
Lynx: Family of Lightweight Authenticated
Encryption Schemes based on Tweakable

Blockcipher
Munawar Hasan1,2 and Donghoon Chang1,2,3

1 National Institute of Standards and Technology, USA
{munawar.hasan,donghoon.chang}@nist.gov

2 Indraprastha Institute of Information Technology, India
{munawarh,donghoon}@iiitd.ac.in

3 Strativia, USA

Abstract. The widespread deployment of low-power and handheld devices opens an
opportunity to design lightweight authenticated encryption schemes. The schemes so
proposed must also prove their resilience under various security notions. Romulus-N1
is an authenticated encryption scheme with associated data based on a tweakable
blockcipher, a primary variant of Romulus-N family which is NIST (National Institute
of Standards and Technology) lightweight cryptography competition finalist; provides
beyond birthday bound security for integrity security in nonce respecting scenario but
fails to provide the integrity security in nonce misuse and RUP (release of unverified
plaintext) scenarios. In this paper, we propose lynx, a family with 14 members of
1-pass and rate-1 lightweight authenticated encryption schemes with associated data
based on a tweakable blockcipher, that provides birthday bound security for integrity
security in both nonce respecting as well as nonce misuse and RUP scenarios and
birthday bound security for privacy in nonce respecting scenario. For creating such a
family of schemes we propose a family of function F that provides a total of 72 cases
out of which we show that only 14 of them can be used for creating authenticated
encryption schemes. We provide the implementation of one of the members of lynx
family on six different hardware platforms and compare it with Romulus-N1. The
comparison clearly shows that the lynx member outperforms Romulus-N1 on all the
six platforms.
Keywords: Authenticated encryption, Tweakable blockcipher, Lightweight cryptogra-
phy, Lightweight authenticated encryption scheme, Security proofs

1 Introduction
Authenticated Encryption scheme with associated data (or AEAD) provides both privacy
and authenticity based on various factors. Recent advancements and research is shifting
towards the lightweight alternative that could be implemented efficiently on low-powered
devices like IoT sensors and handheld devices. Such low-powered devices require several
features from the design and implementation perspective of any authenticated encryption
scheme, like acceptable security bounds in nonce respecting or nonce misuse scenarios, low
memory usage, computationally menial, less power-hungry, etc. In real-world scenarios,
it may not be possible to provide all such features simultaneously, and hence there is an
associated trade-off in the design and the implementation of the authenticated encryption
schemes for these low-powered devices. Further, there is no established global standard
yet that lists out requirements for lightweight cryptography, instead, there are several

mailto:{munawar.hasan,donghoon.chang}@nist.gov
mailto:{munawarh,donghoon}@iiitd.ac.in

2
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable

Blockcipher

competitions that evaluate candidates for lightweightness.
CAESAR competition [1] for authenticated encryption scheme with associated data had a
lightweight category. Several candidates were submitted in this lightweight category. The
CAESAR competition defines the requirement of the lightweight category for the candidates
as the algorithms that are suited for resource constrained environment. ACORN [2] and
Ascon [3] were selected as the winners in the lightweight category of the competition.
National Institute of Standards and Technology (NIST) [4], initiated a process in 2017 to
solicit, evaluate, and standardize lightweight cryptographic algorithms that are suitable
for use in constrained environments where the performance of current NIST cryptographic
standards was not acceptable and, in 2019, NIST started the lightweight cryptography
competition, called LWC [5]. The standardization process at NIST relies on the efforts
of researchers from the cryptographic community across the globe that provide security,
implementation, and performance analysis of the candidate algorithms. Further, NIST
strongly encourages public evaluation and publication of the results throughout the process.
Hence, the winners of the NIST standardization competitions are recognized all around the
globe and available for use in most of the commercial and the non-commercial cryptographic
libraries [6, 7, 8, 9]. The LWC competition called for submissions for authenticated
encryption with associated data (AEAD) and optional hashing functionalities. There were
57 submissions to this competition, out of which 56 were selected as round 1 candidates.
As of writing this paper, 10 candidates have been selected for the final round.
One of the finalists of the NIST lightweight competition, Romulus [10], utilizes tweakable
blockcipher as the underlying premitive, for their AEAD algorithm. Tweakable blockcipher
was introduced by Liskov et al. at CRYPTO 2002 [11]. Unlike a blockcipher, which takes
a key and a message as the input and produces a ciphertext as the output; a tweakable
blockcipher takes in three inputs: a key, a message and a tweak and produces a ciphertext
as the output. Since the inception of the tweakable blockciphers, they have been widely
studied under various security scenarios for creating authenticated encryption schemes, for
example Romulus [10], SKINNY-AEAD [12], ForkAE [13] etc.

1.1 Motivation
Romulus [10] which is 1-pass and rate-1 design provides beyond birthday bound (or BBB)
security in nonce respecting scenario and is only nonce resilient (not nonce resistant)
in nonce misuse and RUP scenario [14]. Our motivation is to target the area of nonce
resistant AEAD constructions, under nonce misuse and RUP scenarios. In real world
setting, it is possible, that some users may want at least birthday bound security or BBB
security for integrity in both, the nonce respecting, as well as the nonce misuse and RUP
scenarios together with efficient implementations. In fact, none of the NIST lightweight
cryptography competition finalists which are 1-pass and rate-1, provide birthday bound
security or BBB security for integrity for both nonce respecting as well nonce misuse and
RUP scenarios.
In NIST lightweight cryptography workshop 2020 [15], an AEAD scheme called AET-
LR [16], based on Romulus family was introduced. In this scheme, the authors used
associated data or message as both, a part of the input (together with the field multiplica-
tion) as well as a part of tweak for the underlying primitive i.e., tweakable blockcipher.
AET-LR provides birthday bound security for both nonce respecting scenario as well as
nonce misuse and RUP scenarios. The authors in AET-LR were able to present only one
such design where the associated data or the message can be used both as the part of
input as well as the tweak.
In this paper, we present a family of lightweight authenticated encryption schemes called
lynx 1 (1-pass and rate-1) based on a tweakable blockcipher (with tweak size as twice the

1Lynx [pronounced: lIŋks] is a species of lightweight and small but agile wild cats found in Eurasian
and American belt and is known for its speed and adaptability.

Munawar Hasan and Donghoon Chang 3

Table 1: Summary of Lynx-A family. There are 10 members in lynx-A family with each
member constructed using a function from FA family. For more details see section 4

Member of
Lynx-A Fam-
ily

Case of
FA Fam-
ily

Member of
Lynx-A Fam-
ily

Case of
FA Fam-
ily

Lynx-A1 FA
25 / FA

25 Lynx-A6 FA
30 / FA

30

Lynx-A2 FA
26 / FA

26 Lynx-A7 FA
31 / FA

31

Lynx-A3 FA
27 / FA

27 Lynx-A8 FA
32 / FA

32

Lynx-A4 FA
28 / FA

28 Lynx-A9 FA
34 / FA

34

Lynx-A5 FA
29 / FA

29 Lynx-A10 FA
35 / FA

35

size of the block). The target area of our proposal is to provide a balance between the
security bounds of nonce respecting and nonce misuse and RUP scenarios for integrity
as well as privacy but at the same time, the architecture or design is light enough so
that it can be implemented efficiently on low powered devices. Further, unlike AET-LR,
lynx supports stream processing or online processing i.e., a block of associated data or
message can be encrypted or decrypted (decryption in case of message only) on the fly
without having any information about the next block (like full or partial, last block or not
etc.). Such capabilities are very desirable in lightweight category since the low powered
devices have limited memory. Also unlike AET-LR which is just one construction, lynx is
a family of authenticated encryption schemes with 14 members. Internally, AET-LR uses
field multiplication while lynx is based on simple xor operation which can be efficiently
implemented even on an 8 bit micro-controllers.
The lynx family can be divided into two sub-families: lynx-A and lynx-B (refer section 4 for
details). Both the families, lynx-A and lynx-B have confidentiality and integrity assurance
in nonce respecting scenario and integrity assurance in nonce-misuse and RUP scenarios,
i.e., we provide birthday bound security for both nonce respecting as well as nonce misuse
and RUP scenarios and birthday bound security for privacy. Further, the members of
lynx-A family are length preserving while the members in the lynx-B family are not length
preserving. There are 10 members in lynx-A family and are referred to as: lynx-A1, lynx-A2,
. . . , lynx-A10 while there are 4 members in lynx-B family and are referred to as: lynx-B1,
lynx-B2, lynx-B3 and lynx-B4
To create such a family of authenticated encryption schemes, we present a family of
functions, F , which is used to create the lynx family. For the lynx-A family, the function
family is referred to as FA and for the lynx-B family, the function family is referred to
as FB respectively. There are 36 cases of FA (refer table 5) and 36 cases of FB (refer
table 6) enumerated as FA

1...36 and FB
1...36 respectively, thereby making a total of 72 cases.

Internally, both the function families utilizes simple xor operations (refer section 4.3 and
section 4.4). We perform analysis of each of these 72 cases in the section 5 and sort them
into the correct and the incorrect groups. Out of the 36 cases of FA, 10 of them fall into
the correct group while out of the 36 cases of FB, 4 of them fall into the correct one,
making a total of 14 out of 72 cases. The lynx family is created using only the cases of FA

and FB that fall into the correct group. Hence, there are a total of 14 members in the
lynx family. When the decryption sub-routine of lynx-A and lynx-B families are invoked,
we use the notation FA and FB for the respective function families.

In table 1, we present a mapping of all the members of the lynx-A family with the cases
of the function family FA. Similarly, in table 2, we present a mapping of all the members
of the lynx-B family with the cases of the function family FB .

4
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable

Blockcipher

Table 2: Summary of Lynx-B family. There are 4 members in lynx-B family with each
member of lynx-B family constructed using a function from FB family. For more details
see section 4

Member of
Lynx-B Fam-
ily

Case of
FB Fam-
ily

Member of
Lynx-B Fam-
ily

Case of
FB Fam-
ily

Lynx-B1 FB
18 / FB

18 Lynx-B3 FB
30 / FB

30

Lynx-B2 FB
20 / FB

20 Lynx-B4 FB
32 / FB

32

1.2 Contributions
• We propose family of 1-pass and rate-1 AEAD scheme called lynx (table 1 and

table 2) based on a tweakable blockcipher where tweak size is twice the block size.
We divide the lynx family into two sub-family; lynx-A with 10 members and lynx-B
with 4 members, making a total of 14 members in the lynx family. For each family,
we propose an AEAD construction and an AEAD algorithm: lynx-A (figure 1 and
algorithm 1) and lynx-B (figure 2 and algorithm 2).

• We propose a family of functions called F (sub-family FA and FB) and present 72
cases (table 5 and table 6) of F (36 cases of FA and 36 cases of FB).

• We present correctness criteria of F and then we analyze each case of F (in light
of constructing an authenticated encryption scheme) and group them into correct
and incorrect cases. For the incorrect ones, we further group them into implausible,
non-confidential and non-integrity cases (table 7), based on the issues in the internal
construction of F .

• We present formal security proofs of lynx-A and lynx-B in the information-theoretic
model (section 7) for integrity security in both nonce respecting and nonce misuse
and RUP scenarios, and the confidentiality security in nonce respecting scenario.

• Finally, we present implementation of one of the member of the lynx family on six
different platforms and compare them with the available implementations of Romulus-
N1 (section 8). Due to the simplistic design structure, lynx member outperforms
Romulus-N1 on all the six platforms.

We want to point out that lynx provides birthday bound security for both nonce
respecting as well as nonce misuse and RUP scenarios, but if someone requires security for
only nonce respecting setup, then, Romulus-N1 may be a better choice due to its beyond
birthday bound security in nonce respecting scenario.

1.3 Organization of this paper:
The rest of the paper is organized as follows. Section 2 describes the related work
in the direction of lightweight cryptography and specifically in the area of lightweight
authenticated encryption schemes. Section 3 delivers the preliminaries used in the paper.
This section also covers the definitions and security notions. Section 4 presents the
authenticated encryption scheme proposed in this paper. This section also gives the
internal construction of the family of functions FA, FB , FA and FB , with its 72 cases. In
section 5, we present the analysis of function family FA and FB , and show the cases of FA

and FB families that can be used to construct lynx. We present design rationale of lynx in
section 6 followed by security proofs in section 7. Section 8 shows the implementation of one

Munawar Hasan and Donghoon Chang 5

of the member of lynx family and its comparison to Romulus-N1 followed by conclusion in
section 9. The appendix provides several supporting mathematical proofs for our proposed
algorithms.

2 Related Work
The inception of authenticated encryption with associated data [17] simulated research in
the area of authenticated encryption modes. OCB [18] became as one of the early proposals
for efficient authenticated encryption scheme and was later patented. This was followed by
several new modes of operation [19, 20, 21, 22, 23, 24]. In 2007, NIST (National Institute
of Standards and Technology) choose GCM [22] as a standard for authenticated encryption
scheme with associated data. Soon AES [25] blockcipher became widespread underlying
primitive for the GCM mode and hence the name AES-GCM.
In the recent years, there has been a lot of traction in the area of lightweight cryptographic
algorithms. Such algorithms are tailored for implementation in resource constrained envi-
ronments including RFID tags, sensors, contactless smart cards, health-care devices etc.
[26, 27, 28, 29] discussed a general overview of design strategy of lightweight cryptographic
primitives. [30, 31] presents a comparative overview of several cryptographic primitives.
We primarily try to focus on lightweight authenticated encryption schemes.
Several authenticated encryption schemes that rely on sponge function [32, 33], utilize
duplex mode of operation. The LWC competition at NIST [4] has seen wide range of
submissions based on sponge functions that are in lightweight category. Sparkle [34] and
Xoodyak [35] both NIST LWC competition finalists are based on sponge function. Ascon [3]
a finalist of NIST LWC and the winner of CAESAR [1] competition uses the duplex mode
of authenticated encryption. PHOTON-Beetle [36] based on Beetle [37] which is a sponge
based mode and ISAP [38], also based on sponge based function are also the NIST LWC
finalists.
Next we discuss blockcipher based authenticated encryption schemes that fall into the
lightweight category. GIFT-COFB [39], a blockcipher based authenticated encryption
scheme with associated data uses GIFT blockcipher [40] as the underlying primitive. GIFT-
COFB is also one of the finalists of NIST lightweight cryptography competition. Another
finalist, Grain-128AEAD [41], uses stream cipher from the Grain [42] family of stream
ciphers as the underlying primitive. In recent years, tweakable blockciphers has gained lot
of interest among the cryptographic community because of the tweak material, which can
be effectively used for designing authenticated encryption schemes with associated data.
Romulus [10], another NIST lightweight cryptography competition finalist uses SKINNY [43]
tweakable blockcipher for their authenticated encryption design. AET-LR [16] is also
based on a tweakbale blockcipher and uses associated data or message as both part of
input as well as the part of tweak to the underlying tweakable blockcipher.
TinyJAMBU [44] is based on keyed permutation while elephant [45] is based on cryp-
tographic permutation masked using LFSRs. Both TinyJAMBU and elephant are the
finalists of NIST lightweight cryptography competition.

3 Preliminaries
3.1 Notations
Let {0, 1}∗ be the set of all finite bit strings, including the empty string ϵ while {0, 1}+

denotes the set of all finite bit strings excluding ϵ. For X ∈ {0, 1}∗, we denote the bit
length of X as |X|. Hence |ϵ| = 0. For X ∈ {0, 1}∗ and Y ∈ {0, 1}∗, X||Y denotes
concatenation of X and Y in respective order. We also denote XY as the concatenation,
if it is clear from the context. binx(y) is used to denote x bit wide binary representation

6
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable

Blockcipher

of y. Let 0i (or 1i) be the string of i zero (or one) bits, for example: 1 ∥ 0i or 10i refers
to bit 1 followed by i zero bits. X ⊕ Y denotes the bitwse xor between X and Y where
|X| = |Y |. For a given X ∈ {0, 1}+, a function Trunci(X) returns i least significant bits
of X. If i > |X|, then Trunci(X) returns a null character (a sentinel) denoting the error.,
while if i = |X|, then Trunci(X) will return an empty string or ϵ. We define ν ∈ {0, 1}∗ as
suffix of X ∈ {0, 1}∗ if ν is an end part of X, hence ϵ and X are always suffixes of X. A
function Extractν(X) eliminates the suffix ν from X and then returns all the rest bits of
X, if ν is not a suffix or ν > |X|, then Extractν(X) returns a null character (a sentinel)
denoting the error. For example Extract10(1010010) returns 10100 i.e., extract 10 from
the end part of 1010010. For X ∈ {0, 1}+, we define X in x blocks (or block length of X

is x) in the following way: (X[1] ∥ X[2] ∥ ... ∥ X[x]) = X) where x = ⌈ |X|
b ⌉ and |X[x]| ≤ b.

The block representation of X can also be called as the parsing of X into b bit blocks.
Now, we define a padding function: for a given X ∈ {0, 1}<b:

padb(X) =
{

ϵ if |X| = 0
X ∥ 10b−|X|−1 if |X| < b

(1)

3.2 Definitions
We use several concepts definitions and functions in our construction. They are as discussed
below.

• Authenticated Encryption (AEAD): An authenticated encryption with associ-
ated data (in short AEAD) is a family of algorithms denoted by AEAD=(E ,D) that
consists of an encryption sub-routine E and a decryption sub-routine D defined over
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}n, an associated data A ∈ {0, 1}∗, a message
M ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗ and a tag T ∈ {0, 1}tag such that:

E :(K, N, A, M) 7→ (C, T)
D :(K, N, A, C, T) 7→M/ ⊥

(2)

where:
D(K, N, A, E(K, N, A, M)) 7→M

Alternatively using the notation from [14], we can define RUP security. In the
RUP setting, the real-world constitutes both the encryption EK sub-routine and the
decryption DK sub-routine over a random key K. Further, the decryption sub-routine
DK provides the decrypted ciphertext (message) without any verification.
Hence, alternatively, an authenticated encryption with associated data can be defined
in a non-conventional way as AEAD=(E ,D,V) as follows:

E :(K, N, A, M) 7→ (C, T)
D :(K, N, A, C, T) 7→M

V :(K, N, A, C, T) 7→ ⊤/ ⊥
(3)

where:
D(K, N, A, E(K, N, A, M)) 7→M

V(K, N, A, E(K, N, A, M)) 7→ ⊤
From the equation (3), it is clear that the decryption sub-routine of non-conventional
AEAD unlike the the decryption sub-routine of conventional AEAD returns the
message without verification. In both conventional and non-conventional definition
of AEAD, ⊥ symbol denotes always a false outcome while a ⊤ symbol denotes always
a true outcome. In an alternative notation, we denote an authenticated encryption
scheme by following sub-routines: (E ,D,V), where V is the verification sub-routine.

Munawar Hasan and Donghoon Chang 7

• Tweakable Blockcipher: A tweakable blockcipher (Ẽ, D̃) is defined over a key
K ∈ {0, 1}k, a tweak T ∈ {0, 1}t, a message M ∈ {0, 1}b and a ciphertext C ∈ {0, 1}b

such that:

Ẽ :(K, T , M) 7→ C

D̃ :(K, T , C) 7→M
(4)

where:
D̃(K, T , Ẽ(K, T , M)) 7→M

A tweakable blockcipher should be efficient i.e., both encryption Ẽ and D̃ should
be easy to compute [11]. Occasionally we also denote a tweakable blockcipher by
following notation: (ẼK , D̃K)

3.3 Security Notion
There are two security notions of an authenticated encryption scheme with associated data
AEAD: confidentiality and integrity. We provide the formal definition of the confidentiality
and the integrity of AEAD followed by the combined notion of AEAD. The definitions of
AEAD is taken from [46]. Let K

r←− {0, 1}k be a randomly generated key out of the set
{0, 1}k. We define F(n, ∗, ∗) informally as the set of all functions that takes an n bit nonce,
associated data of any size and message of any size as input and produces a ciphertext
and a tag as the output where we assume that the size of the ciphertext depends on the
size of message while the size of tag is fixed. We use the non-conventional definition of
the authenticated scheme to present formal definition of confidentiality and integrity of
an AEAD scheme. From definition 1: the confidentiality advantage is the measure of the
adversarial power to distinguish the encryption sub-routine EK of AEAD against a random
function $ i.e., given AEAD=(E ,D), we define $ r←− F(n, ∗, ∗) as a random function that
depends on the encryption sub-routine of the AEAD.

Definition 1. Let Π = (E ,D,V) be an authenticated encryption scheme with associated
data. Let A be an adversary under nonce respecting scenario. Then for a randomly chosen
key K, the CONF advantage of an adversary A against Π is given by:

CONFΠ(A) = [Pr[AEK → 1]− Pr[A$ → 1]] (5)
In definition 2, we present the case of integrity advantage where the adversary is given
access to the verification sub-routine in addition to the encryption sub-routine.
Before moving to the next definition, we define an event called forges in the following way:
The event forges occurs if the verification sub-routine VK returns true (or ⊤) for an input
(K, N, A, C, T) for some randomly chosen key K where (C, T) was not the output from the
encryption sub-routine EK i.e., (K, N, A, M) did not returned (C, T). The idea of forges is
to take into account only the event that is new to VK .

Definition 2. Let Π = (E ,D,V) be an authenticated encryption scheme with associated
data. Let A be an adversary under nonce misuse scenario that makes qE encryption queries
and qV verification queries such that q = qE + qV . Then for a randomly chosen key K, the
INT advantage of an adversary A against Π is given by:

INTΠ(A) = Pr[AEK ,VK forges] (6)
The INT advantage measures the ability of an adversary A to generate a valid tag for a
new input i.e., for an input, A has not seen before.
It is often desirable to combine the equations (5) and (6) in a single security notion as
defined below:

8
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable

Blockcipher

Definition 3. Let Π = (E ,D,V) be an authenticated encryption scheme with associated
data. Let A be an adversary that makes qE encryption queries and qV verification queries
such that q = qE + qV . Then for a randomly chosen key K, the Π advantage (or combined
advantage) of an adversary A against Π is given by:

AEΠ(A) = [Pr[AEK ,VK → 1]− Pr[A$,⊥ → 1]] (7)

Formal definition of RUP (releasing unverified plaintext) security is provided by [14]. In
definition 4, we take the notion of RUP setting from [14, 46]

Definition 4. Let Π = (E ,D,V) be an authenticated encryption scheme with associated
data. Let A be an adversary under nonce misuse scenario that makes qE encryption queries,
qD decryption queries and qV verification queries such that q = qE + qD + qV . Then for a
randomly chosen key K, the INT-RUP advantage of an adversary A against Π is given by:

INT-RUPΠ(A) = Pr[AEK ,DK ,VK forges] (8)

Next we define the security notion of tweakable blockcipher (Ẽ, D̃). Let K
r←− {0, 1}k be a

randomly generated key. We define F̃(t, b) informally as the set of all the functions that
takes a t bit tweak and b bit message and produces b bit output. Let $̃ r←− F̃(t, b) be a
random function chosen from the set of all possible tweakable blockcipher with t bit tweak
and b bit block. We call $̃ as random tweakable permutation. Further, let $̃−1 be the
inverse of the random tweakable permutation $̃.

Definition 5. Given a tweakable blockcipher (Ẽ, D̃), the indistinguishability advantage
against an adversary A for a randomly chosen key K is given by:

IND
ẼK

(A) = [Pr[AẼK → 1]− Pr[A$̃ → 1]]

IND
ẼK ,D̃K

(A) = [Pr[AẼK ,D̃K → 1]

− Pr[A$̃,̃$−1
→ 1]]

(9)

Using the results from Rogaway and Shrimpton [47], we can write the co-relation be-
tween (5), (6) and (7) as:

Lemma 1. [Adapted from [46]] Let Π = (E ,D,V) be an authenticated encryption scheme
with associated data. Let A1 be an adversary with query complexity as q1 (encryption
oracle), A2 be an adversary with query complexity as q2 (encryption +verification oracle)
and A3 be an adversary with query complexity as q3 (encryption + verification oracle):

CONFΠ(A1) ≤ AEΠ(B1)
INTΠ(A2) ≤ AEΠ(B2)
AEΠ(A3) ≤ CONFΠ(B3) + INTΠ(B4)

(10)

where B1, B2, B3 and B4 are adversaries with query complexities as q1, q2 and q3 respectively.

Munawar Hasan and Donghoon Chang 9

4 Lynx
We propose family of 1-pass rate-1 authenticated encryption schemes with associated data
called lynx-A and lynx-B. We use E to denote the encryption sub-routine for the members of
lynx-A and lynx-B families, and D to denote the decryption sub-routine for the members of
lynx-A and lynx-B families respectively. Both the families have confidentiality and integrity
assurance in nonce respecting scenario and integrity assurance in nonce-misuse and RUP
scenario i.e. birthday bound security for both nonce respecting as well as nonce misuse
and RUP setting for integrity security, and birthday bound security for privacy in nonce
respecting scenario.
There are 10 members in lynx-A family and are referred to as: lynx-A1, lynx-A2, . . . ,
lynx-A10. Each member of the lynx-A family is based on a case from FA family that fall
into the correct group. Figure 1 shows the construction of lynx-A family and algorithm 1
presents the encryption and decryption sub-routine of the lynx-A family.
In lynx-B family, we have 4 members and they are referred to as: lynx-B1, lynx-B2, lynx-B3
and lynx-B4. Each member of the lynx-B family is based on a case from FB family that
fall into the correct group. In figure 2, we show the construction of lynx-B family and the
algorithm 2 presents the encryption and decryption sub-routine of the lynx-B family.
In table 3, we provide the specification of both the families. All the members of lynx-A
and lynx-B family takes in a 128 bit nonce, a 128 bit block (associated data or message),
and a 256 bit tweak. The tag size produced is 128 bits. The specification of both lynx-A
and lynx-B is in line with [48].
Next, we describe the lynx-A and lynx-B in detail followed by the internal constructions of
FA and FB .

S[0]

0n

N

S[1]

A[1]

h[0]

S[a]

A[a]/padn(A[a])

h[a− 1]

S[a+ 1]

M [1]

h[a]

S[a+m]

M [m]/padn(M [m])

h[a+m− 1]

S[a+m+ 1]

0n

h[a+m] h[a+m+ 1]

× × C[1] C[m] ××

h[1] h[a+ 1] Tag
FA

S[0]

0n

S[1]

A[1]

h[0]

S[a]

h[a− 1]

S[a+ 1]

C[1]

h[a]

S[a+m]

h[a+m− 1]

S[a+m+ 1]

0n

h[a+m] h[a+m+ 1]

× × M [1] M [c] ××

h[1] h[a+ 1] Tag′
FA

A[a]/padn(A[a]) C[c]/padn(C[c])

N

FA FA FA FA FA

FA FA FA FAFA

Initialization Process AD Process Ciphertext Tag Generation

Initialization Process AD Process Message Tag Generation

Encryption

Decryption

K K K K K K

K K K K K K

Figure 1: Encryption and Decryption sub-routine of Lynx-A family. FA in below figure is
used from the cases that fall into correct group (refer table 1 for list)

4.1 Lynx-A
The construction of lynx-A family can be divided into three phases: an initialization phase,
an associated data and a message processing phase, and a tag generation phase (refer
figure 1). The initialization phase and the tag generation phase require an input with a

10
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable

Blockcipher

S[1]

A[1]

S[a]

A[a]/padn(A[a])

h[a− 1]

S[a+ 1]

M [1]

h[a]

S[a+m]

M [m]/padn(M [m])

h[a+m− 1]

S[a+m+ 2]

0n

h[a+m] h[a+m+ 1]

× × C[1] C[m] ×

h[1] h[a+ 1] Tag

S[1]

A[1]

S[a]

h[a− 1]

S[a+ 1]

C[1]

h[a]

S[a+ c− 1]

h[a+ c− 2]

S[a+ c+ 1]

u

h[a+ c− 1] h[a+ c]

× × M [1] M [c− 1] ×

h[1] h[a+ 1] Tag′
FB

A[a]/padn(A[a]) C[c− 1]

N

N

FB FB FB FB FB

FB FB FB FB

u

h[a+m]
×FB

h[a+ c− 1]
FB

S[a+m+ 1]

S[a+ c]

h[a+m− 1]

h[a+ c− 2]

C[m+ 1]

×

u

C[c]

Encryption

Process AD Process Message Termination Tag Generation

Decryption

Process AD Process Ciphertext Termination Tag Generation

K K K K K K

K K K K K K

Figure 2: Encryption and Decryption sub-routine of Lynx-B family. FB in below figure is
used from the cases that fall into correct group (refer table 2 for list)

Table 3: Lynx specification. Lynx takes input as nonce with size as 128 bits, block size as
128 bits, tweak size as 256 bits and return a tag of size 128 bits

Lynx Family Nonce Size
(n)

Block Size
(b)

Tweak Size
(t = 2 ∗ b)

Tag Size
(tag)

Lynx-A Family 128 128 256 128

Lynx-B Family 128 128 256 128

zero state i.e., an input 0b is fed during the initialization phase as well as during the tag
generation phase. In addition to a zero state, the initialization phase also takes the a nonce
as an input. The associated data and message are processed in blocks of size b, after the
initialization phase and before the tag generation phase. Upon encountering a partial block,
a padding function is used which is described in equation (1). The initialization phase in
lynx-A family is necessary to ensure confidentiality in nonce respecting scenario. The tag
generation phase is necessary to maintain integrity. The length of the ciphertext produced
by lynx-A is equal to the length of the message and hence lynx-A is length preserving.

4.2 Lynx-B
The construction of lynx-B family can be divided into three phases: an associated data
and message processing phase, a termination phase, and a tag generation phase (refer
figure 2). The members of lynx-B family start with the associated data and the message
processing. The first block processing also takes in nonce as the input. The associated data
and message are processed in blocks of size b (or with padding) bits. Once the message
processing is complete, the termination phase starts. The termination phase keeps the
track of message length. Please note that if message is empty, there is no termination phase.
During the termination phase an input u fed whose value depends on whether the last
block of message was full or partial, u = 10b−1 for a full last block while u = 1010b−3 for
partial last block. The termination phase is the part of the ciphertext and hence members
of lynx-B family are not length preserving. In the tag generation phase, similar to lynx-A
family, lynx-B family also uses a zero state i.e., an input 0b during the tag generation phase.

Munawar Hasan and Donghoon Chang 11

The tag generation phase is necessary to maintain integrity.
If the associated data and the message, both are empty i.e., A = ϵ (or |A| = 0) and M = ϵ
(or |M | = 0), then lynx-A executes the initialization phase as well as the tag generation
phase (refer figure 1 and algorithm 1) while lynx-B executes only the tag generation phase
(refer figure 2 and algorithm 2).

4.3 FA

The function family FA takes in three inputs and returns two outputs (refer figure 3) as
described by the following equation:

FA(K, h[i− 1], S[i], V [i]) 7→ (h[i], W [i]) (11)

where K ∈ {0, 1}k, h[i − 1] ∈ {0, 1}b, S[i] ∈ {0, 1}s, V [i] ∈ {0, 1}b, h[i] ∈ {0, 1}b and
W [i] ∈ {0, 1}b. Like FA, FA also takes in three inputs and returns two outputs (refer
figure 3):

FA(K, h[i− 1], S[i], W [i]) 7→ (h[i], V [i]) (12)

We present the internal construction of FA and FA in figure 3 and present their pseudocode
in algorithm 3.
All the 36 cases of FA (and FA) are shown in table 5, out of which only 10 cases that are
marked in bold red font can be used to create an authenticated encryption scheme (check
section 5 for details). Hence, the members of lynx-A family are created only using these 10
cases of FA (and FA). As stated earlier, FA is used during the invocation of encryption
sub-routine (E) while FA is used during the invocation of decryption sub-routine (D)
of lynx-A respectively. Further, in equation (11), V [i] is either associated data A[i] or
message M [i], and W [i] is the ciphertext C[i] corresponding to the message M [i] and in
equation (12), V [i] is the original message corresponding to the ciphertext W [i].

ẼK
f1

f2

‖

f3
h[i− 1]

V [i]S[i]

h[i]

FA

x[i] o[i]

y[i]

T [i]

W [i]

V [i] V [i]

h[i− 1]

z[i]

h[i− 1]

ẼK
f1

f2

‖

f3
h[i− 1]

V [i]

S[i]

h[i]

FA

x[i] o[i]

y[i]

T [i]

V [i]

W [i] V [i]

h[i− 1]

z[i]

h[i− 1]

W [i]

Figure 3: Internal construction of the function family FA / FA. Internally it is composition
of three sub-functions: f1 and f2 takes in two inputs and returns one output while f3 takes
in three input and returns one output

4.4 FB

Similar to the FA, FB takes in three inputs and returns two outputs (refer figure 4) as
described by the following equation:

FB(K, h[i− 1], S[i], V [i]) 7→ (h[i], W [i]) (13)

12
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable

Blockcipher

Algorithm 1 : Lynx-A encryption and decryption
E(K, N, A, M)
Note: FA is used from the cases that fall into correct group (refer table 1)

1: (A[1] ∥ A[2] ∥ ... ∥ A[a]) = A, (M [1] ∥ M [2] ∥ ... ∥ M [m]) = M , l7...0 ← 0, K
$←− {0, 1}k,

S[0]← bin120(0) ∥ l7...0
2: (h[0],×)← FA(K, N, S[0], 0b) ▷ Initialization
3: for i = 1 to a do ▷ Process Associated Data
4: if |A[i]| (mod b) = 0 then
5: l0 ← 1
6: else
7: l1 ← 1, A[i]← padb(A[i])
8: end if
9: S[i]← bin120(i) ∥ l7...0

10: (h[i],×)← FA(K, h[i− 1], S[i], A[i])
11: end for
12: for i = 1 to m do ▷ Process Message
13: if |M [i]| (mod b) = 0 then
14: l0, l1 ← 1, ν ← ||M [i]||
15: else
16: l0, l1 ← 0, l2 ← 1, ν ← ||M [i]||, M [i]← padb(M [i])
17: end if
18: S[a + i]← bin120(a + i) ∥ l7...0
19: (h[a + i], C[i])← FA(K, h[a + i− 1], S[a + i], M [i])
20: end for
21: l3...0 ← 1 ▷ Tag Generation
22: S[a + m + 1]← bin120(a + m + 1) ∥ l7...0
23: (h[a + m + 1],×)← FA(K, h[a + m], S[a + m + 1], 0n)
24: T ag ← h[a + m + 1], C ← C[0] ∥ C[1] ∥ ... ∥ Truncν(C[m])
25: Return (C, T ag)

D(K, N, A, C, T ag)
1: (A[1] ∥ A[2] ∥ ... ∥ A[a]) = A, (C[1] ∥ C[2] ∥ ... ∥ C[c]) = C, l7...0 ← 0, S[0]← bin120(0) ∥ l7...0
2: (h[0],×)← FA(K, N, S[0], 0b) ▷ Initialization
3: for i = 1 to a do ▷ Process Associated Data
4: if |A[i]| (mod b) = 0 then
5: l0 ← 1
6: else
7: l1 ← 1, A[i]← padb(A[i])
8: end if
9: S[i]← bin120(i) ∥ l0...7

10: (h[i],×)← FA(K, h[i− 1], S[i], A[i])
11: end for
12: for i = 1 to c do ▷ Process Ciphertext
13: if |C[i]| (mod b) = 0 then
14: l0, l1 ← 1, ν ← |C[i]|
15: else
16: l0, l1 ← 0, l2 ← 1, ν ← ||C[i]||, C[i]← padb(C[i])
17: end if
18: S[a + i]← bin120(a + i) ∥ l7...0
19: (h[a + i], M [i])← FA(K, h[a + i− 1], S[a + i], C[i])
20: end for
21: l3...0 ← 1 ▷ Tag Generation
22: S[a + m + 1]← bin120(a + m + 1) ∥ l7...0
23: (h[a + m + 1],×)← FA(K, h[a + m], S[a + m + 1], 0n)
24: T ag′ ← h[a + m + 1], M ←M [0] ∥M [1] ∥ ... ∥ Truncν(M [c])
25: if T ag = T ag′ then
26: Return M
27: else
28: Return ⊥
29: end if

where K ∈ {0, 1}k, h[i − 1] ∈ {0, 1}b, S[i] ∈ {0, 1}s, V [i] ∈ {0, 1}b, h[i] ∈ {0, 1}b and
W [i] ∈ {0, 1}b. FB takes in three inputs and returns two outputs (refer figure 4):

FB(K, h[i− 1], S[i], W [i]) 7→ (h[i], V [i]) (14)

Munawar Hasan and Donghoon Chang 13

Algorithm 2 : Lynx-B encryption and decryption
E(K, N, A, M)
Note: FB is used from the cases that fall into correct group (refer table 2)
1: (A[1] ∥ A[2] ∥ ... ∥ A[a]) = A, (M [1] ∥M [2] ∥ ... ∥M [m]) = M , l7...0 ← 0, l3 ← 1, h[0]← N
2: for i = 1 to a do ▷ Process Associated Data
3: if |A[i]| (mod n) = 0 then
4: l0 ← 1, S[i]← bin120(i) ∥ l7...0
5: else
6: l1 ← 1, A[i]← padn(A[i]), S[i]← bin120(i) ∥ l7...0
7: end if
8: (h[i],×)← FB(K, h[i− 1], S[i], A[i])
9: end for

10: for i = 1 to m− 1 do ▷ Process Message
11: l0, l1 ← 1, S[a + i]← bin120(a + i) ∥ l7...0
12: (h[a + i], C[i])← FB(K, h[a + i− 1], S[a + i], M [i])
13: end for
14: if M ̸= ϵ then
15: if |M [m]| (mod b) = 0 then ▷ Termination
16: l0, l1 ← 0, u← 10b−1

17: S[a + m + 1]← bin120(a + m + 1) ∥ l7...0
18: (×, C[m + 1])← FB(K, h[a + m− 1], S[a + m + 1], u)
19: l0, l1 ← 1 ▷ Process Last Message Block
20: S[a + m]← bin120(a + m) ∥ l7...0
21: (h[a + m], C[m])← FB(K, h[a + m− 1], S[a + m], M [m])
22: else
23: l2 ← 1, u← 1010b−3, M [m]← padb(M [m])
24: S[a + m + 1]← bin120(a + m + 1) ∥ l7...0
25: (×, C[m + 1])← FB(K, h[a + m− 1], S[a + m + 1], u)
26: l0, l1 ← 0, l2 ← 1 ▷ Process Last Message Block
27: S[a + m]← bin120(a + m) ∥ l7...0
28: (h[a + m], C[m])← FB(K, h[a + m− 1], S[a + m], M [m])
29: end if
30: end if
31: l3...0 ← 1 ▷ Tag Generation
32: S[a + m + 2]← bin120(a + m + 2) ∥ l7...0
33: (h[a + m + 1],×)← FB(K, h[a + m], S[a + m + 2], 0n)
34: T ag ← h[a + m + 1], C ← C[0] ∥ C[1] ∥ ... ∥ C[m + 1]
35: Return (C, T ag)

D(K, N, A, C, T ag)
1: (A[1] ∥ A[2] ∥ ... ∥ A[a]) = A, (C[1] ∥ C[2] ∥ ... ∥ C[c]) = C, l7...0 ← 0, l3 ← 1, h[0]← N
2: for i = 1 to a do ▷ Process Associated Data
3: if |A[i]| (mod b) = 0 then
4: l0 ← 1, S[i]← bin120(i) ∥ l7...0
5: else
6: l1 ← 1, A[i]← padn(A[i]), S[i]← bin120(i) ∥ l7...0
7: end if
8: (h[i],×)← FB(K, h[i− 1], S[i], A[i])
9: end for

10: for i = 1 to c− 2 do ▷ Process Ciphertext
11: l0, l1 ← 1, S[a + i]← bin120(a + i) ∥ l7...0
12: (h[a + i], M [i])← FB(K, h[a + i− 1], S[a + i], C[i])
13: end for
14: if C ̸= ϵ then
15: l0, l1 ← 0, S[a + c]← bin120(a + c) ∥ l7...0 ▷ Termination
16: (×, M [c])← FB(K, h[a + c− 2], S[a + c], C[c])
17: if M [c] = 10b−1 then ▷ Process Last Ciphertext Block
18: l0, l1 ← 1, S[a + c− 1]← bin120(a + c− 1) ∥ l7...0
19: (h[a + c− 1], M [c− 1])← FB(K, h[a + c− 2], S[a + c− 1], C[c− 1])
20: else
21: l2 ← 1, S[a + c− 1]← bin120(a + c− 1) ∥ l7...0
22: ν ← 10∗ ▷ Padded according to Eq. 1

14
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable

Blockcipher

23: (h[a + c− 1], M [c− 1])← FB(K, h[a + c− 2], S[a + c− 1], C[c− 1])
24: M [c− 1]← Extractν(M [c− 1]))
25: end if
26: end if
27: l3...0 ← 1, S[a + c + 1]← bin120(a + c + 1) ∥ l7...0 ▷ Tag Generation
28: (h[a + c],×)← FB(K, h[a + c− 1], S[a + c + 1], 0n)
29: T ag′ ← h[a + c], M ←M [0] ∥M [1] ∥ ... ∥M [c− 1]
30: if T ag = T ag′ then
31: Return M
32: else
33: Return ⊥
34: end if

Algorithm 3 : FA and FA

FA(K, h[i− 1], S[i], V [i])
1: x[i]← f1(h[i− 1], V [i]) | x[i] ∈ {h[i− 1], V [i], h[i− 1]⊕ V [i]}
2: W [i]← x[i]
3: y[i]← f2(h[i− 1], V [i]) | y[i] ∈ {h[i− 1], V [i], h[i− 1]⊕ V [i]}
4: T [i]← S[i] ∥ y[i]
5: z[i]← Ẽ(K, T [i], x[i])
6: o[i]← f3(z[i], h[i− 1], V [i]) | o[i] ∈ {z[i], z[i]⊕ h[i− 1], z[i]⊕ V [i], z[i]⊕ h[i− 1]⊕ V [i]}
7: h[i]← o[i]
8: Return (h[i], W [i])

FA(K, h[i− 1], S[i], W [i])
1: x[i]← f1(h[i− 1], W [i]) | x[i] ∈ {h[i− 1], W [i], h[i− 1]⊕W [i]}
2: V [i]← x[i]
3: y[i]← f2(h[i− 1], W [i]) | y[i] ∈ {h[i− 1], W [i], h[i− 1]⊕W [i]}
4: T [i]← S[i] ∥ y[i]
5: z[i]← Ẽ(K, T [i], x[i])
6: o[i]← f3(z[i], h[i− 1], W [i]) | o[i] ∈ {z[i], z[i]⊕ h[i− 1], z[i]⊕W [i], z[i]⊕ h[i− 1]⊕W [i]}
7: h[i]← o[i]
8: Return (h[i], V [i])

We present the internal construction of FB and FB in figure 4 and present their pseudocode
in algorithm 4.
Table 6 gives the 36 cases of FB (and FB). The 4 cases marked in bold red font can only
be used to create an authenticated encryption scheme (check section 5 for details). These
4 cases are used to create lynx-B family.
The fundamental difference between FA and FB family is based on the idea of generating
the ciphertext. In FA, the ciphertext is generated after the xor operation i.e., C[i] = x[i]
(refer W [i] in figure 3) while in case of FB , the ciphertext is produced from the output of
the tweakable blockcipher i.e., C[i] = z[i] (refer W [i] in figure 4). Hence, in case of FA, a
single bit difference causes one bit difference in the ciphertext, while, a single bit difference
in case of FB , affects all the bits of the ciphertext (given a secure tweakable blockcipher).

To establish the correctness of FA/FA and FB/FB , we present following criteria:
Correctness: For a given K, h[i− 1], V [i] and S[i], a valid construction is defined as:

FA(K, h[i− 1], S[i], V [i]) 7→ (h[i], W [i])
FA(K, h[i− 1], S[i], W [i]) 7→ (h′[i], V ′[i])

where (h′[i] = h[i]) ∧ (V ′[i] = V [i])
(15)

and
FB(K, h[i− 1], S[i], V [i]) 7→ (h[i], W [i])
FB(K, h[i− 1], S[i], W [i]) 7→ (h′[i], V ′[i])

where (h′[i] = h[i]) ∧ (V ′[i] = V [i])
(16)

Munawar Hasan and Donghoon Chang 15

ẼK
f1

f2

‖

f3
h[i− 1]

V [i]S[i]

h[i]

FB

x[i] o[i]

y[i]

T [i]

W [i]

V [i] V [i]

h[i− 1]

z[i]

h[i− 1]

D̃K
f1

f2

‖

f3
h[i− 1]

W [i]S[i]

h[i]

FB

x[i] o[i]

y[i]

T [i]

V [i]

V [i]

h[i− 1]

z[i]

W [i]

V [i]

h[i− 1]

Figure 4: Internal construction of the function family FB / FB . Internally it is composition
of three sub-functions: f1 and f2 takes in two inputs and returns one output while f3 takes
in three input and returns one output

Algorithm 4 : FB and FB

FB(K, h[i− 1], S[i], V [i])
1: x[i]← f1(h[i− 1], V [i]) | x[i] ∈ {h[i− 1], V [i], h[i− 1]⊕ V [i]}
2: y[i]← f2(h[i− 1], V [i]) | y[i] ∈ {h[i− 1], V [i], h[i− 1]⊕ V [i]}
3: T [i]← S[i] ∥ y[i]
4: z[i]← Ẽ(K, T [i], x[i])
5: W [i]← z[i]
6: o[i]← f3(z[i], h[i− 1], V [i]) | o[i] ∈ {z[i], z[i]⊕ h[i− 1], z[i]⊕ V [i], z[i]⊕ h[i− 1]⊕ V [i]}
7: h[i]← o[i]
8: Return (h[i], W [i])

FB(K, h[i− 1], S[i], W [i])
1: x[i]← f1(h[i− 1], W [i]) | x[i] ∈ {h[i− 1], W [i], h[i− 1]⊕W [i]}
2: y[i]← f2(h[i− 1], W [i]) | y[i] ∈ {h[i− 1], W [i], h[i− 1]⊕W [i]}
3: T [i]← S[i] ∥ y[i]
4: z[i]← D̃(K, T [i], x[i])
5: V [i]← z[i]
6: o[i]← f3(z[i], h[i− 1], W [i]) | o[i] ∈ {z[i], z[i]⊕ h[i− 1], z[i]⊕W [i], z[i]⊕ h[i− 1]⊕W [i]}
7: h[i]← o[i]
8: Return (h[i], V [i])

4.5 Domain Separation
We use one byte flag to provide domain separation in various scenarios. The flag we use is
represented by following notation: l7...0. The four most significant bits of flag is always
0 i.e., l7...4 ← 0. Rest of the four bits i.e., the four least significant bits provide domain
separation for various scenarios: distinction between underlying lynx family, initialization
phase, associated data processing, message processing, termination phase (in case of lynx-B)
and tag generation phase. Flag also keeps the track of blocks, weather the encountered
block is full or partial. Further, the flag usage facilitates integrity and confidentiality.
Table 4 shows the values taken by the flag bits. The bit l3 serves as domain separator
between the two families of the lynx.

5 Analysis of FA and FB

As stated earlier, only 10 cases of FA and 4 cases of FB can be used for creating
authenticated encryption scheme (marked in bold red font in table 5 and table 6). In

16
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable

Blockcipher

Table 4: Flag for lynx family. There are 8 bits in the flag with four most significant bits
as always zero. The rest four bits denote processing of associated data, message, partial or
full block, initialization phase and termination phase

Family of Lynx Operation Flag Value

Lynx-A1,
Lynx-A2,
Lynx-A3,
Lynx-A4,
Lynx-A5,
Lynx-A6,
Lynx-A7,
Lynx-A8,
Lynx-A9,
Lynx-A10

Initialization 040000

Process AD
040001 if |A[i]| mod b = 0

040010 if |A[i]| mod b ̸= 0

Process Message
040011 if |M [i]| mod b = 0

040100 if |M [i]| mod b ̸= 0

Tag Generation 041111

Lynx-B1,
Lynx-B2,
Lynx-B3,
Lynx-B4

Process AD
041001 if |A[i]| mod b = 0

041010 if |A[i]| mod b ̸= 0

Process Message
041011 if |M [i]| mod b = 0

041100 if |M [i]| mod b ̸= 0

Termination 041000

Tag Generation 041111

Table 5: FA and FA: Enumerated from 1 to 36. The bold letters in red color in the table
denote the cases that fall into correct group

FA: W [i] = x[i] And FA: V [i] = x[i]

x[i] y[i]
o[i]

z[i] z[i]⊕ V [i] z[i]⊕h[i−1] z[i] ⊕ V [i] ⊕
h[i− 1]

h[i−1] / h[i−1]

V [i] / W [i] FA
1 / FA

1 FA
2 / FA

2 FA
3 / FA

3 FA
4 / FA

4

h[i−1] / h[i−1] FA
5 / FA

5 FA
6 / FA

6 FA
7 / FA

7 FA
8 / FA

8

V [i]⊕ h[i− 1] /
W [i]⊕ h[i− 1]

FA
9 / FA

9 FA
10 / FA

10 FA
11 / FA

11 FA
12 / FA

12

V [i] / W [i]

V [i] / W [i] FA
13 / FA

13 FA
14 / FA

14 FA
15 / FA

15 FA
16 / FA

16

h[i−1] / h[i−1] FA
17 / FA

17 FA
18 / FA

18 FA
19 / FA

19 FA
20 / FA

20

V [i]⊕ h[i− 1] /
W [i]⊕ h[i− 1]

FA
21 / FA

21 FA
22 / FA

22 FA
23 / FA

23 FA
24 / FA

24

h[i− 1]⊕ V [i] /
h[i− 1]⊕W [i]

V [i] / V [i] FA
25 / FA

25 FA
26 / FA

26 FA
27 / FA

27 FA
28 / FA

28

h[i−1] / h[i−1] FA
29 / FA

29 FA
30 / FA

30 FA
31 / FA

31 FA
32 / FA

32

V [i]⊕ h[i− 1] /
V [i]⊕ h[i− 1]

FA
33 / FA

33 FA
34 / FA

34 FA
35 / FA

35 FA
36 / FA

36

this section, we analyze each case of FA and FB in light of creating an authenticated
encryption scheme and show why 58 cases cannot be used for creating an authenticated
encryption scheme. Hence, we divide the 72 cases into two groups: incorrect group (58

Munawar Hasan and Donghoon Chang 17

Table 6: FB and FB: Enumerated from 1 to 36. The bold letters in red color in the table
denote the cases that fall into correct group

FB, W [i] = z[i] And FB: V [i] = x[i]

x[i] y[i]
o[i]

z[i] z[i]⊕ V [i] z[i]⊕h[i−1] z[i] ⊕ V [i] ⊕
h[i− 1]

h[i−1] / h[i−1]

V [i] / W [i] FB
1 / FB

1 FB
2 / FB

2 FB
3 / FB

3 FB
4 / FB

4

h[i−1] / h[i−1] FB
5 / FB

5 FB
6 / FB

6 FB
7 / FB

7 FB
8 / FB

8

V [i]⊕ h[i− 1] /
W [i]⊕ h[i− 1]

FB
9 / FB

9 FB
10 / FB

10 FB
11 / FB

11 FB
12 / FB

12

V [i] / V [i]

V [i] / W [i] FB
13 / FB

13 FB
14 / FB

14 FB
15 / FB

15 FB
16 / FB

16

h[i−1] / h[i−1] FB
17 / FB

17 FB
18 / FB

18 FB
19 / FB

19 FB
20 / FB

20

V [i]⊕ h[i− 1] /
W [i]⊕ h[i− 1]

FB
21 / FB

21 FB
22 / FB

22 FB
23 / FB

23 FB
24 / FB

24

h[i− 1]⊕ V [i] /
h[i− 1]⊕ V [i]

V [i] / W [i] FB
25 / FB

25 FB
26 / FB

26 FB
27 / FB

27 FB
28 / FB

28

h[i−1] / h[i−1] FB
29 / FB

29 FB
30 / FB

30 FB
31 / FB

31 FB
32 / FB

32

V [i]⊕ h[i− 1] /
W [i]⊕ h[i− 1]

FB
33 / FB

33 FB
34 / FB

34 FB
35 / FB

35 FB
36 / FB

36

Table 7: Incorrect cases of FA and FB that fall into implausible case or non-confidential
case or non-integrity case

Implausible Cases

FA
1 , FA

2 , FA
3 , FA

4 , FA
5 , FA

6 , FA
7 , FA

8

FA
9 , FA

10, FA
11, FA

12, FB
1 , FB

2 , FB
3 , FB

4

FB
5 , FB

6 , FB
7 , FB

8 , FB
9 , FB

10, FB
11, FB

12

FB
13, FB

14, FB
15, FB

16, FB
21, FB

22, FB
23, FB

24

FB
25, FB

26, FB
27, FB

28, FB
33, FB

34, FB
35, FB

36

Non-Confidential Cases
FA

13, FA
14, FA

15, FA
16, FA

17, FA
18, FA

19, FA
20

FA
21, FA

22, FA
23, FA

24

Non-Integrity Cases FA
33, FA

36, FB
17, FB

19, FB
29, FB

31

cases) and correct group (14 cases). Further there are three sub-cases in the incorrect
group: implausible cases, non-confidential cases and non-integrity cases. We next list FA

and FB into these sub-cases of the incorrect group. In this section, we use notation FA
i...k

to cover all the cases of FA between FA
i (inclusive) and FA

k (inclusive), thereby making a
total of k − i + 1 cases. We use similar notation for FB as well.

• Implausible Cases: Such cases of FA and FB where the ciphertext is independent
of the input message i.e., there is no relation between ciphertext and the input
message and hence it is impossible to recover back the original message given the
ciphertext. We focus on FA

1 . From table 5, it is clear that x[i] = h[i − 1] = C[i],
this makes ciphertext independent of the input message. Hence, given C[i], it not
possible to recover back the input message M [i]. FA

2...12 fall into this sub-class as
well.

18
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable

Blockcipher

In case of FB , one can see from the design that if the message is a part of the tweak
then it is not possible to recover back the message given the ciphertext. Hence, FB

1...4,
FB

9...12, FB
13...16, FB

21...24, FB
25...28 and FB

33...36 fall into this category as well.
Now consider FB

5 , message is neither part of the input nor part of the tweak and
hence this case as well, is independent of the input message. FB

6...8 also have similar
pattern.

• Non-Confidential Cases: In such cases, the message itself becomes the ciphertext
hence offering no privacy at all. In case of FA

13, one can see that the message block
M [i] becomes the ciphertext block, there by making input message public. FA

14...24
fall into this sub-class as well.

• Non-Integrity Cases: Consider FA
33, the input to the tweakable blockcipher,

x[i] = h[i − 1] ⊕M [i] = C[i]. Further, the tweak to the tweakable blockcipher,
T [i] = S[i] ∥ h[i− 1]⊕M [i] = S[i] ∥ C[i]. Now consider two ciphertext C and C ′ of
lengths c and c′. Without loss of generality, if the last block of the two ciphertexts
are equal i.e., C[c] = C ′[c′], then both the ciphertext produces same tag even though
other blocks of ciphertext may be different.
Now consider FA

36 which has similar design to FA
33. Input to the tweakable blockcipher,

x[i] = h[i−1]⊕M [i] = C[i] and tweak to the tweakable blockcipher, T [i] = S[i] ∥ h[i−
1]⊕M [i] = S[i] ∥ C[i]. Further, in case of FA

36, h[i] = z[i]⊕h[i−1]⊕M [i] = z[i]⊕C[i].
Hence, similar to the case of FA

33, the dependency is only on the ciphertext.
In FB

17, one can see that the output is only dependent on the ciphertext i.e., C[i]
and hence like in the previous cases forgery is possible by tweaking the last block.
FB

29 has similar problem as well.
In FB

19, the output is dependent on both the ciphertext and the output from the
previous block i.e., h[i− 1]. One can see that it is possible to change the bits of two
blocks of the ciphertext to create forgery. FB

31 has similar problem as well.

Table 7 summarizes all the incorrect cases. The cases that do not fall into the incorrect
group, fall into the correct group. The correct group cases have constructions that make
them fundamentally distinct from implausible cases, non-confidential cases or non-integrity
cases. We present formal security proofs for lynx-A and lynx-B, based on these 14 cases, in
the security proof section (section 7).

6 Design Rationale

In this section, we discuss the significance of various components of lynx.

6.1 Initialization in Lynx-A

Lynx-A starts with the initialization phase (refer figure 1) which requires an extra block
processing before the start of the processing of the associated data and the message. This
initialization phase utilizes a public parameter called the nonce (N) and produces an
output h[0]. This h[0] is used later in the processing of associated data and the message.
In the absence of the initialization phase and when A = ϵ or |A| = 0, nonce N is directly
used to produce the ciphertext. Since N is public, it is trivial to recover the first message
block knowing the first ciphertext block even in nonce respecting scenario. To thwart
such a condition, the initialization phase is needed. In case of lynx-B, due to its internal
construction, we do not need any initialization phase.

Munawar Hasan and Donghoon Chang 19

6.2 Termination in Lynx-B
In Lynx-B, we use termination phase (refer figure 2) which is an extra block processing
after processing the associated data and the message and before the tag generation phase.
The idea behind the termination phase is to recover complete message given the ciphertext.
In lynx-B, if the last message block is incomplete or partial then we pad it using the
equation (1). Lynx-B loses the track of message length after using the padding function
and hence needs an extra block that keeps the track of the message length of the last
message block. Further, due to this extra block, lynx-B is not length preserving. In case of
lynx-A, due to its construction, we do not need any termination phase.

6.3 Tag Generation
The lynx family uses tag generation phase (refer figure 1 for lynx-A and figure 2 for lynx-B)
which is an extra block processing phase after processing the associated data and the
message. This extra block processing marks the termination of lynx. For lynx-A, addition
of this tag generation phase eases the security proof. For lynx-B, in the absence of tag
generation phase, it is easy to perform forgery due to the internal construction of functions
FB

18, FB
20, FB

30 and FB
32 that are used for constructing lynx-B1, lynx-B2, lynx-B3 and lynx-B4

respectively. In case of FB
18 and FB

30, if there is no tag generation phase then from table 6 we
know that the output from FB

18 and FB
30 is dependent only on the message and ciphertext,

hence by simply replacing the last block of the ciphertext, one can easily perform forgery.
In case of FB

20 and FB
32, when there is no tag generation phase then performing forgery

attack is a two step process; firstly from message and ciphertext, the attacker can get the
previous h values (refer table 6), then in the second step attacker can simply replacing
the last block of the ciphertext to perform tag forgery. In the presence of tag generation
phase, no such tag forgery attack is possible.

6.4 Stream Processing
The design of lynx ensures the current block processing doesn’t need information of the
block coming ahead. For example: if the next block is partial or full, or if next next block
is a message block while processing associated data. Such scenarios are practical and of
significance in low powered devices where it may not be possible to hold up ciphertext or
messages during encryption or decryption due to the memory constraints.

6.5 Design of Flag
The choice of one byte flag was done to facilitate stream processing (see section 6.4). The
bits provide domain separation but at the same time doesn’t require extra knowledge
about the upcoming blocks.

6.6 Counter
The counter serves as the part of the tweak of the tweakable blockcipher. Hence, for any
two queries, if the query length is not same, then due to the usage of counter as part of the
tweak, the tweaks of the tweakable blockcipher of the respective queries becomes different.

6.7 Simple Operation
Lynx is completely based on xor operations and does not have any matrix or field com-
putations. This makes lynx computationally efficient and cost effective due to low area
requirement for hardware implementations.

20
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable

Blockcipher

The design of lynx ensures the three essential components of lightweight cryptographic
primitives (security, performance and cost) [49]. We next present the security proofs.

7 Security Proofs
The lynx family consists of 14 members divided into two sub-families lynx-A and lynx-B.
These two families are created based on function family FA and FB respectively. There are
10 members of lynx-A namely lynx-A1, lynx-A2, . . . , lynx-A10 while there are 4 members
of lynx-B namely lynx-B1, lynx-B2, lynx-B3 and lynx-A10. In this section for simplicity
and conciseness, we refer the lynx-A family as lynx-A{1 . . . 10} and lynx-B family as lynx-
B{1 . . . 4}. Figure 1 and figure 2 shows the internal construction of lynx-A and lynx-B
while the internal construction of the function FA and FB is shown in figure 3 and figure 4.
Table 1 and table 2 lists down FA and FB that are used to create respective lynx-A and
lynx-B constructions.
We provide the security proofs of lynx in the information-theoretic model, where each
tweakable blockcipher is replaced by random tweakable permutation i.e., for each tweak a
permutation is randomly selected. Further, lemmas, definitions and security proofs are
provided for each of the respective member of the lynx family and we do not mix these
amongst the members.
In this section, we start by providing lemma 2, lemma 3. Then we present two types of
collision event h-Coll and input-Coll in definition 6 and definition 8. On the basis of
these lemmas and definitions we give the bound of the two collision events (h-Coll and
input-Coll) in lemma 4, lemma 5 and lemma 7. These bounds are used to provide the
security proofs of lynx i.e., INT-RUP, INT and CONF security as presented in theorem 1,
theorem 2, theorem 3 and theorem 4. First, we start by presenting these lemmas
related to lynx-A and lynx-B. We then move forward to present the security proofs of the
lynx family. At this point, it is also important to highlight that the adversary for CONF
security proof is a nonce respecting adversary while in case of INT-RUP and INT security
proof, the adversary maybe a nonce misuse adversary.
Adversary A executes the encryption queries, decryption queries and verification queries
and builds tuples with each tuple containing values (N, A, M, C, T), where N is nonce,
A is associated data, M is message, C is ciphertext and T is the tag generated. h[i− 1]
denotes the input while h[i] denotes the output for the ith invocation of FA (for lynx-A)
or FB (for lynx-B) respectively. x[i] and T [i] denotes the two inputs (message and tweak)
to the tweakable blockcipher of FA (for lynx-A) or FB (for lynx-B) for the ith invocation
of FA and FB respectively.

Lemma 2. In lynx-A{1 . . . 8} and lynx-B{1 . . . 4}, given two tuples (N, A, M, C, T) and
(N ′, A′, M ′, C ′, T ′) and for any i if h[i − 1] ̸= h′[i − 1] then (x[i], T [i]) ̸= (x′[i], T ′[i]),
where next invocation is defined for i

Proof. Refer appendix A.1 for proof.

Lemma 3. Lynx-A9 and Lynx-A10

1. In lynx-A9 and lynx-A10, given any two tuples (N, A, M, C, T) and (N ′, A′, M ′, C ′, T ′)
and for any i, if (h[i− 1] = h′[i− 1])∧ (M [i] ̸= M ′[i]) then (x[i], T [i]) ̸= (x′[i], T ′[i])

Proof. Refer appendix A.2 for proof.

2. In lynx-A9 and lynx-A10, given any two tuples (N, A, M, C, T) and (N ′, A′, M ′, C ′, T ′)
and for any i, if (h[i− 1] ̸= h′[i− 1])∧ (M [i] = M ′[i]) then (x[i], T [i]) ̸= (x′[i], T ′[i])

Proof. Refer appendix A.2 for proof.

Munawar Hasan and Donghoon Chang 21

Based on lemma 2 and lemma 3, we now define three collision events h-Coll, h∗-Coll
and input-Coll. Let (N, A, M, C, T) and (N ′, A′, M ′, C ′, T ′) be any two tuples obtained
after executing encryption, decryption and verification queries. Using these two tuples, we
have following definitions:

Definition 6. [h-Coll] If there exists an i, such that h[i] = h′[i] when (x[i], T [i]) ̸=
(x′[i], T ′[i]), then the h-Coll event has occurred for the two tuples (N, A, M, C, T) and
(N ′, A′, M ′, C ′, T ′)

Definition 7. [h*-Coll] If there exists an i, such that h[i− 1] ̸= h′[i− 1] but h[i] = h′[i],
then the h*-Coll event has occurred for the two tuples (N, A, M, C, T) and (N ′, A′, M ′, C ′, T ′)

Definition 8. [input-Coll] If there exists an i, such that h[i − 1] ̸= h′[i − 1] but
(x[i], T [i]) = (x′[i], T ′[i]), then the the input-Coll event has occurred for the two tuples
(N, A, M, C, T) and (N ′, A′, M ′, C ′, T ′)

Before moving forward to the probability bounds of h-Coll, h∗-Coll and input-Coll, we
first need to describe how the encryption query, decryption query and verification query
looks like. Let qE , qD and qV denote the number of encryption queries, decryption queries
and verification queries respectively. Let the tuple (Ni, Ai, Mi) denote the ith encryption
query, the tuple (Ni, Ai, Ci, Ti) denote the ith decryption query and (Ni, Ai, Ci, Ti) denote
the ith verification query. The block length of a query for lynx-A is defined as the total
number of invocations of FA and the block length of a query for lynx-B is defined as the
total number of invocations of FB respectively.
We can now present lemma 4 and lemma 5 that gives the probability bound of h-Coll
for lynx-A{1 . . . 8} and lynx-B{1 . . . 4}, and lemma 5 that gives the probability bound of
h-Coll for lynx-A9 and lynx-A10.

Lemma 4. Let A be an adversary with qE number of encryption queries, qD number of
decryption queries and qV number of verification queries where maximum block length of
any query is l, q = qE + qD + qV and q ≤ 2b−1 then for each lynx-A{1 . . . 8} and for each
lynx-B{1 . . . 4} the Pr[h-CollA] ≤ l • q2

2b , where h-CollA is the occurrence of h-Coll event
when the adversary A is interacting with the lynx.

Proof. Refer appendix A.3 for proof.

Lemma 5. Let A be an adversary with qE number of encryption queries, qD number of
decryption queries and qV number of verification queries where maximum block length
of any query is l, q = qE + qD + qV and q ≤ 2b−1 then for lynx-A9 and lynx-A10 the
Pr[h-CollA] ≤ l • q2

2b , where h-CollA is the occurrence of h-Coll event when the adversary
A is interacting with the lynx.

Proof. Refer appendix A.4 for proof.

Lemma 6. Let A be an adversary with qE number of encryption queries, qD number of
decryption queries and qV number of verification queries where maximum block length
of any query is l, q = qE + qD + qV and q ≤ 2b−1 then for lynx-A9 and lynx-A10 the
Pr[h*-CollA] ≤ l • q2

2b , where h*-CollA is the occurrence of h*-Coll event when the adversary
A is interacting with the lynx.

Proof. Refer appendix A.5 for proof.

Lemma 7. Let A be a nonce respecting adversary with qE number of encryption queries,
qD number of decryption queries and qV number of verification queries where maximum
block length of any query is l, q = qE + qD + qV and q ≤ 2b−1 then for lynx-A9 and lynx-A10
the Pr[input-CollA] ≤ l • q2

2b , where input-CollA is the occurrence of input-Coll event when
the adversary A is interacting with the lynx.

22
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable

Blockcipher

Proof. Refer appendix A.6 for proof.

Now we present INT-RUP, INT and CONF security proofs for lynx.

7.1 Integrity in RUP
We start with the definition of INT-RUP from definition 4. Let Π = (E ,D,V) be an
authenticated encryption scheme. Let A be an adversary under nonce misuse scenario
that makes qE encryption queries, qD decryption queries and qV verification queries such
that q = qE + qD + qV . Then for a randomly chosen key K, the INT-RUP advantage of an
adversary A against Π is given by:

INT-RUPΠ(A) = Pr[AEK ,DK ,VK forges]

Now present the INT-RUP bound for lynx-A{1 . . . 8} and lynx-B{1 . . . 4}.

Theorem 1. [INT-RUP in Lynx-A{1 . . . 8} and Lynx-B{1 . . . 4}] Let Π represent any
one of the twelve authenticated encryption schemes from lynx-A{1 . . . 8} and lynx-B{1 . . . 4}
where underlying tweakable blockcipher is replaced by random tweakable permutation. Let A
be an adversary under nonce misuse scenario that makes qE number of encryption queries,
qD number of decryption queries and qV number of verification queries to Π such that
q = qE + qD + qV . The number of blocks for each query is at most l. Then

INT-RUPΠ(A) ≤ l •
q2

2b
+ qV

2b−1 (17)

Proof. Let h-Coll denote the event as described in definition 6. Let Pr[h-CollA] be the
probability of the occurrence of h-Coll event while Pr[h-CollA] be the probability of no
h-coll event. Then the INT-RUP advantage of an adversary A against Π can be described
using h-Coll event by the following generic expression of INT-RUP:

INT-RUPΠ(A) = Pr[(A forges)]
= Pr[h-CollA ∧ (A forges)]

+ Pr[h-CollA ∧ (A forges)]
(18)

We know that Pr[h-CollA ∧ (A forges)] ≤ Pr[h-CollA]. From lemma 4, we know the
that Pr[h-CollA] ≤ l • q2

2b (please refer appendix A.3 for proof). Hence, the expression
Pr[h-CollA ∧ (A forges)] is now only left to evaluate from the equation (18), we next try
to find its bound. Using the laws of probability, we can write Pr[h-CollA ∧ (A forges)] =
Pr[(A forges) | h-CollA] • Pr[h-CollA]. But we know that Pr[(A forges) | h-CollA] •
Pr[h-CollA] ≤ Pr[(A forges) | h-CollA]. Hence, we now consider only no h-Coll sce-
nario. Let (N, A, M, C, T) and (N ′, A′, M ′, C ′, T ′) be two tuples obtained after executing
encryption, decryption and verification queries respectively. Since, there is no h-Coll
event, we have two cases. In the first case, one of the tuple is simply the prefix of the
other. Since, we are using counter as the part of the tweak, the input to the tweakable
blockcipher in the tag generation block is always different. In the second case, when the
tuples are non-prefix, we assume that every new query has at least one bit difference.
Also since we assumed that there is no h-Coll, hence, we know from definition 6, there
exists i such that when the inputs to the tweakable blockcipher is different i.e., when
(x[i], T [i]) ̸= (x′[i], T ′[i]) then h[i] ̸= h′[i]. Further, from lemma 2, we know that if
h[i] ̸= h′[i] then if there exists next input, then the next input to the tweakable blockcipher
is different .i.e, (x[i + 1], T [i + 1]) ̸= (x′[i + 1], T ′[i + 1]). In this way, we use definition 6

Munawar Hasan and Donghoon Chang 23

and lemma 2 as a chain there by concluding that the inputs to the tweakable blockcipher
in the tag generation phase is also different. This completes our two cases that if there is
no h-Coll event, the inputs to the tag generation phase for both the cases are new. Based
on above observation, we now calculate the probability bound of Pr[(A forges) | h-CollA].
We begin with the assumption that out of the two given tuples (N, A, M, C, T) and
(N ′, A′, M ′, C ′, T ′), there is at least one bit difference between the (N, A, M, C) and
the (N ′, A′, M ′, C ′), since a difference only in the respective tags i.e., T ̸= T ′ when
(N, A, M, C) = (N ′, A′, M ′, C ′) will always be rejected. Hence, as shown in the above
paragraph, the inputs to the tag generation phase is always different. This implies that
one output will be selected out of 1

2b−q
values, which means forgery can happen with

probability ≤ 1
2b−q

which can be written as 1
2b−1 , since q ≤ 2b−1. Continuing in this way,

A can perform qV such trials. Hence, Pr[(A forges) | h-CollA] ≤ qV
2b−1 . Using this result

we can write the equation (18) in the following way:

INT-RUPΠ(A) ≤ l •
q2

2b
+ qV

2b−1

This completes the INT-RUP proof of lynx-A{1 . . . 8} and lynx-B{1 . . . 4}.

We now present the INT-RUP bounds of lynx-A9 and lynx-A10. Let Π represent any
one of the two authenticated encryption schemes from lynx-A9 and lynx-A10.

Theorem 2. [INT-RUP in Lynx-A9 and Lynx-A10] Let Π represent any one of
the two authenticated encryption schemes from lynx-A9 and lynx-B10 where underlying
tweakable blockcipher is replaced by random tweakable permutation. Let A be an adversary
that makes qE number of encryption queries, qD number of decryption queries and qV
number of verification queries to Π such that q = qE + qD + qV . The number of blocks for
each query is at most l. Then

INT-RUPΠ(A) ≤ l •
q2

2b
+ qV

2b−1 (19)

Proof. We know from lemma 5 that for lynx-A9 and lynx-A10, the Pr[h-CollA] ≤ l ·
q2

2b . Now, in case of no h-Coll event, we consider the two tuples (N, A, M, C, T) and
(N ′, A′, M ′, C ′, T ′) obtained after executing encryption, decryption and verification queries
respectively. Similar to the theorem 1, we show that the inputs to the tweakable
blockcipher in the tag generation phase is different. Further, as in theorem 1, we know
that, if one of the tuple is a prefix of the other, then due to the usage of counter as the part
of the tweak, the inputs to the tweakable blockcipher in the tag generation phase is different.
Now, we handle the cases when the tuples (N, A, M, C, T) and (N ′, A′, M ′, C ′, T ′) are not
prefixes.
In the first case, from lemma 3 (specifically 3.1), we know that for the two tuples if
(h[i−1] = h′[i−1])∧(M [i] ̸= M ′[i]), then the inputs to the tweakable blockcipher is different
i.e., (x[i], T [i]) ̸= (x[i]′, T ′[i]). In case of no h-Coll event, we know from definition 6, that
when inputs to the tweakable blockcipher is different i.e., when (x[i], T [i]) ̸= (x′[i], T ′[i])
then h[i] ̸= h′[i]. In the second case, if (h[i − 1] ̸= h′[i − 1]) ∧ (M [i] = M ′[i]), then
using lemma 3 (specifically 3.2), we know that the inputs to the tweakable blockcipher
i.e., (x[i], T [i]) and (x[i]′, T ′[i]) are different and hence we can use the definition 6 in
the similar way as in the previous case to infer that h[i] ̸= h′[i]. In the third and the
last case, for the two tuples (N, A, M, C, T) and (N ′, A′, M ′, C ′, T ′), when (h[i − 1] ̸=
h′[i− 1])∧ (M [i] ̸= M ′[i]), then due to the construction of F34

A and F35
A , it is possible that

the difference of (h[i− 1], h′[i− 1]) and (M [i], M ′[i]) can cancel out each other and hence
the inputs to the tweakable blockcipher becomes the same i.e., (x[i], T [i]) = (x′[i], T ′[i]).

24
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable

Blockcipher

But we know from definition 7, that if h[i− 1] ̸= h′[i− 1] then h[i] ̸= h′[i], hence, this
case is bounded by h∗-Coll of lemma 6 i.e. Pr[h*-CollA] ≤ l • q2

2b . Proceeding in this way,
using the above three cases, we conclude that the inpus to the tweakable blockcipher in
the tag generation phase is different i.e., (x[i], T [i]) ̸= (x′[i], T ′[i]). We begin with the first
trial or the first verification query by the adversary A, and then continue as in theorem 1.
The rest of the proof is very similar to theorem 1 and omitted for brevity. Using it we
can write the INT-RUP proof of lynx-A9 and lynx-A10 in the following way:

INT-RUPΠ(A) ≤ l •
q2

2b
+ qV

2b−1

7.2 Integrity
We start with the definition of INT-RUP from definition 2. Let Π = (E ,D,V) be an
authenticated encryption scheme. Let A be an adversary under nonce misuse scenario that
makes qE encryption queries and qV verification queries such that q = qE + qV . Then for a
randomly chosen key K, the INT advantage of the adversary A against Π is given by:

INTΠ(A) = Pr[AEK ,VK forges]

Let Π represent any one of the fourteen authenticated encryption schemes from lynx-
A{1 . . . 10} and lynx-B{1 . . . 4}. We know that INTΠ(A) ≤ INT-RUPΠ(A). Since the
bound are similar to the previous proof, we omit the proof for brevity.

7.3 Confidentiality
We start with the definition of CONF from definition 1. Let Π = (E ,D,V) be an
authenticated encryption scheme. Let A be an adversary under nonce respecting scenario.
Then for a randomly chosen key K, the CONF advantage of an adversary A against Π is
given by:

CONFΠ(A) = Pr[AEK → 1]− Pr[A$ → 1]

Let Π represent any one of the twelve authenticated encryption schemes from lynx-A{1 . . . 8}
and lynx-B{1 . . . 4}, then we can show the CONF security of lynx-A{1 . . . 8} and lynx-
B{1 . . . 4} in theorem 3.

Theorem 3. [Confidentiality in Lynx-A{1 . . . 8} and Lynx-B{1 . . . 4}] Let Π repre-
sent any one of the twelve authenticated encryption schemes from lynx-A{1 . . . 8} and
lynx-B{1 . . . 4} where underlying tweakable blockcipher is replaced by random tweakable
permutation. Let A be a nonce respecting adversary that makes a total of q queries to the
encryption sub-routine of Π. Then

CONFΠ(A) ≤ 2 • l •
q2

2b
+ l •

q2

2b+1
(20)

Proof. For the CONF proof of Π, we replace tweakable blockcipher by a tweakable random
permutation i.e., a random permutation with different key and tweak. In case of real world,
let h-CollReal denote the h-Coll event (from definition 6) induced by the encryption
sub-routine of Π i.e., for any i and pairs (h[i], x[i], T [i]) and (h′[i], x′[i], T ′[i]), h-CollReal

occurs if h[i] = h′[i] when (x[i], T [i]) ̸= (x′[i], T ′[i]). From lemma 4, we know that:
Pr[h-CollAReal] ≤ l • q2

2b+1

In case of ideal world, from the encryption sub-routine of Π we get the ciphertext and tag

Munawar Hasan and Donghoon Chang 25

as the output. Using the ciphertext and the input message one can get the h values in the
ideal world setup. All of these h values are random (since A is nonce respecting). Hence,
the probability of h-CollAIdeal i.e., for any i and pairs (h[i], x[i], T [i]) and (h′[i], x′[i], T ′[i]),
h-CollAIdeal occurs if h[i] = h′[i] when (x[i], T [i]) ̸= (x′[i], T ′[i]). Since, the h values are
always random, h[i] and h′[i] would be equal with a probability 1

2b and thereby taking the
maximum block length into account, the Pr[h-CollAIdeal] ≤ l • q2

2b .
Let E P̃

K denote the encryption sub-routine of lynx using tweakable random permutation (P̃)
as the underlying primitive. Then we have: Pr[AEP̃

K → 1] = Pr[AEP̃
K → 1 ∧ h-CollAReal] +

Pr[AEP̃
K → 1 ∧ h-CollAReal] and Pr[A$ → 1] = Pr[A$ → 1 ∧ h-CollAIdeal] + Pr[A$ →

1∧ h-CollAIdeal]. Hence, we can write the CONF advantage of a nonce respecting adversary
A for Π in the following way:

Pr[AEP̃
K → 1]− Pr[A$ → 1] ≤

(Pr[AEF̃
K → 1 ∧ h-CollAReal]

+ Pr[AEF̃
K → 1 ∧ h-CollAReal])

− (Pr[A$ → 1 ∧ h-CollAIdeal]

+ Pr[A$ → 1 ∧ h-CollAIdeal])

+ l •

(
q
2
)

2b

(21)

where we replace E P̃
K with E F̃

K i.e., we switch from tweakbale tweakable random permutation
to tweakable random function for the underlying primitive of lynx (Π) and hence, l•

(q
2)

2b comes
from random tweakable permutation-tweakable random function (TRP-TRF) switching
([50]). In case of lynx-B, we require decryption function of the tweakable blockcipher for
the decryption sub-routine of lynx-B, however, for the confidentiality proof, we require
only the encryption sub-routine, and hence, we can safely use TRP-TRF switching for
lynx-B as well. Further, we multiply (q

2)
2b by the maximum block length i.e., l, since due to

the construction of Π, if the block number is different, then, due to the use of counter, the
tweak also becomes different for each block.
Due to the construction of Π, we make following claim:

• Pr[AEF̃
K → 1 | h-CollAReal] = Pr[A$ → 1 | h-CollAIdeal]

Proof. In case of confidentiality security, we know that the adversary A is nonce
respecting. Since, for given two tuples (N, A, M, C, T) and (N ′, A′, M ′, C ′, T ′), we
have N ≠ N ′, then for lynx-A, h[0] ̸= h′[0] and for lynx-B N ̸= N ′. From lemma 2,
we know that if h[i − 1] ̸= h′[i − 1] then the inputs to the tweakable blockcipher
are different i.e., (x[i], T [i]) ̸= (x′[i], T ′[i]). But from definition 6, we know that
if (x[i], T [i]) ̸= (x′[i], T ′[i]), then the output from FA (for lynx-A) and FB (for
lynx-B) are different .i.e., h[i] ̸= h′[i]. Hence, using lemma 2 and definition 6 as a
chain, we can conclude that all the h values are different which leads to the scenario
that the input to the tag generation phase is also different, thereby making the
output (tag) of the tag generation phase also different. This leads to the fact that
the output distribution from Π is as same the output distribution by $ (section 3.3).
This completes the proof of our claim.

26
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable

Blockcipher

We apply the above results in equation (21) and also use the results from Chang et.al. [51]
to solve the CONF advantage of the adversary.

(Pr[AEF̃
K → 1 ∧ h-CollAReal]

+ Pr[AEF̃
K → 1 ∧ h-CollAReal])

− (Pr[A$ → 1 ∧ h-CollAIdeal]

+ Pr[A$ → 1 ∧ h-CollAIdeal])
≤ 2 • max{Pr[h-CollAReal], P r[h-CollAIdeal]}

(22)

We know from lemma 4 that Pr[h-CollAReal] = l • q2

2b while Pr[h-CollAIdeal] = l • q2

2b+1 .
Hence,

CONFΠ(A) ≤ 2 • l •
q2

2b
+ l •

(
q
2
)

2b

≤ 2 • l •
q2

2b
+ l •

q2

2b+1

We now present the CONF bound of lynx-A9 and lynx-A10.

Theorem 4. [Confidentiality in Lynx-A9 and Lynx-A10] Let Π represent any one of
the two authenticated encryption schemes from lynx-A9 and lynx-A10 where underlying
tweakable blockcipher is replaced by random tweakable permutation. Let A be a nonce
respecting adversary that makes a total of q queries to the encryption sub-routine of Π.
Then

CONFΠ(A) ≤ 4 • l •
q2

2b
+ l •

q2

2b+1
(23)

Proof. In case of lynx-A9 and lynx-A10, the CONF security is influenced by both the
collision events, h-Coll (definition 6) as well as input-Coll (definition 8). As in
theorem 3, we consider nonce respecting adversary, hence if the one bit difference in
inputs to the tweakable blockcipher i.e., (x[i], T [i]) ̸= (x′[i], T ′[i]), then from definition 6,
we know that h[i] ̸= h′[i]. But from definition 8, we know that if h[i] ̸= h′[i] then
(x[i + 1], T [i + 1]) ̸= (x′[i + 1], T ′[i + 1]). Hence, we can use these two definitions to show
that the input to the tweakable blockcipher in the tag generation phase is different. Hence,
using these observations, we can write equation (21) using h-CollA and input-CollA as

Munawar Hasan and Donghoon Chang 27

follows:

Pr[AEP̃
K → 1]− Pr[A$ → 1] ≤

(Pr[AEF̃
K → 1 ∧ h-CollAReal]

+ Pr[AEF̃
K → 1 ∧ h-CollAReal])

− (Pr[A$ → 1 ∧ h-CollAIdeal]

+ Pr[A$ → 1 ∧ h-CollAIdeal])

+ (Pr[AEF̃
K → 1 ∧ input-CollAReal]

+ Pr[AEF̃
K → 1 ∧ input-CollAReal])

− (Pr[A$ → 1 ∧ input-CollAIdeal]

+ Pr[A$ → 1 ∧ input-CollAIdeal])

+ l •

(
q
2
)

2b

(24)

The solution of equation (24) is similar to the results of theorem 3 and hence

CONFΠ(A) ≤ 4 • l •
q2

2b
+ l •

(
q
2
)

2b

≤ 4 • l •
q2

2b
+ l •

q2

2b+1

8 Experiments and Performance Analysis
In this section, we present the implementation of lynx, specifically lynx-A1, since all other
members of the lynx family have similar experimental results. We perform the experiments
on wide range of hardware, spanning from desktop grade machine to low powered IoT
devices. In all, we have six different implementations of lynx-A1. We compare each of these
six implementations of lynx-A1, with the best available implementations of Romulus-N1 [10]
for each of these six platforms. We want to point out that the underlying primitive of
lynx-A1 is same as that of Romulus-N1 i.e., SKINNY tweakable blockcipher [43] with 128 bit
key and 256 bit tweak, hence we chose Romulus-N1 for the comparision.
The implementation results and comparisons are presented in table 8 through table 13.
For table 8 and table 9, we use Macbook Pro with 16 GB RAM and running a 2.6GHz i7
intel skylake processor. We use python and C language for comparison on this platform.
In table 10, we present the comparison on arduino uno platfrom (8 bit microcontroller).
Table 11 shows the comparison on arduino due i.e., 32 bit arm microcontroller. In case of
table 12, we use a raspberry pi 3 model B that uses a 1.2GHz broadcom SoC. Though, this
broadcom SoC is 64 bit, the Raspberry Pi OS [52] runs in 32 bit mode on the hardware.
In table 13, we present the comparison on arm64 architecture. The arm64 architecture
is very diverse, different OEM manufactures have varied fabrication of cores and varied
number and size of transistors. We use Samsung Galaxy smartphone with Samsung’s
exynos 9820 [53] SoC. For profiling on this exynos SoC, we implemented an android app
and created a JNI (Java Native Interface) module to build an interface between the Java
code and the C implementation of lynx-A1 and Romulus-N1. The numbers reported in
table 13 are only for the C code.

28
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable

Blockcipher

Table 8: Software performance comparison between Lynx-A1 and Romulus-N1 in Python
language

Message
Size
(Bytes)

Lynx-A1 (secs) Romulus-N1 (secs)

Encrypt Decrypt Encrypt Decrypt
0 0.000 917 0.001 001 0.001 574 0.001 453
64 0.001 301 0.001 104 0.003 692 0.003 828
512 0.011 231 0.013 132 0.024 530 0.023 575
1024 0.031 817 0.029 991 0.046 911 0.045 18
4096 0.099 909 0.101 907 0.178 141 0.176 999
8192 0.291 951 0.299 438 0.356 414 0.348 989
16384 0.691 117 0.700 001 0.707 041 0.702 977

Table 9: Software performance comparison between Lynx-A1 and Romulus-N1 in C language

Message
Size
(Bytes)

Lynx-A1 (C/B) Romulus-N1 (C/B)

Encrypt Decrypt Encrypt Decrypt
0 150 157 250 244
64 140 144 220 217
512 120 125 200 195
1024 110 114 170 165
4096 100 102 160 153
8192 96 101 140 133
16384 80 83 130 120

Table 10: AVR performance (Arduino Uno) comparison between Lynx-A1 and Romulus-N1

Message
Size
(Bytes)

Lynx-A1 (millisecs) Romulus-N1 (millisecs)

Encrypt Decrypt Encrypt Decrypt
8 1.801 1.799 2.608 2.648
32 2.702 2.788 3.896 3.948
64 6.001 6.129 6.448 6.528
128 10.6 10.991 11.556 11.676
256 19.001 20.1 21.752 21.940
512 36.12 36.893 42.156 42.460

Table 11: 32 bit ARM performance (Arduino Due) comparison between Lynx-A1 and
Romulus-N1

Message
Size
(Bytes)

Lynx-A1 (millisecs) Romulus-N1 (millisecs)

Encrypt Decrypt Encrypt Decrypt
8 0.159 0.163 0.178 0.181
32 0.201 0.219 0.229 0.341
64 0.329 0.338 0.345 0.348
128 0.551 0.556 0.579 0.581
256 0.761 0.782 0.987 0.989
512 1.56 1.618 1.866 1.889

Munawar Hasan and Donghoon Chang 29

Table 12: Raspberry Pi v3 (running in 32 bit mode) comparison between Lynx-A1 and
Romulus-N1

Message
Size
(Bytes)

Lynx-A1 (millisecs) Romulus-N1 (millisecs)

Encrypt Decrypt Encrypt Decrypt
0 0.144 0.165 0.178 0.181
64 0.199 0.209 0.229 0.341
512 0.291 0.3 0.345 0.348
1024 0.531 0.542 0.579 0.581
4096 0.786 0.799 0.987 0.989
8192 1.31 1.401 1.866 1.889
16384 3.302 3.396 3.506 3.619

Table 13: Arm 64 bit (Samsung Exynos 9820) comparison between Lynx-A1 and Romulus-
N1

Message
Size
(Bytes)

Lynx-A1 (millisecs) Romulus-N1 (millisecs)

Encrypt Decrypt Encrypt Decrypt
0 0.011 0.12 0.012 0.012
64 0.021 0.023 0.028 0.029
512 0.141 0.143 0.158 0.161
1024 0.291 0.296 0.307 0.311
4096 0.441 0.497 1 0.520 1 0.520 11
8192 0.911 0.921 08 0.940 31 0.940 55
16384 1.463 05 1.491 03 1.782 11 1.882 301

All the implementations were run 100 times, and an average was taken of these 100 runs
and reported in the table 8 through table 13. It can be clearly seen from the tables (table 8
- table 13) that lynx-A1 outperforms Romulus-N1 in all the implementations. There is a
gain of 1%− 18% approximately between the implementations of lynx-A1 and Romulus-N1.
One of the reason for such an outcome is the straightforward structure of lynx. The design
of lynx doesn’t have any matrix computations or field multiplications and only uses simple
xor operations, while Romulus-N1 uses field multiplication. Due to such design chose of
lynx, one can see in table10, for an 8 bit microcontroller, the performance difference is
apparent as the message size increases.
Note that, subject to evaluation, there are always claims of improved implementations of
authenticated encryption schemes and their underlying primitives. An improved imple-
mentation of underlying primitive i.e., the tweakable blockcipher (SKINNY in this case) will
improve performance of both lynx-A1 as well as Romulus-N1 proportionally.

9 Conclusion
We propose family of 1-pass and rate-1 lightweight authenticated encryption scheme called
lynx based on tweakable blockcipher. Lynx has two sub-family, namely, lynx-A and lynx-B.
Lynx has several advantages in lightweight category like stream processing, computationally
menial and simplistic operations. Further, to create such an authenticated encryption
scheme, we propose a family of functions called F . We present 72 cases of F and divide
each of these F into incorrect and correct groups and show that only 14 of these cases
can be used to create an authenticated encryption schemes (a.k.a lynx) using a tweakable
blockcipher. The integrity security of lynx under nonce respecting as well as under nonce

30
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable

Blockcipher

misuse and RUP scenario is ≤ l • q2

2b + qV
2b−1 . In case of confidentiality (nonce respecting),

the security bound of lynx-A1 . . . A8 and lynx-B1 . . . B4 is ≤ 2 • l • q2

2b + l • q2

2b+1 while the
security bound of lynx-A9 and lynx-A10 is ≤ 4 • l • q2

2b + l • q2

2b+1 . From the implementation
perspective, due to the simplistic structure of lynx, lynx-A1 outperforms Romulus-N1 on all
the six platforms as shown in the experiments section.

A Mathematical Proofs of Lynx
A.1 Lemma 2
Lemma 2: In lynx-A{1...8} and lynx-B{1...4}, given two input pairs (N, A, M, C, Tag)
and (N ′, A′, M ′, C ′, Tag′) and for any i if h[i − 1] ̸= h′[i − 1] then (x[i], T [i]) ̸= (x′[i],
T ′[i])

Proof. We want to show that if h[i − 1] ̸= h′[i − 1], then the respective inputs to the
tweakable blockcipher (x[i] and T [i]) is also different. Hence, it is suffice to show that for
an i either x[i] ̸= x′[i] or T [i] ̸= T ′[i] or both x[i] ̸= x′[i] and T [i] ̸= T ′[i]. Equation (25)
describes the inputs to the tweakable blockcipher

z[i] = Ẽ(K, T [i], x[i])
x[i] = D̃(K, T [i], z[i])
T [i] = bin(i) ∥ l7...0 ∥ y[i]
y[i] = {h[i− 1], M [i], h[i− 1]⊕M [i]}

(25)

There are two inputs x[i] and T [i] to the tweakable blockcipher. Based on these two inputs
and the construction of function FA and FB , the proof can be divided into four separate
sections. We use two cases C[i] = C ′[i] and C[i] ̸= C ′[i] to prove the given lemma.

A.1.1 Lynx-A{1..4}

The first four members lynx-A{1..4} have same input to the tweakable blockcipher and
hence their analysis is similar. The internal construction of the four members are given
below. It is clear from the construction that x[i] and y[i] is same for lynx-A1, lynx-A2,
lynx-A3 and lynx-A4.
Lynx-A1

➥ FA
25 : x[i] = h[i− 1]⊕M [i], y[i] = M [i], o[i] = z[i], where x[i] = C[i]

➥ FA
25 : M [i] = h[i− 1]⊕ x[i], y[i] = M [i], o[i] = z[i]

Lynx-A2

➥ FA
26 : x[i] = h[i− 1]⊕M [i], y[i] = M [i], o[i] = z[i]⊕M [i], where x[i] = C[i]

➥ FA
26 : M [i] = h[i− 1]⊕ x[i], y[i] = M [i], o[i] = z[i]⊕M [i]

Lynx-A3

➥ FA
27 : x[i] = h[i− 1]⊕M [i], y[i] = M [i], o[i] = z[i]⊕ h[i− 1], where x[i] = C[i]

➥ FA
27 : M [i] = h[i− 1]⊕ x[i], y[i] = M [i], o[i] = z[i]⊕ h[i− 1]

Lynx-A4

➥ FA
28 : x[i] = h[i− 1]⊕M [i], y[i] = M [i], o[i] = z[i]⊕M [i]⊕h[i− 1], where x[i] = C[i]

Munawar Hasan and Donghoon Chang 31

➥ FA
28 : M [i] = h[i− 1]⊕ x[i], y[i] = M [i], o[i] = z[i]⊕M [i]⊕ h[i− 1]

• Case a: C[i] = C ′[i]
Since x[i] = C[i], ⇒ (x[i] = x′[i]). In case of lynx-A: M [i] = C[i] ⊕ h[i − 1]
and M ′[i] = C ′[i] ⊕ h′[i − 1]. Hence, M [i] ̸= M ′[i]. The tweaks are given by:
(T [i] = bin(i) ∥ l7...0 ∥M [i]) ∧ (T ′[i] = bin(i) ∥ l7...0 ∥M ′[i]), hence T [i] ̸= T ′[i]
Hence, (x[i], T [i]) ̸= (x′[i], T ′[i])

• Case b: C[i] ̸= C ′[i]

– C[i]⊕ h[i− 1] = C ′[i]⊕ h′[i− 1]
Since, (x[i] = C[i]) ⇒ (x[i] ̸= x′[i]). In case of lynx-A: M [i] = C[i] ⊕ h[i − 1]
and M ′[i] = C ′[i] ⊕ h′[i − 1], Hence, M [i] = M ′[i]. The tweaks are given
by: (T [i] = bin(i) ∥ l7...0 ∥ M [i]) and (T ′[i] = bin(i) ∥ l7...0 ∥ M ′[i]), hence
T [i] = T ′[i].
⇒ (x[i], T [i]) ̸= (x′[i], T ′[i])

– C[i]⊕ h[i− 1] ̸= C ′[i]⊕ h′[i− 1]
Since, (x[i] = C[i]) ⇒ (x[i] ̸= x′[i]). In case of lynx-A: M [i] = C[i] ⊕ h[i − 1]
and M ′[i] = C ′[i] ⊕ h′[i − 1], Hence, M [i] ̸= M ′[i]. The tweaks are given
by: (T [i] = bin(i) ∥ l7...0 ∥ M [i]) and (T ′[i] = bin(i) ∥ l7...0 ∥ M ′[i]), hence
T [i] ̸= T ′[i].
⇒ (x[i], T [i]) ̸= (x′[i], T ′[i])

A.1.2 Lynx-A{5..8}

Lynx-A{5..8} have same input to the tweakable blockcipher and hence their analysis is
similar. The internal construction of these members are given below where it is clear that
x[i] and y[i] is same for lynx-A5, lynx-A6, lynx-A7 and lynx-A8.
Lynx-A5

➥ FA
29 : x[i] = h[i− 1]⊕M [i], y[i] = h[i− 1], o[i] = z[i], where x[i] = C[i]

➥ FA
29 : M [i] = h[i− 1]⊕ x[i], y[i] = h[i− 1], o[i] = z[i]

Lynx-A6

➥ FA
30 : x[i] = h[i− 1]⊕M [i], y[i] = h[i− 1], o[i] = z[i]⊕M [i], where x[i] = C[i]

➥ FA
30 : M [i] = h[i− 1]⊕ x[i], y[i] = h[i− 1], o[i] = z[i]⊕M [i]

Lynx-A7

➥ FA
31 : x[i] = h[i− 1]⊕M [i], y[i] = h[i− 1], o[i] = z[i]⊕ h[i− 1], where x[i] = C[i]

➥ FA
31 : M [i] = h[i− 1]⊕ x[i], y[i] = h[i− 1], o[i] = z[i]⊕ h[i− 1]

Lynx-A8

➥ FA
32 : x[i] = h[i−1]⊕M [i], y[i] = h[i−1], o[i] = z[i]⊕M [i]⊕h[i−1], where x[i] = C[i]

➥ FA
32 : M [i] = h[i− 1]⊕ x[i], y[i] = h[i− 1], o[i] = z[i]⊕M [i]⊕ h[i− 1]

32
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable

Blockcipher

• Case a: C[i] = C ′[i]
Since x[i] = C[i], hence (x[i] = x′[i]). In case of lynx-A: M [i] = C[i]⊕ h[i− 1] and
M ′[i] = C ′[i]⊕ h′[i− 1]
Hence, M [i] ̸= M ′[i]. The tweaks are given by: (T [i] = bin(i) ∥ l7...0 ∥ h[i− 1]) and
(T ′[i] = bin(i) ∥ l7...0 ∥ h′[i− 1]), hence T [i] ̸= T ′[i].
Hence, (x[i], T [i]) ̸= (x′[i], T ′[i])

• Case b: C[i] ̸= C ′[i]

– C[i]⊕ h[i− 1] = C ′[i]⊕ h′[i− 1]
Since, (x[i] = C[i]) ⇒ (x[i] ̸= x′[i]). In case of lynx-A: M [i] = C[i] ⊕ h[i − 1]
and M ′[i] = C ′[i] ⊕ h′[i − 1], Hence, M [i] = M ′[i]. The tweaks are given by:
(T [i] = bin(i) ∥ l7...0 ∥ h[i − 1]) and (T ′[i] = bin(i) ∥ l7...0 ∥ h′[i − 1]), hence
T [i] ̸= T ′[i].
⇒ (x[i], T [i]) ̸= (x′[i], T ′[i])

– C[i]⊕ h[i− 1] ̸= C ′[i]⊕ h′[i− 1]
Since, (x[i] = C[i]) ⇒ (x[i] ̸= x′[i]). In case of lynx-A: M [i] = C[i] ⊕ h[i − 1]
and M ′[i] = C ′[i] ⊕ h′[i − 1], Hence, M [i] ̸= M ′[i]. The tweaks are given by:
(T [i] = bin(i) ∥ l7...0 ∥ h[i − 1]) and (T ′[i] = bin(i) ∥ l7...0 ∥ h′[i − 1]), hence
T [i] ̸= T ′[i].
⇒ (x[i], T [i]) ̸= (x′[i], T ′[i])

A.1.3 Lynx-B{1...4}

The lynx-B member uses the decryption function of tweakable blockcipher during the
decryption sub-routine. Hence, in this section we try to show the diference in the input
for the decryption function. Lynx-B{1, 3} have same input to the tweakable blockcipher
and hence their analysis is similar. The internal construction of these members are given
below showing that z[i] and y[i] is same for lynx-B1, lynx-B2, lynx-B3 and lynx-B4.
Lynx-B1

➥ FB
18 : x[i] = M [i], y[i] = h[i− 1], o[i] = z[i]⊕M [i], where z[i] = C[i]

➥ FB
18 : M [i] = x[i], y[i] = h[i− 1], o[i] = z[i]⊕M [i]

Lynx-B2

➥ FB
20 : x[i] = M [i], y[i] = h[i− 1], o[i] = z[i]⊕M [i]⊕ h[i− 1], where z[i] = C[i]

➥ FB
20 : M [i] = x[i], y[i] = h[i− 1], o[i] = z[i]⊕M [i]⊕ h[i− 1]

Lynx-B3

➥ FB
30 : x[i] = M [i] ⊕ h[i − 1], y[i] = h[i − 1], o[i] = z[i] ⊕M [i] ⊕ h[i − 1], where

z[i] = C[i]

➥ FB
30 : M [i] = x[i]⊕ h[i− 1], y[i] = h[i− 1], o[i] = z[i]⊕M [i]⊕ h[i− 1]

Lynx-B4

➥ FB
32 : x[i] = M [i] ⊕ h[i − 1], y[i] = h[i − 1], o[i] = z[i] ⊕M [i] ⊕ h[i − 1], where

z[i] = C[i]

➥ FB
32 : M [i] = x[i]⊕ h[i− 1], y[i] = h[i− 1], o[i] = z[i]⊕M [i]⊕ h[i− 1]

Since, h[i− 1] ̸= h′[i− 1] ⇒ T [i] ̸= T ′[i].
⇒ (x[i], T [i]) ̸= (x′[i], T ′[i])

Munawar Hasan and Donghoon Chang 33

A.2 Lemma 3
Lemma 3.1: In lynx-A and lynx-B, given two input pairs (N, A, M, C, T) and (N ′, A′, M ′, C ′, T ′)
and for any i if (h[i− 1] = h′[i− 1]) ∧ (M [i] ̸= M ′[i]) then (x[i], T [i]) ̸= (x′[i], T ′[i])

Proof. Similar to lemma 2 (A.1), we want to show that the inputs to the tweakable
blockcipher is different if (h[i− 1] = h′[i− 1])∧ (M [i] ̸= M ′[1]). In case of lynx-A, one can
check that x[i] = h[i− 1]⊕M [i], but from the lemma we know that h[i− 1] ̸= h′[i− 1]
and M [i] = M ′[i]. Hence, for lynx-A x[i] ̸= x′[i].
In case of lynx-B1 and lynx-B2, x[i] = M [i] while in case of lynx-B3 and lynx-B4, x[i] =
h[i− 1]⊕M [i]. Hence, for lynx-B as well x[i] ̸= x′[i].
⇒ (x[i], T [i]) ̸= (x′[i], T ′[i])

Lemma 3.2: In lynx-A9 and lynx-A10, given two input pairs (N, A, M, C, T) and
(N ′, A′, M ′, C ′, T ′) and for any i if (h[i− 1] ̸= h′[i− 1]) ∧ (M [i] = M ′[i]) then (x[i], T [i])
̸= (x′[i], T ′[i])

Proof. The proof is similar to lemma 3.1 (A.2). In case of lynx-A, x[i] = h[i− 1]⊕M [i].
Since h[i − 1] ̸= h′[i − 1] then x[i] ̸= x′[i]. In case of lynx-B, y[i] = h[i − 1] and
T [i] = bin(i) ∥ l7...0 ∥ y[i] but since h[i− 1] ̸= h′[i− 1] then T [i] ̸= T ′[i]
⇒ (x[i], T [i]) ̸= (x′[i], T ′[i])

A.3 Lemma 4
Lemma 4: Let A be an adversary with qE encryption queries, qD decryption queries and
qV verification queries where maximum block length of any query is l, q = qE + qD + qV

and q ≤ 2b−1 then for lynx-A{1 . . . 8} and lynx-B{1 . . . 4} the Pr[h-CollA] ≤ l • q2

2b , where
h-CollA is the occurrence of h-Coll event when the adversary A is interacting with the
lynx.

Proof. We assume that the output from queries are compared up to same length (i.e.,
the counter must be same). We can have at most

(
q
2
)

pairs of tuples (N, A, M, C, T) and
(N ′, A′, M ′, C ′, T ′) from q possible queries. From definition 6, we know that for the two
pairs (h[i], x[i], T [i]) and (h′[i], x′[i], T ′[i]), if (x[i], T [i]) ̸= (x′[i], T ′[i]), then h[i] = h′[i]
will occur, for a block with size b bits, with the probability 1

2b−q
≤ 1

2b−1 , since q ≤ 2b−1.
Further, this probability must hold for all the blocks, hence we multiply this probability of
each block by the maximum block length l, there by: Pr[h-CollA] ≤ l • 1

2b−1 •
(

q
2
)
≤ l • q2

2b .

A.4 Lemma 5
Lemma 5: Let A be an adversary with qE encryption queries, qD decryption queries and
qV verification queries where maximum block length of any query is l, q = qE + qD + qV

and q ≤ 2b−1 then for lynx-A9 and lynx-A10 the Pr[h-CollA] ≤ l • q2

2b , where h-CollA is the
occurrence of h-Coll event when the adversary A is interacting with the lynx.

Proof. The lemma is closely related to the construction of lynx-A9 and lynx-A10. For
the proof, we choose lynx-A9 since the proof of lynx-A10 is similar. Further, we fix V
as message M and provide h-CollA bound using the function FA. Further let K be a
randomly chosen key. The proof has been adapted from [54]
For some i, we know FA

34(K, h[i − 1], S[i], M [i]) 7→ (h[i], C[i]). For the sake of proof,
we omit C[i]. The adversary asks q queries to the function FA and constructs a tuple
set of following form: {(K, h1[i− 1], S1[i], M1[i], h1[i]) . . . (K, hq[i− 1], Sq[i], Mq[i], hq[i])}.
The adversary A is successful if it can output two tuple (K, h[i− 1], S[i], M [i], h[i]) and
(K, h′[i− 1], S′[i], M ′[i], h′[i]) such that following condition holds:

34
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable

Blockcipher

• ((K, h[i− 1], S[i], M [i], h[i]) ̸=
(K, h′[i− 1], S′[i], M ′[i], h′[i])) ∧ (h[i] = h′[i])
where h[i] = Ẽ(K, T [i], M [i]) and h′[i] = Ẽ(K, T ′[i], M ′[i]), T [i] = S[i] ∥ (M [i] ⊕
h[i− 1]), T ′[i] = S[i] ∥ (M ′[i]⊕ h′[i− 1])

We show that the above condition is unlikely to occur.
Let h-CollAj be the event such that Ẽ(K, Tj [i], Mj [i])⊕Mj [i] = Ẽ(K, Tk[i], Mk[i])⊕Mk[i]
or equivalently hj [i] = hk[i] such that j ̸= k. It can be seen that h-CollAj to happen, hj [i]
must selected from a set of size at least 2b − (j − 1), hence Pr[h-CollAj] ≤ j

2b−j
. But

Pr[h-CollA] ≤ Pr[h-CollA1 ∨ · · · ∨ h-CollAq] ≤
∑q

i=j Pr[h-CollAj] ≤
∑q

j=1
j

2b−j
≤ q2

2b since
b ≤ 2b−1. Since, the maximum block length is l, we multiply whole expression by l. Hence,
Pr[h-CollA] ≤ l • q2

2b . This completes our proof.

A.5 Lemma 6
Lemma 6: Let A be an adversary with qE encryption queries, qD decryption queries and
qV verification queries where maximum block length of any query is l, q = qE + qD + qV

and q ≤ 2b−1 then for lynx-A9 and lynx-A10 the Pr[h*-CollA] ≤ l • q2

2b , where h*-CollA is
the occurrence of h*-Coll event when the adversary A is interacting with the lynx.

Proof. There are two cases:

• (h[i− 1], h′[i− 1]) difference and (M [i], M ′[i]) difference are equal. Clearly, in this
case h[i] ̸= h′[i]. Hence, Pr[h*-CollA] ≤ l • q2

2b

• (h[i− 1], h′[i− 1]) difference and (M [i], M ′[i]) difference are not equal. In this case,
the proof is same as the lemma 5 (A.4) i.e., Pr[h*-CollA] ≤ l • q2

2b

A.6 Lemma 7
Lemma 7: Let A be an adversary with qE encryption queries, qD decryption queries and
qV verification queries where maximum block length of any query is l, q = qE + qD + qV and
q ≤ 2b−1 then for lynx-A9 and lynx-A10 the Pr[input-CollA] ≤ l • q2

2b , where input-CollA is
the occurrence of input-Coll event when the adversary A is interacting with the lynx.

Proof. The proof for confidentiality is provided in nonce respecting scenario. Hence, the
adversary A will get the h values only after all the ciphertext is generated. Clearly,
the adversary A cannot change any message in between. We take the notation from
lemma 5 (A.4) and add a xor with the next message block to obtain the input collision:
Ẽ(K, Tj [i], Mj [i])⊕Mj [i]⊕Mj [i + 1] = Ẽ(K, Tk[i], Mk[i])⊕Mk[i]⊕Mk[i + 1]. Hence, the
proof now is exactly same as lemma 5 (A.4) and hence we omit it for brevity.

References
[1] Caesar: Competition for Authenticated Encryption: Security, Applicability, and

Robustness. http://competitions.cr.yp.to/caesar.html.

[2] Hongjun Wu. ACORN v3. https://competitions.cr.yp.to/round3/acornv3.pdf,
2016.

http://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/round3/acornv3.pdf

Munawar Hasan and Donghoon Chang 35

[3] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon
v1. 2: Lightweight Authenticated Encryption and Hashing. Journal of Cryptology,
34(3):1–42, 2021.

[4] National Institute of Standards and Technology. https://www.nist.gov/.

[5] Lightweight Cryptography. https://csrc.nist.gov/Projects/
Lightweight-Cryptography, 2018.

[6] OpenSSL. https://www.openssl.org/, 2022.

[7] BoringSSL. https://github.com/boringssl/boringssl, 2022.

[8] wolfSSL. https://www.wolfssl.com/, 2022.

[9] Apple CryptoKit. https://developer.apple.com/documentation/cryptokit/,
2022.

[10] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin. Duel
of the Titans: The Romulus and Remus Families of Lightweight AEAD Algorithms.
IACR Transactions on Symmetric Cryptology, pages 43–120, 2020.

[11] Moses Liskov, Ronald L Rivest, and David Wagner. Tweakable Block Ciphers. In
Annual International Cryptology Conference, pages 31–46. Springer, 2002.

[12] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas
Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. SKINNY-AEAD and
SKINNY-Hash. IACR Transactions on Symmetric Cryptology, pages 88–131, 2020.

[13] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar, Arnab
Roy, and Damian Vizár. ForkAE v.1. Submission to NIST Lightweight Cryptography
Project, 2019.

[14] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha, and
Kan Yasuda. How to Securely Release Unverified Plaintext in Authenticated En-
cryption. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology –
ASIACRYPT 2014, pages 105–125, Berlin, Heidelberg, 2014. Springer Berlin Heidel-
berg.

[15] Lightweight Cryptography Workshop 2020. https://csrc.nist.gov/Events/2020/
lightweight-cryptography-workshop-2020, 2020.

[16] AET-LR: Rate-1 Leakage-Resilient AEAD based on the Ro-
mulus Family. https://csrc.nist.gov/CSRC/media/Events/
lightweight-cryptography-workshop-2020/documents/papers/
AET-LR-lwc2020.pdf, 2020.

[17] Hugo Krawczyk. The Order of Encryption and Authentication for Protecting Commu-
nications (or: How Secure is SSL?). In Annual International Cryptology Conference,
pages 310–331. Springer, 2001.

[18] Phillip Rogaway, Mihir Bellare, and John Black. OCB: A Block-Cipher Mode of
Operation for Efficient Authenticated Encryption. ACM Transactions on Information
and System Security (TISSEC), 6(3):365–403, 2003.

[19] Mihir Bellare, Phillip Rogaway, and David Wagner. A conventional authenticated-
encryption mode. manuscript, April, 2003.

https://www.nist.gov/
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://www.openssl.org/
https://github.com/boringssl/boringssl
https://www.wolfssl.com/
https://developer.apple.com/documentation/cryptokit/
https://csrc.nist.gov/Events/2020/lightweight-cryptography-workshop-2020
https://csrc.nist.gov/Events/2020/lightweight-cryptography-workshop-2020
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2020/documents/papers/AET-LR-lwc2020.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2020/documents/papers/AET-LR-lwc2020.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2020/documents/papers/AET-LR-lwc2020.pdf

36
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable

Blockcipher

[20] Recommendation for Block Cipher Modes of Operation: The CCM Mode for Au-
thentication and Confidentiality. https://nvlpubs.nist.gov/nistpubs/Legacy/
SP/nistspecialpublication800-38c.pdf, 2004.

[21] Tadayoshi Kohno, John Viega, and Doug Whiting. CWC: A High-performance
Conventional Authenticated Encryption Mode. In International Workshop on Fast
Software Encryption, pages 408–426. Springer, 2004.

[22] Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC. https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-38d.pdf, 2007.

[23] Shay Gueron and Yehuda Lindell. GCM-SIV: Full Nonce Misuse-Resistant Authenti-
cated Encryption at Under One Cycle per Byte. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages 109–119,
2015.

[24] AES-GCM-SIV: Nonce misuse-resistant authenticated encryption. https://www.
rfc-editor.org/rfc/rfc8452.html, 2019.

[25] ADVANCED ENCRYPTION STANDARD (AES). https://tsapps.nist.gov/
publication/get_pdf.cfm?pub_id=901427, 2001.

[26] Masanobu Katagi, Shiho Moriai, et al. Lightweight cryptography for the internet of
things. Sony Corporation, 2008:7–10, 2008.

[27] Nicky Mouha. The design space of lightweight cryptography. Cryptology ePrint
Archive, 2015.

[28] On Lightweightness. https://cryptolux.org/index.php/On_Lightweightness,
2015.

[29] Bassam J Mohd, Thaier Hayajneh, and Athanasios V Vasilakos. A survey on
lightweight block ciphers for low-resource devices: Comparative study and open
issues. Journal of Network and Computer Applications, 58:73–93, 2015.

[30] Saurabh Singh, Pradip Kumar Sharma, Seo Yeon Moon, and Jong Hyuk Park.
Advanced lightweight encryption algorithms for IoT devices: survey, challenges and
solutions. Journal of Ambient Intelligence and Humanized Computing, pages 1–18,
2017.

[31] Vishal A Thakor, Mohammad Abdur Razzaque, and Muhammad RA Khandaker.
Lightweight Cryptography Algorithms for Resource-Constrained IoT Devices: A
Review, Comparison and Research Opportunities. IEEE Access, 9:28177–28193, 2021.

[32] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Radiogatún, a
belt-and-mill hash function. IACR Cryptol. ePrint Arch., 2006:369, 2006.

[33] G.M. Bertoni, Joan Daemen, Michael Peeters, and Gilles Assche. Sponge Functions.
ECRYPT Hash Workshop 2007, 01 2007.

[34] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Großschädl, Léo
Perrin, Aleksei Udovenko, Vesselin Velichkov, Qingju Wang, and Alex Biryukov.
Schwaemm and esch: lightweight authenticated encryption and hashing using the
sparkle permutation family. NIST round, 2, 2019.

[35] Joan Daemen, Seth Hoffert, Michaël Peeters, G Van Assche, and R Van Keer. Xoodyak,
a lightweight cryptographic scheme. 2020.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://www.rfc-editor.org/rfc/rfc8452.html
https://www.rfc-editor.org/rfc/rfc8452.html
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=901427
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=901427
https://cryptolux.org/index.php/On_Lightweightness

Munawar Hasan and Donghoon Chang 37

[36] Zhenzhen Bao, Avik Chakraborti, Nilanjan Datta, Jian Guo, Mridul Nandi, Thomas
Peyrin, and Kan Yasuda. PHOTON-Beetle Authenticated Encryption and Hash Fam-
ily. https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/photon-beetle-spec-round2.pdf, 2019.

[37] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle Family of
Lightweight and Secure Authenticated Encryption Ciphers. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 218–241, 2018.

[38] ISAP v2.0. https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/round-2/spec-doc-rnd2/
isap-spec-round2.pdf, 2019.

[39] Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, Mridul
Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo. GIFT-COFB.
IACR Cryptol. ePrint Arch., 2020:738, 2020.

[40] Subhadeep Banik, Sumit Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and
Yosuke Todo. GIFT: A Small Present. pages 321–345, 08 2017.

[41] Martin Hell, Thomas Johansson, Willi Meier, Jonathan Sönnerup, and Hirotaka
Yoshida. Grain-128AEAD-A lightweight AEAD stream cipher. NIST Lightweight
Cryptography, Round, 1, 2019.

[42] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. The Grain
family of stream ciphers. In New Stream Cipher Designs, pages 179–190. Springer,
2008.

[43] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas
Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY Family of
Block Ciphers and Its Low-Latency Variant MANTIS. In Advances in Cryptology –
CRYPTO 2016, pages 123–153, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[44] TinyJAMBU. https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/spec-doc/TinyJAMBU-spec.
pdf, 2019.

[45] Elephant v1.1. https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/round-2/spec-doc-rnd2/
elephant-spec-round2.pdf, 2019.

[46] Donghoon Chang, Nilanjan Datta, Avijit Dutta, Bart Mennink, Mridul Nandi, Somitra
Sanadhya, and Ferdinand Sibleyras. Release of unverified plaintext: Tight unified
model and application to ANYDAE. IACR Transactions on Symmetric Cryptology,
pages 119–146, 2019.

[47] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of the Key-
Wrap Problem. In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT
2006, pages 373–390, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[48] Lightweight Cryptography Requirements. https://csrc.nist.
gov/CSRC/media/Projects/Lightweight-Cryptography/documents/
final-lwc-submission-requirements-august2018.pdf, 2018.

[49] Lightweight crypto, heavyweight protection. https://www.nist.gov/comment/
97756, 2021.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/photon-beetle-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/photon-beetle-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/isap-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/isap-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/isap-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/TinyJAMBU-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/TinyJAMBU-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/TinyJAMBU-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/elephant-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/elephant-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/elephant-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://www.nist.gov/comment/97756
https://www.nist.gov/comment/97756

38
Lynx: Family of Lightweight Authenticated Encryption Schemes based on Tweakable

Blockcipher

[50] Mihir Bellare and Phillip Rogaway. Code-Based Game-Playing Proofs and the Security
of Triple Encryption, Eurocrypt 2006, lncs vol. 4004, 2006.

[51] Donghoon Chang, Sangjin Lee, Mridul Nandi, and Moti Yung. Indifferentiable security
analysis of popular hash functions with prefix-free padding. In Xuejia Lai and Kefei
Chen, editors, Advances in Cryptology – ASIACRYPT 2006, pages 283–298, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[52] Raspberry Pi OS. https://www.raspberrypi.com/software/, 2022.

[53] Exynos 9820. https://semiconductor.samsung.com/processor/
mobile-processor/exynos-9-series-9820/, 2019.

[54] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the
block-cipher-based hash-function constructions from PGV. In Advances in Cryptology
- CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 2002, Proceedings, volume 2442 of Lecture Notes in
Computer Science, pages 320–335. Springer, 2002.

https://www.raspberrypi.com/software/
https://semiconductor.samsung.com/processor/mobile-processor/exynos-9-series-9820/
https://semiconductor.samsung.com/processor/mobile-processor/exynos-9-series-9820/

	Introduction
	Motivation
	Contributions
	 Organization of this paper:

	Related Work
	Preliminaries
	Notations
	Definitions
	Security Notion

	Lynx
	Lynx-A
	Lynx-B
	FA
	FB
	Domain Separation

	Analysis of FA and FB
	Design Rationale
	Initialization in Lynx-A
	Termination in Lynx-B
	Tag Generation
	Stream Processing
	Design of Flag
	Counter
	Simple Operation

	Security Proofs
	Integrity in RUP
	Integrity
	Confidentiality

	Experiments and Performance Analysis
	Conclusion
	Mathematical Proofs of Lynx
	Lemma 2
	Lemma 3
	Lemma 4
	Lemma 5
	Lemma 6
	Lemma 7

