographic primitives

Secure multi-party computation (MPC). MPC techniques
allow a set of P mutually distrusting parties P1, · · · ,PP

to collaboratively evaluate an arbitrary function f on their
respective private inputs x1, . . . , xP without revealing any
information about the inputs except from what can be in-
ferred from the output [75].

The MPC framework [11] that we use to instantiate
our protocols in §7 implements 2-out-of-2 additive secret
sharing with two parties P1 and P2. Here, each Pi (where
i ∈ {1, 2}) holds a share ⟨x⟩i of a secret x ∈ Z2ℓ such that
x = ⟨x⟩1 + ⟨x⟩2 mod 2ℓ, where ℓ is the bit length. While
additions can be executed locally “for free”, multiplications
require communications between the parties and are realized
using oblivious transfer (OT).
Homomorphic encryption. Homomorphic encryption (HE)
is another important cryptographic primitive for secure com-
putation that allows a party to execute computations on
another party’s encrypted data without decryption. Recently,
there has been a lot of exciting developments in lattice-based
HE schemes [8], [21], [24], [9], [13] because of their relative
efficiency compared to previous designs. Lattice-based HE
schemes were originally designed for leveled homomorphic
encryption, which can support computation that have limited
multiplicative depth. The reason for those limitations is that
the cryptographic hardness assumption leads to noise in
a ciphertext, and the noise increases with each operation,
such that, at some point decryption fails. Thus, controlling
the noise growth is crucial for ensuring the correctness
of the computation. In this paper, we leverage leveled
HE (specifically, BFV [9]) instead of fully homomorphic
encryption [23] (FHE), since FHE requires bootstrapping,
which is still prohibitively expensive. Key parameters of HE
schemes typically consist of dimension of the polynomial
ring n, plaintext modulus p, and ciphertext modulus q.
Trade-off between MPC and HE. While MPC and HE
both enable secure computation, there is no clear “better”
technique. Instead, the choice has to be made based on mul-
tiple factors depending on the requirements of the applica-
tion and setup. HE typically has lower communication cost
and higher computational overhead than MPC, especially
for complex non-linear computations. In contrast, MPC
can be based mostly on efficient symmetric cryptographic



primitives to evaluate the non-linear functions, but requires
expensive communication between computing parties.

3. System Overview

System setup. BOLT is a secure inference protocol for
transformer models, specifically BERT. The service provider
owns and maintains a fine-tuned transformer model, pri-
vately offering it to users whose input data is sensitive. This
corresponds to a secure two-party computation (2PC, §2.3)
scenario. BOLT allows the client and server to engage in a
tailored 2PC protocol for privacy-preserving inference.
Threat model. We assume that the two mutually distrusting
parties, server P1 and client P2, are semi-honest (a.k.a.
honest-but-curious). They will correctly follow the proto-
col specifications while attempting to passively gain addi-
tional knowledge that cannot be inferred from the output.
Semi-honest security is a common assumption for privacy-
preserving machine learning (PPML). It is used in related
works on private neural network inference [36], [50], [33],
[45], [29]. There are two main reasons for such an assump-
tion: 1) the parties have to trust each other to some extent
since the server is providing the inference service; 2) semi-
honest performance is much more practical.

BOLT assumes that the model architecture is known to
both parties. As is standard in all secure computation pro-
tocols, we also do not aim to hide leakage of the inference
result. Note that this is inherent to the ideal functionality
of those protocols because the result needs to be useful and
be revealed to someone, often both of the parties that are
involved in the original computation. There are orthogonal
techniques like differential privacy [20] that can be com-
bined with BOLT to alleviate such information leakage.

In a typical BERT use case, the service provider will
first fine-tune the model on their private datasets. Consid-
ering that the original BERT model is trained on a large
public dataset, its well-trained tokenization can effectively
map sentences to a BERT-friendly space, we freeze the
tokenization during private fine-tuning. That is, the sentence
tokenization process is public and contains no sensitive
information. Furthermore, both parties know the parameter
scales and dimensions of each layer.
System architecture. BOLT is a hybrid protocol that uses
both HE and MPC. In §4, we discuss our novel efficient
protocols for matrix multiplication using HE. §5 discusses
our techniques for approximating and optimizing non-linear
functions. Since the non-linear functions are very expensive
to express in HE, we use secret sharing-based MPC to
implement these functionalities. Thus, we adopt a hybrid
approach, and support conversions between HE and MPC.
This also allows us to automatically reset the HE noise
without using expensive bootstrapping operations.

BOLT primarily focuses on optimizing the overall exe-
cution cost instead of just the online cost. We consider the
overall protocol execution crucial, as merely optimizing for
online cost can add additional overall cost and have extra
memory/storage overheads [22].

Native computation in MPC and HE operates over
rings, and therefore floating point arithmetic is very expen-
sive [42], [59], [16]. However, the parameters of transformer
models, as well as all intermediate values in a transformer
inference, are typically represented in 32-bit floating point
numbers. To achieve both efficiency and accuracy, we en-
code all values in fixed-point arithmetic. Based on the bit
length ℓ and the length of the fractional part s ∈ Z (also
called the scale), a real value x ∈ R is converted into
its (approximated) fixed-point representation by computing
y = ⌊x · 2s⌋ mod 2ℓ. Hence, decoding is defined as y/2s.
All the operations of MPC are performed over the ring Z2ℓ ,
and all the operations of HE are over the ring Zp. We utilize
the conversions between MPC and HE; see §7.1.2.

While the techniques of BOLT are applicable to all
transformers, we use BERT [17] as a running example in
the following for the sake of simplicity of presentation.

4. Efficient MatMul in BOLT

A key characteristic of the transformer architecture in
BERT is the attention mechanism §2.2, which consists of
large matrix multiplications. Similar to prior works [36],
[50], [33], [29], we use HE to securely compute them as HE
is relatively efficient for linear operations and allows us to
save on communication bandwidth and roundtrips compared
to MPC. Given the trends in systems and hardware, we
believe that it is more important to save on network commu-
nication as computations can be accelerated and parallelized.
For example, there are several recent exciting works on
hardware acceleration of FHE [64], [65], [37], [38], [69]
that achieve significant run-time savings.

The challenges that we face in designing our techniques
are two-fold. First, BERT has matrix-matrix multiplications
instead of matrix-vector multiplications. Second, the linear
computation also has increased multiplicative depth leading
to tricky ciphertext-ciphertext matrix multiplication. We note
that our approach of using HE for computing all building
blocks is rather unusual – prior works [36], [50], [33], [35]
only have plaintext-ciphertext matrix-vector multiplication
or only supports CNN models, and Iron [29] also uses MPC
for ciphertext-ciphertext matrix multiplications.

In this section, we propose an efficient protocol for
linear operations. Unlike previous protocols in Iron which
waste a lot of ciphertext slots, our protocol has compact
ciphertext packing and significantly reduces communication
(§ 4.1.1). We optimize the computation by minimizing
the multiplicative depth and number of rotations (§ 4.1.2).
Additionally, we support ciphertext-ciphertext matrix mul-
tiplication, which is integral in the attention mechanism of
transformers (§ 4.1.3).

4.1. Building blocks

4.1.1. Ciphertext-Plaintext MatMul with Compact Pack-
ing. We start with matrix-matrix multiplications that mul-
tiply a ciphertext matrix with a plaintext matrix. We will
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Figure 2: BOLT’s compact packing for ciphertext-plaintext
matrix-matrix multiplication.

use the example A × B = C , where A ∈ Zm×d1
p ,B ∈

Zd1×d2
p , in the remaining parts of this subsection for illus-

tration. A and C are matrices in ciphertexts.
Current state-of-the-art PPML works that use HE for

matrix multiplication are Gazelle [36] and Iron [29]. Both
works compute matrix multiplication via inner dot products.
When it comes to matrix multiplications, both Gazelle and
Iron has sparse packing in the resulting ciphertext. The
wasted slots in the ciphertext will induce additional commu-
nication overhead and also introduce more multiplications
in HE for Gazelle. We present the number of required HE
operations in Tab. 1. Interested readers can refer to App. A
for more detailed explanation of their methods.

Fig. 2 depicts our improved packing technique, and we
make it possible to fully utilize all ciphertext slots. It relies
on an alternative interpretation of matrix multiplication that
does not explicitly depend on inner dot products. Let’s
assume we have matrices A , B, and C as shown in Fig. 2.

If we denote the matrix A as

 | |
A1 A2

| |

, where

A1 , A2 are the columns, then we can clearly see that

each column of C is a linear combination of the columns
of A , and the scaling factors are scalars from B.

To compute such linear combinations, we pack the ci-
phertext matrix A in a column-wise fashion as shown
in Fig. 2. However, if we simply multiply each column
of A by the column values of B, we will need to sum
the partial products from different columns together. This
will result either in underutilized ciphertexts, or require

BOLT BOLT
Gazelle∗ Iron w/o BSGS w/ BSGS
O(md1) O(md1d2/n) O(md1d2/n) O(md1d2/n)

#Mult. 98304 768 768 768

O(md1) 0 O(d1) O(
√

m2d21d2/n
2)

#Rot. 96768 0 756 43
O(md1/d2) O(

√
md1d2/n) O(m(d1 + d2)/n) O(m(d1 + d2)/n)

#Ct. 1664 56 13 13
∗Assume n > d1 > d2 for Gazelle.

TABLE 1: Comparison with Gazelle and Iron. The concrete
numbers are based on the BERT-base Linear 1 dimensions
with m = 128, d1 = 768, d2 = 64, n = 8192.

additional rotations, masking, and additions to group the
right ciphertexts together. Rotations are expensive in HE [6],
and masking will increase multiplicative depth. Instead, we
adapt Gazelle’s diagonal packing of weight matrix B and
repeat each value bij #rows of A times. The number of
rows of the left-hand matrix A , namely m, allows us to
compactly pack the columns in the input ciphertexts. (As
the input token length m for BERT is usually 64, 128, or
256, and the polynomial dimensions n for HE is a power
of 2 such as 2048, 4096, 8192, etc.) Note that the output
ciphertext automatically encodes matrix C in the form of
columns with the same m as A , i.e., we get a perfectly
compact output packing. In Tab. 1, we present the detailed
comparison with Gazelle and Iron regarding the number of
each operation and the number of ciphertexts both asymp-
totically and concretely based on the dimensions of BERT-
base Linear 1 in Fig. 1. We show that BOLT uses much
fewer multiplications compared to Gazelle as the packing is
compact and all the slots in the ciphertexts are utilized. Also,
Gazelle and Iron have higher communication overhead as
they need to pack more ciphertexts. Even though Iron does
not need rotations, the communication overhead becomes
significant when the matrix size is large. As we will show
in §7, BOLT consistently outperforms Iron under different
network settings up to a factor of 45.7×. In the following,
we will show how to reduce the number of rotations using
a baby-step giant-step (BSGS) strategy.

4.1.2. Reducing Rotations: A Baby-step Giant-step
Strategy. As multiple columns fit into one ciphertext and we
would like to fully utilize all ciphertext slots, multiple partial
results will end up in the same ciphertext. Thus, rotations are
not avoidable to sum those up. In this section, we introduce
an optimized protocol that reduces the required number of
rotations in ciphertext-plaintext matrix multiplications.

We adapt the baby-step giant-step (BSGS) strategy [28],
[7] to our matrix multiplication problem to significantly
reduce the number of rotations. The BSGS strategy was
originally used for matrix-vector multiplication in HE, but
we extend this idea to our matrix-matrix multiplication set-
ting. We pack the ciphertext matrix in column as described
in §4.1.1, and we rotate at the column level instead of the
element level. Thus, the BSGS cannot be directly applied in
the same way as matrix-vector scenarios. Also, in matrix-
matrix multiplications, we can also do additional partial
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This figure shows an example of computing C = A ×B, where A ∈ Zm×d1
p is encrypted column-wise, and B ∈ Zd1×d2

p

is in plaintext. In this example, m = 4, d1 = 8, n = 16, and d2 = 4. CTA1 is a packed ciphertext of the first 4 columns,
while Rot(CTA1, 1) is the same ciphertext rotated to the left by 1 column. PTB1, PTB2, PTB3, PTB4, are 4 diagonals of
matrix B. We repeat the same multiplication as shown in the figure on the right half of the matrix A , whose corresponding
packing is CTA2 (not shown), and the lower half of the matrix B. We don’t explicitly show this step, but assume the results
are C3 and C4 . ( C1 , C3 ) and ( C2 , C4 ) can be partially summed together without rotations. From the figure, we
can see that BSGS allows us to only rotate the input CTA1 and CTA2 once, followed by ciphertext SIMD multiplications
and partial summations, and finally the partially summed results are rotated.

summations compared to matrix-vector multiplications, es-
pecially when the RHS plaintext matrix is tall and skinny.

We visualize the high-level idea of the BSGS strategy
in Fig. 3. As described, the column of the private matrix A
is only rotated twice, i.e., each of its ciphertext packings
CTA1 and CTA2 is rotated once. While the other rotations
are done on the diagonals of the plaintext matrix B. After
summing up the partial results, only one “backwards” rota-
tion is needed to sum up C . The total number of rotations
on ciphertexts is therefore 3 instead of 6 in our example.

Consider A ∈ Zm×d1
p and B ∈ Zd1×d2

p , and C =

A × B ∈ Zm×d2
p . Using BSGS, asymptotically, we need

O(

√
m2d2

1d2

n2 ) ciphertext rotations. Considering that using
our protocol in §4.1.1, we require O(d1) rotations. Thus,
compared to BSGS in the matrix-vector setting, there are
additional opportunities for partial summations across the
rows if the RHS plaintext matrix is tall and skinny (i.e., d1
is relatively large and d2 is relatively small).

We present the detailed comparison with Gazelle and
Iron regarding the number of HE operations in Tab. 1, our
technique saves about 17.58× rotations compared to BOLT
without BSGS on BERT-base model’s single-head attention
dimensions. We present more concrete savings for other
dimensions of BERT-base in App. F.

4.1.3. Ciphertext-Ciphertext MatMul. So far, we have
the ciphertext-plaintext matrix multiplication, and in this
section, we will discuss the ciphertext-ciphertext matrix
multiplication.

To save communication costs, we design an efficient
protocol that uses only HE to compute the ciphertext-
plaintext as well as the ciphertext-ciphertext matrix-matrix
multiplications. The challenge in designing such an algo-
rithm is keeping the multiplicative depth small since higher

multiplicative depth will lead to higher noise consumption
and larger HE parameters (§2.3). Larger HE parameters, in
turn, result in worse performance.

In BERT, there are two different packings that require
ciphertext-ciphertext matrix multiplications: 1) the LHS is
column-packed and the RHS is row-packed, and 2) the LHS
is diagonal-packed and the RHS is column-packed.
Column-packed matrix × row-packed matrix. We intro-
duce our solution for the first packing scenario. Consider
C = A × B , where A ∈ Zm×d1

p , B ∈ Zd1×d2
p , and

C ∈ Zm×d2
p . A is column-packed and B is row-packed.

Since both matrices are encrypted, directly using our matrix
multiplication technique from §4.1.1 will require replicating
the RHS matrix via repacking into many ciphertexts. For the
BERT-base dimensions with input token length m = 128,
repacking the RHS matrix results in 128× more ciphertexts.

Instead, we make the observation that we can use
the columns and rows directly and use the outer prod-
uct interpretation of matrix multiplication. Let us again
illustrate this view with matrices A and B . Given the
columns Ai and rows Bj , i, j ∈ [d1], we have that

A × B =
∑

i∈[d1]
Ai ⊗ Bi . Therefore, we can similarly

use this insight to complete the ciphertext-ciphertext matrix
multiplication without additionally expanding and repacking
the matrix B into the diagonal form.

Directly multiplying the left ciphertext and the right
ciphertext will result in the diagonals of the output matrix.
To compute the other diagonals of the matrix, we need to
rotate within the rows of B . This requires 2D rotations for
the ciphertext — where the dimensions are 128 × 64 for
the BERT-base attention layers — but such a 2D rotation
is not supported in BFV given the powers that are used for
the roots of unity in the NTT space (in fact, it is unclear



whether it is possible to find the appropriate generators with
orders 64 and 128 for n = 8192, that also span the entire
space). Instead, we rely on partial rotations that need to be
corrected by bit masking.

Let’s take a look at an example to ease under-
standing. We assume that full rotations are supported
in this example even though BFV supports 2D rota-
tions of size n/2×2. A 2×4 matrix encoded in a vec-
tor ⟨x1,1, x1,2, x1,3, x1,4, x2,1, x2,2, x2,3, x2,4⟩ can be rotated
within the first half and the second half to the left by 1
by doing two separate rotations, applying an extra mask,
and a summation. The first rotated vector is the cipher-
text shifted to the left by 1. The second rotated vector is
the ciphertext rotated to the right by 3. The mask vec-
tors are ⟨1, 1, 1, 0, 1, 1, 1, 0⟩ and ⟨0, 0, 0, 1, 0, 0, 0, 1⟩. By
multiplying the rotated vectors with the masks, and then
summing the results, we can get the correct 2D rotation
x̃ = ⟨x1,2, x1,3, x1,4, x1,1, x2,2, x2,3, x2,4, x2,1⟩.

The above approach requires an additional logarithmic
number of rotations to sum up the partial products within
each resulting ciphertext. This results in a non-compact
output packing, which can be naively solved by multiplying
with another bit mask. However, doing so results in a mul-
tiplicative depth of 4 (given A and B already have depth
1), which will require larger parameters in BFV and lead to
worse performance. Instead, we observe that it is possible
to reduce the depth to 3 (note that depth 2 is optimal) by
combining the first masking (for correcting rotations) and
the second masking (for producing a compact packing).
Instead of performing the first masking to get the correct
rotations, we can directly execute the multiplications on the
partially rotated ciphertexts, which results in partially correct
results as well. Following this, we can sum up the partial
results before applying the compact packing masking.

To illustrate this in an example, we use the same vectors
as before to compute x · y, where x is rotated by one
within the rows. Instead of using x̃, we can multiply the two
partially rotated x with y to get ⟨x1,2 · y1,1, x1,3 · y1,2, x1,4 ·
y1,3, x2,1 · y1,4, x2,2 · y2,1, x2,3 · y2,2, x2,4 · y2,3, x1,1 · y2,4⟩.
Similarly, we get ⟨x2,2 · y1,1, x2,3 · y1,2, x2,4 · y1,3, x1,1 ·
y1,4, x1,2 · y2,1, x1,3 · y2,2, x1,4 · y2,3, x2,1 · y2,4⟩. Rotating
these ciphertexts by half and summing, plus one final mask-
ing, returns us the same final result, but with multiplicative
depth of only 3. This increases the ciphertext-ciphertext mul-
tiplications and rotation numbers, but the reduction in depth
allows us to use smaller HE parameters, which increases
overall performance.
Diagonal-packed matrix × column-packed matrix. Now
we discuss the second packing scenario, where the LHS
is packed in diagonal and the RHS is packed in column.
Consider C = A × B , where A ∈ Zm×m

p , B ∈
Zm×d2
p , and C ∈ Zm×d2

p . Note that in this scenario, the
LHS matrix will always be a squared matrix.

One way to compute the matrix multiplication in this
packing is to use Gazelle’s packing to repeatedly pack the
LHS in diagonal and pack each column of the RHS matrix
in a separate ciphertext to enable rotations within columns.

Br1

A a1,1 a2,2 a3,3 a1,2 a2,3 a3,1 a1,3 a2,1 a3,2

MA 1 1 1 0 0 000 0
B b1,1 b2,1 b3,1 b1,2 b2,2 b3,2 b1,3 b2,3 b3,3

b1,1b2,1 b3,1 b1,2 b2,2 b3,2 b1,3 b2,3 b3,3

MB1 0 1 1 0 1 1 01 1
Br2 b1,1 b2,1 b3,1 b1,2 b2,2 b3,2 b1,3b2,3 b3,3

MB2 1 0 0 1 0 0 10 0

A1

00 0 a1,2 a2,3 0 00 0
a1,2 a2,3 0a1,2 a2,3 0 a1,2 a2,3 0

A2 a3,10 0 a3,10 0 a3,10 0
000 0 0 a3,1 00 0

Diagonal packed

Column packed

Rot(B,1, ← )

Rot(B,2, → )

MA × MB1 × A

MA × MB2 × A

(Rotate and Add)^2

(Rotate and Add)^2

A1 × Br1 + A2 × Br2

=

=

a1,2b2,1 a2,3b3,1 a3,1b1,1 a1,2b2,2 a2,3b3,2 a3,1b1,2 a1,2b2,3 a2,3b3,3 a3,1b1,3

=
=
=
=
=
=

=

=

Figure 4: Diagonal-packed matrix × column-packed matrix.

However, this requires repacking both ciphertexts, resulting
in significantly large communication overhead (as shown
in Tab. 1, Gazelle’s packing is very sparse in matrix-matrix
multiplications).

Instead of repacking by communication, we apply mask-
ing, rotation, and addition to get the desired repeated pack-
ing of the LHS. To enable the rotation within the columns
of the RHS, we apply the same strategy as the first packing
scenario. Similarly, we combine the mask of the RHS partial
rotations with the mask of the LHS packing preparation. In
this way, we can complete the matrix-matrix multiplication
with 3 multiplicative depth.

We present a concrete example in Fig. 4. When we
compute the multiplication between the second diagonal of
A and the 1-step rotation of B , we first construct the

plaintext mask mA, which takes the second diagonal in A ,
and the rotation masks mB1 and mB2 for B , which takes
the values of B ’s partial rotations in correct positions. We
first multiply the masks together and then they are multiplied
with A . After that, we pack A via rotation and addition.
The packed A , which are A1 and A2 are multiplied to
the partial rotations of B . Summing these two multiplica-
tion results, we will get the multiplication result between the
second diagonal of A and corresponding values in matrix
B . Repeat such procedure for each diagonal, and sum the

results together, we will get the matrix multiplication result
in a compact packing.



4.2. Efficient Linear Computation in BERT

Attention layer (query, key and value). This corresponds
to the first three MatMul in Linear 1 of Fig. 1. As we
mentioned in §2.2, the input is a 2D matrix X ∈ Zm×d

p .
The client will compactly pack the input in column and
send the encrypted ciphertext to the server. The server will
pack the plaintext model weights WQ

h ,WK
h ,WV

h in diagonal
as we have illustrated in §4.1.1. Then the server uses our
protocol in §4.1.1 to compute the multiplication results
Qh , Kh , and Vh . These results are ciphertexts and are

also compactly packed in column. We apply BSGS §4.1.2
to reduce rotations, the concrete savings on rotations are
deferred to App. F.
Attention layer (query × key). This corresponds to the
last MatMul in Linear 1 of Fig. 1, which computes the
Qh × KT

h . Since both Qh and Kh are packed in

column, then KT
h is packed in row. Thus, we can use our

protocol in §4.1.3 under the column-packed matrix × row-
packed matrix case to compute Qh × KT

h . The packing
of the result ciphertext is also compact. The server will add
a uniformly random mask to the multiplication result and
send the masked result to the client for decryption. Then,
after conversion to MPC (see §7.1.2), the server and the
client can jointly evaluate Softmax(Qh × KT

h ) in MPC.
Attention layer (Softmax × V). After the server and the
client get the result of Softmax in secret sharing, Sh =

Softmax(Qh × KT
h ), they will compute Sh × Vh . Note

now the RHS of the matrix multiplication is a column-
packed matrix. We thus pack the LHS in diagonal and use
our protocol in §4.1.3 under the scenario of diagonal-packed
matrix × column-packed matrix. Specifically, the client will
compactly pack their sharing of Sh in diagonal, convert to
HE §7.1.2, encrypt, and send the diagonal-packed ciphertext
to the server. The server will first convert the sharing to HE,
add it to the received ciphertext, and finish the remaining
computations according to our protocol in §4.1.3.
Feed-forward layers (Linear 2, 3, 4 of Fig. 1). The feed-
forward layers in BERT only consist of ciphertext-plaintext
matrix multiplications. Thus, we utilize the ciphertext-
plaintext protocol in §4.1.1 to compute the feed-forward
layers. Similarly, the server and client will first convert their
sharings to HE and then the client will compactly pack
their sharing in column, encrypt, and send to the server.
The server will finish the remaining computations. Note that
we apply BSGS §4.1.2 in all the ciphertext-plaintext matrix
multiplications. The concrete savings are in App. F.

5. Non-Linear Layers

Securing the non-linear functions in BERT inference
presents another challenge due to their complexity in cryp-
tographic primitives. Iron demonstrated that approximately
75% of the total execution time is from non-linear layers.

In this section, we introduce our novel, accurate, and
efficient protocols for non-linear operations. Iron does not

consider specific properties of the computed functions like
symmetry and linearity of GELU, Tanh and Softmax, re-
sulting in huge communication costs. Our accurate approx-
imation design uses these properties of the non-linear func-
tions to significantly reduce the communication overhead
(§ 5.2, § 5.3, § 5.4). As an additional optimization, we use
Motzkin’s polynomial pre-processing [52], [41] (§ 5.1). This
method reduces the number of required multiplications by
approximately half and can be applied to generic polynomial
evaluation where the function is publicly known.

5.1. Motzkin’s Polynomial Pre-processing

Horner’s method [19], [74] is a popular technique for
evaluating polynomials as it is proven to optimal regarding
the number of operations, if the polynomial’s coefficients are
not known in advance [54], [55]. Horner’s method requires
n− 1 multiplications for evaluating a polynomial of degree
n. But in many applications, such as ML inference, the non-
linear functions and their polynomial approximations are
publicly available. In such cases, Motzkin [52] showed how
to pre-process or reformulate a polynomial so that it only
requires approximately ⌈n

2 ⌉ multiplications [55]. We present
the detailed Motzkin’s polynomial pre-processing procedure
in App. B.

5.2. Accurate GELU Approximation

To the best of our knowledge, Iron [29] proposes
the state-of-the-art accurate approximations for GELU
(cf. Eq. 4) in MPC. They approximate GELU using the
following equation:

GELU(x) =
1

2
x(1 + Tanh(

√
2/π(x+ 0.04471x3)))

The core part of Iron’s approximation is Tanh, they reuse
building blocks from SIRNN [60]. Iron further optimized
Tanh by leveraging the function’s symmetry, such that the
evaluation only has to be done on negative inputs. This,
however, is still quite costly, as reported by Iron, secure
GELU evaluations account for more than 50% of the run-
time.

We present a more performant approximation using a
4-degree polynomial. The concrete polynomial parameters
can be found in App. C. Multiple observations and design
choices lead to our design.
Linearity: We observe that GELU has good linearity
when the input is relatively large or small. Given that
limx→∞ erf( x√

2
) = 1, we have limx→∞ GELU(x) = x. And

also limx→−∞ GELU(x) = 0. Thus, we only need accurate
approximations for an inputs range. In practice, setting the
range to be [−2.7, 2.7] is sufficient to guarantee 1 × 10−3

average absolute errors.
Symmetry: Next, we revisit the original GELU defini-
tion [32]: GELU(x) = 1

2x[1 + erf(x/
√
2)]. We observe the

symmetry of g(x) = x · erf(x/
√
2), given that g(x) =

g(−x). Thus, we only need to approximate g(x) for half



of the input range, i.e., positive input values. These obser-
vations enable us to utilize low-degree polynomial approx-
imations to accurately compute g(x), and thus GELU(x).
Accuracy: The state-of-the-art work for approximating the
plaintext error function erf(x) on integers for GELU is I-
BERT [39]. We take a further step upon their method by
approximating x · erf(x) instead of erf(x), which enables
us to also apply polynomial pre-processing (§5.1) to reach
the optimal number of multiplications. Otherwise, if we
adopt I-BERT’s strategy to approximate erf(x) in MPC,
the polynomial pre-processing will not give us the optimal
number of multiplications, because the approximation will
be first evaluated on |x|, but then multiplied by x. I-BERT
used polynomial interpolation techniques [68] with grid-
search to determine the polynomial coefficients, while we
utilize the Remez method [62] to find the optimal polyno-
mial coefficients. Unlike polynomial interpolation with grid-
search, the Remez method guarantees to find an optimal
polynomial approximation by iteratively adjusting the poly-
nomial coefficients to minimize the maximum error (also
known as the maximum deviation) between the polynomial
and the target function over the specified interval.

ApproxGELU(x) =


x if x > 2.7

a|x|4+b|x|3 + c|x|2+
d|x|+ e+ 0.5x

if |x| ≤ 2.7

0 if x < −2.7
(5)

Polynomial pre-processing. We further optimize our
polynomial evaluation using Motzkin’s polynomial pre-
processing (§5.1). This effectively reduces the evaluation
cost to only two multiplications among secret-shared values
instead of three.

GELUP0(x) =(g0|x|+ g1) · |x|+ g2

GELUP1(x) =(GELUP0(x) + g0|x|+ g3) ·GELUP0(x)

+ g4 + 0.5x (6)

The average ULP error [60] of our GELU approximation
is 4 with scale 12, corresponding to 9.77 × 10−4 error in
floating-point, with the input range [−5, 5].
Two comparisons in one shot. To further optimize the
efficiency, we additionally tweak the implementation of the
polynomial as follows: Naively, we need a total of two
comparisons in order to pick the correct interval. We observe
that we can remove one of the comparisons. Recall that our
approximation in Eq. 6 requires to determine the absolute
value |x| = MSB(x)? − x : x. Using the absolute value,
we do not need to explicitly distinguish the upper and
the lower interval but only compare b = |x| > 2.7. This
allows us to output res = b?RELU(x) : GELUP1

(x), where
RELU(x) = (|x|+ x) >> 1.

5.3. Accurate Tanh Approximation

Tanh(x) = e2x−1
e2x+1 is a hyperbolic function often used

in neural networks, primarily because of its symmetry,

smoothness, and non-linearity. However, it requires evaluat-
ing the exponential function and determining the reciprocal
of a secret-shared input, both being costly operations when
evaluated securely [60].

Iron instantiates Tanh by combining lookup-table
(LUT)-based private protocols for those two non-linear func-
tions from SIRNN [60]. However, evaluating Tanh remains
costly due to the long bit length of input.

Similar to our optimizations in GELU, we take the
symmetry into consideration and utilize the Remez method
(§5.2) to design a polynomial approximation of degree five
and three intervals (as the Tanh is an odd symmetric func-
tion, we only need 2 comparisons). The concrete polynomial
parameters can be found in App. C.

ApproxTanh(x) =


1 if x > 2.855

ax5+bx4 + cx3+

dx2 + ex+ f
if 0 ≤ x ≤ 2.855

−ApproxTanh(−x) if x < 0
(7)

Polynomial pre-processing. Again, we apply Motzkin’s
polynomial pre-processing (§5.1) to reduce the number of
required multiplications between secret-shared values to 3:

TanhP0(x) =(x+ t0) · x+ t1

TanhP1(x) =(TanhP0(x) + x+ t2)· (8)
TanhP0(x) · t3x+ t4x+ t5,

The average ULP error [60] of our Tanh approximation is
27 with scale 12, corresponding to 6.59 × 10−3 error in
floating-point, with the input range [−5, 5].

5.4. Efficient Softmax in MPC

Similar to Tanh, Softmax (Eq. 2) also requires eval-
uating the exponential function and computing a division,
both inherently require floating point operations. Transform-
ers typically use 32-bit floating-point values, while MPC
floating-point protocols are imprecise and much less effi-
cient than integer computations [59], [16].

Iron solves this by computing Softmax on fixed-point
values utilizing LUT-based protocols from SIRNN. The
LUT-based method is inefficient in communication espe-
cially when the input has a long bit length, as we will show
in §7.

Inspired by the plaintext integer-only approximation in
I-BERT, we design a secure protocol for the exponential
function with low-degree polynomials and without LUTs:
Shifting by xmax: Similar to Iron, I-BERT, and most plain-
text implementations of Softmax, we normalize each input
value xi , i ∈ [d], where d is the dimension of x . So that
all inputs to the exponential function become negative. The
normalize value is x̃i , where x̃i = xi − xmax .
Secure integer-only exponential function: As demon-
strated by I-BERT, any non-positive number can be de-
composed as x̃i = (− ln 2) · z + p , where z is a
non-negative integer and p ∈ (− ln 2, 0]. It follows that



Algorithm 1 Secure Integer-only Exponential Function

1: function EXP( x̃i , s) ▷ normalized input, scale
2: invNegLt = − 1

ln 2

3: z = ( x̃i · invNegLt) >> s

4: p = reduce( z · ln 2 + x̃i , s+ 2)

5: z = Clip( z , [0, s+ 1])
6: return (0.385 ∗ ( p + 1.353)2 + 0.344) >> z

exp( x̃i ) = exp( p ) >> z . To compute exp( p ), I-BERT
provides a plaintext approximation for the exponential func-
tion in p ∈ (− ln 2, 0]. Since the range of p is relatively
small, we can use a 2-degree polynomial approximation:

exp( p ) ≈ 0.3585( p + 1.353)2 + 0.344 (9)

We present our protocol in Alg. 1. To extract the integer z

in Line 3, we shift x̃i /(− ln 2) by the scale s. In Line 4,

we compute p by computing the sum of ln 2 · z and x̃i .
As p ∈ (− ln 2, 0], we can safely reduce the bit width here
by s+2 to enhance efficiency, where s is the public scale of
the fixed-point representation §7. After we compute p , we
will evaluate the polynomial in Eq. 9. And then, the result
will be shifted by z steps. Since the output of Eq. 9 is
bounded by (0, 0.7), we can safely clip z to the range
[0, s + 1] before shifting in Line 5. z is a secret-shared
value and cannot be released, we thus apply a sequence of
MUX to get the correct shifting result in Line 6, which will
be the result of exp( x̃i ). The average ULP error [60] is
0.0059 with scale 12, corresponding to error 1 × 10−6 in
floating-point, with input range [−1000,−0.001].

Now we have the secure protocol for evaluating expo-
nential function, in Softmax Eq. 2, we also need to evaluate
the reciprocal of the summed exponential function’s outputs.
However, compared to exponential function, reciprocal is
only called on one dimension of the input matrix instead of
the entire matrix. Thus, it occupies much less computation
cost compared to Softmax, so we reuse the state-of-the-art
secure reciprocal protocol from SIRNN and now we can
securely and efficiently evaluate Softmax.

6. Machine Learning Optimizations

BOLT develops a secure, end-to-end protocol for infer-
ence via a co-design of cryptography and machine learn-
ing, and in this section we explain our machine learning
optimizations designed to enhance BOLT’s accuracy and
efficiency. We introduce a word elimination technique to
significantly improve BOLT’s performance along with se-
cure computation-aware fine-tuning for maintaining high
accuracy.

6.1. Oblivious Word Elimination

In this section, we introduce a word elimination (W.E.)
technique that is applicable to all encoder transformers like

BERT, while maintaining high accuracy. Our technique is
inspired by the observation in [26] that not every token in
the input sentence significantly impacts the model’s infer-
ence result. Therefore, by eliminating tokens with minor
contributions, we can reduce the dimensions of the input
matrix and enhance inference efficiency.

Transformers’ attention mechanisms offer an ideal met-
ric for ranking input tokens’ contributions without gradi-
ent computation. The product of query and key matrices
(Qh × Kh ∈ Rm×m) estimates the correlation among m2

pairs of the m input tokens, with larger values indicating
higher correlation. Summing Qh×Kh across one axis yields
a score vector s ∈ Rm. This score vector forms key-
value pairs with the input token sequence, allowing us to
rank tokens by their scores and discard those contributing
minimally.

Based on these observations, we devise an oblivious
sorting method to eliminate words with fewer contributions.
Specifically, we use bitonic sorting [34] to determine the
median of the scores. And then, tokens scoring below the
median are eliminated using another round of bitonic sort-
ing. The comprehensive procedure is outlined in Alg. 2 of
App. D.

As shown in §7, word elimination introduces negligible
accuracy drops, and can significantly improve the perfor-
mance of BOLT.

6.2. Secure Computation-Aware Fine-Tuning

As we mentioned in §2, we use fixed-point representa-
tions in BOLT, which creates a gap between the floating-
point model and its fixed-point representation. We aim to
maintain high accuracy of the model using reasonably small
scales, since large scales and floating-points increase the
computation overhead in MPC. To counteract the accu-
racy loss from this gap, we apply quantization-aware fine-
tuning [76]. Like many prior quantization-aware training
methods [39], we use symmetric and static quantization
to calculate the quantized result of each function during
forward propagation. As the quantization process is not dif-
ferentiable, we simulate the backpropagation by computing
the real gradients and then quantizing the gradients. We also
consider approximation errors of non-linear functions when
fine-tuning the model. Specifically, we substitute floating-
point functions of GELU, Softmax, and Tanh with our ap-
proximated versions prior to quantization-aware fine-tuning.

Our approximated functions closely match the originals,
eliminating the need for additional distillation processes to
enhance model accuracy as in MPCFormer [45]. Distillation
might reduce accuracy, especially with smaller datasets. As
demonstrated in MPCFormer, there are over 5% drops in
accuracy on small datasets. In contrast, BOLT’s accuracy
decline is negligible (around 1%).

To further boost the accuracy of the model, we also
take the word elimination into consideration when we fine-
tune the model. That is, during the forward propagation, the
tokens are dynamically eliminated and the backward propa-
gation can automatically compute the gradients. We note that



fine-tuning is done only once per model, and so its cost can
be amortized across many inferences. In the upcoming §7,
we will demonstrate that our secure computation-aware fine-
tuning sustains BOLT with an accuracy level comparable to
floating-point baselines.

7. Evaluation

7.1. Implementation

7.1.1. Libraries and configurations. We implement BOLT
using the Secure and Correct Inference (SCI) library from
EzPC [11], [59], [61] for ring secret sharing and SEAL [66]
library for HE. For Softmax and LayerNorm, we use bit-
length l = 37 and scale s = 12. For GELU, we use bit-length
l = 21 and scale s = 11. The scales of linear layers are con-
sistent with the secure computation-aware fine-tuning §6.2.
Please refer to App. E for more details. In BOLT, we
choose our parameters according to the standard from [3]
and use 128-bit security. Specifically, we choose n = 8192,
log p ≈ 29, log q ≈ 218 for Linear 1 and Softmax × V
of Fig. 1. And we choose log p ≈ 19, log q ≈ 180 for
other linear layers. Because we have ciphertext-ciphertext
matrix multiplications in Linear 1 and Softmax×V, we need
more noise budget and larger scale compared to the layers
that only require ciphertext-plaintext matrix multiplications.
Thus, we use larger p and q for Linear 1 and Softmax×V.
To guarantee circuit privacy, the server performs noise flood-
ing [49], [44], which adds a large noise to the ciphertext
before returning it to the client. The noise is chosen large
enough to hide additional information in the ciphertext but
still guarantee the accuracy of the decryption.

7.1.2. Conversion between MPC and HE. Computation
in MPC is performed over a 2l ring while HE is over a
prime. Therefore we need conversion when using results
from HE in MPC, and vice versa. Each round of conversion
consists of a comparison and a multiplexer. However, when
converting from MPC back to HE, the probability that the
sharings overflow is |x|

2l
, where |x| is the absolute shared

secret value. When |x| is small or the ring size is large
enough, we can omit the conversion from MPC to HE with-
out affecting the accuracy. Therefore, in our implementation,
we only perform conversion from HE to MPC. To reduce
the error rate, we extend the result of GELU from 21 bits
to 37 bits before converting to HE.

7.1.3. Implementation optimizations. In HE, we perform
lazy relinearization to reduce the total number of relineariza-
tions. To reduce the communication cost, we use modulus
switching before sending back the ciphertexts to the client.
We optimize Layernorm by moving the multiplication with
the model weights to HE and by precomputing MSB of
(Xi,j −µi) to further reduce the communication cost of the
rest multiplications.

7.1.4. Iron’s System. Because Iron [29] is not open-
sourced, we implement Iron’s end-to-end system following

Dataset Plaintext Iron w/o W.E. w/ W.E.
MRPC 90.00 ± 0.23 89.87 90.53 89.95
RTE 69.70 ± 1.50 70.76 69.68 69.31
SST-2 92.36 ± 0.59 92.77 91.74 92.78
STS-B 89.62 ± 0.31 89.41 87.97 88.44

TABLE 2: Acc. of floating-point plaintext, Iron and BOLT.

the protocols described in their paper. We use bit-length
l = 37 and scale s = 12 for secret sharing. We configure
the HE with n = 8192, log q ≈ 180, and log p = 37 to
enable noise flooding. Note that Iron requires a larger scale
to maintain the model’s accuracy as they did not incorporate
secure computation-aware fine-tuning. Furthermore, the op-
timization for LayerNorm in Iron is wrong, which will cause
a significant accuracy drop (close to random guessing), as
they will break the residual architecture. Thus, we remove
Iron’s optimization for LayerNorm. We provide detailed
discussions on the flaws in Iron’s LayerNorm optimization
in App. G. We have confirmed the implementations and the
performance with the authors of Iron.

7.2. Experimental Setup

We evaluate our experiments on AWS EC2 using two
c6i.16xlarge instances with 64 vCPUs and 128 GB memory.
We use Linux Traffic Control (tc) to simulate different
network settings. Under the LAN scenario, we set the
bandwidth to 3Gbps and the round-trip latency to 0.8 ms.
Our setup for the WAN network consisted of four settings:
{100Mbps, 40ms}, {100Mbps, 80ms}, {200Mbps, 40ms},
and {200Mbps, 80ms}. These configurations allow us to
evaluate the system’s performance under varying bandwidths
and latencies. We set the number of threads to 32.

To evaluate the accuracy of our system, we test on four
datasets from GLUE benchmark [73], which is widely used
to evaluate BERT’s performance. These datasets include 3
classification tasks: MRPC, RTE, SST-2, and a regression
task: STS-B. Specifically, our fine-tuning is performed on
the training sets and the accuracy is evaluated on the official
validation sets.

7.3. Accuracy

In Tab. 2, we compare the accuracy of BOLT, with and
without word elimination, to that of floating-point plain-
text results and Iron. Similar to prior works, we present
the F1 score for MRPC, Pearson correlation for STS-B
and accuracy for RTE and SST-2. In the second column,
we present the accuracy results of the plaintext model on
floating-point reported by prior works [77] and in the form
of Avg ± STD. Overall, the accuracy achieved by BOLT
matches the accuracy of plaintext models on all datasets,
with a maximum accuracy loss of 1.3% on the STS-B
dataset. Without word elimination (W.E.), we observe 1.04%
accuracy drop on SST-2 compared to BOLT with W.E.
We attribute this to the conversion approximation, described
in §7.1.2, from 2l ring to prime field. Without W.E., the



Iron BOLT w/o W.E. BOLT w/ W.E.
Component Comm. (MB) Round Comm. (MB) Round Comm. (MB) Round
Linear 1 4844.14 38 7.06 686.1× 2 19× 3.18 1524.7× 2 19×
Softmax×V 4918.38 36 9.88 497.6× 2 18× 2.82 1741.6× 2 18×
Linear 2 47.65 2 4.51 10.6× 2 1× 2.26 15.0× 2 1×
Linear 3 95.40 2 9.01 10.6× 2 1× 4.50 21.2× 2 1×
Linear 4 95.21 2 13.52 7.0× 2 1× 6.77 14.1× 2 1×
Softmax 3596.32 252 1447.65 2.5× 232 1.1× 450.74 8.0× 229 1.1×
GELU 7960.00 256 1471.67 5.4× 88 2.9× 776.84 10.2× 88 2.9×
LayerNorm 871.46 218 599.40 1.5× 220 0.99× 290.55 3.0× 220 0.99×
Tanh 20.67 150 16.64 1.2× 110 1.4× 16.64 1.2× 110 1.4×
end-to-end 280.99 GB 13663 59.61 GB 4.71× 10509 1.30× 25.74 GB 10.91× 10901 1.25×

TABLE 3: Communication cost and rounds comparing Iron with BOLT. The costs of the components are for one layer, and
there are 12 layers in BERT.

dimensions of matrices in the model are twice as large
as the model with W.E. Therefore, given the same error
rate, we expect a higher probability of error occurring
during the conversion. However, as the results indicate, the
conversion approximation has negligible influence on the
accuracy. To further improve the accuracy, users can use
correct truncation at the cost of doubling the conversion
cost in BOLT. This will incur around 3%-7% performance
overhead, estimated based on the results in Fig. 5.

7.4. Communication Analysis

In this section, we present the communication cost in
terms of the number of bytes and the number of rounds for
each component in BOLT. Tab. 3 shows the cost breakdown
of each component in a single encoder layer as well as the
end-to-end total cost. Additionally, we present the improve-
ment compared to Iron on the right side of the table.

To illustrate the improvement originated from our effi-
cient MatMul and nonlinear functions, we first compare Iron
with BOLT w/o W.E. in the following.

7.4.1. Matrix Multiplication. BOLT w/o W.E. achieves
686.1× and 497.6× less communication on Linear 1 and
Softmax × V. This is because Iron performs ciphertext-
ciphertext matrix multiplication using secret sharing, while
BOLT computes multiplication between encrypted matrices
in HE.

We also achieve 7.0-10.6× less communication on
ciphertext-plaintext matrix multiplication. The improvement
comes from fewer ciphertexts from compact encoding and
smaller ciphertext size from modulus switching.

7.4.2. Non-linear Functions. The expensive operations in
non-linear components of Iron are Softmax and GELU,
which consume 3.6 GB and 7.9 GB per layer, respectively.
BOLT uses 2.5× less communication on Softmax and 5.4×
on GELU. For LayerNorm, we achieve 1.5× less communi-
cation, which comes from multiplication with model weights
in HE and MSB optimization (see §7.1). Additionally, BOLT
has fewer communication rounds for Softmax, GELU and
Tanh.

7.4.3. Word Elimination. For most of the components in
BOLT, word elimination gives us another 2× less com-
munication because the input matrix row size m becomes
half of the original size. The cost of Softmax is further
reduced by 3.2× as the input dimension of Softmax is
m × m. As expected, with W.E., BOLT has more than
2× communication improvement compared to BOLT w/o
W.E. (25.74 GB vs. 59.61 GB).

Overall, we reduce nearly 11× in terms of communica-
tion cost and 1.3× in terms of communication rounds, which
is expected to improve the end-to-end inference performance
significantly under practical network conditions.

7.5. End-to-End Performance

We present the end-to-end run-time under various net-
work settings in Fig. 5. With W.E., BOLT consistently
outperforms Iron by a magnitude of 4.8× to 9.5×, while
without W.E., BOLT still outperforms Iron by 2.6× to 4.1×.
In the following, we provide a detailed analysis of the
savings in linear and non-linear layers.

7.5.1. Matrix Multiplication. As discussed in §7.4, our
linear layers consume much less communication compared
to Iron as we have compact packing and smaller ciphertext
size and Iron’s packing is much more sparse. Thus, we have
more run-time gains in the WAN setting where the network
is slower. For instance, for Linear 1, BOLT is 45.7× faster
w/o W.E. under 100 Mbps, 40 ms, and 88.2× faster w/ W.E.
This saving is less significant in the LAN setting, but we
note that BOLT is still consistently better than Iron. For
example, under 3 Gbps, 0.8 ms network, BOLT w/o W.E.
is 2.3× faster than Iron, and BOLT w/ W.E. is 4.6× faster
for Linear 1.

BOLT is consistently faster than Iron for Softmax × V
under different network settings because BOLT utilizes ef-
ficient ciphertext-ciphertext matrix multiplication protocols
while Iron adopts secret sharing-based matrix multiplica-
tions. For instance, even in the LAN setting (3 Gbps, 0.8
ms), BOLT w/o W.E. is 2.5× faster, and BOLT w/ W.E. is
6.1× faster than Iron. In the WAN setting (100 Mbps, 40
ms), BOLT w/o W.E. is 68.3× faster, and BOLT w/ W.E.
is 158.0× faster than Iron.
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Figure 5: End-to-end inference performance under various network settings, and its breakdown.

7.5.2. Non-linear Functions. Our run-time observations
for non-linear functions are consistent with our communi-
cation analysis in §7.4, since the major bottleneck for non-
linear is communication. Specifically, for Softmax, in the
LAN setting (3 Gbps, 0.8 ms), BOLT w/o W.E. is 3.7×
faster and BOLT w/ W.E. is 10.0× faster than Iron. In the
WAN setting (100 Mbps, 40 ms), BOLT w/o W.E. is 2.5×
and BOLT w/ W.E. is 7.5× faster. For GELU, in the LAN
setting (3 Gbps, 0.8 ms), BOLT w/o W.E. is 8.8× and BOLT
w/ W.E. is 35.1× faster than Iron. In the WAN setting (100
Mbps, 40 ms), BOLT w/o W.E. is 5.4× and BOLT w/ W.E.
is 10.1× faster. We notice that BOLT has less magnitude
improvements in the WAN setting for non-linear functions
and we deem that this is caused by the latency of the
network. Our non-linear significantly saves communication
costs, but our improvement on communication rounds is less
significant (0.99-2.9×). Thus, in the WAN setting where
the network latency is high, our run-time improvement is
becoming less compared to the LAN setting. Despite this
improvement reduction under certain conditions, BOLT still
greatly outperforms the state-of-the-art system.

7.5.3. Conversion, Rescaling, and Word Elimination. As
shown in Fig. 5, Iron doesn’t have conversion costs, because
Iron performs HE and MPC computation over the same ring.
With our conversion approximation, the conversion overhead
is around 2-9% of the total run-time. Considering the savings
of HE over the prime field, including compact packing and
fewer rotations, such overhead is affordable.

Rescaling is used in both systems to reduce the scale

after HE’s computation. In BOLT, the input scale for each
linear layer varies based on the secure computation-aware
fine-tuning, while Iron fixed the input scale to 12. Therefore,
compared to Iron, BOLT needs rescaling before converting
the result from secret sharing back to HE. However, BOLT
has lower rescaling costs because BOLT uses a smaller
rescaling factor than Iron. After each HE layer, the output
scale for Iron is 24. Therefore it requires a right shift of 12
to scale back. For BOLT, taking Linear 3 as an example,
the output scale is already 11. Therefore, no rescaling is
required for this layer. The result also shows that BOLT has
at least 2.3× speed-up in terms of rescaling.

Word elimination accounts for 1%-5% overhead, de-
pending on the network condition. Word elimination is
cheap from the end-to-end performance perspective, as the
size of our target sorting array is only m (m = 128 in our
experiments), and only two rounds of sorting are performed
during each inference.

8. Related Work

Privacy-preserving Neural Network Inference. Due to the
rapidly growing concerns about data privacy in ML, signifi-
cant efforts have been made to design efficient cryptographic
protocols that securely evaluate ML algorithms, e.g., [40],
[78], [30], [42], [79], [51]. Especially private protocols for
neural network inference, e.g. [33], [25], [50], [36], [42],
[61], [4], [35], were intensively investigated due to their
wide-spread applicability and interesting structure consisting
of various linear and non-linear computations.



Cryptonets [25] proposed one of the first protocols for
HE-based private neural network inference. Gazelle [36],
Delphi [50], and Cheetah [33] are hybrid 2PC neural net-
work inference protocols combining HE for matrix-vector
multiplications with MPC for the secure evaluation of non-
linear activation functions. Cryptflow [42] is a compiler to
automatically convert plaintext neural networks from the
state-of-the-art ML framework TensorFlow in MPC proto-
cols. CrypTFlow2 [61] and SiRNN [60] optimize efficiency
for 2PC protocols of math functions typically used in neural
networks, e.g., reciprocal or Tanh.
Private Transformers. Secure evaluation of transformers
is very challenging due to their significantly larger size
compared to traditional neural networks. So far, several
works have investigated how to realize transformer inference
in a privacy-preserving manner: THE-X [12], Iron [29],
MPCFormer [45], PrivFormer [2], and PUMA [18].

THE-X [12] evaluates BERT-tiny [71] (a distilled student
model of BERT with 4.4 million parameters) under HE
using HE-friendly replacements for GELU, Softmax, and
LayerNorm as well as dropping pooling layers. Thereby, it,
however, inherently reduces accuracy and leaks the compar-
ison result of each ReLU evaluation — which is part of the
GELU and Softmax approximation — to the client. Iron [29]
builds up on Cheetah [33], a HE-based private transformer
inference system, and improves its matrix-matrix multiplica-
tion with a more efficient packing that encodes multiple ma-
trix rows in one ciphertext. Both Cheetah [33] and Iron [29]
do not optimally leverage all ciphertext slots in the matrix-
matrix multiplications as a large number of polynomial coef-
ficients are set to zero. MPCFormer [45] proposes a private
inference system for the BERT-base model using arithmetic
secret-sharing. It employs knowledge distillation to cure
the accuracy drop caused by MPC-friendly approximations
(inspired by previous works [14], [51]) for the non-linear
functions. Moreover, MPCFormer requires significant effort
to conduct additional knowledge distillation on the large
models that have been well-trained, which has a significant
accuracy drop (greater than 5%) on smaller datasets like
RTE. Two recent works, PrivFormer [2], and PUMA [18]
proposed secure inference for transformers in 3PC settings
instead of 2PC. They rely on the honest-majority assumption
and the setting is different from ours 2PC. A concurrent
work SIGMA [27] is in the 2PC with preprocessing setting,
which is different from BOLT. SIGMA is based on function
secret sharing and assumes a trusted dealer to help generate
the randomness in the preprocessing phase.

9. Discussion & Conclusion

Generalizability of BOLT. As stated in § 3, the crypto-
graphic techniques of BOLT are applicable to all transformer
encoders, and we use BERT as an example to demonstrate
the efficiency of our system. Transformer decoders like
GPT [58] share the same architecture as encoder models.
Therefore, BOLT without word elimination is directly ap-
plicable to transformer decoders. Algorithms from Flash
Attention [15] are also compatible with BOLT but do

not significantly speed up operations since they optimize
GPU memory access during attention computation, whereas
BOLT runs on the CPU and its bottlenecks are commu-
nication and HE computations rather than memory access.
However, BOLT should still outperform Iron for the variants
of transformers with a significant margin similar to BERT.
Further optimizing BOLT’s computation from a hardware
perspective is an interesting direction for future work.
Security Argument & Inference with Malicious Secu-
rity. As mentioned in § 3, our threat model assumes semi-
honest client and server. Our methods described in § 4 and
§ 5 are based on established cryptographic protocol building
blocks (using combinations of secret sharing-based MPC
and HE from the EzPC framework [11]) that were already
proven secure. As we do not propose new protocols, but
combine them in novel ways, the security of BOLT follows
naturally from the security of these building blocks.

Supporting malicious security (either for both parties or
for clients only) is a very interesting direction for future
work. It is challenging to adapt techniques from current
state-of-the-art malicious secure protocols. For instance,
adapting linear layer protocols’ techniques from MUSE [43]
may be expensive as they use zero-knowledge proofs for HE.
Prior works like MUSE [43] and SIMC [10] support the
ReLU and ReLU6 non-linear functions that are very simple
and involve only comparisons. The non-linear functions in
transformers are much more complex and could be costly
to compute in protocols with malicious security.
Performance in Extremely Fast Networks. The run-time
savings of BOLT compared to Iron become less significant
in extremely low-latency network settings. We tested the
end-to-end run-time of BOLT and Iron in an extremely fast
network setting, with bandwidth 25 Gbps and latency 0.3
ms. BOLT without word elimination is 1.50× faster and
BOLT with word elimination is 2.63× faster than Iron. In
this network setting, our linear layers’ run-time is 0.98-
1.44× faster than Iron for BOLT without word elimination,
and 1.98-2.70× faster for BOLT with word elimination.
An interesting future direction would be a hybrid protocol
that can automatically choose linear protocols based on the
network setting to leverage our efficient communication and
Iron’s fast computation.
Conclusion. We propose BOLT, a privacy-preserving, ac-
curate, and efficient inference protocol for transformers.
BOLT incorporates optimizations from both cryptographic
primitives and machine learning. These optimizations signif-
icantly enhance BOLT’s inference performance, advancing
towards practical secure inference for transformers.
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Appendix A.
Gazelle & Iron Methods for MatMul

In this section, we present the methods of Gazelle and
Iron for computing ciphertext-plaintext matrix multiplica-
tions.

Gazelle [36] packs multiple copies of the same encrypted
input vector in a ciphertext, sends this to the server, and ar-
ranges the plain weight matrix in a diagonal format in order
to compute dot products efficiently. Unfortunately, extending
this to the transformer architecture will produce inefficient
packing for three reasons. First, the multiplication input (i.e.,
A in our example) is a matrix instead of a vector, which

could be realized with Gazelle’s technique by encoding each
matrix row as one vector-ciphertext. However, this increases
the number of expensive HE multiplications to m × d1.
This is significantly more than actually needed. Second,
Gazelle has to rotate (a) the encrypted rows of A , or
(b) the multiplication products before summing them up to
match corresponding ciphertext slots. Third, Gazelle pads
the vector’s size to the next power of 2 to enable correct
summations after rotations. Taking BERT-base’s parameters
as an example, this essentially blows up the matrix size to
210 = 1024 to accommodate d = 768 model dimensions,
resulting in 25% “wasted” ciphertext slots.

Iron transfers the idea of Cheetah [33] to matrix-matrix
multiplications. They leverage polynomial coefficient pack-
ing and encode the values in the polynomial coefficients.
Iron arranges packing indices of the two matrices in a
smart way, such that the multiplication result polynomial’s
coefficients contain the inner product results of the sub-
vectors of the matrices. In this way, Iron gets rid of the
expensive rotations in HE. However, the result packings are
very sparse, and most of the coefficients are useless, which
causes great communication overhead.

Appendix B.
Motzkin’s Polynomial Pre-Processing

In this section, we present the detailed Motzkin’s poly-
nomial pre-processing procedure.
Theorem 1 (Motzkin’s polynomial pre-processing). Let f

be a polynomial of degree n:

f(x) = xn + an−1x
n−1 + · · ·+ a0. (10)

t, αi, βi, i ∈ [n] are constant parameters. Then f can
be transformed into a polynomial P . The evaluation of

this new polynomial P requires evaluating the following
sequence of polynomials [41]:

y = x+ t, w = y2,

P0 =

{
w + y + β0 if n mod 2 = 0

y + β0 if n mod 2 = 1,

P1 = P0 · [(w − α1) + β1],

P2 = P1 · [(w − α2) + β2],

etc.

(11)

The choices in the later steps depend on whether the
reduction equation is solvable or not. This gives us n−r−1
multiplications, where r is the number of reduction equa-
tions we are able to solve. Approximately, we need ⌈n/2⌉
multiplications and n + 1 additions. Using the above pro-
cedure, degree-4 polynomials need 2 multiplications, while
degree-5 only need 3 [41].

Appendix C.
Approximation Details

In this section, we give the exact parameters for our
approximations presented in §5.2 and §5.3.
GELU:

a = 0.020848611754127593,
b = −0.18352506127082727,
c = 0.5410550166368381,
d = −0.03798164612714154, and
e = 0.001620808531841547.

Pre-processed GELU:
g0 = 0.14439048359960427,
g1 = −0.7077117131613893,
g2 = 4.5702822654246535,
g3 = −8.15444702051307.
g4 = 16.382265425072532.

Tanh:
a = −0.013232131886235352,
b = 0.09948747962825866,
c = −0.20093640347818847,
d = −0.17616532856475706,
e = 1.0542492677156243,
f = −0.0024920889620412097.

Pre-processed Tanh:
t0 = −4.259314087994767,
t1 = 18.86353816972803,
t2 = −36.42402897526823,
t3 = −0.013232131886235352,
t4 = −3.3289339650097993,
t5 = −0.0024920889620412097.

Appendix D.
Detailed Algorithm of Word Elimination

In this section, we present our detailed algorithm of word
elimination in Alg. 2.



Algorithm 2 Oblivious Word Elimination

1: function WORDELIMINATE( s , X , Att )
2: ▷ contribution scores, input matrix, attention result
3: s′ = BitonicSort( s )

4: median = s′
m/2

5: Create v ∈ Zm with vi = i
6: c = Compare( s , median )×m+ v

7: X′ , Att′ = BitonicSortSwap( c , X , Att )
8: return X′

1:m/2
, Att′

1:m/2

Recall that in §6.1, we sort the score vector s ∈ Rm,
which forms key-value pairs with the input token sequence.
This allows us to rank tokens by their scores and discard
those contributing minimally.

However, we need to maintain the relative order of
remaining tokens while eliminating those with smaller con-
tributions. To address this, a comparison with the median
will yield either m or 0. We then add token indices to these
comparison results and get another vector c as indicated
in line 6 of Alg. 2. In the second sorting round, we sort
c , ensuring that tokens scoring higher than the median are

always chosen and their relative order is preserved by their
index sequence.

Given that bitonic sorting is a classic sorting algorithm,
we omit the details of its implementation. Note that the
function BitonicSort in Alg. 2 returns the sorted vector s′ ,
and the function BitonicSortSwap will sort c and obviously
swap the rows of X and Att together with the elements
in c during sorting.

Appendix E.
Scales of Linear Layers

In this section, we present the scales of the different
linear layers in secure computation-aware fine-tuning. The
detailed scales are shown in Tab. 4.

Layer Linear # Input Weights
0,1,3-11 1 5 6
2 1 5 5
0-11 2 6 6
0-11 3 5 6
0-8, 11 4 4 5
9,10 4 4 4

TABLE 4: Input and weights scale of each linear layer in
each attention layer.

Appendix F.
BSGS Rotation Savings for Different Matrix
Dimensions in BERT

In this section, we present the detailed savings on
rotations of our BSGS technique applied for ciphertext-

plaintext matrix multiplications §4.1.2. The concrete savings
are shown in Tab. 5

Linear 1 Linear 2 Linear 3 Linear 4
BOLT w/ BSGS 288 168 324 324
BOLT w/o BSGS 756 756 756 3024

TABLE 5: BSGS rotation savings for different linear layers
of BERT.

Consistent with our findings in §4.1.2, we save more
rotations when the RHS plaintext matrix is tall and skinny
as shown in Linear 4 of Tab. 5, where the size of the RHS
matrix is 3072× 768. Overall, BSGS can significantly save
rotations numbers, with a factor of 2.33× to 9.33×.

Appendix G.
Clarification on Iron’s LayerNorm Optimiza-
tion

Iron’s LayerNorm optimization is inaccurate and will
introduce large errors to the inference and make the model’s
performance close to random guessing. LayerNorm is de-
fined as

LayerNorm(X)i,j =
γj(Xi,j − µi)

σi
+ βj .

Iron proposes to combine the weights of the LayerNorm
(γj

σi
and βj) with the next linear layer’s weight to save one

matrix multiplication. Now the output of the LayerNorm is

LayerNorm′(X)i,j = Xi,j − µi.

However, Iron does not account for the residual connections
in transformers – the output of LayerNorm is added to
subsequent layers. Given that the optimized LayerNorm does
not directly produce accurate outputs, the residual connec-
tions will lead to significant errors, making the model’s
performance close to random guessing. We have confirmed
this flawed optimization with Iron’s authors.



Appendix H.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

H.1. Summary

The reviewers appreciated the various cryptographic im-
provements and system optimizations along with the effi-
cient approximations proposed by the authors. Overall, the
paper focuses on a timely research topic and the evaluation
results demonstrate significant improvement over the prior
state of the art.

H.2. Scientific Contributions

• Provides a valuable step forward in an established field.

H.3. Reasons for Acceptance

• The paper focuses on an important problem of improv-
ing the efficiency of secure inference.

H.4. Noteworthy Concerns

• The paper does not include a formal security proof of
the BOLT protocol, besides the fact that it consists of
secure building blocks.
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