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Abstract. At EUROCRYPT 2017, Grassi et al. proposed the multiple-
of-8 property for 5-round AES, where the number n of right pairs is a
multiple of 8. At ToSC 2019, Boura et al. generalized the multiple-of
property for a general SPN block cipher and applied it to block cipher
SKINNY.
In this paper, we present that n is not only a multiple but also a fixed
value for SKINNY. Unlike the previous proof of generalization of multiple-
of property using equivalence class, we investigate the propagation of
the set to compute the exact number n. We experimentally verified that
presented property holds. We extend this property one round more us-
ing the lack of the whitening key on the SKINNY and use this property
to construct 6-round distinguisher on SKINNY-64 and SKINNY-128. The
probability of success of both distinguisher is almost 1 and the total com-
plexities are 216 and 232 respectively. We verified that this property only
holds for SKINNY, not for AES and MIDORI, and provide the conditions
under which it exists for AES-like ciphers.

Keywords: Multiple-of Property · Structural-Differential Property · SKINNY
· AES-like cipher.

1 Introduction

SKINNY is a lightweight tweakable block cipher presented at CRYPTO 2016 [1].
It has flexible block, tweak size and has a structure which internal state is rep-
resented as a 4× 4 square array of cells. It provides good performance on both
hardware and software implementations. It can also benefit from very efficient
threshold implementations for side-channel protection.

The multiple-of property states that the number n of right pairs is multiple
of a natural number other than 1 and was presented first for 5-round AES [8].
Boura et al. [4] generalized the multiple-of property for general SPN(Substitution
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Table 1. Comparisons of Distinguishers on 6-Round SKINNY-64 and SKINNY-128

Cryptanalysis Block Size
Distinguished Total Probability of Success

Source
Rounds Complexity of the Distinguisher

64-bit
5

220 0.75
[4]

Multiple-of 128-bit 240 0.75

property 64-bit
5

216 0.875
Section 3

128-bit 232 0.875

Fixed-value 64-bit
6

216 0.99
Section 5

property 128-bit 232 0.99

Permutation Network) block cipher and applied to various SPN block ciphers.
Their work also showed that the multiple-of property holds for 5-round SKINNY.

In this paper, we present that the number n of right pairs in the multiple-of
property is not only a multiple but also a fixed value for SKINNY. In particular, n
is significantly different from the expected value for random permutation. Unlike
the previous proof of generalization of multiple-of property, we investigate the
propagation of the set to compute the exact n. Furthermore, we experimentally
verified that proposed property holds.

We extend this property by one round, utilizing the absence of the whiten-
ing key on the SKINNY. Then, we construct 6-round distinguishers based on this
property. The distinguisher on 6-round SKINNY-128 distinguishes from random
permutation with 232 total complexity and a probability of success of this distin-
guisher of almost 1, and the distinguisher on 6-round SKINNY-64 distinguishes
from random permutation with 216 total complexity and a probability of success
of this distinguisher of almost 1. Our results are summarized in Table 1.

We present that this property holds for SKINNY but not for AES and MIDORI.
We also investigate the propagation of the set to compute the exact n for AES
and MIDORI. We generalize this property for AES-like SPN block cipher which
use matrix multiplication. In conclusion, we show that this property is related
to the branch number of the MixColumns matrix.

The rest of the paper is organized as follows. A description of the SKINNY and
basic definitions on the multiple-of property are recalled in Section 2. Section 3
defines subspaces and the subspace trail for SKINNY. Section 4 then present that
the number of right pairs in the multiple-of property is not only a multiple but
also a fixed value for SKINNY. Section 5 constructs distinguishers on 6 rounds of
SKINNY. Section 6 shows that the property hold only for SKINNY but not for AES
and MIDORI, and generalize this property for AES-like SPN block cipher which
use matrix multiplication. Lastly, the conclusion is given in Section 7.
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Fig. 1. The SKINNY round function applies five different transformations: SubCells(SC),
AddConstants(AC), AddRoundTweakey(ART), ShiftRows(SR), and MixColumns(MC)

2 Preliminaries

2.1 Symbols and Notations

We denote the size of S-box by d. Let K = Fd
2. We define Kl as the set of all

l-vectors over K for l > 0. We define Km×k as the set of all m× k-matrices over
K for m, k > 0. If l = m× k, we consider that Kl and Km×k are equivalent. We
call the element of the array a cell.

A subspace of Kl is a subset V ⊆ Kl satisfying: non-emptiness, closure under
addition and closure under scalar multiplication. We denote the canonical basis
of Km×k with 1 in the i-th row, j-th column and 0 in all other cells by ei,j for
i ∈ {0, ...,m − 1} and j ∈ {0, ..., k − 1}. We denote the linear space formed by
all linear combinations with coefficients in K of the vectors v0, ...,vn ∈ Kl by
< v0, ...,vn >. A coset of V ⊆ Kl is a set of the form V⊕ a = {v ⊕ a | v ∈ V}
where a ∈ Kl, i.e., affine subspace of Kl.

2.2 SKINNY

SKINNY was proposed at CRYPTO 2016 [2]. SKINNY is denoted by SKINNY-64

for 64-bit block size and by SKINNY-128 for 128-bit block size, respectively. It is
convenient to represent a state vector of SKINNY as a 4× 4 array whose each cell
is a nibble (in SKINNY-64) or a byte (in SKINNY-128).

The round function of SKINNY is consisted of five operations in the following
order: SubCells, AddConstants, AddRoundTweakey, ShiftRows and MixColumns
(see Figure 1).

SubCells(SC). A d-bit invertible S-box is applied to every cell of the cipher in-
ternal state(d = 4 for SKINNY-64 and d = 8 for SKINNY-128).

AddConstants(AC). Round constants are bitwise exclusive-ored to first, second
and third cells of the first column of the cipher internal state.

AddRoundTweakey(ART). The first and second rows of all tweakey arrays are ex-
tracted and bitwise exclusive-ored to first and second rows of the cipher internal
state.

ShiftRows(SR). Second, third, and fourth rows are rotated by 1, 2 and 3 positions
to the right, respectively.
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MixColumns(MC). Each column of internal state is multiplied by the following
binary matrix M : 

1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0

 .

The number of rounds depends on the block size nb and the tweakey size
nt. When nb = 64, it uses 32 rounds for nt = nb, 36 rounds for nt = 2nb and
40 rounds for nt = 3nb, and when nb = 128, it uses 40 rounds for nt = nb, 48
rounds for nt = 2nb and 56 rounds for nt = 3nb.

Since the property proposed in this paper are independent of the key schedule,
the description of the key schedule is omitted.

2.3 Subspace Trail

The notion of the subspace trail cryptanalysis was proposed by Grassi et al. at
ToSC 2016 [7] as a generalization of invariant subsapce [9] [10] and was applied
to AES [5] and PRINCE [3] in [7] and [6] respectively.

Definition 1 (Subspace trail [7]). Let F : Kl → Kl be any map. Two
linear subspaces U,V ⊆ Kl form a subspace trail if

∀a ∈ Kl,∃b ∈ Kl : F(U⊕ a) ⊆ V⊕ b,

which is denoted by U
F
−−⇒ V. We call exact subspace trail if

∀a ∈ Kl,∃b ∈ Kl : F(U⊕ a) = V⊕ b.

For example, we have trivial subspace trails {0}
F
−−⇒ {0} and U

F
−−⇒ Kl. In this

paper, we only consider exact subspace trails.

2.4 Multiple-of Property for SKINNY

The notion of the multiple-of property was proposed by Grassi et al. at EU-
ROCRYPT 2017 [8] as an efficient method for constructing key independent
distinguishers, and was subsequently generalized for a general SPN block ci-
pher [4]. In this study, we focus on the multiple-of property for a general SPN
block cipher.

Let U and W be subspaces of Kl and R be the round function of the block
cipher. R5 means 5-round encryption function for block cipher. For any 5-round
SPN block cipher, the multiple-of property is defined as follows.

Definition 2 (Multiple-of property). Let a ∈ Kl. We define

n = #{{p0, p1} | ∀p0, p1 ∈ U⊕ a,R5(p0)⊕ R5(p1) ∈ W}.

If n is a multiple of a natural number other than 1, then the 5-round SPN cipher
is called to have the multiple-of property. We denote a right pair as an unordered
pair that satisfies this property.
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For example, the multiple-of-8 property exists for the 5-round AES [8]. An
example of multiple-of property for SKINNY is given follow [4].

Example 1 ( [4]). Let R be the round function of SKINNY. There exist two 2-

round subspace trails, Ui

R
−−⇒ Vi

R
−−⇒ Wi for i ∈ {0, 1} where

U0 = < e1,1, e1,2, e1,3, e3,1, e3,3 >,

V0 =R(U0),

W0 =R(V0)

and

U1 =<e0,3, e1,0, e1,2, e1,3, e2,1, e2,3, e3,0, e3,1, e3,2, e3,3 >,

V1 = R(U1),

W1 = R(V1).

Then

#{{p0, p1} | ∀p0, p1 ∈ U0 ⊕ a, R5(p0)⊕ R5(p1) ∈ W1} ≡ 0 mod 4.

Example 1 is satisfied with both SKINNY-64 and SKINNY-128 respectively.
This can be used to construct 5-round distinguisher on SKINNY. The distin-
guisher on 5-round SKINNY-64 distinguishes from random permutation with 220

chosen plaintexts and probability of success of this distinguisher (1−2−2) = 0.75,
whereas the distinguisher on 5-round SKINNY-128 distinguishes from random
permutation with 240 chosen plaintexts and probability of success of this distin-
guisher (1− 2−2) = 0.75.

3 Subspace trail of SKINNY

In this Section, we define subspaces of K4×4 for SKINNY. Moreover, we propose
subspace trail for SKINNY to compute the exact number n of right pairs.

Definition 3. For i ∈ {0, ..., 3}, with indices computed modulo 4, the column
spaces Ci, the diagonal spaces Di, the inverse-diagonal spaces IDi and are mixed
spaces Mi are defined as

Ci = < e0,i, e1,i, e2,i, e3,i >,

Di =SR(Ci) =< e0,i, e1,i+1, e2,i+2, e3,i+3 >,

IDi =SR−1(Ci) =< e0,i, e1,i−1, e2,i−2, e3,i−3 >,

Mi =MC(Di).

For example, if x0, x1, x2, x3 ∈ K,
x0 0 0 0

x1 0 0 0

x2 0 0 0

x3 0 0 0

 ∈ C0,


x0 0 0 0

0 x1 0 0

0 0 x2 0

0 0 0 x3

 ∈ D0,


x0 0 0 0

0 0 0 x1

0 0 x2 0

0 x3 0 0

 ∈ ID0,


x0 0 x2 x3

0 0 0 0

x0 x1 x2 0

x0 0 x2 0

 ∈ M0.
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Fig. 2. 2-round Subspace Trail of SKINNY

If I ⊆ {0, 1, 2, 3},

CI =
⊕
i∈I

Ci,DI =
⊕
i∈I

Di, IDI =
⊕
i∈I

IDi,MI =
⊕
i∈I

Mi.

We propose the exact subspace trail for SKINNY by using the subspaces of
Definition 3.

Lemma 1. Let I ⊆ {0, 1, 2, 3} and R be the round function of SKINNY. Then

IDI

R
−−⇒ CI

R
−−⇒ MI

is exact subspace trail for SKINNY.

For example, a case of I = {0} can see in Figure 2. Lemma 1 is satisfied with
both SKINNY-64 and SKINNY-128, simultaneously. We propose the new example
of the multiple-of property for SKINNY that is different from Example 1 by using
Definition 3.

Example 2. Let I ⊆ {0, 1, 2, 3}, J ⊆ {0, 1, 2, 3}, |I| = 1, 1 ≤ |J | ≤ 3 and
a ∈ K4×4. Let R be the round function of SKINNY. Then we can have

#{{p0, p1} | ∀p0, p1 ∈ IDI ⊕ a,R5(p0)⊕ R5(p1) ∈ MJ} ≡ 0 mod 8.

Example 2 is also satisfied with both SKINNY-64 and SKINNY-128, simulta-
neously. This can be used to construct 5-round distinguisher. The distinguisher
on 5-round SKINNY-64 distinguishes from random permutation with 216 chosen
plaintexts and probability of success of this distinguisher (1 − 2−3) = 0.875,
whereas the distinguisher on 5-round SKINNY-128 distinguishes from random
permutation with 232 chosen plaintexts and probability of success of this dis-
tinguisher (1 − 2−3) = 0.875. So Example 2 can distinguish between SKINNY

and random permutation with a higher probability of success and fewer chosen
plaintexts than Example 1.
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4 The Exact Computation of the multiple-of property for
5-round SKINNY

4.1 The Exact Computation of the multiple-of property for 5-round
SKINNY-128

In this section, we provide the exact computation of the number of right pairs.
The computations are given in Theorem 1 and Theorem 2.

Theorem 1. Let I ⊆ {0, 1, 2, 3}, J ⊆ {0, 1, 2, 3}, |I| = 1, |J | = 3 and a ∈ K4×4.
Let R be the round function of SKINNY-128. We define

n = #{{p0, p1} | ∀p0, p1 ∈ IDI ⊕ a,R5(p0)⊕ R5(p1) ∈ MJ}.

Then n = (216 − 1) · 231 or n = (28 − 1) · 231.

By Lemma 1, every element of a coset of IDI corresponds to every element
of a coset of MI after 2 rounds. This statement holds also in the similar way in
the reverse direction: every element of MJ corresponds to every element of IDJ

before 2 rounds. Thus it is sufficient to prove Lemma 2 in order to prove the
Theorem 1.

Lemma 2. Let I ⊆ {0, 1, 2, 3}, J ⊆ {0, 1, 2, 3}, |I| = 1, |J | = 3 and a ∈ K4×4.
Let R be the round function of SKINNY-128. We define

n = #{{p0, p1} | ∀p0, p1 ∈ MI ⊕ a,R(p0)⊕ R(p1) ∈ IDJ}.

Then n = (216 − 1) · 231 or n = (28 − 1) · 231.

Proof. We consider only the case of I = {0}. The other cases of I can be proved
in the similar way.

Since MI ⊕ a = MC(DI ⊕ b) for b = MC−1(a), considering all elements of
MI ⊕ a is equivalent to considering all elements of DI ⊕ b. We define X, Y , Z
and W as the set that has all 28 possible 8-bit elements. We define ci as constant
element for i > 0. Then, DI ⊕ b, composed of 232 elements, can be represented
by 

X c4 c7 c10

c1 Y c8 c11

c2 c5 Z c12

c3 c6 c9 W

 .

After MC operation, MI ⊕ a = MC(DI ⊕ b) can be represented by
X ⊕ c13 c17 Z ⊕ c21 W ⊕ c25

X ⊕ c14 c18 c22 c26

c15 Y ⊕ c19 Z ⊕ c23 c27

X ⊕ c16 c20 Z ⊕ c24 c28

 .
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Let S8 be a S-box of SKINNY-128. For i > 0, we define Xi, Y i, Zi and W i

as the set which depends on X, Y , Z and W , respectively. For example, X1 =
S8(X ⊕ c13). After SC operation, SC(MI ⊕ a) can be represented by

X1 c30 Z1 W 1

X2 c31 c33 c34

c29 Y 1 Z2 c35

X3 c32 Z3 c36

 .

Because AC adds round constants to only first, second and third cells of first
column and ART adds round tweakey to only first and second rows, after AC and
ART operation, ART ◦ AC ◦ SC(MI ⊕ a) can be represented by

X1 ⊕ c37 c40 Z1 ⊕ c42 W 1 ⊕ c43

X2 ⊕ c38 c41 c43 c45

c39 Y 1 Z2 c35

X3 c32 Z3 c36

 .

After SR operation, SR ◦ ART ◦ AC ◦ SC(MI ⊕ a) can be represented by
X1 ⊕ c37 c40 Z1 ⊕ c42 W 1 ⊕ c43

c45 X2 ⊕ c38 c41 c43

Z2 c35 c39 Y 1

c32 Z3 c36 X3

 .

So after MC operation, R(MI ⊕ a) = MC ◦ SR ◦ ART ◦ AC ◦ SC(MI ⊕ a) can be
represented as

X1 ⊕ Z2 ⊕ c46 Z3 ⊕ c50 Z1 ⊕ c54 X3 ⊕ Y 1 ⊕W 1 ⊕ c58

X1 ⊕ c47 c51 Z1 ⊕ c55 W 1 ⊕ c59

Z2 ⊕ c48 X2 ⊕ c52 c56 Y 1 ⊕ c60

X1 ⊕ Z2 ⊕ c49 c53 Z1 ⊕ c57 Y 1 ⊕ c61

 .

It is one round SKINNY encryption of MI ⊕ a.
The remainder of the proof is to count the number n of right pairs for each

case of J . We consider only the cases of J = {1, 2, 3} and J = {0, 1, 2}. The
other cases of J can be proved in the similar way.

Let Jc = {0, 1, 2, 3} − J . For R(p0) ⊕ R(p1) ∈ IDJ , J
c inverse diagonals of

R(p0)⊕ R(p1) is zero. To be this, Jc inverse diagonals of R(p0) and R(p1) must
be the same.
Case 1 : J = {1, 2, 3}.

Jc inverse diagonals of R(MI ⊕ a) is represented by

(X1 ⊕ Z2 ⊕ c46,W 1 ⊕ c59, c56, c53).

Let x1
0, x

1
1 ∈ X1, z20 , z

2
1 ∈ Z2 and w1

0, w
1
1 ∈ W 1. For p0, p1 ∈ MI ⊕ a, Jc inverse

diagonals of R(p0) and R(p1) can be represented by

(x1
0 ⊕ z20 ⊕ c46, w1

0 ⊕ c59, c56, c53)
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and

(x1
1 ⊕ z21 ⊕ c46, w1

1 ⊕ c59, c56, c53).

For Jc inverse diagonal of R(p0) and R(p1) to be the same, it must be

x1
0 ⊕ z20 =x1

1 ⊕ z21 ,

w1
0 =w1

1.

Let x0, x1 ∈ X, z0, z1 ∈ Z and w0, w1 ∈ W . For i ∈ {0, 1}, since x1
i = S8(xi ⊕

c13), z2i = S8(zi ⊕ c23) and w1
i = S8(wi ⊕ c25), we have

S8(x0 ⊕ c13)⊕ S8(z0 ⊕ c23) =S8(x1 ⊕ c13)⊕ S8(z1 ⊕ c23),

S8(w0 ⊕ c25) =S8(w0 ⊕ c25).

Since S8 is invertible, we have

S8(x0 ⊕ c13)⊕ S8(z0 ⊕ c23) =S8(x1 ⊕ c13)⊕ S8(z1 ⊕ c23),

w0 =w1.
(1)

For any element (x0, y0, z0, w0) of set (X,Y, Z,W ), there are exactly 216 − 1
other elements (x1, y1, z1, w1) that satisfy (1). There are 232 possible values for
(x0, y0, z0, w0) and except for reordering, the number of right pairs is always
(216 − 1) · 231.
Case 2 : J = {0, 1, 2}.

Case 2 can also be proved by the similar way with Case 1. Jc inverse diagonals
of R(MI ⊕ a) is represented by

(X3 ⊕ Y 1 ⊕W 1 ⊕ c58, Z1 ⊕ c55, X2 ⊕ c52, X1 ⊕ Z2 ⊕ c49).

For positive integer i and j, let xj
i ∈ Xj, yji ∈ Y j, zji ∈ Zj and wj

i ∈ W j. For
p0, p1 ∈ MI ⊕ a, Jc inverse diagonals of R(p0) and R(p1) can be represented by

(x3
0 ⊕ y10 ⊕ w1

0 ⊕ c58, z10 ⊕ c55, x2
0 ⊕ c52, x1

0 ⊕ z20 ⊕ c49)

and

(x3
1 ⊕ y11 ⊕ w1

1 ⊕ c58, z11 ⊕ c55, x2
1 ⊕ c52, x1

1 ⊕ z21 ⊕ c49).

For Jc inverse diagonals of R(p0) and R(p1) to be the same, it must be

x3
0 ⊕ y10 ⊕ w1

0 =x3
1 ⊕ y11 ⊕ w1

1,

z10 =z11 ,

x2
0 =x2

1,

x1
0 ⊕ z20 =x1

1 ⊕ z21 .
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For i ∈ {0, 1}, let xi ∈ X, yi ∈ Y , zi ∈ Z and wi ∈ W . Since

x1
i =S8(xi ⊕ c13),

x2
i =S8(xi ⊕ c14),

x3
i =S8(xi ⊕ c16),

y1i =S8(yi ⊕ c19),

z1i =S8(zi ⊕ c21),

z2i =S8(zi ⊕ c23),

w1
i =S8(wi ⊕ c25),

we have

S8(x0 ⊕ c16)⊕ S8(y0 ⊕ c19)⊕ S8(w0 ⊕ c25) =S8(x1 ⊕ c16)⊕ S8(y1 ⊕ c19)⊕ S8(w1 ⊕ c25),

S8(z0 ⊕ c21) =S8(z1 ⊕ c21),

S8(x0 ⊕ c14) =S8(x1 ⊕ c14),

S8(x0 ⊕ c13)⊕ S8(z0 ⊕ c23) =S8(x1 ⊕ c13)⊕ S8(z1 ⊕ c23).

Since S8 is invertible, we have

x0 =x1,

z0 =z1,

S8(y0 ⊕ c19)⊕ S8(w0 ⊕ c25) =S8(y1 ⊕ c19)⊕ S8(w1 ⊕ c25).

(2)

For any element (x0, y0, z0, w0) of set (X,Y, Z,W ), there are exactly 28 − 1
other elements (x1, y1, z1, w1) that satisfy (2). There are 232 possible values for
(x0, y0, z0, w0) and except for reordering, the number of right pairs is always
(28 − 1) · 231.

In all cases, as a result, n = (216 − 1) · 231 or n = (28 − 1) · 231. Values of n
depends on I and J are summarized in Table 2.

Since Lemma 2 is proved, this finally proves the Theorem 1. Theorem 1 is
for the case |J | = 3, whereas Theorem 2 is for the case |J | = 2.

Theorem 2. Let I ⊆ {0, 1, 2, 3}, J ⊆ {0, 1, 2, 3}, |I| = 1, |J | = 2 and a ∈ K4×4.
Let R be the round function of SKINNY-128. We define

n = #{{p0, p1} | ∀p0, p1 ∈ IDI ⊕ a,R5(p0)⊕ R5(p1) ∈ MJ}.

Then n = (28 − 1) · 231 or n = 0.

Theorem 2 can be proved in a similar way with the proof of Theorem 1. All
results of the cases of I and J are summarized in Table 3.
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Table 2. The number n of right pairs for given I, J with |I| = 1, |J | = 3 for SKINNY-128

I J Jc n

{0} {1, 2, 3} {0} (216 − 1) · 231

{0} {0, 2, 3} {1} (28 − 1) · 231

{0} {0, 1, 3} {2} (216 − 1) · 231

{0} {0, 1, 2} {3} (28 − 1) · 231

{1} {1, 2, 3} {0} (28 − 1) · 231

{1} {0, 2, 3} {1} (216 − 1) · 231

{1} {0, 1, 3} {2} (28 − 1) · 231

{1} {0, 1, 2} {3} (216 − 1) · 231

{2} {1, 2, 3} {0} (216 − 1) · 231

{2} {0, 2, 3} {1} (28 − 1) · 231

{2} {0, 1, 3} {2} (216 − 1) · 231

{2} {0, 1, 2} {3} (28 − 1) · 231

{3} {1, 2, 3} {0} (28 − 1) · 231

{3} {0, 2, 3} {1} (216 − 1) · 231

{3} {0, 1, 3} {2} (28 − 1) · 231

{3} {0, 1, 2} {3} (216 − 1) · 231

4.2 The Exact Computation of the multiple-of property for 5-round
SKINNY-64

The case for SKINNY-64 can be derived similarly to the case for SKINNY-128.
It can be proved in the similar way as Theorem 1, only that the size of set is
different from SKINNY-128 and hence the value of n changes accordingly. The
exact computations for SKINNY-64 that we present in this section are Theorem
3 and Theorem 4.

Theorem 3 and Theorem 4 can be proved in the similar way as Theorem 1,
so we omit their proofs. All results of their cases of I and J are summarized in
Table 4 and Table 5. Theorem 3 is for the case |J | = 3 in SKINNY-64, whereas
Theorem 4 is for the case |J | = 2 in SKINNY-64.

Theorem 3. Let I ⊆ {0, 1, 2, 3}, J ⊆ {0, 1, 2, 3}, |I| = 1, |J | = 3 and a ∈ K4×4.
Let R denote the round function of SKINNY-64. We define

n = #{{p0, p1} | ∀p0, p1 ∈ IDI ⊕ a,R5(p0)⊕ R5(p1) ∈ MJ}.

Then n = (28 − 1) · 215 or n = (24 − 1) · 215.

Theorem 4. Let I ⊆ {0, 1, 2, 3}, J ⊆ {0, 1, 2, 3}, |I| = 1, |J | = 2 and a ∈ K4×4.
Let R denote the round function of SKINNY-64. We define

n = #{{p0, p1} | ∀p0, p1 ∈ IDI ⊕ a,R5(p0)⊕ R5(p1) ∈ MJ}.

Then n = (24 − 1) · 215 or n = 0.
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Table 3. The number n of right pairs for given I, J with |I| = 1, |J | = 2 for SKINNY-128

I J Jc n

{0} {2, 3} {0, 1} 0

{0} {1, 3} {0, 2} 0

{0} {1, 2} {0, 3} 0

{0} {0, 3} {1, 2} (28 − 1) · 231

{0} {0, 2} {1, 3} 0

{0} {0, 1} {2, 3} 0

{1} {2, 3} {0, 1} 0

{1} {1, 3} {0, 2} 0

{1} {1, 2} {0, 3} 0

{1} {0, 3} {1, 2} 0

{1} {0, 2} {1, 3} 0

{1} {0, 1} {2, 3} (28 − 1) · 231

{2} {2, 3} {0, 1} 0

{2} {1, 3} {0, 2} 0

{2} {1, 2} {0, 3} (28 − 1) · 231

{2} {0, 3} {1, 2} 0

{2} {0, 2} {1, 3} 0

{2} {0, 1} {2, 3} 0

{3} {2, 3} {0, 1} (28 − 1) · 231

{3} {1, 3} {0, 2} 0

{3} {1, 2} {0, 3} 0

{3} {0, 3} {1, 2} 0

{3} {0, 2} {1, 3} 0

{3} {0, 1} {2, 3} 0
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Table 4. The number n of right pairs for given I, J with |I| = 1, |J | = 3 for SKINNY-64

I J Jc n

{0} {1, 2, 3} {0} (28 − 1) · 215

{0} {0, 2, 3} {1} (24 − 1) · 215

{0} {0, 1, 3} {2} (28 − 1) · 215

{0} {0, 1, 2} {3} (24 − 1) · 215

{1} {1, 2, 3} {0} (24 − 1) · 215

{1} {0, 2, 3} {1} (28 − 1) · 215

{1} {0, 1, 3} {2} (24 − 1) · 215

{1} {0, 1, 2} {3} (28 − 1) · 215

{2} {1, 2, 3} {0} (28 − 1) · 215

{2} {0, 2, 3} {1} (24 − 1) · 215

{2} {0, 1, 3} {2} (28 − 1) · 215

{2} {0, 1, 2} {3} (24 − 1) · 215

{3} {1, 2, 3} {0} (24 − 1) · 215

{3} {0, 2, 3} {1} (28 − 1) · 215

{3} {0, 1, 3} {2} (24 − 1) · 215

{3} {0, 1, 2} {3} (28 − 1) · 215

5 Distinguishers for 6-round SKINNY

5.1 One round extension of the property

As is well known, SKINNY does not have the whitening key. Then we can extend
the property we presented by one round. This can be achieved by changing the
order of operations in the SKINNY round function and using equivalent key.

The round function of SKINNY R can be represented asMC◦SR◦ART◦AC◦SC.
For a round tweakey rtk and a round constant rc, let the equivalent round
tweakey be MC◦SR(rtk) and the equivalent constant be MC◦SR(rc). Let EqART
be the equivalent round tweakey addition operation and EqAC be the equivalent
constant addition operation. Then, The round function R of SKINNY also can be
represented as EqART ◦ EqAC ◦MC ◦ SR ◦ SC.

The 6-round SKINNY can be derived as follows

R6 =(EqART ◦ EqAC ◦MC ◦ SR ◦ SC)6

=(EqART ◦ EqAC ◦MC ◦ SR ◦ SC)5

◦ EqART ◦ EqAC ◦MC ◦ SR ◦ SC.

Here, (EqART ◦ EqAC ◦MC ◦ SR ◦ SC)5 ◦ EqART ◦ EqAC satisfies the fixed-value
property we presented for input subspace IDI and output subspace MJ where
I, J ⊂ {0, 1, 2, 3}. For a given subspace IDI , the inverse of MC ◦ SR ◦ SC can
be computed because there is no secret information, so R6 has the fixed-value
property.
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Table 5. The number n of right pairs for given I, J with |I| = 1, |J | = 2 for SKINNY-64

I J Jc n

{0} {2, 3} {0, 1} 0

{0} {1, 3} {0, 2} 0

{0} {1, 2} {0, 3} 0

{0} {0, 3} {1, 2} (24 − 1) · 215

{0} {0, 2} {1, 3} 0

{0} {0, 1} {2, 3} 0

{1} {2, 3} {0, 1} 0

{1} {1, 3} {0, 2} 0

{1} {1, 2} {0, 3} 0

{1} {0, 3} {1, 2} 0

{1} {0, 2} {1, 3} 0

{1} {0, 1} {2, 3} (24 − 1) · 215

{2} {2, 3} {0, 1} 0

{2} {1, 3} {0, 2} 0

{2} {1, 2} {0, 3} (24 − 1) · 215

{2} {0, 3} {1, 2} 0

{2} {0, 2} {1, 3} 0

{2} {0, 1} {2, 3} 0

{3} {2, 3} {0, 1} (24 − 1) · 215

{3} {1, 3} {0, 2} 0

{3} {1, 2} {0, 3} 0

{3} {0, 3} {1, 2} 0

{3} {0, 2} {1, 3} 0

{3} {0, 1} {2, 3} 0
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Thus, the fixed-value property for 5-round SKINNY can be extended to 6
rounds, and it holds for both SKINNY-64 and SKINNY-128, regardless of block
size.

5.2 Distinguishers for 6-round SKINNY-128

By combining Theorem 1 and Theorem 2 with one round extension each, we can
construct distinguishers for 6-round SKINNY-128. We can choose 232 plaintexts
that are active on one inverse diagonal and constant on the other inverse diag-
onal after one round. Since the matrix M of MC is binary matrix, plaintexts
are easy to choose. Then, for 232 ciphertexts after 6-round SKINNY encryption
corresponding to 232 chosen plaintexts, the number of pairs whose difference is
an element of MJ is (216−1) ·231 or (28−1) ·231 when |J | = 3, and (28−1) ·231
or 0 when |J | = 2.

Since MJ = MC(DJ), an easy way to check that the difference of a pair of
ciphertexts is an element of MJ is to check that the difference of the values of
applying the MC−1 operation to each ciphertext is an element of DJ .

For the random permutation, the expected value of n is 231 when |J | = 3 and
2−1 when |J | = 2. To construct a distinguisher with high probability of success,
we choose a J such that n is (216−1)·231 when |J | = 3 and n is (28−1)·231 when
|J | = 2. Then we can construct a distinguisher that distinguishes SKINNY-128

from the random permutation with a probability of success of almost 1. This
distinguisher can distinguish SKINNY-128 from the random permutation with
more better probability of success than Example 1 and Example 2 which use the
multiple-of property.
Time Complexity. First, since 232 one round SKINNY-128 round functions are
used to form the plaintext structure, this process requires a time complexity of
1
6 ·2

32 ≈ 229.4 6-round SKINNY-128 encryption. Second, encrypting 232 plaintexts
requires 232 6-round SKINNY-128 encryption. Third, we need to find the number
of right pairs, which was presented in [8]. This process requires 233.6 table look-
up complexity, which is equivalent to 227 6-round SKINNY-128 encryption(using
the approximation 16 table look-ups ≈ one round SKINNY-128 encryption). So
the overall time complexity is 232 6-round SKINNY-128 encryption.
Data Complexity. To do this, we need 232 chosen plaintexts.
Memory Complexity. First, to create the plaintext structure, we need memory
to store 232 128-bit texts. Second, since we need to store 232 ciphertexts to count
the number of right pairs, we need as much memory as 232 128-bit texts. Since
the two events do not occur simultaneously, the overall memory complexity is
232 128-bit texts.

So the overall complexity in time, data, and memory is 232.

5.3 Distinguishers for 6-round SKINNY-64

For SKINNY-64, the distinguisher can be constructed in a similar way as for
SKINNY-128. By combining Theorem 3 and Theorem 4 with one round exten-
sion each, we can construct distinguishers for SKINNY-64. We can choose 216
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plaintexts that are active on one inverse diagonal and constant on the other
inverse diagonal after one round. Since the matrix M of MC is binary matrix,
plaintexts are easy to choose. Then, for 216 ciphertexts after 6 rounds of SKINNY
encryption corresponding to 216 chosen plaintexts, the number of pairs whose
difference is an element of MJ is (28 − 1) · 215 or (24 − 1) · 215 when |J | = 3,
and (24− 1) · 215 or 0 when |J | = 2. As in the case of SKINNY-128, we can easily
check that the difference of a pair of ciphertexts is an element of MJ .

For the random permutation, the expected value of n is 215 when |J | = 3 and
2−1 when |J | = 2. To construct a distinguisher with high probability of success,
we choose a J such that n is (28−1) ·215 when |J | = 3 and n is (24−1) ·215 when
|J | = 2. Then we can construct a distinguisher that distinguishes SKINNY-64

from the random permutation with a probability of success of almost 1.

As in the case of SKINNY-128, this distinguisher can distinguish SKINNY-64

from the random permutation with better probability of success than Example
1 and Example 2 which use the multiple-of property.

Complexity. The complexity of the distinguisher for SKINNY-64 can be calcu-
lated similarly to the case of the distinguisher for SKINNY-128. This results in
a time complexity of 216 6-round SKINNY-64 encryptions, a data complexity of
216 chosen plaintexts, and a memory complexity of 216 64-bit texts. So, as in the
case of the distinguisher for SKINNY-128, the overall complexity in time, data,
and memory is 216.

6 Discussion

AES and MIDORI have a similar structure (AES-like) to SKINNY and satisfies the
multiple-of property for 5 rounds. Thus we tried to take a similar approach to
the proof of Lemma 2 in the case of AES and MIDORI. An important part of the
proof of Lemma 2 is how the set is represented as a 4× 4 array after one round
encryption of a mixed space. If equations for the difference of a pair to be an
element of the subspace have a fixed number of solutions, then the proposed
property is satisfied.

So, for the case of AES and MIDORI, we check how the set is represented as
a 4 × 4 array after one round encryption in mixed space. We then check that
whether or not the number of solutions of equations for the difference of a pair
to be an element of the subspace is fixed. In the process, we check under what
conditions the number of solutions is determined for general SPN block cipher.

6.1 AES

Let RAES be the round function of AES and MAES
I be the mixed space for AES.

Then RAES(MAES
I ⊕ a) is the set represented as a 4 × 4 array after one round

encryption of AES in mixed space. All cells of RAES(MAES
I ⊕ a) are represented by

aXi0 ⊕ bY i1 ⊕ cZi2 ⊕ dW i3 ⊕ ci4
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for j ∈ {0, 1, 2, 3, 4}, ij > 0 and a, b, c, d ∈ {1, 2, 3}. Then the number of solutions
of equations for the difference of a pair to be an element of the subspace can
not be determined. In the case of AES, right pairs exist probabilistically, so it is
impossible for n to be a constant. And we confirmed this experimentally.

6.2 MIDORI

Let RMI be the round function of MIDORI and MMI
I be the mixed space for MIDORI.

Then RMI(MMI
I ⊕a) is the set represented as a 4×4 array after one round MIDORI

encryption for mixed space. RMI(MMI
I ⊕ a) can be represented as

Y 1 ⊕ Z1 ⊕W 1 ⊕ c1 X1 ⊕ Z2 ⊕W 2 ⊕ c5 X2 ⊕ Y 2 ⊕ Z3 ⊕ c9 X3 ⊕ Y 3 ⊕W 3 ⊕ c13

Y 1 ⊕ Z1 ⊕ c2 X1 ⊕W 2 ⊕ c6 Y 2 ⊕ Z3 ⊕ c10 X3 ⊕W 3 ⊕ c14

Y 1 ⊕W 1 ⊕ c3 X1 ⊕ Z2 ⊕ c7 X2 ⊕ Z3 ⊕ c11 Y 3 ⊕W 3 ⊕ c15

Z1 ⊕W 1 ⊕ c4 Z2 ⊕W 2 ⊕ c8 X2 ⊕ Y 2 ⊕ c12 X3 ⊕ Y 3 ⊕ c16

 .

In the case of MIDORI, it is important to determining the cells that need to be
solved simultaneously through the new subspace introduced by ShuffleCell. Then,
as in the case of AES, the number of solutions of equations for the difference of
a pair to be an element of the subspace can not be determined in the case
of MIDORI. Right pairs exist probabilistically, so it is impossible for n to be a
constant. And we confirmed this experimentally.

6.3 Relation to branch number

We verified that the property only holds for SKINNY, but not for AES and MIDORI.
The important thing is that the array representation does not determine how
many solutions of the equations are derived for the difference of a pair to be an
element of the subspace. As each cell is combined into more sets, the more likely
it is that the number of solutions is undetermined. It is related to the branch
number of MixColumns. The branch number of SKINNY MC is 2, AES MixColumns
is 5 because it uses an MDS matrix, and MIDORI MixColumns is 4. If the branch
number is greater than or equal to 3, the property that n is a fixed value does
not occur because every cell is represented as a combination of several sets.

7 Conclusion

In this paper, for the multiple-of property for SKINNY presented in [4], we provide
the exact computation of n and show that n is always the same value for certain
subspace indices. We also show that n is a much larger value than when it is a
random permutation. We prove this by investigating the propagation of the set.
It is not only proved theoretically, but also confirmed experimentally. We use
the lack of the whitening key on the SKINNY to extend the property one round
more. Using this property, we construct 6-round distinguishers for SKINNY and it
is able to distinguish with more better probability of success than the previous
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distinguisher which uses multiple-of property. We also show that the property
does not hold for AES and MIDORI, but only for SKINNY, and it is related to the
branch number.
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