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Abstract. In this work, we introduce FANNG-MPC, a versatile secure multi-party
computation framework capable to offer active security for privacy-preserving machine
learning as a service (MLaaS). Derived from the now deprecated SCALE-MAMBA, FANNG
is a data-oriented fork, featuring novel set of libraries and instructions for realizing
private neural networks, effectively reviving the popular framework. To the best of
our knowledge, FANNG is the first MPC framework to offer actively secure MLaaS in
the dishonest majority setting.
FANNG goes beyond SCALE-MAMBA by decoupling offline and online phases and mate-
rializing the dealer model in software, enabling a separate set of entities to produce
offline material. The framework incorporates database support, a new instruction set
for pre-processed material, including garbled circuits and convolutional and matrix
multiplication triples. FANNG also implements novel private comparison protocols
and an optimized library supporting Neural Network functionality. All our theoretical
claims are substantiated by an extensive evaluation using an open-sourced implementa-
tion, including the private inference of popular neural networks like LeNet and VGG16.

Keywords: Multi-Party Computation · Privacy-Preserving Machine Learning ·
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1 Introduction
The rising relevance of AI and its rapid market penetration have sparked unprecedented
interest in privacy-enhancing technologies (PETs) applied to machine learning (ML) [KM24].
This interest arises from the need to safeguard users’ data, driven either by user concerns
or obligations to regulations such as the General Data Protection Regulation (GDPR) in
Europe and the California Consumer Privacy Act (CCPA) in the United States [Res24].
The privacy challenge in ML is twofold. Firstly, training AI models requires vast amounts
of data, which may be distributed among various entities and subject to diverse privacy
regulations. Secondly, the immense size of ML models makes deployment on the user side
impractical, shifting AI towards cloud services, where users must send their data to the
cloud. This poses a considerable privacy risk and can hinder the wide adoption of AI in
scenarios involving sensitive data.
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The privacy bottleneck can be mitigated through various PETs. Indeed, solutions
based on data anonymization, generative models, or differential privacy have garnered
attention from the research community, contributing to the coining of the term Privacy-
Preserving Machine Learning (PPML) [CP21, NC23]. However, within the realm of PPML,
confidential computing has gained recent prominence. The concept involves performing
data processing confidentially using secure Multi-Party Computation (MPC) and/or Fully
Homomorphic Encryption (FHE), offering enhanced privacy guarantees. Several PPML
frameworks have been proposed, incorporating MPC, FHE, or a combination of both.
Unfortunately, the majority of these frameworks either employ generic constructions
without ML-specific optimizations or utilize tailored protocols linked to specific trust
settings, often confined to honest majority and semi-honest (i.e., passive) security, as
depicted in Tab. 1.

In this work, we introduce FANNG-MPC, a novel MPC-based framework derived from
the popular SCALE-MAMBA [ACC+21] framework. While maintaining the diverse set of pro-
tocols inherent in SCALE-MAMBA, FANNG introduces novel constructions tailored for PPML
inference that operate in the dishonest majority setting with active security. Designed as a
response to the common problem in PPML where many works offer only prototype imple-
mentations, FANNG aims to mitigate underestimation or neglect of challenges encountered
in real-world deployments.

1.1 State-of-the-Art on PPML frameworks
In this section, we provide a brief overview of several important PPML frameworks that are
based on MPC and HE techniques. While we will not go into the nuance of their protocol
constructions, we will highlight their settings, techniques used, as well as the security model
they adhere to. Given the extensive nature of the literature on this topic, we will focus on a
selected few frameworks from each category, as listed in Tab. 1. For a more comprehensive
understanding, we recommend referring to [KT21, CP21, NC23] for detailed information.

As illustrated in Tab. 1, the majority of the studies focus on scenarios involving a small
number of parties, specifically 2, 3, and 4. While the 3- and 4-party protocols operate
under an honest-majority assumption, all existing protocols in the dishonest-majority
setting support only two parties, and sometimes use a trusted helper to improve efficiency.
Furthermore, these two party protocols typically offer only passive security, with the
exception of XONN [RSC+19], which can support active security through expensive cut-and-
choose technique. However, XONN propose only a semi-honest security variant and presents
general ideas for enhancing security without providing a concrete construction (see [RSC+19,
§3.4]). Additionally, XONN’s construction is restricted to Binarized Neural Networks and
relies on expensive Garbling techniques, which do not scale well to larger networks, such
as the VGG16 model used in our work. Therefore, our emphasis in this work is on private
ML inference in the two-party dishonest majority setting, with the goal of contributing to
the closing of the gap in the literature on MPC-based PPML. In the following sections, we
present a concise overview of the research conducted within each of these categories.

1.1.1 Two-party (2PC)

The field of PPML for two parties traces its origins to a seminal work by Lindell and
Pinkas [LP00]. They proposed a secure algorithm for data mining, specifically for decision
trees. Subsequent research following[LP00] focused on algorithms such as k-means cluster-
ing, linear regression, and logistic regression. However, these approaches suffer from high
efficiency overheads and are primarily theoretical in nature.

Later advancements in techniques like Levelled Homomorphic Encryption (LHE) have
paved the way for innovative solutions like CryptoNets[GDL+16]. CryptoNets introduced
a non-interactive solution for private neural network predictions over encrypted data. They
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Table 1: Summary of PPML frameworks (only a representative subset) in the literature. Security:
- semi-honest, - malicious (abort), - malicious (fair), - malicious (GOD). Notations: HE

- Homomorphic Encryption, GC - Garbled Circuits, SS - Secret Sharing, OT - Oblivious Transfer,
FSS - Function Secret Sharing.

Setting Framework Security Techniques

2-party
(dishonest
majority)

CryptoNets [GDL+16] HE
SecureML [MZ17] HE+GC+SS
MiniONN [LJLA17] HE+GC+SS
DeepSecure [RRK18] GC
Gazelle [JVC18] HE+GC+SS
XONN [RSC+19] GC
CryptFlow2 [RRK+20] HE+OT+SS
Delphi [MLS+20] HE+GC+SS
ABY2.0 [PSSY21] OT+GC+SS
Cheetah [HjLHD22] HE+OT+SS

2-party
(+ helper)

Chameleon [RWT+18] OT+GC+SS
Crypten [KVH+21] SS
LLAMA [GKCG22] FSS

3-party
(honest

majority)

ABY3 [MR18] GC+SS
ASTRA [CCPS19] SS
SecureNN [WGC19] SS
SWIFT [KPPS21] SS
Falcon [WTB+21] SS

4-party
(honest

majority)

Trident [CRS20] GC+SS
FLASH [BCPS20] SS
SWIFT [KPPS21] SS
Fantastic Four [DEK21] SS
Tetrad [KPRS22] GC+SS

n-party Cerebro [ZDC+21] HE+GC+SS
MPClan [KPPS23] SS

employed LHE-friendly approximations for activation functions and made the assumption
that one party possesses the model and evaluates it on the private data of another party.

SecureML[MZ17] utilized techniques such as Garbled Circuits (GCs) and Secret Shar-
ing (SS) to create efficient protocols for PPML inference, including neural networks. GC
was employed for evaluating non-linear functions like Sigmoid, ReLU, and SoftMax, while
SS-based techniques were utilized for evaluating linear layers. SecureML also introduced
MPC-friendly versions of functions such as Sigmoid through the use of a piecewise polyno-
mial evaluation paradigm, and demonstrated practicality of MPC-based techniques for
PPML tasks. Subsequently, several works such as MiniONN[LJLA17], DeepSecure[RRK18],
Gazelle[JVC18], and XONN[RSC+19] focused on improving efficiency by leveraging ad-
vancements in underlying primitives.

Recent works such as CryptFlow2[RRK+20], Delphi[MLS+20], ABY2.0[PSSY21] and
Cheetah[HjLHD22] employ state-of-the-art optimizations in HE and OT Extension domains.
They utilize a combination of techniques such as arithmetic and Boolean secret sharing and
garbled circuits, using a mixed protocol approach to achieve efficient solutions for PPML
inference. Most of these works incorporate a preprocessing phase to enhance online phase
efficiency, while works like ABY2.0 optimizes the online phase further through function-
dependent preprocessing. However, with the exception of XONN, these works only offer
security against semi-honest adversaries and are unable to handle malicious corruptions.
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1.1.2 Two-party with helper (2PC+)

In many real-world scenarios involving a server and a client, a 2PC setting is commonly
used. However, even in the semi-honest solutions within this setting, there is a significant
computational and communication burden in the preprocessing phase to generate correlated
randomness in a distributed manner. To address this efficiency issue, some studies have
explored the use of an external dealers, sometimes in the form of a signle trusted entity to
generate the correlated randomness during the preprocessing phase [ST19]. This approach
has proven beneficial in improving the efficiency of complex tasks such as PPML inference,
as demonstrated in works like Chameleon[RWT+18] and Crypten[KVH+21]. More recently,
works like LLAMA[GKCG22] have also leveraged this setting in their 2PC protocols, which
are designed using the Function Secret Sharing (FSS) paradigm and have demonstrated
practicality.

1.1.3 Three-party (3PC)

The 2PC setting has a couple of significant drawbacks. First, there is a substantial
amount of computation and communication involved. Second, these protocols have a
high overhead for ensuring security against malicious corruptions. This typically involves
computationally expensive operations like cut-and-choose and message authentication
codes (MAC). Furthermore, when operating in a dishonest majority setting like 2PC, the
level of security achieved by these protocols is limited to malicious security with abort, as
indicated in Table 1.

In response to these limitations, subsequent works like ABY3[MR18] and ASTRA[CCPS19]
focused on a 3-party honest majority setting, and demonstrated improvements over the
2PC protocols. Later on, the 3PC protocol in SWIFT[KPPS21] utilized function-dependent
preprocessing and distributed zero-knowledge proofs to enhance communication and achieve
the strongest output guarantee, i.e. GOD. These protocols assume a more flexible trust
setting where only one party can be maliciously corrupt (t < n/2). Thus, they relax the
trust setting to achieve higher efficiency or delivery guarantees.

In parallel, works like SecureNN[WGC19] and Falcon[WTB+21] concentrated on en-
hancing the efficiency of underlying PPML primitives like Maxpool, normalization and
division. They achieved this by utilizing MPC-friendly counterparts for these operations.
Through these improvements and clever engineering, these works were able to support
private training of deep neural networks like ResNet-18.

1.1.4 Four-party (4PC)

Although 3PC could enhance the efficiency of 2PC counterparts, they faced challenges
such as high computation caused by distributed zero-knowledge proofs and communication
requirements due to cut-and-choose techniques for either generating the correlated random-
ness or performing verification of the computation. These overheads become impractical
when considering the PPML training of deep ML models like ResNet-18. Consequently,
Trident[CRS20] and FLASH[BCPS20] aimed to address these issues by focusing on a
super honest majority setting involving 4 parties (t < n/3). These approaches eliminated
costly distributed zero-knowledge proofs and reduced computation to cheap symmetric
key operations.

In later work, the authors of Fantastic Four[DEK21] introduced an online-only ro-
bust protocol that builds upon on the 4PC protocol in SWIFT. They also demonstrated
techniques to achieve private robustness, guaranteeing that the function output is cor-
rectly delivered to honest parties without revealing any other party’s input. Recently,
Tetrad[KPRS22] enhanced the communication of existing 4PC protocols and showcased
protocols in the function-dependent and online-only paradigms, all with the same commu-
nication complexity.
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1.1.5 n-party (MPC)

While several works exist in the context of small parties (n < 5), there are only a few that
specifically address the support for more than four parties in the domain of PPML. One
such work is Cerebro[ZDC+21], which introduced an end-to-end collaborative learning
platform by developing a compiler based on SCALE MAMBA (SM) and EMP-Toolkit
(EMP). Essentially, this platform converts ML-friendly APIs into either SM or EMP code,
enabling the execution of various protocols supported by these frameworks. However,
Cerebro lacks ML-specific optimization for SM and inherits the limitations of SM when
compiling large programs.

In an orthogonal direction, MPClan[KPPS23] focused on PPML inference in n-party
scenarios by utilizing function-dependent preprocessing. Nonetheless, their technique is
limited to n ≤ 11 parties due to the exponential growth of computation and storage with
the number of parties.

1.2 Our Contributions
In this work, we introduce FANNG-MPC, a versatile framework designed for efficient
protocols using secure multi-party computation (MPC) techniques. Referred to as FANNG
in short, our framework is an independent fork derived from SCALE-MAMBA [ACC+21].
It maintains the diverse set of protocols included in SCALE-MAMBA, which operates over
various fields (Fp), including binary. Concerning the threat model, FANNG accommodates
both honest and dishonest majority settings, ensuring active security.

While FANNG serves as a general-purpose MPC framework supporting multiple pro-
tocols, its design is primarily focused on facilitating efficient PPML inference with fast
online execution. In this approach, input-independent tasks, such as generating random
correlated data, are performed by the MPC parties in an earlier phase called offline. These
precomputed values are then used during the online phase, once the actual inputs become
available. Fig. 1 depicts a scenario where the model owner and client act as data providers,
demonstrating how FANNG securely executes ML inference using MPC servers based on
the selected configuration. To the best of our knowledge, FANNG is the first framework
exclusively supporting PPML inference in a dishonest majority setting with active security.

MODEL
OWNER

NN
params

CLIENT

processed
data

private
input

private
input

secret
shared
output

MPC
(online phase)

ML - Inf

preprocessed
material

combine

secret
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engine

(+ ZKP)
OT

engine
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Figure 1: PPML inference between a client in possession of private data and a cloud server owning
the model using the FANNG framework.
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FANNG extends the functionality of SCALE-MAMBA by separating pre-processing from
the online phase and introducing a dealer model [DHNO19, ST19]. The preprocessing
model enables the generation of offline elements prior to online execution, facilitated by an
I/O API connecting the MPC engine to a file system or a database. This feature facilitates
the storage and retrieval of gabled circuits for comparisons, random masks for probabilistic
truncation, Beaver and matrix/convolutional triples for efficient multiplications, and daBits
for conversions. FANNG features an extended instruction set to accommodate the dealer
model, along with a separate engine for Beaver and matrix triples generation based on BGV
scheme [BGV14, CKR+20, MG23], executable by external dealers. The triples generated
by the dealers can then be transformed into an MPC version using a converter (§3.2).
Moreover, FANNG includes specialized implementations to enhance the performance of
neural network (NN) operations. This encompasses convolutions, fully connected layers, and
dedicated libraries for folding and normalization, ensuring optimal communication rounds.

Unlike a mere prototype, FANNG delves deeper into system-level details, identifies
challenges, and addresses them using novel protocols and considerable engineering effort.
Following the guidelines from [Eur14], the quality of our code corresponds to Technology
Readiness Level 5 (TRL-5), and we aim to achieve TRL-7 in the future. This approach posi-
tions FANNG closer to a real-world implementation, facilitating more accurate performance
results. For example, SCALE-MAMBA faces limitations in compiling large programs with the
default optimizer for communication rounds (the -O3 flag). Similarly, the MAMBA compiler
within SCALE-MAMBA cannot process programs exceeding 232 bytecodes, posing challenges
for implementing large neural networks like VGG16 [SZ15], as considered in this work.
FANNG addresses these issues through the application of novel engineering techniques.

To summarize, we have the following contributions:

1. Introduction of a novel MPC-based framework designed for private machine learning
(ML) inference in a dishonest majority setting with active security.

2. Design and implementation of a dedicated Dealer Module, utilizing state-of-the-art
FHE-based protocols to pre-process matrix triples, and the associated Converter
Module.

3. Support for a dedicated Preprocessing Unit capable of handling various types of
input-independent data, including support for offline garbling, and incorporating
efficient storage mechanisms for persistent sharing of values.

4. Novel protocol for combining ReLU with truncations, resulting in improved instruction
size and efficiency.

5. Specialized ML libraries for designed for efficient linear transformations and an
enriched set of instructions.

6. Open-sourced implementation1 with detailed evaluations, including private inference
of large NNs like VGG16 [SZ15].

2 Framework Design
In this section, we discuss the design of our FANNG-MPC framework. Our framework
prioritizes PPML inference, emphasizing active security, although it supports any arbitrary
MPC computation. Instead of merely designing a prototype, our focus extends to intricate
system-level aspects such as instruction size, storage requirements, support for vectorization,
and I/O handling (cf. §3.7). This approach allows us to emulate an MPC framework
that closely resembles a real-world implementation. Our objective is to demonstrate
the practicality of actively-secure MPC in a dishonest majority setting, a scenario still

1Available at https://github.com/Crypto-TII/FANNG-MPC.

https://github.com/Crypto-TII/FANNG-MPC
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considered costly in the existing literature. Inherited from SCALE-MAMBA, FANNG operates
over prime-order fields (Fp) that encompass binary (F2), with plans for future work to
include support for rings.

We chose SCALE-MAMBA as our baseline among existing MPC frameworks because
it supports various protocols with active security, including full-threshold Secret Shar-
ing (SS) [BCS20, KPR18, RST+21], and honest majority setups via Shamir SS, replicated
SS, and generic monotone span programs [KRSW18, SW19]. We would like to stress that
SCALE-MAMBA is the only framework in existence that allows us to combine those protocols
with Boolean circuit evaluation via [HSS17] [HSS17] whilst providing active security.
However, despite these features, SCALE-MAMBA falls short when it comes to enabling PPML
inference due to several limitations:
– The inability to compile large programs under the default optimizer (-O3 flag) [ACC+21].
– MAMBA compiler incapability for programs beyond 232 bytecodes, affecting large neural
networks like VGG16 [SZ15].
– Absence of a decoupled pre-processing phase, which happens in parallel with the online
execution.
– Limited I/O capabilities to console access by default. File storage support necessitates
manual changes in the base code, indicating a lack of Controller-based I/O for storage
and retrieval from files or databases.
– Inclusion of a restricted set of libraries for scientific operations, lacking specialized ML
libraries and low-level instructions for ML-related operations.

Moreover, SCALE-MAMBA is no longer maintained with the last update in June 20222.
Our primary objective is to enhance the functionality of this widely used MPC framework,
ensuring compatibility with real-world setups and better suited for concrete machine
learning applications, essentially revitalizing the framework.

Fig. 2 depicts the comprehensive design of FANNG, comprising primarily of five compo-
nents. A brief overview of these components, in the context of our ML inference application
(cf. Fig. 1), is provided next, with detailed descriptions provided in §3.

1. Dealer Module (§3.1): In MPC, outsourcing the pre-processing-phase computations
(input-independent) to a trusted helper, a.k.a commodity-based MPC [DHNO19, ST19],
can significantly enhance the efficiency of the online phase [RWT+18, KVH+21, GKCG22,
KKP+24]. However, the existence of such a helper contradicts the main axiom of actively
secure setting with dishonest majority, i.e.“the parties do not need to trust anyone",
and thus may not align with real deployments. To circumvent this, we incorporated a
dealer module which replaces the trusted helper with a group of untrusted dealers. These
dealers engage in an MPC protocol to generate correlated randomness, reducing the trust
requirement from a single trusted helper to one party selected from many. Both the client
and model owner can make the dealer selection, thus mitigating the trust concern.

The dealer module currently generates Beaver and matrix triples for fully connected
and convolutional layers, addressing complex operations in ML model pre-processing.
The design is flexible enough to accommodate multiple dealer modules, reflecting our
anticipation of dedicated services replacing these modules in the future. For example, we
are actively working on FPGA hardware acceleration to support matrix triple generation.
This adaptable design enables the integration of various dedicated services for efficient
pre-processing within FANNG.
2. Converter Unit (§3.2): The dealer module is designed to be adaptable in various

scenarios involving different numbers of dealers and MPC servers. Hence, we need to convert
the pre-processed material into a state that is compatible with this setup. The converter
unit is specifically created to ease this transition, converting pre-processed materials from

2https://nigelsmart.github.io/SCALE/

https://nigelsmart.github.io/SCALE/
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and stored in the DB. 3 Preprocessing Unit retrieves the Matrix Triples from the DB. 4 Preprocessed
materials are stored into the DB. 5 Client submits an input query, and the Model Owner provides the
NN model parameters for evaluation.

Figure 2: System design of FANNG-MPC framework for PPML inference.

one type to another that is suitable for online evaluation involving a different set of parties.
In this work, we focus on dealers in the dishonest majority setting and the subsequent
conversions needed for online evaluation in two and three-party scenarios.
3. Pre-processing Unit (§3.3): This unit is responsible for generating input-independent

data essential for the online evaluation of the MPC protocol. This approach has proven
to significantly enhance the efficiency of the online phase, leading to practical run-
times [FLNW17, KPR18, Kel20, HHNZ19]. The unit currently covers Garbled Cir-
cuits (GCs), truncation masks, daBits, and authenticated singles. In the FANNG roadmap,
we aim to extend dealer support for generating all these data types, except for authenticated
singles and oblivious transfers.
4. Storage Support (§3.4): A modular component within FANNG, dedicated to

persisting information shared among its various units. It revamps the legacy SCALE-MAMBA
I/O by introducing a novel controller-based approach, enabling the storage and retrieval of
pre-processed material from files or databases, whilst maintaining backwards compatibility.
Unlike its predecessor, it offers enhanced customization, allowing users to select the
persistence mode via a configuration file. The current version of FANNG provides support
for MySQL 8.0 and the File System (FS), with added PostgreSQL support in the Converter
Unit, highlighting its adaptability to various database engines.
5. Evaluation Engine (§3.5): This engine is responsible for performing the protocol

evaluation, private ML inference in our case, serving as the interface between the client
and model owner. It orchestrates all other components in FANNG to facilitate the entire
evaluation pipeline. This involves signaling dealers in the dealer module for data processing,
performing its own preprocessing, utilizing storage support for storing the resulting data,
and subsequently retrieving the stored preprocessed data for protocol evaluation by the
MPC servers. Finally, it performs the evaluation using private inputs from both parties
utilizing the preprocessed data.



N.Aaraj et al. 9

3 Framework Details
In this section, we discuss the technical details of our framework’s components. We
explore the integration of new functionalities and optimizations built upon SCALE-MAMBA,
facilitating private evaluations of large neural networks like ResNet and VGG16. While we
have categorized these new functionalities under distinct components, achieving a clear-cut
separation is challenging, as many functionalities necessitate the collaborative functioning
of multiple components.

Experimental setup: We have provided two different hardware test beds:

1. Our General Purpose MPC testbed includes 5 servers connected via Gigabit connec-
tions (1 Gbps) with a ping latency of 0.15ms. Each server has 512 GB of RAM and
Intel(R) Xeon(R) Silver 4208 @ 2.10GHz processors. They all share a common
/home directory and are installed with /sbin/tc to simulate latency.

2. Our Machine Learning testbed comprises a single server equipped with 2TB of RAM
and an Intel(R) Xeon(R) Gold 6250L CPU @ 3.90GHz processor.

Regarding communications, we conduct all our experimentation considering three
relevant setups:

1. Local: All parties are emulated on the same machine with no communication
cost. Albeit unrealistic, it is typically used as a baseline as it helps to evaluate the
computation costs.

2. Ping: Parties run on different machines at point-to-point connection speed of ≈
0.3ms, suitable for highly dedicated setups such as in Triples-as-a-Service (TaaS) [ST19]
with Dealers sharing the same data center [WPM+20, ZIC+21, RCF+21, PHJ+22].

3. WAN: Parties run on different machines, considering achievable common ping times
for cloud service providers, which is ≈ 20ms.

From an MPC perspective, we explore three settings, each with malicious security:

1. Full Threshold (2p): Two-party setting in the dishonest majority setting, tolerating
at most 1 corruption.

2. Full Threshold (3p): Three-party setting in the dishonest majority setting, toler-
ating at most 2 corruptions.

3. Shamir (3p): Three-party setting in the honest majority setting, tolerating at most
1 corruption.

3.1 Dealer Module
In FANNG, the dealer module generates random Beaver, matrix and convolutional triples
required for supporting multiplication, matrix multiplication and convolutions in PPML
inference. We opted for Fully Homomorphic Encryption (FHE) [MSM+22] techniques,
inspired by SCALE-MAMBA’s use of the FHE-based SPDZ protocol to generate traditional
Beaver triples in the offline phase. Specifically, we adopt a levelled version of the BGV
scheme [BGV14] to instantiate the FHE. Towards this, we implemented three state-of-the-
art protocols, each serving a distinct purpose.

– ΠPrep: This protocol depends on leveled homomorphic encryption and serves as a
crucial component for generating SPDZ-like matrix triples. We implemented the
protocol by Chen et al.[CKR+20, Fig. 1], which avoids sacrificing a triple at the
expense of an additional multiplicative depth.



10 Framework for Artificial Neural Networks and Generic MPC

– FHE-based matrix multiplication: To generate matrix triples instead of traditional
Beaver triples, ΠPrep relies on an algorithm for homomorphically multiplying en-
crypted matrices. Towards this, we implemented the optimized protocol proposed
by Mono and Güneysu [MG23], which allows the reuse of key-switching keys and
eliminates constant multiplications.

– ΠZKPoK: To achieve active security, ΠPrep uses zero-knowledge proof of knowl-
edge (ZKPoK) techniques, which establish a global proof of knowledge for a set of
ciphertexts. We implemented the approach proposed by Baum et al.[BCS20, Fig. 1],
where the authors designed an n-prover protocol, providing the capability to prove
the validity of the sum of n ciphertexts instead of proving each one individually.

FHE possesses an inherent characteristic where the error employed in encryption,
essential for upholding FHE security properties, increases with each homomorphic operation.
Notably, this growth becomes exponential when homomorphic multiplications are executed
(see [MML+23] for a detailed analysis of error growth across operations in BGV). As a
result, only a limited number of homomorphic operations can be carried out before the
error level starts impacting the decryption operation. Hence, it is essential to evaluate
error growth within the circuit and choose the FHE scheme parameters accordingly.

This section provides a detailed analysis of parameter estimation, focusing on homomor-
phic error, particularly within the most complex circuit across all our protocols—matrix
multiplication depicted in [MG23, Fig. 6]. Although Mono and Güneysu [MG23] of-
fer parameter estimation for BGV schemes, we observe that their protocol overlooks
ZKPoK (ΠZKPoK). Consequently, their analysis of matrix triple, starting with a fresh ci-
phertext, leads to an underestimation of the correct parameters and hence proves insufficient
for our scenario.

We begin our analysis with a brief recap of all the necessary fundamental concepts.
A detailed description of the BGV scheme and the related mathematical techniques is
provided in §A.

3.1.1 4-Leveled BGV scheme

Let q be an integer product of 4 primes, i.e., q = p0 ·p1 ·p2 ·p3, with qℓ denoting qℓ =
∏ℓ

j=0 pj ,
for any ℓ ≤ 3.

A BGV ciphertext is a vector of polynomials c ∈ R2
q, where Rq = Zq[x]/⟨xn + 1⟩ and

n is a power of two. At a high level, the BGV scheme relies on two key techniques:

– Modulus-switching: This procedure is essential for error reduction. Specifically, in
our context, we switch from a ciphertext modulus qℓ to qℓ−1, thereby reducing the
error by qℓ−1/qℓ = 1/pℓ and introducing an error bounded by Bscale (see §A.2.3 for
details).

– Key-switching: This technique is used to reduce the degree of a ciphertext polynomial
after multiplication or change the key following a rotation. Various variants of the
key-switching procedure exist. In our scenario, it initially increases the ciphertext
modulus to qℓ · P (where certain computations are performed) and subsequently
applies modulus switching back to qℓ (see §A.2.4 for details).

For two ciphertexts c and c′ with error bounds denoted by Bc and Bc′ , respectively, the
error bound after their addition is Bc + Bc′ , after their multiplication is Bc · Bc′ , and after
a multiplication of c by a scalar is Bconst · Bc, where Bconst ≈ t

√
n/12 [MML+23] (see §A.2

for details).
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3.1.2 Noise analysis of matrix triple generation

To compute a valid and secure set of BGV parameters for the multiplication of matrices A
and B, we analyze each stage of the ΠPrep protocol, focusing on the operations outlined by
Chen et al. [CKR+20, Fig. 1]. Note that we instantiate matrix multiplication in [CKR+20]
using the protocol from [MG23]. For consistency, we adopt the same notation as Chen et
al. [CKR+20].

Top Modulus p3 In ΠPrep protocol, the error of cAjk
(and cBjk

) is bounded by Bdishonest
clean

(see §A.2.6 for details). Before performing the matrix multiplication of matrices cAjk
and

cBjk
, we reduce the error down to a threshold B, using the modulus switching procedure.

Thus, the error is scaled by p3 and the additional modulus-switching error Bscale (Equation 5)
is added. Hence, we have

Bdishonest
clean
p3

+ Bscale < B =⇒ p3 >
Bdishonest

clean
B− Bscale

.

Middle Modulus p2 During the FHE-based matrix multiplication, parties compute

cA ⊛ cB =
d−1∑
κ=0

(ϕκ(cA) ⊠ ψκ(cB)),

where ⊠ denotes homomorphic multiplication of two ciphertexts. As detailed in [MG23, Fig.
6], the computation of ϕκ(cA) involves addition of two special ciphertexts. These special
ciphertexts are constructed by first rotating cA by κ positions, followed by multiplying
the result of any rotation by a scalar, where 1 ≤ κ ≤ d. Also, rotation operation involves
key-switching procedure as well. On the other hand, ψκ(cB) is obtained via simple rotation
by κ positions.

While the rotations themselves do not influence the noise directly, switching the key
back to the original adds key switching noise vks, which depends on the key switching
method [MML+23]. In our case, we have vks =

√
3ω·max(q̃j)

P · Bks +
√
k · Bscale (cf. §A.2.4).

Thus, if B is the starting noise of cA and cB , then after the τ rotations, the bounded error
of each ciphertext grows from B to B + τ · vks.

The next step for ϕκ(cA) involves a ciphertext-scalar multiplication, increasing the
error to Bconst · (B + τ · vks). Similarly, the subsequent addition with a similar ciphertext
doubles the error. A modulus switching is performed next to reduce the noise magnitude
down to B. Hence, the noise at this stage (from ϕκ(cA)) is at most

2Bconst · (B + τ · (
√

3ω·max(q̃j)
P · Bks +

√
k · Bscale))

p2
+ Bscale.

Since we want p2 to be as small as possible, we use a larger B and P such that,

p2 > 2Bconst · (B + τ ·
√
k · Bscale)/(B− Bscale).

Thus, we set B ≈ α · Bscale, for α ≥ 2, and we have p2 ≈ 2Bconst · (α+ τ ·
√
k)/(α− 1).

Middle Modulus p1 Note that the noise magnitude grows from B to d·B2 while computing∑d−1
κ=0(ϕκ(cA) ⊠ ψκ(cB)). Given that the product of two ciphertexts results in a 3-

dimensional vector, key-switching is necessary. Additionally, to reduce noise to B, we require
the modulus switching procedure. In FANNG, we employ hybrid key switching that allows
for merging key switching with the modulus switching, enabling a direct switch to a smaller
modulus, i.e., from Q1 = P ·q1 to q0 decreasing the noise by q0/Q1 = 1/(P ·p1). In our case,
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the error before scaling down using the modulus switching is ν′ = d·B2·P+
√

2ω·max(q̃j)·Bks.
Thus, the error after the modulus switching procedure is bounded by 1

P ·p1
·ν′+

√
k + 1·Bscale

[MML+23, Sec. 3.2]. Since we want to reduce the noise back to B, we set

d · B2

p1
+
√

2ω ·max(q̃j)
P · p1

· Bks +
√
k + 1 · Bscale < B. (1)

For large values of P , Equation 1 becomes d·B2

p1
+
√
k + 1 · Bscale < B, which (in the

variable B) must have a positive discriminant. Namely p1 > 4d ·
√
k + 1 · Bscale, and thus,

we can set P ≈ 10 ·
√

3ω ·max(q̃j) · (Bks/Bscale).

Bottom Modulus p0 Note that modulus reduction is not required at level zero (cf. [MG23,
Fig. 6]). However, since we execute AddMacs(c), the error grows from B to B2. To ensure
a correct distributed decryption, we require that the noise bounded by B2 is smaller than
2 · (1 +N · 2DDsec) · B2 (cf. Equation (7)). Thus, p0 > 2 · (1 +N · 2DDsec) · (α · Bscale)2.

All the parameters together Since we require q to be as small as possible, we set α = 2.
Moreover, we have only 2 parties in our case (N = 2) and τ ≈ d. Thus, we have:

p0 ≈ 2DDsec+4 · B2
scale, p1 ≈ 4 · d ·

√
k · Bscale,

p2 ≈ 2 · d ·
√
k · Bconst, p3 ≈ Bdishonest

clean /Bscale.

Finally, setting our parameters as t = 2128, d = 64, w = 3, k = 5 and DDsec = ZKsec = 80,
we have log q ≈ 760 and security level λ = 128.

3.2 Converter Unit
This section describes FANNG’s mechanism for transferring the data produced by a set of
ND dealers, denoted by the set D (typically with ND = |D| > 2) to the NS MPC servers
running the PPML inference. For ease of presentation, consider client C and the model
owner M to be the MPC servers, i.e. NS = 2. When necessary to differentiate between
various clients in a set C with size NC , we denote them as {Cj}j∈[NC ]. Also, κ denotes the
computational security parameter.

General re-sharing strategy Consider a value x ∈ Fp additively secret-shared among the
dealers {Di}i∈[ND], i.e. x =

∑
i∈[ND] xi with Di holding xi. They aim to redistribute this

value to a fresh sharing among the parties {M,Cj}. The naive method for achieving this
involves each dealer Di generating a 2-out-of-2 sharing of xi and sending one share to each
of M and Cj . This approach incurs a cost of ND · 2 · p bits of communication, where p is
the bit length of x. When p > κ, we can optimize the cost using a pseudo-random function
F : {0, 1}κ → {0, 1}p, as follows:

1. For i ∈ [ND], dealer Di does as follows:

(a) Sample random keys k(i)
M,Cj

← {0, 1}κ, for j ∈ [NC ], where NC is the bound on
the number of clients that the model owner M expects.

(b) Send x
(i)
M,Cj

= xi − F (k(i)
M,Cj

) to M, who defines its share of x as xM,Cj
=∑

i∈[ND] x
(i)
M,Cj

.

(c) When the specific identity of the client Cj becomes known, send the key k(i)
M,Cj

to Cj .

2. Cj defines its share of x as xCj ,M =
∑

i∈[ND] F (k(i)
M,Cj

).
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Note that the output shares satisfy the equation x = xCj ,M + xM,Cj
. The approach

above is described for only one value for simplicity, but the same key can be used for all
the values re-shared to the same client, resulting in communication of ND · (p+ κ) bits.

The above strategy generalizes easily for NS MPC servers, with ND ·p+ND · (NS−1) ·κ
bits of communication for the optimized approach.

Re-sharing SPDZ values Currently in FANNG, dealers operate in a dishonest majority
setting, using SPDZs Topgear [BCS20] for computation. In this context, every value x
is associated with a message authentication code (MAC), denoted as MAC(x). There
exists a global MAC key, denoted as ∆ and obliviously generated by the dealers, which
authenticates messages as MAC(x) = x ·∆. To simplify, the process of re-sharing a value
from dealers to {M,Cj} in FANNG involves re-sharing a triple (x,MAC(x),∆). To achieve
this, dealers employ the PRF-based approach outlined earlier for each of the three values.
This approach is illustrated in Fig. 3 below.

CONVERT
PRG

secure
comms

CLIENT

PRNG

DEALER

MODEL
OWNER

secure
comms

Figure 3: MPC-2PC Converter for SPDZ values in FANNG.

We remark that this approach allows a corrupted dealer in D to introduce an additive
error in the re-shared value by sending inconsistent values. Nevertheless, since we use
additive secret-sharing, this kind of error could always be introduced by a corrupted party
during reconstruction. Our use of information-theoretic MACs during the online phase
effectively catches such errors and induces an abort, irrespective of how they were generated.

MAC key strategy Note that the dealers will use different MAC keys based on the trust
relations among different clients. Specifically, if a client C1 lacks trust in another client
C2 to potentially collude with the model owner M, C1 cannot use the same MAC keys as
C2. Hence, the dealers must take this into account when generating the pre-processing
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material. This is due to the fact that {M,C2} possess a 2-out-of-2 sharing of the MAC key,
which will get compromised upon collusion. In the extreme case where no client trusts any
other client to be non-colluding with M, the dealers should use a different MAC key for
each {M,Cj} pair.

Experimentation and Discussion To evaluate the performance of the converter unit,
we utilized preprocessed data generated by three Dealers for PPML inference using the
LeNet [LBBH98] architecture (see §4). The reported values were obtained from our
Machine Learning testbed. For a single LeNet inference, converting the preprocessed
shares to 2PC sharing semantics takes 13.4 seconds over a local network. However, this
time is amortized across multiple instances, dropping to 69 seconds for 10 inferences and
595 seconds for 100 inferences. The converter relies on industry-standard technologies
such as gRPC for communication and PostgreSQL for storage, with the primary overheads
stemming from the limitations of these technologies.

3.3 Pre-processing Unit
This unit is responsible for performing all input-independent pre-processing tasks that
are not carried out by the dealers. We dedicate this section mainly to provide details
regarding moving the garbling operation in SCALE-MAMBA to the pre-processing stage, which
significantly enhanced the online performance of the framework. We begin with the details
of offline garbling.

3.3.1 Offline Garbling

For the distributed computation of garbling circuits (GCs) among n parties, SCALE-MAMBA
incorporates the garbling schemes proposed by Hazay et al. [HSS17] and Wang et al. [WRK17].
Furthermore, it utilizes techniques from Zaphod [AOR+19] to facilitate interaction between
Arithmetic (Full Threshold) and Boolean Circuits (Distributed GCs) through field conver-
sion. Notably, the entire garbling procedure in SCALE-MAMBA occurs online, signifying that
circuit garbling takes place just before the evaluation of the garbled circuit, in parallel
with the online execution. This way, SCALE-MAMBA guarantees reactivity, enabling parties
to decide on the protocol’s progression based on intermediate and public values.

The computational model based on the disassociation/independence of the offline and
online phases is difficult to materialize in general-purpose frameworks like SCALE-MAMBA
and MP-SPDZ, especially if there is no previous knowledge of the function. Moreover, there
are several technical aspects that limit the adaptation of offline garbling in SCALE-MAMBA,
especially when considering active security:

1. From a cryptographic perspective, the inputs from the online phase require masking
with authenticated bits (aBits) generated via a chain of different Oblivious Transfer
(OT) protocols that start from a set of choicebits selected by each party (cf. [KOS15]
for details). The circuits themselves depend on similar processes to generate the keys
that are embedded in each circuit. In that sense, both need to come from the same
set of choicebits.

2. From an engineering point of view, current versions of SCALE-MAMBA are not built
to handle circuits offline. More specifically, there is no trivial way to parameterize
the type and quantity of circuits needed online, as we can do with the triples (via
the -max flag). Additionally, for architectural reasons, there are no mechanisms on
SCALE-MAMBA that would allow us to trivially interact with them.

To decouple the garbling procedure from the online phase, FANNG introduces a set of
new instructions capable of Garbling/Storage, Loading and Executing Gabled Circuits for
the dishonest majority setting:
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– OGC(circuit_id, amount): Garbles a given amount of the specified circuit and
stores the result to a database/file system.

– LOADGC(circuit_id, amount): Loads specific amount of persisted circuit_id
instances to memory.

– EGC(circuit_id): Executes the next specific circuit on the pile, using the same
interaction method as with GC, the instruction for garbling in SCALE-MAMBA.

To garble offline, the parties need to know the type and number of GCs they require
beforehand. They can produce, store and load these circuits with the instructions above.
FANNG also includes architectural components to support Database/File System connec-
tivity for uploading a specified number of circuits of a given type. It is worth highlighting
that GCs are processed offline using a specific set of choicebits. We then verify that the
choicebits held by each client/online party for the circuits match with the ones being
used to generate authenticated bits for the masks. In the case of PPML inference, GCs
are generally used for private comparisons required in activation and pooling layers, but
FANNG can handle any type of circuit.

Garbling Offline Data Flow Though FANNG treats the SCALE-MAMBA’s garbling func-
tionality as a black box, moving the garbling process to offline requires manipulating the
process necessary to create the keys embedded in the circuits. For instance, if a protocol
requires aBits, daBits, and GCs altogether (for instance, in Aly et al. [ANSS22]), then
the keys corresponding to all these materials should be generated from the same set of
choicebits, as implemented in SCALE-MAMBA. Furthermore, in SCALE-MAMBA, a fresh set of
choicebits is selected at every run. FANNG makes it possible to parameterize the choicebits,
as illustrated in Fig. 4. This slight change in the flow above (replacing the fresh selection
of choicebits), implies the persistence of the choicebits used to garble the circuits and the
way they are consumed by the framework.

Note that FANNG currently supports offline garbling only by computing parties (MPC
servers), not dealers. Additionally, for larger circuits, circuit sizes can be notably high (e.g.
≈ 10MB per party for float multiplication). As a result, the execution times of instructions
like LOADGC heavily depend on the File System reading speed or Database response time.
Therefore, we decided to design our DB support in a modular fashion, decoupled from the
old I/O support in SCALE-MAMBA. New features introduced by FANNG for databases and
file systems are specifically integrated into our modular data connectivity support.

Experimentation and Discussion We conducted experiments in this section using our
General Purpose MPC testbed. We evaluated performance in a two-party scenario using
the basic less-than-or-equal (LTZEQ) circuit [MRVW21], with a size of ≈ 800KB, running
in batches of up to 1000 circuits. As shown in Tab. 2, we obtain improvements for online
runtime in the range 2.4×-4.2× .

Table 2: Offline Garbling Timings (seconds) per 1000 operations.

Stage Offline Garbling Online Garbling
Local Ping WAN Local Ping WAN

Offline
Garbling 2.91 4.7 86 == == ==
Storage 17.86 17.86 17.86 == == ==
Loading 14.88 14.88 14.88 == == ==

Online
Execution 0.97 2.1 62.6 3.89 6.83 148.66

With respect to Loading and Storage times, while they can be amortized, they ultimately
depend on the underlying user’s DB engine. We use a MySQL 8.0 Vanilla Dockerized
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Figure 4: Offline Garbling in FANNG.

installation. The timings in both cases are linked to the speed at which we can process
two classic SQL commands, namely INSERT and SELECT. Advanced use cases may involve
modern DB setups, such as in-memory DBs and other Big Data processing engines.

3.4 Storage Support
I/O is crucial for any modern application requiring persistence. Furthermore, real-life imple-
mentations demand flexibility in handling secret-shared/public inputs. While SCALE-MAMBA
initially provided I/O capabilities, they were limited to console access, necessitating manual
code intervention for file system support [ACC+21]. FANNG addresses this requirement in
a modular and adaptable way, via a novel Controller-Based IO. Furthermore, we introduced
backward-compatible extensions to the existing I/O, incorporating under the hood flexible
and maintainable components. This ensures current SCALE-MAMBA users can continue
relying on the framework’s I/O, while providing future users with the option to leverage
our novel storage support.

Legacy I/O SCALE-MAMBA I/O consists of two sections: i) instructions for private and
public I/O invoked via MAMBA code, and ii) interfaces implementing I/O functionality
directly in SCALE, with these interfaces being programmatically exchanged in the code.
FANNG retains the instructions but broadens the set of interfaces, facilitating connections
to file systems (FS) or databases (DBs) for storage (e.g., pre-processed materials generated
by the framework) and loading during the online phase.
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Storage_type = FileSystem
File_system_storage_directory = Data

Listing 1: I/O Configuration file tuned for File System access.

Controller-Based I/O FANNG adds a parametrizable I/O controller, customizable through
a configuration file. Users can configure their instances to utilize any available I/O mediums
via the controller. Currently, the framework supports two options: general FS and MySQL
(1&2). This eliminates the need for users to recompile the framework for I/O changes.
All database connections, including those used by the revamped Legacy I/O, rely on
the controller. This centralized configuration enables users to manage the database
settings in a single text file, regardless of the chosen I/O model. The Controller-Based
I/O is employed across all new functionalities dedicated to producing or retrieving the
pre-processed material.

Storage_type = MySQLDatabase
MySQL_url = tcp://my. dbserver .ae :3306
MySQL_user = my_user
MySQL_password = ****
MySQL_database = mpclib -database - dealer

Listing 2: I/O Configuration file tuned for MySQL access.

Currently, FANNG supports only MySQL 8.0. However, it is designed with flexibility,
allowing seamless extension of both legacy and new I/O functionalities to other DB engines
like SQLite and PostgreSQL.

3.5 Evaluation Engine
This section outlines FANNG’s contributions to efficiently evaluate online phase of protocols.
FANNG introduces a novel way of integrating private comparison protocol with a state-of-
the-art probabilistic truncation protocol to reduce communication rounds. Furthermore,
FANNG introduces several libraries for implementing ML blocks, facilitating convolutional,
fully connected and folding layers, among others.

3.5.1 Protocols for private comparisons

Activation functions are fundamental in NN models, with the Rectified Linear Unit (ReLU)
being one of the most popular. Essentially, ReLU can be implemented through comparison
and multiplication. FANNG integrates practical privacy-preserving comparisons, leveraging
contributions from the current SotA [ANSS22]. This involves applying mixed circuits
to constructions introduced by Catrina and De Hoogh [CdH10], and Rabbit [MRVW21].
Our library includes an interface (rabbit_sint), returning the following for any ⟨x⟩, the
secret-shares of x ∈ Z2k over prime-order field Fp:

LTZ(⟨x⟩) : Zp → {0, 1} =
{

1 if x < 0,
0 otherwise.

(2)

The interface invokes constructions implemented as described in [ANSS22], performing
boolean operations via Zaphod [AOR+19]. It can be parameterized with the following
evaluation options:

– rabbit_slack: Integrates Zaphod [AOR+19] with the logic from Rabbit [MRVW21],
providing statistical security for accelerated computing.
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– rabbit_list: Implements the original Rabbit [MRVW21] with a rejection list.
– rabbit_fp: Similar to rabbit_list but assumes a bounded prime-order domain

close to a power of 2.
– rabbit_conv: Utilizes the conversion circuits from SCALE-MAMBA to transform ⟨x⟩

on Fp to Z2k .
– rabbit_less_than: Takes 2 modulo Z2k inputs and directly evaluates the binary

circuit from Rabbit [MRVW21] using logical gates from SCALE-MAMBA.
– dabits_ltz: Instantiates the main contribution from [ANSS22], combining the

original Catrina and de Hoogh [CdH10] construction with Boolean evaluation from
Zaphod using daBits for random bit sampling.

The library is integrated into several NN modules within the FANNG compiler, including
relu_lib.py, which implements several variations of ReLU’s . According to [ANSS22],
dabits_ltz remains the fastest operation mode in the library, particularly when garbling
is conducted offline, a capability supported by FANNG. Our results for private comparisons
are presented in Tab. 3.

Table 3: Private comparisons using rabbit_lib in a 2 party setting. Time is measured in seconds
per 1000 operations (∗Online Garbling; †Offline Garbling).

Mode Local Ping WAN
rabbit_slack 6.41 13.46 295.76
rabbit_list 120 457 33,365
rabbit_fp 64 138 18,315
rabbit_conv 12.8 19 300
rabbit_less_than 11.81 60.50 5,225

Default Mode
dabits_ltz∗ 3.89 8.43 148.66
dabits_ltz† 0.97 2.07 62.52

The library also includes two VHDL versions of the underlying Boolean circuits, detailed
in [ANSS22]. The difference lies in the presence or absence of XOR gates, with the former
incurring an increase in the number of gates. While the former allows us to benefit from
typical garbled circuit optimizations, the latter provides more parallelism and can be
advantageous when employing replicated secret sharing for Boolean evaluation.

3.5.2 Combining ReLU’s with n Truncations

FANNG supports Fixed Point Arithmetic (FPA) in the same way as SCALE-MAMBA and
MP-SPDZ, specifically implementing the approach outlined in [CS10]. The challenge of
truncation in fixed point arithmetic is a widespread issue in ML applications (see for
instance [AB24]). This section elaborates on the combination of a predetermined number
of truncation operations with a comparison operation.

In FPA, for a fixed point value x represented with mantissa αx and precision d, we
have x = αx · 2d. Then, the multiplication of two fixed-point values x and y produces:

x · y = αx · αy · 22·d. (3)

To prevent the scaling factor from quickly saturating the domain space, it is necessary
to truncate it by a factor of 2d after each multiplication. The probabilistic truncation
mechanism proposed in [CS10] is commonly used in the literature. It involves a single round
of communication and utilizes pre-processed authenticated material, hereafter referred to
as truncation masks.
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Figure 5: Protocol for batching secure truncation in parallel with private comparison.

In recent works (e.g., [RRK+20]), it was noted that ReLU and truncation can be
effectively combined in a single call. The truncation protocol bears some similarities with
the comparison protocol in [CdH10] and its extensions in [ANSS22]. Both protocols involve
random sampling in the pre-processing phase and necessitate a much smaller word space
compared to the domain size. Leveraging these observations, we present a protocol that
concurrently performs truncation and the comparison protocol from [ANSS22]. Notably,
this truncation addresses scaling issues arising from multiple multiplications. This enables
the batching of truncations from multiple multiplications in a single execution, allowing
parallel processing with private comparisons in the activation layers.

Fig. 5 illustrates parallel execution of comparison and truncation of value c resulted
after n sequential multiplications, with k as the domain size and κ as the security parame-
ter [ANSS22]. Pre-processing involves using contributions from [DFK+06] for authenticated
bits (aBits) and Zaphod [AOR+19] for daBits. The main idea is that random sampling for
truncation and comparison occurs in the same domain and over the same input. Therefore,
we can use masked outputs from the comparison directly for truncation. The mask is
utilized once for executing both protocols. Following this, we multiply the truncated value
with the output bit from the comparison, similar to a traditional ReLU implementation.
Notably, the generation of the 2k secret shared bounded randomness [DFK+06] takes place
during pre-processing in FANNG. On the other hand, SCALE-MAMBA does not separate this
process from the online phase, resulting in a slower truncation process.

Concerning the number of batched truncation operations, the size of mantissa (v) plus
n · d (representing the quantity of performed multiplications) is restricted by the value of
k. In practice, FANNG and SCALE-MAMBA assume a word size of 64 bits. This upper bound
be attributed to the limitations of the GC processor, which was designed to support 64-bit
words. This limitation can be viewed as a trade-off between precision and the size of n or
batched truncations.
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Experimentation and Discussion: Consider a CNN setup where the network
involves multiplication in the convolution layer, followed by another in the batch normal-
ization layer. With quantization during normalization, if no truncation is applied, the
precision expands to 3 · d bits. In our experiments, we fixed d at 20 and restricted the
represented values to not exceed 8 (3 bits), ensuring compatibility with 64-bit words in
our experimentation.

Table 4: Performance of comparison in conjunction with truncation (trunc_ltz) in seconds per
1000 operations. (†Vectorized).

Mode Optimized Non-Optimized
Local Ping WAN Local Ping WAN

Full Threshold (2p)
[CdH10] + 1-T 1.61 2.71 114 4.66 18.1 793
[CdH10] + 2-T 1.68 3.15 135 4.69 19 814
trunc_ltz(1-T) 3.35 3.3 170 == == ==
trunc_ltz(2-T) 4.3 3.37 190 == == ==
trunc_ltz(1-T)† 0.84 2.1 62 == == ==
trunc_ltz(2-T)† 0.86 2.2 62.7 == == ==

Full Threshold (3p)
[CdH10] + 1-T 2.69 4.46 116 8.4 23.1 798
[CdH10] + 2-T 3.09 5.09 136 8.56 23.2 820
trunc_ltz(1-T) 5.3 3.67 265 == == ==
trunc_ltz(2-T) 8.6 3.77 276 == == ==
trunc_ltz(1-T)† 1.34 2.44 103 == == ==
trunc_ltz(2-T)† 1.35 2.9 103.8 == == ==

Shamir (3p)
[CdH10] + 1-T 1.37 3.93 115 5.52 17.02 792
[CdH10] + 2-T 1.61 4.48 136 6.02 17.07 814
trunc_ltz(1-T) 1.27 4.89 339 == == ==
trunc_ltz(2-T) 1.5 5.13 349 == == ==
trunc_ltz(1-T)† 1.23 4.1 306 == == ==
trunc_ltz(2-T)† 1.25 4.2 308 == == ==

To establish a comparable baseline, we provide equivalent running times and the
number of instructions generated using the classical fixed-point truncation [CS10] and
comparison [CdH10] protocols. Given that the use of circuit optimizers results in a
substantial increase in the number of instructions for the baseline, we also refrain from
employing them in our evaluations. In our setup, we utilized our General Purpose MPC
testbed and evaluated results across Local, Ping, and WAN setups (cf. §3). We distinguish
between two types of executions: with and without vectorized inputs. Tab. 4 showcases
the performance of the trunc_ltz operation, representing the evaluation of a comparison
operation along with either one (1-T) or two (2-T) truncations.

We observe that vectorization is crucial for optimizing TCP-based communications,
as large data structures can be segmented into TCP packets, maximizing the allowed
packet size. This explains the performance degradation in the non-vectorized case when
ping time increases. Additionally, as pointed out by Aly et al. [ANSS22], the network
size somewhat constrains the effectiveness of circuit optimizers. Therefore, any practical
scenario utilizing SCALE-MAMBA has to depend on non-optimized circuits, leading to limited
performance as indicated by the times in red. FANNG addresses this issue by providing
a vectorized version of trunc_ltz, and the best timings are annotated in green. The
results demonstrate that vectorization significantly improves both latency and throughput.
For instance, our protocols can perform 1000 comparisons 13× faster in the two-party full
threshold (FT) setting over a WAN setup. In this context, we have also quantified the
number of instructions generated by the compiler in Tab. 5.
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Table 5: Number of instructions per ReLU Mode (†Vectorized).

Mode Instructions
1-T 2-T

[CdH10] + [CS10] 2,638,000 3,028,000
trunc_ltz 480,000 482,000
trunc_ltz† 76,000 76,000

Compared to SCALE-MAMBA, we have significantly reduced the total number of instruc-
tions for compilation. Besides vectorization, this reduction is attributed to a series of
optimizations implemented for generating aBits, batched truncation, and our dabits_ltz
protocol. This reduction benefits RAM usage and compilation time, especially in aver-
age/large neural networks.

There is a performance gap between the evaluation of trunc_ltz, when executed on
Shamir or FT. This difference arises from our reliance on offline garbling for FT, which is
not possible on Shamir due to the absence of garbling in the evaluation of the Boolean
circuit [AOR+19]. Lastly, transitioning from 1 to 2 batched truncations has a minimal
impact on performance across all setups, a significant improvement considering the typical
impact of truncation execution on quantized networks [KS22].

3.5.3 ML libraries

The framework includes specialized libraries to perform efficient linear transformations,
specifically in convolutional and fully connected layers. FANNG also encompasses libraries
for folding (average and max pooling), normalization and standardization, and output layers
(e.g., softmax). The main contribution of these new libraries lies in their integration of
FANNG’s novel functionalities, such as pre-processing of materials, and private comparison
protocols. Moreover, these libraries are implemented with optimal communication rounds,
eliminating the need for an optimizer during compilation.

3.6 Handling pre-processed materials
FANNG introduces a set of new instructions designed to handle the generation and loading
of pre-processed materials for use in the online phase. In the following, we discuss details
of the most relevant ones.

from Compiler . triples_lib import
store_triples_to_db ,
load_triples_from_db ,
get_next_triple

store_triples_to_db (100)
load_triples_from_db (100)
next_triple = get_next_triple (100)

Listing 3: Preprocessing 100 random Beaver triples in FANNG.

Beaver Triples To enable preprocessing of Beaver triples, we provide two new instructions:

– OTRIPLE(amount): Generates any specified amount of random Beaver triples using
the existing triples factory and stores them in the database.

– LOADTRIPLE(amount): Loads a specified amount of random Beaver triples from
database into memory.
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Figure 6: Architecture for random Beaver triples generation in FANNG framework.

To encapsulate the instructions for preprocessing above including TRIPLE, FANNG
provides a convenient library, triples_lib.py, encapsulating instructions, providing
better usability and organization. The architecture related to this modification is depicted
in Fig. 6, illustrating the process flow from the library to the relevant processes in
Processor.h. While understanding the intricate details may not be necessary for end
users, they can conveniently utilize these functionalities through the library as shown in
Listing 3.

Matrix Triples To enable the MPC servers to utilize the specialized convolutional and
matrix triples [MG23, CKR+20], generated by the dealers, during the online phase, we
need a mechanism to load them into memory once persisted. FANNG introduces two new
instructions for this purpose.

– LOADCT(type_id, amount): Loads any amount of Matrix Triple of specified
type_id into memory.

– CT_DYN(A,B,C, type_id): Extracts a Matrix Triple of specified type_id from
memory and assigns it to the vectorized registers A, B, C.

daBits In order to use the daBits generated in the pre-processing, we introduce two new
instructions:

– ODABIT(amount): Persists any specified amount of daBits using the pre-existing
daBits factory.

– LOADDABIT(amount): Loads a specified amount of daBits into memory. Note that
the choicebits used for generating the loaded daBits must be the same as those used
for the Garbled Circuits and for FANNG execution.

We also modified existing DABIT instruction to now retrieve the next available daBits
from memory. This vectorizable instruction can return multiple daBits if necessary. In cases
where none are available, FANNG will resort to the daBits factory, a principle applicable to
all instructions in FANNG that consume pre-process material.
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Bounded Randomness Protocols, such as comparisons, are based on statistical security,
and rely on masking bounded by some power of 2, say 2k. SCALE-MAMBA generates masks
programmatically, and for instance, a 40-bit mask necessitates 148 instruction lines per
invocation in the bytecode. In applications such as machine learning, a substantial number
of these masks are required, significantly affecting the amount of RAM needed for program
compilation and loading into memory. To address this, we introduce three new instructions
that not only transition the process entirely from the online phase but also reduce the
number of instructions per invocation to one, independent of the size of the bound.

– OSRAND(k, amount): Generate and persist any specified amount of random masks
bounded by 2k using our DB Support.

– LOADSRAND(k, amount): Load into memory a specified amount of random masks
bounded by 2k.

– SRAND(output, k): Extract a random mask bounded by 2k from memory and as-
sign it to the register amount. In SCALE-MAMBA language, this vectorizable instruction
can fill multiple registers in a single call.

Test Modes for Pre-processed Material: FANNG focuses on a Dealer/pre-
processing model, offering users practical implementations of both. However, for de-
velopment and simulation purposes, users may prefer to simulate these models. Following
SCALE-MAMBA practices, we offer various testing modes in the config.h file. For example,
the test mode for bounded randomness, daBits and GCs can be activated or deactivated
as shown in Listing 4.

/* Ignores shares in memory for SRAND
when set to 1. Used for testing to
avoid consuming shares in DB. */

# define return_shares_zero 1

/* Ignores shares in memory for dabits .
When set to 1, returns only 0’s.

*/
# define return_dabit_zero 1

/* Ignores share counters for LOADCT ,
* LOADSRAND , and LOADGC when set to 1.
*/

# define ignore_share_db_count 1

Listing 4: Test Mode configurations in FANNG.

3.7 General Optimizations
In addition to the mentioned features, FANNG prioritizes usability by minimizing compiler-
generated instructions, introducing novel functionality, and enhancing the online phase
inherited from SCALE-MAMBA. We explore some of the most relevant items below:

– Summation Instructions SUMS and SUMC: Machine operations relying on matrices
often involve constant summations. While local users can perform these operations,
SCALE-MAMBA’s implementation involves instructions that can be significant for a large
set of values {xi, · · · , xn}. This can lead to slower compilation times and increased
RAM consumption. To mitigate this, we introduced two novel instructions, SUMS
and SUMC, providing outputs of

∑n
i=1 xi for private and public inputs, respectively.

These instructions simplify development and reduce the entropy of the instruction
file, accelerating development time.
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– Communication Bottlenecks: We observed a limitation in SCALE-MAMBA related to
the number of elements it can send per message, specifically through the instructions
opening Fp inputs (START_OPEN and START_CLOSE). For instance, our experiments
showed that it can only support up to 100 thousand elements per invocation, con-
straining the parallelization of instructions per round. To overcome this limitation,
FANNG allows for a configurable number of SSL connections. When a user intends to
open multiple elements in a single round, FANNG can navigate around this constraint
by utilizing as many connections as configured or provided by the user.

– Graph Theory Library: We have extended the functionality of the framework
beyond machine learning and towards generic MPC, incorporating a novel Graph
Theory library. Currently, this library includes SotA methods in shortest path [AC22],
with plans for additional expansion in the future.

4 Evaluation
This section provides details regarding PPML inference using our FANNG framework.
We evaluate three different neural network (NN) architectures to accommodate varying
complexities (see §B for additional architectural details).

– LeNet [LBBH98]: 5-layer network with 60K parameters, over MNIST dataset.
– A generic CNN: 8-layer network with 1.5 million parameters, over CIFAR10 dataset.
– VGG16 [SZ15]: 16-layer network with 37 million parameters, over CIFAR10 dataset.

Regarding model utility, we compare the output of each layer with a non-private
PyTorch implementation and ensure a difference of no more than 6 bits (in the fractional
part) in every layer. For the last 2-classifier layers when using CIFAR, we accept differences
of up to 8 bits. We run the experiments with fractional part set to 20 bits.

The goal of FANNG is to decouple the preprocessing phase from the online phase.
In this approach, random material for multiple instances is generated in a single batch
(to take advantage of cost amortization) and stored in persistent memory. This setup
is more representative of real-world deployments, so we chose to benchmark only the
online phase. Timings for offline operations are provided in earlier sections. FANNG is,
to our knowledge, the first framework to fully support PPML inference in the dishonest-
majority setting with active security. For fairness, comparisons with protocols offering
weaker security guarantees are not included. Our source code is publicly available at
https://github.com/Crypto-TII/FANNG-MPC.

Tab. 6 provides our results for PPML inference using our Machine Learning testbed
evaluated across Local, Ping, and WAN setups (cf. §3). The local setup allows us to
evaluate the computational complexity of our protocols. In contrast, the WAN setup is
better suited for analyzing performance over high-latency networks, such as the Internet.
As compute demands have increased, organizations have shifted to using datacenters,
where mutually distrusting parties can securely co-locate their servers in the same facility,
connected by high-speed networks [WPM+20, ZIC+21, RCF+21, PHJ+22]. Our Ping
setup models this environment by simulating a low-latency, high-speed network between
MPC servers [WGC19, DEK21, HjLHD22]. In these tests, pre-processing was disabled
using FANNG’s test mode support (cf.§3.6). This included simulating the generation of
matrix and convolutional triples, GCs, and truncation masks by activating the relevant
testing flags. Timings for generating other pre-processing elements, such as Beaver triples,
daBits, and singles, were not included in the results. However, the timings reflect the entire
online phase, including the time required to load the preprocessed materials from storage
into memory.

https://github.com/Crypto-TII/FANNG-MPC
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Table 6: Timings for private ML inference using FANNG. Values are reported in seconds.

- LeNet CIFAR10
CNN VGG16

Full-Threshold (2p)
Local 10 109 534
Ping 20 516 1,159
WAN 410 12,175 18,074

Shamir (3p)
Local 11 459 979
Ping 48 1,490 2,561
WAN 1,996 60,384 87,632

Full-Threshold (2p) - Without Activation
Local 0.62 43 440
Ping 0.62 44 472
WAN 0.86 44 483

Although we achieve impressive runtimes for both Local and Ping setups, we note
that the runtimes increase significantly over a WAN when transitioning from LeNet to
the more complex VGG16. This is attributed to the absence of support for parallelizing
Boolean circuit evaluations in SCALE-MAMBA affecting activation layers. Despite FANNG
incorporating support for vectorization at various stages in ReLU computation, it relies on
the Boolean circuit evaluation inherited as a black box from SCALE-MAMBA for activation
functions. To be more specific, the sequential evaluation of garbled circuits in the case of
full threshold and boolean circuits for Shamir contributes to this slowdown.

We plan to address this limitation in the future. However, to offer insight into its impact
on our performance results, we have also included the evaluation results in Tab. 6 for
the two-party full threshold setting after excluding the activation layers. In this scenario,
we observe that the time complexity for Ping and WAN setups is comparable to that of
a Local setup. This is reasonable, as the communication rounds for the three networks
without activation layers are only 22 (LeNet), 44 (CNN for CIFAR10), and 577 (VGG16).

The performance gap between the full-threshold setting and Shamir is attributed to
the absence of parallelization in the activation layer. In SCALE-MAMBA, Shamir utilizes
replicated secret sharing over Z2 for Boolean circuit evaluation, a process inherited by
FANNG. In contrast, full-threshold employs [HSS17] [HSS17] for Boolean circuits in both
SCALE-MAMBA and FANNG, with the difference that FANNG can push the garbling phase
to pre-processing as described in §3.3.1. The private comparison circuit over Z2 incurs
16 communication rounds, whereas the online phase in [HSS17] requires only 2 rounds.
These communication rounds are sequential per ReLU, making full-threshold significantly
faster than Shamir for activation layers.

The similar performance of two networks trained on CIFAR10, despite a significant
difference in size, can be attributed also to the dominance of activation layers. Specifically,
the CIFAR10 CNN has 1.5 million parameters and 196,640 ReLUs, whereas the larger
VGG16 has 37 million parameters but only 285,672 ReLUs.

Analytical Evaluation: Due to the absence of support for the parallelization of
comparison circuits in FANNG, the current runtime obtained may not accurately represent
the achievable performance. Rather, they constitute an overestimation, resulting in timings
that are much higher than the potential achievable values, particularly for communication-
dominant setups such as WAN. To address this limitation, we conduct a theoretical analysis
by focusing on two key parameters: i) Batch size, representing the number of comparison
circuits that FANNG could parallelize in its anticipated capability, and ii) Overhead Factor,
indicating the increase in runtime when handling a batch of circuits in parallel compared
to a single execution. The results are plotted in Fig. 7.
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Figure 7: Analytical evaluation of VGG16 inference using FANNG over a WAN setup with batch
sizes (Batch) ∈ {10, 100, 1000} and Overhead Factor ∈ {1, 2, 3, 4, 5}. ‘Sequential’ denotes the
baseline evaluation without parallelization.

As shown in Fig. 7, parallelizing the comparisons within activation layers can sub-
stantially enhance the runtime. For example, when the batch size is set to 100 and the
overhead factor is set to 4, FANNG will require less than 20 minutes to execute a private
inference on the VGG16 network over a WAN setup. This time can be further reduced to
less than 10 minutes by using a higher batch size of 1000.

Summary The results highlight FANNG’s remarkable capability to achieve private infer-
ence for MNIST within seconds and for CIFAR10 within minutes, considering both Local
and Ping times. This performance can be considered as state-of-the-art for Full-Threshold
settings, as, to the best of the authors’ knowledge, no other implementation in this setting
has provided better metrics. The potential for achieving comparable performance in WAN
setups is evident by parallelizing activation layers, a goal set for future work. Furthermore,
the evaluation, excluding ReLUs, reveals the potential to classify MNIST in under a second
and CIFAR10 in under a minute, emphasizing the need for ongoing efforts to enhance the
efficiency of activation layers.

5 Conclusion & Future Work
In this work, we present FANNG-MPC, an MPC framework developed with a focus on private
machine learning (ML) inference. FANNG extends the capabilities of the well-established
SCALE-MAMBA framework, which supports various actively secure MPC protocols over
fields. After identifying limitations in SCALE-MAMBA concerning ML inference, we introduce
several innovations. These include dealer support for preprocessing and storage support to
streamline the preprocessing phase. Our contributions, both in theory and engineering,
are substantiated through a comprehensive evaluation that closely simulates real-world
execution rather than a simple prototype. The results demonstrate the practicality of
private ML inference within the actively secure setting in MPC with a dishonest majority.

In our future work, FANNG will evolve to provide a more capable pre-processing engine
for private ML inference. While FANNG currently features a comprehensive instruction set



N.Aaraj et al. 27

for storing and loading all pre-processing materials, this functionality has not yet been
implemented in the dealers. The current version of FANNG supports only matrix triple
generation within the dealers, leaving the generation and storage of the remaining offline
elements to be handled directly by the client and model owner.

In upcoming iterations, FANNG is set to extend its dealer support to include garbling,
along with the generation of truncation masks, Beaver triples, and authenticated singles.
Additionally, FANNG dealers will benefit from hardware acceleration through FPGA sup-
port. Moreover, as identified in our evaluations, the lack of parallelization for comparisons
in SCALE-MAMBA significantly affects overall performance, and this issue will be addressed
in the next iterations of FANNG. These enhancements will collectively fortify FANNG’s
capabilities in facilitating various aspects of privacy-preserving machine learning.
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A FHE parameters
In this section, we will provide a detailed description of the BGV scheme and all the
mathematical notions necessary to understand the noise analysis provided in §3.1.

A.1 Mathematical background
We denote by R the polynomial ring Z[x]/⟨xn + 1⟩, where n is a power of two and by
Rp = Zp[x]/⟨xn + 1⟩, where p is an integer. We indicate by t and q the plaintext and the
ciphertext modulus, where t ≡ 1 mod 2n and q a chain of primes, such that q = qL−1 and
qℓ =

∏ℓ
j=0 pj where pj ≡ 1 mod 2n and ℓ ≤ L− 1 [GHS12]. Moreover, if x ∈ R, we write

[x]p ∈ [−p/2, p/2) for the centered representative of x mod p.
We denote the RLWE error distribution by χe and the secret key distribution by χs. If

χ is a probabilistic distribution and a ∈ R is a random polynomial, we write a← χ when
sampling each coefficient independently from χ.

We also define two parameters, ZKsec and DDsec, related to the simulation-based
security of the ZKPoK protocol [BCS20]. ZKsec measures the statistical distance between
the coefficients of the ring elements (represented as polynomials) in an honest ZKPoK
transcript and one generated through simulation. Likewise, DDsec denotes the statistical
distance between the distributions of honest and simulated transcripts in the distributed
decryption protocol.
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A.1.1 Canonical embedding and norms

Let a ∈ R be a polynomial. We recall that the infinity norm of a is defined as ||a||∞ =
max{|ai| : 0 ≤ i ≤ n− 1}.

The canonical embedding of a is the vector obtained by evaluating a at all primitive
2n-th roots of unity. The canonical embedding norm of a is defined as

||a||can = max
j∈Z∗

m

|a(ζj)|,

where ζ is a fixed complex primitive 2n-th root of unity.
Let us consider a random polynomial a ∈ R where each coefficient is sampled indepen-

dently from one of the following zero-mean distributions:

– DG(σ2), the discrete Gaussian distribution with standard deviation σ.

– Bk, the centered binomial distribution of width k.

– Uq, the uniform distribution over Zq.

Then, the random variable a(ζ) is well approximated by centred Gaussian distribution
with variance nVa, where Va is the variance of each coefficient in a [GM23]. Moreover,
we can bound the canonical norm of a as ||a||can ≤ D

√
nVa with probability greater or

equal to 1− ne−D2 [BMCM23]. Thus, we set D = 8, so the probability of failure is limited
to 2−76.

To compute ||a||can, we have to study the variance Va of each coefficient of a. Specifically,

Va =


σ2 if a← DG(σ2)
k/2 if a← Bk

q2/12 if a← Uq

(4)

In the following χe is the discrete Gaussian distribution DG(σ2), and, as in [ADPS16],
we approximate DG(σ2) with a centered binomial distribution Bk with k = 21. Thus, the
variance of each element of the error vector is Ve = 21/2 = 10.5 and its standard deviation
is 3.24. Moreover, we set χs = B1, thus Vs = 0.5.

A.2 BGV scheme
The three basic algorithms of BGV are as follows:

– KeyGen(λ): Key generation algorithm samples s← B1, a← Uq and esk ← DG(σ2),
outputs the secret key sk and the public key pk, where

sk = s and pk = (b, a) = [(−a · s+ tesk, a)]qℓ
.

– Encpk(m): Encryption algorithm takes as input a plaintext m ∈ Rt and the public
key pk. It samples u← B1, e0, e1 ← DG(σ2) and outputs the c = (c, ℓ, ν), where

c = (c0, c1) = [(b · u+ te0 +m, a · u+ te1)]q,

is a ciphertext, ℓ denotes the level and ν the critical quantity of c (see below).

– Decsk(c): Decryption algorithm takes as input the secret key sk and the ciphertext
c = (c0, c1) and outputs

m = [[c0 + c1 · s]qℓ
]t .
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A.2.1 Ciphertext noise

Let c = (c, ℓ, ν) be the extended ciphertext. The critical quantity ν of c (for the associated
level ℓ) is defined as the polynomial ν = [c0 + c1 · s]qℓ

, and it determines whether c can be
correctly decrypted [CS16]. Specifically, if the error does not wrap around the modulus qℓ,
namely ||ν||can < qℓ/2, the decryption algorithm works. Otherwise, the plaintext cannot
be recovered due to excessive noise growth.

To understand the error growth and analyze the critical quantity for any homomorphic
operation in the BGV scheme, we refer the readers to [MML+23].

A.2.2 Homomorphic operations

Let c = (c, ℓ, ν) and c′ = (c′, ℓ, ν′) be two extended ciphertexts at the same level ℓ. Let
α ∈ Rt be a constant polynomial. Then,

– Add(c, c′): Addition algorithm outputs

([(c0 + c′
0, c1 + c′

1)]qℓ
, ℓ, ν + ν′).

– Mul(c, c′): Multiplication algorithm outputs

([(c0 · c′
0 , c0 · c′

1 + c1 · c′
0 , c1 · c′

1)]qℓ
, ℓ, ν · ν′).

Note that the output of the multiplication is a vector d = (d0, d1, d2) ∈ R3
qℓ

. To convert
the ciphertext d back to a ciphertext c̄ = (c̄0, c̄1) ∈ R2

qℓ
we use a relinearization procedure

called key-switching.

A.2.3 Modulus switching

The modulus switching procedure allows sacrificing one (or more) of the primes pi that
compose the ciphertext moduli q to obtain a noise reduction. As mentioned before, in our
case, we switch from a ciphertext modulus qℓ to qℓ−1. Let c = (c, ℓ, ν), then

– ModSwitch(c): Modulus switching algorithm sets δ = t[−ct−1]pℓ
and outputs(

[ 1
pℓ

(c + δ)]qℓ−1 , ℓ− 1, νms

)
,

where [MML+23] ||νms||can ≤ 1
pℓ
||ν||can + Bscale, with

Bscale = Dt

√
n
12(1 + nVs). (5)

A.2.4 Key switching

The key-switching technique is used for either reducing the degree of a ciphertext polynomial,
usually the output of a multiplication, or changing the key after a rotation. There are
different variants of the key-switching procedure. In this work, we used the Hybrid-RNS
which combines the RNS adaptations of BV [BV11] and GHS [GHS12] variant. The BV
variant decomposes d2 with respect to a base b to reduce the error growth and the GHS
variant switches to a bigger ciphertext modulus Qℓ = qℓP . Then, key switching takes
place in RQℓ

and, by modulus switching back down to qℓ, the error is reduced again. As a
trade-off, we have to make sure that our RLWE instances are secure with respect to Qℓ.

However, in the Hybrid-RNS variant, instead of decomposing with respect to each single
RNS prime, we group the primes into ω chunks. Specifically, the modulus q = p0 · · · pL−1

is split in a smaller numbers q̃j =
∏k

i=1 r
(j)
i of k elements by gathering the r(j)

i in ω chunks:

qℓ = p0 · · · pℓ = r
(1)
1 · · · r

(1)
k · . . . · r(ω)

1 · · · r(ω)
k = q̃1 · . . . · q̃ω
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Hence, we do not apply the decomposition to the base b but to the base q̃j . Thus, we
define D and P as

D(α) =

[α( qℓ

q̃1

)−1
]

q̃1

, . . . ,

[
α

(
qℓ

q̃ω

)−1
]

q̃ω


P(β) =

([
β
qℓ

q̃1

]
qℓ

, . . . ,

[
β
qℓ

q̃ω

]
qℓ

)
.

Thus, if d = (d0, d1, d2) ∈ R3
qℓ

is the output of multiplication, we have to extend d2 from
each q̃j to Qℓ. So, the key switching algorithms are defined as

– KeySwitchGen(s): Sample a← Uω
QL

, e← χω
e . Output key switching key

ks = (ks0, ks1) ≡ (−a · s+ te + P P(s2),a) mod QL

– KeySwitch(ks, d) Compute:

c′ ≡ (Pd0 + ⟨D(d2), ks0⟩, Pd1 + ⟨D(d2), ks1⟩) mod Qℓ.

Set δ = t[−c′t−1]P , modulus switch back and output ([ 1
P (c′ + δ)]qℓ

, ℓ, νks).

The division is done considering either P ≈ ω
√
q if the r(j)

i has the same size or P ≈ q̃ι

supposing that q̃ι is the biggest among the q̃j . So P =
∏k

j=1 Pj .
Note that, before scaling down with the modulus switching, the noise is ν′ = νP +√
ω(ℓ+ 1) max(q̃j)Bks, where [MML+23]

Bks = Dtn
√
Ve/12. (6)

Thus, the Hybrid-RNS key switching noise after the modulus switching is bounded by
qℓ

Qℓ
||ν′||can + Bscale, that is,

||νks||can ≤ ||ν||can +
√
ω(ℓ+ 1)max(q̃j)

P
Bks +

√
kBscale.

A.2.5 Distributed Decryption

The SPDZ offline phase utilizes a form of distributed decryption, which is also supported
in the BGV scheme. A secret key s ∈ Rq can be additively distributed among N parties
by assigning each party a value si, such that s = s1 + . . .+ sN . As explained in [BCS20],
the BGV parameter growth using distributed decryption. Indeed, in the usual BGV case,
for the bottom modulus p0 = q0, we do not apply either the key switching or the modulus
switching afterwards. Thus, to ensure correct decryption, we require that ||ν||can < q0/2.
Instead, in the case of distributed decryption, we have

q0 > 2(1 +N2DDsec) · ||ν||can. (7)

See [BCS20] for more details.

A.2.6 Dishonest Encryption

In the BGV scheme, we have that the noise after a fresh encryption is bounded by [MML+23]
||[c0+c1·s]qℓ

||can ≤ D
√
nVm+tesku+e1s+e0 . However, using the ZKPoK protocol, we are only
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able to guarantee that [BCS20] ||2
∑N

i=1 mi||∞ ≤ N · 2ZKsec+2t/2 and ||2
∑N

i=1 ej,i||∞ ≤
N · 2ZKsec+2ρj where ρsk = 1 and for ρ0 = ρ1 = 21. Thus,

||c0 − c1 · s||can ≤
N∑

i=1
||2 ·mi||can + t(||2 · esk,i||can||u||can

+ ||2 · e1,i||can · ||s||can + ||2 · e0,i||can).

Since ||a||can ≤ n||a||∞, we have

||c0 − c1 · s||can ≤ t · n ·N · 2ZKsec+1

+ D · t · n ·N · 2ZKsec+2 · ρsk

√
nVu

+ D · t · n ·N · 2ZKsec+2 · ρ1
√

nVs

+ t · n ·N · 2ZKsec+2 · ρ0.

Because Vu = Vs = 1/2, we set

Bdishonest
clean ≈ t · n ·N · 2ZKsec+2(21 + 11D

√
2n). (8)

B Network Architectures

Layer Input Size Description Output
Window size 5× 5, Stride (1, 1),Convolution 32× 32× 1 Padding (0, 0), output channels 6 28× 28× 6

ReLU Activation 28× 28× 6 ReLU(·) on each input 28× 28× 6
Max Pooling 28× 28× 6 Window size 2× 2, Stride (2, 2) 14× 14× 6

Window size 5× 5, Stride (1, 1),Convolution 14× 14× 6 Padding (0, 0), output channels 16 10× 10× 16

ReLU Activation 10× 10× 16 ReLU(·) on each input 10× 10× 16
Max Pooling 10× 10× 16 Window size 2× 2, Stride (2, 2) 5× 5× 16

Window size 5× 5, Stride (1, 1),Convolution 5× 5× 16 Padding (0, 0), output channels 120 1× 1× 120

ReLU Activation 1× 1× 120 ReLU(·) on each input 1× 1× 120
Fully Connected Layer 120 Fully connected layer 84
ReLU Activation 84 ReLU(·) on each input 84
Fully Connected Layer 84 Fully connected layer 10

Figure 8: LeNet network architecture [LBBH98] for training over MNIST dataset.
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Layer Input Size Description Output
Window size 3× 3, Stride (1, 1),Convolution 32× 32× 3 Padding (1, 1), output channels 32 32× 32× 32

Batch Normalization 32× 32× 32 BN(·) on each input 32× 32× 32
ReLU Activation 32× 32× 32 ReLU(·) on each input 32× 32× 32

Window size 3× 3, Stride (1, 1),Convolution 32× 32× 32 Padding (1, 1), output channels 64 32× 32× 64

Batch Normalization 32× 32× 64 BN(·) on each input 32× 32× 64
ReLU Activation 32× 32× 64 ReLU(·) on each input 32× 32× 64
Max Pooling 32× 32× 64 Window size 2× 2, Stride (2, 2) 16× 16× 64

Window size 3× 3, Stride (1, 1),Convolution 16× 16× 64 Padding (1, 1), output channels 128 16× 16× 128

Batch Normalization 16× 16× 128 BN(·) on each input 16× 16× 128
ReLU Activation 16× 16× 128 ReLU(·) on each input 16× 16× 128

Window size 3× 3, Stride (1, 1),Convolution 16× 16× 128 Padding (1, 1), output channels 128 16× 16× 128

Batch Normalization 16× 16× 128 BN(·) on each input 16× 16× 128
ReLU Activation 16× 16× 128 ReLU(·) on each input 16× 16× 128
Max Pooling 16× 16× 128 Window size 2× 2, Stride (2, 2) 8× 8× 128

Window size 3× 3, Stride (1, 1),Convolution 8× 8× 128 Padding (1, 1), output channels 256 8× 8× 256

Batch Normalization 8× 8× 256 BN(·) on each input 8× 8× 256
ReLU Activation 8× 8× 256 ReLU(·) on each input 8× 8× 256

Window size 3× 3, Stride (1, 1),Convolution 8× 8× 256 Padding (1, 1), output channels 256 8× 8× 256

Batch Normalization 8× 8× 256 BN(·) on each input 8× 8× 256
ReLU Activation 8× 8× 256 ReLU(·) on each input 8× 8× 256
Max Pooling 8× 8× 256 Window size 2× 2, Stride (2, 2) 4× 4× 256
Fully Connected Layer 4096 Fully connected layer 32
ReLU Activation 32 ReLU(·) on each input 32
Fully Connected Layer 32 Fully connected layer 10

Figure 9: CNN network architecture for private classification over CIFAR-10 dataset. It contains
1.5 million paramerters
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Layer Input Size Description Output
Window size 3× 3, Stride (1, 1),Convolution 32× 32× 3 Padding (1, 1), output channels 64 32× 32× 64

ReLU Activation 32× 32× 64 ReLU(·) on each input 32× 32× 64
Window size 3× 3, Stride (1, 1),Convolution 32× 32× 64 Padding (1, 1), output channels 64 32× 32× 64

ReLU Activation 32× 32× 64 ReLU(·) on each input 32× 32× 64
Max Pooling 32× 32× 64 Window size 2× 2, Stride (2, 2) 16× 16× 64

Window size 3× 3, Stride (1, 1),Convolution 16× 16× 64 Padding (1, 1), output channels 128 16× 16× 128

ReLU Activation 16× 16× 128 ReLU(·) on each input 16× 16× 128
Window size 3× 3, Stride (1, 1),Convolution 16× 16× 128 Padding (1, 1), output channels 128 16× 16× 128

ReLU Activation 16× 16× 128 ReLU(·) on each input 16× 16× 128
Max Pooling 16× 16× 128 Window size 2× 2, Stride (2, 2) 8× 8× 128

Window size 3× 3, Stride (1, 1),Convolution 8× 8× 128 Padding (1, 1), output channels 256 8× 8× 256

ReLU Activation 8× 8× 256 ReLU(·) on each input 8× 8× 256
Window size 3× 3, Stride (1, 1),Convolution 8× 8× 256 Padding (1, 1), output channels 256 8× 8× 256

ReLU Activation 8× 8× 256 ReLU(·) on each input 8× 8× 256
Window size 3× 3, Stride (1, 1),Convolution 8× 8× 256 Padding (1, 1), output channels 256 8× 8× 256

ReLU Activation 8× 8× 256 ReLU(·) on each input 8× 8× 256
Max Pooling 8× 8× 256 Window size 2× 2, Stride (2, 2) 4× 4× 256

Window size 3× 3, Stride (1, 1),Convolution 4× 4× 256 Padding (1, 1), output channels 512 4× 4× 512

ReLU Activation 4× 4× 512 ReLU(·) on each input 4× 4× 512
Window size 3× 3, Stride (1, 1),Convolution 4× 4× 512 Padding (1, 1), output channels 512 4× 4× 512

ReLU Activation 4× 4× 512 ReLU(·) on each input 4× 4× 512
Window size 3× 3, Stride (1, 1),Convolution 4× 4× 512 Padding (1, 1), output channels 512 4× 4× 512

ReLU Activation 4× 4× 512 ReLU(·) on each input 4× 4× 512
Max Pooling 4× 4× 512 Window size 2× 2, Stride (2, 2) 2× 2× 512

Window size 3× 3, Stride (1, 1),Convolution 2× 2× 512 Padding (1, 1), output channels 512 2× 2× 512

ReLU Activation 2× 2× 512 ReLU(·) on each input 2× 2× 512
Window size 3× 3, Stride (1, 1),Convolution 2× 2× 512 Padding (1, 1), output channels 512 2× 2× 512

ReLU Activation 2× 2× 512 ReLU(·) on each input 2× 2× 512
Window size 3× 3, Stride (1, 1),Convolution 2× 2× 512 Padding (1, 1), output channels 512 2× 2× 512

ReLU Activation 2× 2× 512 ReLU(·) on each input 2× 2× 512
Max Pooling 2× 2× 512 Window size 2× 2, Stride (2, 2) 1× 1× 512
Fully Connected Layer 512 Fully connected layer 4096
ReLU Activation 4096 ReLU(·) on each input 4096
Fully Connected Layer 4096 Fully connected layer 4096
ReLU Activation 4096 ReLU(·) on each input 4096
Fully Connected Layer 4096 Fully connected layer 1000
ReLU Activation 1000 ReLU(·) on each input 1000

Figure 10: VGG16 network architecture [SZ15] for training over CIFAR-10 dataset. It contains
37 million parameters.
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