
Post Quantum Sphinx

David Stainton <dstainton415@gmail.com>

December 31, 2023

1 Abstract

This paper introduces two designs of Sphinx[2] variants with corresponding im-
plementations for use in post-quantum threat models with a specific focus on
Mix networks. We introduce an obvious variant of Sphinx with CSIDH1/CTIDH2

and we additionally introduce ’KEM3 Sphinx’, an enhanced version of the
Sphinx packet format, designed to improve performance through modifications
that increase packet header size. Unlike its predecessor, KEM Sphinx addresses
performance limitations inherent in the original design, offering a solution that
doubles processing speed. Our analysis extends to the adaptation of KEM
Sphinx in a post-quantum cryptographic context, showing a transition with
minimal performance degradation. The study concludes that the trade-off be-
tween increased size and improved speed and security is justifiable, especially in
scenarios demanding higher security. These findings suggest KEM Sphinx as a
promising direction for efficient, secure communication protocols in an increas-
ingly post-quantum cryptographic landscape.

2 Introduction

In this paper, we enhance the celebrated Sphinx packet format, known for its
compactness, with two distinct developments. The first is an upgraded Sphinx
parameterization that incorporates post-quantum protections using a hybrid of
classical and post-quantum NIKEs, such as X25519 and CTIDH, while preserv-
ing the format’s original compactness. This approach maintains the efficiency
and minimal byte size that made Sphinx notable, now with added post-quantum
security. The second development is KEM Sphinx, which, for compelling rea-
sons, chooses to increase the header size. uses a hybrid of classical and post-
quantum KEMs to significantly improve performance. This variant acknowl-
edges the trade-off between the original compactness and the need for faster,
more robust cryptographic operations. These enhancements provide a pathway
to significantly improved security and performance while respecting the core

1CSIDH: Commutative Supersingular Isogeny Diffie–Hellman
2CTIDH: a faster variant of CSIDH
3KEM: Key Encapsulation Mechanism

1



values of the Sphinx design, aiming to facilitate wider acceptance and adoption
of these improvements.

3 NIKE Sphinx

The Sphinx paper [2] explains a clever group action blinding trick that they
use to make the header very compact. Since we are using a NIKE4, the Sphinx
packet header contains a public key which the next hop uses to compute a DH
shared secret with it’s private key. It again computes another group action for
the blinding trick that computes the public key for the next hop. This let’s
us avoid having to stuff a bunch of public keys into the Sphinx packet header.
Furthermore, with NIKE primitives such as X25519 which are very fast, these
two public key operations are only 160233 nanoseconds on my old laptop.

3.1 PQ NIKE Sphinx with hybrid NIKE combiner

The NIKE cryptographic primitive itself can be a hybrid of classical and post
quantum (e.g. X25519 and CTIDH5), with a simple combiner that appends the
two shared secrets together. In the context of Sphinx this works fine since the
two shared secrets are inputs to a KDF.

However besides CTIDH there doesn’t seem to be any other choices of NIKE
primitives that have any defense against sufficiently powerful post quantum
adversaries. We’d like to use CTIDH in our hybrid Sphinx implementation but
right now CTIDH implementations do not have good performance. And this
poor performance is compounded by the NIKE Sphinx design requiring two
public key operations.

4 KEM Sphinx Packet Structure

KEM Sphinx is a modification to the original Sphinx packet format where we
use a KEM instead of a NIKE. This only requires one public key operation per
hop instead of two.

Sphinx Geometry The Sphinx packet geometry is derived from the parame-
ter constants and a few tunable parameters. Each Sphinx packet consists of two
parts: the Sphinx Packet Header and the Sphinx Packet Payload. The packet
header consists of several components which convey the information necessary
to verify packet integrity and correctly process the packet, while the packet
payload contains the application message data.

• routing info len = per hop ri len ∗MAX HOPS

4Non-Interactive Key Exchange
5CTIDH: Faster constant-time CSIDH (Commutative Supersingular Isogeny Diffie-

Hellman)

2



• header len = kem element len+ routing info len+MAC LEN

• packet len = header len+ payload len

4.1 KEM Sphinx header

The elements of the KEM Sphinx packet are:

1. kem ciphertext - KEM ciphertext encrypted to the next hop’s public mix
key

2. route info - A vector of per-hop routing information, encrypted and au-
thenticated in a nested manner. Each element of the vector consists of a
series of routing commands, specifying all of the information required to
process the packet.

3. mac - MAC, A message authentication code tag covering α and β.

4. payload - payload ciphertext

The header format has had two simple changes, the α field is now the KEM
ciphertext rather than a NIKE public key (referred to as the group element in
the Sphinx paper). And the per hop routing information ciphertext block now
contains the KEM ciphertexts for the proceeding routing hops.

3



4.2 Create a KEM Sphinx Packet Header

Here we cover the KEM Sphinx packet header derivation in these next sub-
sections. The followuing pseudo code examples are derived from our Sphinx
specification document for Katzenpost. [1]

4.2.1 Derive key material for each hop

Here we derive the KEM ciphertext/shared secret and use the KDF to generate
the three keys for each hop.

Algorithm 1 Derive key material for each hop

1: num hops← 3 ▷ Let us assume 3 mix nodes.
2: n← 0
3: route keys← []
4: kem elements← []
5: while n ̸= num hops do
6: sharedsecretn, ciphertextn ← ENCAPSULATE(mix public keyn)
7: route keys[n]← KDF (sharedsecretn)
8: kem elements[n]← ciphertextn
9: n← n+ 1

10: end while

4.2.2 Derive keystream and encrypted padding

Algorithm 2 Derive keystream and encrypted padding

1: ri keystream← []
2: ri padding ← []
3: n← 0
4: while n ̸= N do
5: ZERO ← ZERO(routing info len+ per hop ri len)
6: stream← StreamCipher(route keys[n].header encryption)
7: keystream← XOR(ZERO, stream)
8: ks len← LEN(keystream)− ((n+ 1) ∗ per hop ri len)
9: padding ← keystream[ks len :]

10: if n > 0 then
11: prev pad len← LEN(ri padding[n])
12: paddingB ← APPEND(ri padding[n− 1], padding[: prev pad len])
13: padding ← XOR(padding[: prev pad len], paddingB)
14: end if
15: ri keystream← APPEND(ri keystream, keystream[: kslen])
16: ri padding ← APPEND(ri padding, padding)
17: end while

4



4.2.3 Create the routing info for the terminal hop

Algorithm 3 Create the routing info for the terminal hop

1: i← num hops− 1
2: zero blob← ZERO(per hop ri len− LEN(path[i].routing commands))
3: ri fragment← APPEND(path[i].routing commands, zero blob)
4: ri fragment← XOR(ri fragment, ri keystream[i])
5: mac data← APPEND(mac data, ri fragment)
6: mac data← APPEND(mac data, ri padding[i− 1])
7: mac←MAC(oute keys[i].header mac,mac data)
8: routing info← ri fragment
9: if num hops < MAX HOPS then

10: pad len← (MAX HOPS − num hops) ∗ per hop ri len
11: routing info← APPEND(routing info,RNG(pad len))
12: end if

5



4.2.4 Calculate the routing info for the rest of the hops.

At the conclusion of this step, the following variables will be assigned values:

• routing info - The completed routing info block.

• mac - The MAC for the 0th hop.

Algorithm 4 Calculate the routing info for the rest of the hops.

1: i← num hops− 2
2: for i >= 0 do
3: cmds to encode← []
4: j ← 0
5: for j < LEN(path[i].routing commands) do
6: cmd← path[i].routing commands[j]
7: if cmd.command == next node hop then
8: cmd.MAC ← mac
9: end if

10: cmds to encode← APPEND(cmds to encode, cmd)
11: j ← j + 1
12: end for
13: ZERO ← ZERO(per hop ri len− LEN(cmds to encode)
14: ri fragment← APPEND(cmds to encode, ZERO)
15: routing info← APPEND(ri fragment, routing info)
16: routing info← XOR(routing info, ri keystream[i])
17: data to mac← []
18: data to mac← APPEND(data to mac, kem elements[i])
19: data to mac← APPEND(data to mac, routing info)
20: if i > 0 then
21: data to mac← APPEND(data to mac, ri padding[i− 1]
22: end if
23: mac←MAC(route keys[i].header mac, data to mac)
24: i← i− 1
25: end for
26: return payload

6



4.2.5 Assemble the Sphinx packet header and payload keys vector

The Sphinx packet header is composed of:

• kem element[0] from the above algorithm 1

• routing info from the above algorithm 3

• mac from the above algorithm 3

Algorithm 5 Assemble the payload keys vector.

1: payload keys← []
2: i← 0
3: for i < nrhops do
4: payload keys← APPEND(payload keys, route keys[i].payload encryption)
5: i← i+ 1
6: end for

At the conclusion of the header creation, the Sphinx header along with the
vector of SPRP keys are returned to the user.

4.3 Create a Sphinx packet

Here we create the Sphinx Packet Header and SPRP key vector. Prepend the
authentication tag, and append padding to the payload. Then we encrypt the
payload and append it to the header and return the packet.

Algorithm 6 Create a Sphinx packet.

1: sphinx header, payload keys← sphinx create header(path)
2: payload← APPEND(ZERO(payload tag len), payload)
3: payload← APPEND(payload, ZERO(payload len− LEN(payload)))
4: i← nr hops− 1
5: for i >= 0 do
6: payload← SPRP Encrypt(payload keys[i], payload)
7: i← i− 1
8: end for
9: return APPEND(sphinx header, payload)

7



4.4 Unwrapping KEM Sphinx packets

Unwrapping KEM Sphinx packets is roughly twice as fast as the classical
NIKE Sphinx because we removed one of the public key operations, we no
longer calculate the group element for the next hop by blinding the current
group element. Instead we extract the new KEM ciphertext from the encrypted
routing information section of the Sphinx packet header.

Below we present a cryptographic circuit diagram of the KEM Sphinx un-
wrap operation with the following symbols used to signify the four elements of
the Sphinx packet:

• α - kem ciphertext

• β - route info

• γ - mac

• δ - payload

8



α β γ δ

Payload

Decapsulate
KEM

KDF
Verify
MAC

SPRP
Decrypt

private key
nx

Header

β, routing info ciphertext 0x00 Padding

XOR

cipher stream

α′ n’ γ′ β′

α′next hop ID β′ γ′ δ′

Figure 1: The processing of a KEM Sphinx message ((α, β, γ), δ) into ((α′, β′,
γ′), δ′) at Mix n.

We refer to this as the ”unwrap” operation because it reveals either the
plaintext payload or additional layers of encryption. The ‘Sphinx Unwrap‘ op-
eration handles authentication, decryption and modifying the packet prior to
forwarding it to the next node.

9



Sphinx Unwrap(routing private key, sphinx packet)→ sphinx packet,
routing commands,
replay tag,
error

The Sphinx unwrap operation takes two inputs:

1. Mix node’s private key

2. A sphinx packet to unwrap

and produces four outputs:

1. ‘sphinx packet‘ The resulting Sphinx packet.

2. ‘routing commands‘ A vector of RoutingCommand, specifying the post
unwrap actions to be taken on the packet.

3. ‘replay tag‘ A tag used to detect whether this packet was processed before.

4. ‘error‘ Indicating a unsuccessful unwrap operation if applicable.

The ‘Sphinx Unwrap‘ operation consists of the following steps:

4.4.1 Calculate the hop’s shared secret

Algorithm 7 calculate the hop’s shared secret

1: hdr ← sphinx packet.header
2: shared secret← DECAPSULATE(private routing key, hdr.kem element)

4.4.2 Derive the various keys required for packet processing.

Algorithm 8 derive various keys

1: keys← Sphinx KDF (KDF INFO, shared secret)

10



4.4.3 Validate the Sphinx Packet Header.

Algorithm 9 validate the Sphinx packet header

1: to mac← APPEND(hdr.kem element, hdr.routing info
2: derived mac←MAC(keys.header mac, to mac))
3: if !CONSTANT TIME CMP (derived mac, hdr.MAC then
4: return erorrcode
5: end if

4.4.4 Extract the per-hop routing commands for the current hop.

Append padding to preserve length-invariance, as the routing commands for the
current hop will be removed.

Algorithm 10 Extract the per-hop routing commands for the current hop.

1: padding ← ZERO(PER HOP RI LENGTH)
2: B ← APPEND(hdr.routing info, padding)
3: cipher stream← StreamCipher(keys.header encryption)
4: B ← XOR(B, cipher stream) ▷ Decrypt the entire routing information

block.

11



4.4.5 Parse the per-hop routing commands.

Algorithm 11 Parse the per-hop routing commands.

1: cmd buf ← B[: PER HOP RI LENGTH −
KEM CIPHERTEXT LENGTH]

2: new kem ciphertext ← B[PER HOP RI LENGTH −
KEM CIPHERTEXT LENGTH : PER HOP RI LENGTH]

3: new routing info← B[PER HOP RI LENGTH :]
4: next mix command idx← −1
5: routing commands← []
6: i← 0
7: for i < PER HOP RI LENGTH do
8: ▷ WARNING: Bounds checking omitted for brevity
9: cmd type← B[i]

10: cmd← NULL
11: switch cmd type do
12: case NULL
13: return ▷ No further commands.
14: case next node hop
15: cmd ← RoutingCommand(B[i : i + 1 +

LEN(NextNodeHopCommand)])
16: next mix command idx← i ▷ Save for later.
17: i← i+ 1 + LEN(NextNodeHopCommand)

18: case recipient
19: cmd ← RoutingCommand(B[idx : idx + 1 +

LEN(FinalDestinationCommand)])
20: i← i+ 1 + LEN(RecipientCommand)

21: case surb reply
22: cmd ← RoutingCommand(B[i : i + 1 +

LEN(SURBReplyCommand)])
23: i← i+ 1 + LEN(SURBReplyCommand)

24: i← i+ 1
25: routing commands ← APPEND(routing commands, cmd) Append

cmd to the tail of the list. */
26: end for

At the conclusion of the parsing step:

• ‘new kem ciphertext‘ - The KEM ciphertext for the next hop.

• ‘routing commands‘ - A vector of SphinxRoutingCommand, to be applied
at this hop.

• ‘new routing information‘ - The routing information block to be sent to
the next hop if any.

12



4.4.6 Decrypt the Sphinx packet payload

Algorithm 12 Decrypt the Sphinx packet payload

1: payload← sphinx packet.payload
2: payload← SPRP Decrypt(key.payload encryption, payload)
3: sphinx packet.payload← payload

4.4.7 Transform the packet for forwarding to the next mix

Here we transform the packet for forwarding to the next mix, if the routing
commands vector included a NextNodeHopCommand.

Algorithm 13 Transform the packet for forwarding to the next mix

1:

2: if next mix command idx! = −1 then
3: cmd← routing commands[next mix command idx]
4: hdr.kem element← new kem ciphertext
5: hdr.routing information← new routing info
6: hdr.mac← cmd.MAC
7: sphinx packet.hdr ← hdr
8: end if

4.5 Sphinx packet post processing

Upon the completion of the ‘Sphinx Unwrap‘ operation, implementations MUST
take several additional steps. As the exact behavior is mostly implementation
specific, pseudocode will not be provided for most of the post processing steps.

4.5.1 Apply replay detection to the packet.

Replay detection is accomplished by matching the hash of the shared secret
which the node obtains when they DECAPSULATE the KEM ciphertext. We’ll
refer to this hash value as the replay tag. It must be unique across all packets
processed with a given private key.

4.5.2 Act on the routing commands, if any.

The exact specifics of how implementations chose to apply routing commands
is deliberately left unspecified, however in general:

• If there is a NextNodeHopCommand, the packet should be forwarded
to the next node based on the ‘next hop‘ field upon completion of the
post processing. The lack of a NextNodeHopCommand indicates that the
packet is destined for the current node

13



• If there is a ‘SURBReplyCommand‘, the packet should be treated as a
SURBReply destined for the current node, and decrypted accordingly

• If the implementation supports multiple recipients on a single node, the
‘RecipientCommand‘ command should be used to determine the correct
recipient for the packet, and the payload delivered as appropriate.

It is possible for both a RecipientCommand and a NextNodeHopCommand
to be present simultaneously in the routing commands for a given hop. The
behavior when this situation occurs is implementation defined.

4.5.3 Authenticate the packet if required.

If the packet is destined for the current node, the integrity of the payload MUST
be authenticated.

The authentication is done as follows:

Algorithm 14 Authenticate packet

1: derived tag ← sphinx packet.payload[: PAY LOAD TAG LENGTH]
2: expected tag ← ZEROS(PAY LOAD TAG LENGTH)
3: if !CONSTANT TIME CMP(derived tag, expected tag) then
4: ▷ Discard packet.
5: end if

Remove the authentication tag before presenting the payload to the appli-
cation.

Algorithm 15 Remove authentication tag from payload

1: sphinx packet.payload← sphinx packet.payload[PAY LOAD TAG LENGTH :
]

14



5 Constructing PQ Hybrid KEMs

Special care must be taken in order correctly compose a hybrid post quantum
KEM that is IND-CCA2 robust in the QROM. Most post quantum KEMs are
IND-CCA2 however we must specifically take care to make our NIKE to KEM
adapter have semantic security and we must make a security preserving KEM
combiner.

The KEM Combiners paper [3] makes the observation that if a KEM com-
biner is not security preserving then the resulting hybrid KEM will not have
IND-CCA2 security if one of the composing KEMs does not have IND-CCA2
security. Likewise the paper points out that when using a security preserving
KEM combiner, if only one of the composing KEMs has IND-CCA2 security
then the resulting hybrid KEM will have IND-CCA2 security.

Our KEM combiner uses the split PRF design from the paper.

ciphertext 1

private key 1

ciphertext 2

private key 2

Decapsulate
KEM 1

Decapsulate
KEM 2

shared secret 1 shared secret 2

PRF PRF

XOR

shared secret

Figure 2: security preserving KEM combiner

15



Algorithm 16 Split PRF

1: function Split PRF(ss1, ss2, cct1, cct2)
2: return XOR(PRF (APPEND(ss1, cct2)), PRF (APPEND(ss2, cct1)))
3: end function

If three or more KEMs are combined then the Split PRF is constructed like
this:

Algorithm 17 Split PRF

1: function Split PRF(ss1, ss2, ss3, cct1, cct2, cct3)
2: cct← APPEND(cct1, cct2)
3: cct← APPEND(cct, cct3)
4: ret← XOR(PRF (APPEND(ss1, cct)), PRF (APPEND(ss2, cct)))
5: return XOR(ret, PRF (APPEND(ss3, cct)))
6: end function

5.1 NIKE to KEM Adapter

Our NIKE to KEM adapter is an ad hoc hashed ElGamal construction:

Algorithm 18 ad hoc hashed ElGamal construction

1: function ENCAPSULATE(their publickey)
2: my privkey,my pubkey ← GEN KEY PAIR(RNG)
3: ss← DH(my privkey, their pubkey)
4: to hash← APPEND(ss, their pubkey)
5: ss3← PRF (APPEND(to hash,my pubkey))
6: return my pubkey, ss2
7: end function
8: function DECAPSULATE(my privkey, their publickey)
9: s← DH(my privkey, their publickey)

10: to hash← appned(ss,my pubkey)
11: shared key ← PRF (APPEND(to hash, their pubkey))
12: return shared key
13: end function

16



6 Security Evaluation

Proof of equivalence to the classical Sphinx goes here.

7 Implementations

7.1 Go implementation

8 Conclusion

KEM Sphinx generates cryptographic objects that are larger in size. However,
depending on the specific application, the advantages in performance and secu-
rity may justify the increased bandwidth overhead.

9 Acknowledgements

Special thanks to Peter Schwabe for encouraging me to look more closely into
making KEM Sphinx. Also thanks to Bas Westerbaan and Bertram Poettering
for answering my questions about KEM combiners. Thanks to Jacob Appel-
baum for editing.

10 Appendix I

All our pseudo code examples contain terms listed here:

• GEN KEY PAIR(ikm)→ privkey, pubkey
Generate the KEM keypair given the initial key material.

• ENCAPSULATE(public key)→ shared secret, kem ciphertext
Encapsulates to the given public key.

• DECAPSULATE(my privkey, kem ciphertext)→ shared secret
Decapsulates the KEM ciphertext with the given private key.

• ZERO(length in bytes)→ blob
Returns a blob of all zero (0x00) bytes.

• LEN(byte slice)→ length
Returns the length of the byte slice.

• KDF (ikm)→ keys
Generates three keys:

1. header mac

2. header encryption

3. payload encryption

17



• XOR(blobA, blobB)→ output blob
Bitwise XOR operation.

• APPEND(a, b)→ c
Returns b appended to a

• ZERO(byte slice)
Overwrites the given byte slice with ZERO (0x00).

• RNG(length)→ blob
Cryptographically secure random number generator.

• MAC(key, data)→ mac
Produces a MAC value over the given data for the given key.

• SPRP Encrypt(key, plaintext)→ ciphertext
Wide block cipher encrypt function given the key and plaintext.

• SPRP Decrypt(key, ciphertext)→ plaintext
Wide block cipher decrypt function given the key and ciphertext.

• PRF (data)→ hash
A cryptographic hash function.

• DH(private key, public key)→ shared secret
Computes a diffiehellman shared secret.

• StreamCipher(key)→ bit stream
Stream cipher.

11 Appendix II

11.1 KEM Sphinx Verifpal Proof

11.2 KEM Sphinx Proverif Proof

11.3 KEM Sphinx Tamarin Proof

[2]

References

[1] Yawning Angel et al. Sphinx Mix Network Cryptographic Packet Format
Specification. 2017. url: https://github.com/katzenpost/katzenpost/
blob/master/docs/specs/sphinx.rst.

[2] George Danezis and Ian Goldberg. “Sphinx: A Compact and Provably Se-
cure Mix Format”. In: Proceedings of the 30th IEEE Symposium on Secu-
rity and Privacy (S&P 2009). Oakland, California, USA: IEEE Computer
Society, May 2009, pp. 269–282. isbn: 978-0-7695-3633-0.

18



[3] Federico Giacon, Felix Heuer, and Bertram Poettering. KEM Combiners.
Cryptology ePrint Archive, Paper 2018/024. https://eprint.iacr.org/
2018/024. 2018. url: https://eprint.iacr.org/2018/024.

19


