
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

High Throughput Lattice-based Signatures on
GPUs: Comparing Falcon and Mitaka

Wai-Kong Lee, Member, IEEE, Raymond K. Zhao, Member, IEEE, Ron Steinfeld, Member, IEEE,
Amin Sakzad, Member, IEEE, and Seong Oun Hwang, Member, IEEE

Abstract—The US National Institute of Standards and Technology initiated a standardization process for post-quantum cryptography
in 2017, with the aim of selecting key encapsulation mechanisms and signature schemes that can withstand the threat from emerging
quantum computers. In 2022, Falcon was selected as one of the standard signature schemes, eventually attracting effort to optimize
the implementation of Falcon on various hardware architectures for practical applications. Recently, Mitaka was proposed as an
alternative to Falcon, allowing parallel execution of most of its operations. These recent advancements motivate us to develop high
throughput implementations of Falcon and Mitaka signature schemes on Graphics Processing Units (GPUs), a massively parallel
architecture widely available on cloud service platforms. In this paper, we propose the first parallel implementation of Falcon on various
GPUs. An iterative version of the sampling process in Falcon, which is also the most time-consuming Falcon operation, was developed.
This allows us to implement Falcon signature generation without relying on expensive recursive function calls on GPUs. In addition, we
propose a parallel random samples generation approach to accelerate the performance of Mitaka on GPUs. We evaluate our
implementation techniques on state-of-the-art GPU architectures (RTX 3080, A100, T4 and V100). Experimental results show that our
Falcon-512 implementation achieves 58, 595 signatures/second and 2, 721, 562 verifications/second on an A100 GPU, which is 20.03×
and 29.51× faster than the highly optimized AVX2 implementation on CPU. Our Mitaka implementation achieves 161, 985

signatures/second and 1, 421, 046 verifications/second on the same GPU. Due to the adoption of a parallelizable sampling process,
Mitaka signature generation enjoys ≈ 2 – 20× higher throughput than Falcon on various GPUs. The high throughput signature
generation and verification achieved by this work can be very useful in various emerging applications, including the Internet of Things.

Index Terms—Post-quantum cryptography, lattice-based cryptography, and graphics processing units (GPU).

✦

1 INTRODUCTION

POST-quantum cryptography (PQC) is an emerging re-
search field with the aim of developing new crypto-

graphic schemes that are capable to withstand the threat of
scalable quantum computers. In the year 2017, the National
Institute of Standards and Technology (NIST) of the United
States initiated a standardization process involving world-
wide participation [1]. Besides security concerns, the candi-
dates are also evaluated on their implementation efficiency
to ensure the possibility of widespread deployment. After
almost five years of evaluation and public discussions, NIST
has selected for standardization one key-encapsulation
mechanism (KEM): Kyber [2], and three signature schemes:
Crystal-Dilithium [3], Falcon [4] and SPHINCS+ [5]. The
standardization process is still ongoing, currently in Round
4, with the aim of standardizing more post-quantum digital
signatures. Besides the NIST standardization, there is also
another ongoing effort to improve post-quantum signature
and KEM. For instance, Mitaka [6] is a recent work that
proposed a parallelizable variant of Falcon, which is simpler
and allows masked implementation. Another interesting

• Wai-Kong Lee and Seong Oun Hwang are with the Department of Com-
puter Engineering, Gachon University, Seongnam 13120, South Korea.
E-mail: waikong.lee@gmail.com, sohwang@gachon.ac.kr.

• Raymond K. Zhao is with CSIRO’s Data61, Marsfield, Australia. E-mail:
raymond.zhao@data61.csiro.au.

• Ron Steinfeld and Amin Sakzad are with the Department of Soft-
ware Systems and Cybersecurity, Faculty of Information Technol-
ogy, Monash University, Clayton 3800, Victoria, Australia. E-mail:
ron.steinfeld@monash.edu, amin.sakzad@monash.edu.

Manuscript received ; revised .

work is Scabbard [7], a suite of more efficient variants of
the NIST finalist KEM, Saber [8].

During this evaluation period, many optimized im-
plementations of NIST PQC candidates were presented.
Most of them focused on Field Programmable Gate Arrays
(FPGA) [9], x86 (including AVX2) [10] and ARM Cortex-
M4 hardware architectures [11], [12], which are the official
platforms suggested by NIST for evaluation. On top of that,
some interesting works explored other advanced hardware
architectures like ARM Cortex-A for high-performance em-
bedded systems [13], and graphics processing units (GPU)
that allow massively parallel computation [14].

GPU was originally designed to accelerate graphics and
video applications, but later on, opened up for general-
purpose computing. For instance, GPUs were used to ac-
celerate deep learning [15], medical imaging [16], cryp-
tography [17], [18] and power grid simulation [19]. It is
now considered a de-facto accelerator in many cloud ser-
vices [20], [21]. Due to this reason, there are also some
efforts in developing high throughput implementation of
NIST PQC candidates on GPUs [14], [22], [23], [24], [25].
However, among the three signature schemes selected by
NIST for standardization , only Crystal-Dilithium [26] and
SPHINCS+ [14] were previously implemented on GPU plat-
forms. The possibility of parallelizing the other scheme, Fal-
con, on GPU platforms, remains an open research problem.

High throughput signature generation and verification is
beneficial to applications that have high volume and require
fast response time. For instance, IoT applications require the
cloud server to handle massive data collected from sensor



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

nodes, which involves verifying thousands of signatures
generated from the sensor nodes. A GPU-accelerated solu-
tion that can provide high throughput signature generation
and verification would be very useful to such applications.
Another typical use case can be found in e-commerce. Con-
sider the case of Alibaba Single’s Day [27], we see around
583, 000 orders per second during its peak time, and online
payment adopts digital signature to secure the payments.
Assumes that it conducts two signature verifications for
each transaction to verify the buyer’s certificate (identity)
and his/her signature on the payment, followed by one
signature generation (to confirm the transaction). In merely
one second, the system needs to handle up to 583, 000
signature generations and 1, 166, 000 verifications. This can
be a very challenging task if all the signature generation and
verification tasks are to be computed using only CPU, even
for a very powerful server.

In this paper, we focus on optimizing the implemen-
tation of the Falcon [4] and Mitaka [6] signature schemes
on GPU platforms. The signature generation in Falcon
utilizes the Fast Fourier sampling (ffSampling) algorithm,
which turns out to be the most time-consuming operation in
Falcon. This is because the ffSampling algorithm recursively
traverses the Falcon tree until it reaches the leaves. A closer
look into this reveals that it is non-trivial to parallelize ff-
Sampling due to the data dependency between each sample.
It is also challenging to implement such a recursive function
call in GPU since the overhead introduced by dynamic par-
allelism [28] is not negligible and the maximum recursion
depth supported is only 24. In contrast, Mitaka signature
generation is more parallelizable on GPU platforms. In
particular, the Gaussian sampling process does not have
data dependency as in the case of ffSampling. Besides, Fast
Fourier Transform (FFT) and Number Theoretic Transform
(NTT) are frequently used in both signature schemes; they
are considered embarrassingly parallel algorithms, which
can be parallelized on the GPU platforms easily. These
analyses show that both Falcon and Mitaka are potential
candidates for parallel implementation. In order to achieve
high throughput signature generation/verification on GPU
platforms, we proposed several implementation techniques
to address the issue in ffSampling and optimize other op-
erations. We also analyse and compare Falcon and Mitaka
from the parallel implementation aspects. The contributions
of this paper are summarized below:

1) An iterative version of ffSampling is presented. We
develop an iterative ffSampling algorithm by emu-
lating the stack management during the recursive
function call. This allows us to implement the ff-
Sampling on a GPU without using the costly recur-
sive function call (through dynamic parallelism). In
addition, we optimize this iterative version of ffSam-
pling by carefully managing the complicated mem-
ory operations during the tree traversal. This in-
cludes the placement of the emulated stack, pseudo-
random number generation (PRG), and optimized
memory copy within a thread. Finally, we apply the
proposed ffSampling implementation technique on
Falcon and evaluate its performance on four state-
of-the-art GPUs: RTX 3080, A100, T4, and V100.

2) The first parallel implementation of Falcon signa-
ture on GPUs is presented. Other than ffSampling,
we also parallelize most of the operations in Falcon,
including FFT, NTT, HashToPoint and polynomial
addition/subtraction. A kernel-fusion technique is
also proposed to combine several operations in Fal-
con to reduce the overhead of kernel invocations.
The proposed optimized implementation of Falcon-
512 signature generation achieves a throughput
of 27, 908 sign/s (1, 913, 380 verify/s) and 58, 595
sign/s (2, 721, 562 verify/s) on RTX 3080 and A100
respectively. The results from A100 are 16.34× and
74.58× faster than the AVX2 implementation [4], for
signature generation and verification, respectively.

3) The first parallel implementation of Mitaka signa-
ture on GPUs is presented. Mitaka is a parallelizable
variant of Falcon, but there is no implementation
of this scheme on a parallel architecture to date.
To close this gap, the first parallel implementa-
tion of Mitaka signature on GPUs is presented.
Mitaka signature generation and verification are
highly parallelizable as most of the operations are
either polynomial arithmetic (e.g., multiplication,
addition, subtraction) or coefficient-wise computa-
tion, which do not have data dependencies. How-
ever, the Gaussian sampling process illustrated in
the reference implementation [6] consumes the ran-
dom samples in a serial manner. To allow full
parallel implementation, we propose to break the
Gaussian sampling into two phases. The random
samples are first generated in bulk1 through the
ChaCha20 stream cipher, followed by the rejection
sampling process. The proposed optimized imple-
mentation of Mitaka signature generation on GPUs
achieved 74, 010 sign/s (695, 931 verify/s) and
161, 985 sign/s (1, 421, 046 verify/s) on RTX 3080
and A100, respectively. The results from A100 are
20.03× and 29.51× faster than the reference imple-
mentation [6], for signature generation and verifica-
tion respectively. We open-sourced our implementa-
tion to https://github.com/benlwk/Falcon-Mitaka
to encourage more future research on this topic.

2 BACKGROUND

2.1 Falcon: NIST Standardized Signature
Falcon [4] is a hash-and-sign post-quantum signature
scheme based on the NTRU lattice problem [29]. For the
same security level, Falcon achieves the most compact signa-
ture size among the three post-quantum signatures selected
by NIST for standardization, while still having competitive
signature generation and verification speed on a CPU. As
opposed to Crystal-Dilithium [3], the other signature based
on lattice problems selected for NIST standardization which
only samples small integers with a uniform distribution
on an interval, the signature generation process of Falcon
requires sampling short vectors from discrete Gaussian distri-
butions over lattices [30]. To accelerate this process, Falcon

1. Our implementation allow high parallelism, and it is different
from the original Mitaka implementation. Note that this proposed
modification but do not affect the security of Mitaka.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

utilizes the Fast Fourier sampling (ffSampling) algorithm
[4], [31]. However, ffSampling is particularly “delicate to
implement”, listed by the authors of Falcon as one of the
main shortcomings in the specification [4]. To the best of our
knowledge, no reported attempt of implementing ffSampling
on a platform with a high degree of parallelism has been
made previously.

2.2 Mitaka: a Parallelizable Variant of Falcon
Recently, Mitaka [6], a variant of the Falcon signature
scheme, overcame the aforementioned pitfalls by replacing
ffSampling with a “hybrid” sampling procedure [32] based
on a parallelizable discrete Gaussian sampler over lattices
[33]. However, the vectors generated by the hybrid sampler
are longer than the ones from ffSampling, which affects the
security of the signature scheme. To compensate for the
security loss, Mitaka modifies the key generation algorithm
and revises the parameters of the scheme. Although the Mi-
taka signature scheme is designed to be parallelizable and
maskable, very little study on the implementation aspects
of Mitaka has been made previously, except the reference
implementation on an Intel CPU from the authors [6].

2.3 Overview of NVIDIA GPU Architecture and CUDA
Volta and Ampere are the two representatives of advanced
GPU architectures released by NVIDIA in 2017 and 2020,
respectively. These GPUs consist of thousands of cores,
which are ideal for computing on massively parallel data.
For instance, the RTX3080 (Ampere architecture) consists of
128 cores. CUDA is the Software Development Kit released
by NVIDIA to ease the programming of GPU for general-
purpose computing. Under the CUDA programming model,
multiple threads are grouped into a block, where multiple
blocks form a GPU grid. This relationship is illustrated in
Fig. 1, where each thread and block can be indexed indi-
vidually for parallel computing. NVIDIA GPUs grouped 32
threads into one warp in order to allow efficient instruction
scheduling and memory access. Warp divergence occurs if
threads within a warp do not execute the same path, which
may have a serious performance penalty. In the subsequent
presentation, we refer to tid as a unique ID for parallel
threads within a block.

2.4 Related Works
The use of GPU in accelerating cryptography algorithms has
been common in the past decade. For instance, it was used
in accelerating fully homomorphic encryption [17], [34],
wherein heavy computations like NTT and residue number
system (RNS) are offloaded to the GPU. Lee et al. [23] ex-
ploited the tensor cores in contemporary GPU architectures
to compute the polynomial convolution of NTRU, variants
of FrodoKEM and LAC, but it only supports non-ephemeral
keypair. A follow-up work uses dot-product instructions on
GPU [24] to speed up the polynomial convolution in Saber
and FrodoKEM, with support to ephemeral keypair. GPU
was also used as an accelerator to create a signature server
[35] based on elliptic curve cryptography (ECC).

There is limited prior work in the literature that imple-
ment Falcon [4]. Thomas Pornin presented an optimized

version of Falcon on CPU utilizing AVX2 instructions [10].
In the same work, they also presented the implementation
of Falcon on Cortex-M4 microcontroller. In another work,
Oder et al. [36] managed to reduce the dynamic memory
consumption of Falcon by 43% through revision of the mem-
ory layout in Falcon implementation targeting Cortex-M4
microcontroller. Besides that, there are two prior works that
optimized the implementation of Falcon on more advanced
processor architectures. Nguyen and Gaj [37] proposed tech-
niques to compress the size of the twiddle-factor table and
optimize the memory access pattern in FFT to achieve a fast
and memory-efficient implementation on Cortex-A72. Kim
et al. [38] demonstrated techniques for parallelizing the FFT
and NTT operations utilizing the NEON instructions found
in the NVIDIA Carmel with ARMv8 architecture. Recently, a
hardware architecture for Falcon signature verification was
proposed in [39], but the implementation does not include
the signature generation. There is no prior work reported
on the implementation of the Mitaka signature, except the
reference implementation presented by the authors [6].

In summary, most of these prior implementations focus
on optimizing the memory and computational aspects of
FFT and NTT. However, the most time-consuming part
of Falcon signature generation is the ffSampling algorithm
that involves expensive memory operations during the tree-
traversal process. In addition, there is no parallel imple-
mentation of Falcon and Mitaka on the massively parallel
architecture like GPU. The previous parallel implementation
techniques reported only target a small degree of parallelism
supported by NEON [37], [38] and AVX [4], which are
not directly applicable to the GPU architecture. Hence, we
are motivated to close this gap and explore techniques to
optimize the implementation of Falcon and Mitaka on GPUs
with high throughput performance.

3 PROPOSED GPU IMPLEMENTATION TECH-
NIQUES

This section first presents the overview of GPU-based sig-
nature servers and their potential applications. Followed by
this are the descriptions of the proposed techniques to opti-
mize the performance of Falcon and Mitaka on GPUs. The
design choices and trade-offs made in our implementation
are also presented in this section.

3.1 Overview of the Parallel Signature Generation and
Verification on GPUs
There are two commonly used strategies to parallelize an
algorithm on a GPU targeting server environment: coarse-
grain and fine-grain [22]. Coarse-grain implementation
completes the entire algorithm within one thread, which
is essentially a serial implementation. The parallelism is
achieved by processing many threads concurrently, wherein
sufficient workload is required to fully exploit the com-
puting power in GPU. On the other hand, the fine-grain
approach assigns several threads to compute one algorithm
in parallel. This allows us to fully harness the GPU even
though the workload is relatively low. The coarse-grain ap-
proach relies on large amount of workload to achieve a high
throughput performance, but this may not be always attain-
able. Moreover, it has high latency, which is not desirable



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Block 0 Block 1 Block K -1

Sign. 0 Sign. 1 Sign. K -1

Block 2

Sign. 2

Parallel
Execution

Serial
Execution

Fig. 1: GPU-based signature server: parallelizing the imple-
mentation of signatures on a GPU.

for applications that require fast response time. Fine-grain
approach has low latency but the throughput performance
is rather low. This relationship was also observed in prior
work that implemented the post-quantum KEMs [22].

Taking these into consideration, we took an intermediate
approach. Referring to Fig. 1, we compute one signature
(generation or verification) on a block in a fine-grain ap-
proach and instantiate K blocks to process K signatures
concurrently. This can be viewed as a combination of coarse-
grain (processing multiple signatures) and fine-grain (com-
puting one signature with multiple threads) parallelism to
achieve a balance between throughput and latency. Within
each block, several GPU kernels were developed to compute
all the signing or verification processes using different num-
bers of parallel threads. For instance, polynomial arithmetic
can be parallelized with a high number of threads, but
the hash function that has a smaller degree of parallelism
uses a smaller number of threads. This approach was also
observed in other GPU implementations of post-quantum
cryptography [23], [24], [25].

3.2 Parallelizing Falcon Signature
Falcon [4] allows the pre-expanded LDL tree as part of the
private key to be used in the signature generation. However,
in this paper, we have implemented a more generic version
that rebuilds the LDL tree dynamically for every signature
generation, following closely the reference implementation.
Table 1 shows the breakdown of major computational steps
in Falcon signature generation and verification, which was
evaluated on an Intel i9-10900K CPU, based on the reference
implementation submitted to NIST. According to the Table,
ffSampling and FFT/IFFT are the most time-consuming op-
erations in Falcon, accounted more than 70% of the entire
signature generation process. This shows that parallelizing
and optimizing these two operations can greatly improve
the performance of Falcon. We also focus on optimizing
NTT/INTT which accounted for almost half of the execution
time in signature verification. HashToPoint algorithm is
used in both signature generation and verification; it is
inherently a serial process, and the parallelism is limited
to the hash function (i.e., SHAKE) only.

3.2.1 Original Recursive ffSampling Algorithm
The original ffSampling algorithm was implemented in a
recursive manner [4]; it is reproduced in Algorithm 1.
For the input vector t, parameter σ, and Gram matrix G
associated with matrix B, the algorithm will generate a

TABLE 1: Breakdown of the Execution Time of Major Com-
putational Steps in Falcon.

Functions
Percentage (%)

Falcon-512 Falcon-1024
Sign Verify Sign Verify

FFT/IFFT 6.39 – 5.29 –
FP64 polynomial arithmetic 6.20 3.44 6.09 3.41(add, sub, negate, etc.)
ffSampling 65.78 – 65.66
HashToPoint 3.98 30.81 4.28 30.81
Encode/decode 1.86 16.45 1.92 16.46
NTT/INTT 6.89 46.49 5.18 46.50
Others 8.95 2.81 8.91 2.82

2,4,68,10,12

1,7,13

11 9 35

Fig. 2: A Falcon tree of height 3. Labels on the tree nodes
show the order of the ffSampling tree traversal.

vector z such that (t − z)B is a discrete Gaussian vector
with standard deviation σ. To realize the sampling pro-
cedure, the algorithm generates a Falcon tree (see Fig. 2)
with the LDL decomposition (poly LDL fft, line 9 in Al-
gorithm 1) and samples discrete Gaussian values on each
leaf (SamplerZ, lines 4, 5 in Algorithm 1). The function
poly split fft computes the Gentleman-Sande inverse FFT
butterflies [40], and the function poly merge fft computes
the Cooley-Tukey FFT butterflies [41]. Functions poly add,
poly sub, and poly mul fft compute the polynomial addition,
subtraction, and pointwise multiplication, respectively.

It is challenging to implement this algorithm on a GPU,
due to the following reasons:

1) Referring to Fig. 2 and Algorithm 1 lines 15 and 23,
the samples in Falcon are generated by each leaf in
Falcon tree in a sequential manner. There is a data
dependency between each sample in the ffSampling
algorithm, which makes it impossible to compute
multiple samples in parallel. For instance, we need
to first obtain the sample on the right-most leaf
(labeled as 3), traverse backward and proceed to the
next leaf (labeled as 5). In other words, one cannot
execute the ffSampling to generate multiple samples
at a time. This prevents parallelizing ffSampling, and
the only way to implement this is through a coarse-
grain method, wherein one thread computes one
ffSampling algorithm.

2) NVIDIA GPU allows recursive function call to be
implemented through the dynamic parallelism [28]
feature, but it is relatively expensive. Each recursive
function call needs to configure the kernel launch



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

parameters (e.g., number of blocks and threads),
introducing significant overhead. Take Falcon-512 as
an example, the N = 512 leaves in the LDL tree, so
it takes one function call from the host (CPU) and
N × 2 − 2 = 1022 calls from the kernel to fully
traverse the entire tree. Hence, it is very expensive
to implement ffSampling algorithm on a GPU in a
recursive manner.

3) Some operations in Algorithm 1 exhibits high level
of parallelism. For instance, poly split fft (line 10)
and poly mul fft (line 19) can be executed in paral-
lel. One way to exploit this is to run the Algorithm 1
with a single thread, and then launch another child
kernel on the GPU with multiple threads to execute
poly split fft and poly mul fft. This approach also
requires the use of dynamic parallelism [28] which
has high overheads. Moreover, after each parallel
computation in poly split fft and poly mul fft, we
need to synchronize all the child threads before
returning to the parent thread and moving on to
the next recursion. This kind of synchronization is
also very expensive.

Note that dynamic parallelism is widely used to facilitate
workload management within the GPU kernels without
relying on the CPU, wherein the size of the workload is
unknown a priory. However, such an approach should have
sufficient parallelism and low recursive depth in order to
enjoy the performance benefit. Unfortunately, ffSampling is a
serial algorithm, which means that each recursive call can
only launch one thread at a time. Due to these reasons,
we found that implementing ffSampling in recursive form
could be inefficient for GPU architectures. Hence, in this
paper, we have converted Algorithm 1 into its iterative
version, which is detailed in Algorithm 2. With the proposed
iterative ffSampling algorithm, we do not have to rely on the
dynamic parallelism, avoiding all the expensive overhead in
launching kernel within a kernel.

3.2.2 Proposed Iterative ffSampling Algorithm
We now present the proposed iterative ffSampling algo-
rithm. It uses an array S to record the stack frames
(t0, t1, G00, G01, G11, tmp,N, z0, z1). The size of S is
log2 N + 1 since ffSampling is essentially a reverse depth-
first tree traversal (accessing the right sub-tree first, then
the left sub-tree, see Fig. 2) of a perfect binary tree with
depth log2 N [4]. During each iteration, the algorithm will
access the top stack frame S[top] and make updates based
on its local state. The values z0 and z1 in a stack frame can
indicate the local state of ffSampling. This is because z1 is
initialized before the first recursive call and z0 is initialized
before the second recursive call (after the first recursion).
Recursive calls in Algorithm 1 (lines 15 and 23) become
pushing new stack frames into S in Algorithm 2 (lines 20
and 29). Statements after recursions in Algorithm 1 (lines 16
and 24) are converted to the updateSt function in Algorithm
3, which calls poly merge fft to update S[top] based on its
local state.

Both Algorithm 1 and 2 produce the same outputs and
have the same time complexity, since their only difference
is the stack management. Moving stack frames to an array

Algorithm 1 The ffSampling dyntree algorithm: original
recursive version [4].

Input: t = (t0, t1), standard deviation σ, Gram matrix G =(
G00 G01

G∗
01 G11

)
, buffer tmp[0: 4N ].

Output: Samples z = (t0, t1) (in-place).
1: function ffSampling(t0, t1, G00, G01, G11, tmp,N )
2: if N = 1 then
3: R← σ/

√
G00[0].

4: t0[0]← SamplerZ(t0[0], R).
5: t1[0]← SamplerZ(t1[0], R).
6: return
7: end if
8: hn← N/2.
9: G00, tmp[0:N ], G11←poly LDL fft(G00, G01, G11).

10: G00[0:hn], G00[hn:N ]← poly split fft(G00).
11: G11[0:hn], G11[hn:N ]← poly split fft(G11).
12: G01[0:hn], G01[hn:N ]← G00[0:hn], G11[0:hn].
13: Let z1 be alias to tmp[N : 2N ].
14: z1[0:hn], z1[hn:N ]← poly split fft(t1).
15: ffSampling(z1[0:hn], z1[hn:N ], G11[0:hn],

G11[hn:N ], G01[hn:N ], tmp[2N : 4N ], hn).
16: tmp[2N : 3N ]← poly merge fft(z1[0:hn], z1[hn:N ]).

17: z1 ← poly sub(t1, tmp[2N : 3N ]).
18: t1 ← tmp[2N : 3N ].
19: tmp[0:N ]← poly mul fft(tmp[0:N ], z1).
20: t0 ← poly add(t0, tmp[0:N ]).
21: Let z0 be alias to tmp[0:N ].
22: z0[0:hn], z0[hn:N ]← poly split fft(t0).
23: ffSampling(z0[0:hn], z0[hn:N ], G00[0:hn],

G00[hn:N ], G01[0:hn], tmp[N : 3N ], hn).
24: t0 ← poly merge fft(z0[0:hn], z0[hn:N ]).
25: end function

does not change the computational steps or the data flow of
the algorithm.

3.2.3 FFT and NTT

FFT involves complex numbers, which are stored in the
same array separately. A polynomial with length N is stored
in an array of 2×N ; the first N elements are real numbers,
while the next N elements are imaginary numbers. The FFT
in-place implementation in Falcon is detailed in Algorithm
4; it takes the polynomial a in natural format and produces
the results in FFT format, replacing the original data in poly-
nomial a. The FFT first level is skipped because the twiddle
factor used is i, resulting in free operation [4]. There are
two for loops involved in FFT algorithm. The size of i loop
doubles in every level (controlled by m in lines 8 and 21),
while the size of j loop halves in every level (controlled by
ht in lines 7 and 20). The twiddle factors are pre-computed
into a lookup table, where they are accessed differently
at each level (lines 8 and 9). The main computation in
FFT is the butterfly operations, wherein two coefficients
from polynomial a are multiplied with the twiddle factors
(line 17), and one of them is added up (line 18). Note
that the multiplication in the complex domain is the most



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Algorithm 2 The iterative ffSampling dyntree algorithm.

Input: t = (t0, t1), standard deviation σ, Gram matrix G =(
G00 G01

G∗
01 G11

)
, buffer tmp[0: 4N ], array S[0: log2 N+1] with

tuples (t0, t1, G00, G01, G11, tmp,N, z0, z1).
Output: Samples z = S[0].(t0, t1).

1: function It ffSampling(t0, t1, G00, G01, G11, tmp,N )
2: top← 0.
3: S[0]← (t0, t1, G00, G01, G11, tmp,N,null,null).
4: loop
5: Let St be alias to S[top].
6: n← St.N, hn← n/2.
7: if n = 1 then
8: R← σ/

√
St.G00[0].

9: St.t0[0]← SamplerZ(St.t0[0], R).
10: St.t1[0]← SamplerZ(St.t1[0], R).
11: top← top− 1,updateSt(S[top]).
12: else
13: if St.z1 = null then
14: St.(G00, tmp[0:n], G11) ←

poly LDL fft(St.(G00, G01, G11)).
15: St.(G00[0:hn], G00[hn:n]) ←

poly split fft(St.G00).
16: St.(G11[0:hn], G11[hn:n]) ←

poly split fft(St.G11).
17: St.(G01[0:hn], G01[hn:n]) ←

St.(G00[0:hn], G11[0:hn]).
18: Let St.z1 be alias to St.tmp[n: 2n].
19: St.(z1[0:hn], z1[hn:n])← poly split fft(St.t1).
20: S[top+1]← (St.(z1[0:hn], z1[hn:n], G11[0:hn],

G11[hn:n], G01[hn:n], tmp[2n: 4n]), hn,null,null).
21: top← top+ 1.
22: else if St.z0 = null then
23: St.z1 ← poly sub(St.(t1, tmp[2n: 3n])).
24: St.t1 ← St.tmp[2n: 3n].
25: St.tmp[0:n]← poly mul fft(St.(tmp[0:n], z1)).
26: St.t0 ← poly add(St.(t0, tmp[0:n])).
27: Let St.z0 be alias to St.tmp[0:n].
28: St.(z0[0:hn], z0[hn:n])← poly split fft(St.t0).
29: S[top+1]← (St.(z0[0:hn], z0[hn:n], G00[0:hn],

G00[hn:n], G01[0:hn], tmp[n: 3n]), hn,null,null).
30: top← top+ 1.
31: else
32: if n = N then
33: return
34: else
35: top← top− 1,updateSt(S[top]).
36: end if
37: end if
38: end if
39: end loop
40: end function

time-consuming one as it involves four multiplications, one
subtraction and one addition.

FFT algorithm is inherently parallel because there are
always N/2 pairs of work items (butterfly operations) to
be computed in each FFT level, and these work items are
not dependent on each other. In particular, one can execute
the i and j loops in parallel by assigning the correct indices.

Algorithm 3 The updateSt function.

Input: Tuple St = (t0, t1, G00, G01, G11, tmp,N, z0, z1).
1: function updateSt(St)
2: n← St.N, hn← n/2.
3: if St.z0 = null then
4: St.tmp[2n: 3n] ←

poly merge fft(St.(z1[0:hn], z1[hn:n])).
5: else
6: St.t0 ← poly merge fft(St.(z0[0:hn], z0[hn:n])).
7: end if
8: end function

Algorithm 4 FFT in-place implementation in Falcon [4].

Input: Polynomial a in natural format.
Output: Polynomial a in FFT format.

1: function FFT(a)
2: hn← N/2.
3: t← hn.
4: m← 2.
5: j1 ← 0.
6: for u = 1;u < log2N ;u++ do
7: ht← N/2.
8: for i = 0; i < m; i++ do
9: j2 ← j1 + ht.

▷ Load twiddle factors
10: sre ← tf [((m+ i)/2)].
11: sim ← tf [((m+ i)/2) + 1]
12: for j = j1;u < j2; j++ do
13: xre ← a[j]. ▷ Load real parts
14: yre ← a[j + ht].
15: xim ← a[j + hn]. ▷ Load imag. parts
16: yim ← a[j + hn+ ht].

▷ Butterfly operations
17: C MUL(yre, yim, xre, xim, sre, sim).
18: C ADD(a[j],a[j + hn], xre, xim, yre, yim).
19: end for
20: t← ht.
21: m← m× 2.
22: j1 ← j1 + t.
23: end for
24: end for
25: end function

Referring to Fig. 3, the polynomial length in Falcon-512 is
N = 512, so we can utilize 128 threads to parallelize the
FFT implementation. At level 1, 128 threads can load the first
portion (j =0–127) of real values in parallel, followed by the
second portion (j =128–255); subsequent portions (j =128–
255 and j =128–255) represents the imaginary values. In this
way, we can eliminate the i and j loops, and execute the FFT
in a parallel fashion. Note that the parallelism achieved by
the FFT algorithm is limited to N/4 because we are working
with complex numbers, so we need to load the real and
imaginary (total four parts) numbers separately.

Due to limited parallelism offered by NEON and AVX2
instructions, previous implementation of Falcon FFT [4],
[37], [38] can only parallelize part of the FFT operations.
Algorithm 5 shows the fully parallel version of FFT im-
plementation that utilizes a large degree of parallelism



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

j =
i1=0 i1=1

0 128 255127

Level 1

j =
i1=0 i1=2

0 128 255127

Level 2 i1=1 i1=3
63 191

j = 0 128 255127

Level 3

63 19131 95 159 223

i1=0 i1=1 i1=2 i1=3 i1=4 i1=5 i1=6 i1=7

128 parallel threads

Real Imaginary

Fig. 3: Parallelizing the FFT implementation in Falcon-512

offered by GPU architecture to achieve high performance.
N/4 threads are launched to compute the FFT in parallel.
Firstly, the polynomials are loaded from the global memory
and stored in shared memory (lines 6 – 8). BDim refers
to the number of threads in a block, tid is the ID of each
parallel thread, and bid is the block ID. Next, the indices to
compute the i (line 13) and j loop (line 14) are computed
respectively. Then, the twiddle factors and two coefficients
from polynomial a are loaded into registers (lines 15 – 20).
This is followed by the butterfly operations (lines 21 – 22).
Finally, synchronization across all parallel threads (line 26)
is required before proceeding to the next level. This is crucial
because some threads may be executing faster than others,
resulting in a race condition [42] (i.e., read before write).
After the synchronization process, it proceeds to the next
level until all FFT levels are completed (line 9). Finally, the
stored results in shared memory are written back onto the
global memory (lines 28 - 30). bid here refers to the ID of
parallel blocks launched. Note that we do not store the
twiddle factors in shared memory because each factor is
only accessed once. It does not bring any performance gain
by caching them onto the shared memory.

NTT is frequently used in Falcon for both signature
generation and verification; it is detailed in Algorithm 6. The
computational patterns of NTT are very similar to the FFT
described in Algorithm 4, except that it is operating in the in-
teger domain (INT32) instead of FP64. Unlike FFT, the NTT
algorithm has to be executed for log2 N levels (line 3), since
the first level in NTT cannot be skipped. It reads the pre-
computed twiddle factors (line 7) and performs the butterfly
operations (lines 10 – 13) similar to the FFT. The modular
multiplication (MQ MUL in line 11) is implemented using
the Montgomery algorithm [4].

NTT can be parallelized similarly to FFT. Unlike FFT
which deals with complex numbers, NTT can achieve more
parallelism (bound by N/2) because it does not contain the
imaginary part. Referring to Algorithm 7, the polynomial a
is first loaded onto the shared memory (lines 6 – 8). The i
and j loops in Algorithm 6 are parallelized in the same way
as described in Fig. 3. The twiddle factors are loaded (line
9) and the index (j) for accessing the polynomial (line 10) is
calculated. It is followed by the butterfly operations (lines
13 – 16) and synchronization across all parallel threads.
After completing all NTT levels, the results are copied from
shared memory to the global memory (lines 19 – 21).

Algorithm 5 Our proposed parallel FFT in-place implemen-
tation in Falcon.
Input: Polynomial a in natural format.
Output: Polynomial a in FFT format.

1: function FFT(a)
2: hn← N/2.
3: t← hn.
4: m← 2.
5: shared sa[N ]; ▷ Initialize shared memory

▷ Copy from global to shared memory
6: for u = 0;u < N/BDim;u++ do
7: sa[u×BDim+tid]← a[bid×N+u×BDim+tid].
8: end for
9: for u = 1;u < log2N ;u++ do

10: i← j1 ← 0.
11: ht← t/2.
12: j2 ← j1 + ht.
13: i← tid/j2.
14: j ← tid % j2 + (tid/j2)× 2× j2.

▷ Load twiddle factors
15: sre ← tf [((m+ i)/2)].
16: sim ← tf [((m+ i)/2) + 1]
17: xre ← sa[j]. ▷ Load real parts
18: xim ← sa[j + hn]. ▷ Load imag. parts
19: yre ← sa[j + ht].
20: yim ← sa[j + hn+ ht].

▷ Butterfly operations
21: C MUL(yre, yim, xre, xim, sre, sim).
22: C ADD(sa[j], sa[j + hn], xre, xim, yre, yim).
23: j1 ← j1 + t.
24: m← m× 2.
25: t← ht.
26: Synchronize threads.
27: end for

▷ Write back to global memory
28: for u = 0;u < N/BDim;u++ do
29: a[bid×N+u×BDim+tid] = sa[u×BDim+tid].
30: end for
31: end function

3.3 HashToPoint

Algorithm 8 shows the HashToPoint algorithm in Falcon,
which utilizes the SHAKE-256 as an extendable-output hash
function (XOF). It is found that the while loop (lines 6
– 12) is a serial process because the coefficients in output
polynomial ci are extracted from SHAKE-256 serially. In
other words, it is not possible to parallelize this while loop
to have any performance gain. However, a closer look into
SHAKE-256 reveals that the inner states can be parallelized
by using 25 parallel threads. This is an approach exploited to
implement SHA3 in a fine-grain parallel manner, which was
first proposed by Lee et. al. [43]. In this paper, we adopted
the same idea to parallelize SHAKE-256 operations (lines
3, 4 and 7) on the GPU; the while loop remains in serial
execution.

3.3.1 Other Operations

Polynomial arithmetic (e.g., addition, subtraction, negation,
etc.) can be parallelized easily as they are coefficient-wise



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Algorithm 6 NTT implementation in Falcon [4].

Input: Polynomial x in natural format.
Output: Polynomial x in NTT format.

1: function NTT(t, T )
2: t← N ;
3: for m = 1;m < N ;m = m× 2 do
4: ht← t/2;
5: j1 ← 0;
6: for i = 0; i < m; i++ do

▷ Load twiddle factors
7: s← tf [m+ i]
8: j2 ← j1 + ht;
9: for j = j1; j < j2; j++ do

▷ Butterfly operations
10: u← a[j]
11: v ←MQ MUL(a[j + ht], s)
12: a[j] = MQ ADD(u, v)
13: a[j + ht] = MQ SUB(u, v)
14: end for
15: j1 ← j1 + t;
16: end for
17: t← ht;
18: end for
19: end function

TABLE 2: Breakdown of the execution time of major com-
putational steps in Mitaka

Functions Percentage (%)
Mitaka-512 Mitaka-1024

Sign Verify Sign Verify

Hash 2.85 12.83 2.86 12.83
FFT/IFFT 15.69 8.95 15.63 8.91
FP64 polynomial arithmetic 22.39 74.41 22.46 74.42(add, sub, negate, etc.)
Sampler: Discrete Gaussian 22.67 – 22.67 –
Sampler: Normaldist 33.87 – 33.86 –
Others 2.53 3.81 2.52 3.84

operations. We launched N threads to compute these op-
erations in a fine-grain parallel manner. The remaining
operations like encode/decode are serial processes, so we
implemented them in a coarse-grain parallel manner.

3.4 Parallelizing Mitaka Signature
Table 2 shows the breakdown of major computational steps
in Mitaka signature generation and verification, which was
evaluated on an Intel i9-10900K CPU, based on the refer-
ence implementation from the authors [6]. The sampler in
Mitaka is the most time-consuming operation; it consumes
around 57% of time in signature generation. It consists of
two parts: Normaldist and the discrete Gaussian sampler
(sample discrete gauss. Normaldist is a function used in
the sampler to generate a centred normal polynomial using
the Box-Muller algorithm. It can be parallelized directly on
a GPU as it involves only coefficient-wise operations with
no data dependency between the coefficients. The discrete
Gaussian sampler accounts for 22% of the entire execution
time in Mitaka signature generation. Followed by this are
the FFT/IFFT and FP64 arithmetic, which are coefficient-
wise operations that can be parallelized. For signature ver-

Algorithm 7 Parallel implementation of NTT on a GPU.

Input: Polynomial x in natural format.
Output: Polynomial x in NTT format.

1: function NTT(t, T )
2: shared sa[N ]; ▷ Initialize shared memory

▷ Copy from global to shared memory
3: for u = 0;u < N/BDim;u++ do
4: sa[u×BDim+tid] = a[bid×N+u×BDim+tid].
5: end for
6: t← N ;
7: for m = 1;u < N ;m = m× 2 do
8: ht← t/2;
9: s← tf [m+ tid/ht]

10: j ← tid % ht+ (tid/ht)× t;
▷ Load twiddle factors

11: s← tf [m+ i]
12: j ← tid % ht+ (tid/ht)× t;

▷ Butterfly operations
13: u← sa[j]
14: v ←MQ MUL(sa[j + ht], s)
15: sa[j] = MQ ADD(u, v)
16: sa[j + ht] = MQ SUB(u, v)
17: Synchronize threads.
18: end for

▷ Write back to global memory
19: for u = 0;u < N/BDim;u++ do
20: a[bid×N+u×BDim+tid] = sa[u×BDim+tid].
21: end for
22: end function

Algorithm 8 HashToPoint in Falcon [4].

Input: A string str, a modulus q ≤ 216, polynomial length
N.

Output: A polynomial c =
∑i=0

n−1 cix
i in Zq[x].

1: function HashToPoint(str, q,N )
2: k ← ⌊216/q⌋
3: ctx← SHAKE-256-Init()
4: SHAKE-256-Inject(ctx, str)
5: i← 0
6: while i < N do
7: t←SHAKE-256-Extract(ctx, 16)
8: if t < kq then
9: ci ← t % q

10: i← i+ 1
11: end if
12: end while
13: end function

ification, most of the time was spent in the FP64 arithmetic
(74%). Since Mitaka was designed to be easily parallelizable,
most of the operations can be directly implemented on
a GPU. In this section, we focus on describing the opti-
mization techniques to improve the performance of Mitaka
implemented on a GPU.

3.4.1 Generating polynomial with normal distribution
Algorithm 9 shows the Box-Muller algorithm used to gen-
erate a random polynomial before passing it to the discrete
Gaussian sampler. Three random vectors with N bytes long



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Algorithm 9 Generate Normal Distribution Random Poly-
nomial: Box-Muller.
Input: Three random vectors u, v and e of N bytes.
Output: A centered normal polynomial vec.

1: function Normdist(u, v, e)
2: for i = 0; i < N/2; i++ do
3: uf [i]← 2×PI × (u[i]&0x1FFFFFFFFFFFFF)×

2−53

4: vf [i]← 0.5+(v[i]&0x1FFFFFFFFFFFFF)×2−54

5: b0← ffsll(e[2× i+ 1]) ▷ Find first bit set
6: b1← ffsll(e[2× i])
7: geom [i]← CMUX(63+b0, b1−1, CZ(e[2× i]))
8: vf [i]←

√
(N × (ln(2)× geom[i]− log(vf [i]))))

9: end for
▷ Write the results onto vec

10: for i = 0; i < N/2; i++ do
11: vec[2× i]← vf [i]× cos(uf [i])
12: vec[2× i+ 1]← vf [i]× sin(uf [i])
13: end for
14: end function

are generated and passed to Algorithm 9. The algorithm
then generates N/2 random samples (vf[i]) from these three
random vectors (i.e., u, v and ). Lines 2 – 9 describe the
detailed steps to perform the Box-Muller transform to obtain
these random samples. Finally, the random polynomial vec
is obtained by taking the cosine and sine values (lines 11
and 12) from the random samples. Note that Algorithm 9
only involves coefficient-wise operations, so it can be easily
parallelized. We launched N/2 threads in our implementa-
tion, each thread computes one item in the i loop (line 2 and
line 10), thus achieving a fine-grain parallel implementation
of Algorithm 9.

3.4.2 Batch Random Samples Generation
The discrete Gaussian sampler requires a lot of random
samples, which are generated from ChaCha20 stream cipher
in the reference implementation of Mitaka. In a serial im-
plementation presented by the authors of [6], the random
samples are generated on an on-demand basis, which is
not friendly to the parallel implementation. Algorithm 10
shows the serial discrete Gaussian sampler implemented
by the authors of [6]. Line 3 can be parallelized as there
is no data dependency between each coefficient. SamplerZ
and base sampler invokes several instances (lines 9, 16 and
25) to obtain random bytes on an on-demand basis. Note
that the random samples are generated through ChaCha20
stream cipher and stored in a buffer. Every time get8() or
get64 are called, it reads the remaining random samples in
this buffer; if random samples in the buffer are completely
consumed, ChaCha20 will be invoked to refill it. To compute
this in parallel, we can instantiate N structures to hold the
random samples, so that N threads can compute line 3 in
parallel. However, we need to perform housekeeping on
these structures to keep track of the number of random
samples consumed, which is a non-trivial overhead.

In this paper, we proposed to divide the discrete Gaus-
sian sampler into two parts. Firstly, a large number of ran-
dom samples are generated on the GPU with batch process-
ing and stored in a large buffer on the global memory. Then,

Algorithm 10 Serial discrete Gaussian sampler implementa-
tion [6].

1: function sample discrete gauss(p)
2: for i = 0; i < N ; i++ do
3: p[i]← SamplerZ(p[i])
4: end for
5: end function
6: function SamplerZ(u)
7: uf ← floor(u)
8: while (1) do
9: entropy ← get8() ▷ Get one random byte

10: for i = 0; i < 8; i++ do
11: z0← base sampler()
12: b← (entropy ≫ i)&1
13: z ← (2× b− 1)× z0 + b+ uf
14: x← (z02 − (z − u)2)/(2×R2)
15: p← ex

16: r ← (get64()&0x1FFFFFFFFFFFFF)× 2−53

17: if r < p then
18: return z
19: end if
20: end for
21: end while
22: end function
23: function base sampler()
24: r ← get64() ▷ Get eight random bytes
25: res← 0
26: for i = 0; i < 13; i++ do

▷ +1 if r ≥ CDT [i]; +0 otherwise.
27: res = res+ (r ≥ CDT [i])
28: end for
29: return res
30: end function

we invoke the sample discrete gauss in Algorithm 10. Note
that this only changes the sequence of how the random
samples are generated and consumed; we believe this does
not create any security issues. With the proposed technique,
we no longer need to generate the random samples through
ChaCha20 on an on-demand basis, which greatly reduces
the housekeeping overhead. In particular, lines 9, 16 and 25
can obtain the pre-computed random samples directly.

From Algorithm 10, we know that each iteration of
while loop (lines 8 – 21) consumes 129 bytes. From our
experiments, we found that most of the time, this while
loop only execute once or twice, because the chance to reject
r (line 16) is low. In other words, the consumed random
bytes are between 129 – 258 bytes. In our implementation,
we instantiate K blocks and N threads, each thread generates
Nsamp = 512 bytes of random samples. Algorithm 11
shows the proposed batch random samples generation im-
plemented on a GPU. Note that each ChaCha20 encryption
in counter mode produces 64 bytes of random samples. We
repeat this for Nsamp/64 (line 2) in each thread to generate
sufficient random samples. The unique counter value is
generated through the thread ID (line 3, tid), which is a
unique identifier for each thread. Since there are K signa-
tures (blocks) generated, we use the block ID (bid) to create
the unique counter for each block. Next, the initialization



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Algorithm 11 Batch random samples generation in Mitaka
for signature generation.

Input: Buffer dst with N×512 bytes, encryption key prng k,
samples per thread Nsamp

Output: N × 512 bytes of random samples generated
through ChaCha20 stream cipher.

1: function PRNG batch(u, v, e)
▷ Each ChaCha20 encryption produces 64B.
▷ This is repeated for Nsamp/64 times to fill up dst.

2: for j = 0; j < Nsamp/64; j++ do
▷ Generate the counter for encryption.

3: cc← bid×N ×Nsamp + tid×Nsamp + j ∗ 8
▷ Load 16B of Initialization Vector (IV).

4: for i = 0; i < 4; i++ do
5: state[i] = CW [i]
6: end for

▷ Load 32B of the key.
7: for i = 0; i < 8; i++ do
8: state[4 + i] = prng k[bid× 56 + 4× i]
9: end for

10: state[14] = state[14]⊕ cc ▷ XOR with counter
11: state[15] = state[15]⊕ (cc≫ 32)
12: Compute ChaCha20 encryption.
13: ... ▷ Removed for brevity.

▷ Store the random samples onto global memory.
14: for i = 0; i < 8; i++ do
15: dst[bid×N ×Nsamp/4+ j×N × 8+ i×N +

tid] = state[i]
16: end for
17: end for
18: end function

vector (IV), which is constant, is loaded onto the state buffer
(line 5), followed by the encryption key (line 8). The counter
value is XORed with the last 8 bytes of the state buffer (lines
10 – 11). The ChaCha20 stream cipher is executed to encrypt
the counter value and generate 64 bytes of random samples.
Note that the details of ChaCha20 encryption are not shown
in Algorithm 11 for brevity reasons; it can be found in our
source code shared on the public domain. Finally, the results
in state buffer are copied to the dst, which will be consumed
by the discrete Gaussian sampler (Algorithm 10, lines 9, 16
and 25.

3.4.3 Other Operations
We implemented the FFT/IFFT and FP64 arithmetic in a
fine-grain parallel manner, following the same techniques
described in Falcon (Section 3.2.3 and 3.3.1). Similarly, the
hash function (SHAKE) used in Mitaka can be parallelized
through the technique described in [43]. The process similar
to the HashToPoint algorithm in Falcon is also used to
hash the input message; we only parallelize SHAKE and
leave the hash process executed in serial. The remaining
operations like encode/decode are implemented in a coarse-
grain parallel manner.

3.5 Kernel Fusion
Implementation of Falcon and Mitaka requires many GPU
kernels to handle different function calls. Each of the func-
tion is implemented as a GPU kernel and called from the

CPU, which may have a different configuration (number of
threads) due to the exploitable parallelism of each function.
For instance, all FP64 polynomial arithmetic can use N
threads, NTT/INTT can use N/2 threads, but FFT/IFFT
may only use N/4 threads. However, each instantiation
of GPU kernel requires additional steps to configure the
number of blocks/threads, prepare the stack memory and
perform context switch; all these introduce some overheads.
To reduce these overheads, we proposed to fuse multiple
kernels that have the same parallelism (i.e., the same num-
ber of threads) into one kernel. By performing kernel fusion,
we can effectively reduce the number of kernel calls and
potentially reuse some of the intermediate results.

Table 3 shows the micro-benchmark of the proposed
kernel fusion technique for both Falcon and Mitaka im-
plementation. Referring to Falcon signature generation,
we managed to combine seven kernels into one (com-
plete private comb), effectively reducing the computation
time from 113.47µs to 57.28µs. For Falcon signature verifi-
cation, combining six kernels into one (comb all kernels),
reduces the computation time from 65.76µs to 35.1µs.
For both cases, the computation time is almost reduced
by half. This shows that reducing the number of kernel
invocations does improve the performance significantly.
Compared to Falcon, we do not find many kernels that have
the same degree of parallelism. In the first case, we man-
aged to combine the kernels normaldist and poly mul fft,
but the performance gain is not significant (4% reduc-
tion), because normaldist is a heavy-weight kernel com-
pared to poly mul fft. The second case which combines
poly mul fft and poly add, managed to reduce the com-
putation time from 23.01µs to 15.20µs. Unfortunately, we
do not find any opportunity to apply the kernel fusions to
the Mitaka signature verification.

4 EXPERIMENTAL RESULTS AND DISCUSSIONS

The evaluation platforms used in our experiments are de-
tailed in Table 4. Platform-1 is a desktop workstation con-
sisting of Intel(R) Core(TM) i9-10900K CPU operating at 3.70
GHz clock, an RTX 3080 GPU and 32 GB RAM. Platform-2
is the ARDC Nectar Research Cloud system [44] that allows
flexible configurations on computing resources. The GPU
devices that we used in Platform-2 are A100, T4 and V100.
Note that RTX 3080 is a consumer-grade GPU commonly
found in desktop workstations, while the A100, T4 and V100
GPUs are server-grade GPUs with higher performance.
These GPUs represent the four state-of-the-art NVIDIA GPU
architectures: Volta (V100, from the year 2017), Turing (T4,
from the year 2018) and Ampere (A100, from the year 2020;
RTX 3080, from the year 2021). Following the parallelization
strategy described in Section 3.1, K GPU blocks are launched
to generate/verify K signatures in parallel. Within each
block, multiple threads are used to compute one signature.

4.1 Performance of Falcon and Mitaka Signature
Schemes on GPUs

Fig. 4 shows the performance of Falcon and Mitaka sig-
nature generation on four selected GPU platforms. The
throughput of signature generation increases when the size



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 3: Micro-benchmark of the proposed kernel fusion technique.

Falcon: Sign Invocation Total Time (µs) Remarks

mq NTT 3 56.07 NTT
mq poly tomonty 1 5.63 Convert to Montgomery representation
mq poly montymul ntt 1 7.74 Point-wise multiplication for two polynomials
mq conv small 3 6.27 Reduce a small signed integer modulo q
mq div 12289 1 12.35 q = 12289 Divide x by y modulo
mq iNTT 1 19.01 INTT
recompute G 1 6.40 Recompute the private key G
Total 113.47

complete private comb 1 57.28 Kernel fusion: combined these kernels into one.

Falcon: Verify

mq NTT 1 18.69 NTT
reduce s2 1 6.50 Reduce s2 elements modulo q
mq poly montymul ntt 1 7.74 Point-wise multiplication for two polynomials
mq iNTT 1 19.01 INTT
mq poly sub 1 7.42 Point-wise subtraction for two polynomials
norm s2 1 6.40 Normalize -s1 elements into the [-q/2..q/2] range.
Total 65.76

comb all kernels 1 35.31 Kernel fusion: combined these kernels into one.

Mitaka: Sign Invocation Total Time (us) Remarks

normaldist 1 196.42 NTT
poly mul fft 1 11.55 Point-wise multiplication for two polynomials (complex domain)
Total 207.97

normaldist mul fft 1 199.81 Kernel fusion: combined these two kernels into one.

poly mul fft 1 11.55 Point-wise multiplication for two polynomials (complex domain)
poly add 1 11.46 Point-wise addition for two polynomials (complex domain)
Total 23.01

poly mul fft add 1 15.20 Kernel fusion: combined these two kernels into one.

TABLE 4: Experimental Platforms Used

Platform-1 Platform-2
Desktop Cloud

Workstation System
GPU RTX 3080 V100 T4 A100
CUDA Cores 8704 5120 2560 8192
Architecture Ampere Volta Turing Ampere
Compute capability 8.6 7.0 7.5 8.0
Clock (GHz) 1.710 1.246 0.585 1.410
Memory bandwidth 760 900 300 1935(GB/s)
No. Streaming 68 80 40 64Multiprocessor (SM)
Compiler CUDA 11 CUDA 11

CPU Intel i9-10900K Intel Xeon Gold 6150
Clock 3.70 GHz 2.2 GHz

of the workload increases (i.e., larger K). In general, the
throughput saturates when the batch size K is between
1024 to 16, 384; but for T4 with a smaller number of cores,
the throughput saturates earlier when K ≥ 64. Note that
throughput saturation indicates that the GPU is already
fully loaded, giving additional workload (i.e., increasing K)
will not produce higher throughput anymore. Experimen-
tal results also show that Mitaka-512 and Mitka-1024 are
always faster than Falcon-512 and Falcon-1024, the speed-
up can range from 1.99 to 19.72 × depending on the batch
size and GPU platforms. This is mainly because Mitaka uses
a parallelizable sampler, which benefits from the parallel
architecture in a GPU; whereas the Falcon ffSampling is
not parallelizable, only a coarse-grained implementation

on GPUs is possible. This shows that the design choice of
a signature scheme can greatly affect its performance on
parallel hardware architectures.

Fig. 5 shows the performance of Falcon and Mitaka
signature verification on various GPU platforms. Similar
to signature generation, the throughput of verification in-
creases when the size of workload increases (i.e., larger K),
but it takes more workload to reach the saturated state.
The throughput saturation happens in all selected GPUs
when the batch size K is ≥ 4096. In contrast to signa-
ture generation, Falcon has a remarkably high verification
throughput across all the selected GPUs, which is higher
than Mitaka for most of the test cases. We note that this
performance difference is due to the efficient verification
process in Falcon which only involves simple polynomial
arithmetic in the integer domain using number theoretic
transform (NTT). Hence, all the computations can be car-
ried out using integer units in GPUs. On the other hand,
Mitaka signature verification was computed over double
precision involving the fast Fourier transform (FFT), which
is executed on floating point units in GPUs. For A100 and
V100, the throughput of 32-bit integer units is 2× higher
than 64-bit floating point units [28], but the gap is higher
for T4 and RTX 3080 (32× higher [28]). This explains that
Mitaka signature verification can be significantly slower if it
is implemented on double precision.

Table 5 shows the throughput and latency of
Falcon/Mitaka-512 and Falcon/Mitaka-1024, respectively.
The experiments are carried out for 30 times and the average
results were reported. Experimental results show that the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

25 2
6

27 2
8

29 2
1
0

21
2

2
1
4

20

40

60

80

100

120

140

160

Batch Size (K)

Th
ou

sa
nd

s
si

gn
at

ur
es

pe
r

se
co

nd
Throughput of Signature Generation

Falcon-512-Sign
Falcon-1024-Sign
Mitaka-512-Sign
Mitka-1024-Sign

(a) RTX 3080

2
5

26 2
7

28 29 21
0

21
2

21
4

20

40

60

80

100

120

140

160

Batch Size (K)

Th
ou

sa
nd

s
si

gn
at

ur
es

pe
r

se
co

nd

Throughput of Signature Generation

Falcon-512-Sign
Falcon-1024-Sign
Mitaka-512-Sign
Mitka-1024-Sign

(b) A100

25 2
6

27 2
8

29 2
1
0

21
2

2
1
4

10

20

30

40

50

60

70

80

Batch Size (K)

Th
ou

sa
nd

s
si

gn
at

ur
es

pe
r

se
co

nd

Throughput of Signature Generation

Falcon-512-Sign
Falcon-1024-Sign
Mitaka-512-Sign
Mitka-1024-Sign

(c) T4

2
5

26 2
7

28 29 21
0

21
2

21
4

10

20

30

40

50

60

70

80

Batch Size (K)

Th
ou

sa
nd

s
si

gn
at

ur
es

pe
r

se
co

nd

Throughput of Signature Generation

Falcon-512-Sign
Falcon-1024-Sign
Mitaka-512-Sign
Mitka-1024-Sign

(d) V100

Fig. 4: Throughput of Falcon and Mitaka signature generation on various GPU devices

signature generations have low latency and high through-
put performance. For instance, the slowest GPU in our
experiment, T4, can produce 16,384 Falcon-1024 signatures
in 2144.22 ms; the fastest GPU, A100 can complete the
same task in only 279.61 ms. The performance of signature
verification is equally impressive, wherein all verifications
can be completed within 100 ms regardless of the batch size
and the GPU used.

4.2 Comparison with Existing Works
Table 6 shows the comparison of our work against the state-
of-the-art Falcon and Mitaka implementation on CPU. We
also compared our implementation results with three re-
cently published works on the GPU implementation of post-
quantum signature schemes. FP64 refers to the reference
implementation provided by the Falcon and Mitaka au-
thors, which is implemented using double precision floating

point; while AVX2 is the optimized implementation utiliz-
ing AVX2 instructions available on the CPU. Our Falcon-
512 implementation on RTX 3080 is 7.78× and 52.43×
faster than the AVX2 implementation for sign and verify,
respectively. For the case of Falcon-1024, the speed-up is
higher (20.56× and 148.56×), due to the high parallelism
available in GPU. Since there is no AVX2 implementation of
Mitaka available, we compare our work with the reference
implementation (FP64) on CPU. Our GPU implementation
is 9.15× (sign)/14.45× (verify) and 39.07× (sign)/69.1×
(verify) faster than FP64 for Mitaka-512 and Mitaka-1024
respectively.

Wang et al. [45] had reported the first implementation
of XMSS signature on GPU devices. For the parameter set
XMSS 10, they reported a throughput of 225396 sign/s and
730450 verify/s on RTX 3090. Note that this GPU has more
cores compared to the one we use, so we scale the results



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

25 2
6

27 2
8

29 2
1
0

21
2

2
1
4

400

800

1,200

1,600

2,000

2,400

2,800

Batch Size (K)

Th
ou

sa
nd

s
si

gn
at

ur
es

pe
r

se
co

nd
Throughput of Signature Verification

Falcon-512-Ver
Falcon-1024-Ver
Mitaka-512-Ver
Mitka-1024-Ver

(a) RTX 3080

2
5 26 27 28 29 21
0

2
1
2

21
4

400

800

1,200

1,600

2,000

2,400

2,800

Batch Size (K)

Th
ou

sa
nd

s
si

gn
at

ur
es

pe
r

se
co

nd

Throughput of Signature Verification

Falcon-512-Ver
Falcon-1024-Ver
Mitaka-512-Ver
Mitka-1024-Ver

(b) A100

25 2
6

27 2
8

29 2
1
0

21
2

2
1
4

400

800

1,200

1,600

2,000

2,400

2,800

Batch Size (K)

Th
ou

sa
nd

s
si

gn
at

ur
es

pe
r

se
co

nd

Throughput of Signature Verification

Falcon-512-Ver
Falcon-1024-Ver
Mitaka-512-Ver
Mitka-1024-Ver

(c) T4

2
5

26 27 28 29 21
0

2
1
2

21
4

400

800

1,200

1,600

2,000

2,400

2,800

Batch Size (K)

Th
ou

sa
nd

s
si

gn
at

ur
es

pe
r

se
co

nd

Throughput of Signature Verification

Falcon-512-Ver
Falcon-1024-Ver
Mitaka-512-Ver
Mitka-1024-Ver

(d) V100

Fig. 5: Throughput of Falcon-512 and Mitaka-512 signature verification on various GPU devices.

accordingly. XMSS 10 [45] has a faster signature generation
compared to Falcon-512 and Mitaka-512. On the other hand,
Falcon and Mitaka verification throughputs are 3.16× and
1.14× faster than XMSS 10 (scaled). Similar results are also
observed in the recent GPU implementation of Dilithium
[26]. Dilithium achieved throughput of 717, 306 sign/s and
1, 960, 182 verify/s on RTX 3090 Ti, which is 20.8× and
7.84× (scaled) faster than Falcon-512 and Mitaka-512, re-
spectively. In contrast, the verification throughput of Falcon-
512 and Mitaka-512 is 3.2× and 1.18× (scaled) faster than
Dilithium. Sun et al. [14] showed that throughput of 5, 152
sign/s and 106, 390 verify/s can be achieved by SPHINCS
on an older GPU, GTX 1, 080. Our implementation of
Falcon-512 and Mitaka-512 are 1.59× and 4.22× faster in
a signature generation; it is also 5.28× and 1.92× faster in
signature verification, compared to SPHINCS [14].

4.3 Discussions
From the experimental results, we note that Mitaka signa-
ture verification is slower than Falcon, due to the use of
double-precision arithmetic. The original Mitaka scheme [6]
does not restrict that the verification process must reside
on the double precision domain. By porting it over to the
integer domain, we believe that the Mitaka verification
throughput on GPUs can be greatly improved. Since the
Mitaka verification process is very similar to the Falcon ver-
ification [4] with the same polynomial degree and modulus
in the arithmetic, the FFT used by the Mitaka verification
can be easily replaced with the NTT in the integer domain.
However, in this paper, we follow strictly the reference
implementation provided by the authors [6] so that the test
vectors can be verified.

Besides that, referring to the use case in e-commerce that
we discussed in Section 1, we observed that an A100 GPU



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

TABLE 5: Throughput and latency performance of Falcon and Mitaka on four selected GPU platforms.

RTX 3080

Falcon-512 Mitaka-512 Falcon-1024 Mitaka-1204

K Sign Verify Sign Verify Sign Verify Sign Verify

Op/s ms Op/s ms Op/s ms Op/s ms Op/s ms Op/s ms Op/s ms Op/s ms

32 2000 16 104112 0.31 39448 0.81 160708 0.2 1655 19.34 66653 0.48 18786 1.7 89815 0.36
64 3796 16.86 200723 0.32 61188 1.05 270047 0.24 3438 18.62 128667 0.5 26889 2.38 148258 0.43
128 7751 16.51 355587 0.36 70473 1.82 395260 0.32 6366 20.11 239006 0.54 30335 4.22 211786 0.6
256 14351 17.84 614959 0.42 75198 3.4 549508 0.47 9940 25.75 431779 0.59 33211 7.71 245399 1.04
512 22879 22.38 924375 0.55 76055 6.73 629086 0.81 12287 41.67 684112 0.75 31975 16.01 301159 1.7
1024 23454 43.66 1073105 0.95 77275 13.25 656274 1.56 12867 79.58 924214 1.11 34577 29.62 313087 3.27
4096 27025 151.56 1805872 2.27 75200 54.47 649951 6.3 14924 274.46 1140358 3.59 33987 120.52 308443 13.28
16384 27908 587.07 1913380 8.56 74010 221.38 695931 23.54 15239 1075.14 1217317 13.46 34025 481.53 309841 52.88

V100

K Sign Verify Sign Verify Sign Verify Sign Verify

Op/s ms Op/s ms Op/s ms Op/s ms Op/s ms Op/s ms Op/s ms Op/s ms

32 1668 19.18 70801 0.45 8808 3.63 119904 0.27 1948 16.43 45094 0.71 9006 3.55 73975 0.43
64 3318 19.29 143328 0.45 19012 3.37 203066 0.32 3903 16.4 85852 0.75 12838 4.99 119596 0.54
128 6782 18.87 266987 0.48 33643 3.8 312402 0.41 7500 17.07 164908 0.78 25455 5.03 186689 0.69
256 13861 18.47 475483 0.54 53379 4.8 402962 0.64 13834 18.51 303398 0.84 32796 7.81 238671 1.07
512 25534 20.05 745156 0.69 65128 7.86 517649 0.99 19650 26.06 507099 1.01 34239 14.95 280613 1.82
1024 25876 39.57 1115799 0.92 69077 14.82 552935 1.85 19282 53.11 731529 1.4 35901 28.52 286369 3.58
4096 31771 128.92 1694377 2.42 84384 48.54 823843 4.97 25741 159.12 1192980 3.43 42208 97.04 418551 9.79
16384 37100 441.62 2019222 8.11 86361 189.72 843035 19.43 26745 612.6 1289210 12.71 56829 288.3 423898 38.65

T4

K Sign Verify Sign Verify Sign Verify Sign Verify

Op/s ms Op/s ms Op/s ms Op/s ms Op/s ms Op/s ms Op/s ms Op/s ms

32 1380 23.19 97924 0.33 5844 5.48 41235 0.78 1299 24.63 55401 0.58 3521 9.09 23114 1.38
64 2627 24.36 147922 0.43 28921 2.21 152549 0.42 2027 31.57 114240 0.56 15471 4.14 84425 0.76
128 4793 26.71 333985 0.38 29178 4.39 184732 0.69 3814 33.56 205351 0.62 16207 7.9 110647 1.16
256 7996 32.02 529447 0.48 31734 8.07 219441 1.17 5225 49 333150 0.77 16694 15.33 120143 2.13
512 8954 57.18 604334 0.85 27472 18.64 258165 1.98 5387 95.04 439986 1.16 14389 35.58 155919 3.28
1024 10024 102.15 740110 1.38 27045 37.86 251786 4.07 6417 159.58 456454 2.24 14956 68.47 156734 6.53
4096 12666 323.39 805956 5.08 29917 136.91 323152 12.68 7270 563.41 477821 8.57 14847 275.88 156544 26.17
16384 12934 1266.74 837496 19.56 29066 563.68 331619 49.41 7641 2144.22 472051 34.71 15213 1076.97 165105 99.23

A100

K Sign Verify Sign Verify Sign Verify Sign Verify

Op/s ms Op/s ms Op/s ms Op/s ms Op/s ms Op/s ms Op/s ms Op/s ms

32 4674 6.85 88523 0.36 25907 1.24 135281 0.24 1542 20.75 41976 0.76 10122 3.16 89741 0.36
64 8963 7.14 175764 0.36 36156 1.77 288472 0.22 3811 16.79 90440 0.71 28412 2.25 165736 0.39
128 17090 7.49 335189 0.38 60355 2.12 471454 0.27 7060 18.13 178508 0.72 39257 3.26 283222 0.45
256 26037 9.83 629287 0.41 105923 2.42 702309 0.36 12556 20.39 341587 0.75 55935 4.58 392042 0.65
512 44229 11.58 1078854 0.47 148803 3.44 1168452 0.44 25513 20.07 578306 0.89 73614 6.96 502814 1.02
1024 47029 21.77 1688585 0.61 157948 6.48 1395524 0.73 25272 40.52 956023 1.07 71137 14.39 662993 1.54
4096 55505 73.8 2399110 1.71 161044 25.43 1413547 2.9 44680 91.67 1916189 2.14 87413 46.86 784442 5.22
16384 58595 279.61 2721562 6.02 161985 101.15 1421046 11.53 37550 436.32 2092758 7.83 97413 168.19 864741 18.95

can process the required signature generations (583,000) and
verifications (1,166,000) in ≈ 10s and ≈ 0.42s respectively,
using Falcon-512. This shows that by offloading these com-
putations to a GPU accelerator [35], the response time can
be greatly reduced.

5 CONCLUSIONS

A high throughput implementation of Falcon and Mitaka
was presented in this article. Experimental results show that
Mitaka has a much higher signature generation throughput
compared to Falcon, due to the parallelizable sampling
process. On the other hand, Falcon enjoys a higher ver-
ification throughput as all the computations can be per-
formed in the integer domain. This shows that the choices
made in designing a signature scheme can greatly affect its

performance on various hardware architectures, including
parallel architecture like GPU. Close analysis on the Mitaka
verification process shows that its performance on GPUs
can be improved if we port the existing implementation
from FP64 to integer domain, which is an interesting fu-
ture work to pursue. Given that the NIST standardization
for the signature scheme is still ongoing, parallelizing the
selected candidates on GPUs would also be a good research
direction.

REFERENCES

[1] “Post-quantum cryptography: Round 1
submissions.” [Online]. Available: https:
//csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/
round-1-submissions



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

TABLE 6: Comparing with CPU and state-of-the-art imple-
mentations.

Fal-512 Mit-512 Fal-1024 Mit-1024
CPU, Op/s

AVX2 Sign 3167 - 2850 -
Verify 18230 - 18319 -

FP64 Sign 3587 8087 2045 4146
Verify 36491 48153 17694 20565

GPU, Op/s
This work 1 Sign 27908 74010 15239 34025
(RTX 3080) Verify 1913380 695931 1217317 309841

XMSS 10 [45] Sign 225396/1869132

(SHA-256) Verify 730450/6057392

Dilithium [26] Sign 717306/5806763

Verify 1960182/15868143

SPHINCS [14] Sign 5152/175164

(ChaCha) Verify 106390/3617264

1 The highest throughput with K = 16384.
2 Performance scaled by the number of cores, 10496/8704. RTX

3090 was used in [45].
3 Performance scaled by 10752/8704 RTX 3090 Ti was used in [26].
4 Performance scaled by 2560/8704. GTX 1080 was used in [14].

[2] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé,
“Crystals-kyber,” 2021. [Online]. Available: https://csrc.
nist.gov/CSRC/media/Projects/post-quantum-cryptography/
documents/round-3/submissions/Kyber-Round3.zip

[3] V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe,
G. Seiler, D. Stehlé, and S. Bai, “Crystals-dilithium,” 2021.
[Online]. Available: https://csrc.nist.gov/CSRC/media/Projects/
post-quantum-cryptography/documents/round-3/submissions/
Dilithium-Round3.zip

[4] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Prest, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Falcon:
Fast-fourier lattice-based compact signatures over ntru,” 2021.
[Online]. Available: https://csrc.nist.gov/CSRC/media/Projects/
post-quantum-cryptography/documents/round-3/submissions/
Falcon-Round3.zip

[5] J.-P. Aumasson, D. J. Bernstein, C. Dobraunig, M. Eichlseder,
S. Fluhrer, S.-L. Gazdag, A. Hülsing, P. Kampanakis, S. Kölbl,
T. Lange et al., “Sphincs+.” [Online]. Available: https://csrc.
nist.gov/CSRC/media/Projects/post-quantum-cryptography/
documents/round-3/submissions/SPHINCS-Round3.zip

[6] T. Espitau, P.-A. Fouque, F. Gérard, M. Rossi, A. Takahashi, M. Ti-
bouchi, A. Wallet, and Y. Yu, “: A simpler, parallelizable, maskable
variant of,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2022, pp. 222–
253.

[7] J. M. B. Mera, A. Karmakar, S. Kundu, and I. Verbauwhede, “Scab-
bard: a suite of efficient learning with rounding key-encapsulation
mechanisms,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 474–509, 2021.

[8] J.-P. D’Anvers, K. Angshuman, R. Sujoy Sinha, F. Vercauteren,
J. Maria Bermudo Mera, M. Van Beirendonck, and
A. Basso, “Saber: Mod-LWR based kem,” 2020.
[Online]. Available: https://csrc.nist.gov/CSRC/media/
Projects/post-quantum-cryptography/documents/round-3/
submissions/SABER-Round3.zip

[9] Y. Zhu, M. Zhu, B. Yang, W. Zhu, C. Deng, C. Chen, S. Wei, and
L. Liu, “Lwrpro: An energy-efficient configurable crypto-processor
for module-lwr,” IEEE Transactions on Circuits and Systems I: Regu-
lar Papers, vol. 68, no. 3, pp. 1146–1159, 2021.

[10] T. Pornin, “New efficient, constant-time implementations of
falcon,” Cryptology ePrint Archive, 2019. [Online]. Available:
https://eprint.iacr.org/2019/893

[11] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen,
“PQM4: Post-quantum crypto library for the ARM Cortex-M4,”
https://github.com/mupq/pqm4.

[12] E. Alkim, Y. A. Bilgin, M. Cenk, and F. Gérard, “Cortex-m4
optimizations for {R, M} lwe schemes,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, pp. 336–357, 2020.

[13] H. Seo, P. Sanal, A. Jalali, and R. Azarderakhsh, “Optimized

implementation of sike round 2 on 64-bit arm cortex-a processors,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67,
no. 8, pp. 2659–2671, 2020.

[14] S. Sun, R. Zhang, and H. Ma, “Efficient parallelism of post-
quantum signature scheme sphincs,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 11, pp. 2542–2555, 2020.

[15] S. Dong, Y. Sun, N. B. Agostini, E. Karimi, D. Lowell, J. Zhou,
J. Cano, J. L. Abellán, and D. Kaeli, “Spartan: A sparsity-adaptive
framework to accelerate deep neural network training on GPUs,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 10,
pp. 2448–2463, 2021.

[16] N. Tahmasebi, P. Boulanger, J. Yun, G. Fallone, M. Noga, and
K. Punithakumar, “Real-time lung tumor tracking using a CUDA
enabled nonrigid registration algorithm for MRI,” IEEE journal of
translational engineering in health and medicine, vol. 8, pp. 1–8, 2020.

[17] A. Al Badawi, B. Veeravalli, J. Lin, N. Xiao, M. Kazuaki, and
A. K. M. Mi, “Multi-GPU design and performance evaluation of
homomorphic encryption on GPU clusters,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 2, pp. 379–391, 2020.

[18] W.-K. Lee, B.-M. Goi, and R. C.-W. Phan, “Terabit encryption
in a second: Performance evaluation of block ciphers in GPU
with Kepler, Maxwell, and Pascal architectures,” Concurrency and
Computation: Practice and Experience, vol. 31, no. 11, p. e5048, 2019.

[19] X. Su, C. He, T. Liu, and L. Wu, “Full parallel power flow solution:
A GPU-CPU-based vectorization parallelization and sparse tech-
niques for newton–raphson implementation,” IEEE Transactions on
Smart Grid, vol. 11, no. 3, pp. 1833–1844, 2019.

[20] “NVIDIA GPUs on IBM cloud servers,” https://www.ibm.com/
cloud/gpu, 2021, accessed: 2021-10-10.

[21] “Amazon ec2 p4d instances,” https://aws.amazon.com/ec2/
instance-types/p4/, 2021, accessed: 2021-10-10.

[22] N. Gupta, A. Jati, A. K. Chauhan, and A. Chattopadhyay, “PQC
acceleration using GPUs: FrodoKEM, NewHope, and Kyber,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 3,
pp. 575–586, 2021.

[23] W.-K. Lee, H. Seo, Z. Zhang, and S. O. Hwang, “Tensorcrypto:
High throughput acceleration of lattice-based cryptography using
tensor core on gpu,” IEEE Access, vol. 10, pp. 20 616–20 632, 2022.

[24] W.-K. Lee, H. Seo, S. O. Hwang, R. Achar, A. Karmakar, and
J. M. B. Mera, “Dpcrypto: Acceleration of post-quantum cryptog-
raphy using dot-product instructions on gpus,” IEEE Transactions
on Circuits and Systems I: Regular Papers, 2022.

[25] W. K. Lee and S. O. Hwang, “High throughput implementation
of post-quantum key encapsulation and decapsulation on GPU
for Internet of Things applications,” IEEE Transactions on Services
Computing, 2021.

[26] S. Shen, H. Yang, W. Dai, Z. Liu, and Y. Zhao, “High-throughput
gpu implementation of dilithium post-quantum digital signature,”
arXiv preprint arXiv:2211.12265, 2022.

[27] Alibaba, “Alibaba’s 11.11 signals china retail health, a
boon for international brands,” https://www.alizila.com/
alibabas-11-11-shows-retail-boom-in-china/, 2023, (accessed on
Feb. 17, 2023).

[28] C. NVIDIA, “CUDA C programming guide, version 11.6,”
NVIDIA Corp, 2022.

[29] D. Stehlé and R. Steinfeld, “Making NTRU as secure as worst-case
problems over ideal lattices,” in EUROCRYPT, ser. Lecture Notes
in Computer Science, vol. 6632. Springer, 2011, pp. 27–47.

[30] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard
lattices and new cryptographic constructions,” in STOC. ACM,
2008, pp. 197–206.

[31] L. Ducas and T. Prest, “Fast fourier orthogonalization,” in ISSAC.
ACM, 2016, pp. 191–198.

[32] T. Prest, “Gaussian sampling in lattice-based cryptography,” 2015.
[33] C. Peikert, “An efficient and parallel Gaussian sampler for lat-

tices,” in CRYPTO, ser. Lecture Notes in Computer Science, vol.
6223. Springer, 2010, pp. 80–97.

[34] A. Al Badawi, B. Veeravalli, C. F. Mun, and K. M. M. Aung,
“High-performance FV somewhat homomorphic encryption on
GPUs: An implementation using CUDA,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, pp. 70–95, 2018.

[35] W. Pan, F. Zheng, Y. Zhao, W.-T. Zhu, and J. Jing, “An efficient el-
liptic curve cryptography signature server with gpu acceleration,”
IEEE Transactions on Information Forensics and Security, vol. 12, no. 1,
pp. 111–122, 2016.

[36] T. Oder, J. Speith, K. Höltgen, and T. Güneysu, “Towards practi-
cal microcontroller implementation of the signature scheme fal-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

con,” in International Conference on Post-Quantum Cryptography.
Springer, 2019, pp. 65–80.

[37] D. T. Nguyen and K. Gaj, “Fast falcon signature generation and
verification using armv8 neon instructions,” PQC2022, 2022. [On-
line]. Available: https://csrc.nist.gov/csrc/media/Events/2022/
fourth-pqc-standardization-conference/documents/papers/
fast-falcon-signature-generation-and-verification-pqc2022.pdf

[38] Y. Kim, J. Song, and S. C. Seo, “Accelerating falcon on armv8,”
IEEE Access, vol. 10, pp. 44 446–44 460, 2022.

[39] L. Beckwith, D. T. Nguyen, and K. Gaj, “High-performance
hardware implementation of lattice-based digital signatures,”
Cryptology ePrint Archive, 2022. [Online]. Available: https:
//eprint.iacr.org/2022/217

[40] W. M. Gentleman and G. Sande, “Fast fourier transforms: for fun
and profit,” in AFIPS Fall Joint Computing Conference, ser. AFIPS
Conference Proceedings, vol. 29. AFIPS / ACM / Spartan Books,
Washington D.C., 1966, pp. 563–578.

[41] J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of complex fourier series,” Mathematics of computation,
vol. 19, no. 90, pp. 297–301, 1965.

[42] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux device drivers.
” O’Reilly Media, Inc.”, 2005.

[43] W.-K. Lee, G. Wong, Xian-Fu, Bok-Min, and R. C.-W. Phan, “Cuda-
ssl: Ssl/tls accelerated by gpu,” in 2017 International Carnahan
Conference on Security Technology (ICCST). Springer, 2019, pp. 1–6.

[44] “Australian research data commons nectar research cloud
system,” 2023. [Online]. Available: https://ardc.edu.au/services/
ardc-nectar-research-cloud/

[45] Z. Wang, X. Dong, H. Chen, and Y. Kang, “Efficient gpu imple-
mentations of post-quantum signature xmss,” IEEE Transactions
on Parallel and Distributed Systems, 2023.

ACKNOWLEDGMENTS

The experiments was carried out on the Nectar Research
Cloud system supported by the Australian Research Data
Commons (ARDC). Wai-Kong Lee was supported by the
Brain Pool Program through the National Research Founda-
tion of Korea (NRF) funded by the Ministry of Science and
Information Communication Technology (ICT) under Grant
2019H1D3A1A01102607. The work of Seong Oun Hwang
was supported by the NRF funded by the Ministry of
Science and ICT under Grant 2020R1A2B5B01002145.

Wai-Kong Lee received the B.Eng. degree in
electronics and the M.Sc. degree from Multime-
dia University in 2006 and 2009, respectively,
and the Ph.D. degree in engineering from Uni-
versiti Tunku Abdul Rahman, Malaysia, in 2018.
He was a Visiting Scholar with Carleton Uni-
versity, Canada, in 2017, Feng Chia University,
Taiwan, in 2016 and 2018, and OTH Regens-
burg, Germany, in 2015, 2018 and 2019. Prior
to joining academia, he worked in several multi-
national companies including Agilent Technolo-

gies (Malaysia) as R&D engineer. His research interests are in the
areas of cryptography, numerical algorithms, GPU computing, Internet
of Things, and energy harvesting. He is currently a post-doctoral re-
searcher in Gachon University, South Korea.

Raymond K. Zhao received the BEng degree in
computer science and technology from Zhejiang
University, China, in 2015, the master’s degree
in network and security from Monash University,
Australia, in 2017, and the PhD degree from the
Faculty of Information Technology (FIT), Monash
University, Australia, in 2022. He was a research
fellow in the Department of Software Systems
and Cybersecurity, FIT, Monash University, Aus-
tralia, in 2022. Since November 2022, he has
been a postdoctoral fellow with CSIRO’s Data61.

His main research interests include efficient and secure implementation
techniques for post-quantum cryptographic applications and protocols.
He is a member of the IEEE.

Ron Steinfeld (S’99-M’04) received the BSc de-
gree in mathematics and physics from Monash
University, Australia, in 1998, the BE (First Class
Hons) degree in electrical and computer sys-
tems engineering from Monash University, in
2000, and the PhD degree in computer science
from Monash University, in 2003. Since 2020, he
is an Associate Professor with the Department
of Software Systems and Cybersecurity, Monash
University, Australia. From 2003 to 2006, he was
a postdoctoral research fellow in cryptography

and information security with Macquarie University, Australia. From 2007
to 2009, he was a Macquarie University research fellow in cryptography
and information security. From 2009 to 2014, he was an ARC Australian
research fellow in cryptography and information security with Macquarie
University (until 2012) and then with Monash University (2012-2014)
and a senior lecturer at Monash University from 2015 to 2019. His
main research interests include the design and analysis of cryptographic
algorithms and cybersecurity protocols with a focus on post-quantum
cryptography. He is a member of the IEEE.

Amin Sakzad (M’12) received the PhD degree
in applied mathematics from the Amirkabir Uni-
versity of Technology (Tehran Polytechnique),
Tehran, Iran, in 2011. He was a research fel-
low with the Software Defined Telecommunica-
tions (SDT) Laboratory, Department of Electrical
and Computer Systems Engineering (ECSE),
Monash University, Melbourne, Australia, from
2012-2015. Starting from 2016, he held a pos-
doctoral research fellowship position with the
Faculty of Information Technology (FIT), Monash

University, Melbourne, Australia. Since May 2017, he has been ap-
pointed as a lecturer with FIT, Monash University, Melbourne, Australia.
As of 2020, he is a senior lecturer at the Department of Software
Systems and Cybersecurity at Monash University. His research inter-
ests include Euclidean lattices, lattice-based cryptography, and wireless
network coding.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

Seong Oun Hwang (Senior Member, IEEE)
received the B.S. degree in mathematics from
Seoul National University, in 1993, the M.S. de-
gree in information and communications engi-
neering from the Pohang University of Science
and Technology, in 1998, and the Ph.D. degree
in computer science from the Korea Advanced
Institute of Science and Technology, in 2004,
South Korea. He worked as a Software Engi-
neer with LG-CNS Systems, Inc., from 1994 to
1996. He worked as a Senior Researcher with

the Electronics and Telecommunications Research Institute (ETRI), from
1998 to 2007. He worked as a Professor with the Department of Soft-
ware and Communications Engineering, Hongik University, from 2008
to 2019. He is currently a Professor with the Department of Computer
Engineering, Gachon University. His research interests include cryptog-
raphy, cybersecurity, and artificial intelligence. He is an Editor of ETRI
Journal.


