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Abstract. We present a new block cipher mode of operation for authen-
ticated encryption (AE), dubbed XOCB, that has the following features:
(1) beyond-birthday-bound (BBB) security based on the standard pseu-
dorandom assumption of the internal block cipher if the maximum block
length is sufficiently smaller than the birthday bound, (2) rate-1 compu-
tation, and (3) supporting any block cipher with any key length. Namely,
XOCB has effectively the same efficiency as the seminal OCB while having
stronger quantitative security without any change in the security model
or the required primitive in OCB. Although numerous studies have been
conducted in the past, our XOCB is the first mode of operation to achieve
these multiple goals simultaneously.

Keywords: Authenticated encryption, Block cipher, OCB, Beyond-birthday-
bound security

Update: In 2023, Jean Liénardy proposed a forgery attack on XOCB [30], and
this version include the updated algorithm of XOCB. See section 1.1 for details.

1 Introduction

Authenticated Encryption. Since the formalization of authenticated en-
cryption (AE) [7, 26, 38], constructing an efficient and secure AE5 scheme has
been one of the central topics in symmetric-key cryptography for decades. OCB,
first proposed by Rogaway et al. at CCS 2001 [40], has been known to be a
seminal scheme for its efficiency and security. OCB operates at rate 1, i.e., each
5 We use the term AE to mean nonce-based AEAD [38] throughout the paper, unless

otherwise stated.



input block needs only one block cipher call used inside6. In addition, it is par-
allelizable. OCB is much more efficient than the generic composition schemes
that need at least two block cipher calls (thus rate ≤ 1/2) and its variant, most
notably GCM [1], which is specified by NIST SP800-38D and now quite widely
deployed. The security of OCB can be reduced to the standard computational
assumption on the block cipher used: namely, if the block cipher is a strong
pseudorandom permutation (SPRP), OCB is shown to be provably secure. OCB
has three versions [40, 39, 28], and the latest one (OCB3 [28]) is one of the win-
ners of CAESAR competition7 and is specified in RFC 7253. OCB38 has been
implemented by OpenSSL and many other cryptographic libraries.

Beyond OCB. The security guarantee of (any version of) OCB is up to the
birthday bound (upBB)9, that is, if the internal block cipher has n-bit block,
OCB is broken by attacks of data complexity O(2n/2). This significantly limits
the practical value of OCB with a small – most typically 64-bit – block cipher,
because the limit of 2n/2 data per each secret key can be too severe. A very
impactful exposition of such a risk is Sweet32 attack against TLS/SSL using
64-bit block ciphers [8]. Even if we use 128-bit block ciphers, such as AES, this
is not a threat to the distant future.

For example, NIST10 has recently been reviewing FIPS 197 (specifying AES),
and several comments received in conjunction with this review process, more
specifically from Microsoft and Amazon, warn that continued use of 128-bit
block ciphers with GCM will be a problem in the near future. In particular, it
is mentioned that exabyte (1018 ≈ 260) data is already in use and zettabyte
(1021 ≈ 270) in the near future.

Transitioning to a new (possibly wide-block) cipher would not be easy and
take time. If one wants to use AES (or, more generally, any n-bit block cipher
where n/2-bit security can be a concern), a promising approach is to employ a
beyond-birthday-bound (BBB) secure AE mode that resists attacks of complexity
O(2n/2). Moreover, the advancement of lightweight cryptography produces many
block ciphers having application/platform-specific advantage over AES, in terms
of various metrics, such as hardware size [11, 4], energy [3], latency [12], and
software performance on low-end platforms [6]. To make it lightweight while
achieving security equivalent to AES-128, it is quite often that these ciphers
have key and block lengths at most 128 bits.

A BBB-secure AE mode has been extensively studied. Iwata proposed CHM [22],
and CIP [23] that combine CENC [22], a BBB-secure nonce-based encryption
mode, with a universal hash (UH) function using field multiplications. These
schemes are provably secure under the standard pseudorandom assumption and
roughly have 2n/3-bit provable security. While the encryption part (CENC) is ef-

6 By convention, we ignore the constant number of block cipher calls per message.
7 https://competitions.cr.yp.to/caesar.html
8 We may simply write OCB to mean OCB3.
9 The second version OCB2 is flawed and allows devastating attacks, though a simple

fix is possible [21].
10 https://csrc.nist.gov/News/2022/proposal-to-revise-sp-800-38a
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ficient, the need for the UH function makes the total cost (both for computation
time and implementation memory) largely similar to GCM.

Another approach is to instantiate a tweakable block cipher (TBC) [29] using
a block cipher and adopt a BBB-secure AE mode of a TBC as a template. The
most popular template is ΘCB3, which has n-bit security using a TBC of n-bit
block and about 3n-bit tweak (required tweak length depends on the length of
nonce and a maximum of message length etc.). If we instantiate such a TBC
by an upBB-secure block cipher mode such as XEX, we obtain OCB3, and the
resulting AE is also upBB-secure at best. Instantiating a BBB-secure TBC will
break this barrier, however, is far from trivial. The cascaded LRW achieves BBB-
security, but it needs two or more block cipher calls plus UH functions. Naito’s
XKX [34] requires a block cipher of more than n-bit keys and rekeying per nonce
for BBB security. This allows us to use, say AES-256, but excludes a large number
of lightweight ciphers for its key size as described above; hence it is not a perfect
solution, and we cannot benefit from the state-of-the-art lightweight ciphers.
Other TBC constructions, such as Mennink’s F1 and F2 [31], or Jha et al.’s
XHX [25] are efficient and work with a block cipher of about n-bit key. However,
they need the ideal-cipher model for security reduction. Obtaining a standard
security reduction for these constructions is considered to be hard [32]. This
poses a non-trivial gap between GCM or OCB, which have been proved under
the standard model. That is, the previous BBB-secure AE modes require either
a significant increase in computation, making the rate close to 1/2, or a change
in the cryptographic primitive supported by OCB, that is, an n-bit SPRP of any
key length. The natural question here is if we can achieve a BBB-secure AE
maintaining the advantages of OCB as much as possible.
Our Contributions. In this paper, we present a solution that answers the
above question positively. Our proposal, dubbed XOCB, is an AE mode that
can be based on an n-bit block cipher, and achieves BBB, namely 2n/3-bit
security for a constant maximum input length, assuming that the block cipher
is an SPRP (for its use of both block cipher forward and inverse operations).
The rate is one. Unlike XKX, XOCB does not need a rekeying while operating,
making it possible to be instantiated with ciphers of k-bit keys for any k, and
k = n = 128 allows using AES-128. When the maximum input length is not a
constant, XOCB still maintains upBB security. Namely, it can securely encrypt
a message of ≪ O(2n/2) blocks. In addition, XOCB is fully parallellizable as
OCB. Despite numerous previous works, XOCB is the first mode of operation
that achieves these goals11. See Table 1 for comparison.

The main innovation of XOCB is an encryption part that can be seen as an
amalgamation of CENC and OCB’s encryption part. We add one more output-
masking layer to (a variant of) OCB’s internal XEX mode throughout encryption
or decryption. This additional mask is computed once for each nonce. Hence
the rate is one. In more detail, for m-block message and a-block associated data
(AD), XOCB needs m+a plus 7 to 8 calls. The security depends on the maximum
11 In concurrent to our work, Bhattacharjee, Bhaumik, and Nandi [9] presented an AE

scheme combining SPRP and PRF that has some structural similarity to XOCB.
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input length l (in n-bit blocks) and ranges between n/2 to 2n/3 bits depending
on the maximum length of a message. In more detail, the concrete bound is
shown at Theorem 1, and its leading terms are lσ/2n + lσ3/22n ignoring the
constants, where σ denotes the total number of input blocks and l denotes the
maximum input length in n bits. At first glance, the security improvement of
XOCB over OCB appears limited because of the length factor. I.e., it is birthday-
secure concerning l. However, many practical communication protocols specify a
maximum packet length, also known as a Maximum transmission unit (MTU),
that is not large. For example, the Internet Protocol (IP) has an MTU of 65535
(= 215) bytes. With this limit, XOCB with AES-128 can encrypt at most around
280.3 bytes of input blocks, while OCB is limited to 268 bytes. For low-power
communication protocols, MTU is much smaller, such as 257 bytes for Bluetooth
(specifically BLE 4.2). We also point out that XKX includes l2q/2n [34, 33] in
its bound for q queries, that is, a birthday term for l. We provide a numerical
bound comparison for practical message lengths at Table 1. This exhibits the
stronger security of XOCB for real-world use cases.

While the main routine of XOCB is structurally similar to CENC, we need
a quite different analysis. This is because (1) the block cipher inputs in CENC
are all determined by a single variable (nonce), while in our case, all inputs
are determined by message blocks, independently for each block, and (2) the
decryption of XOCB involves a block cipher inverse, which is absent in CENC.
Note that CENC implements a nonce-based additive encryption by a BBB-secure
expanding PRF. Hence the encryption and decryption are symmetric and do not
need the block cipher inverse. These differences require us to develop a dedicated
security analysis, which is much more involved than the case of CENC. We employ
the framework developed by Kim et al. [27] for analyzing DBHtS MAC [16] (that
is also based on the standard Coefficient-H) for proofs. This helps to reduce the
proof complexity and gains accessibility, but it remains a lot of involved bad
cases, which turns out to be a challenging task.

Finally, we stress that our security goal is the standard AE security un-
der nonce-respecting adversaries. Due to its online computation algorithm, the
nonce-misuse resistance security [41] is impossible to achieve by nature. Simi-
larly, we do not claim security under the release of unverified plaintext (RUP)
introduced by Andreeva et al. [2]. We consider classical single-user security, and
analyzing multi-user security is left open.

Implementations. We present implementations of XOCB’s AES instantiation
on both high-end CPUs and low-end microprocessors to show its practical rele-
vance. The implementation results show that on a modern 64-bit CPU (Intel’s
Tiger Lake family), AES-XOCB can encrypt and authenticate a 4096-byte mes-
sage plus a 16-byte AD at a speed of 0.5 cycles per byte (cpb), while AES-ECB
runs at 0.3 cpb at the same platform. Comparatively, AES-OCB and AES-CIP
with the same implementation of AES executed at a speed of 0.4 and 1.2 cpb, re-
spectively. On an 8-bit AVR processor (AVR ATmega328P), AES-XOCB requires
8556 bytes of ROM to support both encryption and decryption, and processes a
128-byte message plus a 16-byte AD at a speed of 306 cpb; In contrast, an opti-
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mized implementation of AES-GCM requires 11012 bytes of ROM and executes
at a speed of 880 cpb.

Table 1: Comparison of AE schemes that can use an n-bit block cipher
of any key length. MUL denotes a field multiplication over GF(2n).
The cost of MUL depends on the platform and implementation, and
we simply assume it is equivalent to the block cipher used. The “Se-
curity” column denotes the bit security ignoring the contribution of
the maximum input length. The “Lead Terms” column denotes the
leading terms in the nAE advantage (Refer to the main texts for more
details).

Scheme Primitive Rate Security Lead Terms∗ Ref
OCB SPRP 1 n/2 σ2/2n + q/2n† [28]
GCM PRP, MUL 1/2 n/2 σ2/2n + q/2n [24, 35]

CHM,CIP PRP, MUL 1/2 2n/3 σ3/22n + σ/2n [22, 23]
XOCB SPRP 1 2n/3 lσ3/22n + lσ/2n This paper
∗ σ: total queried blocks in n-bit blocks, q: total number of queries, and l:

the maximum block length of a query. We assume O(1) AD blocks
† Bhaumik and Nandi [10] improved the bound with respect to the de-

cryption queries

1.1 A Flaw in the Proceeding Version of XOCB.

After publication of this paper at Eurocrypt 2023 [5], Jean Liénardy proposed a
forgery attack on XOCB [30]. The core idea of the attack was that XOCB does
not distinguish between full block and partial block messages when generating
tags. This allowed for a padding-based forgery attack, which we confirmed could
be defended by using different masking values for full and partial blocks. The
current version includes this separation.

We also found non-trivial gaps in some of our lemmas while double-checking
our security proofs, and are working on a complete proof, which we will update
in the near future.

2 Preliminaries

Basic Notation. For a positive integer n, we write N = 2n and [n] = {1, . . . , n}.
For two nonnegative integers m and n such that m ≤ n, we write [m..n] =
{m, m + 1, . . . , n}. Given a nonempty set X , x ←$ X denotes that x is chosen
uniformly randomly from X . The set of all functions from X to Y is denoted
Func(X ,Y), and the set of all permutations on X is denoted Perm(X ). For sim-
plicity, Perm(n) denotes the set of all permutations on {0, 1}n. For integers a
and b such that 1 ≤ a ≤ b, we write (b)a = b(b− 1) . . . (b− a + 1), and (b)0 = 1
by convention.
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For a positive integer n, let {0, 1}n be the set of n-bit strings and {0, 1}≤n =⋃
i∈[0..n]{0, 1}i. Let 0n be the string of n zero bits. Note that 00 = ε. We write
{0, 1}∗ to denote the set of all arbitrary-length strings, including the empty
string, and let {0, 1}+ = {0, 1}∗ \ {ε}. The set {0, 1}n is sometimes regarded as
a set of integers {0, 1, . . . , 2n − 1} by converting an n-bit string an−1 . . . a1a0 ∈
{0, 1}n to an integer 2n−1an−1 + · · ·+2a1 +a0. An element x ∈ {0, 1, . . . , 2c − 1}
for some positive integer c may be denoted by ⟨x⟩c ∈ {0, 1}c following the above
(standard) encoding. We also identify {0, 1}n with a finite field GF(2n) with
2n elements, assuming that 2 cyclically generates all the nonzero elements of
GF(2n).

For X ∈ {0, 1}∗, let |X| be the bit length of X. For a positive integer n
and X ∈ {0, 1}+, let |X|n = ⌈|X| /n⌉ where ⌈x⌉ is the smallest integer y such
that y ≥ x and let |ε|n = 1. For a positive integer n and a string X ∈ {0, 1}∗,
(X1, X2, . . . , Xm) n←− X denotes that X is partitioned into strings X1, . . . , Xm,
where m = |X|n, |X1| = · · · = |Xm−1| = n, and 0 < |Xm| ≤ n if X ̸= ε, and
Xm = ε otherwise. For a positive integer n and X ∈ {0, 1}∗, let pad(X) = X ∥
1∥0n−(|X| mod n)−1. Note that pad is an injective function. For a positive integer
n and X ∈ {0, 1}∗, ozp(X) and X denote one-zero padding; ozp(X) = X = X
if |X| = 0 mod n, and ozp(X) = X = pad(X) if |X| ≠ 0 mod n. For a positive
integer t ≤ n and X ∈ {0, 1}n, msbt(X) denotes a string of the most significant
t bits of X. For X, Y ∈ {0, 1}∗, let

X ⊕msb Y =
{

X ⊕ msb|X|(Y ) if |X| < |Y | .
msb|Y |(X)⊕ Y if |X| ≥ |Y | .

Security Notions. Let E : K×{0, 1}n → {0, 1}n be a keyed permutation with
key space K, where E(K, ·) is a permutation for each K ∈ K. We will denote
EK(X) for E(K, X). A (q, t)-distinguisher against E is an algorithm D with
oracle access to an n-bit permutation and its inverse, making at most q oracle
queries, running in time at most t, and outputting a single bit. The advantage
of D in breaking the PRP-security of E, i.e., in distinguishing E from a uniform
random permutation π ←$ Perm(n), is defined as

Advsprp
E (D) =

∣∣∣Pr
[
K ←$ K : DEK ,E−1

K = 1
]
− Pr

[
π ←$ Perm(n) : Dπ,π−1

= 1
]∣∣∣ .

In our security proof, the underlying block cipher E will be replaced by a truly
random permutation up to the above adversarial distinguishing advantage.

Given key space K, nonce space N , associate data (AD) space A, message
space M, ciphertext space C, and tag space T , a nonce-based authenticated
encryption (nAE) scheme is defined by a tuple

Π = (K,N ,A,M, C, Enc, Dec),
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where Enc and Dec denote encryption and decryption schemes, respectively. More
precisely,

Enc : K ×N ×A×M −→ C × T ,

Dec : K ×N ×A× C × T −→M∪ {⊥} ,

where for Enc(K, N, A, M) = (C, T ), we require |C| = |M | and

Dec(K, N, A, C, T ′) =
{

M if T = T ′,

⊥ otherwise.

We will write EncK(N, A, M) and DecK(N, A, C) to denote Enc(K, N, A, M) and
Dec(K, N, A, C), repectively. Throughout this paper, we will fix N = {0, 1}n−2,
A =M = C = {0, 1}∗ and T = {0, 1}n.

Against the nonce-based authenticated encryption security of Π, an adver-
sary D aims at distinguishing the real world (EncK , DecK) and the ideal world
(Rand, Rej), where Rand returns a random string of length |M | + n for every
encryption query EncK(N, A, M) and Rej always returns ⊥ for every decryption
query.

In this paper, we assume that D is nonce-respecting; it does not repeat nonces
in encryption queries. Furthermore, D is non-trivial, i.e., D never repeats the
same encryption/decryption query nor makes a decryption query (N, A, C, T )
once (C, T ) has been obtained by a previous encryption query EncK(N, A, M).
Then the advantage of D against the nonce-based authenticated encryption se-
curity of Π is defined as

AdvnAE
Π (D) =

∣∣Pr
[
K ←$ K : DEncK ,DecK = 1

]
− Pr

[
DRand,Rej = 1

]∣∣ .
We say that D is a (qe, qd, σ, l, t)-adversary against the nonce-based AE se-

curity of Π if D makes at most qe encryption queries and at most qd decryption
queries, and running in time at most t, where the length of each encryption/de-
cryption query (with a nonce and a tag excluded)12 is at most l blocks of n bits.
The total length of the encryption and decryption queries (with nonces and tags
excluded) is at most σ blocks of n bits. When considering information-theoretic
security, we will drop the parameter t.
Coefficient-H Technique. We will use Patarin’s coefficient-H technique. The
goal of this technique is to upper bound the adversarial distinguishing advan-
tage between a real construction and its ideal counterpart. In the real (resp.
ideal) world, an information-theoretic adversary D is allowed to make queries to
a oracle denoted Oreal (resp. Oideal). The interaction between D and the oracle
determines a transcript. It contains all the information obtained during the in-
teraction. We write that transcript τ is attainable if the probability of obtaining
τ in the ideal world is non-zero. We also write Tid and Tre to denote the prob-
ability distribution of the transcript τ induced by the ideal world and the real
12 More precisely, the block length of an encryption (resp. decryption) query is defined

as |A|n + |M |n (resp. |A|n + |C|n), while the length of the “empty” query is 1.
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world, respectively. By extension, we use the same notation to denote a random
variable distributed according to each distribution.

We partition the set of attainable transcripts Γ into a set of “good” tran-
scripts Γgood, where the probability to obtain τ ∈ Γgood is close in the real world
and the ideal world, and a set of “bad” transcripts Γbad, where the probability of
obtaining τ ∈ Γbad is small in the ideal world. Then the coefficient-H technique
is summarized as the following lemma.

Lemma 1. Let Γ = Γgood⊔Γbad be a partition of the set of attainable transcripts,
where there exists a non-negative number ϵ1 such that for any τ ∈ Γgood,

Pr [Tre = τ ]
Pr [Tid = τ ] ≥ 1− ϵ1,

and there exists a non-negative number ϵ2 such that Pr [Tid ∈ Γbad] ≤ ϵ2. Then
for any adversary D, one has∣∣Pr

[
DOreal = 1

]
− Pr

[
DOideal = 1

]∣∣ ≤ ϵ1 + ϵ2,

where DOreal and DOideal denote the adversarial outputs in the real and the ideal
worlds, respectively.

We refer to [20] for the proof of Lemma 1.
Extended Mirror Theory. Patarin’s Mirror theory [36, 37] is a very powerful
tool to estimate the number of solutions to a certain type of system of equations.
At the beginning, there were some uncertainties in the proof of Mirror theory,
but now there are several results on the full proof of Mirror theory up to n-bit
security [18, 14, 15]. In this paper, we will use the extended Mirror theory [17, 19],
which is a variant of Mirror theory, and estimates the number of solutions to a
system of equations as well as non-equations.

We will represent a system of equations and non-equations by a graph. Each
vertex corresponds to an n-bit distinct unknown. We will assume that the num-
ber of vertices is at most 2n/4, and by abuse of notation, identify the vertices with
the values assigned to them. We distinguish two types of edges, namely, =-labeled
edges and ̸=-labeled edges that correspond to equations and non-equations, re-
spectively. Each of the edges is additionally labeled by an element in {0, 1}n. So,
if two vertices P and Q are adjacent by an edge with label (λ, =) (resp. (λ, ̸=))
for some λ ∈ {0, 1}n, then it would mean that P ⊕Q = λ (resp. P ⊕Q ̸= λ).

Consider a graph G = (V, E= ⊔ E ̸=), where E= and E ̸= denote the set of
=-labeled edges and the set of ̸=-labeled edges, respectively. Then G can be seen
as a superposition of two subgraphs G= =def (V, E=) and G ̸= =def (V, E ̸=). Let
P

λ
−Q denote a (λ, =)-labeled edge in G=. For ℓ > 0 and a trail13

L : P0
λ1
− P1

λ2
− · · ·

λℓ

− Pℓ

13 A trail is a walk in which all edges are distinct.
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in G=, its label is defined as

λ(L) def= λ1 ⊕ λ2 ⊕ · · · ⊕ λℓ.

In this work, we will focus on a graph G = (V, E= ⊔ E ̸=) with certain prop-
erties, as listed below.

1. G= contains no cycle.
2. λ(L) ̸= 0 for any trail L in G=.
3. If P and Q are connected with a (λ, ̸=)-labeled edge, then they are not

connected by a λ-labeled trail in G=.

Any graph G satisfying the above properties will be called a nice graph. Given
a nice graph G = (V, E= ⊔ E ̸=), an assignment of distinct values to the vertices
in V satisfying all the equations in E= and all the non-equations in E ̸= is called
a solution to G. We remark that if we assign any value to a vertex P , then
=-labeled edges determine the values of all the other vertices in the component
containing P in G=, where the assignment is unique since G= contains no cycle.
The values in the same component are all distinct since λ(L) ̸= 0 for any trail
L. Furthermore, any non-equation between two vertices in the same component
will be redundant due to the third property above.

In the following lemma, we partition the set of vertices V into two disjoint
sets, denoted Vkn and Vuk, respectively, and fix an assignment of distinct values
to the vertices in Vkn. Subject to this assignment, the number of possible assign-
ments of distinct values to the vertices in Vuk can be lower bounded (in a way
that the entire assignment becomes a solution to G).

Lemma 2. For a positive integer q and a nonnegative integer v, let G = (V, E=⊔
E ̸=) be a nice graph such that |E=| = q and |E ̸=| = v. Suppose that

1. V is partitioned into two subsets, denoted Vkn and Vuk;
2. there is no =-labeled edge that is incident to a vertex in Vkn;
3. there is no ̸=-labeled edge connecting two vertices in Vkn.

Suppose that G=
uk = (Vuk, E=) is decomposed into k components C1, . . . , Ck for

some k. Given a fixed assignment of distinct values to the vertices in Vkn, the
number of solutions to G, denoted h(G), satisfies

h(G)2nq

(N − |Vkn|)|Vuk|
≥ 1− |V|

2

22n

k∑
i=1
|Ci|2 −

2v

2n
.

We refer to [13] for the proof of Lemma 2.

3 Description of XOCB

We define our proposed scheme XOCB. The algorithms are shown in Figs. 1 and 2,
and the figures are shown in Figs. 3 and 4. Below we describe the encryption of
XOCB. For the decryption, please refer to Figs. 1 and 2.
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Given an n-bit block cipher E, the encryption routine of XOCB takes a triple
of nonce, associate data and message (N, A, M) ∈ {0, 1}n−2 × {0, 1}∗ × {0, 1}∗

by computing (C, T ) ∈ {0, 1}∗ × {0, 1}n as follows. Here, |C| = |M | holds for
any M .

1. Break the associated data A and the message M into n-bit blocks:

(A[1], . . . , A[a]) n←− pad(A),

(M [1], . . . , M [m]) n←−M.

Note that 0 ≤ |M [m]| ≤ n and |M [α]| = n for α ∈ [m− 1].
2. Compute masking values:

∆1 = EK(N ∥ ⟨0⟩2)⊕ EK(N ∥ ⟨1⟩2),
∆2 = EK(N ∥ ⟨0⟩2)⊕ EK(N ∥ ⟨2⟩2),
∆3 = EK(N ∥ ⟨0⟩2)⊕ EK(N ∥ ⟨3⟩2).

3. Compute the inputs and the outputs for block cipher calls:

(a) for α ∈ [0..m],

X[α] =


2α∆1 ⊕∆2 if α = 0,

2α∆1 ⊕∆2 ⊕M [α] if α > 0, and |M [α]| = n,

2α∆1 if α = m and |M [m]| < n,

Y [α] = EK(X[α]);

(b) for α ∈ [a], U [α] = 2α∆2 ⊕A[α], and V [α] = Ek(U [α]);
(c) for α ∈ {0, 1},

P [α] =


2m∆1 ⊕ 2α∆3 if α = 0,

2m∆1 ⊕ 2α∆3 ⊕
⊕

i∈[m] M [i]; if α = 1 and |M [m]| = n,

2m∆1 ⊕ 2α+1∆3 ⊕
⊕

i∈[m] M [i]; if α = 1 and |M [m]| < n;
Q[α] = EK(P [α]).

4. Compute ciphertext C and tag T :

(a) for α ∈ [m],

C[α] =
{

Y [0]⊕ Y [α]⊕ (2α + 1)∆1 if |M [α]| = n,

(Y [0]⊕ Y [m]⊕ (2m + 1)∆1 ⊕∆2)⊕msb M [m] otherwise;

(b) output (C, T ) where

C = C[1] ∥ · · · ∥ C[m],

T =
{

Q[0]⊕Q[1]⊕ 3∆3 ⊕
⊕

α∈[a] V [α] if |M [m]| = n,

Q[0]⊕Q[1]⊕ 5∆3 ⊕
⊕

α∈[a] V [α] if |M [m]| < n.
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XOCB and OCB. The major difference between XOCB from OCB is its additional
output masking. In more detail, in its message encryption, XOCB adds an extra
masking to the ciphertext blocks so that each ciphertext block can be viewed as
a sum of two XEX outputs:

C = E(M ⊕∆)⊕∆⊕ E(∆′)⊕∆′.

Since each ciphertext block is built from two block cipher calls, unlike OCB,
XOCB allows a single collision of input blocks between two queries. Instead, ci-
phertext blocks in a single query share additional masking, so one can break
XOCB if there exists an input collision in a single query, and this is the fun-
damental reason why the security bound of XOCB is given as σl/2n instead of
σ2/2n for OCB.

4 Security of XOCB

Let XOCB[π] denote an idealized version of XOCB where the underlying n-bit
keyed block cipher EK is replaced by a random n-bit (secret) permutation π.
We can prove the security of XOCB[π] as follows. Deriving the standard model
security bound by using a block cipher E : K × {0, 1}n → {0, 1}n (for a certain
key space K) instead of π is standard, thus omitted here.

Theorem 1. Let D be a (qe, qd, σ, l)-adversary against nAE-security of XOCB[π].
Then we have

AdvnAE
XOCB[π](D) ≤ 28q + 2σ + 1.5l(q + σ)

2n

+ 4qσ2 + (30q2 + 10q)σ + 93q3 + 44q2

22n

+ (9σ3 + 8σ2q + 45σq2 + 6q3)l
22n+1 ,

where q = qe + qd.

As defined in Section 2 (Security Notion), qe denotes the number of encryption
queries, qd denotes the number of decryption queries, l denotes the maximum
query length in n-bit blocks, and σ denotes the total queried blocks in n-bit
blocks.

The leading terms in the bound of Theorem 1 are l · σ/2n + l · σ3/22n, hence
XOCB achieves 2n/3-bit security if l = O(1). In general, it achieves BBB security
if l is sufficiently smaller than 2n/2. As mentioned earlier, the previous schemes
such as XKX have a similar limitation on input length. From the next subsection,
we provide the proof of Theorem 1.
Bound Comparison. To get an idea on how XOCB improves security in the
practical use cases, we show a quick comparison of bounds in Figure 5 for the
case n = 128. We note that providing a precise and compact comparison is fairly

11



Algorithm XOCB.EEK
(N, A, M)

1. Σ ← 0n

2. (∆1, ∆2, ∆3)← InitEK
(N)

3. L← XEXXEK
(0n, ∆1 ⊕∆2, 0n)

4. (M [1], . . . , M [m]) n←−M

5. for i = 1 to m− 1
6. ∆1 ← 2∆1

7. C[i]← XEXXEK
(M [i], ∆1 ⊕∆2, L)

8. Σ ← Σ ⊕M [j]
9. end for

10. ∆1 ← 2∆1

11. if |M [m]| = n then
12. C[i]← XEXXEK

(M [i], ∆1 ⊕∆2, L)
13. else
14. Z ← XEXXEK

(0n, ∆1, L)
15. C[m]← msb|M [m]|(Z)⊕M [m]
16. end if
17. ∆∗

1 ← ∆1 ⊕∆3

18. ∆∗
2 ← ∆1 ⊕ 2∆3

19. Σ ← Σ ⊕ ozp(M [m])
20. C ← C[1] ∥ . . . ∥ C[m]
21. T ← XEXXEK

(0n, ∆∗
1, L)⊕ XEXXEK

(Σ, ∆∗
2, L)

22. Γ ← PHASHEK
(A, ∆2)

23. T ← T ⊕ Γ

24. return (C, T )

Algorithm XOCB.DEK
(N, A, C, T )

1. Σ ← 0n

2. (∆1, ∆2, ∆3)← InitEK
(N)

3. L← XEXXEK
(0n, ∆1 ⊕∆2, 0n)

4. (C[1], . . . , C[m]) n←− C

5. for i = 1 to m− 1
6. ∆1 ← 2∆1

7. M [i]← XEXX−1
EK

(C[i], ∆1 ⊕∆2, L)
8. Σ ← Σ ⊕M [j]
9. end for

10. ∆1 ← 2∆1

11. if |C[m]| = n then
12. M [i]← XEXX−1

EK
(C[i], ∆1 ⊕∆2, L)

13. else
14. Z ← XEXXEK

(0n, ∆1, L)
15. M [m]← msb|C[m]|(Z)⊕ C[m]
16. end if
17. ∆∗

1 ← ∆1 ⊕∆3

18. ∆∗
2 ← ∆1 ⊕ 2∆3

19. Σ ← Σ ⊕ ozp(M [m])
20. M ←M [1] ∥ . . . ∥M [m]
21. T̂ ← XEXXEK

(0n, ∆∗
1, L)⊕ XEXXEK

(Σ, ∆∗
2, L)

22. Γ ← PHASHEK
(A, ∆2)

23. T̂ ← T̂ ⊕ Γ

24. if T̂ = T then return M

25. else return ⊥

Fig. 1: Algorithms of XOCB. Subroutines are shown at Fig. 2.

Algorithm InitEK
(N)

1. ∆1 ← EK(N ∥ ⟨0⟩2)⊕EK(N ∥ ⟨1⟩2)
2. ∆2 ← EK(N ∥ ⟨0⟩2)⊕EK(N ∥ ⟨2⟩2)
3. ∆3 ← EK(N ∥ ⟨0⟩2)⊕EK(N ∥ ⟨3⟩2)
4. return (∆1, ∆2, ∆3)

Algorithm XEXXEK
(X, S, V )

1. Y ← EK(X ⊕ S)⊕ S ⊕ V

2. return Y

Algorithm XEXX−1
EK

(Y, S, V )

1. X ← E−1
K (Y ⊕ S ⊕ V )⊕ S

2. return X

Algorithm PHASHEK
(A, ∆)

1. Σ ← 0n

2. (A[1], . . . , A[a]) n←− A

3. for i = 1 to a

4. ∆← 2∆

5. Σ ← Σ ⊕ EK(ozp(A[i])⊕∆)
6. if |A[a]| = n

7. ∆← 2∆

8. Σ ← Σ ⊕ EK(10n−1 ⊕∆)
9. end if

10. return Σ

Fig. 2: Subroutines for XOCB.
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EK

∆1

EK

N ‖ 〈0〉2

EK

∆2

EK EK

∆3

EK

N ‖ 〈1〉2 N ‖ 〈0〉2 N ‖ 〈2〉2 N ‖ 〈0〉2 N ‖ 〈3〉2

Fig. 3: Generation of masking values for XOCB.

EK

L

EK

C[i]

M [i]

2i∆1 ⊕∆2

EK

C[m]

M [m]

EK

C[m]

0n

M [m]

EK

T

Σ

for i ∈ [m− 1]

L

if |M [m]| = n

L

2m∆1 ⊕∆2∆1 ⊕∆2

0n

if |M [m]| < n

2m∆1

L

msb|M [m]|

EK

0n

2m∆1 ⊕∆3

L

Σ =
⊕

i∈[m]M [i]

L

Γ

EK

V [j]

A[j]

2j∆2

for j ∈ [a]

EK

V [a + 1]

10n−1

2a+1∆2

if |A[a]| = n

Γ =
⊕

j∈[a∗] V [j]

a∗ =

{
a if |A[a]| < n

a + 1 if |A[a]| = n

{
2m∆1 ⊕ 2∆3 if |M [m] = n

2m∆1 ⊕ 22∆3 if |M [m]| < n

Fig. 4: Encryption of XOCB. (Top) Encryption of plaintext. (Bottom) Processing
of associated data. For X ∈ {0, 1}≤n, X denotes the one-zero padding (see
Section 2). The computation of T involves redundant output mask values, which
is omitted in the text description of Section 3.
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27 217 227 237 247 257 267 277 287
σ

2-114
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2-84

2-69

2-54

2-39

2-24

2-9

bound Case l= 28

OCB
CIP
XOCB

229 236 243 250 257 264 271 278 285
σ

2-94

2-82

2-70

2-58

2-46

2-34

2-22

2-10

bound Case l= 230

OCB
CIP
XOCB

Fig. 5: nAE bound comparison. (Left) l = 28 (Right) l = 230. The bound of GCM
is identical to that of OCB in our setting, hence omitted.

difficult as each scheme employs different parameters. To make it compact, we
apply our notations of l and σ to the bound of each mode, focusing on the
leading terms (shown in Table 1) and ignoring the constants. We assume no tag
truncation and O(1)-block AD. Furthermore, we assume qe = qd and that all the
messages are of the same length, thus lq = σ. As we mentioned in Introduction,
we observed a significant gain over GCM/OCB if l is not large (l = 28, about
4Kbyte). If l is large (l = 230, about 17 GBytes), the gain of XOCB is reduced
but still remains. CIP offers stronger security, in particular for the latter case.
However, it is costlier than XOCB for the use of a universal hash function.

In the full version, we also present graphs for the aforementioned settings
taking constants into consideration to see their effect on the bound. It turns out
that the bounds of OCB and XOCB do not change significantly.

4.1 Proof Setup

Let D be a (qe, qd, σ, l)-adversary against the nAE-security of XOCB[π]. We as-
sume that D does not make any redundant query and makes exactly qe encryp-
tion queries and qd decryption queries without loss of generality. Let

τe = (Ni, Ai, Mi, Ci, Ti)i∈[qe]

τd = (N ′
j , A′

j , C ′
j , T ′

j , b′
j)i∈[qd]

denote the list of encryption queries and decryption queries, respectively. Note
that D always has b′

j = ⊥ for j ∈ [qd] if D interacts with the ideal oracle. At the
end of the game, we assume that the real world oracle reveals all the inputs and
the outputs for π calls made during the query phase so the (extended) transcript
is of the form τ = (τe, τd, Π), where Π denotes the set of the permutation
input and output pairs on π. In the ideal world, the corresponding values should
be carefully sampled and revealed to the adversary. The sampling process is
described in Section 4.2.
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For i ∈ [qe] (resp. j ∈ [qd]), let mi = |Mi|n (resp. m′
j = |M ′

j |n) be the number
of blocks in Mi (resp. M ′

j), and let ai = |pad(Ai)|n (resp. a′
j = |pad(A′

j)|n) be
the number of blocks in Ai (resp. A′

j). Let li = mi + ai and let l′
j = m′

j + a′
j . For

i ∈ [qe], Ai, Mi and Ci are divided into n-bit blocks, written as follows.

(Ai[1], . . . , Ai[ai])
n←− pad(Ai),

(Mi[1], . . . , Mi[mi])
n←−Mi,

(Ci[1], . . . , Ci[mi])
n←− Ci.

Similarly, for i ∈ [qd], we write

(A′
i[1], . . . , A′

i[a′
i])

n←− pad(A′
i),

(C ′
i[1], . . . , C ′

i[m′
i])

n←− C ′
i.

Let q = qe + qd. We define Ni, Ai, and ai for i ∈ [q] by letting Nj+qe
= N ′

j ,
Aj+qe = A′

j , and aj+qe = a′
j for j ∈ [qd]. With this extension, we can write

(Ai[1], . . . , Ai[ai])
n←− pad(Ai)

for i ∈ [q], where Aj+qe
[α] = A′

j [α] for j ∈ [qd], and α ∈ [a′
j ].

For π calls made in the i-th encryption query, we use the following notations:

– for α ∈ [mi], Xi[α] and Yi[α] denote the input and output of π, respectively,
corresponding to Mi[α];

– for α ∈ [ai], Ui[α] and Vi[α] denote the input and output of π, respectively,
corresponding to Ai[α];

– (Pi[0], Pi[1]) and (Qi[0], Qi[1]) denote the pairs of inputs, and the pairs of
outputs corresponding to the two π calls for tag generation.

Similarly, for π calls made in the i-th decryption query, we use the following
notations:

– for α ∈ [m′
i], X ′

i[α] and Y ′
i [α] denote the input and output of π, respectively,

corresponding to C ′
i[α];

– for α ∈ [m′
i], M ′

i [α] denote the message block corresponding to C ′
i[α];

– for α ∈ [a′
i], U ′

i [α](= Ui+qe
[α]) and V ′

i [α](= Vi+qe
[α]) denote the input and

output of π, respectively, corresponding to A′
i[α];

– (P ′
i [0], P ′

i [1]) and (Q′
i[0], Q′

i[1]) denote the pairs of inputs, and the pairs of
outputs corresponding to the two π calls for tag generation.

4.2 Simulating π in the Ideal World

In the ideal world, the underlying π is simulated at the end of the attack.
The π-evaluations are recorded in a set Π, initialized as the empty set. The
π-evaluations are sampled consistently with all the encryption and decryption
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queries made during the attack. In other words, such evaluations will uniquely
determine all the queries. Whenever an evaluation π(X) = Y is fixed, (X, Y )
will be included in Π. In this way, Π grows. The set of inputs X (resp. outputs
Y ) of Π will be denoted dom(π) (resp. rng(π)). We now describe the sampling
process, which might abort if a certain bad event happens.
Step 1. For each i ∈ [qe], ∆i,1, ∆i,2, ∆i,3 are sampled uniformly at random
from {0, 1}n. For each j ∈ [qd], (∆′

j,1, ∆′
j,2, ∆′

j,3) is set to (∆i,1, ∆i,2, ∆i,3) if
Ni = N ′

j for some i ∈ [qe], and otherwise ∆′
j,1, ∆′

j,2, ∆′
j,3 are sampled uniformly

at random from {0, 1}n.
Let (∆i+qe,1, ∆i+qe,2, ∆i+qe,3) = (∆′

i,2, ∆′
i,3, ∆′

i,3) for i ∈ [qd]. For i ∈ [q] and
α ∈ [0..3], we will write Ni,α = Ni ∥ ⟨α⟩2. Let

P def= {(i, α) : i ∈ [qe], α ∈ [0..mi]} ,

P$
def= {(i, mi) : i ∈ [qe], |Mi[mi]| < n} ,

P2
def= {(i, α, β) : (i, α), (i, β) ∈ P, α ̸= β} ,

N def= {(i, α) : i ∈ [q], α ∈ [0..3]} ,

N2
def= {(i, α, β) : (i, α), (i, β) ∈ N , α ̸= β} .

For each (i, mi) ∈ P$, si is sampled uniformly at random from {0, 1}n−|Mi[mi]|.
For (i, α) ∈ P, set:

Xi[α] =


∆i,1 ⊕∆i,2 if α = 0,

2α∆i,1 if (i, α) ∈ P$,

2α∆i,1 ⊕∆i,2 ⊕Mi[α] otherwise;

Zi[α] =


0 if α = 0,

(2α + 1)∆i,1 ⊕∆i,2 ⊕ ((Ci[α]⊕Mi[α]) ∥ si) if (i, α) ∈ P$,

(2α + 1)∆i,1 ⊕ Ci[α] otherwise.

We now define a bad event as follows.

badA⇔ badA1 ∨ badA2 ∨ badA3 ∨ badA4 ∨ badA5,

where

– badA1⇔ there exists (i, α, β) ∈ P2 such that Xi[α] = Xi[β];
– badA2⇔ badA2a ∨ badA2b ∨ badA2c ∨ badA2d, where
• badA2a⇔ there exist (i, α, β) ∈ P2, (j, α′), (k, β′) ∈ P such that Xi[α] =

Xj [α′] and Xi[β] = Xk[β′];
• badA2b⇔ there exist (i, α, β) ∈ P2, (j, α′) ∈ P, (k, β′) ∈ N such that

Xi[α] = Xj [α′] and Xi[β] = Nk,β′ ;
• badA2c⇔ there exist (i, α, β) ∈ P2, (j, α′), (k, β′) ∈ N such that Xi[α] =

Nj,α′ and Xi[β] = Nk,β′ ;
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• badA2d⇔ there exist (i, α, β) ∈ N2, (j, α′), (k, β′) ∈ P such that Ni,α =
Xj [α′] and Ni,β = Xk[β′];

– badA3⇔ badA3a ∨ badA3b, where
• badA3a⇔ there exist three distinct (i, α), (j, β), (k, γ) ∈ P such that

Xi[α] = Xj [β] = Xk[γ];
• badA3b⇔ there exist distinct (i, α), (j, β),∈ P and (k, γ) ∈ N such that

Xi[α] = Xj [β] = Nk,γ ;
– badA4⇔ badA4a ∨ badA4b, where
• badA4a⇔ there exists (i, α, β) ∈ P2 such that Zi[α] = Zi[β];
• badA4b⇔ there exist i ∈ [q], (α, β) ∈ [3]∗2 such that either ∆i,α = 0 or

∆i,α = ∆i,β ;
– badA5⇔ badA5a ∨ badA5b, where
• badA5a⇔ there exist distinct (i, α, α′), (j, β, β′) ∈ P2 such that Xi[α] =

Xj [β] and Zi[α]⊕ Zi[α′] = Zj [β]⊕ Zj [β′];
• badA5b⇔ there exist (i, α, α′) ∈ P2, (j, β, β′) ∈ N2 such that Xi[α] =

Nj,β and

Zi[α]⊕ Zi[α′] =


∆j,β if β′ = 0,

∆j,β′ if β = 0,

∆j,β ⊕∆j,β′ otherwise.

If badA occurs, then the sampling process aborts.

Step 2. In this step, we construct a system of equations in Y -variables, repre-
senting the images of X-variables under π. For (i, α) ∈ P, let Yi[α] = π(Xi[α]).
It should be the case that

Yi[α]⊕ Yi[0] = Zi[α]

for each α > 0. Let L denote a system of equations obtained by collecting all
these equations, as well as

π(Ni,0)⊕ π(Ni,1) = ∆i,1,

π(Ni,0)⊕ π(Ni,2) = ∆i,2,

π(Ni,0)⊕ π(Ni,3) = ∆i,3

for i ∈ [q]. A solution to L is sampled uniformly at random from the set of all
solutions to L, and the corresponding π-evaluations are included in Π. We will
show later that a solution to L does exist as long as badA does not happen.

Step 3. In this step, we handle the associated data. For i ∈ [q] and α ∈ [ai], set
Ui[α] = 2α∆i,2 ⊕Ai[α] and

– Vi[α] = π(Ui[α]) if Ui[α] ∈ dom(π),
– Vi[α]←$ {0, 1}n \ rng(π) otherwise, where π(Ui[α]) = Vi[α] is added to Π.
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Step 4. In this step, we handle the decryption queries. Let

P ′ def= {(i, α) : i ∈ [qd], α ∈ [m]} ,

P ′
0

def= {(i, 0) : i ∈ [qd]} ,

P ′
$

def= {(i, m′
i) ∈ P ′ : i ∈ [qd], |C ′

i[m′
i]| < n} .

For (i, α) ∈ P ′, set:

Z ′
i[α] =


0 if α = 0,

((2α + 1)∆′
i,1 ⊕∆′

i,2)⊕msb C ′
i[α] if (i, α) ∈ P ′

$,

(2α + 1)∆′
i,1 ⊕ C ′

i[α] otherwise.

For (i, α) ∈ P ′
$ ∪ P

′
0, set X ′

i[α] = ∆′
i[α] and

– Y ′
i [α] = π(X ′

i[α]) if X ′
i[α] ∈ dom(π),

– Y ′
i [α]←$ {0, 1}n \ rng(π) otherwise, where π(X ′

i[α]) = Y ′
i [α] is added to Π.

Next, for (i, α) ∈ P ′ \ (P ′
$ ∪ P

′
0), set Y ′

i [α] = Y ′
i [0]⊕ Z ′

i[α] and

– X ′
i[α] = π−1(Y ′

i [α]) if Y ′
i [α] ∈ rng(π),

– X ′
i[α]←$ {0, 1}n \dom(π) otherwise, where π(X ′

i[α]) = Y ′
i [α] is added to Π.

Finally, for (i, α) ∈ P ′, set

M ′
i [α] =

{
(Y ′

i [α]⊕ Y ′
i [0])⊕msb Z ′

i[α] if (i, α) ∈ P ′
$,

X ′
i[α]⊕ 2α∆′

i,1 ⊕∆′
i,2 otherwise.

Step 5. In this step, we sample the π-evaluations needed for tag generation. For
each i ∈ [qe], set:

Pi[0] = 2mi∆i,1 ⊕∆i,3;

Pi[1] =
{

2mi∆i,1 ⊕ 2∆i,3 ⊕
⊕

α∈[mi] Mi[α] if α = 1 and |M [m]| = n,

2mi∆i,1 ⊕ 4∆i,3 ⊕
⊕

α∈[mi] Mi[α] if α = 1 and |M [m]| < n;

Zi,∗ =
{

Ti ⊕ 3∆i,3 ⊕
⊕

α∈[ai] Vi[α] if |M [m]| = n,

Ti ⊕ 5∆i,3 ⊕
⊕

α∈[ai] Vi[α] if |M [m]| < n.

For each j ∈ [qd], set:

P ′
i [0] = 2m′

i∆′
i,1 ⊕∆′

i,3;

P ′
i [1] =

{
2m′

i∆′
i,1 ⊕ 2∆′

i,3 ⊕
⊕

α∈[m′
i
] M ′

i [α] if α = 1 and |M ′[m′]| = n,

2m′
i∆′

i,1 ⊕ 4∆′
i,3 ⊕

⊕
α∈[m′

i
] M ′

i [α] if α = 1 and |M ′[m′]| < n;

Z ′
i,∗ =

{
T ′

i ⊕ 3∆′
i,3 ⊕

⊕
α∈[a′

i
] V ′

i [α] if |M [m]| = n,

T ′
i ⊕ 5∆′

i,3 ⊕
⊕

α∈[a′
i
] V ′

i [α] if |M [m]| < n.
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Let

P∗ def= {(i, α) : i ∈ [qe], α ∈ {0, 1}},

P∗
coll

def= {(i, α) ∈ P∗ : Pi[α] ∈ dom(π) or (j, β) ∈ P∗ \ {(i, α)}
such that Pi[α] = Pj [β]}.

We now define bad events badB and badC; let

badB⇔ badB1 ∨ badB2 ∨ badB3 ∨ badB4 ∨ badB5,

where

– badB1⇔ there exists i ∈ [qe] such that (i, 0), (i, 1) ∈ P∗
coll.

– badB2⇔ there exists i ∈ [qe] such that Zi,∗ = 0.
– badB3⇔ there exists (i, α) ∈ P∗ such that Pi[α] ∈ dom(π) and π(Pi[α]) ⊕

Zi,∗ ∈ rng(π).
– badB4⇔ there exist three distinct (i, α), (j, β), (k, γ) ∈ P∗ such that

Pi[α] = Pj [β] = Pk[γ].

– badB5⇔ there exist (i, α), (j, β) ∈ P∗ such that i ̸= j, Pi[α] = Pj [β], and
Zi,∗ = Zj,∗,

and let
badC⇔ badC1 ∨ badC2 ∨ badC3 ∨ badC4,

where

– badC1⇔ there exists i ∈ [qd] such that P ′
i [0] ∈ dom(π), P ′

i [1] ∈ dom(π) and
π(P ′

i [0])⊕ π(P ′
i [1]) = Z ′

i,∗.
– badC2⇔ there exist i ∈ [qd], α ∈ {0, 1}, and (j, β) ∈ P∗

coll such that P ′
i [α] ∈

dom(π), P ′
i [1− α] = Pj [1− β], and π(P ′

i [α])⊕ π(Pj [β]) = Z ′
i,∗ ⊕ Zj,∗.

– badC3⇔ there exist i ∈ [qd], and (j, α) ∈ P∗ such that P ′
i [0] = Pj [α],

P ′
i [1] = Pj [1− α], and Z ′

i,∗ = Zj,∗.
– badC4⇔ there exist i ∈ [qd], (j, α), (k, β) ∈ P∗ such that j ̸= k, P ′

i [0] =
Pj [α], P ′

i [1] = Pk[β], Pj [1− α] = Pk[1− β], and Z ′
i,∗ = Zj,∗ ⊕ Zk,∗.

Without badB, one can use Mirror theory in the ideal world, while the adversarial
forgery is prevented by excluding badC. Assuming ¬badB ∧¬badC, we establish
a system of equations in π(Pi[0]) and π(Pi[1]) and then sample one solution
uniformly at random from the set of all possible solutions. The corresponding π-
evaluations, namely Qi[α] = π(Pi[α]) and Q′

j [β] = π(P ′
j [α]) are includeded in Π

for i ∈ [qe] and j ∈ [qd]. Let L′ denote a system of equations and non-equations
in Q-variables constructed by the following rules: for each i ∈ [qe],

– if Pi[0] ∈ dom(π), add π(Pi[1]) = π(Pi[0])⊕ Zi,∗ to Π,
– if Pi[1] ∈ dom(π), add π(Pi[0]) = π(Pi[1])⊕ Zi,∗ to Π,
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– otherwise, add an equation Qi[0]⊕Qi[1] = Zi,∗ to L′,

and for each i ∈ [qd],

– if P ′
i [0] ∈ dom(π) and P ′

i [1] /∈ dom(π), add Q′
i[1] ̸= π(P ′

i [0])⊕ Z ′
i,∗ to L′,

– if P ′
i [1] ∈ dom(π) and P ′

i [0] /∈ dom(π), add Q′
i[0] ̸= π(P ′

i [1])⊕ Z ′
i,∗ to L′,

– otherwise, add Q′
i[0]⊕Q′

i[1] ̸= Z ′
i,∗ to L′.

Once L′ is established, one solution is sampled uniformly at random from the set
of solutions to L′ such that none of the values is contained in rng(π). There is at
least one such solution assuming ¬badB∧¬badC. For i ∈ [qe], j ∈ [qd], α ∈ {0, 1},
the following π-evaluatoins are added to Π:

π(Pi[α]) = Qi[α],
π(P ′

j [α]) = Q′
j [α].

Once all the steps are finished without abortion, the following transcript is re-
turned:

τ =
{

(Ni, Ai, Mi, Ci, Ti)i∈[qe], (N ′
j , A′

j , C ′
j , T ′

j , bj)j∈[qd], Π
}

.

4.3 Proof of Theorem 1

We are now ready to prove Theorem 1. The transcript τ will be called bad if
badA, badB, or badC occurs. Let Tbad be the set of all the bad transcripts. Then
the probability that a transcript is bad in the ideal world is upper bounded as
follows.

Lemma 3.

Pr [Tid ∈ Tbad] ≤ 25q + 2σ + 1.5l(q + σ)
2n

+ 4qσ2 + (30q2 + 4q)σ + 93q3 + 44q2

22n

+ (σ3 + 8σ2q + 45σq2 + 6q3)l
22n+1 .

Lemma 3 holds since

Pr [Tid ∈ Tbad] ≤ Pr [badA] + Pr [badB] + Pr [badC]

and by the following lemmas.

Lemma 4.

Pr [badA] ≤ 1.5l(q + σ) + 14q

2n
+ (σ3 + 8σ2q + 45σq2 + 6q3)l

22n+1 .

Lemma 5.
Pr [badB] ≤ 3q + 2σ

2n
+ 73q3 + 22q2σ + 4q2

22n
.
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Lemma 6.

Pr [badC] ≤ 8q

2n
+ 4qσ2 + 8q2σ + 20q3 + 4qσ + 40q2

22n
.

The proof of the above lemmas is given in the full version.
If a transcript is not bad, then such a transcript will be called good. The ratio

of probabilities of obtaining any good transcript in the ideal and the real worlds
is lower bounded as follows.
Lemma 7. For any transcript τ /∈ Tbad,

Pr [Tre = τ ]
Pr [Tid = τ ] ≥ 1− 4σ3l + 6σq

22n
− 3qd

2n
.

Proof. Fix a transcript τ /∈ Tbad. Let B =
{

j ∈ [qd] : N ′
j ̸= Ni for ∀i ∈ [qe]

}
. Let

L denote the number of input/output pairs given to the adversary. Since the
probability that D obtains bj = ⊥ is exactly 1− 1

2n for each j ∈ [qd], we have

Pr [Tre = τ ] = (2n − L)!
(2n)! ·

(
1− 1

2n

)qd

≥ 1
(2n)L

·
(

1− qd

2n

)
. (1)

For the set of π-evaluations obtained in the ideal world Π, let

L1 = {Xi[α] : (i, α) ∈ P, i ∈ [qe]} ∪ {Ni ∥ ⟨α⟩ : (i, α) ∈ N} ,

L2 = {Ui[α] : (i, α) ∈ [q]× [ai]} \ L1,

L3 =
{

X ′
j [α] : (j, α) ∈ P ′} \ (L1 ∪ L2) ,

L4 =
(
{Pi[α] : (i, α) ∈ [qe]× {0, 1}} ∪

{
P ′

j [α] : (j, α) ∈ [qd]× {0, 1}
})

\ (L1 ∪ L2 ∪ L3) .

Note that |L1|, |L2|, |L3|, |L4| are the number of π-evaluations determined by
step 2, step 3, step 4 and step 5, respectively, and hence |L1|+|L2|+|L3|+|L4| =
L. Then, we make the following observation.

1. Since si is sampled for each partial block (i, mi) ∈ P$, the probability that
D obtains (Ci[mi], si) is exactly 1

2n for (i, α) ∈ P$. Since ciphertexts and
tags are chosen uniformly and independently at random, the probability of
D obtaining them is at most

1
(2n)σe(2n)qe

where σe =
∑

i∈[qe] mi.
2. At step 1, ∆i,1, ∆i,2, ∆i,3 are sampled uniformly and independently at ran-

dom from {0, 1}n for each i ∈ [qe]. Also, ∆′
j,1, ∆′

j,2, ∆′
j,3 are sampled in the

same way. Therefore, the probability that D obtains the masking values (in
the transcript) is given as

1
(2n)3(qe+|B|) .
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3. At step 2, we determine the π-evaluations used in the mask generations and
message encryptions. For i ∈ [qe], let

Vi,X = {π(Xi[α]) : (i, α) ∈ P} ,

Ei,X = {(π(Xi[0]), π(Xi[α])) : α ∈ [mi]} ,

Gi,X = (Vi,X, Ei,X)

where (π(Xi[0]), π(Xi[α])) ∈ Ei,X has label (Zi[α], =). For i ∈ [q], let

Vi,N = {π(Ni[α]) : α ∈ {0, 1, 2, 3}} ,

Ei,N = {(π(Ni,0), π(Ni,α)) : α ∈ [3]}
Gi,N = (Vi,N, Ei,N)

where (π(Ni,0), π(Ni,α)) ∈ Ei,N has label (∆i,α, =). Note that Gi,X for i ∈ [qe]
and Gi,N for i ∈ [q] are all connected graphs, and we will call these graphs
by ‘segments’. Now G be the union of all segments, i.e.,

G =

 ⋃
i∈[qe]

Gi,X

 ∪
⋃

i∈[q]

Gi,N

 .

Then, G has the following properties.
– No more than two segments are included in a single connected component

of G. Otherwise, either there exist three segments meeting in one vertex,
which implies badA3, or three segments meeting in two different vertices,
which implies badA2.

– G does not have any cycle. If there exists a cycle in a single segment, then
it implies badA1, and if there exists a cycle contained in two (connected)
segments, there should be at least two different collisions, which implies
badA2.

– Let u denote the number of components in G=, and let C1, . . . , Cu be the
components of G=. Then obviously

∑u
i=1 |Ci| = |L1| and |Ci| ≤ 4l for

each i = 1, . . . , u. Therefore we have
u∑

i=1
|Ci|2 ≤ 4l |L1| . (2)

– λ(L) ̸= 0 for any trail L in G(= G=) since otherwise such a trail will
be included in a single segment or both the endpoints of the trails are
included in the two different segments respectively. The former case im-
plies badA4, and the latter case implies badA5. Recall that any three
segments are not included in a single component.

By Lemma 2, we can lower bound the number of the possible assignments
such that the evaluations sampled in step 2 are the same as the corresponding
part of the transcript. Let h(G) denote the possible assignments of distinct
values to the vertices of G. In step 2, one of the possible h(G′) assignments is
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chosen uniformly at random. Note that |E=| = σe + 3qe + 3 |B|. By Lemma
2 and (2),

h(G) ≥
(N)|L1|

Nσe+3qe+3|B| ×

(
1− |L1|2

N2

u∑
i=1
|Ci|2

)

≥
(N)|L1|

Nσe+3qe+3|B| ×

(
1− 4l |L1|3

N2

)
.

4. At step 3, the oracle samples Vi[α]’s in the encryption queries and V ′
j [β]’s in

the decryption queries from {0, 1}n excluding |L1| numbers of the evaluations
determined in step 2. Therefore, the probability that D obtains Vi[α]’s (in
the transcript) is 1

(2n−|L1|)|L2|
.

5. At step 4, the oracle samples the primitive calls for the message blocks in
the decryption queries. For i ∈ [qd], let X ′

i[0] = ∆′
i[0]. The oracle samples

Y ′
i [0] = π(X ′

i[0]) from {0, 1}n excluding |L1| + |L2| numbers of evaluations
determined in step 2 and step 3. Then Y ′

i [α]’s are determined by Z ′
i[α]⊕Y ′

i [0].
After that, X ′

i[α]’s are sampled uniformly at random from {0, 1}n. There-
fore, the probability that D obtains Y ′

i [0]’s and X ′
i[α]’s (in the transcript) is

1
(2n−|L1|−|L2|)|L3|

.
6. At step 5, we determine the π-evaluations used to generate tags. Note that

there is no successful forgery assuming ¬badC. Let

W = {π(Pi[α]) : (i, α) ∈ P∗, Pi[α] ∈ dom(π)}
∪
{

π(P ′
j [β]) : (j, β) ∈ [qd]× {0, 1} , P ′

j [β] ∈ dom(π)
}

,

V ′
e =

⋃
i∈[qe]

{π(Pi[0]), π(Pi[1])} \W,

V ′
d =

⋃
i∈[qd]

{π(P ′
i [0]), π(P ′

i [1])} \W,

V ′ = V ′
e ∪ V ′

d,

where the elements of V ′ are unknown. Define a graph G′ =
(
V ′ ⊔W, E ′= ⊔ E ′≠),

where

E ′= = {(π(Pi[0]), π(Pi[1])) : i ∈ [qe]} ,

E ′≠ = {(π(P ′
i [0]), π(P ′

i [1])) : i ∈ [qd]} ,

(Pi[0], Pi[1]) ∈ E ′= has label (Zi,∗, =), and (P ′
i [0], P ′

i [1]) ∈ E ′≠ has label
(Z ′

i,∗, ̸=). The graph G′ has the following properties.
– G′ contains no cycle since otherwise there should be two indices (i, 0)

and (i, 1) that are contained in P∗
coll, which implies badB1.

– No more than two edges are included in one component. Otherwise,
either three edges should meet in one vertex which implies badB4 or we
have

(i, 0), (i, 1) ∈ P∗
coll,
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which implies badB1.
– Let u′ denote the number of components in G′=, and let C′

1, C′
2, . . . , C′

u′

be the components of G′=. Then
∑u′

i=1 |C′
i| = |L4| and |C′

i| ≤ 3 for each
i = 1, . . . , u′. Therefore we have

u′∑
i=1
|C′

i|
2 ≤ 3 |L4| . (3)

– For any trail L in G′= = (V ′ ⊔W, E ′=), λ(L) ̸= 0, since otherwise such
a trail L is a single zero-labeled edge or both endpoints of the trail are
included in the two different edges respectively. The former case implies
badB2, and the latter case implies badB5. Recall that any three edges
cannot be included in a single component.

Similarly to the analysis for step 2, we use Lemma 2 to lower bound the
number of possible assignments such that the evaluations sampled in step 5
are the same as the corresponding part of the transcript. Let h(G′) denote
the possible assignments of distinct values to the vertices of G′. In step 5,
one of the possible h(G′) assignments is chosen uniformly at random. Note
that |E=| ≤ qe and

∣∣E ̸=
∣∣ ≤ qd. By Lemma 2 and (3), we have

h(G′) ≥
(N − |L1| − |L2| − |L3|)|L4|

Nqe

(
1− L

N2

k∑
i=1
|C′

i|
2 − 2qd

N

)

≥
(N − |L1| − |L2| − |L3|)|L4|

Nqe

(
1− 3L |L4|

N2 − 2qd

N

)
.

By the above argument, we have

1
Pr [Tid = τ ] = (2n)σe · (2n)qe · (2n)3(qe+|B|) · h(G) · (2n − |L1|)|L2|

× (2n − |L1| − |L2|)|L3| · h(G′)
≥ (2n)σe+qe · (2n)3(qe+|B|) · (2n − |L1|)|L2|+|L3|

×
(2n)|L1|

(2n)σe+3qe+3|B| ·

(
1− 4l |L1|3

22n

)

×
(N − |L1| − |L2| − |L3|)|L4|

2nqe
·
(

1− 3L |L4|
22n

− 2qd

2n

)
≥ (2n)3(qe+|B|)

(2n)3(qe+|B|) · (2
n)L ·

(
1− 4l |L1|3 + 3L |L4|

22n
− 2qd

2n

)

≥ (2n)L ·

(
1− 4l |L1|3 + 3L |L4|

22n
− 2qd

2n

)
.

(4)
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Therefore by (1) and (4), we have

Pr [Tre = τ ]
Pr [Tid = τ ] ≥

(
1− 4l |L1|3 + 3L |L4|

22n
− 2qd

2n

)
·
(

1− qd

2n

)
≥ 1− 4 |L1|3 l + 3L |L4|

22n
− 3qd

2n

≥ 1− 4σ3l + 6σq

22n
− 3qd

2n

where the last inequality holds since L < σ and |L4| ≤ 2q. ⊓⊔

5 Proof of Lemmas

5.1 Proof of Lemma 4

Let σ̄e = qe +
∑

i∈[qe] mi. If σ̄el > 2n, the lemma trivially holds, so assume that
σ̄el ≤ 2n. One has

Pr [badA] ≤Pr [badA1] + Pr [¬badA1 ∧ badA2]
+ Pr [¬badA1 ∨ badA3)] + Pr [badA4] + Pr [¬badA1 ∧ badA5] ,

and we calculate the probability of each subevent as follows.

1. Fix (i, α, β) ∈ P2. To make Xi[α] = Xi[β], when considering ∆i,2 is a con-
stant, ∆i,1 must satisfy

(2α + 2β)∆i,0 = G

for some G ∈ {0, 1}n. Since coefficient of ∆i,0 is always non-zero, it happens
with probability 2−n and we have

Pr [badA1] ≤
∑

i∈[qe] mi(mi + 1)
2n+1 ≤ σ̄el

2n+1 .

2. Let us first consider ¬badA1∧badA2a and fix (i, α, β) ∈ P, (j, α′), (k, β′) ∈ P
where α < β. Since we target ¬badA1, assume that i /∈ {j, k}. To make
Xi[α] = Xj [α′] and Xi[β] = Xk[β′], one should have(

2α 1
2β (0 or 1)

)(
∆i,1
∆i,2

)
=
(

Xj [α′]⊕ (0 or Mi[α])
Xk[β′]⊕ (0 or Mi[β])

)
.

When considering ∆j,∗ and ∆k,∗ are constant, the rank of the coefficient
matrix above is always 2, so it happens with probability 2−2n. Throughout
similar arguments, we get

Pr [¬badA1 ∧ badA2a] ≤ σ̄3
e l

22n+1 , Pr [¬badA1 ∧ badA2b] ≤ 2σ̄2
e lq

22n
,

Pr [¬badA1 ∧ badA2c] ≤ 8σ̄elq2

22n
, Pr [¬badA1 ∧ badA2d] ≤ 6σ̄2

eq

22n
.
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3. Let us first consider ¬badA1∧badA3a and fix three distinct (i, α), (j, β), (k, γ) ∈
P. Since we target ¬badA1, assume that i, j, k are all distinct. To make
Xi[α] = Xj [β] = Xk[γ], one should have(

2α 0
0 2β

)(
∆i,1
∆j,1

)
=
(

G
H

)
for some G, H ∈ {0, 1}n, when considering ∆i,2, ∆j,2, and ∆k,∗ are constant.
Since the rank of the coefficient matrix above is always 2, it happens with
probability 2−2n and we have we have

Pr [¬badA1 ∧ badA3a] ≤ σ̄3
e

6 · 22n
≤ σ̄3

e

22n+1 .

Throughout similar arguments, we get

Pr [¬badA1 ∧ badA3b] ≤ 4σ̄2
eq

22n+1 .

4. By applying a similar method to bounding the probability of badA1, we get

Pr [badA4a] ≤ σ̄el

2n+1 .

Also, it is easy to find out

Pr [badA4b] ≤ 6q

2n
.

5. Let us fix distinct (i, α, α′), (j, β, β′) ∈ P2 where β′ ̸= 0. Since we target
¬badA1, assume that i < j. To make Xi[α] = Xj [β] and Zi[α] ⊕ Zi[α′] =
Zj [β]⊕ Zj [β′], one should have(

2α 0
2α + 2α′ 1

)(
∆i,1
CC

)
=
(

G
H

)
where CC =

{
Cj [β′] ∥ sj if (j, β′) ∈ P$,

Cj [β′] otherwise,

for some G, H ∈ {0, 1}n, when considering ∆i,2, ∆j,∗, si, are constant. Since
the coefficient matrix above is always 2, it happens with probability 2−2n

and we have
Pr [¬badA1 ∧ badA5a] ≤ σ̄2

e l2

22n+1 ≤
σ̄el

2n+1 .

6. Let us fix distinct (i, α, α′) ∈ P2, (j, β, β′) ∈ N2 where β′ ̸= 0. If i = j, one
has

Pr [Xi[α] = Nj,β ] = 2−n

since ∆i,1 is chosen uniformly at random from {0, 1}n. Now, suppose i < j.
To make Xi[α] = Nj,β and

Zi[α]⊕ Zi[α′] =
{

∆j,β′ if β = 0,

∆j,β ⊕∆j,β′ otherwise,
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one should have (
2α 0

2α + 2α′ 1

)(
∆i,1
∆j,β′

)
=
(

G
H

)
for some G, H ∈ {0, 1}n, when considering ∆i,2, ∆j,β and si, are constant (if
one exists). Since the coefficient matrix above is always 2, it happens with
probability 2−2n. Therefore, one has

Pr [¬badA1 ∧ badA5b] ≤ 4σ̄e

2n
+ 6σ̄elq

22n+1 ≤
4σ̄e + 3q

2n
.

All in all, we have

Pr [badA] ≤ σ̄e(1.5l + 5) + 9q

2n
+ σ̄3

e(l + 1) + σ̄2
eq(4l + 16) + 16σ̄eq2l

22n+1

≤ σ̄e(1.5l + 5) + 9q

2n
+ σ̄3

e l + 5σ̄2
eql + 32σeq2l

22n+1 .

By applying σ̄e ≤ σ + q and σe ≤ σ, we can conclude the lemma 4.

5.2 Proof of Lemma 5

Let us define the following auxiliary events:

aux1⇔ there exists (i, α) ∈ P∗ and β ∈ [0..mi] such that Pi[α] = Xi[β];
aux2⇔ there exists (i, α) ∈ P∗ and β ∈ [ai] such that Pi[α] = Ui[β];
aux3⇔ there exists i ∈ [qe] such that Pi[0] = Pi[1].

Then, we have

Pr [badB] ≤Pr [aux1 ∨ aux2 ∨ aux3] + Pr [¬(aux1 ∨ aux3) ∧ badB1] + Pr [badB2]
+ Pr [¬(aux1 ∨ aux2) ∧ badB3] + Pr [¬aux3 ∧ badB4] + Pr [badB5]

and we will bound the probability of each subevent individually.
Upper bounding Pr [aux1 ∨ aux2 ∨ aux3]. Fix (i, α) ∈ P∗, β ∈ [0..mi], γ ∈ [ai].
We have

Pi[α] = Xi[β]⇔ 2x∆i,3 = G

Pi[α] = Ui[β]⇔ 2x∆i,3 = H

for some G, H ∈ {0, 1}n and x ∈ {α, α + 1}, when considering ∆i,1 and ∆i,2 as
constants. Also, we have

Pi[0] = Pi[1]⇔ y∆i,3 =
⊕

γ∈[mi]

Mi[α]

for some y ∈ {3, 5}. Therefore,

Pr [aux1 ∨ aux2 ∨ aux3] ≤ 2(σ + qe)
2n

+ qe

2n
= 2σ + 3qe

2n
(5)
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Upper bounding Pr [¬(aux1 ∨ aux3) ∧ badB1]. Fix i ∈ [qe], and let

X0 = {Nj ∥ ⟨β⟩2 : j ∈ [q], β ∈ [0..3]}
∪ {Xj [β] : j ∈ [qe], j ̸= i, β ∈ [0..mj ]}
∪ {Uj [β] : j ∈ [q], β ∈ [aj ]}
∪ {Pj [β] : j ∈ [qe], j ̸= i, β ∈ {0, 1}} ,

X1 = {Xi[β] : β ∈ [0..mi]} .

To make (i, 0), (i, 1) ∈ P∗
coll, one of following event should hold:

– Pi[0], Pi[1] ∈ X0;
– Pi[0] ∈ X1 or Pi[1] ∈ X1;
– Pi[0] = Pi[1].

Since we target ¬(aux1 ∨ aux2), it is enough to check Pr [Pi[0], Pi[1] ∈ X0], Let
G, H are two (not necessarily distinct) elements in X0. Then,

(Pi[0], Pi[1]) = (G, H)⇔
(

2mi 1
2mi 2 or 4

)(
∆i,1
∆i,3

)
=
(

G

H ⊕
⊕

γ∈[mi] Mi[γ]

)
.

Since the elements of X0 have their values sampled independently of ∆i,1 and
∆i,3,

Pr [(Pi[0], Pi[1]) = (G, H)] = 2−2n

so we can conclude that

Pr [¬(aux1 ∨ aux3) ∧ badB1] ≤ qe(σ + 7qe)2

22n
. (6)

Upper bounding Pr [badB2]. From the randomness of ∆i,3, one has

Pr [badB2] ≤ qe

2n
. (7)

Upper bounding Pr [¬(aux1 ∨ aux2) ∧ badB3]. Fix (i, α) ∈ P∗ and let

X2 = {Nj ∥ ⟨β⟩2 : j ∈ [q], β ∈ [0..3]}
∪ {Xj [β] : j ∈ [qe], j ̸= i, β ∈ [0..mj ]}
∪ {Uj [β] : j ∈ [q], j ̸= i, β ∈ [aj ]}

We will consider the following subevents:

– E1⇔ Pi[α] ∈ X2 and there exists γ ∈ [2..ai] such that Ui[1] = Ui[γ];
– E2⇔ Pi[α] ∈ X2 and there exists γ ∈ [0..mi] such that Ui[1] = Xi[γ];
– E3⇔Pi[α], Ui[1] ∈ X2.
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1. Let us fix G ∈ X2 and γ ∈ [2..ai]. Then,

Pi[α] = G ∧ Ui[1] = Ui[γ]⇔
(

2mi 0
0 2γ + 2

)(
∆i,1
∆i,2

)
=
(

G⊕ 2α∆i,3
Ai[1]⊕Ai[γ]

)
.

Since the value of G is sampled independently of ∆i,1 and ∆i,2, we have

Pr [E1] ≤ (ai − 1)|X2|
22n

. (8)

2. Let us fix G ∈ X2 and γ ∈ [0..mi] such that Ui[1] = Xi[γ]. Then,

Pi[α] = G∧Ui[1] = Xi[γ]⇔
(

2mi 0
2γ 2 or 3

)(
∆i,1
∆i,2

)
=
(

G⊕ 2α∆i,3
Ai[1] or Ai[1]⊕Mi[γ]

)
.

Since the value of G is sampled independently of ∆i,1 and ∆i,2, we have

Pr [E2] ≤ (mi + 1)|X2|
22n

. (9)

3. Let us fix G, H ∈ X2. Then,

Pi[α] = G ∧ Ui[1] = H⇔
(

2mi 0
0 2 or 3

)(
∆i,1
∆i,2

)
=
(

G⊕ 2α∆i,3
H ⊕Ai[1]

)
.

Since values of G and H are sampled independently of ∆i,1 and ∆i,2, we
have

Pr [E3] ≤ |X2|2

22n
. (10)

Assume that ¬(aux1 ∨ aux2 ∨ E1 ∨ E2 ∨ E3). Then, Ui[1] is freshly chosen at step
3 and is not canceled out when sampling π(Pi[α])⊕Zi,∗. Therefore, by (8), (9),
and (10),

Pr{¬(aux1 ∨ aux2) ∧ (Pi[α] ∈ dom(π)) ∧ (Pi[α]⊕ Zi,∗ ∈ rng(π))}

≤ Pr [E1] + Pr [E2] + Pr [E3] + |X2||rng(π)|
22n

≤ (ai + mi + |X2|+ |rng(π)|)|X2|
22n

≤ (ai + mi + 2σ + 8qe)(σ + 4qe)
22n

where the last inequality comes from |X2|, |rng(π)| ≤ σ + 4qe. Finally, we have

Pr [¬(aux1 ∨ aux2) ∧ badB3] ≤
∑

(i,α)∈P∗

(ai + mi + 2σ + 8qe)(σ + 4qe)
22n

≤ (2qeσ + 16q2
e + σ)(σ + 4qe)
22n

≤ 4qe(σ + 4qe)2

22n
(11)
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Upper bounding Pr [¬aux3 ∧ badB4]. Fix (i, α), (j, β), (k, γ) ∈ P∗. Since we
target ¬aux3, assume that i, j, k are distinct from each other. Then, values of
Pi[α], Pj [β], and Pk[γ] are sampled independently, so

Pr [Pi[α] = Pj [β] = Pk[γ]] = 1
22n

.

Therefore,

Pr [¬aux3 ∧ badB4] ≤ 8q3
e

22n
(12)

Upper bounding Pr [badB5]. Fix (i, α), (j, β) ∈ P∗ where i ̸= j. Then,

Pi[α] = Pj [β] ∧ Zi,∗ = Zj,∗

⇔
(

2mi 2α or 2α+1

0 3

)(
∆i,1
∆i,3

)
=
(

α(
⊕

γ∈[mi] Mi[γ])⊕ Pj [β]
Ti ⊕

⊕
γ∈[ai] Vi[γ]

)
.

Therefore,

Pr [badB5] ≤ 4q2
e

22n
. (13)

By (5), (6), (7), (11), (12), and (13), we can conclude the Lemma 5.

5.3 Proof of Lemma 6

Upper bounding Pr [badC1].
Fix i ∈ [qd]. Let

X ′
1 = {Nj ∥ ⟨β⟩2 : j ∈ [q], β ∈ [0..3]}
∪ {Xj [β] : j ∈ [qe], β ∈ [0..mj ]}
∪ {Uj [β] : j ∈ [q], β ∈ [aj ]} .

Let P ′
i [0] = G ∈ dom(π) and P ′

i [1] = H ∈ dom(π). We consider the following
sub-cases.

1. There does not exists j ∈ [qe] such that N ′
i = Nj . In this case, P ′

i [0] = G ∈
dom(π) and P ′

i [1] = H ∈ dom(π) if and only if(
2m′

i 1
2m′

i 2 or 4

)(
∆′

i,1
∆′

i,3

)
=
(

G

H ⊕
⊕

α∈[m′
i
] M ′

i [α]

)
.

By the randomness of ∆′
i,1 and ∆′

i,3, we have

Pr [P ′
i [0], P ′

i [1] ∈ dom(π)] ≤ 4(σ + q)2

22n
.
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2. For j ∈ [qe] such that N ′
i = Nj , M ′

i ̸= Mj . In this case, there is at least
one α ∈ [m′

i] such that M ′
i [α] ̸= Mj [α]. Fix any such α ∈ [m′

i] and let
Lα =

⊕
β ̸=α M ′

i [β]. Then, P ′
i [0] = G ∈ dom(π) and P ′

i [1] = H ∈ dom(π) if
and only if(

0 1
1 2 or 4

)(
X ′

i[α]
∆′

i,3

)
=
(

G⊕ 2m′
i∆′

i,1
H ⊕ (2m′

i ⊕ 2α)∆′
i,1 ⊕∆′

i,2 ⊕ Lα

)
.

Therefore,

Pr [P ′
i [0], P ′

i [1] ∈ dom(π)] ≤ (σ + q)2

(2n − σ − q)(2n − qe) ≤
4(σ + q)2

22n
.

3. For j ∈ [qe] such that N ′
i = Nj , M ′

i = Mj . In this case, there is at least
one α ∈ [a′

i] such that U ′
i [α] ̸= Uj [α]. Now we will consider the following

subevents: Fix any such α ∈ [a′
i] and let L′

α =
⊕

β ̸=α V ′
i [β]. We will consider

the subevent: E′⇔ there exists β ∈ [a′
i] such that U ′

i [α] = U ′
i [β] for such α.

Fix β ∈ [a′
i] such that β ̸= α. Then, P ′

i [0] = G ∈ dom(π) and U ′
i [α] = U ′

i [β]
if and only if (

0 1
x 0

)(
∆′

i,2
∆′

i,3

)
=
(

G⊕ 2m′
i∆′

i,1
A′

i[α]⊕A′
i[β]

)
for some x ̸= 0. By the randomness of ∆′

i,2 and ∆′
i,3, we have

Pr [P ′
i [0] = G ∈ dom(π) ∧ U ′

i [α] = U ′
i [β]] ≤ 1

(2n − q)(2n − q) ≤
4

22n
.

Therefore,

Pr [E′] ≤ 4a′
i

22n
≤ 4σ

22n

Now assume ¬E′. Then, P ′
i [0] = G ∈ dom(π) and π(P ′

i [0])⊕ π(P ′
i [1]) = Z ′

i,∗
if and only if(

0 1
1 3 or 5

)(
V ′

i [α]
∆′

i,3

)
=
(

G⊕ 2m′
i∆′

i,1
π(P ′

i [0])⊕ π(P ′
i [1])⊕ T ′

i ⊕ L′
α

)
.

Since V ′
i [α] is randomly sampled, we have

Pr
[
¬E′ ∧ P ′

i [0] ∈ dom(π) ∧ π(P ′
i [0])⊕ π(P ′

i [1]) = Z ′
i,∗
]

≤ (σ + q)2

(2n − σ − q)(2n − qe)

≤ 4(σ + q)2

22n
.

Therefore, we have

Pr
[
P ′

i [0] ∈ dom(π) ∧ π(P ′
i [0])⊕ π(P ′

i [1]) = Z ′
i,∗
]

≤ Pr
[
¬E′ ∧ P ′

i [0] ∈ dom(π) ∧ π(P ′
i [0])⊕ π(P ′

i [1]) = Z ′
i,∗
]

+ Pr [E′ ∧ P ′
i [0] ∈ dom(π)] ≤ 4σ + 4(σ + q)2

22n
.
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By the above analyses,

Pr [badC1] ≤ 4qd(σ + q)2 + 4qdσ

22n
.

Upper bounding Pr [badC2]. Fix (i, α) ∈ [qd] × {0, 1} and (j, β) ∈ P∗
coll. As-

sume that |M ′
i [m′

i]| = n. We can apply the similar argument when |M ′
i [m′

i]| < n.
Consider the case that N ′

i ̸= Nj . Let Auth′
i =

⊕
γ∈[a′

i
] V ′

i [γ] and Authj =⊕
γ∈[aj ] Vj [γ]. Let G ∈ dom(π). In this case, P ′

i [α] = G and π(P ′
i [α])⊕π(Pj [β]) =

Z ′
i,∗ ⊕ Zj,∗ if and only if(
1 + α 0

3 3 or 5

)(
∆′

i,3
∆j,3

)
=
(

G⊕ 2m′
i∆′

i,1 ⊕ α
⊕

γ∈[m′
i
] M ′

i [γ]
T ′

i ⊕ Tj ⊕ π(P ′
i [α])⊕ π(Pj [β])⊕ Auth′

i ⊕ Authj .

)
.

Since α ∈ {0, 1}, the leftmost matrix has rank 2. Therefore, by the randomness
of ∆′

i,3 and ∆j,3, we have

Pr
[
P ′

i [α] ∈ dom(π) ∧ π(P ′
i [α])⊕ π(Pj [β]) = Z ′

i,∗ ⊕ Zj,∗
]
≤ 4

22n
.

Now consider the case that N ′
i = Nj . Let G ∈ dom(π). Then P ′

i [α] = G if and
only if

P ′
i [α] = G⇔(1 + α)∆′

i,3 = G⊕ 2m′
i∆′

i,1 ⊕ α
⊕

γ∈[m′
i
]

M ′
i [γ].

Note that G is independent of ∆′
i,3. Therefore,

Pr [P ′
i [α] ∈ dom(π)] ≤ 2

2n
.

For each (i, α) ∈ [qd]× {0, 1}, there is at most two (j, β) such that N ′
i = Nj . So

we can conclude
Pr [badC2] ≤ 16qeqd

22n
+ 4qd

2n

Upper bounding Pr [badC3]. Fix i ∈ [qd] and (j, α) ∈ P∗. First, assume that
N ′

i ̸= Nj . In this case, P ′
i [0] = Pj [α] and P ′

i [1] = Pj [1− α] if and only if(
2mj x
2mj y

)(
∆j,1
∆j,3

)
=
(

P ′
i [0]⊕ α

⊕
β∈[mj ] Mj [β]

P ′
i [1]⊕ (1− α)

⊕
β∈[mj ] Mj [β]

)
,

where (x, y) ∈ {(1, 2), (1, 4), (2, 1), (2, 4)}. For any such (x, y), the leftmost ma-
trix has rank 2. Therefore, by the randomness of ∆j,1 and ∆j,3, we have

Pr [P ′
i [0] = Pj [α] ∧ P ′

i [1] = Pj [1− α]] ≤ 1
(2n − q)2 ≤

4
22n

.

Now assume that N ′
i = Nj . We consider the following sub-cases, determined by

α.
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1. α = 0. Let M ′
i ̸= Mj . First assume that m′

i ̸= mj . In this case,

P ′
i [1] = Pj [1]⇔(2m′

i + 2mj )∆j,1 = G

for G ∈ {0, 1}n. Therefore, Pr [P ′
i [1] = Pj [1]] = 1

2n . Now assume that m′
i =

mj . We consider the following sub-events:
– E1⇔ P ′

i [1] = Pj [1] and one of M ′
i [m′

i] and Mj [mj ] is partial block;
– E2⇔P ′

i [1] = Pj [1] |M ′
i [m′

i]| = |Mj [mj ]| = n;
– E3⇔P ′

i [1] = Pj [1] |M ′
i [m′

i]| < n and |Mj [mj ]| < n.
Then,

Pr [P ′
i [0] = Pj [0] ∧ P ′

i [1] = Pj [1] |M ′
i ̸= Mj ] ≤ max {Pr [E1] , Pr [E2] , Pr [E3]}

and now we bound the probability of each sub-event.
(a) If |M ′

i [m′
i]| < n and |Mj [mj ]| = n, then

P ′
i [1] = Pj [1]⇔ 6∆i,3 =

⊕
γ∈[mj ]

Mj [γ]⊕
⊕

γ∈[m′
i
]

M ′
i [γ],

so Pr [P ′
i [1] = Pj [1]] = 1

2n by the randomness of ∆i,3. We can apply the
similar argument when |M ′

i [m′
i]| = n and |Mj [mj ]| < n. Therefore,

Pr [E1] ≤ 1
2n

.

(b) Assume |M ′
i [m′

i]| = |Mj [mj ]| = n. There exists β ∈ [m′
i] such that

C ′
i[β] ̸= Cj [β] and so X ′

i[β] ̸= Xj [β]. We define two events as follows:
– E′

1⇔ there exists γ ∈ [mj ] such that Y ′
i [β] = Yj [γ].

– E′
2⇔ there does not exist γ ∈ [mj ] such that Y ′

i [β] = Yj [γ].
Then

Pr [P ′
i [1] = Pj [1]] ≤ Pr [E′

1] + Pr [P ′
i [1] = Pj [1] | E′

2] . (14)
For γ ∈ [mj ] different from β, Y ′

i [β] = Yj [γ] if and only if

(2β ⊕ 2γ)∆′
i,1 = C ′

i[β]⊕ Cj [γ],

so
Pr [Y ′

i [β] = Yj [γ]] = 1
2n

(15)

by the randomness of ∆j,1. Therefore, we have Pr [E′
1] ≤ mj−1

2n . Now
consider Pr [P ′

i [1] = Pj [1]|E′
2]. Then

P ′
i [1] = Pj [1]⇔X ′

i[β] =
⊕

γ∈[mj ]

Mj [γ]⊕
⊕

γ∈[m′
i
]\{β}

M ′
i [γ]⊕ 2β∆′

i,1 ⊕∆′
i,2.

Note that there is only one j ∈ [qe] such that N ′
i = Nj , and there does

not exist γ ∈ [mj ] such that Y ′
i [β] = Yj [γ]. Therefore, X ′

i[β] is drawn
randomly from the set with a maximum size of 2n−σ. By this reasoning,

Pr [P ′
i [1] = Pj [1]|E′

2] ≤ 1
2n − σ

≤ 2
2n

. (16)
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Using (14), (15), and (16), we can conclude that

Pr [E2] ≤ 3
2n

.

(c) Assume that |M ′
i [m′

i]| < n and |Mj [mj ]| < n. Then there exists β ∈ [m′
i]

such that X ′
i[β] ̸= Xj [β]. If there exists such β smaller than m′

i, this
case is similar to the above case (b). If there is no such β < m′

i, then
M ′

i [m′
i] ̸= Mj [mj ]. In this case, P ′

i [1] ̸= Pj [1]. Therefore,

Pr [E3] ≤ mj + 1
2n

≤ 2l

2n

By the above argument, we have

Pr [P ′
i [1] = Pj [1]] ≤ 2l

2n
,

when M ′
i ̸= Mj . Now let M ′

i = Mj . Note that there is no redundant query,
so A′

i ̸= Aj First assume that there is at least one β ∈ [a′
i] such that A′

i[β] ̸=
Aj [β] or β > a′

i. In this case,

Z ′
i,∗ = Zj,∗⇔V ′

i [β] = T ′
i ⊕ Tj ⊕

⊕
γ∈[aj ]

Vj [γ]⊕
⊕

γ∈[a′
i
]\{β}

V ′
i [γ].

Otherwise, there is at least one β ∈ [aj ] \ [a′
i]. In this case,

Z ′
i,∗ = Zj,∗⇔Vj [β] = T ′

i ⊕ Tj ⊕
⊕

γ∈[aj ]\{β}

Vj [γ]⊕
⊕

γ∈[a′
i
]

V ′
i [γ].

Therefore,
Pr
[
Z ′

i,∗ = Zj,∗
]
≤ 1

2n − σ
≤ 2

2n
.

2. α = 1. In this case,

P ′
i [0] = Pj [1]⇔x∆j,3 =

⊕
γ∈[m′

i
]

M ′
i [γ]⊕

⊕
γ∈[mj ]

Mj [γ],

where x ∈ 3, 5. By the randomness of ∆j,3, we have

Pr [P ′
i [0] = Pj [1]] ≤ 1

2n − σ
≤ 2

2n
.

Note that for each i ∈ [qd], there is at most one j ∈ [qe] satisfying N ′
i = Nj . By

the above argument, we have

Pr [badC3] ≤ 8qeqd

22n
+ 4lqd + 4qd

2n
.

Upper bounding Pr [badC4]. Fix i ∈ [qd] and (j, α), (k, β) ∈ P∗, where j ̸= k.
We consider the following sub-cases, determined by the nonce.
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1. N ′
i ̸= Nj and N ′

i ̸= Nk. In this case, P ′
i [0] = Pj [α] and P ′

i [1] = Pk[β] if and
only if (

2m′
i 1

2m′
i 2 or 4

)(
∆′

i,1
∆′

i,3

)
=
(

Pj [α]
Pk[β]⊕

⊕
γ∈[m′

i
] M ′

i [γ]

)
.

By the randomness of ∆′
i,1 and ∆′

i,3, we have

Pr [P ′
i [0] = Pj [α] ∧ P ′

i [1] = Pk[β]] ≤ 1
(2n − σ)2 ≤

4
22n

.

2. N ′
i = Nj ( ̸= Nk). Let

Σ∗
j = (1− α)

⊕
γ∈[mj ]

Mj [γ];

Σ∗
k = (1− β)

⊕
γ∈[mk]

Mk[γ],

and let Auth′
i =

⊕
γ∈[a′

i
] V ′

i [γ], Authj =
⊕

γ∈[aj ] Vj [γ], and Authk =
⊕

γ∈[ak] Vk[γ].
Then Pj [1− α] = Pk[1− β] and Z ′

i,∗ = Zj,∗ ⊕ Zk,∗ if and only if(
x y
z w

)(
∆j,3
∆k,3

)
=
(

2mj ∆j,1 ⊕ 2mk ∆k,1 ⊕Σ∗
j ⊕Σ∗

k

T ′
i ⊕ Tj ⊕ Tk ⊕ Auth′

i ⊕ Authj ⊕ Authk

)
,

where (x, y) ∈ {1, 2, 4}, z ∈ {0, 2}, and w ∈ {3, 5}. Considering all the case,
the rank of the first matrix is two. Therefore, by the randomness of ∆j,3 and
∆k,3, we have

Pr
[
Pj [1− α] = Pk[1− β] ∧ Z ′

i,∗ = Zj,∗ ⊕ Zk,∗
]
≤ 1

(2n − σ)2 ≤
4

22n
.

3. N ′
i = Nk ( ̸= Nj). This case is similar to the case that N ′

i = Nj . By the
similar argument, Pj [1−α] = Pk[1− β] and Z ′

i,∗ = Zj,∗ ⊕Zk,∗ if and only if(
x y
z w

)(
∆j,3
∆k,3

)
=
(

2mj ∆j,1 ⊕ 2mk ∆k,1 ⊕Σ∗
j ⊕Σ∗

k

T ′
i ⊕ Tj ⊕ Tk ⊕ Auth′

i ⊕ Authj ⊕ Authk

)
,

where x, y ∈ {1, 2, 4}, z ∈ {0, 2}, and w ∈ {3, 5}. Considering all the case,
the rank of the first matrix is two. Therefore, by the randomness of ∆j,3 and
∆k,3, we have

Pr
[
Pj [1− α] = Pk[1− β] ∧ Z ′

i,∗ = Zj,∗ ⊕ Zk,∗
]
≤ 1

(2n − σ)2 ≤
4

22n
.

By the above argument, we have

Pr [badC4] ≤ 16qdq2
e + 16qdqe

22n
.

By applying qd, qe ≤ q, we can conclude Lemma 6.
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6 On the tightness of the bound of XOCB

We show a brief analysis of the tightness of the bound in Theorem 1 by presenting
an authentication attack against XOCB. The attack tries to invoke the event
corresponding to badA1. For a positive integer s ≥ 2, the attack requires l ≈ 2n/s,
qe ≈ 2(s−2)n/s, and σe = lqe ≈ 2(s−1)n/s. This is not tight for our claim of 2n/3-
bit security with l = O(1). However, if l is not constant, especially when s = 2,
the attack complexity is l ≈ 2n/2, qe = O(1), and σe ≈ 2n/2; thus, it is a
tight attack. When O(1) < l < 2n/2, the attack is not tight for our claim in
Theorem. 1. For example, if s = 3, the attack complexity is l ≈ 2n/3, qe ≈ 2n/3,
and σe ≈ 22n/3. The gap from Theorem 1 increases as s increases.

The attack procedure is as follows:

1. The adversary queries (N, A, M) to the encryption oracle such that M =
M [1]∥M [2]∥· · ·∥M [m] and |M [m]| = n−1. Then it obtains (C, T ), where C =
C[1] ∥C[2] ∥ · · · ∥C[m], and also obtains (n− 1)-bit value Z = M [m]⊕C[m].

2. Assume that a collision M [i] ⊕ 2i∆1 ⊕ ∆2 = M [j] ⊕ 2j∆1 ⊕ ∆2 occurs for
i, j ∈ [m − 1] and i ̸= j. Then, M [i] ⊕M [j] = C[i] ⊕ C[j] holds; thus, the
adversary can detect the collision.

3. The adversary compute ∆1 = (2i ⊕ 2j)−1(M [i]⊕M [j]).
4. The adversary queries (N ′, A′, C ′, T ′) to the decryption oracle such that

N ′ = N , A′ = A, T ′ = T , C ′ = C ′[1] ∥ C ′[2] ∥ · · · ∥ C ′[m], C ′[1] = 2∆1,
C ′[2] = 22∆1, C ′[i] = C[i] for i ∈ [3..m − 1], |C ′[m]| = n − 1, and C ′[m] =
Z ⊕ msbn−1(2∆1 ⊕ 22∆1 ⊕M [1]⊕M [2])⊕M [m].

The last decryption query is accepted with a high probability. For i ∈ [m], let
M ′[i] and Σ′ be a valid i-th decrypted plaintext block and a valid checksum of
the last decryption query (N ′, A′, C ′, T ′), respectively.

Σ′ =
⊕

i∈[m]

ozp(M ′[i]) = M ′[1]⊕M ′[2]⊕ ozp(M ′[m])⊕
⊕

i∈[3..m−1]

M ′[i]

= E−1
K (∆2 ⊕ L)⊕ 2∆1 ⊕∆2 ⊕ E−1

K (∆2 ⊕ L)⊕ 22∆1 ⊕∆2

⊕ ozp(msbn−1(2∆1 ⊕ 22∆1 ⊕M [1]⊕M [2])⊕M [m])⊕
⊕

i∈[3..m−1]

M [i]

If the adversary has

ozp(msbn−1(2∆1 ⊕ 22∆1 ⊕M [1]⊕M [2])⊕M [m])
= 2∆1 ⊕ 22∆1 ⊕M [1]⊕M [2]⊕ ozp(M [m]),

(17)

it obtains Σ′ =
⊕m

i=1 ozp(M [i]) = Σ, and T becomes the valid tag for (N ′, A′, C ′).
The adversary can check whether (17) holds before the last decryption query;
thus, if (17) does not hold, the adversary can make a successful forgery by chang-
ing C ′ accordingly, for example, setting C ′[2] = 22∆1, C ′[3] = 23∆1, C ′[i] = C[i]
for i ∈ {1} ∪ {4, . . . , m − 1}, and C ′[m] = Z ⊕ msbn−1(22∆1 ⊕ 23∆1 ⊕M [2] ⊕
M [3])⊕M [m], or changing the length of C ′[m] to smaller bits.
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Next, we discuss the attack complexity. In step 2, the adversary requires
the collision M [i] ⊕ 2i∆1 ⊕ ∆2 = M [j] ⊕ 2j∆1 ⊕ ∆2 for i, j ∈ [m − 1] and
i ̸= j. To obtain this collision with a high probability, the adversary needs to
query a sufficiently long plaintext M in step 1. Assuming that m ≈ 2n/s for a
positive integer s, the collision probability is approximately m2/2n ≈ 2(2−s)n/s.
Repeating step 1 with m ≈ 2n/s qe ≈ 2(s−2)n/s times, the adversary obtains
the collision with a high probability. Thus, the attack requires l ≈ 2n/s, qe ≈
2(s−2)n/s, and σe = lqe ≈ 2(s−1)n/s when l is not a constant. If l = O(1), the
collision probability of step 2 is ≈ 1/2n and the attack complexity is qe ≈ σe ≈
2n, much larger than what the bound tells (22n/3). Further analysis is open.

7 Implementations of XOCB

This section presents the implementations for the instantiation of XOCB using
AES – AES-XOCB 14.

On 64-Bit High-End Processors. Using the parallelizability of XOCB, our
implementation of AES-XOCB can take advantage of the pipelined execution of
AES-NI on high-end CPUs, resulting in an asymptotic speed of 0.5 cpb. This
performance is as expected since the fully pipelined AES-ECB runs at 0.3 cpb
and doubling in GF(2128) runs at 0.2 cpb using SIMD instructions in our timing
environment.

We compared the relative performance of AES-XOCB against AES-OCB and
AES-CIP using the same AES-NI-based AES implementation, SIMD-based dou-
bling in GF(2128), and PCLMULQDQ-based multiplication in GF(2128) supporting
pipelined execution on multiple blocks. Our testing included the time cost of the
entire procedure, including setting up keys, generating masks, and performing
encryption and authentication. We used plaintexts of various lengths for testing,
ranging from 16 to 4096 bytes (with a 16-byte AD).

Comparing the results, AES-XOCB has a slightly inferior performance com-
pared to AES-OCB but is still close. AES-XOCB’s initialization procedure uses
five AES calls for computing mask initial values, which slightly impacts perfor-
mance for short messages. However, for message lengths exceeding 512 bytes, the
difference narrows to 0.1∼0.2 cpb, which is the cost of a doubling. AES-XOCB
outperforms AES-CIP for both short and long messages. Figure 6 shows how the
performance of AES-XOCB changes with plaintext length, and how it compares
to AES-OCB and AES-CIP.

On 8-Bit Low-End Microprocessors. We demonstrate the practical rel-
evance of XOCB in constrained environments by implementing AES-XOCB on
an 8-bit AVR. The simulation result on ATmega328P shows that AES-XOCB
requires 8556 bytes of ROM and 672 bytes of RAM to support both encryp-
tion and decryption, including key setup and mask generation. Figure 7 shows

14 The source codes can be found via https://www.dropbox.com/sh/
k0y8h1boah072mn/AAAYPUr0j4MU9F3-w1k7U52Ha?dl=0
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concrete execution time for the entire procedure, including key setup, mask gen-
eration, encryption, and authentication. For a 128-byte message and a 16-byte
AD, AES-XOCB processes at 306 cpb, while an optimized AES-GCM implemen-
tation requires 11012 bytes of ROM and runs at 880 cpb [42].
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Fig. 6: Speeds on an x86-64 CPU
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Fig. 7: Speeds on an 8-bit AVR

8 Conclusions

We have shown a new authenticated encryption mode XOCB. It has a quantita-
tively stronger security guarantee than the seminal OCB while inheriting most
of the efficiency advantages. In particular, it is exactly rate-one and has beyond-
birthday-bound security assuming SPRP for the underlying block cipher, if the
maximum input length is sufficiently smaller than the birthday bound. The block
cipher could be instantiated with an n-bit block cipher with a key of any length,
allowing us to use AES-128 for a typical example. There are numerous works on
BBB-secure AE modes, however, they rely on a stronger primitive (e.g. TBC) or
stronger assumption (e.g. ideal cipher model), and XOCB is the first scheme that
achieves the aforementioned goals without such a compromise. Several further re-
search topics, such as optimizing the scheme to reduce computational overhead
or reducing the length contribution to the bound, and a more comprehensive
benchmark, would be interesting directions.
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