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Abstract. In recent years, deep learning-based side-channel analysis
(DLSCA) has become an active research topic within the side-channel
analysis community. The well-known challenge of hyperparameter tuning
in DLSCA encouraged the community to use methods that reduce the ef-
fort required to identify an optimal model. One of the successful methods
is ensemble learning. While ensemble methods have demonstrated their
effectiveness in DLSCA, particularly with AES-based datasets, their effi-
cacy in analyzing symmetric-key cryptographic primitives with different
operational mechanics remains unexplored.

Ascon was recently announced as the winner of the NIST lightweight
cryptography competition. This will lead to broader use of Ascon and a
crucial requirement for thorough side-channel analysis of its implemen-
tations. With these two considerations in view, we utilize an ensemble of
deep neural networks to attack two implementations of Ascon. Using an
ensemble of five multilayer perceptrons or convolutional neural networks,
we could find the secret key for the Ascon-protected implementation with
less than 3 000 traces. To the best of our knowledge, this is the best cur-
rently known result. We can also identify the correct key with less than
100 traces for the unprotected implementation of Ascon, which is on par
with the state-of-the-art results.
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1 Introduction

Introducing the Ascon family as a new standard for authenticated encryption [NIS23]
has raised interest in the available implementations that could be used in em-
bedded devices and their security. Then, evaluating the physical security of cryp-
tographic implementations against side-channel analysis (SCA) is a crucial step
in developing secure embedded devices.

SCA is an implementation attack that exploits measurements of unintended
physical leakages of sensitive information from a device through side channels
such as power consumption, electromagnetic emission, or timing. The analysis
methods for SCA have evolved since the first works on the subject, introducing
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simple power analysis (SPA) and differential power analysis (DPA) [KJJ99].
Today, SCA methods are numerous and are classified into two main categories:
profiled and non-profiled attacks.

Non-profiled attacks, including Differential Power Analysis (DPA) [KJJ99],
Correlation Power Analysis (CPA) [BCO04], and Mutual Information Analysis
(MIA) [GBTP08], are techniques where an attacker uses a large set of measure-
ments and statistical tools to exploit the leakage of secret information.

Profiled attacks include techniques like template attack [CRR02], stochas-
tic attacks [SLP05], and machine learning-based attacks [MPP16], where the
attacker mounts the attack in two phases. In the first phase, known as pro-
filing/template building, the attacker needs access to a clone device to build
profiles. In the second phase, which is known as the attack/template matching
phase, the attacker matches the built profiles to recover the secret data.

Deep learning-based side-channel analysis (DLSCA) has become a research
hot spot from 2016 [MPP16]. The studies have reported many advantages for this
approach, including the robustness to different masking and hiding countermea-
sures [MBC+20,MPP16,CDP17] and removing the need for pre-processing [CDP17,
KPH+19]. Despite all these advantages, it is frequently emphasized that the
principal challenge in DLSCA is the selection of a neural network model that is
tailored to the specific nuances of the problem at hand [PPM+23].

To overcome that challenge, different works have used various approaches, in-
cluding hyperparameter tuning [WPP22,RWPP21,AGF21], regularization tech-
niques [RB22], or designing a methodology for model selection [ZBHV20]. An
interesting and effective strategy proposed to circumvent (or, at least allevi-
ate) the challenge of finding an optimal model is the utilization of ensemble
techniques [PCP20], where multiple sub-optimal neural network models com-
bine to enhance the overall performance of DLSCA. While the results presented
in that work demonstrate the utility of the ensemble method in enhancing at-
tack performance, a gap in generalization across various cryptographic primitive
implementations is evident. Until recently, the publicly available datasets for
symmetric-key cryptography were centered around the AES primitive, as dis-
cussed in [PPM+23].

Consequently, the effectiveness of many proposals, including the ensemble,
has been validated using only AES-based datasets. This raises a question about
the efficiency of diverse proposals in DLSCA for AES when considering other
cryptographic primitives. Ascon, the NIST lightweight cryptography competition
winner, currently being standardized for broad public use, is an ideal subject for
such investigation. The known vulnerability of the Ascon encryption mode of
operation to side-channel analysis and the availability of its datasets make it
an ideal candidate for this research. This shift toward considering Ascon as a
benchmark in DLSCA research not only aligns with its growing use but also
provides a broader perspective on the adaptability and efficiency of DLSCA
across different cryptographic primitives.
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In this research, we attack two software implementations (one unprotected
and one protected) of the Ascon primitive using the ensemble method. The key
contributions of our work are:
– Extension beyond AES-based experiments: Previous research demon-

strated the effectiveness of the ensemble method in DLSCA, only focusing
on the AES primitive. Our study extends this, showing that the ensemble
method is also effective for other cryptographic primitives. We particularly
highlight improved attack performance on protected Ascon implementations,
where the challenge is more significant, and the attacks have not been very
successful so far. The successful results with ensembles give hope that other
DLSCA proposals aiming at AES may generalize for other cryptographic
primitives.

– Exploring Ascon in the context of side-channel analysis: With As-
con being standardized by NIST and its usage expected to increase, there
is a pressing need for comprehensive side-channel analysis of its implemen-
tations. In this research, we successfully attack both protected and unpro-
tected Ascon implementations using the ensemble method. Our attack using
the ensemble method outperforms the state-of-the-art results, emphasizing
the necessity of designing and implementing adequate countermeasures for
vulnerable operations in Ascon’s implementation.

2 Preliminaries

2.1 Ascon Primitive

Ascon is a family of cryptographic algorithms designed to provide secure en-
cryption and authentication in resource-constrained environments. This family
of cryptography primitives is based on sponge construction [BDPVA12] and was
selected by NIST in February 2023 to be standardized [NIS23] for lightweight ap-
plications. Ascon is an authenticated encryption algorithm that includes associ-
ated data, meaning it not only encrypts a message to maintain its confidentiality
but also attaches a tag to the encrypted message and associated data to ensure
integrity. The algorithm can take four inputs: plaintext P , associated data A,
nonce M , and a key k. It outputs the authenticated ciphertext C and an au-
thentication tag T . The algorithm includes four operation phases: initialization,
associated data process, plaintext process (ciphertext process in decryption), and
finalization. Figure 1 shows these four phases of Ascon.

In Ascon-128, the input of the initialization phase is a 320-bit initial state
(IV ||k||M in Figure 1 consisting of the 64-bit constant IV , the 128-bit key k,
and the 128-bit fresh nonce M) in the form of five 64-bit words x0 to x4. This
five-word state updates through the algorithm phases and is used as the secret
state (or the sponge state) for encryption (decryption) and tag generation. The
initialization phase includes twelve (same) permutation functions (shown as pa

in Figure 1) that update the initial state. The permutation function consists of
three parts: 1) the addition of the round constants, 2) a non-linear five-bit S-box
(substitution layer), and 3) a linear diffusion layer.
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Fig. 1: Ascon’s mode of operation and S-box.

During a data exchange, data like headers and metadata must remain in
plaintext, but maintaining integrity is crucial for this data. The optional as-
sociated data processing phase maintains its integrity. In this phase, when an
associated data block (Ai) is received, its first r = 64 bits is XORed to the
first r = 64 bits of the sponge state, then the whole sponge state is permuted
b = 6 times (pb in Figure 1). The associated data processing phase updates the
sponge state using the associated data blocks. Then, the updated sponge state
attains the plaintext process phase. The plaintext process phase XORs the 64-
bit plaintext block Pi with the first r = 64 bits of the sponge state to produce
ciphertext block Ci. Then, the whole state is transformed by the permutations
pb, b = 6 to update the sponge state for the next plaintext block. The finaliza-
tion phase XORes the key with the sponge state and transforms the results with
pa, a = 12, to provide the 128-bit authentication tag T . For more details about
different parts of the Ascon primitive, refer to [DEMS16].

2.2 Ensembles

Ensemble techniques combine multiple predictors (machine learning models or
deep neural networks) to reduce generalization error [GBC16]. The predictor can
be a simple machine learning method like a decision tree or an advanced one
like a deep neural network. Ensemble techniques work because different predic-
tors may capture various aspects of the data, and by combining them, one can
often achieve better performance than every single model contributing to the
ensemble. There are different techniques for ensemble predictors, including vot-
ing, bagging, boosting, and stacking. These techniques are different in how they
create and combine the models. For example, bagging involves training multiple
models independently and averaging their predictions. This method is useful for
reducing variance and overfitting. Boosting, on the other hand, trains models
sequentially, with each new model focusing on the data points that previous
models miss-classified, aiming to improve the predictive performance iteratively.
In deep learning, ensemble methods typically involve different architectures or
configurations of neural networks, such as varying numbers of layers, nodes, or
activation functions [PCP20].
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The ensemble method has also been used in the domain of SCA (see Sec-
tion 3). Our ensembling approach is aligned with the one Perin et al. used
in [PCP20]. Their technique is specialized bagging (bootstrap aggregating), where
the models in the ensemble are selected through a random search, and each model
is trained on the entire dataset (the “bag” used for training every single model is
equal to the whole training dataset). The models are trained independently. We
diverge from common practices like majority voting or averaging to integrate the
models’ output. That is because, in the context of DLSCA, models often pro-
vide uncertain predictions about the class of a trace4. The accuracy of models in
an attack phase is marginally better (or sometimes even worse) than a random
guess [PCP20]. Consequently, techniques like majority voting or averaging are
ineffective in enhancing attack performance. As an alternative, we exploit the
small bias of the model outputs toward the correct class by utilizing the guessing
entropy metric. Section 2.3 provides more information about this side-channel
metric.

2.3 Deep Learning-based Side-channel Analysis

As mentioned in Section 1, profiling SCA has a phase of template building where
the attacker gathers many traces from a clone device and builds the templates
using those traces and a phase of template matching where the attacker matches
the traces from the device under attack with the templates to find out to which
template the traces belong. The output of the template matching phase is a
matrix of probabilities showing with what probability each trace belongs to each
template. Looking into the procedure of profiling SCA, deep learning (machine
learning) classification is a natural choice for profiling attacks. Template building
is equivalent to learning the classes5 using many examples during the training
phase and template matching is equivalent to classification on not previously
seen data in the test phase. Using softmax as the last layer of a deep neural
network, we can obtain the probability matrix as before. Using that matrix, we
can calculate the common metrics like guessing entropy and the required number
of attack traces to measure the performance of profiling SCA.

Guessing Entropy In the attack phase of a profiled attack, guessing en-
tropy [Mas94,KB07] is the average number of guesses that must be made before
finding the correct key. The output of a profiling side-channel attack with Q
attack traces is a probability vector of key hypotheses h = [h1, h2, . . . , h|K|] in
decreasing order (i.e., h1 has the highest probability and h|K| the lowest probabil-
ity of being the correct key), where |K| is the key space. The information about

each key candidate is calculated using hi = ΣQ
j=1 log p(xj , y), where p(xj , y) is

the probability that the trace xi belongs to class y. Thus, guessing entropy is the

4 Trace is the whole or part of the measurement given as input to the neural network
5 Usually, classes are all the possible intermediate values specified by the selected
leakage model, something we know like the plaintext or public nonce, and the secret
key
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average position of the correct key, k∗, in h. Eq. (1) shows the formal definition
of guessing entropy:

GE = E(rankk∗(h)), (1)

where rankk∗(h) denotes the position of the correct key k∗ in the probability
vector h, and E is the expectation operator. An attack is considered a successful
attack if GE = 1.

For the ensemble of models, we accumulate all individual models’ output
probabilities class-wise for each trace, and then the rest of the procedure is the
same as above.

Required Number of Attack Traces The required number of attack traces
is the minimum number of traces needed to always place the correct key in the
first position of h.

3 Related Work

Two research streams are closely related to the work presented in this paper.
The first stream employs ensemble methods to improve SCA. The second stream
targets implementations of Ascon. The following section briefly summarizes what
has been done so far.

Ensemble methods were used in the SCA domain as soon as the community
started to use machine learning. For example, Picek et al. in [PHJ+17] used
Random Forest (which is an ensemble of decision trees), Rotation Forest, and
MultiBoosting, all methods that use ensembling to improve the accuracy of pre-
dictions. In [LMBM13] and [MPP16], researchers again used Random Forest,
which is one of the most popular options for machine learning-based SCA (next
to Support Vector Machines). In a recent work, which we consider as the first and
the most relevant from the DLSCA perspective, Perin et al. used bagging of mul-
tiple deep neural networks for attacking different AES implementation [PCP20].
One can find more details about [PCP20] in Section 2.2.

Several researchers have analyzed Ascon’s side-channel resistance since its
submission to the NIST lightweight competition. In [RAD20], a method named
SCARL is used to recover the secret key of an Ascon Artix-7 FPGA implemen-
tation. SCARL uses LSTM autoencoders for dimensionality reduction of S-box
operations power measurements and reinforcement learning for clustering key
candidates. In [SS23], transfer learning is used from gate-level power simula-
tion traces for an Ascon software implementation running on a custom-made
RISC-V SoC to improve the performance of DLSCA using raw power traces as
input (measured from a chip prototype of the same design). In [WP23], multi-
task learning is used to evaluate the side-channel resistance of protected and
unprotected Ascon datasets.
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4 Experimental Setup

4.1 Attack Point and Leakage Model

During the initialization and finalization phases of the Ascon encryption mode
of operation as described in Figure 1, the secret key is directly involved with
the nonce, a user input data. Since this phase processes something we know (the
nonce) and the secret information we aim to obtain (the key), it can be the target
of side-channel analysis. As is the usual case for symmetric cryptography, the
best point to attack is the non-linear S-box output of first-round permutation.
The S-box operation in Ascon takes 5-bit inputs from the sponge state and gives
5-bit outputs (Figure 2). The S-box operates column-wise, i.e., the input includes
only one bit from each word x0 to x4 at a time.

x4

x3

x2

x1

x0

S-box

y4
y3
y2
y1
y0

Fig. 2: Ascon column-wise S-box. S-box operation takes 5-bit input that includes
only one bit from each word xi and gives 5-bit output that contains one bit from
each word yi.

The Ascon S-box layer is a column-wise operation on the sponge state, ap-
plied to an individual column of the sponge state with 64 columns. One signif-
icant benefit of the Ascon S-box operation is its ability to be executed through
XOR and AND operations on xis [DEMS16]. Taking xis as the inputs of the
S-box layer and yis as the outputs of this layer, the outputs of the non-linear
S-box can be calculated as:

y0 = x0 + x1 + x2 + x3 + x1x2 + x0x1 + x1x4

y1 = x0 + x1 + x2 + x3 + x4 + x1x2 + x1x3 + x2x3

y2 = x1 + x2 + x4 + x3x4 + 1

y3 = x0 + x1 + x2 + x3 + x4 + x0x3 + x0x4

y4 = x1 + x3 + x4 + x0x1 + x1x4 = x1(1 + x0 + x4) + x3 + x4.

(2)

In our approach to target the first round of permutation, we substitute the
xi values with their original values, which consist of the public constant, the
key’s high and low parts, and the nonce’s high and low parts for x0 to x4,
respectively. By examining Eq. (2), it is evident that in y4, all components are
public except for x1 (the key’s high part). This characteristic makes y4 a practical
intermediate value for side-channel attacks. Furthermore, it is feasible to deduce
x1 using a divide-and-conquer6 strategy and retrieve x1 with 8-bit chunks. We

6 Divide-and-conquer strategy is a strategy to recover a long key by retrieving its
smaller parts separately
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use the following leakage model to recover the whole x1 in eight attacks.

Y = k
(1)
i &(255⊕ IVi ⊕M

(1)
i )⊕M

(1)
i ⊕M

(2)
i i = 0, ..., 7 (3)

To obtain the remaining key bits (x2), we use y0 or y1 (since they have non-
linear terms including x2) as the intermediate value. The other half of the key,
x1, can be taken as a known, and the recovered value can be replaced in the
selected intermediate value.

4.2 Datasets

Considering the primary goal of this research is evaluating the effectiveness of the
ensemble method for attacking Ascon primitive implementation, we use two pub-
licly available datasets7 introduced in [WP23]. The first dataset, referred to as
Ascon-Unprotected from this point, is provided using the 32-bit optimized imple-
mentation of Ascon-128 v1.2. The other dataset, referred to as Ascon-Protected,
is provided using a first-order protected implementation of Ascon. This imple-
mentation uses bit-interleaved and a specific masking countermeasure designed
to be efficient with the Ascon S-box. The C implementations by the Ascon team
are available in their GitHub repository [SDG+20]. Traces are collected using
a ChipWhisperer Lite board and an 8-bit precision oscilloscope, coupled with
the STM32F4 target running at a frequency of 7.37MHz. Both datasets contain
traces of Ascon’s first-round permutation during the initialization phase. We use
60 000 traces from the datasets; the first 50 000 traces are collected with random
keys, used for training, and 10 000 traces are collected using a fixed key, used for
the attack phase. Traces from the Ascon-Unprotected dataset have 772 samples,
and from the Ascon-Protected dataset have 1 408 samples.

4.3 Neural Network Architectures

Multilayer Perceptron (MLP) is a class of feedforward artificial neural net-
works (ANNs) that consist of at least three layers of nodes: an input layer, one
or more hidden layers, and an output layer. Each layer has one or more neurons
connected to the neurons in the following layer through weighted edges. These
neurons typically include a non-linear activation function, which allows the net-
work to learn non-linear relationships between input and output data. The MLP
learns to map input data to the correct output through an iterative optimiza-
tion algorithm that adjusts the weights of the connections by minimizing a loss
function. To minimize the loss function, ANNs mostly use gradient descent and
back-propagation. MLPs are usually used for tasks like classification and regres-
sion.

Convolutional Neural Network (CNN) is another class of feedforward
neural networks. CNNs have one or more convolutional layers followed by one
or more fully connected layers. The convolutional layers apply a set of learn-
able filters (sometimes known as kernels) to the input. Filters are simply vectors

7 https://zenodo.org/records/10229484

https://zenodo.org/records/10229484
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(in the one-dimensional convolution) or matrices (in the two-dimensional con-
volution) of coefficients that update during a process similar to that of MLPs.
An activation function is used after each convolution layer to add non-linearity.
Then, there can be a max/average pooling layer that simply reduces the spa-
tial size of the representation expanded by the filters. The network extracts the
most important features using a combination of filters and pooling layers. CNNs
are commonly used for classification, but their architecture can be adapted for
regression by altering the final layer and the loss function.

4.4 Methodology

This section provides a set of experiments to inspect the ensemble method’s
effectiveness for DLSCA. To evaluate the efficacy of ensembles, we compare
the performance of the ensemble (a group of the neural network models) with
the performance of the best model. To show that the results can be general-
ized, the experiments are conducted on two different datasets introduced in Sec-
tion 4.2(Ascon-Unprotected and Ascon-Protected). To assure that the results are
valid for various neural network topologies, we employed MLP and CNN models
(Section 4.3) combined with the leakage model introduced in Section 4.1. Using
two datasets, two neural network topologies, and a single leakage model gives
us four combinations. In each combination, we aim to retrieve x1, which is eight
bytes of the sixteen-byte secret key. We use a divide-and-conquer strategy, i.e.,
we repeat the following steps eight times for each combination, and each time,
we retrieve a sub-key of size one byte.

– Acquiring best predictor: In [WPP22], Wu et al. showed that random
search can reach neural network models with top performance when one at-
tacks relatively easy datasets. Considering this, we generate fifty different
models using random search. The range of hyperparameters for the random
search is given in Table 1). Then, we use guessing entropy to compare the
performance of these fifty models and take the model with the best per-
formance as the best model. It is worth mentioning that the selected model
is not the best possible model. Other, more advanced hyperparameter tun-
ing techniques (like reinforcement learning [RWPP21] or Bayesian optimiza-
tion [WPP22]) or searching with a wider range of hyperparameters with
more randomly generated models can lead to models with better perfor-
mance. Hence, our experiments aim not to find an optimal model, and we
only want to investigate whether the ensemble performs better than the sin-
gle best model. We report the best model’s guessing entropy (GE-Best) and
its required number of attack traces (NT-Best) as the performance of the
best model.

– Acquiring ensemble: To benefit from the ensemble method in general,
a group of neural networks that individually can learn the problem and
give predictions better than random guesses is needed. Since accuracy is
not a good metric to judge the performance of a model in the side-channel
analysis domain, we use guessing entropy to select models that perform the
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Table 1: Random search range for MLP and CNN hyperparameters.

Hyperparameter Range

MLP’s Architecture Hyperparameters

Number of neurons [30, 40, 50, 60, 70, 80, 90, 100, 120, 150]
Number of layers [2, 8], step = 1

CNN’s Architecture Hyperparameters

Number of convolution layers [2, 4], step = 1
Number of filters [4, 20], step = 2
First layer’s filter size [4, 24], step = 2

i(th) layer filter size ((i − 1)filter size)2

Stride [2, 10], step = 2
Pooling “Average”, “Max”
Pooling size [4, 10], step = 2
Pooling stride [4, 10], step = 2
Number of dense layers [2, 4], step = 1
Number of neurons in dense layers [50, 100, 150, 200, 300, 400, 500]

Common Learning Hyperparameters in MLP and CNN

Learning rate random.uniform(0.0001, 0.001)
Activation function “relu”, “tanh”, “selu”, “elu”
Optimizer “Adam”
Weight initialization “he uniform”
Batch size 128
Epochs 10

best among the randomly generated models. We take five8 models with the
smallest guessing entropy from the pool of randomly generated models to be
used in the ensemble.
The selected models do not necessarily need to find the key (reach GE = 1);
they only need to reduce the GE to small values. In Section 2.3, we have seen
that guessing entropy can be calculated by accumulating the probability that
the neural network gives for each key hypothesis over the attack traces. We
sum up the probabilities for each key hypothesis from all individual models
in the ensemble and accumulate that over the attack traces. We report the
final guessing entropy as the ensemble guessing entropy and refer to it as
GE-Ensemble. The required number of attack traces can be calculated using
the GE-Ensemble, which we call NT-Ensemble.

– Comparing the best model and the ensemble performance: The fi-
nal step is comparing the performance of the best-acquired models (GE-Best
and NT-Best) and the performance of the ensemble model (GE-Ensemble
and NT-Ensemble). The selected group of predictors for the ensemble al-
ways includes the best predictor, and improved performance means that the
ensemble method was effective.

8 This number can vary depending on the problem, the complexity of individual mod-
els, and the desired balance between performance and complexity. In our experi-
ments, we observed that five models could already offer good performance improve-
ment.
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5 Experimental Results

The objective of this section is to demonstrate the effectiveness of using the en-
semble method for side-channel analysis of the Ascon primitive implementation.
As noted in Section 1, the ensemble method has only been utilized to attack AES
primitive implementations. Thus, its effectiveness for other primitives is unclear.
We demonstrate that the ensemble technique enables successful attacks on both
unprotected and protected implementations of the Ascon primitive. Our results
confirm that the ensemble method is the most efficient technique to attack As-
con’s protected implementation so far. Moreover, the success of the ensemble
method attacking Ascon’s unprotected implementation matches the success of
a model selected through Bayesian optimization [WP23], again confirming that
the ensemble of weaker learners can match the performance of a single model
selected through an advanced hyperparameter tuning process.

5.1 Ascon-Unprotected

This section presents experimental results when attacking Ascon-Unprotected,
an unprotected software implementation of Ascon, using the ensemble method,
and compares the results with the performance of the best-found models with
random search. Figure 3a shows the evolution of guessing entropy using the
ensemble method for eight sub-keys. For each sub-key, the ensemble combines
the five best MLP neural networks selected among fifty randomly generated
ones. In contrast, Figure 3b depicts the guessing entropy evolution for the same
sub-keys but employing the best-found MLP model. Observe that the reduction
in guessing entropy is generally fast, though slightly slower for certain sub-keys.
Figure 4a offers a clearer view of the impact of using the ensemble method. The
effectiveness is most evident for key 3, where the required number of attack traces
drops from 100 to 70. However, in half of the cases, using the ensemble method
slightly increased the required number of attack traces. This observation is not
unusual in scenarios where the problem tackled by the deep neural networks is
relatively straightforward. For instance, a closer look into the performance of all
randomly generated MLPs for sub-key 4 (key 4 in Figure 3a) shows that more
than 80% of the models could reveal the key with fewer than 10 traces, indicating
that the attack is relatively easy for all the generated models. Consequently,
finding an optimal model for this sub-key does not need much effort, and using
the ensemble method does not offer additional performance benefits.

Turning to CNNs, Figure 3c and Figure 3d show the guessing entropy evo-
lution for the same eight sub-keys, using an ensemble of the five best CNNs and
the best-found CNN among fifty randomly generated ones for each sub-key. The
ensemble’s overall performance generally surpasses that of the best CNNs. How-
ever, when comparing MLP and CNN performances, it is apparent that either
the best MLP or the ensemble of MLPs is typically more effective in key recov-
ery. This observation has been mentioned in [RB22] as the “general ability of
MLP models to find the key” and the “potential ability of CNN models to find
the key”. As discussed in [RB22], a limited number of MLP neural networks are



12 A. Rezaeezade et al.

more successful in reducing guessing entropy on average than the same number
of CNN neural networks. Yet, with a more detailed architecture search, usually
the best-found CNN outperforms the best-found MLP in key recovery. A com-
parison of Figure 4a and Figure 4b reveals that the best CNN requires at least
five times more traces than the best MLP to recover a key. This observation sug-
gests that our search within the hyperparameter space detailed in Table 1 was
not detailed enough, with no CNN model coming close to the optimal solution
among the randomly generated models. However, the ensemble of CNN models
could improve the attack performance compared to the best-found CNN, indicat-
ing that the ensemble is more helpful when dealing with a group of weak models
rather than a group of powerful models. Comparing our results to the multi-task
model on the Unprotected-Ascon dataset from previous work [WP23], we can
see that the ensemble method with CNNs is on par with the multi-task model,
recovering the key with around 1 000 traces. However, the ensemble method with
MLPs can recover the key with about 100 traces, which is significantly better
than the multi-task model where for some sub-keys more than 1 000 traces were
needed.

5.2 Ascon-Protected

Next, we outline experimental results when attacking Ascon-Protected, a first-
order protected software implementation of Ascon. The experiments in this sec-
tion present a more challenging test for the efficacy of the ensemble method,
particularly because the considered dataset is not easy to break [WP23]. Fig-
ure 5a illustrates the evolution of guessing entropy using an ensemble of five
MLP neural networks. Figure 5b shows the same attack using the best-found
MLP for each sub-key. Comparing these two figures shows that the reduction in
guessing entropy using the ensemble method is much faster than the best-found
MLP. The superior performance of the ensemble method is highlighted when
analyzing the required number of attack traces. Figure 6a compares the required
number of attack traces for both the ensembles and the best MLP. Clearly, the
best MLP could only reveal sub-key 3 (key 3 in Figure 6a) and sub-key 8 (key
8 in Figure 6a), whereas the ensemble of MLPs successfully recovered all the
sub-keys except sub-key 2 (key 2 in Figure 6a).

Similar observations apply to the CNN models, as shown in Figure 5c and
Figure 5d. The ensemble method allows for the reduction of all sub-keys guessing
entropy to GE = 1, except for sub-key 4 (key 4 in Figure 5c), while none of the
best-found CNNs in the pools of randomly generated CNN models could reduce
GE to one. The stark contrast is further evident in Figure 6b.

Considering the results from the ensemble learning on the Ascon-Protected
and Ascon-Unprotected datasets, we can conclude that the ensemble method is
significantly more effective for challenging datasets, where finding optimal mod-
els is more difficult. This conclusion can be supported by the similar performance
of both the ensembles and the best-found MLP model in the Ascon-Unprotected
dataset and the considerably improved results using the ensemble method in the
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(a) Ensemble of five MLPs. (b) The best randomly generated MLP.

(c) Ensemble of five CNNs. (d) The best randomly generated CNN.

Fig. 3: Guessing entropy for Ascon-Unprotected. On top, each color shows the
evolution of guessing entropy for ensemble of five MLPs (a) and the best-found
MLP (b) selected from a pool with fifty randomly generated MLP for each
sub-key. On the bottom, each color shows the evolution of guessing entropy for
ensemble of five CNNs (c) and the best-found CNN (d) among fifty randomly
generated ones for each sub-key.

Ascon-Protected dataset. The difference in the effectiveness of using the ensem-
ble method in these two datasets stems from the difficulty of finding optimal
and sub-optimal neural network models. Since it is relatively easy to find pow-
erful models for the Ascon-Unprotected dataset, the ensemble method does not
offer much improvement. In contrast, in the case of Ascon-Protected, almost
all the best-found models performed poorly. However, combining those weak
models through the ensemble method could still significantly improve the attack
performance.

It is worth mentioning that using an ensemble of good models is more effective
compared to an ensemble of poor models (as expected). While the ensemble
method can offer better performance even using poor models, combining good
models provides more performance benefits [MK23]. One should consider that
with a good model, we do not mean an optimal model but a sub-optimal one
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(a) Unprotected-Ascon-MLP. (b) Unprotected-Ascon-CNN.

Fig. 4: The required number of attack traces with and without ensemble method
in the Ascon-Unprotected dataset. On the left side, the required number of attack
traces using the best MLP (green) and the ensemble of five MLPs (orange) is
compared. On the right side, the required number of attack traces using the best
CNN (green) and the ensemble of five CNNs (orange) is compared.

that can still find the key or reduce the guessing entropy to small values. In
the case of the Ascon-Protected dataset, most of the best-found models in our
experiments were not good enough to break the target. To find individual models
with better performance, we could extend the range of the hyperparameters
outlined in Table 1 and increase the number of models in the random models’
pool to increase the chance of finding better models.

The result from our ensemble method on the Ascon-Protected dataset signif-
icantly improved over the previous work [WP23], where the authors could not
recover all the bits of the key with their multi-task model. We can recover the
key with less than 3 000 traces using the ensemble method.

6 Conclusions and Future Work

This research investigated the effectiveness of applying an ensemble method to
attack both protected and unprotected implementations of the Ascon primitive.
While the ensemble method was considered before in DLSCA, its effectiveness
for symmetric-key primitives was only validated using AES-based datasets, lead-
ing to questions about its applicability to primitives with different operational
logic. Our research demonstrated the successful application of ensemble methods
to Ascon implementations. Besides, using the ensemble of neural network mod-
els, we improved state-of-the-art attacks on Ascon’s protected implementation,
underscoring that future implementations should consider the current vulnera-
bilities and that stronger countermeasures are needed to prevent DLSCA. Our
experimental results show that with an ensemble of (only) five neural network
models, it is possible to extract the secret key with less than 3 000 traces from
the protected implementation and, at most, with 100 traces from the unpro-
tected implementation. One possible future work in this direction is using better
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(a) Protected-Ascon-MLP. (b) Protected-Ascon-MLP.

(c) Protected-Ascon-CNN. (d) Protected-Ascon-CNN.

Fig. 5: Guessing entropy for Ascon-Protected. On top, each color shows the evo-
lution of guessing entropy for ensemble of five MLPs (a) and the best-found MLP
(b) selected from a pool with fifty randomly generated MLP for each sub-key.
On the bottom, each color shows the evolution of guessing entropy for ensemble
of five CNNs (c) and the best-found CNN (d) among fifty randomly generated
ones for each sub-key.

(and more) models for the ensemble, where we stipulate it can improve the final
performance even further.

As the next step, we intend to investigate whether an ensemble of neural
networks of different types (ensemble of different topologies like MLP and CNN)
trained using different leakage models can improve the attack performance. Our
intuition is that a model with a particular topology trained with the same leakage
model tends to generate less diverse predictions than models with a different
topology trained with different leakage models. Indeed, when we use a dataset
and a specific combination of neural network topologies and leakage models, the
acquired models are less diverse and mostly focus on similar leakage (points of
interest). By integrating diverse neural network types and leakage models into
our ensemble, we aim to extract a richer spectrum of information from individual
traces, potentially leading to more potent and efficient DLSCA.
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(a) Protected-Ascon-MLP. (b) Protected-Ascon-CNN.

Fig. 6: The required number of attack traces with and without ensemble method
in the Ascon-Protected dataset. On the left side, the required number of attack
traces using the best MLP (green) and the ensemble of five MLPs (orange) is
compared. On the right side, the required number of attack traces using the best
CNN (green) and the ensemble of five CNNs (orange) is compared.
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plexing the sponge: single-pass authenticated encryption and other appli-
cations. In Selected Areas in Cryptography: 18th International Workshop,
SAC 2011, Toronto, ON, Canada, August 11-12, 2011, Revised Selected
Papers 18, pages 320–337. Springer, 2012.

CDP17. Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neu-
ral networks with data augmentation against jitter-based countermeasures
- profiling attacks without pre-processing. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28,
2017, Proceedings, volume 10529 of Lecture Notes in Computer Science,
pages 45–68. Springer, 2017.

CRR02. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
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