
Citation: Foreman, C.; Yeung, R.;

Curchod, F.J. Statistical Testing of

Random Number Generators and

Their Improvement Using

Randomness Extraction. Entropy 2024,

26, 1053. https://doi.org/10.3390/

e26121053

Academic Editors: Andrei Khrennikov

and Karl Svozil

Received: 30 October 2024

Revised: 27 November 2024

Accepted: 29 November 2024

Published: 4 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Statistical Testing of Random Number Generators and Their
Improvement Using Randomness Extraction
Cameron Foreman 1,2,* , Richie Yeung 3,4 and Florian J. Curchod 5

1 Quantinuum, Partnership House, Carlisle Place, London SW1P 1BX, UK
2 Department of Computer Science, University College London, London WC1E 6BT, UK
3 Quantinuum, 17 Beaumont Street, Oxford OX1 2NA, UK; richie.yeung@quantinuum.com
4 Department of Computer Science, University of Oxford, Wolfson Building, Parks Rd, Oxford OX1 3QG, UK
5 Quantinuum, Terrington House, 13–15 Hills Road, Cambridge CB2 1NL, UK;

florian.curchod@quantinuum.com
* Correspondence: cameron.foreman@quantinuum.com

Abstract: Random number generators (RNGs) are notoriously challenging to build and test, especially
for cryptographic applications. While statistical tests cannot definitively guarantee an RNG’s output
quality, they are a powerful verification tool and the only universally applicable testing method. In
this work, we design, implement, and present various post-processing methods, using randomness
extractors, to improve the RNG output quality and compare them through statistical testing. We
begin by performing intensive tests on three RNGs—the 32-bit linear feedback shift register (LFSR),
Intel’s ‘RDSEED,’ and IDQuantique’s ‘Quantis’—and compare their performance. Next, we apply
the different post-processing methods to each RNG and conduct further intensive testing on the
processed output. To facilitate this, we introduce a comprehensive statistical testing environment,
based on existing test suites, that can be parametrised for lightweight (fast) to intensive testing.

Keywords: statistical testing; random number generation; randomness extractors; information-
theoretic security

1. Introduction

The notion of randomness plays an important role in numerous fields, ranging from
philosophy to science. In science, it is used in optimisation and numerical integration (e.g.,
using the Monte Carlo method), algorithm randomisation, or cryptography. Although there
is something universal about the concept of randomness, its definition varies substantially
depending on the context in which it is used. In cryptography, for example, random
numbers should be unpredictable, in the sense that they should be indistinguishable from
uniformly distributed and secret ones, even by an adversary potentially possessing infor-
mation about the random number generator (RNG) that the user does not have. Therefore,
randomness—or unpredictability—from the perspective of the RNG user and from the
perspective of a hypothetical adversary is fundamentally different. However, if the output
of the RNG exhibits patterns that are detectable by the user, then these patterns also imply
predictive power from the perspective of the adversary, since the adversary needs to be con-
sidered to have at least as much information as the user. In this sense, unpredictability from
the user’s perspective is a necessary (but not sufficient) condition for the unpredictability
of an adversary. This idea motivates the numerical testing of RNGs’ outputs, which serves
as a means of randomness validation, i.e., to detect failures to generate randomness.

Because numerical testing is a useful implementation check and the only universally
applicable method to test different RNGs, it is an essential part of obtaining a cryptographic
RNG certified by standards bodies—for example, the National Institute of Standards and
Technology (NIST) or the Bundesamt für Sicherheit in der Informationstechnik (BSI). This
certification process ensures that the RNG has been constructed and tested following best

Entropy 2024, 26, 1053. https://doi.org/10.3390/e26121053 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26121053
https://doi.org/10.3390/e26121053
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-7942-9472
https://orcid.org/0000-0003-1953-8305
https://orcid.org/0000-0003-3256-038X
https://doi.org/10.3390/e26121053
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26121053?type=check_update&version=2


Entropy 2024, 26, 1053 2 of 33

practices. For nearly all cryptographic applications, companies typically regard certification
from a standards body as a prerequisite for RNG usage. The NIST and BSI standards
require both the detailed modelling of the underlying physical process and the numerical
testing of the RNG’s output statistics in order for a hardware RNG to be compliant. This
has led to the development of statistical test suites, the best known being NIST’s [1] and
the Dieharder [2,3] suite, but there are also others, e.g., [4–6]. Together, these test suites
enable the comprehensive analysis of a wide array of statistical characteristics. Despite their
usefulness, they are often complicated to use and their outputs are challenging to analyse.

To address this, we design a tunable statistical testing environment (STE) by com-
bining existing suites, allowing for adjustable intensity levels that balance the computa-
tional cost with effectiveness in detecting statistical bias, enabling more rigorous RNG
testing than standard requirements. We make our testing environment openly available
at https://github.com/CQCL/random_test (accessed on 28 November 2024). Using the
STE’s most intense setting, we test the output of three different RNGs representative of
those used across commercial applications, allowing us to benchmark them against each
other. We also provide a framework to analyse the overall numerical test results generated
by the STE, which is not obvious otherwise.

We then present a range of post-processing methods, utilising various randomness
extractors, to enhance the quality of each RNG’s output by, for instance, removing bias
or dependencies between bits. Our set-up is illustrated in Figure 1. Each extraction
method is based on distinct assumptions, which can be compared against each other.
Examples of these assumptions include specific structures in the RNG’s output process,
such as assuming that each output bit is generated in an identically and independently
distributed (i.i.d.) manner or the availability of a short, pre-existing (near-)perfect random
bit string as a resource. To evaluate the effectiveness of each method, we implement them
using the Cryptomite software library [7] and apply statistical testing through our STE to
analyse the impact of these techniques. These assumptions must be practically justified,
and statistical testing is employed to determine whether each post-processing method
succeeds in producing statistically sound results.

Figure 1. This figure illustrates our implementation set-up. The black box represents one of the
initial RNGs that we test, and the dashed box denotes the new—in principle, improved—RNG with
additional post-processing applied.

1.1. Related Work

The statistical testing of RNGs has a long history, dating back to the implementation of
the Diehard CD-ROM tests in the 1990s [2]. Since then, two main research directions have
emerged, which are both relevant to our work. First, researchers developed other test suites,
such as the NIST Statistical Test Suite [1], the TestU01 suite [4], ENT [5], and PractRand [6],
all of which we utilise for this work. Second, the empirical testing of specific RNGs was
performed, such as [8,9], which analysed and compared the results of statistical tests on a
variety of pseudo-RNGs (PRNGs). Other works have considered the empirical testing of
so-called true-RNGs (TRNGs)—for example, [10], which tests the statistical properties of
the entropy source in Intel’s Ivy Bridge TRNG, and [11–16], which develop, implement,
and statistically test different TRNGs. Recently, this has been extended to quantum RNGs
(QRNGs)— for example, [17–21], in which the authors extensively statistical test an ID
Quantique QRNG [22]. Other works give a universally applicable RNG statistical testing
framework, such as [23,24].

https://github.com/CQCL/random_test


Entropy 2024, 26, 1053 3 of 33

Randomness extraction also has a rich body of literature; see [25] for an introduction.
In cryptographic randomness standards, e.g., in NIST’s SP 800 [1], so-called conditioners
are standardised, whose role is similar to that of randomness extractors (randomness
extractors can be understood as conditioners that have information-theoretic security, i.e.,
they do not rely on computational assumptions on the adversary). These conditioners
are the only post-processing that has been vetted for use by governing bodies and are
the most commonly used as a consequence. To the best of our knowledge, our work
represents the first attempt at comparing the effects (from a statistical perspective) of
different post-processing methods.

1.2. Summary of Results

In summary, our main results and observations are as follows.

• We perform intense statistical testing of three different RNGs: the 32-bit Linear Feed-
back Shift Register (LFSR) PRNG, Intel’s RDSEED TRNG, and IDQuantique’s ‘Quantis’
QRNG. We show the failure of two of them and provide evidence that one behaves
well from a statistical perspective, extending and confirming the results of [10,21].

• We present and implement a variety of post-processing methods, in the form of ran-
domness extractors, to improve the output quality from each of the three RNGs.
The post-processing methods form a set of four levels, where each level requires in-
creasingly more sophisticated implementation: deterministic (level 1), seeded (level 2),
two-source (level 3), and physical (level 4) extractors. Our contribution goes signifi-
cantly further than the study and comparison of different types of extractors in [26,27],
which focus only on deterministic or seeded extractors, respectively.

• We present and experimentally demonstrate the implementation of a physical extractor
(level 4) using a high-fidelity quantum computer. This allows us to execute a complex
quantum protocol that has no classical equivalent.

• We intensively test the statistical effect that each level of post-processing has on the
output of the different RNGs. Our main observations are as follows.

– RNGs that fail statistical testing without post-processing continue to fail when
simple post-processing methods (level 1) are applied, although some improve-
ment is observed. Notably, one of these failing post-processed RNGs implements
the self-shrinking generator [28], which is studied for cryptographic applications.

– All our level 2, 3, and 4 implementations successfully post-process the output of
the three RNGs used from a statistical perspective, passing the statistical testing.

– Low-entropy sources, such as the post-processed 32-bit LFSR, can pass rigorous
statistical testing when suitable post-processing is applied. While this result
aligns with the existence of cryptographically secure PRNGs, the low quality of
the PRNG used highlights the limitations of statistical testing alone, i.e., with-
out a precise model and justification for the unpredictability of the underlying
physical process.

• We make publicly available our STE, a powerful, flexible, and easy to use statistical
testing environment, together with suggested settings, which provide a valuable
trade-off between the intensity and computation time, and a framework to analyse
the cumulative test results.

2. Tools and Definitions

As discussed in the Introduction, randomness is different when considering the per-
spective of a user or that of an adversary. In this work, we study the statistical properties
of different RNGs’ outputs directly, without considering any additional information that
a potential adversary might obtain, such as a detailed model of the entropy source or
information from invasive or non-invasive attacks. We then examine, in the same manner,
the effects of various post-processing methods applied to the RNG’s output. We consider
the specific case of bits, i.e., the RNG outputs a bit string of length n, denoted X ∈ {0, 1}n,
although one can also study RNGs whose output alphabet is larger. In some cases, we refer



Entropy 2024, 26, 1053 4 of 33

to sizes in bytes, where one byte equals eight bits. We denote the random variable produced
by an RNG as X and its specific realisation as x (i.e., X = x). The set-up is illustrated in
Figure 2.

Figure 2. An illustration of the set-up that we consider. An RNG generates a bit string X = x of
length n. In this work, we first study the statistical properties of the realisation x of the (random
variable) X. Then, we analyse the effects of different post-processing methods applied to it.

The amount of randomness that a random variable X has is captured by its min-
entropy H∞(X).

Definition 1 (Min-entropy). The min-entropy, k, of a random variable, X ∈ {0, 1}n, is defined as

k = H∞(X) = − log2 max
x∈{0,1}n

Pr(X = x) . (1)

This can be interpreted as the minimum amount of randomness, in bits, that a variable
X has when there is no side information available. The min-entropy rate of a random
variable X ∈ {0, 1}n is α = H∞(X)/n. This can be interpreted as the minimum amount of
randomness that X has per bit, on average. Since RNGs output sequentially, we generalise
this definition to consider the min-entropy of the current random variable conditioned on
all previously produced random variables. This is known as block min-entropy.

Definition 2 (Block min-entropy). A set of random variables Xi ∈ {0, 1}ni for i ∈ N is said to
have block min-entropy ki, if

H∞(Xi|X0, X1, ..., Xi−1) = − log2 max
x∈{0,1}ni

Pr(Xi = x|X0, X1, ..., Xi−1) ≥ ki, ∀i . (2)

This can be interpreted as the minimum number of random bits that a variable Xi has
when conditioned on all previous random variables, indexed by 0, . . . , i − 1.

Definition 3 (Statistical distance). The statistical distance, ∆, between two random variables,
X, Z ∈ {0, 1}n, is defined as

∆(X, Z) =
1
2 ∑

v∈{0,1}n
|Pr(X = v)− Pr(Z = v)| . (3)

This is a measure of how close to one another, or indistinguishable from one another,
two random variables are.

Definition 4 (ϵ-perfect randomness). A random variable X on {0, 1}n is said to be ϵ-perfectly
random if

∆(X, Un) ≤ ϵ , (4)

where Un is the uniform variable on {0, 1}n, i.e., Pr(Un = u) = 1
2n for all u ∈ {0, 1}n.

This definition is equivalent to saying that the variable X is distinguishable from a
uniform distribution with a distinguishing advantage of at most ϵ, i.e., a distinguisher can
guess that X is not uniform with a success probability of at most 1

2 + ϵ. When ϵ = 0, the ran-



Entropy 2024, 26, 1053 5 of 33

dom variable is said to be perfectly random. This definition is universally composable [29],
i.e., X can be used safely in other applications.

3. Statistical Testing

Statistical test suites are collections of algorithms that analyse the numerical properties
of a set of random numbers to determine whether there is evidence to reject the possibility
that they are uniformly distributed. If there is sufficient evidence to reject this possibility,
a statistical test is said to be failed and the RNG output can be distinguished from the
uniform distribution at some confidence level. The hypothesis that a random variable is
uniformly distributed is known as the null hypothesis H0. For an RNG producing a random
variable X ∈ {0, 1}n, the null hypothesis is H0 : ∆(X, Un) = 0. If the null hypothesis is
rejected, then the alternative hypothesis H1 : ∆(X, Un) > 0 is accepted.

However, a random variable cannot be tested directly; only its realisation can—i.e., the
bit string x ∈ {0, 1}n produced by the random variable X. To assess whether to accept or
reject the null hypothesis, a statistical test calculates a specific measure of x (e.g., its mean),
known as the test statistic t, and analyses how likely this test statistic is to be observed,
assuming that the underlying random variable is uniform. Test statistics calculated from
realisations of a uniform distribution are normally distributed, so one can calculate how
likely observing certain ranges of the test statistic is by using concentration inequalities.
More precisely, this likelihood is captured by a probability known as the p-value, which is
defined as follows.

Definition 5 (p-value). Given an observed test statistic t obtained by calculating a measure from
the realisation of a random variable X = x ∈ {0, 1}n and T, the (normally distributed) variable
associated with all the possible measure values, the p-value p ∈ [0, 1] is defined as

p = Pr(T ≤ t|∆(X, Un) = 0) , (5)

where Un ∈ {0, 1}n is uniformly distributed.

A range of p-values is defined that provides a threshold at which the null hypothesis
is rejected, i.e., when the test is deemed to fail. If a test ensures that there is, at most, a 1%
chance that it incorrectly rejects that the RNG is producing uniform random numbers
(known as the type 1 error—when a statistical test incorrectly rejects a true null hypothesis),
then it would, for example, conclude failure if p /∈ [0.01, 1]. This threshold for failure
is on one tail only, so it only fails test statistics that are sufficiently biased away from
the expected value in one direction. More generally, tests are two-tailed and conclude
failure if the observed p-values are outside of a sufficiently large interval—for example,
if p /∈ [0.005, 0.995].

The failure of numerous statistical tests is a strong indicator that an RNG is not
producing (near-)perfect random numbers, as its output can be distinguished from the
uniform distribution with a high probability. For example, if all statistical tests performed
on the RNG are independent, the probability that the null hypothesis is accepted given that
the alternative hypothesis is true (known as the type 2 error) is ptype2 = ptest1type2 · ptest2type2 · . . . ·
ptestntype2, where n is the number of tests performed.

We now describe several existing statistical test suites used in this work. It is important
to note that, while each suite contains multiple tests, many test outcomes are correlated.
For instance, a source with an unusually high number of ones may fail both the monobit
and poker tests. Similarly, different test suites often include the same tests with slight
parameter variations, meaning that failure in one suite is likely to result in failure in another.
For example, both NIST and Dieharder include a runs test.



Entropy 2024, 26, 1053 6 of 33

3.1. Existing Test Suites
3.1.1. NIST Statistical Test Suite

The NIST statistical test suite (SP 800-22) [1] is the best known. It includes 15 tests,
some with multiple sub-tests, and passing certain tests is required for RNG certification
by organisations such as NIST and BSI. During testing, a randomness file is split into
sub-strings, with each sub-string tested individually. Users can specify the number of
sub-strings and the total bit string size to analyse, although the guide recommends using
100 sub-strings of 106 bits, requiring at least 108 bits, or 12.5 MB, for testing. For each test,
an analysis is performed on each sub-string, and the suite provides two results: (1) the
p-value for a statistical test on the uniformity of the distribution of results across sub-strings
and (2) the number of sub-strings that pass each test. Both results are assessed at the 1%
significance level. We note that the individual p-values for each sub-string in each test are
not accessible to the user.

3.1.2. Diehard(er) Statistical Test Suite

The Dieharder statistical test suite includes the 18 original Diehard tests along with
additional tests, including some from the NIST suite. Like the NIST suite, it is widely used
by RNG certification bodies. A failure is determined when p /∈ [0.0005, 1− 0.0005], and a test
is considered ’weak’ if p ∈ [0.0005, 0.005] ∪ [1 − 0.0005, 1 − 0.005]. This higher tolerance for
poor test statistics means that a flawed RNG may occasionally pass Dieharder, but failure is
a strong indicator of non-uniformity. The Dieharder tests require a large quantity of random
numbers to prevent the re-use of input data, which can lead to inaccurate results. We
recommend using at least 1 gigabyte (GB) of random numbers for testing. For smaller file
sizes, the test parameters can be adjusted to avoid these issues. In our testing environment,
we use the default parameters for each test.

3.1.3. TestU01 Statistical Test Suite

TestU01 is a C-based software library for conducting RNG statistical testing with
pre-compiled test batteries. These batteries vary significantly in the number of tests and the
amount of randomness required. For details on the specific tests included in each battery,
see [4]. Test p-values are reported if p /∈ [0.001, 0.999], which we use as our failure criterion.
In our testing, we use the Alphabit, Rabbit, and SmallCrush batteries from TestU01. To run
these tests, the input files must contain at least 225 random bytes (approximately 35 MB).
We omit the Crush and BigCrush batteries due to their long runtimes and large randomness
requirements, although they can be run within our statistical testing environment.

3.1.4. ENT Statistical Test Suite

The ENT test suite is a small but efficient set of six statistical tests. It has been used to
demonstrate bias in a commercial quantum RNG by consistently failing the χ2 test [30] (we
replicate these results with an independently acquired RNG; see Table 3. ENT outputs test
statistics without providing a pass/fail threshold, so we assess failure based on the criteria
in Table 3 of [31]. Although there is no specific guidance on the required input sizes, we
found that the tests produced unreliable results with inputs smaller than 0.5 GB.

3.1.5. PractRand Statistical Test Suite

PractRand is a C++ library of statistical tests designed for practicality—they are
efficient, user-friendly, and capable of detecting significant biases in RNGs. According to its
documentation, it runs faster than most test suites (which we confirm; see Table 2), offers
unique interfacing, has no theoretical maximum input length, and includes some original
tests. PractRand tests input files based on size, examining subsets of 224+x bytes for x ∈ N,
with more tests performed as x increases. In our testing, we limit the maximum test size to
232 bytes (approximately 4.3 GB). For full details and comparisons with other test suites,
see [6]. PractRand uses various p-value ranges, including “unusual”, “mildly suspicious”,
“suspicious”, “suspect”, and “fail”. A failure occurs when p /∈ [10−11, 1 − 10−11].



Entropy 2024, 26, 1053 7 of 33

3.2. Our Statistical Testing Environment

The interfacing code for our STE can be downloaded at https://github.com/CQCL/
random_test (accessed on 28 November 2024). We offer three testing modes, Light, Recom-
mended, and All, which can be executed using the commands run_light, run_recommended,
and run_all, respectively. The NIST statistical test suite is not included in these commands
due to its need for user prompts, but it can be run separately within the environment. We
believe that the Recommended setting strikes a good balance between the computational
(and environmental) cost and rigor, exceeding the standard testing required by certifica-
tion bodies. All results in this work can be replicated using the STE or by downloading,
configuring, and running the relevant statistical test suites independently.

3.2.1. Suggested Settings

We now propose the recommended settings for statistical testing using our STE, based
on insights gained during this research. The runtimes are averaged over 10 executions using
a 10 Gbit file, except for the NIST suite, where a 100 Mbit file is tested, in accordance with
the user guidelines. All testing was conducted on a Dell Precision 7540 laptop with 16 GB of
RAM and a 2.3 GHz Intel I9-9880H processor, running the Ubuntu 20.04 operating system.
All the test runtimes are given in Tables 1 and 2.

Table 1. This table details our settings for light, recommended, and all statistical testing using the
code provided. A ‘Y’ in a specific column indicates that the associated test suite of this column is
included in the setting.

Test
Mode

NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

Total
Runtime

Total
Tests

Light Y Y Y 4 m 44 s 941

Recommended Y Y Y Y Y 114 m 31 s 999

All Y Y Y Y Y Y Y 127 m 41 s 1015

Table 2. This table gives the average runtimes of all statistical test suites contained in our statistical
testing environment. The average is taken when running each test suite 10 times on independent
inputs. For the NIST test suite, the runtime relates to testing a 100 Mbit file. For all other test suites,
the runtime is for a 10 Gbit file.

NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

Average
Runtime 37 m 3 s 18 m 12 s 1 m 24 s 0 m 32 s 12 m 38 s 55 m 4 s 2 m 48 s

Light

Our suggested light test mode, executed with the command run_light, includes
ENT, SmallCrush, and PractRand, running in under 5 min and covering approximately
941 tests. Our numerical analysis shows that this set of tests is sufficient to detect failures
in generating uniform randomness for RNGs that fail (see Sections 4 and 5).

Recommended

Our recommended setting, executed with the command run_recommended, includes
most of the light mode test suites, replacing TestU01 SmallCrush with Rabbit and adding
the NIST and Diehard tests. These additional tests increase the runtime to approximately
2 h and bring the total number of tests to 999. The full statistical test mode (run_all)
includes all suites, except for SmallCrush and Alphabit, which are omitted due to their
significant correlations with the Rabbit tests, where only the parameters differ slightly.
The recommended suite covers all tests required by RNG certification bodies (e.g., NIST and

https://github.com/CQCL/random_test
https://github.com/CQCL/random_test


Entropy 2024, 26, 1053 8 of 33

Dieharder) while offering a more comprehensive analysis than when running these tests
alone. The later sections demonstrate the value of extending beyond individual test suites,
as an RNG that passes the NIST and Dieharder tests can still show significant statistical
bias when analysed with our combined STE (see Section 4).

3.3. Shortcomings of Statistical Testing

Fundamentally, statistical tests have a limited ability to validate that good random
numbers are being produced by an RNG. They should rather be understood as a useful
tool to detect a failure to generate uniform random numbers, since passing statistical tests
gives no guarantee of (near-)perfect randomness. This is especially important in the case of
cryptographic RNGs. For example, in [32], a thorough analysis of Intel’s RDSEED hardware
RNG is performed, and one of their conclusions is that “RDSEED delivers truly random
bits but with a security margin that becomes worrisome if an adversary can see a large
number of outputs from either interface. If he controls an unprivileged process on the
same physical machine, this could happen very quickly” (in this case, the adversary also
requires control of an “unprivileged” process, which is a form of side information that may
be difficult to obtain in practice) (on page 4). As we shall see next, our statistical testing
results do not detect that RDSEED’s output can be distinguished from uniform.

At the implementation level, the available software for numerous statistical test suites
has been shown to have issues. For the NIST test suite, the list of implementation issues is
extensive, so we summarise a few problems that the reader may find interesting. Research
has found significant dependencies between the tests [33] and implementation issues with
certain tests; for example, [34] found that the settings of both the Discrete Fourier Transform
test and Lempel-Ziv test were wrong, and [35] found an error within the probability
calculations for the Overlapping Template Matching test. Moreover, problems with how the
results are analysed have been discovered; for example, [36] found that although the NIST
documentation provides guidance that the analysed RNG is random if all tests are passed,
truly uniform data have a high probability (80%) of failing at least one NIST statistical
(sub-)test. Some work has even suggested that the tests are “harmful” [37], namely that
“the weakest pseudo-random number generators will easily pass these tests, promoting
false confidence in insecure systems”. During this work, we found an additional issue with
the NIST test suite that we could not find reported elsewhere: the results showed that all
tests failed whenever the CPU was being used for other computations simultaneously. The
NIST Random Bit Generation Team have been made aware of this. Other test suites have
also had their own reported problems, including Dieharder. In [38], it was found that over
50% of the Dieharder tests generated biased null hypothesis distributions (which were
expected to be uniform).

4. Statistical Testing of Different RNGs

In this section, we use our STE to analyse the statistical properties of the random
numbers produced by some commonly used RNGs. At this stage of our analysis, we
do not apply any post-processing to the RNG’s output; however, some of the RNGs that
we consider already have post-processing included, in the form of so-called conditioners
or deterministic randomness extractors. Therefore, in cases where the post-processing
already exists, our statistical analysis applies to the joint system, which comprises both the
randomness (or entropy) source and the existing post-processing in the device. Additionally,
we use and discuss a NIST min-entropy estimation tool, which provides a min-entropy
estimate for our subsequent analysis incorporating various levels of post-processing.

The RNGs that we analyse are as follows:

• 32-bit LFSR: a software pseudo-RNG;
• Intel RDSEED [11]: a hardware RNG based on thermal noise, i.e., a chaotic process;
• IDQuantique (IDQ) Quantis [22]: a hardware RNG based on the quantum effect of

detecting photons at the output of a semi-transparent mirror.



Entropy 2024, 26, 1053 9 of 33

Further details and descriptions of the RNGs can be found in Appendix A.3. The LFSR
remains widely used in numerical simulations, despite its well-known flaws [39]. In this
work, we primarily use it as a benchmark, serving as an example of a poor choice due to
the patterns in its output and its short period. However, we will show that post-processing
its output has a statistically significant impact. We note that IDQ’s Quantis is marketed as
an RNG for cryptographic use, with certifications for compliance with various security and
cryptographic standards. (IDQ Quantis has reportedly passed certifications or government
validations, including “NIST SP800-22 Test Suite Compliance, METAS Certification, CTL
Certification, multiple iTech Labs certificates, and compliance with BSI’s AIS31 standard
(dedicated version of Quantis)” [22]). These RNGs are used in numerous applications
and are a sample of the different types of RNGs available today. The statistical analysis is
performed using the run_all function in our statistical test environment on 10 × 10 Gbit
files from each RNG and, similarly, using the NIST test suite performed on 10 × 100 Mbit
files split into 100 sub-strings, each of 1 Mbit. The NIST min-entropy estimators [40] are
used in the non-IID setting on 10 × 1 Mbit files. This analysis far exceeds that required by
certification bodies, so it may be a result of independent interest. All testing is performed
using the default parameters, unless otherwise stated.

An RNG producing near-perfect randomness should pass almost all statistical tests.
More concretely, we mean that the ideal RNG would fail less than 7.5 of the 4600 individual
statistical tests on average. (This number is the expected amount of type 2 error, i.e.,
the expected maximum number of failed tests, given that the underlying distribution is
indistinguishable from uniform. Note that we are implicitly assuming that each statistical
test is independent). The results obtained for the three RNGs are summarised in the
following Table 3 and displayed visually in Figure 4 (level 0).

Table 3. This table gives the average sum of statistical tests failed for 5 × 10 Gbit samples from each
RNG (after testing 10 samples). The results are presented in this way to allow for direct comparison
to later results, where only 5 × 10 Gbit samples are tested. Due to the 32-bit LFSR failing PractRand
quickly, only 635 tests were conducted (instead of the full 4600), so we rescale these results. In cells
with multiple entries, failed tests are on the left and suspicious tests (when applicable) are on the right
in parentheses. The full results can be found in Appendix B.

RNG
NIST
(75)

Diehard
(90)

ENT
(30)

SmallCrush
(75)

Alphabit
(85)

Rabbit
(200)

PractRand
(4600)

32-bit LFSR 10 40 (3) 5 51 73 131 855 (167)

RDSEED 0 0 (4) 0 1 0 1 0 (7)

IDQ Quantis 0 0 (3) 5 0 17 25 3 (15)

In the statistical tests, the RDSEED RNG performs the best, failing the fewest tests,
and the 32-bit LFSR performs the worst, failing the most. The poor performance of the
LFSR is likely due to its periodicity, since bits repeat every 232 − 1 (4.3 Gbits), and this is
less than the size of the files tested. The IDQ Quantis device performs well in the NIST and
Diehard tests but fails an ENT test and several tests in TestU01’s Rabbit and Alphabit suites.
These observations reproduce (and add confidence to) the results of previous work [21].
These results, especially for IDQ’s device, exhibit the need to go beyond the requirements
of certification bodies for statistical testing, with additional tests providing a noticeable
advantage in detecting failures.

The NIST min-entropy estimators [40] are a collection of algorithms that give a stan-
dardised means of estimating the min-entropy (as defined in Definition 1) of an RNG’s
output. These estimators are useful both in evaluating the entropy generation of the RNG
and in calculating a min-entropy bound, which we later use to determine the param-
eters for randomness extractors. Although the estimators are designed to test entropy



Entropy 2024, 26, 1053 10 of 33

sources without post-processing, this is not feasible in the case of RDSEED or the IDQ
Quantis device.

In Table 4, the NIST min-entropy estimator per byte is the average observed per-byte
min-entropy calculated by the NIST min-entropy estimator tool, while est is the per-bit
average. The sample standard deviation, σ, reflects the variability in the different test
results calculated using Equation (A1), and α is a lower bound (with probability of at least
1 − 2−32) on the per-bit min entropy for any test sample. Details of this derivation can be
found in Appendix B.2.1.

Table 4. This table shows the average NIST min-entropy estimator, the sample standard deviation,
and a lower bound for min-entropy/bit for each RNG. These results are the average of 10 tests on
different 1’000’000 bit samples, each generated with significant time gaps between the generation of
each test sample. Full results can be found in Appendix B.2.

RNG

NIST
Min-Entropy

Estimator
(/byte)

est: NIST
Min-Entropy

Estimator
(/bit)

σ: Sample
Standard
Deviation

(/bit)

α: Lower
Bound

Min-Entropy
(/bit)

32-bit LFSR 6.870 0.859 0.058 0.453

RDSEED 6.189 0.852 0.022 0.698

IDQ Quantis 7.157 0.895 0.006 0.853

The IDQ Quantis device had the highest estimated min-entropy per bit, with a value of
0.895, although all three RNGs had similar values. The 32-bit LFSR had the largest sample
standard deviation, indicating the greatest fluctuation in the min-entropy estimates across
different test samples. We note that the NIST SP800-90 series recommends min-entropy
per bit of at least 1 − 2−32 for an RNG to be considered to have full entropy [41]. This
value is significantly higher than any values that we observed. However, some of the NIST
min-entropy estimator tests are known to produce significant underestimates [42], which
potentially explains the large disparity between our estimates and the NIST requirement.
Moreover, in our case, underestimates are not problematic, since we desire a lower bound
on the min-entropy of the RNG’s output.

5. A Variety of Post-Processing Methods

Randomness extractors are mathematical algorithms that distil weakly random bit
strings (more precisely, a necessary (but not sufficient) condition for randomness extraction
to be successful is that the source has some min-entropy; see Definition 1), in the sense that
they are not uniformly distributed, into a near-perfect random bit string. In this section,
we present, implement, and test a variety of randomness extraction processes. The main
question that we seek to answer is whether these methods have an observed impact on the
statistical properties of the RNG’s output. The procedure that we follow is the following.

1. We collect the output of each RNG that was tested in the previous section. We call this
the initial output.

2. We apply different post-processing methods, or randomness extractors, to this initial
output to produce a new, processed output. Each time, we precisely define and explain
the underlying assumptions of the used extractors required for the extraction method
to be successful. These different sets of assumptions, for each extraction method, can
be compared with each other and form the different post-processing levels.

3. We analyse the new, processed output with our STE to determine whether each
extraction method had an impact from a statistical perspective. We also compare the
results obtained using the different post-processing methods for each RNG.

A schematic of the set-up can be found in Figure 1.



Entropy 2024, 26, 1053 11 of 33

5.1. Randomness Extraction Methods

We now describe the different post-processing levels that we consider in this work,
i.e., the types of randomness extractors that we will use to improve the different RNGs. We
consider four classes of randomness extractor, which form the different levels, each with
increasingly elaborate implementations.

• Level 1: Deterministic extractors—This class of extractors requires certain properties
of the initial output’s distribution to hold, beyond just a min-entropy assumption.
An example is the seminal Von Neumann extractor [43], which works if every bit of
the initial output is identically and independently generated (although a sufficient
condition is that the input forms an exchangeable sequence). In practice, assumptions
of this type are difficult to justify and to control.

• Level 2: Seeded extractors—These extractors require a second string, called a seed,
of independent and (near-)perfectly random bits as the resource. This seed needs to
be carefully generated and can lead to problems if, for example, it is not generated
independently of the initial output of the RNG (this could happen, for example, if the
seed is generated whilst sharing the same environment as the RNG or by an adversary)
or if it has poor statistical properties. At a fundamental level, seeded extractors are
unsatisfying as there is circularity in having to generate near-perfect randomness as a
resource to build an RNG.

• Level 3: Two-source extractors—These extractors are a generalisation of seeded extrac-
tors in which the assumptions on the seed are relaxed. Namely, the second, additional
source of randomness (previously the seed) now only needs to have some known
min-entropy and be independent of the initial output. Moreover, the independence
condition can also be relaxed—for example, allowing coordination, cross-influence, or
bounded mutual information with respect to the input [44] or independence only in
the sense of a Markov chain [45].

• Level 4: Physical device-independent extractors—The last class that we consider are
extractors requiring special additional hardware, providing the second randomness
source needed in level 3 whilst making only minimal assumptions (for example, that
information cannot travel faster than the speed of light). This is made possible by a
particular type of interactive proof system in which quantum hardware can be verified
to perform as promised, as opposed to having to rely on modelling the physical
process, as would be done normally. This ‘black box’ verification gives a guaranteed
lower bound on the min-entropy of the output, which can then be used together with
the RNG’s initial output in a two-source extractor as in level 3. These physical extractors
are referred to, in the quantum information science community, as device-independent
randomness amplification protocols and have no classical analogue. With today’s
technology, such extractors require making additional implementation assumptions
(to the minimal ones). We return in detail to physical extractors in Section 5.2.4.

When a second bit string of randomness is required (levels 2 and 3), we use the NIST
Randomness Beacon [46]. For physical randomness extraction (level 4), we use a semi-
device-independent randomness amplification protocol that is an adaptation of [47], which
we describe in Section 5.2.4. All the algorithms for extraction used in this work are from
the software library Cryptomite [7], which can be found at https://github.com/CQCL/
cryptomite (accessed on 28 November 2024).

The assumptions that the different post-processing methods require are illustrated
in Figure 3.

https://github.com/CQCL/cryptomite
https://github.com/CQCL/cryptomite


Entropy 2024, 26, 1053 12 of 33

Figure 3. Illustration of the set of sources, or input distributions, that can be successfully extracted
from by different randomness extraction methods. (Right) weak input distributions and (Left) second
input, or weak seed, distributions. Deterministic extractors (level 1) require additional properties on
the weak input but do not need a second input source. Seeded extractors (level 2) relax the need for
additional properties of the weak input and extract from sources with min-entropy only, at the cost
of requiring a second string of (near-)perfect randomness. Two-source extractors (level 3) relax the as-
sumptions of seeded ones to a second source that also has min-entropy only. Physical extractors (level
4, not in the figure) require special quantum hardware, which effectively provides the second input
with a device-independent lower bound on the min-entropy, requiring minimal added assumptions.

5.1.1. Results Overview

We now present the main results of the statistical testing of the different post-processing
methods in Figure 4, with more details and tables in the following sections. As stated
before, we expect that an RNG producing near-perfect random numbers fails less than
7.5 of the 4600 tests that it is subject to, on average, when testing 5 × 10 Gbit files. (This
number is the expected amount of type 2 error, i.e., the expected maximum number of
failed tests, given that the underlying distribution is indistinguishable from uniform. Note
that we implicitly assume that each statistical test is independent). This is the criterion
that we use to call randomness generation successful from a statistical perspective (green
highlighted area).

0 1 2 3 4
Post-processing Level

0

2

4

6

8

10

Fa
ile

d 
Te

st
s (

lo
g 

sc
al

e)

32-bit LFSR
RDSEED
IDQ Quantis

0 1 2 3 4
Post-processing Level

0

2

4

6

8

10

Fa
ile

d 
& 

Su
sp

ici
ou

s T
es

ts
 (l

og
 sc

al
e)

32-bit LFSR
RDSEED
IDQ Quantis

Figure 4. The above plots show (left) the number of statistical tests failed and (right) failed and
suspicious for each initial RNG at each post-processing level. The x axis indicates the level, with step
0 being the initial RNG with no additional post-processing, and steps 1–4 are deterministic, seeded,
two-source, and physical extraction, respectively. The y axis is the number of statistical tests failed
(left) or failed and suspicious (right), out of 4600, using a logarithmic scale: for f failed or failed
and suspicious tests, y = log2( f + 1). The shaded region in the left plot illustrates the successful
region, whereby the RNG fails less than 7.5 tests, and the white region illustrates the ‘unacceptable’
region, in which, with high probability, near-perfect randomness is not produced. We note that we
are unable to use the 32-bit LFSR at level 4 because of its low initial estimated min-entropy rate, αRNG,
as detailed and evaluated in Section 4.



Entropy 2024, 26, 1053 13 of 33

Ideally, the results would reflect the different levels of post-processing and the validity
of the assumptions that these imply. Our results in Figure 4 tell a mixed story.

• For the RNGs that fail the tests when unprocessed, we observe that additional post-
processing indeed improves the quality of the initial output. Considering the LFSR,
for example, any extraction method higher than level 1 applied to the initial output
produced a processed output that passed the numerical tests well. IDQ’s device, as a
second example, is significantly improved already with level 1 of extraction, but only
gives successful results when higher levels are applied.

• Although level 3 is strictly a relaxation of the assumptions made at level 2, we were
unable to observe a difference in the numerical results. This is because level 2, from a
statistical perspective, seems to be giving results that are already successful. More-
over, we are unable to distinguish between levels 2, 3, and 4. We interpret this as
another illustration of the difference between statistical and cryptographic random-
ness, in which weaker assumptions are desirable even if no statistical advantage can be
witnessed from the user’s perspective. It is also likely that, in order to give non-trivial
examples of step 2 failing, one would need to generate the seed in a manner that is
either significantly biased or correlated to the RNG (both of which could happen in
practice).

• All our implementations above level 1 gave successful numerical test results on the
three RNGs that we tested. In particular, from a statistical perspective, this means that
a poor PRNG (here, the 32-bit LFSR) can be concatenated with an extractor to form a
good PRNG.

5.2. Implementations of the Post-Processing Methods

We now describe how we implemented the post-processing, i.e., different extractors in
our levels, together with the parameter choices and compromises that we made. For the
post-processing algorithms, we used the randomness extractors publicly available from the
software library Cryptomite [7]. To assess the randomness quality at each step, we generated
5 × 10 Gbit test files of the processed output and performed statistical testing using the
‘all’ setting (the most intense) in the STE. All randomness post-processing and statistical
tests were run on a Dell Precision 7540 personal laptop with 16 GB of RAM and a 2.3 GHz
Intel i9 processor, using the Ubuntu 20.04 operating system. We state all input and output
sizes and give detailed descriptions of each test setting and implementation of each level
with the parameter choices, so that all results can be reproduced. For each level, we chose
the parameters of the different extractors such that, in theory, the processed output was
ϵtotal-perfectly random (see Definition 4), with ϵtotal ≤ 2−32 ≈ 10−10.

5.2.1. Level 1: Deterministic Extraction

A deterministic extractor will generate a near-perfectly random output when pro-
cessing the initial output of RNGs with some well-defined properties. These well-defined
properties vary depending on the extractor that is used, with different choices possible.

Definition 6 (Deterministic randomness extractor). A deterministic randomness extractor is
a function

Extd : {0, 1}n → {0, 1}m (6)

such that, for random variables X ∈ {0, 1}n with specific properties [25],

∆(Extd(X), Um) ≤ ϵ , (7)

where Um is the uniform variable on {0, 1}m.

In other words, a deterministic extractor is a function that maps random variables X
with specific characteristics to a new variable Extd(X) that is near-perfectly random. Note



Entropy 2024, 26, 1053 14 of 33

that the properties of X required depend on the specific extractor—for example, that all
bits in X are I.I.D.

The implementation of the deterministic extraction set-up is shown in Figure 5. We use
the Von Neumann extractor [43] to extract from the initial output X ∈ {0, 1}n of the RNG,
with the implementation from [7]. This extractor requires that all two subsequent input
bits have a fixed bias, i.e., for bits X2i, X2i+1 ∈ {0, 1} with i = 1, . . . , ⌊ n

2 ⌋ and pi ∈ (0, 1), we
require that

Pr(X2i = 0) = Pr(X2i+1 = 0) = pi . (8)

The Von Neumann extractor works by grouping subsequent bits in pairs and outputting
the first (or second) bit only when the bits in the pair are different, giving an output length
of m ≈ p(1 − p) (if the bias is fixed, pi = p for all i) and ϵ = 0, i.e., perfect randomness at
the output.

Figure 5. Here, level 1 of our post-processing methods is performed by using a deterministic extractor,
namely the Von Neumann extractor, on the initial output of the RNG.

The statistical test results in Table 5 show the following.

• Both the LFSR and IDQ Quantis show improvements compared to the initial RNG
testing results (Table 3), although they still do not pass overall.

• The number of NIST statistical test failures for both the LFSR and IDQ Quantis
increases when moving from no post-processing to deterministic post-processing.
This may be due to specific biases in the RNGs that are incompatible with, or even
amplified by, the Von Neumann extractor (e.g., successive bits are not independent) or
fundamental issues with the NIST tests, as suggested in [33–36].

Table 5. This table gives the sum of statistical tests failed for 5 × 10 Gbit samples from each RNG,
after deterministic extraction using the Von Neumann extractor. Due to the 32-bit LFSR failing
PractRand quickly, only 635 tests were conducted (instead of the full 4600), so we rescale these results.
In cells with multiple entries, failed tests are on the left and suspicious tests (when applicable) are on
the right in parentheses. Full results can be found in Appendix C.

RNG NIST
(75)

Diehard
(90)

ENT
(30)

SmallCrush
(75)

Alphabit
(85)

Rabbit
(200)

PractRand
(4600)

32-bit LFSR 25 10 (5) 5 18 76 106 724 (413)

RDSEED 0 0 (2) 0 0 0 1 0 (2)

IDQ Quantis 4 0 (1) 0 0 0 3 0 (3)

Interestingly, applying the Von Neumann extractor to an LFSR results in a stream cipher
known as the self-shrinking generator, which has been studied for cryptographic use [28].
Although the self-shrinking generator fails fewer tests compared to the unprocessed LFSR,
a substantial number of failures remain.

As noted at the start of this section, a deterministic extractor can produce a near-
perfectly random output if the input source satisfies certain specific properties. However,
these properties are often difficult or even impossible to verify in practice. As a result,
it is more practical to base claims solely on the min-entropy of the source. In [48], it



Entropy 2024, 26, 1053 15 of 33

was demonstrated that deterministic extraction from a source characterised solely by
min-entropy is impossible. Such sources require additional, independent randomness to
enable extraction.

5.2.2. Level 2: Seeded Extraction

Seeded extraction requires only a min-entropy guarantee for the initial RNG output
but comes at the cost of needing a second, independent and (near-)perfectly random input
(the seed) to enable extraction.

Definition 7 (Seeded randomness extractor). A seeded randomness extractor is a function
Exts : {0, 1}n ×{0, 1}d → {0, 1}m such that, for a random variable X ∈ {0, 1}n with min-entropy
H∞(X) ≥ k, and seed S ∈ {0, 1}d with min-entropy H∞(S) = d (i.e., S is perfectly random),

∆(Exts(X, S), Um) ≤ ϵ , (9)

where Um is the uniform distribution on {0, 1}m.

A seeded extractor can be understood as a randomised function that maps a weakly
random variable X to a new variable Exts(X, S) that is (near-)perfectly random. Note that
the seed may be ϵs-perfect only, with an additive error in the statistical distance above, i.e.,
ϵ → ϵ + ϵs (see, for example, Appendix A from [49] for proof). Seeded extractors are a
special case of two-source extractors, which we define later in Definition 9.

Definition 8 (Strong seeded extractor). A strong seeded randomness extractor is a function
Exts : {0, 1}n × {0, 1}d → {0, 1}m such that

∆([Exts(X, S), S], [Um, S]) ≤ ϵ , (10)

where [·, ·] denotes the concatenation of random variables and Um is the uniform variable on {0, 1}m.

A strong seeded extractor is a randomised function that gives a (near-)uniform output,
even when conditioned on the seed S (the output is therefore independent of the seed).
This has some interesting consequences, which we exploit to generate the large amounts of
processed output needed for statistical testing. Specifically, S can be reused with different
weak input random variables, allowing a single seed to be used in many extraction rounds.
The set-up for seeded extraction (implemented using a strong seeded extractor) is shown
in Figure 6. The initial output from the RNG is split into blocks Xi for i = 1, . . . , n with a
promise on each block’s min-entropy (Definition 2).

Figure 6. The set-up for seeded extraction. In this case, the initial output of the RNG only needs to
have min-entropy, but extraction requires an additional near-perfectly random bit string (the seed),
which needs to be generated independently.

This step can be implemented with the Circulant [7], Dodis et al. [50], Toeplitz [51],
and Trevisan [52] extractors from Cryptomite, as they can all be used as strong seeded
extractors. Among these extractors, Circulant offers the best trade-off between security
parameters and computational complexity and is therefore the one that we chose. The
Circulant extractor requires that the seed length is the input length plus one and that
the seed length is a prime. We set the seed length |S| and RNG input block lengths



Entropy 2024, 26, 1053 16 of 33

|Xi| to |S| = |Xi|+ 1 = 10,007. Note that using Circulant allows us to generate cryptographic
randomness even against an adversary able to store (and process) side information in
quantum systems without changing the extraction algorithm, i.e., the extractor is quantum-
proof ; see [7] for details.

To generate the seed S, we use the NIST Randomness Beacon, which is a public
source of randomness produced by the US Government agency (NIST), mixing different
randomness sources together, including chaotic classical and quantum processes [46]. The
min-entropy kRNGi for each block Xi is kRNGi = αRNG|Xi|, where αRNG is a lower bound
on the min-entropy per bit for each initial RNG block of outputs Xi, with probability
ϵest < 2−32 (as found in Equation (A2) of Appendix B.2.1). The output length after
extraction, m, is then roughly m ≈ kRNGi .

In order to generate the required 5 × 10 Gbits of processed output, the Circulant
extractor is used multiple times on different initial output blocks Xi with the same seed. The
extractor’s outputs are then concatenated together until a final output, Output, of sufficient
size is generated. The Output is given by

Output =
[
ExtCirculants (X1, S),ExtCirculants (X2, S), . . . ,ExtCirculants (Xn, S)

]
, (11)

where [·, ·] denotes the concatenation of random variables. Each extraction round, which
we index i, has an associated error ϵexti , and we choose the total security parameter to be
ϵtotal ≤ 2−32—namely, everything is chosen so that ϵtotal = ϵest + ∑n

j=1 ϵextj ≤ 2−32. This
derivation for ϵtotal, specifically that the composed output error is the sum of each of the
individual extractor errors, can be found in [7].
The observations that we draw from the results in Table 6 are the following.

• The statistical test results show a significant improvement in the results using deter-
ministic extraction; see Section 5.2.1. In particular, all RNGs have been successfully
post-processed from a statistical perspective.

• Even the 32-bit LFSR is successfully extracted from, which suggests that one can, from a
statistical perspective, build good PRNGs by appending an extractor to poor PRNGs.

• Randomness that has a small amount of min-entropy only can pass statistical tests
successfully. This is somewhat unsurprising as cryptographically secure PRNGs
exist, but we find it interesting to comment on nonetheless. The total entropy of
the final output of the processed LFSR output is upper-bounded by 10,007 +32
(the seed length of the extractor plus the seed length of the 32-bit LFSR), in the
50 Gbit of processed output generated, i.e., a true min-entropy rate of, at most,
α = (10, 007 + 32)/(5 × 1010) < 10−5.

Table 6. This table gives the sum of statistical tests failed for 5 × 10 Gbit samples from each RNG,
after a strong seeded extractor has been applied to its initial output. The seed is generated using the
NIST Randomness Beacon. In cells with multiple entries, failed tests are on the left and suspicious
tests (when applicable) are on the right. Full results can be found in Appendix D.

RNG NIST
(75)

Diehard
(90)

ENT
(30)

SmallCrush
(75)

Alphabit
(85)

Rabbit
(200)

PractRand
(4600)

32-bit LFSR 0 0 (3) 0 0 0 0 0 (6)

RDSEED 0 0 (7) 0 0 0 0 0 (7)

IDQ Quantis 0 0 (2) 0 0 0 2 0 (5)

Our results at this level are disappointing, in the sense that the successful test results
mean that we will not be able to distinguish the next levels (3 and 4) from level 2 from
a statistical perspective—for example, that level 3 is strictly better than level 2. It would
be interesting to find non-trivial examples where the output of a seeded extractor fails
statistical tests because of a seed generated in a way that is not independent or near-uniform.



Entropy 2024, 26, 1053 17 of 33

Unfortunately, we could only find artificial examples (i.e., when all seed bits are the same)
that were detected by our statistical testing.

5.2.3. Level 3: Two-Source Extraction

Seeded extraction (level 2) requires an independent string of (near-)perfect randomness
as an initial resource, which is difficult to justify and leads to circularity: one needs near-
perfect randomness to generate more of it. Two-source extraction relaxes this requirement,
allowing the second string to be only weakly random, in the sense that it has some min-
entropy and/or only a relaxed notion of independence (for example, the case of using a
two-source extractor secure in the Markov model [45], where the two input sources can
be correlated through a common cause, or if the sources may have bounded coordination,
cross-influence, or mutual information [44])—although, in this work, we calculate our
two-source extractor parameters based on standard independence between the two input
sources. Two-source extractors can be used as seeded extractors, simply by assuming that
one of the input strings is already near-perfect and independent; therefore, level 3 is strictly
a relaxation of the assumptions of level 2.

Definition 9 (Two-source randomness extractor). A two-source randomness extractor is a func-
tion Ext2 : {0, 1}n1 ×{0, 1}n2 → {0, 1}m such that, for statistically independent random variables
X ∈ {0, 1}n1 and Y ∈ {0, 1}n2 with min-entropy H∞(X) ≥ k1 and
H∞(Y) ≥ k2, respectively,

∆(Ext2(X, Y), Um) ≤ ϵ , (12)

where Um is the uniform variable on {0, 1}m.

In other words, a two-source extractor is a weakly randomised function that maps a
random variable X to a new variable Ext2(X, Y) that is near-perfect.

Definition 10 (Strong two-source extractor). A two-source randomness extractor is said to be
strong in the input Y if the function Ext2 is such that

∆([Ext2(X, Y), Y], [UmY]) ≤ ϵ , (13)

where [·, ·] denotes the concatenation of random variables and Um is the uniform variable on {0, 1}m.

Strong two-source extractors, like strong seeded extractors, allow for one input source
to be used in multiple extraction rounds. The set-up for seeded extraction (implemented
using a strong seeded extractor) is shown in Figure 7.

Figure 7. The set-up for two-source extraction. In this case, the initial output of the RNG only needs
to have some min-entropy and extraction requires an additional bit string that is weakly random only
in the sense that it also has min-entropy.

From the Cryptomite library, we again use the Circulant extractor [7], but this time as a
strong two-source extractor. Other extractors in Cryptomite can be used too, but, since the
Circulant extractor offers the best parameters and efficiency, we use it in our implementation.
For full details, we refer the reader to [7]. Two-source extraction requires a second input



Entropy 2024, 26, 1053 18 of 33

source with min-entropy above some threshold based on the specific two-source extractor
construction. For the Circulant extractor, this requirement is that the sum of the min-entropy
rates of the two weak inputs is at least 1. Xi is the initial RNG output blocks and Y is the
additional weakly random input (which we sometimes call the weak seed) and, as in level 2,
we set |Y| = |Xi|+ 1 = 10,007.

To generate Y, we again use the NIST Randomness Beacon, but, in this case, we
minimise the amount of entropy that we assume that it contains, instead of assuming that
it has full entropy as in level 2. This change in the assumption increases the likelihood that
the assumption holds in practice. The output length of the Circulant extractor is roughly
(αNIST + αRNG − 1)|Y|, which we impose by adjusting the min-entropy rate assumption of
the NIST Randomness Beacon as αNIST, as

αNIST = 1.02 − αRNG (14)

where αRNG is the min-entropy rate of the initial RNG (found in Section 4). We use 1.02
instead of 1 to account for spurious terms in the parameter calculation that reduce the
output length; see [7] for the explicit calculation of these penalty terms. In other words, we
use the computed min-entropy rate of the RNG under study to minimise the assumption
about the second source’s min-entropy rate, whilst imposing a non-trivial output length
from the extractor.

The processed output is then generated in two steps: (1) using the Circulant extractor
as a two-source extractor on the two input strings X1 and Y, we generate a (near-)perfect
output, which will be the seed in the next step; (2) we use this seed in multiple Circulant
seeded extractions on Xi≥2. The multiple outputs of the seeded extractor are concatenated
together to obtain a final output of 5 × 1010 bits. In other words, the concatenation of the
two-source and seeded extractors together forms a two-source extractor with advantageous
parameters. Therefore, the final output for statistical testing is given by

Output =
[
ExtCirculants (X2, S),ExtCirculants (X3, S), . . . ,ExtCirculants (Xn, S)

]
, (15)

where S = ExtCirculant2 (X1, Y), [·, ·] denotes the concatenation of random variables and
the extractor round with input Xi has error ϵexti . The total error of the final output is
ϵtotal = ϵest + ϵext1 + ∑n

j=2 ϵextj ≤ 2−32. Proof that a strong two-source extractor and strong
seeded extractor can be composed into ExtCirculants (Xi>1, S), for S the output of a two-source
extractor (right-hand side of Equation (15)) can be found in [53] Section 6.3. This, combined
with the fact that the composed output error is the sum of each of the individual extractor
errors (in [7]), allows us to calculate ϵtotal.

Our results in Table 7 show that all RNGs extracted at level 3 are successful from a
statistical perspective, as in the seeded extraction case (level 2). In the Appendices, we
implement a variant of level 3 (two-source extraction) where all input strings are drawn
from the initial RNG and there is no randomness from an alternative RNG, i.e., rewriting
the Output in Equation (15) using Y = X0, where X0 is another output block from the initial
RNG. In this regime, for near-perfect randomness to be generated, all blocks produced by
the initial RNG must be independent of one another (as well as having block min-entropy).
Even in this case, the results were successful statistically. Full explanations and results can
be found in Appendix E.1.



Entropy 2024, 26, 1053 19 of 33

Table 7. This table gives the sum of statistical tests failed for 5 × 10 Gbit samples from each RNG,
after strong two-source extraction, taking the RNG as one weak source and randomness from the
NIST Randomness Beacon as the second. In cells with multiple entries, failed tests are on the left
and suspicious tests (when applicable) are on the right in parentheses. Full results can be found in
Appendix E.2.

RNG NIST
(75)

Diehard
(90)

ENT
(30)

SmallCrush
(75)

Alphabit
(85)

Rabbit
(200)

PractRand
(4600)

32-bit LFSR 0 0 (6) 0 0 2 1 0 (8)

RDSEED 0 0 (4) 0 0 0 3 0 (5)

IDQ Quantis 0 0 (3) 0 0 0 1 0 (5)

5.2.4. Level 4: Physical Randomness Extraction

Two-source extraction (level 3) allows for the generation of near-perfect randomness
if two weakly random but independent strings of randomness are available. In the final
level, we consider post-processing with a physical randomness extractor. This level is called
physical because it requires a quantum device, in addition to the initial RNG, while the
other levels only require mathematical algorithms to perform extraction. At a high level,
the role of this additional hardware is to provide a second string of random numbers, whilst
making minimal assumptions only.

Adding quantum hardware may initially seem to imply introducing numerous as-
sumptions; however, following the device-independent approach, this hardware can, in
principle, be treated as an untrusted black box (which could even have been built by an
adversary, so long as it can be shielded once in use and meets some minimal require-
ments). We call the added assumptions minimal because they are either fundamental to
physics—e.g., information cannot travel faster than light speed—or no cryptography can
ever be performed without them—e.g., the devices are shielded (there are no backdoors).
This is made possible by the development of device-independent protocols, which rely on
Bell tests [54]. The idea is to use the initial RNG to generate random challenges for the
quantum device and then study its response. With ideal (noiseless) devices, this approach
can be used to self-test the inner functioning of the device, i.e., one can uniquely identify the
implemented quantum states and measurements from the observed challenge–response
statistics alone. For real (noisy) devices, this approach can be used to bound the adversary’s
guessing power, and thus guarantee min-entropy, over the device’s outputs or responses.
This approach crucially relies on quantum resources, which have this self-testing property,
and has no classical analogue. For a review on the subject, together with its minimal
assumptions (called loopholes), we refer the reader to [55]. See Figure 8 for an illustration.

Today, quantum devices that are capable of running device-independent protocols
are extremely difficult to build (they require the ability to perform a loophole-free Bell
Test [54]) and exist as experiments on lab benches only. Because of this, more practical
implementations have been developed in which a few well-justified assumptions are added
(to the minimal ones). The resulting protocols have comparatively fewer assumptions
than standard hardware, but not fundamentally minimal. Such a semi-device-independent
protocol is the one that we implement for our physical extraction method at level 4, based on
an adaptation of the randomness amplification protocol described in [47] and implemented
on quantum computers. For clarity, the assumptions that we make are the following.

• The initial RNG has a block min-entropy structure (as in seeded and two-source
extraction).

• The quantum device is independent of the initial RNG’s output; we do not consider
correlations between the two (although this can be added). This assumption is well
motivated since the quantum computer is distant from the initial RNG.

• The quantum device is assumed to perform a faithful Bell test. This assumption is well
motivated when using particular types of devices, such as the quantum computers



Entropy 2024, 26, 1053 20 of 33

based on ion traps that we use—see the discussion in [47] (Section 6.2 , Validity of
quantum computers for Bell experiments and added assumptions).

Figure 8. The set-up for level 4: physical randomness extraction. The initial RNG is used twice: first to
generate challenges to the quantum device and second to provide an extra bit string as input to a two-
source extractor. The role of the quantum device is to provide an additional source of randomness.
The device-independent protocol is performed by using the challenge–response behaviour of the
device to obtain a lower bound on the amount of randomness in the device’s responses (without
characterising the device itself). The second bit string of the initial RNG and the responses from the
quantum device form the two input strings to a two-source extractor, implemented as in level 3.

We used the H1-1 Quantinuum ion-trap quantum computer [56] as our device to
obtain, from its output, a weakly random bit string size of 3.6 × 106 bits (this means that,
due to using the Circulant extractor, the input length of the initial RNG block to the two-
source extraction is also 3.6 × 106 bits) with min-entropy rate αQ ≥ 0.518, certified in
the semi-device-independent manner described above. The Circulant extractor requires
αQ + αRNG > 1 to give a non-vanishing output, implying that the rate of an initial RNG
must satisfy αRNG > 0.482 to allow for physical extraction with our implementation.
(This minimum requirement is particularly interesting, since, even if one has access to two
identical (and independent) copies of an initial RNG with αRNG = 0.482+ δ for δ ∈ (0, 0.18),
one would be unable to extract from the two (step 3) with today’s implemented extractors.
Note that this is not a fundamental limitation, as other two-source extractors allow for one
of the strings to have a logarithmic min-entropy rate only. However, to our knowledge
no such extractor has been implemented, let alone efficiently). The advantage of using a
quantum device, and therefore level 4, is two-fold: (a) one obtains a rigorous, semi-device-
independent lower bound on a second bit string’s min-entropy and (b) the min-entropy
rate of the quantum device is above 0.5, allowing extraction from a weak initial output with
rate 0.5 using the Circulant extractor. Note that the min-entropy of the LSFR was too low to
perform physical extraction (its min-entropy rate was below 0.482; see Table 4).

The processed output is then generated in two steps. (1) We generate a (near-)perfect
seed using the Circulant extractor as a two-source extractor on the two input strings X1,
from the initial RNG, and Y, from the H1-1 Quantinuum quantum computer. (2) We use
this seed in multiple Circulant seeded extractions on Xi≥2, which are concatenated together
to obtain a final output of 5 × 1010 bits. In other words, the concatenation of the two-source
and seeded extractors together again forms a two-source extractor with advantageous
parameters. Therefore, the final output for statistical testing is given by

Output =
[
ExtCirculants (X2, S),ExtCirculants (X3, S), . . . ,ExtCirculants (Xn, S)

]
, (16)

where S = ExtCirculant2 (X1, Y), [·, ·] denotes concatenation and the extractor round with in-
put Xi has error ϵexti . The total error of the final output is ϵtotal = ϵest + ϵext1 + ∑n

j=2 ϵextj ≤
2−32. This last step is similar to that of level 3, where the NIST Randomness Beacon is
replaced by the H1-1 Quantinuum quantum computer. The statistical test results are given
in Table 8.



Entropy 2024, 26, 1053 21 of 33

Table 8. This table gives the sum of statistical tests failed for 5 × 10 Gbit samples from level 4.
Note: The 32-bit LFSR does not generate any output in this setting, since its min-entropy is too low
for extraction. In cells with multiple entries, failed tests are on the left and suspicious tests (when
applicable) are on the right in parentheses. Full results can be found in Appendix F.

RNG NIST
(75)

Diehard
(90)

ENT
(30)

SmallCrush
(75)

Alphabit
(85)

Rabbit
(200)

PractRand
(4600)

32-bit LFSR - - - - - - -

RDSEED 0 0 (2) 0 0 0 1 0 (3)

IDQ Quantis 0 0 (3) 1 0 0 2 0 (7)

The results of the statistical tests in Table 8 show, as for levels 2 and 3, that the post-
processed RNGs perform well at level 4.

6. Discussion

In this work, we have presented a variety of extraction methods to post-process
the output of random number generators (RNGs) and evaluated their impacts on the
statistical properties of three widely used RNGs. We started by extensively testing the
output from three RNGs and identified statistical failures in two of them, corroborating
and extending previous findings [10,21]. For the RNGs that failed, all post-processing
methods improved the statistical properties. Specifically, we found that the processed
outputs processed with level 2 or higher (seeded, two-source, or physical extraction) were
statistically indistinguishable from uniform distributions. However, due to the inherent
limitations of statistical testing, we could not identify any examples that failed under level
2 post-processing (seeded extraction) but succeeded with level 3 or higher (two-source and
physical extraction), even though level 3 is provably stronger than level 2.

Our statistical testing environment, STE, software, documentation, and build file can
be found at https://github.com/CQCL/random_test (accessed on 28 November 2024),
and the randomness extractor software library Cryptomite can be found at https://github.
com/CQCL/cryptomite (accessed on 28 November 2024) and in [7]. These tools may be
independently interesting, making both statistical testing and randomness extraction easy
to use and openly accessible.

A number of interesting future directions arise. It would be interesting to perform the
statistical testing of other RNGs with our test environment to analyse how they perform
when tested beyond what is required by standardisation bodies. Similarly, it would be inter-
esting to include different post-processing methods than the ones that we have presented.
One could use, for example, vetted conditioning components from NIST [57] and compare
their results to the ones obtained using information-theoretic randomness extractors.

We could have moved even further in our numerical testing but, because numerical
tests consume substantial computational resources, decided to omit certain test suites from
our analysis, including SPRNG [58] and Crypt-X [59]. Moreover, we were recently made
aware of the numerical tests BitReps [60] and RaBiGeTe [61], which are also not included in
STE. It would be interesting to include these in the analysis to obtain an even more intense
statistical testing environment.

Author Contributions: Conceptualisation, C.F. and F.J.C.; methodology, C.F. and F.J.C.; software, R.Y.;
validation, C.F., R.Y. and F.J.C.; formal analysis, C.F.; investigation, C.F. and F.J.C.; resources, F.J.C.;
data curation, C.F.; writing—original draft preparation, C.F. and F.J.C.; writing—review and editing,
C.F., R.Y. and F.J.C.; visualisation, C.F., R.Y. and F.J.C.; supervision, F.J.C.; project administration, C.F.
and F.J.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

https://github.com/CQCL/random_test
https://github.com/CQCL/cryptomite
https://github.com/CQCL/cryptomite


Entropy 2024, 26, 1053 22 of 33

Data Availability Statement: The data presented in this study are openly available in https://github.
com/CQCL/random_test (accessed on 28 November 2024).

Acknowledgments: We thank Erik Woodhead and Ela Lee for the useful discussions and suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. RNG Descriptions

Appendix A.1. Linear Feedback Shift Register (LFSR)

The LFSR is a class of pseudo-RNGs that is commonly used in applications due to its
speed and ease of implementation in both software and hardware, e.g., [62,63]. Notably,
LFSRs are used in cryptography, including in hashing and authentication [51] and stream
ciphers [64]. For this work, we implement the maximal period LFSR found in [65].

This LFSR generates pseudo-randomness as follows. Let s = b1, . . . , b32 denote the
initial 32-bit state, where bi denotes the i = 1, . . . , 32th bit.

1. Initialise the LFSR with the 32-bit initial state s = b1, b2, ..., b31, b32.
2. Calculate the feedback f of s, where f = b32 ⊕ b22 ⊕ b2 ⊕ b1 ⊕ 1, where ⊕ denotes

addition modulo 2.
3. Output bit b1.
4. Replace bit bi with bit bi−1 for all i ∈ (2, 32).
5. Set b32 = f .
6. Repeat steps (2–5) until the desired amount of bits has been generated.

The maximum period for a 32-bit LFSR is 232 − 1. This means that bits repeat every 232 − 1
generated bits (approximately every 4.3 Gbits).

Appendix A.2. Intel RDSEED

Intel manufactures a hardware RNG based on thermal noise, which is present in their
computer processing units. This true-RNG is constructed as follows, although a more
in-depth description can be found in [10,11].

1. Initial weak randomness is generated from an entropy source. This source is a self-
clocking circuit designed such that, when the clock is running, the circuit enters a
meta-stable state, which then resolves to one of two possible states—determined
randomly by thermal noise. The state in which the circuit resolves is the random bit
output from the entropy source. This self-clocking occurs irregularly at around 3 GHz.

2. Health and swellness checks are performed, which are very simple statistical tests,
with the goal of detecting critical failures in the entropy source.

3. Cryptographic processing of the randomness with AES is performed.

A user requests randomness from the true-RNG via the RDSEED instruction. Using
Intel’s true-RNG, we cannot directly output raw randomness from the entropy source;
the best available option is RDSEED, which includes some level of post-processing (as
described above). Independent analyses of the Intel true-RNG’s quality, including [10,32],
report a min-entropy rate for RDSEED of around 0.65, closely matching our result (see
Section 4).

Appendix A.3. IDQ Quantis QRNG

The IDQ Quantis (USB) is a QRNG based on photons hitting a 50:50 beam splitter and
being detected in position 0 (reflected) and 1 (transmitted). In principle, if all components
are accurately modelled and the device is shielded from any outside influence, the output
is perfectly random numbers due to the laws of quantum mechanics. We refer the reader to
the IDQ Quantis QRNG brochure for further details of its construction [22].

https://github.com/CQCL/random_test
https://github.com/CQCL/random_test


Entropy 2024, 26, 1053 23 of 33

Appendix B. Initial RNG Analysis

Appendix B.1. Full Results: Statistical Testing

Table A1. The number of failed tests for the raw output from the 32-bit LFSR. Note that only
127/920 PractRand tests were run due to the numerous failings in the 225 byte case. In cells with
multiple entries, failed tests are on the left and suspicious tests (when applicable) are on the right in
parentheses.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

LFSR 1 2 8 (0) 1 10 15 28 23 (5)

LFSR 2 2 8 (0) 1 10 14 27 25 (3)

LFSR 3 2 8 (2) 1 11 15 26 24 (4)

LFSR 4 2 8 (0) 1 10 15 25 23 (5)

LFSR 5 2 8 (2) 1 10 15 25 25 (4)

LFSR 6 2 8 (1) 1 10 15 27 23 (5)

LFSR 7 2 8 (0) 1 10 14 27 24 (6)

LFSR 8 2 8 (0) 1 10 15 25 25 (3)

LFSR 9 2 8 (0) 1 10 14 26 21 (6)

LFSR 10 2 8 (1) 1 10 14 26 23 (4)

Total 20 80 (6) 10 101 146 262 236 (45)

Table A2. The number of failed tests for the raw output from RDSEED. In cells with multiple entries,
failed tests are on the left and suspicious tests (when applicable) are on the right in parentheses.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

RDSEED 1 0 0 (0) 0 1 0 0 0 (1)

RDSEED 2 0 0 (1) 0 0 0 0 0 (8)

RDSEED 3 0 0 (0) 0 0 0 0 0 (0)

RDSEED 4 0 0 (1) 0 0 0 0 0 (1)

RDSEED 5 0 0 (1) 0 0 0 1 0 (1)

RDSEED 6 0 0 (0) 0 0 0 1 0 (0)

RDSEED 7 0 0 (1) 0 0 0 0 0 (0)

RDSEED 8 0 0 (1) 0 0 0 0 0 (0)

RDSEED 9 0 0 (0) 0 0 0 0 0 (1)

RDSEED 10 0 0 (2) 0 0 0 0 0 (0)

Total 0 0 (7) 0 1 0 2 0 (12)

Table A3. The number of failed tests for the raw output from IDQ Quantis. In cells with multi-
ple entries, failed tests are on the left and suspicious tests (when applicable) are on the right in
parentheses.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

IDQ Quantis 1 0 0 (0) 1 0 3 5 0 (3)

IDQ Quantis 2 0 0 (1) 1 0 4 5 0 (2)

IDQ Quantis 3 0 0 (0) 1 0 2 4 0 (11)

IDQ Quantis 4 0 0 (1) 1 0 3 5 0 (0)



Entropy 2024, 26, 1053 24 of 33

Table A3. Cont.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

IDQ Quantis 5 0 0 (1) 1 0 3 5 0 (2)

IDQ Quantis 6 0 0 (0) 1 0 2 5 0 (1)

IDQ Quantis 7 0 0 (0) 1 0 5 5 0 (4)

IDQ Quantis 8 0 0 (1) 1 0 3 6 2 (1)

IDQ Quantis 9 0 0 (1) 1 0 3 4 0 (4)

IDQ Quantis 10 0 0 (1) 1 0 6 5 3 (2)

Total 0 0 (6) 10 0 34 49 5 (28)

Appendix B.2. Full Results: Min-Entropy Estimators

Table A4. Observed NIST min-entropy estimators for 32-bit LFSR raw output.

RNG NIST Min-Entropy Estimator (/byte) NIST Min-Entropy Estimator (/bit)

LFSR 1 6.956997 0.869624625

LFSR 2 5.792304 0.724038

LFSR 3 7.161811 0.895226375

LFSR 4 6.638405 0.829800625

LFSR 5 7.353758 0.91921975

LFSR 6 7.121091 0.890136375

LFSR 7 7.213483 0.901685375

LFSR 8 7.188889 0.898611125

LFSR 9 6.638383 0.829797875

LFSR 10 6.638383 0.829797875

Average 6.8703504 0.8587938

Table A5. Observed NIST min-entropy estimators for RDSEED raw output.

RNG NIST Min-Entropy Estimator (/byte) NIST Min-Entropy Estimator (/bit)

RDSEED 1 6.737815 0.842226875

RDSEED 2 6.530758 0.81634475

RDSEED 3 6.846048 0.855756

RDSEED 4 6.995008 0.874376

RDSEED 5 6.861225 0.857653125

RDSEED 6 7.086914 0.88586425

RDSEED 7 6.638399 0.829799875

RDSEED 8 7.024343 0.878042875

RDSEED 9 6.747707 0.843463375

RDSEED 10 6.724567 0.840570875

Average 6.8192784 0.8524098

Table A6. Observed NIST min-entropy estimators for IDQ Quantis raw output.

RNG NIST Min-Entropy Estimator (/byte) NIST Min-Entropy Estimator (/bit)

IDQ Quantis 1 7.149988 0.8937485

IDQ Quantis 2 7.142161 0.892770125

IDQ Quantis 3 7.152185 0.894023125

IDQ Quantis 4 7.088475 0.886059375



Entropy 2024, 26, 1053 25 of 33

Table A6. Cont.

RNG NIST Min-Entropy Estimator (/byte) NIST Min-Entropy Estimator (/bit)

IDQ Quantis 5 7.161971 0.895246375

IDQ Quantis 6 7.169887 0.896235875

IDQ Quantis 7 7.260033 0.907504125

IDQ Quantis 8 7.188102 0.89851275

IDQ Quantis 9 7.115609 0.889451125

IDQ Quantis 10 7.142009 0.892751125

Average 7.157042 0.89463025

Appendix B.2.1. Deriving a Min-Entropy Lower Bound

In this subsection, we derive a min-entropy lower bound from the observed NIST min-
entropy estimators in Table 4. We use subscripts to index a single min-entropy estimator
test and superscript to index the RNG which the variable refers to. Let esti denote the ith
observed NIST min-entropy estimate per bit for a test, i = 1, . . . , 10, and est the average
estimate per bit. The sample standard deviation σ (using Bessel’s correction) is given by

σRNG =

√
1

n − 1

n

∑
i=1

(estRNG − estRNGi )2 . (A1)

We compute the lower bound for the min-entropy rate, αRNG, including a finite statistics
correction term to lower-bound the true estimated min-entropy rate of each RNG with a
high probability. Specifically, we desire

Pr(esti
RNG < αRNG) = ϵest < 2−32, (A2)

where esti is the ith NIST min-entropy estimator for a specific RNG. Selecting

αRNG = estRNG − 7σRNG (A3)

where estRNG is the average NIST min-entropy estimator for the RNG and σRNG is the
observed sample standard deviation that satisfies Equation (A2), giving ϵest ≈ 2−39. Here,
we have made the assumption that the NIST min-entropy estimator results are normally
distributed (which we believe is reasonable due to each test sample being generated a
significant time apart) and used the standard probability density function for normally
distributed variables.

Appendix C. Deterministic Extraction in Detail

Appendix C.1. Full Results

Table A7. The number of failed tests for the output of the 32-bit LFSR after post-processing with
the Von Neumann extractor. Note that only 127/920 PractRand tests were run due to the numerous
failings in the 225 byte case. In cells with multiple entries, failed tests are on the left and suspicious
tests (when applicable) are on the right in parentheses.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

LFSR VN 1 5 2 (2) 1 4 16 21 19 (12)

LFSR VN 2 5 2 (0) 1 3 15 21 21 (11)

LFSR VN 3 5 2 (1) 1 3 15 22 22 (10)



Entropy 2024, 26, 1053 26 of 33

Table A7. Cont.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

LFSR VN 4 5 2 (2) 1 3 15 22 19 (12)

LFSR VN 5 5 2 (0) 1 5 15 20 19 (12)

Total 25 10 (5) 5 18 76 106 100 (57)

Table A8. The number of failed tests for the output of RDSEED after post-processing with the Von
Neumann extractor. In cells with multiple entries, failed tests are on the left and suspicious tests
(when applicable) are on the right in parentheses.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

RDSEED VN 1 0 0 (0) 0 0 0 0 0 (0)

RDSEED VN 2 0 0 (0) 0 0 0 0 0 (0)

RDSEED VN 3 0 0 (0) 0 0 0 0 0 (1)

RDSEED VN 4 0 0 (1) 0 0 0 0 0 (1)

RDSEED VN 5 0 0 (1) 0 0 0 1 0 (0)

Total 0 0 (2) 0 0 0 1 0 (2)

Table A9. The number of failed tests for the output of IDQ Quantis after post-processing with the
Von Neumann extractor. In cells with multiple entries, failed tests are on the left and suspicious tests
(when applicable) are on the right in parentheses.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

IDQ Quantis VN 1 0 0 (0) 0 0 0 0 0 (1)

IDQ Quantis VN 2 0 0 (0) 0 0 0 2 0 (0)

IDQ Quantis VN 3 0 0 (0) 0 0 0 0 0 (1)

IDQ Quantis VN 4 2 0 (1) 0 0 0 1 0 (0)

IDQ Quantis VN 5 2 0 (0) 0 0 0 0 0 (1)

Total 4 0 (1) 0 0 0 3 0 (3)

Appendix D. Seeded Extraction in Detail

Appendix D.1. Full Results

Table A10. Statistical test results for the 32-bit LFSR as the weak input source to the strong seeded
randomness Circulant extractor. The seed is randomness generated from the NIST Randomness
Beacon. In cells with multiple entries, failed tests are on the left and suspicious tests (when applicable)
are on the right in parentheses.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

LFSR NIST SE 1 0 0 (2) 0 0 0 0 0 (2)

LFSR NIST SE 2 0 0 (0) 0 0 0 0 0 (1)

LFSR NIST SE 3 0 0 (0) 0 0 0 0 0 (1)

LFSR NIST SE 4 0 0 (1) 0 0 0 0 0 (0)

LFSR NIST SE 5 0 0 (0) 0 0 0 0 0 (2)

Total 0 0 (3) 0 0 0 0 0 (6)



Entropy 2024, 26, 1053 27 of 33

Table A11. Statistical test results for RDSEED as the weak input source to the strong seeded random-
ness Circulant extractor. The seed is randomness generated from the NIST Randomness Beacon. In
cells with multiple entries, failed tests are on the left and suspicious tests (when applicable) are on
the right in parentheses.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

RDSEED NIST SE 1 0 0 (3) 0 0 0 0 0 (4)

RDSEED NIST SE 2 0 0 (1) 0 0 0 0 0 (2)

RDSEED NIST SE 3 0 0 (1) 0 0 0 0 0 (0)

RDSEED NIST SE 4 0 0 (0) 0 0 0 0 0 (1)

RDSEED NIST SE 5 0 0 (2) 0 0 0 0 0 (0)

Total 0 0 (7) 0 0 0 0 0 (7)

Table A12. Statistical test results for IDQ Quantis as the weak input source to the strong seeded
randomness Circulant extractor. The seed is randomness generated from the NIST Randomness
Beacon. In cells with multiple entries, failed tests are on the left and suspicious tests (when applicable)
are on the right in parentheses.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

IDQ Quantis NIST SE 1 0 0 (0) 0 0 0 0 0 (3)

IDQ Quantis NIST SE 2 0 0 (0) 0 0 0 1 0 (0)

IDQ Quantis NIST SE 3 0 0 (2) 0 0 0 1 0 (0)

IDQ Quantis NIST SE 4 0 0 (0) 0 0 0 0 0 (2)

IDQ Quantis NIST SE 5 0 0 (0) 0 0 0 0 0 (0)

Total 0 0 (2) 0 0 0 2 0 (5)

Appendix E. Two-Source Extraction in Detail

Appendix E.1. Two-Source Extraction with a Single RNG

In this subsection, we test the use of two strings from each RNG as the inputs to a strong
two-source extractor. For near-perfect randomness to be generated, the unique strings from
the RNG must be independent; otherwise, this violates some of the assumptions of this
level. Due to the limitations of the Circulant strong two-source extractor, we are unable to
perform this step for the LFSR, since the min-entropy lower bound derived in Table 4 is
too low.

Table A13. This table gives the sum of statistical tests failed for 5 × 10Gbit samples from each RNG,
after strong 2-source extraction taking strings of randomness from the same RNG and assuming
independence. Note: The 32-bit LFSR does not generate any output in this setting, since its min-
entropy is too low. In cells with multiple entries, failed tests are on the left and suspicious tests (when
applicable) are on the right in parentheses.

RNG NIST
(75)

Diehard
(90)

ENT
(30)

SmallCrush
(75)

Alphabit
(85)

Rabbit
(200)

PractRand
(4600)

32-bit LFSR - - - - - - -

RDSEED 0 0 (1) 1 0 0 1 0 (7)

IDQ Quantis 0 0 (2) 0 0 2 1 0 (8)



Entropy 2024, 26, 1053 28 of 33

Table A14. Statistical test results for RDSEED as the weak input source to the strong two-source
randomness Circulant extractor. The seed is randomness generated from RDSEED. In cells with
multiple entries, failed tests are on the left and suspicious tests (when applicable) are on the right
in parentheses.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

RDSEED Self 2E 1 0 0 (1) 0 0 0 0 0 (2)

RDSEED Self 2E 2 0 0 (0) 0 0 0 1 0 (0)

RDSEED Self 2E 3 0 0 (0) 0 0 0 0 0 (2)

RDSEED Self 2E 4 0 0 (0) 1 0 0 0 0 (3)

RDSEED Self 2E 5 0 0 (0) 0 0 0 0 0 (0)

Total 0 0 (1) 1 0 0 1 0 (7)

Table A15. Statistical test results for IDQ Quantis as the weak input source to the strong two-source
randomness Circulant extractor. The seed is randomness generated from IDQ Quantis. In cells with
multiple entries, failed tests are on the left and suspicious tests (when applicable) are on the right
in parentheses.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

IDQ Quantis Self 2E 1 0 0 (1) 0 0 0 0 0 (3)

IDQ Quantis Self 2E 2 0 0 (0) 0 0 0 0 0 (2)

IDQ Quantis Self 2E 3 0 0 (0) 0 0 1 1 0 (3)

IDQ Quantis Self 2E 4 0 0 (0) 0 0 1 0 0 (0)

IDQ Quantis Self 2E 5 0 0 (1) 0 0 0 0 0 (0)

Total 0 0 (2) 0 0 2 1 0 (8)

Appendix E.2. Two-Source Extraction Using the NIST Randomness Beacon

Table A16. Statistical test results for the 32-bit LFSR as the weak input source to the strong two-source
randomness Circulant extractor. The seed is randomness generated from the NIST Randomness
Beacon. In cells with multiple entries, failed tests are on the left and suspicious tests (when applicable)
are on the right in parentheses.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

LFSR NIST 2E 1 0 0 (2) 0 0 0 0 0 (0)

LFSR NIST 2E 2 0 0 (3) 0 0 1 0 0 (0)

LFSR NIST 2E 3 0 0 (1) 0 0 0 0 0 ( 1)

LFSR NIST 2E 4 0 0 (0) 0 0 1 1 0 (4)

LFSR NIST 2E 5 0 0 (0) 0 0 0 0 0 (3)

Total 0 0 (6) 0 0 2 1 0 (8)

Table A17. Statistical test results for RDSEED as the weak input source to the strong two-source
randomness Circulant extractor. The seed is randomness generated from the NIST Randomness
Beacon. In cells with multiple entries, failed tests are on the left and suspicious tests (when applicable)
are on the right in parentheses.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

RDSEED NIST 2E 1 0 0 (0) 0 0 0 1 0 (0)

RDSEED NIST 2E 2 0 0 (1) 0 0 0 1 0 (0)

RDSEED NIST 2E 3 0 0 (2) 0 0 0 1 0 (1)



Entropy 2024, 26, 1053 29 of 33

Table A17. Cont.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

RDSEED NIST 2E 4 0 0 (1) 0 0 0 0 0 (1)

RDSEED NIST 2E 5 0 0 (0) 0 0 0 0 0 (3)

Total 0 0 (4) 0 0 0 3 0 (5)

Table A18. Statistical test results for IDQ Quantis as the weak input source to the strong two-source
randomness Circulant extractor. The seed is randomness generated from the NIST Randomness
Beacon. In cells with multiple entries, failed tests are on the left and suspicious tests (when applicable)
are on the right in parentheses.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

IDQ Quantis NIST 2E 1 0 0 (0) 0 0 0 0 0 (0)

IDQ Quantis NIST 2E 2 0 0 (1) 0 0 0 0 0 (2)

IDQ Quantis NIST 2E 3 0 0 (1) 0 0 0 0 0 (0)

IDQ Quantis NIST 2E 4 0 0 (0) 0 0 0 1 0 (2)

IDQ Quantis NIST 2E 5 0 0 (1) 0 0 0 0 0 (1)

Total 0 0 (3) 0 0 0 1 0 (5)

Appendix F. Physical Randomness Extraction in Detail

Appendix F.1. Protocol For Physical Randomness Extraction

For this physical randomness extraction, we roughly follow the protocol developed
in [47], with some adaptations to improve the randomness generation speed. (Other
protocols could be used and adapted—for example [66]—but additional analysis would
need to be performed. Some other protocols allow for fewer assumptions than ours in [47],
e.g., [67,68], but these require significant classical computation so cannot be implemented on
the current hardware). This produces a semi-device-independent protocol for randomness
amplification using a remote quantum computer, based on Bell tests. Roughly speaking,
a Bell test requires a device to be challenged with inputs and then, based on the observed
input–output statistics, a certain amount of entropy can be certified in the outputs. For a
good description of Bell tests, see “Non-local games” in [54].

The adapted protocol that we use is constructed as follows.

1. During each of the n rounds, prepare a circuit that generates the GHZ state
1√
2
(|000⟩ + i |111⟩) and measure each qubit with a local X or Y measurement de-

cided by the inputs at that round, which are selected from the set of measurements
{(X, X, X), (X, Y, Y), (Y, X, Y), (Y, Y, X)}. Labelling local X and Y measurements as
0 and 1, respectively, allows us to write each measurement setting in the set as
(xi, yi, xi ⊕ yi), where subscript i denotes the i-th round and xi, yi are input bits se-
lected using the initial RNG. See Section 6.3 Implementations of Mermin inequality
violations on quantum computers in [47].

2. Run the circuit of round i ∈ 1, 2, ..., n, recording the measurement settings xi, yi, xi ⊕ yi
and measurement outcomes ai, bi, ci of this round.

3. After n rounds, calculate the observed probability distribution Pr(a, b, c|x, y).
4. Evaluate the Mermin inequality [69] value Mobs, where

Mobs = E0,0,0 − E0,1,1 − E1,0,1 − E1,1,0 (A4)



Entropy 2024, 26, 1053 30 of 33

from the observed probability distribution, where Ex,y,x⊕y denotes the correlator for
measurements (x, y, x ⊕ y), defined by

Ex,y,x⊕y = ∑
a⊕b⊕c=0

Pr(a, b, c | x, y, x ⊕ y)− ∑
a⊕b⊕c=1

Pr(a, b, c | x, y, x ⊕ y) (A5)

5. Reduce Mobs to account for finite statistics using the Höeffding inequality, using the
relationship between Mobs and the ‘losing probability’, found at the beginning of
Appendix A.2 of [47]. Let ϵest be the estimation error and M be the true (asymptotic)
value of the Mermin inequality for some I.I.D. quantum device; then, we find Madj

such that Pr(Madj > M) ≤ ϵest by defining

Madj = Mobs − 16t. (A6)

and

ϵest = exp(−2t/n) (A7)

for t > 0.
6. Based on the adjusted value Madj, evaluate the amount of min-entropy in the mea-

surement outcomes of the quantum device. This is performed using the analytic
expression in [70], which applies to two output bits per round. For details, see
Section 4.3 Quantum devices, Bell tests, and guessing probabilities [47]. Note that the rela-
tionship between the guessing probability and min-entropy can be found in Appendix
A.3, Equation (28) of [47].

7. Take two of the three output bits (e.g., a, b, discard c) for randomness extraction.
8. Perform strong two-source randomness extraction using the quantum computer

outputs (a, b) with a fresh string of randomness from an RNG, if the sum of the min-
entropies of each bit string is high enough for extraction. The output is a near-perfect
bit string, which we call the seed.

9. Repeatedly perform strong seeded extraction using the generated seed and fresh
strings from the initial RNG, concatenating the output following the same logic as
level 3, i.e., two-source extraction.

For the extractor implementation, we again use the Circulant extractor, and steps (8)
and (9) can be viewed as analogous to level 3, where the source Y is instead generated
by the described quantum process. We used the H1-1 Quantinuum ion-trap quantum
computer as our quantum device, executing 1.8 × 106 circuits to obtain a weakly random
seed of 3.6 × 106 bits. This experiment took approximately 33.5 h of quantum computing
time. We obtain Mobs = 3.83 → Madj ≈ 3.75 → αQ ≥ 0.518, where αQ is the min-entropy
rate of the quantum computer outputs (a, b). We note that the min-entropy of the LSFR
was too low to perform physical extraction, as a necessary condition is αRNG > 1 − αQ.

Appendix F.2. Full Results

Table A19. Statistical test results for RDSEED as the weak input source to the physical randomness
extractor hierarchy level, implemented with the Circulant extractor. The seed is randomness generated
using the semi-device-independent randomness amplification protocol outlined in Appendix F.1. In
cells with multiple entries, failed tests are on the left and suspicious tests (when applicable) are on
the right in parentheses.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

RDSEED PE 1 0 0 (1) 0 0 0 0 0 (0)

RDSEED PE 2 0 0 (0) 0 0 0 0 0 (2)

RDSEED PE 3 0 0 (0) 0 0 0 0 0 (0)



Entropy 2024, 26, 1053 31 of 33

Table A19. Cont.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

RDSEED PE 4 0 0 (1) 0 0 0 0 0 (1)

RDSEED PE 5 0 0 (0) 0 0 0 1 0 (0)

Total 0 0 (2) 0 0 0 1 0 (3)

Table A20. Statistical test results for IDQ Quantis as the weak input source to the physical randomness
extractor hierarchy level, implemented with the Circulant extractor. The seed is randomness generated
using the semi-device-independent randomness amplification protocol outlined in Appendix F.1. In
cells with multiple entries, failed tests are on the left and suspicious tests (when applicable) are on
the right in parentheses.

RNG NIST
(15)

Diehard
(18)

ENT
(6)

SmallCrush
(15)

Alphabit
(17)

Rabbit
(40)

PractRand
(920)

IDQ Quantis PE 1 0 0 (1) 0 0 0 0 0 (1)

IDQ Quantis PE 2 0 0 (0) 0 0 0 1 0 (2)

IDQ Quantis PE 3 0 0 (0) 1 0 0 0 0 (3)

IDQ Quantis PE 4 0 0 (2) 0 0 0 0 0 (0)

IDQ Quantis PE 5 0 0 (0) 0 0 0 1 0 (1)

Total 0 0 (3) 1 0 0 2 0 (7)

References
1. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.; Heckert, A.; et al. A

Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications; US Department of Commerce,
Technology Administration, National Institute of Standards and Technology: Washington, DC, USA, 2001; Volume 22,

2. Marsaglia, G. The Marsaglia Random Number CDROM Including the Diehard Battery of Tests of Randomness. 2008. Available
online: http://www.stat.fsu.edu/pub/diehard (accessed on 28 November 2024).

3. Brown, R.G.; Eddelbuettel, D.; Bauer, D. Dieharder; Physics Department, Duke University: Durham, NC, USA, 2018.
4. L’ecuyer, P.; Simard, R. TestU01: AC library for empirical testing of random number generators. ACM Trans. Math. Softw. 2007,

33, 1–40. [CrossRef]
5. Walker, J. A Pseudorandom Number Sequence Test Program. Available online: https://www.fourmilab.ch/random/ (accessed

on 28 November 2024).
6. Doty-Humphrey, C. PractRand Official Site. 2018. Available online: http://pracrand.sourceforge.net (accessed on 28 November

2024).
7. Foreman, C.; Yeung, R.; Edgington, A.; Curchod, F.J. Cryptomite: A versatile and user-friendly library of randomness extractors.

arXiv 2024, arXiv:2402.09481.
8. Soto, J. Statistical testing of random number generators. In Proceedings of the 22nd national information systems security

conference, Arlington, VA, USA, 18–21 October 1999; NIST: Gaithersburg, MD, USA, 1999; Volume 10, p. 12.
9. Tsvetkov, E.A. Empirical tests for statistical properties of some pseudorandom number generators. Math. Model. Comput.

Simulations 2011, 3, 697–705. [CrossRef]
10. Hamburg, M.; Kocher, P.; Marson, M.E. Analysis of Intel’s Ivy Bridge Digital Random Number Generator. 2012. Available online:

http://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.pdf (accessed on 28 November 2024).
11. Jun, B.; Kocher, P. The Intel Random Number Generator; White Paper; Cryptography Research Inc.: San Francisco, CA, USA, 1999;

Volume 27, pp. 1–8.
12. Tsoi, K.H.; Leung, K.H.; Leong, P.H.W. High performance physical random number generator. IET Comput. Digit. Tech. 2007,

1, 349–352. [CrossRef]
13. Zhang, L.; Pan, B.; Chen, G.; Guo, L.; Lu, D.; Zhao, L.; Wang, W. 640-Gbit/s fast physical random number generation using a

broadband chaotic semiconductor laser. Sci. Rep. 2017, 7, 45900. [CrossRef]
14. Williams, C.R.; Salevan, J.C.; Li, X.; Roy, R.; Murphy, T.E. Fast physical random number generator using amplified spontaneous

emission. Opt. Express 2010, 18, 23584–23597. [CrossRef]
15. Sun, Y.; Lo, B. Random Number Generation Using Inertial Measurement Unit Signals for On-body IoT Devices. In Living in the

Internet of Things: Cybersecurity of the IoT; IET: London, UK, 2018; pp. 1–9. [CrossRef]
16. Cho, S.M.; Hong, E.; Seo, S.H. Random number generator using sensors for drone. IEEE Access 2020, 8, 30343–30354. [CrossRef]
17. Xu, B.; Chen, Z.; Li, Z.; Yang, J.; Su, Q.; Huang, W.; Zhang, Y.; Guo, H. High speed continuous variable source-independent

quantum random number generation. Quantum Sci. Technol. 2019, 4, 025013. [CrossRef]

http://www.stat.fsu.edu/pub/diehard
http://doi.org/10.1145/1268776.1268777
https://www.fourmilab.ch/random/
http://pracrand. sourceforge. net
http://dx.doi.org/10.1134/S207004821106010X
http://www. cryptography. com/public/pdf/Intel_TRN G_Report_20120312. pdf
http://dx.doi.org/10.1049/iet-cdt:20050173
http://dx.doi.org/10.1038/srep45900
http://dx.doi.org/10.1364/OE.18.023584
http://dx.doi.org/10.1049/cp.2018.0028
http://dx.doi.org/10.1109/ACCESS.2020.2972958
http://dx.doi.org/10.1088/2058-9565/ab0fd9


Entropy 2024, 26, 1053 32 of 33

18. Ó Dúill, S.; Rodriguez, L.; Alvarez-Outerelo, D.; Diaz-Otero, F.J.; Sharma, A.; Smyth, F.; Barry, L.P. Operation of an Electrical-
Only-Contact Photonic Integrated Chip for Quantum Random Number Generation Using Laser Gain-Switching. Optics 2023,
4, 551–562. [CrossRef]

19. Jacak, M.M.; Jóźwiak, P.; Niemczuk, J.; Jacak, J.E. Quantum generators of random numbers. Sci. Rep. 2021, 11, 16108. [CrossRef]
20. Keshavarzian, P.; Ramu, K.; Tang, D.; Weill, C.; Gramuglia, F.; Tan, S.S.; Tng, M.; Lim, L.; Quek, E.; Mandich, D.; et al. A 3.3-Gb/s

SPAD-Based Quantum Random Number Generator. IEEE J. Solid-State Circuits 2023, 58, 2632–2647. [CrossRef]
21. Hurley-Smith, D.; Hernandez-Castro, J. Quantum leap and crash: Searching and finding bias in quantum random number

generators. ACM Trans. Priv. Secur. 2020, 23, 1–25. [CrossRef]
22. ID Quantique. Quantis: Quantum Random Number Generator; ID Quantique: Geneve, Switzerland, 2004.
23. Crocetti, L.; Nannipieri, P.; Di Matteo, S.; Fanucci, L.; Saponara, S. Review of Methodologies and Metrics for Assessing the Quality

of Random Number Generators. Electronics 2023, 12, 723. [CrossRef]
24. Seyhan, K.; Akleylek, S. Classification of random number generator applications in IoT: A comprehensive taxonomy. J. Inf. Secur.

Appl. 2022, 71, 103365. [CrossRef]
25. Shaltiel, R. An introduction to randomness extractors. In Proceedings of the International Colloquium on Automata, Languages,

and Programming, Zurich, Switzerland, 4–8 July 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 21–41.
26. Kwok, S.H.; Ee, Y.L.; Chew, G.; Zheng, K.; Khoo, K.; Tan, C.H. A comparison of post-processing techniques for biased random

number generators. In Proceedings of the Information Security Theory and Practice. Security and Privacy of Mobile Devices in
Wireless Communication: 5th IFIP WG 11.2 International Workshop, WISTP 2011, Heraklion, Greece, 1–3 June 2011; Proceedings
5. Springer: Berlin/Heidelberg, Germany, 2011; pp. 175–190.

27. Ma, X.; Xu, F.; Xu, H.; Tan, X.; Qi, B.; Lo, H.K. Postprocessing for quantum random-number generators: Entropy evaluation and
randomness extraction. Phys. Rev. A 2013, 87, 062327. [CrossRef]

28. Meier, W.; Staffelbach, O. The self-shrinking generator. In Proceedings of the Workshop on the Theory and Application of of
Cryptographic Techniques, Perugia, Italy, 9–12 May 1994; Springer: Berlin/Heidelberg, Germany, 1994; pp. 205–214.

29. Canetti, R. Universally composable security: A new paradigm for cryptographic protocols. In Proceedings of the Proceedings
42nd IEEE Symposium on Foundations of Computer Science, Newport Beach, CA, USA, 8–11 October 2001; IEEE: Piscataway,
NY, USA, 2001; pp. 136–145.

30. Hurley-Smith, D.; Hernandez-Castro, J. Certifiably biased: An in-depth analysis of a common criteria EAL4+ certified TRNG.
IEEE Trans. Inf. Forensics Secur. 2017, 13, 1031–1041. [CrossRef]

31. Ortiz-Martin, L.; Picazo-Sanchez, P.; Peris-Lopez, P.; Tapiador, J. Heartbeats do not make good pseudo-random number generators:
An analysis of the randomness of inter-pulse intervals. Entropy 2018, 20, 94. [CrossRef]

32. Shrimpton, T.; Terashima, R.S. A provable-security analysis of Intel’s secure key RNG. In Proceedings of the Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, 26–30 April 2015; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 77–100.

33. Burciu, P.; Simion, E. A Systematic Approach of NIST Statistical Tests Dependencies. J. Electr. Eng. Electron. Control Comput. Sci.
2019, 5, 1–6.

34. Hamano, K.; Kaneko, T. Correction of overlapping template matching test included in NIST randomness test suite. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. 2007, 90, 1788–1792. [CrossRef]

35. Kowalska, K.A.; Fogliano, D.; Coello, J.G. On the revision of NIST 800-22 Test Suites. Cryptology ePrint Archive. 2022. Available
online: https://eprint.iacr.org/2022/540.pdf (accessed on 28 November 2024).

36. Marton, K.; Suciu, A. On the interpretation of results from the NIST statistical test suite. Sci. Technol. 2015, 18, 18–32.
37. Saarinen, M.J.O. NIST SP 800-22 and GM/T 0005-2012 Tests: Clearly Obsolete, Possibly Harmful. In Proceedings of the 2022 IEEE

European Symposium on Security and Privacy Workshops (EuroS&PW), Genoa, Italy, 6–10 June 2022.
38. Sỳs, M.; Obrátil, L.; Matyáš, V.; Klinec, D. A Bad Day to Die Hard: Correcting the Dieharder Battery. J. Cryptol. 2022, 35, 1–20.

[CrossRef]
39. Stępień, R.; Walczak, J. Statistical analysis of the LFSR generators in the NIST STS test suite. Comput. Appl. Electr. Eng. 2013,

11, 356–362.
40. McKay, K. Users Guide to Running the Draft NIST SP 800-90B Entropy Estimation Suite; Technical Report SP; NIST: Gaithersburg,

MD, USA, 2016.
41. Buller, D.; Kaufer, A.; Roginsky, A.; Sönmez Turan, M. Discussion on the Full Entropy Assumption of the SP 800-90 Series; Technical

Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2022.
42. Zhu, S.; Ma, Y.; Chen, T.; Lin, J.; Jing, J. Analysis and improvement of entropy estimators in NIST SP 800-90B for non-IID entropy

sources. IACR Trans. Symmetric Cryptol. 2017, 2017, 151–168. [CrossRef]
43. Von Neumann, J. Various techniques used in connection with random digits. John Neumann Collect. Work. 1963, 5, 768–770.
44. Ball, M.; Goldreich, O.; Malkin, T. Randomness extraction from somewhat dependent sources. In Proceedings of the 13th

Innovations in Theoretical Computer Science Conference (ITCS 2022), Berkeley, CA, USA, 31 January–3 February 2022; Schloss
Dagstuhl-Leibniz-Zentrum für Informatik: Wadern, Germany, 2022.

45. Arnon-Friedman, R.; Portmann, C.; Scholz, V.B. Quantum-proof multi-source randomness extractors in the Markov model. arXiv
2015, arXiv:1510.06743.

http://dx.doi.org/10.3390/opt4040040
http://dx.doi.org/10.1038/s41598-021-95388-7
http://dx.doi.org/10.1109/JSSC.2023.3274692
http://dx.doi.org/10.1145/3398726
http://dx.doi.org/10.3390/electronics12030723
http://dx.doi.org/10.1016/j.jisa.2022.103365
http://dx.doi.org/10.1103/PhysRevA.87.062327
http://dx.doi.org/10.1109/TIFS.2017.2777342
http://dx.doi.org/10.3390/e20020094
http://dx.doi.org/10.1093/ietfec/e90-a.9.1788
https://eprint.iacr.org/2022/540.pdf
http://dx.doi.org/10.1007/s00145-021-09414-y
http://dx.doi.org/10.46586/tosc.v2017.i3.151-168


Entropy 2024, 26, 1053 33 of 33

46. Kelsey, J.; Brandão, L.T.; Peralta, R.; Booth, H. A Reference for Randomness Beacons: Format and Protocol Version 2; Technical Report;
National Institute of Standards and Technology: Gaithersburg, MD, USA, 2019.

47. Foreman, C.; Wright, S.; Edgington, A.; Berta, M.; Curchod, F.J. Practical randomness amplification and privatisation with
implementations on quantum computers. Quantum 2023, 7, 969. [CrossRef]

48. Santha, M.; Vazirani, U.V. Generating quasi-random sequences from semi-random sources. J. Comput. Syst. Sci. 1986, 33, 75–87.
[CrossRef]

49. Frauchiger, D.; Renner, R.; Troyer, M. True randomness from realistic quantum devices. arXiv 2013, arXiv:1311.4547.
50. Dodis, Y.; Elbaz, A.; Oliveira, R.; Raz, R. Improved randomness extraction from two independent sources. In Approximation,

Randomization, and Combinatorial Optimization. Algorithms and Techniques; Springer: Berlin/Heidelberg, Germany, 2004; pp. 334–344.
51. Krawczyk, H. LFSR-based hashing and authentication. In Proceedings of the Annual International Cryptology Conference, Santa

Barbara, CA, USA, 21–25 August 1994; Springer: Berlin/Heidelberg, Germany, 1994; pp. 129–139.
52. Trevisan, L. Construction of extractors using pseudo-random generators. In Proceedings of the Thirty-First Annual ACM

Symposium on Theory of Computing, Atlanta, GA, USA, 1–4 May 1999; pp. 141–148.
53. Vadhan, S.P. Pseudorandomness. Found. Trends® Theor. Comput. Sci. 2012, 7, 1–336. [CrossRef]
54. Brunner, N.; Cavalcanti, D.; Pironio, S.; Scarani, V.; Wehner, S. Bell nonlocality. Rev. Mod. Phys. 2014, 86, 419. [CrossRef]
55. Acín, A.; Masanes, L. Certified randomness in quantum physics. Nature 2016, 540, 213–219. [CrossRef]
56. Quantinuum. H1-1. 1–4 November 2021. Available online: https://www.quantinuum.com/ (accessed on 28 November 2024).
57. Turan, M.S.; Barker, E.; Kelsey, J.; McKay, K.A.; Baish, M.L.; Boyle, M. Recommendation for the entropy sources used for random

bit generation. NIST Spec. Publ. 2018, 800, 102.
58. Mascagni, M.; Srinivasan, A. Algorithm 806: SPRNG: A scalable library for pseudorandom number generation. ACM Trans.

Math. Softw. 2000, 26, 436–461. [CrossRef]
59. Gustafson, H.; Dawson, E.; Nielsen, L.; Caelli, W. A computer package for measuring the strength of encryption algorithms.

Comput. Secur. 1994, 13, 687–697. [CrossRef]
60. Pont, J.; Calvin Brierley, J.H.C. BitReps. Available online: https://github.com/jjp31/bitreps-1/tree/master (accessed on 28

November 2024).
61. Piras, C. RaBiGeTe—Random Bit Generators Tester. Available online: http://cristianopi.altervista.org/RaBiGeTe_MT/ (accessed

on 28 November 2024).
62. Datta, D.; Datta, B.; Dutta, H.S. Design and implementation of multibit LFSR on FPGA to generate pseudorandom sequence

number. In Proceedings of the 2017 Devices for Integrated Circuit (DevIC), Kalyani, India, 23–24 March 2017; IEEE: Piscataway,
NJ, USA, 2017; pp. 346–349.

63. Sahithi, M.; MuraliKrishna, B.; Jyothi, M.; Purnima, K.; Rani, A.J.; Sudha, N. Implementation of random number generator using
LFSR for high secured multi purpose applications. Int. J. Comput. Sci. Inf. Technol. 2012, 3, 3287–3290.

64. Ekdahl, P. On LFSR Based Stream Ciphers-Analysis and Design; Lund University: Lund, Sweden, 2003.
65. Panda, A.K.; Rajput, P.; Shukla, B. FPGA implementation of 8, 16 and 32 bit LFSR with maximum length feedback polynomial

using VHDL. In Proceedings of the 2012 International Conference on Communication Systems and Network Technologies, Rajkot,
India, 11–13 May 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 769–773.

66. Kessler, M.; Arnon-Friedman, R. Device-independent randomness amplification and privatization. IEEE J. Sel. Areas Inf. Theory
2020, 1, 568–584. [CrossRef]

67. Chung, K.M.; Shi, Y.; Wu, X. Physical randomness extractors: Generating random numbers with minimal assumptions. arXiv
2014, arXiv:1402.4797.

68. Ramanathan, R. Finite Device-Independent Extraction of a Block Min-Entropy Source against Quantum Adversaries. arXiv 2023,
arXiv:2304.09643.

69. Mermin, N.D. Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 1990, 65, 1838.
[CrossRef]

70. Woodhead, E.; Bourdoncle, B.; Acín, A. Randomness versus nonlocality in the Mermin-Bell experiment with three parties.
Quantum 2018, 2, 82. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.22331/q-2023-03-30-969
http://dx.doi.org/10.1016/0022-0000(86)90044-9
http://dx.doi.org/10.1561/0400000010
http://dx.doi.org/10.1103/RevModPhys.86.419
http://dx.doi.org/10.1038/nature20119
https://www.quantinuum.com/
http://dx.doi.org/10.1145/358407.358427
http://dx.doi.org/10.1016/0167-4048(94)90051-5
https://github.com/jjp31/bitreps-1/tree/master
http://cristianopi.altervista.org/RaBiGeTe_MT/
http://dx.doi.org/10.1109/JSAIT.2020.3012498
http://dx.doi.org/10.1103/PhysRevLett.65.1838
http://dx.doi.org/10.22331/q-2018-08-17-82

	Introduction
	Related Work
	Summary of Results

	Tools and Definitions
	Statistical Testing
	Existing Test Suites
	NIST Statistical Test Suite
	Diehard(er) Statistical Test Suite
	TestU01 Statistical Test Suite
	ENT Statistical Test Suite
	PractRand Statistical Test Suite

	Our Statistical Testing Environment
	Suggested Settings

	Shortcomings of Statistical Testing

	Statistical Testing of Different RNGs
	A Variety of Post-Processing Methods
	Randomness Extraction Methods
	Results Overview

	Implementations of the Post-Processing Methods
	Level 1: Deterministic Extraction
	Level 2: Seeded Extraction
	Level 3: Two-Source Extraction
	Level 4: Physical Randomness Extraction


	Discussion
	RNG Descriptions
	Linear Feedback Shift Register (LFSR)
	Intel RDSEED
	IDQ Quantis QRNG

	Initial RNG Analysis
	Full Results: Statistical Testing
	Full Results: Min-Entropy Estimators
	Deriving a Min-Entropy Lower Bound


	Deterministic Extraction in Detail
	Full Results

	Seeded Extraction in Detail
	Full Results

	Two-Source Extraction in Detail
	Two-Source Extraction with a Single RNG
	Two-Source Extraction Using the NIST Randomness Beacon

	Physical Randomness Extraction in Detail
	Protocol For Physical Randomness Extraction
	Full Results

	References

