
Dishonest Majority Multiparty Computation
over Matrix Rings

Hongqing Liu
 

 

, Chaoping Xing
 

 

, Chen Yuan
 

 

, Taoxu Zou
 

 

Shanghai Jiao Tong University, Shanghai, China
{liu.hong.qing,xingcp,chen_yuan,seasun}@sjtu.edu.cn

Abstract. The privacy-preserving machine learning (PPML) has gained
growing importance over the last few years. One of the biggest challenges
is to improve the efficiency of PPML so that the communication and com-
putation costs of PPML are affordable for large machine learning models
such as deep learning. As we know, linear algebra such as matrix multi-
plication occupies a significant part of the computation in deep learning
such as deep convolutional neural networks (CNN). Thus, it is desirable
to propose the MPC protocol specialized for the matrix operations. In
this work, we propose a dishonest majority MPC protocol over matrix
rings which supports matrix multiplication and addition. Our MPC pro-
tocol can be seen as a variant of SPDZ protocol, i.e., the MAC and
global key of our protocol are vectors of length m and the secret of our
protocol is an m ×m matrix. Compared to the classic SPDZ protocol,
our MPC protocol reduces the communication complexity by at least m
times to securely compute a matrix multiplication. We also show that
the communication complexity of our MPC protocol is asymptotically
as good as [16] which also presented a dishonest majority MPC protocol
specialized for matrix operations, i.e., the communication complexity of
securely computing a multiplication gate is O(m2n2 log q) in the prepro-
cessing phase and O(m2n log q) in the online phase. The share size and
the number of multiplications of our protocol are reduced by around 50%
and 40% of [16], respectively. However, we take a completely different ap-
proach. The protocol in [16] uses a variant of BFV scheme to embed a
whole matrix into a single ciphertext and then treats the matrix oper-
ation as the entry-wise operation in the ciphertext while our approach
resorts to a variant of vector linear oblivious evaluation (VOLE) called
the subfield VOLE 1 [33] which can securely compute the additive shar-
ing of vx for v ∈ Fqb ,x ∈ Fa

q with sublinear communication complexity.
Finally, we note that our MPC protocol can be easily extended to small
fields.

1 Introduction

Secure multiparty computation (MPC) allows a set of mutually distrustful par-
ties P1, · · · , Pn to jointly compute a public function f with their private inputs,
1 In [33], there is a base VOLE which is also called subfield VOLE. The subfield

VOLE in this paper is referred to the programmable VOLE Πprog
VOLE in [33] which

silently generates correlated randomness from seeds.

https://orcid.org/0009-0004-2013-8725
https://orcid.org/0000-0002-1257-1033
https://orcid.org/0000-0002-3730-8397
https://orcid.org/0009-0005-7129-3036


and reveals nothing except the final output. The adversary could corrupt at
most t of n parties to gain the private information of honest parties by either
inspecting the transcripts between parties (semi-honest adversary) or arbitrarily
deviating from the protocol (malicious adversary). According to the number of
corrupted parties t, MPC protocols can be classified into two categories: honest
majority (t ≤ n

2 ) and dishonest majority (t < n). The honest majority MPC
protocol can achieve information-theoretic security while the dishonest majority
MPC protocol can only achieve computational security.

In MPC protocols, the public function f is generally modeled as an arith-
metic circuit over a finite field or a ring, which consists of addition and multi-
plication gates. The MPC protocols over a ring are usually more complicated
than those over a field. Before the advent of privacy preserving machine learn-
ing (PPML), most of the MPC protocols were restricted to the computation
over finite fields. The use of integer rings is well-motivated in practice due to
their direct compatibility with hardware. In view of this practical application,
a line of works [18,31,3,2,24] proposed the MPC protocol over Z2k . Recently,
Escudero and Soria-Vazquez [23] considered the non-commutative ring in the
honest majority setting. They constructed an unconditionally secure MPC over
non-commutative rings with black-box access to a ring containing an exceptional
set2, whose size is at least the number of parties. They also proposed an honest
majority MPC protocol over the matrix ring Mm×m(Z2k).

Inspired by [23], a natural question is can we design an MPC protocol over a
non-commutative ring with only black-box access to the ring in the presence of
t ≥ n

2 corrupted parties? The answer is probably negative as the dishonest ma-
jority MPC protocols rely on some cryptographic assumptions. Moreover, while
honest majority MPC protocols use the error-correction algorithm of Shamir se-
cret sharing to detect and even correct the corruptions, the dishonest majority
MPC protocols have to rely on the additive secret sharing scheme to protect
the privacy of the data which has no room to detect the corruptions. Therefore,
message authenticate codes (MACs) are commonly attached to the additive se-
cret sharing scheme to detect the corruptions, which are highly related to the
concrete structure of the non-commutative ring.

In view of the above reasons, we aim to construct a dishonest majority MPC
over a specific family of the non-commutative ring, the matrix ring. Matrix
plays an essential role in PPML, which allows distrustful parties to train and
evaluate different machine learning models [30,28,26,29]. It was observed in [16]
that securely multiplying two m × m matrices in SPDZ protocol requires at
least O(m2.8) authenticated Beaver triples, which is prohibitively expensive if a
machine learning task needs a large number and sizes of matrix multiplication.
Thus, an MPC protocol specialized for matrix operations may greatly improve
the efficiency of PPML. Moreover, some other non-commutative rings could be
represented in the form of matrix rings. For instance, the quaternion ring is
another non-commutative ring with practical applications, which plays a central

2 A subset of a non-commutative ring where the difference between any two elements
in this subset is invertible.

2



role in computer graphics and aerospace due to its competence in describing the
rotation in three-dimensional space.

In this work, we present a variant of SPDZ protocol whose secret is defined
over matrix rings. Different from the classic SPDZ protocol, the MAC and global
key of our protocol are vectors of length m and the secret of our protocol is
an m × m matrix. Thus, the size of our MAC is sublinear in the size of our
secret assuming the size of our matrix is large enough. Utilizing the matrix
structure, our MPC protocol uses vector oblivious linear evaluation (VOLE) and
vector oblivious product evaluation (VOPE) as functionalities to authenticate
the sharing and create the sextuple for securely computing multiplication gates
in the online phase. The goal of VOPE is to compute the additive sharing of the
product of two matrices which can be adapted from the subfield VOLE in [33]
with slight modification. In the preprocessing phase, our MPC protocol needs
O(n2m2 log q) bits of communication to prepare a sextuple for multiplication
gate which has the same asymptotic performance as the protocol in [16]. In the
online phase, our MPC protocol requires O(m2n log q) bits of communication
complexity to securely compute a multiplication gate which is also as efficient
as the MPC protocol in [16]. However, the size of the secret sharing is half the
size of the secret sharing scheme in [16] and the number of multiplications in
our protocol is reduced to 3m3 + 3m2 while the protocol in [16] requires 5m3 +
m2 multiplication. We also compare the communication cost and computation
cost of preprocessing in concrete parameter settings for m = 128, 256, 512, 1024.
When m grows, the communication complexity of our protocol grows more slowly
than [16]. For m = 512, 1024, the communication complexity of our protocol
turns out to be smaller than [16]. Moreover, our experimental results imply that
the running time of our VOLE-based preprocessing phase is 2.0x-24.2x faster
than that of (fully) homomorphic encryption based preprocessing phase [16].

1.1 Our Contribution

MAC for matrix rings. To authenticate a matrix M ∈Mm×m(Fq), we choose
a uniformly random vector v ∈Mm×1(Fq) as the global key and use the matrix-
vector product Mv as the MAC of a matrix M . The intuition of this matrix-
vector product is to reduce the size of MAC by applying the batch check, i.e.,
each component of the MAC is the inner product of a row of M and the global
key v. If the adversary aims to forge a fake authenticated secret sharing, he
needs to choose a nonzero matrix E ∈ Mm×m(Fq) and a vector δ ∈ Mm×1(Fq)
such that Ev = δ. Since E is a nonzero matrix, we assume that the i-th row
of E is a nonzero vector eTi . Then, we have eTi v = δi where δi is the i-th
component of δ. Since the global key v is distributed uniformly at random, the
adversary succeeds with probability at most 1/q. In comparison, the previous
MPC protocol in [16] chooses a random element α ∈ Fq as the global key and
uses the scalar-matrix product αM as the corresponding MAC. Therefore, our
MAC is m times smaller than theirs. The sharing of the matrix M in our protocol

3



is defined as ⟨M⟩ = ([M ], [[v]], [[Mv]])3 where [M ] is the additive sharings of M
and [[v]], [[Mv]] are the additive sharing of v and Mv respectively.

The use of VOLE. Our protocol uses the vector oblivious linear evaluation
(VOLE for short) to compute the matrix-vector product. We exploit the matrix
structure to optimize the generation of correlated randomness. In the computa-
tion of MAC, two parties need to obliviously compute the product of a matrix M
with a column vector v, i.e., u+w = Mv. Observe that Mv can be decomposed
into the sum of m vectors vimi where vi is the i-th component of v and mi

is the i-th column of M . Two parties can invoke VOLE m times to obtain the
shares ui,wi with ui + vi = vimi. In contrast, we have to invoke m2 OLEs to
obliviously compute Mv, which is usually more expensive than VOLE.

The use of subfield VOLE. The subfield VOLE was proposed in [12] to
securely compute the additive sharings of vx for x ∈ Fa

q , v ∈ Fqb where v and
x are the random element and random vector input by PA and PB respectively.
To minimize the communication cost, the random vector x is expanded by a
random seed while the random element v is chosen by PB . Treating v as a
vector v ∈ Fb

q, then vx becomes a product of two vectors xvT = (xivj)a×b.
In this sense, the subfield VOLE can securely compute the additive sharing of
xvT for x ∈ Fa

q ,v ∈ Fb
q. We slightly modify the subfield VOLE in [33] to allow

both parties to utilize short seeds to generate their random inputs. We call this
modified subfield VOLE, random vector oblivious product evaluation (VOPE).
Assuming b = O(a), our VOPE has O(a log q) communication complexity, which
is sublinear in output size ab log q.

Computing the product of matrices. We propose the VOPE to compute the
additive sharings of the product of two random matrices whose communication
complexity is the dominant part of the preprocessing phase. Observe that one
can decompose the product AB of two matrices A,B ∈ Mm×m(Fq) into the
sum of vector product ai ⊗ bi := aib

T
i , i ∈ [m] where ai is the i-th column of A

and bTi is the i-th row of B, i.e., AB =
∑m

i=1 ai ⊗ bi. As mentioned above, our
VOPE can produce the additive sharings of ai ⊗ bi. Thus, it suffices to invoke
m times of VOPE to obtain the additive sharing of AB.

Multiplication sextuple. The biggest challenge of MPC protocol over matrix
rings is that the product of two matrices is not commutative. This prevents us
from applying the Beaver triple straightforwardly. This problem also appears in
[24]. Their solution is to use two types of secret sharings with left linearity and
right linearity respectively and transform the type of secret sharing by consuming
a double sharing, which is a pair of sharings associated with the same secret
and different types. In our case, since our MAC has the form Xv, our secret
3 We use [·] and , [[·]] to represent the sharing of a matrix and vector, respectively.

4



sharing only allows left multiplication, i.e., all parties can only locally compute
A⟨M⟩ = ⟨AM⟩. We propose a multiplication sextuple to circumvent this obstacle.
Let ⟨X⟩ and ⟨Y ⟩ be the sharings of matrix X and Y respectively. We prepare a
sextuple (⟨A⟩, ⟨AT ⟩, ⟨B⟩, ⟨C⟩, ⟨R⟩, ⟨RT ⟩) where A,B,R are random matrices, AT

and RT are the transpose of A and R, and C = AB. All parties partially open
⟨X⟩−⟨A⟩ and ⟨Y ⟩−⟨B⟩ to D and E. The technique of Beaver triple requires all
parties to locally compute D⟨B⟩+ ⟨A⟩E+ ⟨C⟩+DE. However, as we mentioned
above, it is impossible to locally compute the right multiplication ⟨A⟩E. To
overcome this obstacle, all parties are required to locally compute ET ⟨AT ⟩−⟨RT ⟩
and partially open it to F by using the sharing ⟨AT ⟩ and ⟨RT ⟩. Then, all parties
locally compute FT +⟨R⟩ = ⟨AE⟩ by observing FT = (ETAT −RT )T = AE−R.
This completes the multiplication gate.

Function-dependent preprocessing. The evaluation of a single multiplica-
tion gate in our MPC protocol needs two rounds and three broadcasts. Inspired
by [9,22], we introduce function-dependent preprocessing to improve the round
and communication complexity. After the application of function-dependent pre-
processing, the evaluation of a multiplication gate only needs one round and two
broadcasts. Since this improvement is not the focus of our paper, we take a brief
overview of it in Section C in the Supplementary Material.

Migration to small field Fq. The matrix in our MPC protocol can be de-
fined over small fields as well. The idea is to replace a global key of a vector in
Mm×1(Fq) with a global key of a matrix in Mm×ℓ(Fq). The intuition is that
the adversary succeeds with probability 1/q if our MPC protocol is defined over
Mm×m(Fq). To reduce the error probability, we increase the size of the global
key and MAC. Observe that XV = ∆ where V ∈ Mm×ℓ(Fq) is the MAC and
X ∈ Mm×m(Fq) is the secret. Therefore, each column of the global key is used
to verify the correctness of the secret and we verify our secret X with ℓ equa-
tions instead of 1. The error probability will be reduced to 1/qℓ while the size
of MAC is still sublinear in the size of our secret assuming m ≫ κ

log2 q . In this
sense, our MPC protocol can be defined overMm×m(Fq) with any prime power
q. There are also some modifications for our MPC protocol to be applicable
to Mm×m(Fq). The details can be found in Section D in the Supplementary
Material.

1.2 Overview of Our Technique

We assume that our MPC protocol over Mm×m(Fq) with large q. As we have
mentioned above, the authenticated sharing of our protocol is ⟨M⟩ = ([M ], [[v]], [[Mv]]).
We use a random vector v as our global key. The MAC of our matrix is the prod-
uct of a matrix with the global key v. The idea of our MAC comes from the
batch check. A random vector can be used to verify the correctness of a vector
of the same length by taking the inner product of these two vectors. Thus, to
verify the correctness of an m ×m matrix, we only need a MAC of size m. On

5



the contrary, the classic SPDZ protocol requires MAC of size m2 to verify an
m×m matrix. Another merit of this sharing can be found in the use of VOLE
and VOPE which we have already discussed in Section 1.1.

In the preprocessing phase, our MPC protocol prepares sextuples of the form
(⟨A⟩, ⟨AT ⟩, ⟨B⟩, ⟨C⟩, ⟨R⟩, ⟨RT ⟩) with random matrices A,B,R ∈Mm×m(Fq) and
C = AB. We break this protocol into two procedures, πMult and πDouble. We
also present a protocol ΠAuth to generate the authenticated sharing. Protocol
ΠAuth uses functionality VOLE to create the MAC and takes the random linear
combination to verify the correctness of sharings.

Procedure πMult produces a triple (⟨A⟩, ⟨B⟩, ⟨C⟩). We want to compute [C]
from [A] =

(
A(1), . . . , A(n)

)
and [B] =

(
B(1), . . . , B(n)

)
. Observe that C =

AB =
(∑n

i=1 A
(i)
) (∑n

i=1 B
(i)
)
. The additive sharing of cross terms A(i)B(j) and

A(j)B(i) can be computed by Pi and Pj . The product of two m × m matrices
can be decomposed into the sum of m vector products as we mentioned above,
i.e., AB =

∑m
i=1 ai ⊗ bi where ai is the i-th column of A and bTi is the i-th row

of B. This implies that we only need to invoke m times VOPE to complete this
work. We create seeds to generate the random matrix A(i), B(i) and reuse these
seeds as inputs for the instances of VOPE. The use of VOPE can be found in the
previous section. We fix B and apply the above process twice to ([A], [B]) and
([A′], [B]) to prepare two pairs ([A], [C]), ([A′], [C ′]) with C = AB,C ′ = A′B.
Then, we invoke protocol ΠAuth to compute the MAC of these sharings. By
taking a random linear combination of the form χ⟨A⟩ − ⟨A′⟩, we can verify the
product relation and output the authenticated triple (⟨A⟩, ⟨B⟩, ⟨C⟩).

Procedure πDouble takes inputs ⟨Ai⟩, i ∈ [2ℓ] and outputs pairs of authen-
ticated sharing ⟨Ai⟩, ⟨AT

i ⟩, i ∈ [2ℓ] for ℓ multiplication gates. The idea is to
first locally compute [AT

i ] from [Ai] by applying the transpose to each share in
[Ai]. Then, we apply protocol ΠAuth to create the authenticated sharing ⟨AT

i ⟩.
To check the transpose relation, we generate a pair of authenticated sharing
of random matrix A0, A

T
0 and sacrifice this pair by taking the random linear

combination

⟨C⟩ =
2ℓ∑
i=1

ri⟨Ai⟩+ ⟨A0⟩ ⟨D⟩ =
2ℓ∑
i=1

ri⟨AT
i ⟩+ ⟨AT

0 ⟩

It must hold that C = DT . Then, this procedure will output pairs of authenti-
cated sharing ⟨Ai⟩, ⟨AT

i ⟩, i ∈ [2ℓ].

In the online phase, our MPC protocol can securely compute the addition
and multiplication gate. The addition gate can be locally computed without
interaction. To compute the multiplication gate, we need a sextuple prepared in
the preprocessing phase. This sextuple can help us to circumvent the obstacle
that the product of two matrices is non-commutative. One can find the details
in Section 1.1.

6



1.3 Related Work

There are a few MPC protocols optimized for matrix operations. Escudero and
Soria-Vazquez [23] presented an honest majority MPC protocol over matrix rings.
One of the biggest challenges in their protocol is to construct Shamir secret shar-
ing scheme over non-commutative rings. They constructed a subset of matrices
as the evaluation points such that these matrices are commutative. Based on
this subset of matrices, they presented the encoding and error correction algo-
rithm for this Shamir secret sharing scheme. Since our MPC protocol is secure in
the presence of dishonest majority, our building block is an additive secret shar-
ing scheme. The sharing and reconstruction algorithm can be straightforwardly
generalized from the commutative case. However, we need a MAC to verify the
correctness of our sharing whose idea can be dated back to SPDZ protocol [20].
In our protocol, the global key and the MAC are vectors instead of elements.
Thus, the MAC of our protocol is negligible compared to the size of the secret.

The most relevant work is due to [16] which presented a variant of SPDZ
protocol over matrix rings Mm×m(Zq), where Zq is a large prime field. They
mimic the classic SPDZ protocol to use a single element as the global key to
create the MAC of the matrix. Thus, the size of MAC in their protocol is as big
as the secret. In the preprocessing phase, they apply the homomorphic matrix
multiplication [26] which is based on a variant of BFV scheme [14,25] to create
the matrix triple. Their SPDZ protocol over matrix rings turns out to be very
efficient compared to the classic SPDZ protocol handling the matrix operations
as the entry-wise operations.

In the preprocessing phase, we apply a variant of PCG-based subfield VOLE
to securely multiply two random matrices. In [13], Boyle et al. proposed a PCG
construction for matrix triple, which is adapted from the PCG for OLE un-
der “splittable” ring-LPN assumption. However, their protocol generates a large
batch of matrix triples of small-to-medium size (at most 16 × 16), while our
protocol can deal with the matrices of large size (at least 128× 128).4

1.4 Organization of the Paper

The paper is organized as follows. In Section 2, we present basic notations and
definitions. In Section 3, we present the online phase of our MPC protocol. In
Section 4, we present Protocol ΠAuth which outputs authenticated sharings. In
Section 5, we present the preprocessing phase of our MPC protocol. In Section
6, we analyze the communication complexity of our MPC protocol and compare
it with other dishonest majority MPC protocols over matrix rings. The missing
functionalities and protocols can be found in Section A in the Supplementary
Material.

4 In [13], they remarked “For larger matrix, more interactive approach such as the
recent work based on homomorphic encryption [16] appears to be more practical”.

7



2 Preliminaries

2.1 Basic Notation

We use the capital letter M to represent a matrix and bold small letter v to
represent a column vector. The transpose of a matrix M is MT and the transpose
of a vector v is vT . For a vector v, denote by vi the i-th component of v, i.e.,
vT = (v1, . . . , vn). Let Ma×b(Fq) be the collection of a × b matrices over Fq.
For two column vectors u ∈ Fa

q ,v ∈ Fb
q, we use u ⊗ v = uvT ∈ Ma×b(Fq) to

represent their (outer) product, i.e., uvT = (uivj)a×b where uT = (u1, . . . , ua)
and vT = (v1, . . . , vb).

Throughout the paper, the security parameter of MPC protocol is κ. Let
Fq be the finite field of size q and Fn

q be the vector space of n dimension. We
denote by x

$←− X a variable x uniformly sampling from a finite set X . Let
[N ] = {1, · · · , N}.

2.2 Multiparty Computation

The set of parties in our MPC protocol is {P1, · · · , Pn}. We consider the setting of
dishonest majority, where at most n− 1 parties are corrupted by the adversary.
The adversary is static and malicious, which means that the set of corrupted
parties is determined before the execution of protocol and corrupted parties can
arbitrarily deviate from the protocol.

The security of our protocol is proved under Canetti’s Universal Composabil-
ity (UC) framework [15]. A protocol Π securely instantiates a functionality F
if there exists a simulator that interacts with the adversary (or more formally,
environment) such that he can distinguish the ideal world and real world with
only negligible probability. The composability of UC framework enables us to
construct our protocol in hybrid model, which means that protocol Π instan-
tiates functionality F with access to another functionality F ′. In this case, Π
instantiates F in the F ′-hybrid model. Different from a protocol Π which is
associated with an ideal functionality and has simulation-based proof, we use π
to represent a procedure, which acts as a subroutine of protocols, and has no
related functionality or simulation-based proof.

We assume the private and authenticated channels between any pair of par-
ties and a broadcast channel. Our MPC protocol achieves security with (unani-
mous) abort since the majority of parties are dishonest. In the ideal world, the
functionality waits for a signal from the adversary before delivery of outputs.
If the signal is Abort, all honest parties abort. Otherwise, the signal is OK, the
functionality sends correct outputs to all honest parties. In the real world, when
we say a party aborts, this party sends an Abort signal through the broadcast
channel and all honest parties abort.

8



3 Online Phase

We begin by introducing the authenticated secret sharing of a matrix, which is
the building block of our MPC protocol. Protocol Πonline securely implements
MPC functionality FMPC in the (FPrep, FCoin)-hybrid model, where FPrep gener-
ates correlated randomness in offline phase and FCoin generates public random
field elements. The implementation of FPrep can be found in Section 5.

3.1 Authenticated Secret Sharing

In the dishonest majority setting, additive secret sharing alone is not resilient
to the corruption caused by the malicious adversary. Similar to [19], we use a
uniformly random global key to generate the MAC of the share. Our approach
deviates from [19] by making the global key and MACs as a vector of length m
over Fq.

Notations. We use [·] and [[·]] to denote an additive secret sharing overMm×m(Fq)
and Mm×1(Fq)

5, respectively. An authenticated secret sharing ⟨X⟩ is a triple
([X], [[v]], [[Xv]]), where X ∈ Mm×m(Fq) is the secret, v

$←− Mm×1(Fq) is the
global key and Xv ∈Mm×1(Fq) is the MAC of the secret. More precisely, [X] =(
X(1), · · · , X(n)

)
, [[v]] =

(
v(1), · · · ,v(n)

)
and ([[Xv]]) =

(
m(1)(X), · · · ,m(n)(X)

)
with

X =

n∑
i=1

X(i),v =

n∑
i=1

v(i), Xv =

n∑
i=1

m(i)(X).

where party Pi holds random share X(i) of secret X, key share v(i) and MAC
share m(i)(X).

Local operations. We use “linear” to refer to “Mm×m(Fq)-linear”. Scheme [·]
is both left linear and right linear due to distribute law of matrix rings. However,
scheme ⟨·⟩ is only left linear. Given an authenticated secret sharing ⟨X⟩ and
a public matrix A ∈ Mm×m(Fq), all parties could left multiply A to [[Xv]] to
obtain [[AXv]], but it is not possible to obtain [[XAv]] with only local operations.
To securely left multiply a matrix A with ⟨X⟩, all parties locally compute

A⟨X⟩ = ⟨AX⟩ = ([AX], [[v]], [[AXv]])

with [AX] = (AX(1), . . . , AX(n)) and [[AXv]] = (Am(1)(X), . . . , Am(n)(X)). To
securely compute the sum of ⟨X⟩ and ⟨Y ⟩, all parties locally compute

⟨X⟩+ ⟨Y ⟩ = ⟨X + Y ⟩ = ([X + Y ], [[v]], [[(X + Y )v]])

5 Here we use notion Mm×1(Fq) instead of Fm
q in order to show that the global key

and MACs can be generalized to matrix.

9



with [X + Y ] = (X(1) + Y (1), . . . , X(n) + Y (n)) and [[(X + Y )v]] =
(
m(1)(X) +

m(i)(Y ), . . . ,m(n)(X)+m(n)(Y )
)
. To securely add a public matrix A with ⟨X⟩,

all parties locally compute

[X +A] = (X(1) +A,X(2), . . . , X(n)),m(i)(X +A) = m(i)(X) +Av(i)

Then, ⟨X +A⟩ = ([X +A], [[v]], [[(X +A)v]]) is the authenticated secret sharing
of X + A. The affine operation can be found in procedure πAff in Section A in
the Supplementary Material.

Opening and checking. To partially open an authenticate secret sharing
⟨Y ⟩ = ([Y ], [[v]], [[Y v]]), all parties send their shares of [Y ] to P1, who can recon-
struct the secret and send the result Y ′ to other parties. To verify the opened
value Y ′, all parties locally compute [[σ]] = [[Y v]] − Y ′[[v]], and broadcast the
shares of this value via a simultaneous message channel. The parties abort if
the reconstructed value σ is not 0. The probability that a fake authenticated
secret sharing passes the verification is 1/q. These two procedures can be found
in Section A in the Supplementary Material.

Multiplication. In dishonest majority MPC protocols, correlated randomness
generated in offline phase could assist the computation of multiplications. Beaver
triple [8] is a common technique in MPC protocols, which transforms execution of
multiplications to broadcasts and linear operations. However, we can not adapt
Beaver triple directly due to the non-commutative property of matrix ring.

To multiply two authenticated sharings ⟨X⟩ and ⟨Y ⟩, all parties prepare a
Beaver triple (⟨A⟩, ⟨B⟩, ⟨C⟩) with C = AB during the preprocessing phase. All
parties partially open D ← ⟨X⟩ − ⟨A⟩ and E ← ⟨Y ⟩ − ⟨B⟩. The sharing of
Z = XY could be represented as:

[Z] = [C] +D[B] + [A]E +DE

[[Zv]] = [[Cv]] +D[[Bv]] + [[AEv]] +DE[[v]]

We observe that all items except [[AEv]] could be locally computed with linear
operations. To compute MAC share [[AEv]], we follow the paradigm of “mask-
open-unmask”. We choose a random sharing [R] as the mask of [A]E. However,
when opening the masked value [A]E− [R], we cannot guarantee the correctness
due to the lack of MAC. Therefore, we prepare two additional authenticated
sharings (⟨AT ⟩, ⟨RT ⟩) and partially open the transpose ⟨F ⟩ = ET ⟨AT ⟩ − ⟨RT ⟩
instead. Therefore, to execute a multiplication, all parties need to prepare a mul-
tiplication sextuple (⟨A⟩, ⟨AT ⟩, ⟨B⟩, ⟨C⟩, ⟨R⟩, ⟨RT ⟩) where A,B,R

$←−Mm×m(Fq)
and C = AB.

3.2 Required Functionalities

The functionality FMPC enables the parties to securely share their inputs, perform
linear operations and multiplications, and output the result. The functionality
FPrep is used to prepare correlated randomness for FMPC.

10



Authenticating functionality FAuth. This functionality allows parties to gen-
erate the shares of global key v and transform an additive secret sharing [X]
to an authenticated secret sharing ⟨X⟩. Although we do not call FAuth directly,
FAuth is contained in FPrep.

Functionality 1: FAuth

Let C be the set of corrupted parties.

– Initialize: On receiving (Init) from all parties, sample random vector
v(i) ← Mm×1(Fq) for i /∈ C and receive v(i) from adversary for i ∈ C.
Store the global key v =

∑n
i=1 v

(i) and send v(i) to Pi.
– Authenticate: On receiving (Auth, [X]) from each party Pi, where [X] is

an additive sharing over Mm×m(Fq):
1. Compute the MAC m(X) = Xv.
2. Wait for

{
m(i)(X)

}
i∈C

from adversary and sample
{
m(i)(X)

}
i/∈C

sub-

ject to
∑n

i=1 m
(i)(X) = m(X).

3. S sends m(j)(X) to Pj for all j /∈ C.

Preprocessing functionality FPrep. This functionality produces random shar-
ings for input gates and multiplication sextuples for multiplication gates.

Functionality 2: FPrep

The functionality has all the same commands in FAuth, with following additional
commands:

– Input: On input (InputPrep, Pi) from all parties, sample R
$←−Mm×m(Fq)

and generate its authenticated sharing ⟨R⟩ such that for j ∈ C,(
R(j),m(j)(R)

)
is chosen by the adversary. Output R to Pi and(

R(j),m(j)(R)
)

to Pj for all j /∈ C ∪ {i}.

– Sextuple: On input (Tuple) from all parties, sample A,B,R
$←−

Mm×m(Fq) and compute C = AB. Generate authenticated sharings
(⟨A⟩, ⟨AT ⟩, ⟨B⟩, ⟨C⟩, ⟨R⟩, ⟨RT ⟩) such that for j ∈ C, j-th shares of these
sharings are chosen by the adversary.

Multiparty computation functionality FMPC. This functionality provides
all the necessary operations for our MPC protocol.

Functionality 3: FMPC

The functionality maintains a dictionary Val, which keeps a track of authenti-
cated elements inMm×m(Fq). For each authenticated secret sharing, the shares
of corrupted parties can be chosen by the adversary.

11



– Initialize: On input (Init) from all parties, set the global key [[v]].
– Input: On input (Input, id, X, Pi) from Pi and (Input, id, Pi) from all other

parties, store Val[id] = X.
– Addition: On input (Add, id, id1, id2) from all parties, compute Z =

Val[id1] + Val[id2] and store Val[id] = Z.
– Public matrix multiplication: On input (PubMul, id, A), compute Z =

AVal[id] and store Val[id] = Z.
– Multiplication: On input (Mult, id, id1, id2) from all parties, compute

Z = Val[id1]Val[id2] and store Val[id] = Z.
– Check openings: On input (Check, (id1, · · · , idℓ), (X ′

1, · · · , X ′
ℓ)) from all

parties, wait for a signal for the adversary. If the adversary sends OK and
Val[idj ] = X ′

j for j ∈ [ℓ], return OK to all honest parties. Otherwise, return
Abort to all honest parties.

– Output: On input (Output, id) from all parties, the functionality retrieves
Y = Val[id] and sends Y to the adversary if Val[id] ̸= ∅. If the adversary
sends Abort then the functionality aborts, otherwise it delivers Y to all
parties.

Coin tossing functionality FCoin. This functionality generates a uniformly
random element in Fq for all parties.

Functionality 4: FCoin

Upon receiving (Coin) from all parties, sample r
$←− Fq and send r to the

adversary.

– If the adversary returns OK, send r to all honest parties.
– If the adversary returns Abort, send Abort to all honest parties.

3.3 Instantiation of FMPC

The protocol Πonline instantiates FMPC in the (FPrep,FCoin)-hybrid model, with
statistical security parameter κ. The random shares and multiplication sextuples
produced in FPrep will be used in Input and Mult commands, respectively.

Protocol 1: ΠOnline

The parties maintain a dictionary Val for authenticated values.
– Initialize: The parties call FPrep as follows:

1. On input (Init) to get global key [[v]].
2. On input (InputPrep, Pi) to prepare a random authenticated sharing
⟨R⟩ for each input gate, where the input provider Pi learns R.

3. On input (Tuple) to prepare a multiplication sextuple
(⟨A⟩, ⟨AT ⟩, ⟨B⟩, ⟨C⟩, ⟨R⟩, ⟨RT ⟩) for each multiplication gate

– Input: If Pi receives (Input, id, X, Pi) and other parties receive (Input,
id, Pi), execute following operations:

12



1. Pi broadcasts A = X −R, where ⟨R⟩ is an unused input mask
2. All parties locally compute ⟨X⟩ = ⟨R⟩+A and store Val[id] = ⟨X⟩.

– Addition: If all parties receive (Add, id, id1, id2), retrieve ⟨X⟩ = Val[id1]
and ⟨Y ⟩ = Val[id2], locally compute ⟨Z⟩ = ⟨X⟩+⟨Y ⟩ and set Val[id] = ⟨Z⟩.

– Public matrix multiplication: If all parties receive (PubMul, id, A),
retrieve ⟨X⟩ = Val[id], locally compute ⟨Z⟩ = A⟨X⟩ and set Val[id] = ⟨Z⟩.

– Multiplication: If all parties receive (Mult, id, id1, id2), retrieve ⟨X⟩ =
Val[id1] and ⟨Y ⟩ = Val[id2] and execute following operations:

1. Choose an unused multiplication sextuple (⟨A⟩, ⟨AT ⟩, ⟨B⟩, ⟨C⟩,
⟨R⟩, ⟨RT ⟩).

2. All parties locally compute ⟨D⟩ ← ⟨X⟩ − ⟨A⟩ and ⟨E⟩ ← ⟨Y ⟩ − ⟨B⟩.
3. All parties partially open D ← πOpen(⟨D⟩) and E ← πOpen(⟨E⟩).
4. All parties locally compute ⟨F ⟩ ← ET ⟨AT ⟩ − ⟨RT ⟩ and partially open

F ← πOpen(⟨F ⟩)
5. All parties locally compute ⟨Z⟩ = ⟨C⟩+D⟨B⟩+ ⟨R⟩+DE + FT and

set Val[id] = ⟨Z⟩.
– Check openings: If all parties receive (Check, (id1, · · · , idℓ),

(X ′
1, · · · , X ′

ℓ)), retrieve ⟨Xj⟩ = Val[idj ] for j ∈ [ℓ] and execute following
operations:
1. Call FCoin ℓ times to sample r1, · · · , rℓ

$←− Fq.
2. All parties locally compute ⟨Y ⟩ ←

∑ℓ
j=1 rj⟨Xj⟩.

3. All parties locally compute Y ′ =
∑ℓ

j=1 rjX
′
j .

4. All parties invoke πCheck(Y
′, ⟨Y ⟩).

– Output: If all parties receive (Output, id) and retrieve ⟨Y ⟩ = Val[id]:
1. All parties invoke Check command to check all the opened values in

the online phase so far.
2. If this does not abort, the parties partially open ⟨Y ⟩ to obtain Y ′.
3. All parties invoke πCheck(Y

′, ⟨Y ⟩). If this procedure passes, output Y ′.

Theorem 1. Protocol ΠOnline securely implements FMPC in the (FPrep, FCoin)-
hybrid model.

Proof. A full-fledged simulation-based proof is presented in the full version [?].
Here we restrict ourselves to the core idea of the proof. For the case of Init
command, it is easy to see that the shares of the global key are prepared for all
parties on both ΠOnline and FMPC. In the Input command, the value stored by
FMPC corresponds to the value stored by ΠOnline, which can be seen authenticated
through the mask of a random share.

The case of Add and PubMul is easy since these steps only consist of local com-
putations which can be simulated trivially. To analyze Mult command, we should
take three values into consideration. The correctness of the multiplication step in
FMPC is easy to be verified. The parties obtain a tuple (⟨A⟩, ⟨AT ⟩, ⟨B⟩, ⟨C⟩, ⟨R⟩, ⟨RT ⟩)
before computing the product Z of two stored values X,Y ∈ Mm×m(Fq). The
parties first partially opens D ← X − A and E ← Y − B, and then compute
locally [Z] = [C] +D[B] + [A]E +DE, which is equivalent to [Z] = [XY ]. The
third value FT ← ETAT −RT is opened to compute the MAC of Z. The parties

13



can locally compute [[Zv]] = [[Cv]] + D[[Bv]] + F [[v]] + [[Rv]] + DE[[v]]. We can
verify that the formula is equivalent to [[Zv]] = [[XY v]]. Note that each time we
partially open a value, we compute its MAC. This MAC will be used in the Check
command to check the correctness of this opened value. The privacy argument
is clear as we always mask our secret with a random matrix when we want to
do partially opening.

Finally, in the Check and Output command, we can prove that a corrupted au-
thenticated secret sharing will pass the verification with a negligible probability
due to the following game which first appears in [20].

1. The challenger generates the secret key v
$←−Mm×1(Fq) and MACs γi = Xiv

for i ∈ [ℓ] and sends X1, . . . , Xℓ to the adversary.
2. The adversary sends back X ′

1, . . . , X
′
ℓ.

3. The challenger generates the random values r1, . . . , rℓ ∈ Fq.
4. The adversary provides an error δ = (δ1, . . . , δm)T .
5. The adversary checks that {

∑ℓ
i=1 ri(Xi −X ′

i)}v = δ

The adversary wins the game if the check passes and exists Xi − X ′
i ̸= 0. The

second step of the game reveals that corrupted parties have the option to lie
about the secret shares that they opened during the execution of the protocol.
δ models the fact that the adversary is allowed to introduce errors on the MAC.
Suppose

∑ℓ
i=1 ri(Xi − X ′

i) is not an all-zero matrix and let the nonzero row
be (xa,1, . . . , xa,m). We have δa =

∑m
j=1 xa,jvj . Since v = (v1, . . . , vm)T is kept

secret from the adversary, the adversary wins the game with the probability at
most 1/q. Now we proceed to the case

∑ℓ
i=1 ri(Xi −X ′

i) = 0. Because r1, . . . , rℓ
are random elements, the probability that

∑ℓ
i=1 riEi = 0 for not all-zero matrix

Ei is at most 1/q. Thus, the adversary wins this game with probability at most
1/q.

4 Authentication

In this section, we show how to authenticate an additive secret sharing. We first
introduce a cryptographic primitive VOLE and then show how to generate the
MAC share by invoking the VOLE.

4.1 Required Functionalities

Vector oblivious linear evaluation functionality FVOLE. A VOLE is a two-
party functionality between PA and PB , which takes as input a vector x from the
sender PA and a scalar v from the receiver PB , then randomly samples a vector
w and computes u = vx+w. We need to invoke VOLE multiple times and thus
we attach a unique identifier sid to each instance6. The efficient instantiation of
FVOLE can be found in [4,5].
6 The unique identifier sid is locally shared among a pair of parties and thus is not a

global identifier in n-party setting.

14



Functionality 5: Fsid
VOLE

The functionality runs between sender PA and receiver PB . The Initialize step
runs once at the beginning and the Multiply step could run multiple times.

– Initialize: Upon receiving v ∈ Fq from PB , store v.
– Multiply: Upon receiving x ∈ Fm

q from PA:
1. Sample w

$←− Fm
q . If PB is corrupted, receive w from adversary.

2. Compute u = vx + w. If PA is corrupted, receive u from adversary
and recompute w = u− vx.

3. Output u to PA and w to PB .

4.2 Instantiation of FAuth

Now we proceed to the generation of MAC shares. Each party Pi randomly
samples the global key share v(i) when command Init is invoked. To authenticate
a given share

{
X(i)

}
i∈[n]

, all parties jointly compute the additive sharing of(∑n
i=1 X

(i)
) (∑n

i=1 v
(i)
)
. Observe that:(

n∑
i=1

X(i)

)(
n∑

i=1

v(i)

)
=

n∑
i=1

X(i)v(i) +
∑
i ̸=j

X(i)v(j)

Each party Pi can locally compute X(i)v(i) and each ordered pair (Pi, Pj)
needs to interactively compute additive sharing of X(i)v(j), i.e., u(i,j)+w(j,i) =
X(i)v(j), where Pi and Pj receives u(i,j) and w(j,i), respectively. By setting
m(i)(X) = X(i)v(i) +

∑
j ̸=i

(
u(i,j) +w(i,j)

)
, we have

∑n
i=1 m

(i)(X) = Xv,
where X =

∑n
i=1 X

(i) and v(i) =
∑n

i=1 v
(i), therefore m(i)(X) is the MAC

share of Pi.
Since matrix-vector multiplication is a natural generalization of scalar-vector

multiplication, a pair (Pi, Pj) can generate the additive sharing of X(i)v(j) by
invoking m VOLE instances. In the k-th invocation of Fk

VOLE, Pi inputs the k-th
column x

(i)
k of X(i) and Pj inputs the k-th component v

(j)
k of global key share

v(j). According to the definition of VOLE, Pi receives u(i,j)
k and Pj receives w(j,i)

k

such that u
(j,i)
k = v

(j)
k x

(i)
k +w

(i,j)
k . By setting u(i,j) =

∑m
k=1 u

(i,j)
k and w(j,i) =

−
∑m

k=1 w
(j,i)
k , Pi and Pj jointly generate the additive sharing of X(i)v(j). It is

easy to verify the correctness.

u(i,j) +w(j,i) =

m∑
k=1

u
(i,j)
k −w

(j,i)
k

=

m∑
k=1

w
(i,j)
k + v

(j)
k x

(i)
k +w

(i,j)
k

=

m∑
k=1

v
(j)
k x

(i)
k

15



Invoking VOLE alone is not sufficient to generate authenticated sharings
in the presence of a malicious adversary. Because a corrupted party Pj may
use inconsistent vectors

(
x
(j)
1 , · · · ,x(j)

m

)
or vector v(j) to interact with different

honest parties. To prevent such attack, we introduce a consistency check which
partially open a random linear combination of authenticated secret sharings to
detect the corruption. To avoid leakage caused by this opening, we sacrifice
a random authenticated sharing to mask the opened value. Although such a
check can not guarantee the consistency of inputs in each invocation of FVOLE, it
guarantees that the sum of errors toward an honest party is zero, which suffices
to generate the correct MAC share as errors cancel out after the addition.

Combining VOLE with consistency check, all parties can obtain the authen-
ticated sharings. Protocol ΠAuth is the instantiation of functionality FAuth which
outputs the authenticated sharings.

Protocol 2: ΠAuth

– Initialize: If all parties receive (Init), each party Pi samples v(i) $←−
Mm×1(Fq) as global key share. For each ordered pair (Pi, Pj) and k ∈ [m],
Pi and Pj call the Initialize step of Fk

VOLE, where Pj inputs v
(j)
k .

– Authenticate: If all parties receive (Auth, [X1], . . . , [Xℓ]):
1. Each party Pi randomly samples a matrix X

(i)
0 ∈Mm×m(Fq).

2. For h ∈ {0} ∪ [ℓ], write X
(i)
h = (x

(i)
h,1, · · · ,x

(i)
h,m):

(a) For each ordered pair (Pi, Pj) and k ∈ [m], Pi and Pj call the
Multiply step of Fk

VOLE, where Pi inputs x
(i)
h,k.

(b) Pi receives u
(i,j)
h,k and Pj receives w

(j,i)
h,k such that u

(i,j)
h,k = w

(j,i)
h,k +

v
(j)
k x

(i)
h,k.

(c) Each party Pi sets m(i)(Xh) = X
(i)
h v(i) +

∑
j ̸=i

∑
k∈[m](u

(i,j)
h,k −

w
(i,j)
h,k ). Let

(
X

(i)
h ,v(i),m(i)(Xh)

)
as the Pi’s share of ⟨Xh⟩.

3. Parties call FCoin ℓ times to obtain randomness r1, · · · , rℓ.
4. Parties locally compute ⟨Y ⟩ = ⟨X0⟩+

∑ℓ
h=1 rh⟨Xh⟩.

5. Parties invoke Y ′ ← πOpen(⟨Y ⟩) and πcheck(Y
′, ⟨Y ⟩) to check the cor-

rectness of opened value.
6. If the check succeeds, output ⟨X1⟩, . . . , ⟨Xℓ⟩.

Theorem 2. Protocol ΠAuth securely implements FAuth in the (FVOLE, FCoin)-
hybrid model.

Proof. We analyze the consistency check in ΠAuth and defer the complete simulation-
based security proof to Section B.2 in the Supplementary Material. There are
two possible deviations in ΠAuth:

– A corrupted party Pj provides inconsistent global key share v(i) with two
different honest parties in the Initialize step.

– A corrupted party Pj provides inconsistent secret share X
(i)
h for h ∈ {0}∪ [ℓ]

with two different honest parties in the Authentication step.

16



In the command Auth, the adversary could introduce an arbitrarily additive
error. For h ∈ {0} ∪ [ℓ] and k ∈ [m], let x

(j,i)
h,k , v

(j,i)
k be the actual input of Pj

used in Fk
VOLE with an honest party Pi. We fix an honest party Pi0 , and define

the correct inputs x
(j)
h,k, v

(j)
k to be equal to x

(j,i0)
h,k , v

(j,i0)
k respectively. Then we

obtain the additive error between actual inputs and correct inputs:

δ
(j,i)
h,k = x

(j,i)
h,k − x

(j)
h,k ϵ

(j,i)
k = v

(j,i)
k − v

(j)
k

for each j ∈ C, i /∈ C. For an honest party Pj , it keeps inputs x
(j,i)
h,k = x

(j)
h,k and

v
(j,i)
k = v

(j)
k for each i ̸= j. Finally, we define that for i, j ∈ C, the additive error

is zero, i.e., δ(j,i)h,k = 0 and ϵ
(j,i)
k = 0.

For j ∈ C, i /∈ C, if Pj behaves as sender and Pi behaves as receiver, we have
that

m∑
k=1

(
u
(j,i)
h,k −w

(i,j)
h,k

)
= X

(j)
h v(i) +∆

(j,i)
h v(i)

where ∆
(j,i)
h =

(
δ
(j,i)
h,1 , · · · , δ(j,i)h,m

)
. Similarly, reverse the role of Pi and Pj , we

have that
m∑

k=1

(
u
(i,j)
h,k −w

(j,i)
h,k

)
= X

(i)
h v(j) +X

(i)
h ϵ(j,i)

where ϵ(j,i) =
(
ϵ
(j,i)
1 , · · · , ϵ(j,i)m

)T
.

Sum up the MAC share m(i)(Xh), we can see the following result:

n∑
i=1

m(i)(Xh) =

n∑
i=1

X
(i)
h v(i) +

∑
j ̸=i

m∑
k=1

(
u
(i,j)
h,k −w

(j,i)
h,k

)

=

i∑
i=1

X
(i)
h v(i) +

∑
j ̸=i

X
(i,j)
h v(j,i)

= Xhv +
∑
i/∈C

∑
j∈C

∆
(j,i)
h︸ ︷︷ ︸

∆
(i)
h

v(i) +
∑
i/∈C

X(i)
∑
j∈C

ϵ(j,i)︸ ︷︷ ︸
ϵ(i)

After the random linear combination with coefficients (r0 = 1, r1, · · · , rℓ), we
obtain the following MAC of variable Y :

n∑
i=1

m(i)(Y ) = Y v +
∑
i/∈C

ℓ∑
h=0

rh∆
(i)
h v(i) +

∑
i/∈C

ℓ∑
h=0

rhX
(i)
h︸ ︷︷ ︸

Y (i)

ϵ(i)

17



Finally we proceed to check opening of Y . To pass the consistency, the adversary
needs to introduce two errors E = Y ′ − Y and γ such that:

n∑
i=1

m(i)(Y ) + γ − (Y + E)v = 0

γ − Ev +
∑
i/∈C

ℓ∑
h=0

rh∆
(i)
h v(i) +

∑
i/∈C

Y (i)ϵ(i) = 0

∑
i/∈C

(
ℓ∑

h=0

rh∆
(i)
h − E

)
v(i) +

∑
i/∈C

Y (i)ϵ(i) =
∑
i∈C

Ev(i) − γ

We assert that if consistency check passes, then ∆
(i)
h = 0 and ϵ(i) = 0 with

overwhelming probability. We prove this assertion with following two claims and
defer their proofs in Section B.2 in the Supplementary Material.

Claim. If at least one ϵ(i) ̸= 0 for some i /∈ C, then consistency check passes
with negligible probability.

Claim. If ϵ(i) = 0 for all i /∈ C and ∆
(i)
h ̸= 0 for some i /∈ C, then consistency

check passes with negligible probability.

5 Preprocessing Phase

The preprocessing phase generates the authenticated random sharings ⟨R⟩ for
the input gates, and the multiplication sextuples (⟨A⟩, ⟨AT ⟩, ⟨B⟩, ⟨C⟩, ⟨R⟩, ⟨RT ⟩)
for the multiplication gates. In this section, we focus on multiplication sextuples.
In Section A in the Supplementary Material, we describe the protocol ΠPrep for
full-fledged preprocessing phase. To reduce the communication complexity of
generating matrix triple, we introduce a variant of subfield VOLE called vector
oblivious product evaluation. The process of generating multiplication sextuple
is divided into two parts: the generation of Beaver triples (⟨A⟩, ⟨B⟩, ⟨C⟩) and
double sharings (⟨A⟩, ⟨AT ⟩), (⟨R⟩, ⟨RT ⟩).

5.1 Vector Oblivious Product Evaluation

A pseudorandom correlation generator (PCG) allows two parties to expand
a pair of short, correlated seeds to a much larger amount of correlated ran-
domness. Recently, efficient PCGs relying on several variants of learning parity
with noise (LPN) assumptions were used to construct random VOLE (RVOLE)
[10,35,36,17,11,34]. While the communication complexity of original VOLE scales
linearly in vector length, the communication complexity of PCG-based RVOLE is
either the square root of vector length (under primal LPN assumption) [10,35,36]
or logarithmic in vector length (under dual LPN assumption) [10,17,11,34]. In
this work, we leverage the dual LPN assumption to reduce the communication
cost.

18



In PCG-based RVOLE, the sender PA sends a seed s ∈ S instead of a whole
vector x, where S is the space of seeds. The property programmability was intro-
duced to PCG-based RVOLE in [12], which allows the sender to reuse its seed s
in different instances of RVOLE. We model the programmability with function
Expand : S → Fa

q , which deterministically expands the given random seed to a
pseudorandom vector of given length a over Fq.

Boyle et al. [12], proposed a variant of RVOLE, called subfield VOLE, which
can securely compute u = vx + w, where x ∈ Fa

q , v ∈ Fqb ,u,w ∈ Fa
qb . In

a subfield VOLE instance between PA and PB , x ∈ Fa
q is generated from a

seed s ∈ S chosen by PA and v ∈ Fqb is directly chosen by PB . Thus, subfield
VOLE could be regarded as a PCG for product of vectors, i.e., rewrite v ∈ Fqb as
v ∈ Fb

q and the subfield VOLE actually computes the additive sharing of x⊗v ∈
Ma×b(Fq). Since we have already shown that the product of two m×m matrices
can be decomposed into the sums of products of the form x⊗v ∈Mm×m(Fq), it
suffices to invoke subfield VOLE m times to compute the matrix multiplication.

However, in subfield VOLE, the input v ∈ Fqb is chosen uniformly at random
which means the input size of PB is b log q bits. Note that in our setting, a and
b are of almost the same size Ω(m) which means it is necessary to minimize the
input size from both sides. Thus, we modify this subfield VOLE by generating
a pseudorandom element v ∈ Fqb from a seed. We call this modified subfield
VOLE vector oblivious product evaluation (VOPE). The functionality Fa,b

VOPE

can be found in Functionality 6. The instantiation of Fa,b
VOPE is given in Section

E.1 in the Supplementary Material, which is adapted from [33].

Functionality 6: Fa,b
VOPE

Let Expand : S → Fa
q ,Expand

′ : S′ → Fb
q be the deterministic expansion

functions with seed space S, S′ and output length a, b, respectively. The
functionality runs between sender PA and receiver PB .

Upon receiving s ∈ S from PA and s′ ∈ S′ from PB :

1. Compute x = Expand(s),v = Expand′(s′).
2. Sample W

$←−Ma,b(Fq). If PB is corrupted, receive W from the adversary.
3. Compute U = x ⊗ v −W . If PA is corrupted, receive U from adversary

and recompute W = x⊗ v − U .
4. Output U to PA and W to PB .

5.2 Generation of Beaver Triple

To simplify our proof, recall that we define u ⊗ v = uvT . The first step of
generating Beaver triple is to securely compute matrix multiplication, which can
be decomposed into some tensor products of vectors. Assume that there are
two random matrices A ∈ Mm1×m2

(Fq), B ∈ Mm2×m3
(Fq). Let ai be the i-th

column of A and bi be the i-th row of B. Then, we have AB =
∑m2

i=1 ai⊗bi. This

19



implies that it suffices to compute m2 products Ci = ai ⊗ bi ∈ Mm1×m3
(Fq),

and then add them together to obtain AB = C =
∑

i∈[m2]
Ci.

Procedure πMult outputs the authenticated Beaver triples. Note that seeds
s, s′ will be reused several times for different pairs of parties. A corrupted party
could cause the inconsistency of seeds towards different honest parties. Therefore,
we add a consistency check at the end of πMult: To check the correctness of
(⟨A⟩, ⟨B⟩, ⟨C⟩), we sacrifice another Beaver triple (⟨A′⟩, ⟨B⟩, ⟨C ′⟩).

Procedure 3: πMult

Let Expand : S → F2m
q ,Expand′ : S′ → Fm

q be the deterministic expansion func-
tions with seed space S, S′ and output length a, b, respectively. The procedure
generates an authenticated triple (⟨A⟩, ⟨B⟩, ⟨C⟩) where A,B

$←− Mm×m(Fq)
and C = AB.

– Multiply:
1. Each party Pi samples seeds

(
s
(i)
1 , · · · , s(i)m

)
∈ Sm,

(
s′1

(i)
, · · · , s′m

(i)
)
∈

S′m and obtains Â(i) =
(
â
(i)
1 , · · · , â(i)

m

)
∈ M2m×m(Fq), B

(i) =(
b
(i)
1 , · · · , b(i)m

)T
, where â

(i)
k = Expand

(
s
(i)
k

)
, b

(i)
k = Expand′(s′k

(i)
) for

k ∈ [m].
2. For k ∈ [m] and each ordered pair (Pi, Pj):

(a) Pi and Pj invoke F2m,m
VOPE , where Pi inputs s

(i)
k and Pj inputs s′k

(j).
(b) Pi receives U

(i,j)
k and Pj receives W

(j,i)
k

3. Each party Pi locally computes

Ĉ(i) = Â(i)B(i) +
∑
j ̸=i

∑
k∈[m]

(
U

(i,j)
k +W

(i,j)
k

)

4. Each party Pi rewrites: Â(i) =

(
A(i)

A′(i)

)
, Ĉ(i) =

(
C(i)

C′(i)

)
and obtain

[A], [A′], [B], [C], [C′].
– Authenticate: All parties invoke FAuth to obtain ⟨A⟩, ⟨A′⟩, ⟨B⟩, ⟨C⟩ and
⟨C′⟩.

– Sacrifice:
1. All parties invoke FCoin to obtain a random element χ.
2. All parties locally compute ⟨D⟩ = χ⟨A⟩ − ⟨A′⟩ and partially open

D ← πOpen(⟨D⟩).
3. All parties locally compute ⟨E⟩ = χ⟨C⟩ − ⟨C′⟩ − D⟨B⟩ and partially

open E ← πOpen(⟨E⟩).
4. If E ̸= 0, then aborts.

– Output: If no party aborts, all parties output (⟨A⟩, ⟨B⟩, ⟨C⟩).

5.3 Generation of Double Sharing

To generate ℓ multiplication sextuples for securely computing ℓ multiplication
gates, we need 2ℓ+ 1 double sharings of the form ⟨A⟩, ⟨AT ⟩ with some random

20



matrix A. Procedure πDouble receives the authenticated sharings ⟨A⟩ and output
the pair of authenticated sharing (⟨A⟩, ⟨AT ⟩). We briefly explain the idea of this
procedure. Observe that [AT ] can be obtained by locally applying the transpose
to each share of [A]. Then, we apply the FAuth to obtain the authenticated sharing
⟨AT ⟩. Take random linear combinations of 2ℓ + 1 double sharings (⟨Ai⟩, ⟨AT

i ⟩)
respectively and partially open them to C and D. If there is no corruption,
C = DT and the check passes. Otherwise, this check will pass with probability
at most 1/q.

Procedure 4: πDouble

Let nD denote th number of double sharings. The procedure produces nD pairs
of authenticated sharing ⟨Ai⟩, ⟨AT

i ⟩, i ∈ [nD].
Double: Upon receiving (Double, ⟨A1⟩, . . . , ⟨AnD ⟩) from all parties:

1. All parties invoke πRand to obtain [A0].
2. All parties locally compute [AT

i ] from [Ai] for i ∈ {0} ∪ [nD] by taking the
transpose of each share.

3. All parties invoke FAuth with command (Auth, [A0], [A
T
0 ], [A

T
1 ], . . . , [A

T
nD

])
to obtain the authenticated sharings ⟨A0⟩, ⟨AT

0 ⟩, ⟨AT
1 ⟩, . . . , ⟨AT

nD
⟩.

4. All parties call FCoin nD times to obtain r1, · · · , rnD .
5. All parties locally compute

⟨C⟩ =
nD∑
i=1

ri⟨Ai⟩+ ⟨A0⟩ ⟨D⟩ =
nD∑
i=1

ri⟨AT
i ⟩+ ⟨AT

0 ⟩

6. All parties invoke πOpen to partially open C and D.
7. If C ̸= DT , then aborts.
8. All parties invoke πCheck to check the opened values.
9. If no party aborts, output nD pairs of authenticated sharings

(⟨Ai⟩, ⟨AT
i ⟩), i ∈ [nD].

Putting together. Protocol ΠSextuple instantiates the functionality FSextuple by
invoking the procedures introduced above. πMult and πDouble are used to produce
the authenticated sharings (⟨A⟩, ⟨B⟩, ⟨C⟩) and (⟨A⟩, ⟨AT ⟩), (⟨R⟩, ⟨RT ⟩), respec-
tively.

Protocol 5: ΠSextuple

This protocol produces ℓ authenticated sextuples (⟨A⟩, ⟨AT ⟩, ⟨B⟩, ⟨C⟩, ⟨R⟩,
⟨RT ⟩) with C = AB:

1. All parties invoke πMult ℓ times to produce (⟨Ai⟩, ⟨Bi⟩, ⟨Ci⟩) with Ci = AiBi

for i ∈ [ℓ].
2. All parties invoke πRand ℓ times to obtain [R1], . . . , [Rℓ].
3. All parties invoke FAuth with command (Auth, [R1], . . . , [Rℓ]) to obtain ⟨Ri⟩

for i ∈ [ℓ].

21



4. All parties set nD = 2ℓ and invoke πDouble with command (Double,
⟨A1⟩, . . . , ⟨Aℓ⟩, ⟨R1⟩, . . . , ⟨Rℓ⟩) to obtain (⟨Ai⟩, ⟨AT

i ⟩) and (⟨Ri⟩, ⟨RT
i ⟩) for

i ∈ [ℓ].
5. Output (⟨Ai⟩, ⟨AT

i ⟩, ⟨Bi⟩, ⟨Ci⟩, ⟨Ri⟩, ⟨RT
i ⟩) for i ∈ [ℓ].

Theorem 3. Protocol ΠSextuple securely implements FSextuple in the (FAuth, F2m,m
VOPE ,

FCoin)-hybrid model.

Proof. Let Z be the environment, which we also refer to as the adversary capable
of corrupting a set C containing at most n−1 parties. We construct a simulator S
such that the real execution and ideal execution are indistinguishable to Z. Here
we only prove the security of πMult and refer to Section B.3 in the Supplementary
Material for the full proof.

In functionality F2m,m
VOPE between Pi and Pj , both Pi and Pj only input their

seeds. Therefore, the corrupted parties can only choose inconsistent seeds for
different honest parties, which can not translate to an arbitrarily chosen additive
error. However, for the convenience of analysis, we follow the idea of [33] and
improve the ability of adversary to introduce an arbitrarily chosen additive error.

Simulating the Multiply step. The simulator S emulates the functional-
ity F2m,m

VOPE . For j ∈ C and i /∈ C, let s
(j,i)
k and s′k

(j,i) be the actual input in
the k-th invocation of F2m,m

VOPE for k ∈ [m]. Fix an honest party Pi0 and de-
fine the correct input s

(j)
k and s′k

(j) to be equal to s
(j,i0)
k and s′k

(j,i0), respec-
tively. For i /∈ C, S randomly samples Â(i) $←−Mτm×m(Fq), B

(i) $←−Mm×m(Fq).
For j ∈ C, S receives sk

(j,i) and s′k
(j,i) from the adversary, where i /∈ C, k ∈

[m]. Then S receives
{
U

(j,i)
k ,W

(j,i)
k

}
j∈C,i/∈C

from the adversary and recomputes{
U

(i,j)
k ,W

(i,j)
k

}
i/∈C,j∈C

accordingly. Finally, S honestly computes Ĉ(i).

Simulating the Authentication step. S emulates functionality FAuth with
inputs from corrupted parties controlled by Z. S authenticates additive sharings
and we denote by EAuth, E

′
Auth errors introduced in the authentication step. If

EAuth, E
′
Auth are not zero, then the authenticated values are different from those

in the previous step. If Z sends Abort to FAuth, S sends Abort to FSextuple.

Simulating the Sacrifice step. S samples D ← Mm×m(Fq) as χA − A′. If
the triple is incorrect, S aborts; otherwise, S outputs it as a valid triple.

Indistinguishability. We argue that Z cannot distinguish real execution and
simulated one. We will show that if no abort happens, the probability that
adversary introduces some non-zero errors is negligible and the distribution of
opened value is statistically close in both of the worlds.

22



Now we proceed to the introduced errors during Multiply step. Let Â(j,i) and
B(j,i) be the matrices generated by seeds

(
s
(j,i)
1 , · · · , s(j,i)m

)
and

(
s′1

(j,i)
, · · · , s′m

(j,i)
)

,

respectively. In the k-th invocation of F2m,m
VOPE , denote the errors as δ̂

(j,i)
k =

â
(j,i)
k − â

(j)
k and γ

(j,i)
k = b

(j,i)
k − b

(j)
k . Then we conclude that for k ∈ [m], i /∈ C

and j ∈ C:
U

(i,j)
k +W

(j,i)
k = â

(i)
k ⊗ b(j) + â

(i)
k ⊗ γ

(j,i)
k

U
(j,i)
k +W

(i,j)
k = â

(j)
k ⊗ b(i) + δ̂

(j,i)
k ⊗ b

(i)
k

Following similar analysis in the proof of Theorem 2, we define ∆̂(j,i) =
(
δ̂
(j,i)
1 , · · · , δ̂(j,i)m

)
,

Γ (j,i) =
(
γ
(j,i)
1 , · · · ,γ(j,i)

m

)T
and compute Ĉ as

Ĉ =
∑
i∈[n]

Ĉ(i) = ÂB +
∑
i/∈C

∑
j∈C

∑
k∈[m]

(
â
(i)
k ⊗ ϵ

(j,i)
k + δ̂

(j,i)
k ⊗ b

(i)
k

)
= ÂB +

∑
i/∈C

∑
j∈C

Â(i)Γ (j,i) + ∆̂(j,i)B(i)

= ÂB +
∑
i/∈C

Â(i)Γ (i) + ∆̂(i)B(i)

where ∆̂(i) =
∑

j∈C ∆̂
(j,i) and Γ (i) =

∑
j∈C Γ

(j,i). Splitting the matrices into 2
blocks, we have that:(

C
C ′

)
=

(
A
A′

)
B +

∑
i/∈C

(
A(i)

A′(i)

)
Γ (i) +

(
∆(i)

∆′(i)

)
B(i)

After the Authentication step, all parties obtain ⟨A⟩, ⟨A′⟩, ⟨B⟩, ⟨C⟩, ⟨C ′⟩. As-
sume that the adversary introduces additive error EAuth, E

′
Auth in this step, then

A,A′, B, C,C ′ satisfy that:

C = AB + E1 + E2 + EAuth

C ′ = A′B + E′
1 + E′

2 + E′
Auth

and
E1 =

∑
i/∈C

A(i)Γ (i) E2 =
∑
i/∈C

∆(i)B(i)

E′
1 =

∑
i/∈C

A′(i)Γ (i) E2 =
∑
i/∈C

∆′(i)B(i)

If no abort happens in the Sacrifice step, we come to the following conclusions
and defer their proofs to Section B.3 in the Supplementary Material.

Claim. If the sacrifice step passes, then E = E1 + E2 + EAuth = 0 and E′ =
E′

1 + E′
2 + E′

Auth with overwhelming probability.

Claim. If the sacrifice step passes, then {Γ (i),∆(i),∆′(i)}i/∈C are zero with over-
whelming probability.

23



Finally, we want to show that the opened value D in the real execution
is computationally indistinguishable from the uniform matrix in the simulated
execution. Given that D = χA − A′, it suffices to prove A′ looks uniformly
random to Z and thus can serve as a mask. Each column a′

i of A′ is part of
output of expansion function Expand, therefore we want to show that Expand
acts as a PRG. The concrete construction of Expand is given in Section E.1 in
the Supplementary Material, and the pseudorandomness of output is guaranteed
by dual LPN assumption.

6 Analysis

In this section, we analyze the communication and computation cost of our
MPC protocol over Mm×m(Fq) assuming q ≥ 2κ. The computation complexity
is measured by the number of multiplications.

6.1 Analysis of the online phase

First, we consider communication complexity. At each step of partial open-
ing a matrix, all parties send their shares to a specific party, then let this
party reconstruct and broadcast the secret, thus the communication complexity
is 2m2(n − 1) log q bits. For each multiplication gate, all parties need to par-
tially open three shares ⟨D⟩, ⟨E⟩, ⟨F ⟩ and thus the communication complexity
is 6m2(n− 1) log q bits. Each input gate requires Pi to broadcast the difference
between X and mask R, which communicates m2(n−1) log q bits. For the output
gate, the partial opening needs 2m2(n− 1) log q bit of communication and verifi-
cation needs mn2 log q bits of communication via simultaneous message channel.

Now we proceed to analyze the computation complexity for each multiplica-
tion gate. According to Mult command in ΠOnline, all parties execute the following
computation: ET [AT ], ET [[ATv]], D[B], D[[Bv]], DE,DE[[v]]. Since left multipli-
cation requires m3 and m2 multiplications in scheme [·] and [[·]] respectively, the
overall computation complexity is 3m3 + 3m2 multiplications.

Another measure is share size, which is m(m+1)n log q bits, since [[v]] remains
unchanged in each authenticated sharing and we omit this item.

We analyze the communication complexity, computation complexity and
share size of other MPC protocols and list the results in Table 1. Here FI and
FD refer to the online communication with function-independent and function-
dependent preprocessing, respectively. Although our protocol needs slightly more
communication than [16], our protocol has the smallest share size and computa-
tion complexity among these protocols. Moreover, the improvement of our MPC
protocol by resorting to function-dependent preprocessing can achieve the same
communication complexity as [16].

6.2 Analysis of the preprocessing phase

The task of preprocessing is to generate random sharings and multiplication
sextuples. The communication cost is mainly caused by ΠSextuple which produces

24



communication share size # multiplications

SPDZ [20] 4m3(n− 1) log q 2m2 log q 6m3

matrix triple [16] 4m2(n− 1) log q 2m2 log q 5m3 +m2

This work (FI) 6m2(n− 1) log q m(m+ 1) log q 3m3 + 3m2

This work (FD) 4m2(n− 1) log q m(m+ 1) log q 3m3 + 3m2

Table 1. The comparison of MPC protocols over Mm×m(Fq) in terms of share
size, communication complexity and computation complexity of a multiplication
gate.

the multiplication sextuples. As our preprocessing phase uses VOLE and VOPE
as the building blocks, we calculate the communication cost of preprocessing
phase in terms of the calls of the functionality FVOLE and FVOPE.

To generate a random authenticated sharing ⟨R⟩ for an input gate, where
the secret R is known to Pi, Pi distributes the additive share R(j) to Pj and
invokes FVOLE with Pj . After producing ℓ+ 1 such random sharings, all parties
invoke πCheck to check the consistency of these sharings. If ℓ is large enough, the
communication cost of the consistency check can be amortized away. In this case,
the preparation for an input gate requires n− 1 calls of FVOLE.

Protocol ΠSextuple produces ℓ sextuples by generating ℓ Beaver triples and
2ℓ double sharings. During this process, the communication cost is caused by
ℓ calls of ΠAuth and the invocation of procedure πMult and πDouble. Procedure
πMult generates a multiplication triple (⟨A⟩, ⟨B⟩, ⟨C⟩) by making mn(n− 1) calls
of F2m,m

VOPE , 5 calls of ΠAuth and 2 calls of πopen. Procedure πDouble generates 2ℓ
authenticated sharings ⟨A⟩, ⟨AT ⟩ by making 2ℓ + 2 calls of ΠAuth and 2 calls of
πopen. In summary, generating a sextuple requires mn(n− 1) calls of F2m,m

VOPE and
8mn(n− 1) calls of FVOLE assuming ℓ is large enough.

The communication cost of FVOLE scales linearly in the length of the vec-
tor, which incurs O(m log q) bits of communication. The analysis of F2m,m

VOPE de-
pends on the dual LPN parameters. Given the dual LPN parameter (2m, 2cm, t),
F2m,m

VOPE requires t invocations of Fm
rsVOLE (which is sublinear in m), t log 2cm

t in-
vocations of κ-bit OT and exchange of t(1 +m) field elements, which result in
O(m log q) bits of communication. (Note that t = O(1) which does not grow
with m.)

Now we proceed to the analysis of the concrete communication cost. We
pick the parameters in [16] for a comparison. For a matrix ring M128×128(Fq)
where the prime number q satisfies log q ≈ 128, [16] shows that each party
communicates 12.46MB to generate a matrix triple for the multiplication gate.
Our protocol requires 27 invocations of F28,27

VOPE and 210 invocations of F27

VOLE. We
choose the security parameter to be 80 bits and then obtain the corresponding
dual LPN parameters in [27]. The detailed calculation of communication cost of
FVOPE and FVOLE is deferred to Section E.2 in the Supplementary Material.

25



Table 2 demonstrates the communication cost of our protocol, the protocol
relying on the random VOLE [10], the protocol relying on subfield VOLE [33]
and the protocol relying on the homomorphic encryption [16] to prepare the cor-
related randomness for computing the multiplication gate. The “random VOLE”
protocol computes random matrix multiplication with m2 random VOLE in-
stances [10], and the “subfield VOLE” protocol invokes m times of subfield
VOLE in [33], where the extension field is defined as Fqm . One can see that
the communication cost of our protocol grows more slowly than [16]. The reason
is that the amortized communication cost of PCG-based VOLE decreases with
the size of m.

m random VOLE subfield VOLE This work HE [16]

128 83.5 MB 34.8 MB 19.0 MB 12.5 MB

256 362 MB 138 MB 60 MB 50 MB

512 1453 MB 518 MB 198 MB 199 MB

1024 6000 MB 2004 MB 739 MB 797 MB

Table 2. The communication cost to prepare correlated randomness for com-
puting a multiplication gate.

6.3 Experimental result

Online phase We implement the online phase of different MPC protocols over
Mm×m(Fq) in C++ with the multiple precision integer arithmetic provided by
MPIR library [6]. All experiments were carried out on a server equipped with an
Intel Xeon Gold 5220R processor and 128GB RAM. We apply Linux tc command
to emulate a real network environment and simulate the LAN network with
1Gbps bandwidth, 1ms latency. Table 3 compares the performances of computing
a multiplication gate for each MPC protocol, which shows that our approach is
around 1.38x-1.85x faster than [16].

Preprocessing phase We present the benchmarks of VOLE-based preprocess-
ing protocols to generate the correlated randomness for a multiplication gate, in
which secure random matrix multiplication is the bottleneck of the computation.
All VOLE-based preprocessing protocols rely on PCG techniques, which expand
a pair of short seeds to long correlated randomness. We apply the PCG imple-
mentation of libOTe [32] to estimate the runtime of the expansion step, which
is based on quasi-cyclic codes in [12]. To estimate the efficiency of generating
seeds, we calculate the required number of VOLEs and OTs and benchmark the
runtime of VOLE and OT with Lattigo [1] and libOTe [32] libraries, respectively.

26



m SPDZ [20] matrix triple [16] This work

128 1.3 sec 96 ms 52 ms

256 9.5 sec 559 ms 329 ms

512 77.9 sec 5.0 sec 3.2 sec

1024 633 sec 42.5 sec 30.9 sec

Table 3. Runtime to compute a multiplication gate in the online phase.

The cost of VOLE is estimated by running the ring-LWE based OLE protocol
in [7].

Table 4 provides total estimated runtime on secure random matrix multipli-
cation in the LAN setting. To make a fair comparison with [16], all VOLE-based
protocols are tested with 16 threads. As can be seen from the table, our prepro-
cessing phase achieves a 1.44x-24.17x speedup compared to [16] with the same
thread number. It is noteworthy that [16] requires a key generation and a one-
time setup (when m = 128, these operations take around 83 seconds and 14.5
seconds respectively), while our protocol does not rely on a heavy setup. We
provide a full-fledged experiment result of VOLE-based preprocessing in Section
E.3 in the Supplementary Material.

m random VOLE subfield VOLE This work HE [16]

128 3.6 sec 2.9 sec 4.1 sec 5.9 sec

256 13.9 sec 10.1 sec 8.2 sec 25.5 sec

512 56.4 sec 38.2 sec 16.8 sec 2.3 min

1024 4.1 min 2.5 min 36.0 sec 14.5 min

Table 4. Benchmark: Runtime to prepare correlated randomness for computing
a multiplication gate, measured with 16 threads.

Acknowledgement

The authors would like to thank Jiawei Ni for her assistance with implementa-
tion. We are also grateful for valuable suggestions from anonymous reviews in
Asiacrypt 2024. The work was supported in part by the National Key Research
and Development (R&D) Program of China under Grant 2022YFA1004900 and
in part by the National Natural Science Foundation of China under Grants
12031011, 12361141818, and 12101404. This work was also supported in part by
Ant Group through CCF-Ant Research Fund CCF-AFSG RF20230306.

27



References
1. Lattigo v5. Online: https://github.com/tuneinsight/lattigo (Nov 2023),

ePFL-LDS, Tune Insight SA
2. Abspoel, M., Cramer, R., Damgård, I., Escudero, D., Rambaud, M., Xing, C., Yuan,

C.: Asymptotically good multiplicative LSSS over galois rings and applications to
MPC over Z/pkZ. In: ASIACRYPT 2020. LNCS, vol. 12493, pp. 151–180. Springer
(2020)

3. Abspoel, M., Cramer, R., Damgård, I., Escudero, D., Yuan, C.: Efficient
information-theoretic secure multiparty computation over Z/pkZ via galois rings.
In: TCC 2019. LNCS, vol. 11891, pp. 471–501. Springer (2019)

4. Applebaum, B., Damgård, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic
computation with constant computational overhead. In: CRYPTO 2017. LNCS,
vol. 10401, pp. 223–254. Springer (2017)

5. Applebaum, B., Konstantini, N.: Actively secure arithmetic computation and
VOLE with constant computational overhead. In: EUROCRYPT 2023. LNCS, vol.
14005, pp. 190–219. Springer (2023)

6. B. Gladman, W.H., J. Moxham, e.a.: MPIR: Multiple Precision Integers and Ra-
tionals (2015), version 2.7.0, http://mpir.org

7. Baum, C., Escudero, D., Pedrouzo-Ulloa, A., Scholl, P., Troncoso-Pastoriza, J.R.:
Efficient protocols for oblivious linear function evaluation from ring-lwe. J. Comput.
Secur. 30(1), 39–78 (2022)

8. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
CRYPTO ’91. LNCS, vol. 576, pp. 420–432. Springer (1991)

9. Ben-Efraim, A., Nielsen, M., Omri, E.: Turbospeedz: Double your online spdz!
improving SPDZ using function dependent preprocessing. In: ACNS 2019. LNCS,
vol. 11464, pp. 530–549. Springer (2019)

10. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: ACM
CCS 2018. pp. 896–912. ACM (2018)

11. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Resch, N., Scholl, P.: Corre-
lated pseudorandomness from expand-accumulate codes. In: CRYPTO 2022. LNCS,
vol. 13508, pp. 603–633. Springer (2022)

12. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudo-
random correlation generators: Silent OT extension and more. In: CRYPTO 2019.
LNCS, vol. 11694, pp. 489–518. Springer (2019)

13. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudo-
random correlation generators from ring-lpn. In: CRYPTO 2020. LNCS, vol. 12171,
pp. 387–416. Springer (2020)

14. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In: CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer (2012)

15. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001. pp. 136–145. IEEE Computer Society (2001)

16. Chen, H., Kim, M., Razenshteyn, I.P., Rotaru, D., Song, Y., Wagh, S.: Maliciously
secure matrix multiplication with applications to private deep learning. In: ASI-
ACRYPT 2020. LNCS, vol. 12493, pp. 31–59. Springer (2020)

17. Couteau, G., Rindal, P., Raghuraman, S.: Silver: Silent VOLE and oblivious trans-
fer from hardness of decoding structured LDPC codes. In: CRYPTO 2021. LNCS,
vol. 12827, pp. 502–534. Springer (2021)

18. Cramer, R., Damgård, I., Escudero, D., Scholl, P., Xing, C.: SpdZ2k : Efficient MPC
mod 2k for dishonest majority. In: CRYPTO 2018. LNCS, vol. 10992, pp. 769–798.
Springer (2018)

28

https://github.com/tuneinsight/lattigo
http://mpir.org


19. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In:
ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer (2013)

20. Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: CRYPTO 2012. LNCS, vol. 7417, pp. 643–
662. Springer (2012)

21. Escudero, D., Goyal, V., Polychroniadou, A., Song, Y.: Turbopack: Honest majority
MPC with constant online communication. In: ACM CCS 2022. pp. 951–964. ACM
(2022)

22. Escudero, D., Goyal, V., Polychroniadou, A., Song, Y., Weng, C.: Superpack: Dis-
honest majority MPC with constant online communication. In: EUROCRYPT
2023. LNCS, vol. 14005, pp. 220–250. Springer (2023)

23. Escudero, D., Soria-Vazquez, E.: Efficient information-theoretic multi-party com-
putation over non-commutative rings. In: CRYPTO 2021. LNCS, vol. 12826, pp.
335–364. Springer (2021)

24. Escudero, D., Xing, C., Yuan, C.: More efficient dishonest majority secure compu-
tation over Z2k via galois rings. In: CRYPTO 2022. LNCS, vol. 13507, pp. 383–412.
Springer (2022)

25. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch. p. 144 (2012), http://eprint.iacr.org/2012/144

26. Jiang, X., Kim, M., Lauter, K.E., Song, Y.: Secure outsourced matrix computation
and application to neural networks. In: CCS 2018. pp. 1209–1222. ACM (2018)

27. Liu, H., Wang, X., Yang, K., Yu, Y.: The hardness of LPN over any integer ring
and field for PCG applications. IACR Cryptol. ePrint Arch. p. 712 (2022), https:
//eprint.iacr.org/2022/712

28. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via
minionn transformations. In: ACM CCS 2017. pp. 619–631. ACM (2017)

29. Mohassel, P., Rindal, P.: Aby3: A mixed protocol framework for machine learning.
In: ACM CCS 2018. pp. 35–52. ACM (2018)

30. Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving ma-
chine learning. In: 2017 IEEE Symposium on Security and Privacy (SP). pp. 19–38.
IEEE Computer Society (2017)

31. Orsini, E., Smart, N.P., Vercauteren, F.: Overdrive2k: Efficient secure MPC over
Z2k from somewhat homomorphic encryption. In: CT-RSA 2020. LNCS, vol. 12006,
pp. 254–283. Springer (2020)

32. Peter Rindal, L.R.: libOTe: an efficient, portable, and easy to use Oblivious Trans-
fer Library. https://github.com/osu-crypto/libOTe

33. Rachuri, R., Scholl, P.: Le mans: Dynamic and fluid MPC for dishonest majority.
In: CRYPTO 2022. LNCS, vol. 13507, pp. 719–749. Springer (2022)

34. Raghuraman, S., Rindal, P., Tanguy, T.: Expand-convolute codes for pseudoran-
dom correlation generators from LPN. In: CRYPTO 2023. LNCS, vol. 14084, pp.
602–632. Springer (2023)

35. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-ole:
Improved constructions and implementation. In: ACM CCS 2019. pp. 1055–1072.
ACM (2019)

36. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: Fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In: 2021 IEEE Symposium on Security and Privacy (SP). pp. 1074–1091. IEEE
(2021)

29

http://eprint.iacr.org/2012/144
https://eprint.iacr.org/2022/712
https://eprint.iacr.org/2022/712
https://github.com/osu-crypto/libOTe


Supplementary Material

A Missing Functionalities and Protocols

Channels. This functionality models required communication channels.

Functionality 7: FChannels

The functionality proceeds as follows:

– Pairwise: On input (Message, x, Pi, Pj) from Pi, send x to Pj .
– Broadcast: On input (Broadcast, x, Pi) from Pi, send x to all parties.
– Simultaneous: On input (Simultaneous, xi, Pi) from each party Pi, store

this value. Do not send {xi}i∈[n] to each party until all parties have pro-
vided inputsa.

a This command aims to commit to input of each party.

Affine combinations. The parties could use πAff to locally compute the affine
combination of ⟨·⟩-share with coefficients a1, · · · , aℓ ∈ Fq.

Procedure 6: πAff((⟨X1⟩, · · · , ⟨Xℓ⟩), (a1 · · · , aℓ))

Given ℓ shared values ⟨Xj⟩ = (X
(i)
j ,v(i),m(i)(Xj))i∈[n] for j ∈ [ℓ] and ℓ con-

stant scalars (a1, · · · , aℓ), all parties can execute following operations to obtain
shares of Y =

∑ℓ
j=1 ajXj .

1. All parties locally compute

Y (i) =

ℓ∑
j=1

ajX
(i)
j , m(i)(Y ) =

ℓ∑
j=1

ajm
(i)(Xj)

2. The parties store the new shared value ⟨Y ⟩ = (Y (i),v(i),m(i)(Y ))i∈[n].

Opening and checking. The following procedures could allow the parties to
partially open and check the correctness of opened values, respectively.

Procedure 7: πOpen(⟨X⟩)

Given a share value ⟨X⟩ = (X(i),v(i),m(i)(X)):

1. All parties send their share X(i) to P1

2. P1 reconstructs X = X(1) + · · ·+X(n) and broadcasts X to all parties.

30



Procedure 8: πCheck(X
′, ⟨X⟩)

Given an opened value X and a shared value ⟨X⟩ = (X(i),v(i),m(i)(X)):

1. All parties locally compute σ(i) = mi(X)−Xv(i) and broadcast this value
via the simultaneous message channel.

2. All parties locally compute σ = σ(1)+ · · ·+σ(n) and verify whether σ = 0.
If the answer is no, abort.

Random additive secret sharing. This procedure generates a random addi-
tive secret sharing [X].

Procedure 9: πRand

1. Each party Pi samples a random matrix X(i).
2. Output [X] = (X(1), . . . , X(n)) with X =

∑n
i=1 X

(i).

Preprocessing protocol. Commands including Initialize,Authenticate and Sextuple
can be done using essentially the same protocols as ΠAuth and ΠSextuple. Thus, it
remains to complete this protocol by describing the Input command. In particu-
lar, Pi samples the random masks R0, R1, · · · , Rℓ

$←−Mm×m(Fq) and distributes
random shares of R0, . . . , Rℓ to other parties. Then all parties except Pi call
functionality FVOLE with Pi to generate the MAC of ⟨R0⟩, . . . , ⟨Rℓ⟩. By use the
same MAC checking procedure as in ΠAuth, we obtain the authenticated sharings
⟨R1⟩, . . . , ⟨Rℓ⟩.

Protocol 10: ΠPrep

The protocol keeps a dictionary Val.

– Initialize: Same as in ΠAuth.
– Authenticate: Same as in ΠAuth.
– Sextuple: Same as in ΠSextuple.
– Input: On input (InputPrep, Pi) from all parties do the following to create

ℓ random authenticated mask:
1. Pi randomly samples R0, R1, · · · , Rℓ

$←−Mm×m(Fq).
2. For h ∈ {0} ∪ [ℓ], Pi randomly samples {R(j)

h }j∈[n] such that∑n
j=1 R

(j)
h = Rh and distributes R

(j)
h to Pj .

3. For h ∈ {0} ∪ [ℓ], write Rh = (rh,1, · · · , rh,m):
(a) For k ∈ [m] and each j ̸= i, Pi and Pj call the Multiply step of
Fk

VOLE, where Pi inputs rh,k.
(b) Pi receives u

(i,j)
h,k and Pj receives v

(j,i)
h,k such that u

(j,i)
h,k = w

(i,j)
h,k +

v
(j)
k r

(i)
h,k.

(c) Pi sets m(i)(Rh) = Rhv
(i) +

∑m
k=1

∑
j ̸=i u

(i,j)
h,k and Pj sets

m(j)(Rh) = −
∑m

k=1 w
(j,i)
h,k .

31



4. Parties call FCoin ℓ times to obtain randomness χ1, · · · , χℓ.
5. Parties locally compute ⟨Y ⟩ = ⟨R0⟩+

∑ℓ
h=1 χh⟨Rh⟩.

6. Parties invoke Y ′ ← πOpen(⟨Y ⟩) and πcheck(Y
′, ⟨Y ⟩) to check the cor-

rectness of opened value.
7. If the check succeeds, output ⟨R1⟩, . . . , ⟨Rℓ⟩.

B Missing Proofs

B.1 Proof of the Online Phase

Theorem 4 (Theorem 1,restated). Protocol ΠOnline securely implements FMPC

in the (FPrep, FCoin)-hybrid model.

Proof. Let Z be an environment corrupting a set of at most n − 1 parties. We
assume that Z plays the role of both the distinguisher and the adversary, who
simply forwards messages sent and received by corrupted parties in the protocol
as directed by the environment.

Recall that the environment’s view is the collection of all intermediate mes-
sages that corrupted players send and receive, plus the inputs and outputs of all
players. We will describe a simulator S who has the access to the ideal function-
ality FPrep and FCoin and interacts with Z in such a way that the real interaction
and the simulated interaction are indistinguishable to Z. The simulator S works
as follows.

Simulating Initialize and Input command. The simulator simply emulates
the functionality FPrep honestly. Then, S knows each MAC key v(i) held by Pi.
Also S distributes random shares to the corrupt parties for every input gate and
the multiplication sextuples for every multiplication gate.

In the Input command, when a Pi is honest, S broadcasts a random element
R ∈ Mm×m(Fq). When a corrupted party Pi broadcasts ϵ, S extracts its input
as X = ϵ+R, where R is the random value that Pi should have used. Then the
simulator stores the values as input to the FMPC.

Simulating Addition and Public matrix multiplication command. These
steps only consist of local computations which can be simulated trivially, where
S carries out honestly on behalf of the virtual honest parties.

Simulating Multiplication command. When the values D,E and F are
opened for multiplication, S opens random shares on behalf of the honest parties.

32



Simulating the Output and Check openings command. S first receives
the output Y from FMPC. Next, S executes Check command with the adversary,
on behalf of the virtual honest parties. If the check fails, S sends Abort. If the
above check passes, S modifies the honest parties shares it holds to be consistent
with the output Y , as well as the MAC shares to be consistent with Y v. Then
S runs the πCheck with the adversary, on behalf of the honest parties.

Indistinguishability. Now we argue that Z cannot distinguish between real
and ideal executions. It is clear for Init command, because Z gets random values
in both executions. In Input command, the values broadcast by the honest parties
are uniformly at random in both worlds. It is also the case Mult command and
Trans command, where the adversary receives honest parties’ shares of fresh
random values. These shares are uniformly at random in both of the worlds.
The MAC shares of these opened values are also uniformly at random in both
of the worlds, which are the random sharings of a correct MAC with an error
added by the adversary in Input command.

In Output command, the probability that the Check command and procedure
πCheck result in abort is the same in both executions. Meanwhile, if the first step
of Check command passes, then the honest parties will reveal their shares in both
executions. In the real execution, these shares are conditioned on adding up to
the value computed in the protocol with the shares provided by the adversary,
whereas in the simulated execution this sum is equal to the value output by the
functionality. Due to the sketch proof above, we know that this check will pass
except with probability 2/q. It is the same as the last single πCheck, which will
pass except with probability 1/q. As a result, we can say that in both executions
the values are the same, except with probability 3/q.

B.2 Proof of Authentication

Claim. If at least one ϵ(i) ̸= 0 for some i /∈ C, then consistency check passes
with negligible probability.

Proof. Assume for i /∈ C, ϵ(i) ̸= 0. Note that Y (i) is honestly generated and its
distribution is uniformly random in Mm×m(Fq) due to the random mask X

(i)
0 .

If the consistency check passes, Y (i)ϵ(i) = δ for some δ that is independent of
Y (i), which happens with probability q−m.

Claim. If ϵ(i) = 0 for all i /∈ C and ∆
(i)
h ̸= 0 for some i /∈ C, then consistency

check passes with negligible probability.

Proof. If E ̸= 0, the adversary passes consistency check only if E
∑

i/∈C v
(i) = δ

for some δ that is independent of
{
v(i)
}
i/∈C , which happens with probability q−1.

If E = 0 and ∆
(i)
h ̸= 0 for some i /∈ C, h ∈ {0} ∩ [ℓ], the adversary needs to make

error ∆
(i)
h satisfy ∆

(i)
h v(i) = δ′ for some δ′ that is independent of v(i). Such

attack succeeds with probability at most q−1.

33



Theorem 5 (Theorem 2, restated). Protocol ΠAuth securely implements FAuth

in the (FVOLE, FCoin)-hybrid model.

Proof. We define a simulator S such that an environment Z can only distinguish
a real execution interacting with the honest parties and an ideal execution with
the simulator S with a negligible probability.

Simulating Initialize command. For k ∈ [m], let v
(j,i)
k be the input of a

corrupted party Pj toward an honest party Pi during the Initialize step of
Fk

VOLE. S fixes an honest party Pi0 and sends v(j) =
(
v
(j,i0)
1 , · · · , v(j,i0)m

)
to

FAuth as the global key share of Pj . For i /∈ C, S samples v(i) $←− Fm
q .

Simulating Authenticate command.

1. For i /∈ C, randomly sample X
(i)
0

$←−Mm×m(Fq).
2. For h ∈ {0} ∪ [ℓ]:

(a) For all j ∈ C, i /∈ C and k ∈ [m], S receives x
(j,i)
h,k ,u

(j,i)
h,k and w

(j,i)
h,k from

the adversary.
(b) Honestly compute the MAC share m(i)(Xh) for i /∈ C with the simulator

of FVOLE.
3. Randomly sample and send r1, · · · , rℓ to the adversary.
4. Send adversary the honestly computed share Y (i) for i /∈ C and receive Y (j)

for j ∈ C from the adversary to reconstruct Y ′.
5. Honestly compute σ(i) = m(i)(Y ) − Y ′v(i) for i /∈ C and receive σ(j) from

the adversary.
6. Execute the consistency check. If it fails, then send Abort to FAuth.
7. If no abort happens, for j ∈ C and h ∈ [ℓ], compute m(j)(Xh) with x

(j)
h,k,v

(j),u
(j,i)
h,k

and w
(j,i)
h,k , then send (X

(j)
h ,m(j)(Xh)) to the adversary.

Indistinguishability. It is easy to observe that the transcript for messages
inspected by the adversary has the identical distribution in ideal and real execu-
tions. In the previous analysis, we argue that if the adversary introduces additive
errors that result in a fake authenticated sharing, the consistency check passes
with negligible probability, therefore the probability of passing consistency check
is almost identical in the two worlds. Finally, we show that the distribution of
honest parties’ MACs is identical in both worlds since FVOLE outputs random
vectors, which serve as a random mask.

B.3 Proof of Sextuple Generation

Claim. If the sacrifice step passes, then E = E1 + E2 + EAuth = 0 and E′ =
E′

1 + E′
2 + E′

Auth with overwhelming probability.

34



Proof. If the protocol does not abort in sacrifice step, then χC − C ′ −DB = 0.
Since C = AB + E and C ′ = AB + E′, we have that

χC − C ′ −DB = 0

χ(AB + E)− (A′B + E′)− (χA−A′)B = 0

χE − E′ = 0

Such equation holds with probability q−1.

Claim. If the sacrifice step passes, then {Γ (i),∆(i),∆′(i)}i/∈C are zero with over-
whelming probability.

Proof. Due to the previous claim, if sacrifice step passes, then following equation
holds

E1 + E2 + EAuth = 0∑
i/∈C

(
A(i)E(i) +∆(i)B(i)

)
= −EAuth

where {A(i), B(i)}i/∈C are distributed uniformly at random and other items are
independent of {A(i), B(i)}i/∈C . Suppose that ∆(i) is not a zero matrix for some
i /∈ C, then adversary needs to make ∆(i)B(i) = X for some matrix X indepen-
dent of B(i) to pass the sacrifice step, which happens with probability q−m. The
same analysis works for ∆′(i) and Γ (i).

Theorem 6 (Theorem 3, restated). Protocol ΠSextuple securely implements
FSextuple in the (FAuth, F2m,m

VOPE , FCoin)-hybrid model.

Proof. Here we provide the supplementary proof of the security of πDouble.
Let Z be the environment, which we also refer to as adversary, corrupting a

set C containing at most n−1 parties. We construct a simulator S such that the
real execution and ideal execution is indistinguishable to Z.

Simulating the Double step The simulator S emulates the functionality FAuth

with inputs from the adversary. Similarly, S just emulates the FCoin to obtain
{ri}i∈[2ℓ] and executes local computations. Note that every pair of the double
sharings (Ai, A

T
i ) for i ∈ {0} ∪ [2ℓ] will be introduced errors in the two steps

above, which we denote by (Ei, E
′
i). Then, S runs the procedure πCheck on behalf

of the virtual honest parties.

Indistinguishability Now we argue that Z cannot distinguish real execution
and simulated one. Define EC =

∑2ℓ
i=0 riEi, ED =

∑2ℓ
i=0 riE

′
i, where r0 = 1. The

first check will pass if adversary make the sum of the weighted errors equal, that
is to say EC = ED. To pass the second check, the key of the problem returns
to the classic check if we denote errors of the MAC sharings added in the πCheck

procedure by δC , δD, which satisfy that:

ECv = δC

EDv = δD

35



Therefore adversary could introduce non-zero errors EC , ED with only negligible
probability q−1.

C Function-Dependent Preprocessing

The downside of our protocol in Section 3 is that each multiplication gate re-
quires 2 rounds of interactions while the original SPDZ protocol only needs one
round. Recently, MPC protocols with function-dependent preprocessing have
been proposed in both honest majority [23,21] and dishonest majority setting
[9,22]. By utilizing this idea, we can further reduce the round complexity and
communication complexity of our MPC protocol. We briefly review the necessary
changes for this improvement.

The value X is not represented by the authenticated sharing ⟨X⟩, but a pair
(⟨ΛX⟩, ΦX), where ΛX

$←−Mm×m(Fq) and the difference ΦX = X − ΛX is open
to all parties. Note that ΦX is masked with uniformly random ΛX , therefore its
exposure leaks no information about X.

Assume that all parties have two variants (⟨ΛX⟩, ΦX) and (⟨ΛY ⟩, ΦY ). For an
addition gate, all parties just need to execute local additions to obtain (⟨ΛX +
ΛY ⟩, ΦX + ΦY ) as the sharing of X + Y . For a multiplication gate, all parties
choose a random mask ⟨ΛZ⟩ and the main task is to compute the public difference
ΦZ . Following the analysis in Section 3, we could obtain:

⟨ΦZ⟩ = ΦXΦY + ⟨ΛXΦY ⟩+ ΦX⟨ΛY ⟩+ ⟨ΛXΛY ⟩ − ⟨ΛZ⟩

We need to compute ⟨ΛXΦY ⟩ in the absence of right linearity and use the
same approach to partially open ΦT

Y ⟨ΛT
X⟩−⟨RT ⟩, where R

$←−Mm×m(Fq). Since
ΦY is known to all parties in the function-dependent model, this computation
can be done locally. Thus, to compute a multiplication gate, in the preprocessing
phase, we need to prepare (⟨ΛX⟩, ⟨ΛT

X⟩, ⟨ΛY ⟩, ⟨ΛXΛY ⟩, ⟨R⟩, ⟨RT ⟩, ⟨ΛZ⟩), where
R

$←−Mm×m(Fq), ΛX , ΛY , ΛZ are masked values aligned to X,Y, Z, respectively.
We define the functionality FFD−Prep to describe the function-dependent pre-

processing as Functionality 8. We can slightly modify ΠPrep to instantiate this
functionality. Based on FFD−Prep, we could instantiate FMPC as Protocol 12. To
avoid confusion with ΠOnline, we denote this instantiation as ΠFD−Online.

Functionality 8: FFD−Prep

The functionality maintains a dictionary Val, which keeps a track of authenti-
cated elements inMm×m(Fq) (Note that Val stores ⟨ΛX⟩ instead of ⟨X⟩). This
functionality has all the same commands in FAuth with following additional
commands:

– Input: On input (InputPrep, id, Pi) from all parties, sample ΛX
$←−

Mm×m(Fq), store Val[id] = ΛX and return ΛX to Pi.
– Addition: On input (AddPrep, id, id1, id2) from all parties, compute ΛZ =

Val[id1] + Val[id2] and store Val[id] = ΛZ .

36



– Public matrix multiplication: On input (PubMulPrep, id, A) from all
parties, compute ΛZ = AVal[id] and store Val[id] = ΛZ .

– Multiplication: On input (MultPrep, id, id1, id2) from all parties, do fol-
lowing operations and return the tuple

(
⟨ΛX⟩, ⟨ΛT

X⟩, ⟨ΛY ⟩, ⟨ΛXΛY ⟩, ⟨R⟩,
⟨RT ⟩, ⟨ΛZ⟩

)
:

• Set ΛX = Val[id1] and ΛY = Val[id2]
• Generate authenticated sharings ⟨ΛT

X⟩ and ⟨ΛXΛY ⟩
• Sample ΛZ

$←−Mm×m(Fq) and store Val[id] = ΛZ .
• Sample R

$←−Mm×m(Fq) and obtain a double sharing (⟨R⟩, ⟨RT ⟩).

Protocol 11: ΠFD−Online

The parties maintain a dictionary Val for authenticated secret sharings of mask-
ing values.

– Initialize: Each party samples v(i) $←− Mm×m(Fq) and set Val = ∅. Call
FFD−Prep with the circuit as input.

– Input: If Pi receives (Input, id, X, Pi) and other parties receive (Input,
id, Pi), Pi retrieves mask ΛX associated to X and broadcasts ΦX = X−ΛX

to all parties.
– Addition: If all parties receive (Add, id, id1, id2), retrieve public differ-

ences of two inputs ΦX , ΦY and set difference of output as ΦZ = ΦX +ΦY .
– Public matrix multiplication: If all parties receive (PubMul, id, A) from

all parties, retrieve difference of input ΦX and update it as AΦX .
– Multiplication: If all parties receive (Mult, id, id1, id2), retrieve ⟨ΛX⟩ =

Val[id1] and ⟨ΛY ⟩ = Val[id2] and corresponding differences ΦX , ΦY . Do
the following:
1. Obtain the corresponding multiplication tuple (⟨ΛX⟩, ⟨ΛT

X⟩, ⟨ΛY ⟩,
⟨ΛXΛY ⟩, ⟨R⟩, ⟨RT ⟩, ⟨ΛZ⟩).

2. All parties locally compute ⟨D⟩ = ⟨ΛXΛY ⟩+ΦX⟨ΛY ⟩+ΦXΦY −⟨ΛZ⟩+
⟨R⟩ and ⟨E⟩ = ΦT

Y ⟨ΛT
X⟩ − ⟨RT ⟩.

3. All parties invoke D ← πOpen(⟨D⟩) and E ← πOpen(⟨E⟩).
4. Set ΦZ = D + ET .

– Check Opening: Same as in ΠOnline.
– Output: When all parties output a variable Y , do the same as in ΠOnline

to open ΛY to all parties. Then reconstruct Z = ΛY + ΦY .

Theorem 7. Protocol ΠFD−Online securely implements FMPC in the (FFD−Prep,
FCoin)-hybrid model.

Proof. The security proof is similar to the ΠOnline.

D Extension to Small Fields

The protocol described in Section 3 and 5 is applicable toMm×m(Fq) with large
enough q, i.e., q ≥ 2κ so that the error probability can be reduced to q−1 ≤ 2−κ.

37



We note that it is possible to modify our MPC protocol to evaluate the circuit
over Mm×m(Fq) with small q. We only present the modification.

Authenticated Sharing. Instead of letting the global key in Mm×1(Fq), we
require that the global key is a matrix in Mm×ℓ(Fq). This also implies that the
MAC for each matrix is a matrix in Mm×ℓ(Fq). One can treat the global key
in Mm×ℓ(Fq) as ℓ independent global keys in Mm×1(Fq). Let V ∈ Mm×ℓ(Fq)
be the global key and assume that v1, . . . , vℓ are the column vectors of V . Let
E be the additional error injected by the adversary. To pass the verification, it
must hold that EV = X where X ∈ Mm×ℓ(Fq) is the matrix known to the
adversary. Let x1, . . . ,xℓ be the column vectors of X and we have Evi = xi for
i ∈ [ℓ]. Since V is distributed uniformly at random, the adversary succeeds with
probability at most q−ℓ. Therefore the soundness error is reduced to q−ℓ. If we
set ℓ = κ

log2 q , the soundness error becomes 2−κ. Since the size of the matrix is
much bigger than the MAC, the share size is almost the same as the previous
one.

Linear Combinations. Taking the linear combinations of secret sharings is
an efficient verification method to check the correctness of the sharings in batch
which appears in Check command of online phase, and also the production of
random and double sharing in the preprocessing phase. However, the soundness
error of this check becomes 1/q if our matrix is defined over Mm×m(Fq). We
can repeat the linear combinations ℓ times to reduce the error probability to q−ℓ.
Since each linear combination of random and double sharings needs to sacrifice
one corresponding sharing, repeating ℓ times means that all parties need to
prepare ℓ−1 additional sharings which can be amortized away due to this check
in batch.

Sacrifice. Recall that to compute a triple (⟨A⟩, ⟨B⟩, ⟨C⟩), we need to sacrifice
(⟨A′⟩, ⟨B⟩, ⟨C ′⟩) to check its correctness. The sacrificing technique inMm×m(Fq)
can detect the corruptions with probability 1 − 1

q . To make this probability
overwhelming, we have to sacrifice ℓ triples to verify the relation C = AB.

VOLE and subfield VOLE. Since the implementation of our VOLE and
subfield VOLE are based on the dual LPN assumption, both of them can be
defined over small field as well.

E Deteails for Preprocessing

E.1 Instantiation of VOPE

Following the line of [12,33], we first propose the protocol ΠspVOPE that securely
implements the single point VOPE (spVOPE), and then obtain ΠVOPE by in-
voking FspVOPE multiple times. The major difference between random subfield

38



VOLE in [33] and our VOPE is that the subfield VOLE requires that one-side
input is generated by a seed and the input of another side is given determin-
istically; while our VOPE requires that the inputs of both sides are expanded
from seeds. As a building block, we choose a new functionality Fb

rsVOLE instead of
functionality Fb

sVOLE in [33], i.e., we allow PA to input a random seed to generate
a pseudorandom vector x ∈ Fm

q and the input v ∈ Fq from PB can be chosen
arbitrarily. This is exactly described by the functionality Fprog

VOLE in [33] by setting
r = 1. Thus, the protocol Πprog

VOLE in [33] can securely implement our functionality
Fb

rsVOLE.

Functionality 9: Fb
rsVOLE

The functionality runs between sender PA and receiver PB .
Let Expand′ : S′ → Fb

q be the expansion function with seed space S′ and output
length b.
Initialize: On receiving (Init) from PA and (Init, s′) from PB . Note that Init
command is only invoked once.
Extend: On receiving (Extend) from PA, PB .

1. Compute v = Expand′(s′) and sample w ∈ Fb
q. If PB is corrupted, receive

w from the adversary.
2. Sample x

$←− Fq and compute u = xv + w. If PA is corrupted, receive x
and w from the adversary and recompute w = u− xv.

3. Output u to PA and (v,w) to PB .

Next, we briefly review single point subfield VOLE (spsVOLE) protocol
Πci

spsVOLE in [33], which is very similar to our protocol Πa,b
spVOPE. The goal of spsV-

OLE is to compute the additive sharing of ve, where weight-1 vector e ∈ Fa
q and

v ∈ Fqb are provided by PA and PB respectively. During this protocol, PA and
PB invoke 1+ b times of FsVOLE and ⌈log a⌉ times of κ-bit OTs. Note that when
b is large, FsVOLE is the dominant part of communication, which takes O(b2 log q)
communication in total.

Πa,b
spVOPE is adapted from protocol Πci

spsVOLE in [33] with slight modification.
The major difference is that we use functionality Fb

rsVOLE instead of FsVOLE in [33].
This difference is due to the fact that the input of PB in our protocol is expanded
from a seed instead of a truly random element sampled by PB . Since b is a large
number in our protocol, this adaption can greatly save the communication cost.

Functionality 10: Fa,b
spVOPE

The functionality runs between sender PA and receiver PB .
Let Expand′ : S′ → Fb

q be the deterministic expansion functions with seed space
S′ and output length b.
Initialize: Upon receiving (Init) from PA and (Init, s′) from PB .
Extend: Upon receiving (Extend, α, β) from PA and (Extend) from PB , where
α ∈ [a], β ∈ Fq:

39



1. Compute v = Expand′(s′) and sample W
$←−Ma×b(Fq). If PB is corrupted,

receive W from the adversary.
2. Set e ∈ Fa

q such that eα = β and ei = 0 for i ̸= α. Compute U = e⊗v+W .
If PA is corrupted, receive U from the adversary and recompute W =
U − e⊗ v.

3. If PB is corrupted, receive a set I ⊂ [a] from adversary. If α ∈ I, send
Success to PB and continue. Otherwise, send Abort to both parties and
abort.

4. Output (e, U) to PA and W to PB .

Protocol 12: Πa,b
spVOPE

This protocol runs between sender PA and receiver PB .
Let Expand′ : S′ → Fb

q be the deterministic expansion function with seed space
S′ and output length b.
Initialize: This step is only executed once. PA sends (Init) and PB sends
(Init, s′) to Fb

sVOLE.
Extend: This step can be executed several times.

1. PA and PB send (Extend) to Fb
rsVOLE, which returns (x, z) ∈ Fq × Fb

q to PA

and y ∈ Fb
q to PB .

2. PA sends x′ = β − x ∈ Fq to PB , then PB computes v = Expand′(s′) ∈ Fb
q

and γ = z − x′v. PA defines e ∈ Fa
q as the single point vector such that

eα = β.
3. PB samples the seed of GGM tree s

$←− {0, 1}κ and runs GGM(1a, s) to
obtain

(
{wj}j∈[a], {(Ki

0,K
i
1)}i∈[h]

)
, where wj ∈ Fb

q and h = ⌈log a⌉. PB

sets W = (w1, · · · ,wa)
T ∈ Ma×b(Fq). PA lets αi be the compliment of

the i-th bit of bit representation of α. For i ∈ [h], PA sends αi ∈ {0, 1}
to FOT and PB sends (Ki

0,K
i
1) to FOT. PA receives Kαi

i , which then runs
{wj}j ̸=α = GGM′(α, {Ki

αi
}i∈[h]).

4. PB sends d = γ−
∑

i∈[a] wi to PA. Then, PA defines U = (u1, · · · ,ua)
T ∈

Ma×b(Fq) such that for i ∈ [a],

ui =


wi i ̸= α

z − (d+
∑
i ̸=α

wi) i = α

Consistency check:

1. PA and PB send (Extend) to Fb
rsVOLE, which returns (x∗, z∗) ∈ Fq × Fb

q to
PA and y∗ ∈ Fb

q to PB .
2. PA and PB invokes FCoin to sample ri ∈ Fq for i ∈ [a]. PA sends x′′ =

rα · β − x∗ ∈ Fb
q to PB .

3. Let r = (r1, · · · , ra)T ∈ Fa
q . PA computes VA = UTr − z∗ ∈ Fb

q and PB

computes VB = WTr + x′′v − y∗ ∈ Fb
q. Then PA sends VA to FEQ and PB

sends VB to FEQ. If either party receives False or Abort from FEQ, it aborts.
4. PA outputs (e, U) ∈ Fa

q ×Ma×b(Fq) and PB outputs W ∈Ma×b(Fq).

40



Theorem 8. Assume that Expand′ is a pseudorandom generator, protocol Πa,b
spVOPE

securely implements Fa,b
spVOPE in the (Fb

rsVOLE,FOT,FEQ,FCoin)-hybrid model.

Proof. The security proof is almost the same to Πci
spsVOLE in [33]. We only list

the difference from Πci
spsVOLE:

1. We represent the element in Fqb as a vector in Fb
q.

2. In Πci
spsVOLE, PB inputs a vector v ∈ Fb

q to the functionality FsVOLE which
returns the additive sharings of xv. In our Πa,b

spVOPE protocol, PB inputs a
seed s′ to Fb

rsVOLE which also returns the additive sharings of xv where v is
generated by the seed s′.

3. In Πci
spsVOLE, the consistency check is carried out over extension field Fqb

which yields the error probability q−b. In our protocol, since q ≥ 2κ, our
consistency check is carried out Fq which yields the error probability 1/q.
This modification reduces the number of calls Fa,b

rsVOLE from b to 1 in the
consistency check step.

4. In Πci
spsVOLE, the challenges {ri}i∈[a] are sampled by PA and then sent to PB .

In our protocol, PA and PB call FCoin to produce challenges. Given a pair of
shared seeds, PA and PB could invoke FCoin without interaction.

Now we discuss two expansion functions in ΠVOPE, which are based on the fol-
lowing dual LPN assumption.

Definition 1 (Dual LPN assumption). Let H ∈ Mm×n(Fq) and consider
following game Gb(κ) with a PPT adversary A, parameterized by a bit b and the
security parameter κ:

1. Sample a random, t-regular vector e ∈ Fn
q , i.e., e is the concatenation of t

vectors e1, · · · , et, wherein each ei is a sparse vector of Hamming weight 1.
2. If b = 1, let y = He, otherwise sample y

$←− Fm
q .

3. Send y to A and receive a bit b′.

If A has a negligible advantage to distinguish G0(κ) and G1(κ), then dual LPN
assumption holds. A tuple (m,n, t) is called a dual-LPN parameter. The param-
eter c = n/m is called a compression parameter.

Let c be the compression parameter and choose two dual-LPN parameters
(a, ca, t), (b, cb, t′). Given two fixed matrices H ∈ Ma×ca(Fq),H

′ ∈ Mb×cb(Fq),
then we could define two expansion functions as follows:

Expand′ : S → Fa
q , Expand(e) = He

Expand′ : S′ → Fb
q, Expand′(e′) = H ′e′

where S(S′) is the collections of t-regular(t′-regular) vector of length ca(cb),
respectively.

Given dual LPN assumption in Definition 1 and functionality Fca/t,b
spVOPE, we

are able to present the protocol Πa,b
VOPE.

41



Protocol 13: Πa,b
VOPE

Given two dual LPN parameters (c, ca, t) and (b, cb, t′), we could instantiate
two expansion functions Expand and Expand′ as above. Let H ∈Ma×ca(Fq) be
the matrix in the (a, ca, t) dual LPN assumption.

1. PA sends (Init) and PB sends (Init, s′) to Fca/t,b
spVOPE, where s′ describes a

t′-regular vector of length cb.
2. PA inputs s ∈ S, which describes a t-regular vector e of length ca. e is the

concatination of t vectors {ei}i∈[t], where the αi-th component of each ei

is βi and others are 0.
3. For i ∈ [t], PA and PB send (Extend, αi, βi), (Extend) to Fca/t,b

spVOPE and receive
Yi, Zi ∈Mca/t×b(Fq), respectively.

4. PA sets Y ∈Mca×b(Fq) and PB sets Z ∈Mca×b(Fq) such that

Y =

Y1

...
Yt

 , Z =

Z1

...
Zt


5. PA outputs U = HY ∈ Ma×b(Fq) and PB outputs W = −HZ ∈
Ma×b(Fq).

Theorem 9. Protocol Πa,b
VOPE securely implements functionality Fa,b

VOPE in the
Fca/t,b

spVOPE-hybrid model under (a, ca, t) and (b, cb, t′) dual LPN assumption.

Proof. Observe that PA and PB do not interact in ΠVOPE except that they jointly
invoke FspVOPE. We construct a simulator S that emulates functionality Fca/t,b

spVOPE.
The security proof is adapted from [36].

Corrupted PA : During the initialization, S randomly samples v ∈ Fb
q. For i ∈ [t],

S emulates Fca/t,b
spVOPE and receives the inputs ei ∈ Fca/t

q (with Hamming weight
at most 1) and Yi ∈ Mca/t×b(Fq) from the adversary A. Then S sets e, Y and
computes x = He and U = HY .

Corrupted PB : During the initialization, S records the vector v ∈ Fb
q that A

sends to Fca/t,b
spVOPE. For i ∈ [t], S receives the inputs Zi ∈Mca/t×b(Fq)and Ii ⊂ [a]

that A sends to Fca/t,b
spVOPE. Then S randomly samples t weight-1 vectors {ei}i∈[t]

and records the non-zero entries {αi}i∈[t]. If αi ∈ Ii for all i, then S continues;
otherwise, it aborts. Finally, S sets Z and computes x = He,W = −HZ.

The view of A is simulated perfectly, and in both real world and ideal world,
the outputs of PA and PB satisfy that U + W = x ⊗ v. The only difference
is that in the ideal world x,v are uniform, while in the real world they are
computed from uniform seeds s and s′, respectively. If (a, ca, t) and (b, cb, t′)
dual LPN assumptions hold, this difference is indistinguishable between ideal
and real worlds.

42



E.2 Concrete Communication Cost of Preprocessing

In this subsection, we focus on concrete communication cost of ΠSextuple, which
depends on the instantiation of two functionalities: Fm

VOLE and F2m,m
VOPE . Here we

set m = 128, κ = 80.

Analysis of Fm
VOLE We follow the line of [10] to convert RVOLE to VOLE. Since

the scalar of each VOLE is fixed as an element of share of global key, we could
set the length of RVOLE as a large number such that the amortized communica-
tion is negligible. Then we only consider the communication complexity of the
conversion: the sender and receiver sends a vector of length m to each other. In
our setting, the size of the field element is 128 bit and length m is 27, therefore
each invocation requires 4KB.

Analysis of F2m,m
VOPE Given the dual LPN parameters (2m, 2cm, t), recall that

communication cost of F2m,m
VOPE consists of t length-m random subfield VOLE,

t log 2cm
t κ-bit OT and (1 + m)t field elements. As we mentioned in Section

E.1, we instantiate Fm
rsVOLE with protocol Πprog

VOLE in [33]. With this instantiation
and another dual LPN parameter (m, cm, t′), communication compleixty of t
Fm

rsVOLE instances could be computed as t invocations of length-t′ VOLE, t′ log cm
t′

invocations of κ-bit OT and t(1 + t′) field elements.
We follow the suggestion of [27] to calculate the dual LPN parameter, i.e.,

(2m, 2cm, t) = (28, 210, 28) and (m, cm, t′) = (27, 29, 29). Then, each F2m,m
VOPE

needs around 115.2 KB of communication.

E.3 Concrete Runtime of Preprocessing

In this subsection, we elaborate on the concrete runtime of preprocessing. We
first choose parameters and estimate the required number of fundamental cryp-
tographic primitives (OT and OLE), and benchmark the corresponding runtime.

In libOTe [32], the weight t of regular error vector e in dual LPN assumption
has to be divisible by 8, thus we set t = 32 for all m = 128, 256, 512, 1024. Fixing
weight t, we display the number of OLE and OT instances to prepare for a
multiplication gate in Table 5. From Table 5, it is obvious that subfield VOLE
reduces the number of OT instances, and VOPE transforms some OLE instances
into OT instances.

43



m
random VOLE subfield VOLE VOPE

OLE OT OLE OT OLE OT

128 524288 2621440 524288 20480 131072 36864

256 2097152 12582912 2097152 49152 262144 90112

512 8388608 58720256 8388608 114688 524288 216736

1024 33554432 268435456 33554432 262144 1048576 491520

Table 5. The number of OLE and OT instances to prepare for a multiplication
gate for all VOLE-based preprocessing.

Table 6 provides the details about the microbenchmark of runtime to prepare
for a multiplication gate. In the third and fourth columns, the runtime of OLE
and OT instances in Π2m,m

spVOPE is estimated with Lattigo [1] and LibOTe [32],
respectively. The runtime of expansion in step 5, F2m,m

VOPE is displayed in the
fifth column “Extend”, which is instantiated with quasi-cyclic code in [12]. The
columns labeled “Com” and “AddMacs” refer to the runtime of communication
and authentication, respectively. Expansion is the most computationally intense
operation in VOLE-based preprocessing, which is optimized by using 16 threads.

m Protocol BaseVOLE OT Extend Com AddMacs All

128

random VOLE
2.115

0.404
0.163

0.622

0.269

3.573

subfield VOLE 0.029 0.278 2.854

VOPE 0.51 0.034 3.15 0.151 4.114

256

random VOLE
8.143

2.232
0.269

2.714

0.529

13.887

subfield VOLE 0.034 1.109 10.084

VOPE 1.017 0.04 6.105 0.484 8.175

512

random VOLE
32.57

11.441
0.489

11.043

0.918

56.463

subfield VOLE 0.043 4.151 38.173

VOPE 2.034 0.058 12.12 1.629 16.759

1024

random VOLE
130.288

65.637
0.96

45.943

1.814

244.642

subfield VOLE 0.064 16.033 149.159

VOPE 4.068 0.102 24.121 5.908 36.013

Table 6. Microbenmarks: Runtime to prepare correlated randomness for com-
puting a multiplication gate, all timing measured in seconds.

44


	Dishonest Majority Multiparty Computation over Matrix Rings
	Hongqing Liu, Chaoping Xing, Chen Yuan, Taoxu Zou

