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Abstract. Fischlin’s transform (CRYPTO 2005) is an alternative to the Fiat-Shamir
transform that enables straight-line extraction when proving knowledge. In this work
we focus on the problem of using the Fischlin transform to construct UC-secure zero-
knowledge from Sigma protocols, since UC security – that guarantees security under
general concurrent composition – requires straight-line (non-rewinding) simulators.
We provide a slightly simplified transform that is much easier to understand, and
present algorithmic and implementation optimizations that significantly improve the
running time. It appears that the main obstacles to the use of Fischlin in practice
is its computational cost and implementation complexity (with multiple parameters
that need to be chosen). We provide clear guidelines and a simple methodology for
choosing parameters, and show that with our optimizations the running-time is far
lower than expected. For just one example, on a 2023 MacBook, the cost of proving
the knowledge of discrete log with Fischlin is only 0.41ms (on a single core). This is
15 times slower than plain Fiat-Shamir on the same machine, which is a significant
multiple but objectively not significant in many applications. We also extend the
transform so that it can be applied to batch proofs, and show how this can be much
more efficient than individually proving each statement. We hope that this paper
will both encourage and help practitioners implement the Fischlin transform where
relevant.

1 Introduction
Sigma protocols. A Sigma protocol [Dam10, HL10] is a three-round public-coin honest-
verifier zero-knowledge proof with an additional property called special soundness. This
property states that given any pair of accepting transcripts (a, e, z) and (a, e′, z′) with
the same first prover message (where a denotes the prover’s first message, e denotes the
verifier’s challenge, and z denotes the prover’s response), it is possible to extract the witness.
Sigma protocols are extremely ubiquitous, and many natural zero-knowledge proofs can be
constructed as Sigma protocols. One of the major advantages of Sigma protocols is that
proving that the protocol is also a proof of knowledge is extremely easy, in contrast to the
standard definition of a proof of knowledge which is hard to navigate. In addition, it is
possible to automatically compile Sigma protocols into full-blown zero-knowledge proofs
and zero-knowledge proofs of knowledge with relative ease.

The Fiat-Shamir and Fischlin transforms. The Fiat-Shamir transform [FS86] is the
standard way of constructing practical non-interactive zero-knowledge proofs from Sigma
protocols in the random-oracle model. It works simply by hashing the statement and first
prover message, and taking the result as the verifier challenge. In the random-oracle model,
this makes sense as taking the verifier query from the random-oracle query is no different

E-mail: yihsiuc@pm.me (Yi-Hsiu Chen), yehuda.lindell@gmail.com (Yehuda Lindell)

This work is licensed under a “CC BY 4.0” license.
Date of this document: 2024-06-20.

https://orcid.org/0000-0002-6631-8973
https://orcid.org/0000-0002-8176-690X
https://yehudalindell.com
mailto:yihsiuc@pm.me
mailto:yehuda.lindell@gmail.com
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en


2 Optimizing and Implementing Fischlin for UC-ZK

from receiving it from the verifier (with the exception that the prover can try many times
until it succeeds). The proof obtained using this transform is zero knowledge (in the
programmable random-oracle model) and is a proof of knowledge, as long as the extractor
is able to rewind the adversarial prover. Although the proof is non-interactive, in the
random-oracle model the adversary interacts with the random oracle, and the knowledge
extractor needs to rewind the adversary and provide it different random-oracle responses.
As a result, proofs obtained in this way are not concurrently composable, and in particular
are not UC secure [Can01].

In order to overcome this, Fischlin [Fis05] presented a different transform, also in the
random-oracle model, that does not require the extractor to rewind the adversary. The
ingenious idea behind this transform is to force the prover to attempt many hashes in
order to obtain a valid proof, but requiring the output of the hash to have a certain format.
This essentially means that the prover “rewinds itself”, since the extraction strategy is to
rewind the adversarial prover until the extractor obtains two responses to a given query.
By the special soundness property, this suffices to obtain the witness. Fischlin’s strategy is
the same, except that the prover itself – during real proof generation – needs to already
query the hash (random oracle) many times in order to generate a valid proof. Thus, the
extractor can obtain the witness by just “eavesdropping” on the prover’s queries.

Fischlin in practice. In practice, it appears that people shy away from using the Fischlin
transform. One may conjecture that this is because it is perceived as being both complicated
and expensive. Regarding computational cost, in an admittedly unscientific Twitter poll,
but one that certainly provides valuable anecdotal evidence, we asked cryptographers if
they use Fiat-Shamir or Fischlin: 163 voted, with 84% saying that they use Fiat-Shamir.
We then asked why Fiat-Shamir if that’s the case and 62.8% said that it’s because Fischlin
is too expensive (43 voted). We also asked cryptographers to guess how long it takes to run
Fischlin for discrete log over secp256k1 on a regular laptop, and only 15.9% said less than
1ms, with 36.4% saying 2-5ms and 27.3% saying greater than 5ms (44 voted), whereas in
reality, as we show, it is much less.

Regarding it being complicated, for just one example, the transform allows a lot of
freedom in choosing the different parameters, but this becomes very confusing. What
parameters should be chosen in practice? Does it change depending on the computing
environment? This already makes it hard to implement.

Our contributions. In this paper, we study the Fischlin transform with an eye on
implementation and use in practice. We have the following contributions:

1. We show that one of the parameters (S) in the transform can be completely removed
(to be more exact, fixed to always equal 0), at no cost in practice

2. We present a very simple description of the transform that is easy to use as a reference
for implementations

3. We describe some very important optimizations for proving and verifying, that
significantly impact performance

4. We show how to analytically find optimal parameters for whatever computing platform
is being used

5. We provide an extension of Fischlin’s transform to n-special soundness (where n
accepting transcripts are needed to extract rather than 2) and show that it can be
used to generate batch proofs (e.g., knowing the discrete log of many elements) far
more efficiently than separately proving each statement
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We present experimental results for running times on three different computing
environments: a MacBook Pro 2019 with an Intel 2.3 GHz i9 CPU, Web Assembly
(WASM, with Node.js V21) on the same MacBook, and a 2023 MacBook Pro with an
Apple M3 Pro CPU. Our experiments show that on the aforementioned M3, proving
knowledge of a discrete log over secp256k1 takes only 0.41ms and verifying a proof
takes only 0.45ms, with 128-bit security. This shows that the performance penalty is
insignificant in many cases, and certainly in most MPC protocols where zero-knowledge
proofs of knowledge are needed. In addition, the time for plain Fiat-Shamir on the same
M3 is 0.027ms, and so Fischlin is 15 times slower than plain Fiat-Shamir. Although this is
a significant multiple, it is far less overhead than what people seem to believe.

We remark that the original paper by Fischlin suggested (for example only) using b = 9.
Our experiments show that with b = 9, the running time is approximately ten times slower
than with the parameters that we obtained. This would result in the Fischlin transform
costing approximately 150 times that of Fiat-Shamir, rather than just 15, and explains
why people would shy away from using Fischlin. This demonstrates the importance of
optimizing the proof and the parameters, since this is the difference between the transform
being theoretical but not very useful in practice, and being a tool that can easily be
deployed in real-world protocols today.

Motivation. Our motivation for carry out this research was simple: in all of our
MPC implementations at Coinbase, we require UC security, and thus simulators must
be non-rewinding. When we need a zero-knowledge proof that does not need to be a
proof of knowledge, then we use the Fiat-Shamir transform applied to a Sigma protocol.
This suffices since the zero-knowledge property does not require rewinding, and likewise
soundness verification (without extraction) is also straight-line. However, when we need a
proof of knowledge, we cannot use Fiat-Shamir since witness extraction requires rewinding,
as discussed above. In such cases, we use the Fischlin transform, and so achieving high
efficiency with a simple implementation is paramount.

Related work. In [DV14], the authors study Fischlin’s transform in a different context.
First, they show that when considering it as a signature scheme, the bounds obtained
are far better than for Fiat-Shamir [FS86] since the forking lemma [PS96] is not needed.
As such, the efficiency of signatures generated this way can actually be more efficient
than by Fiat-Shamir, for the same level of security as provided by the security bounds.
Second, they show that better leakage-resilient signatures can be generated using the
Fischlin transform. Another work of relevance is [KS22] who focus on improving Fischlin’s
transform in orthogonal ways to this paper. First, they consider the problem of aggregate
signatures; one step in their construction is related to our batch work in the sense that they
also apply Fischlin to a batch discrete log proof, and they consider a polynomial evaluation
algorithm that is very efficient but requires an n’th root of unity. They also prove a
tighter bound on the number of hash computations required and extend the applicability
of Fischlin’s transform to also include cases where unique prover responses are not required
(like in the OR proofs of [CDS94]). Finally, [CGKN21] presents an extension of Fischlin’s
transform specifically for aggregate signatures that is reminiscent of our generalization for
batch proofs. The main difference is that our focus is on zero-knowledge proofs in general
and not signature aggregation.1

Organization. In Section 2 we present preliminaries, our slightly simplified Fischlin
transform, and important implementation details that include optimizations that are very

1Although our running example throughout the paper is for the proof of knowledge of discrete log
which is very related to signatures and aggregation, our focus is the context of zero-knowledge, and we
consider other examples in Appendix C.
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significant for performance. Next, in Section 3 we present the bounds for completeness
and soundness, as well as the expected cost, showing that our slight simplification yields
much simpler bounds that are easier to understand (we believe that this is important
since it removes one of the obstacles for potential implementers). In Section 4 we show
how to choose parameters and present experimental results. In Section 5 we describe our
generalization to n-special soundness and show how it can be applied to batch proofs. We
present algorithms for speeding up the computation of these proofs, and show that they
are significantly more efficient than running in parallel. Throughout, we use the simple
Schnorr proof of discrete log as a running example, but in Appendix C we consider two
more complex examples and show that the performance for these is also excellent.

2 The Fischlin Transform (Slightly Simplified)
2.1 Preliminaries
We first rewrite the transform with our notation and an early break optimization. Note
that we replace the notation r in [Fis05] with ρ. We denote the computational security
parameter by κc (in practice, we take 128 by default for 256-bit curves, since this maintains
128-bit security), and we denote the statistical security parameter by κs (in practice, we
use κs = 64), enabling a 2−64 failure probability. We sometime use the notation [n] to
denote the set {1, . . . , n}.

Sigma protocol: As described above, a Sigma protocol is a three-round public-coin
honest-verifier zero-knowledge proof system with special soundness. We formally define
the syntax of a Sigma protocol, as follows. Upon common input x and witness w:

1. Let (m, σ)← ProverFirstMessage(x, w) denote the first prover message, where m is
the message sent by the prover and σ is its local state used to compute the second
prover message

2. Let e ∈ {0, 1}κ denote the public-coin verifier challenge, of some length κ (in the
Fischlin transform, we will use challenges of length t, determined below)

3. Let z ← ProverSecondMessage(x, w, σ, e) denote the prover response

4. Let VerifyProof(x, m, e, z) ∈ {0, 1} be the final accept/reject output of the verifier

Throughout, we denote the transcript of the Sigma protocol by (m, e, z). We say that
(m, e, z) is an accepting transcript for x if VerifyProof(x, m, e, z) = 1. Since it is crucial to
this paper, we define the notion of special soundness.

Definition 1 (special soundness). A Sigma protocol has special soundness for a relation R
if there exists a polynomial-time extractor K that given any x and any pair of transcripts
(m, e, z) and (m, e′, z′) such that VerifyProof(x, m, e, z) = VerifyProof(x, m, e′, z′) = 1 and
e ̸= e′, it holds that K outputs w such that (x, w) ∈ R.

The Fischlin transform. We refer the reader to [Fis05] for full details; we briefly
review the idea here. The Fiat-Shamir transform works by having the prover compute
the verifier query e = H(x, m) where x is the statement and m is the first prover message,
and where H is a random oracle. In order to extract the witness from a prover, the
knowledge extractor for Fiat-Shamir works by invoking the prover and obtaining an
accepting transcript (m, e, z). Then, the extractor rewinds the prover and replaces the
random-oracle reply e on input (x, e) with some e′ ̸= e and hopes to receive a different
accepting transcript (x, m, e′, z′) with the same m. If yes, then it succeeds in extracting
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the witness, by the special soundness property. Thus, the idea is to obtain two different
random oracle responses queries to the same input (x, m). Fischlin achieves this differently
by having the prover search for an e such that the hash of the entire transcript has a
specified format of b leading zeroes (for some parameter b). That is, the prover generates
the first message m and then looks for e and z so that (m, e, z) is an accepting transcript
and Hb(x, m, e, z) = 0, where Hb denotes the output of H truncated to b bits. Since the
prover is expected to need 2b queries in order to succeed for this, if it makes 2 queries to
Hb with valid transcripts for the same (x, m) and different values of e, then the extractor
will be able to extract the witness, again by the special soundness. However, this strategy
doesn’t work since the honest-verifier zero-knowledge property of Sigma protocols states
that given e ahead of time, it is possible to find (m, z) such that (m, e, z) is an accepting
transcript (without knowing the witness). As such, a cheating prover can guess e, find
(m, z) such that (m, e, z) is an accepting transcript and hope that Hb(x, m, e, z) = 0. It
will succeed with probability 2−b in every trial and so will be able to cheat in time 2b.

In order to prevent this attack, we cannot increase b so that 2b is super-polynomial,
since then an honest prover would not be able to prove the proof in polynomial time.
Instead, Fischlin’s transform works by simultaneously running this ρ times in parallel.
That is, the prover first generates ρ first messages m⃗ = (m1, . . . , mρ) and then works
one proof at a time to find ei, zi such that (mi, ei, zi) is an accepting transcript and
Hb(x, m⃗, ei, zi) = 0. This prevents the prover from guessing e and then going back to find
(m, z) since the entire vector m⃗ of ρ first messages is included. Furthermore, since in most
Sigma protocols (and this is needed in Fischlin’s transform as pointed out by [KS22]), the
third message z is fully determined by m and e, the prover must be lucky and guess all
e1, . . . , eρ ahead of time. However, the chances of this happening is now

(
2−b
)ρ and so the

prover would need to run expected time 2b·ρ in order to cheat. By setting ρ · b ≥ κc, it
follows that this is infeasible.

2.2 A Slightly Simplified Fischlin Transform
The original transform by Fischlin [Fis05] did not actually require that all random-oracle
outputs equal zero. Rather, some slack was allowed in the form of a bound S, which
represents a bound on the sum of the hashes. This slack improves completeness, but as we
show below, this is not required. We therefore present a simplified version of the Fischlin
transform below. Note that our presentation is in the form of a clear specification in order
to make implementation easy. We do leave the choice of parameters open here; below we
show how these should be chosen.

• Parameters:

– ρ: the total number of “parallel” repetitions conducted
– b: the output size in bits of the random oracle (this is the difficulty to find a

valid challenge in each repetition)
– t: for the prover only, and is the maximum number of challenges in each repetition

• Input:

– Common input: x

– Private prover input: w such that (x, w) ∈ R, where R is the relation being
proven.

• Prover: π ← proveFischlinρ,b,t(ProverFirstMessage, ProverSecondMessage, x, w, sid)

1. For i = 1, . . . , ρ,
(a) compute (mi, σi)← ProverFirstMessage(x, w) independently for each i
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2. Let m⃗ = (m1, . . . , mρ)
3. common-h← H(x, m⃗, sid)

(This is a full hash, with output length 2 · κc.)

4. For i = 1, . . . , ρ:
(a) For ei = 0, . . . , 2t − 1

i. zi ← ProverSecondMessage(x, w, σi, ei)
ii. hi ← Hb(common-h, i, ei, zi), where Hb is the first b bits of output of H
iii. If hi = 0, break
iv. If ei = 2t − 1, redo the entire proof from the beginning

(If this occurs, then it means that no break ever took place, meaning that the proof
failed.)

5. e⃗← (e1, . . . , eρ)
6. z⃗ ← (z1, . . . , zρ)
7. π ← (m⃗, e⃗, z⃗)
8. Output π

• Verifier: (accept/reject)← verifyFischlinρ,b(VerifyProof, x, π, sid)

1. Parse π as (m⃗, e⃗, z⃗)
2. If m⃗, e⃗, and z⃗ do not each have ρ elements, then output reject
3. common-h← H(x, m⃗, sid)
4. For i ∈ {1, . . . , ρ}

(a) Halt and output reject if VerifyProof(x, mi, ei, zi) = 0
(b) Halt and output reject if Hb(common-h, i, ei, zi) ̸= 0

5. Output accept

We note that the separation of the computation of H into common-h and the rest is an
optimization discussed in [Fis05] to reduce the cost of hashing. Observe that in a Merkle-
Damgård hash, this is identical to preprocessing some blocks in a hash and computing the
rest at a later time, which clearly has no impact on security. However, even for other hash
functions, and in particular for random oracles, it is easy to show that this has the same
effect (as long as the output of H is long enough).

Prover complexity. We remark that according to the above description, the prover’s
running-time is expected polynomial-time, but is not guaranteed to ever actually halt. This
can be easily modified by adding a bound on the number of overall attempts (determined
by the completeness error that we will analyze below), if desired.

Security. The above transform was proven secure in [Fis05]; the fact that we take S = 0
makes no difference since it is a valid parameter in the original transform. Below, we do
show that one can derive much simpler completeness and soundness bounds for this case.

2.3 Implementation Issues and Optimizations
Implementing flexible parameters. One of the challenges when implementing the
Fischlin transform is that there is no single good choice of parameters. Below, we will
show how to choose parameters in a clear way. However, in practice, the best choice of
parameters may change over time and as we will see can depend on the computing platform
being used. However, changing parameters breaks backward compatibility in the sense
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that changing the parameters at the prover means that an older verifier fails, and vice
versa. This makes updating parameters painful for software that is in use. In addition,
this makes it impossible for provers on different platforms, for whom different parameters
are optimal, to work with a single verifier. In order to overcome this difficulty, we have
the prover include the parameters b and ρ as part of the proof itself. In order to ensure
that soundness holds, this requires that the verifier first check that ρ · b ≥ κc, and only
then proceed (this check needs to be added to the verifier). Note that t need not be sent,
since soundness does not depend on t, and it is not used by the verifier anywhere.

Regarding security, we need to show that the ability to choose b and ρ flexibly does not
make it easier to cheat. First, we remark that for every ρ there exists a unique smallest
bmin such that ρ · bmin ≥ κc. Furthermore, any proof that is valid for ρ and b > bmin is also
valid for ρ and bmin, and any proof that is valid for ρ > κc is also valid for ρ = κc since
b ≥ 1 is always.2 This implies that there are at most κc possible choices of (b, ρ). Thus,
an adversary that breaks soundness with probability ε when it can choose any (b, ρ) that
it likes can easily be converted into an adversary that break soundness for a specific choice
of (b, ρ) for which ρ · b ≥ κc with probability ε

κc
. This is a very small reduction in security

(at most log κc bits). We stress that it is crucial that the verifier check that ρ · b ≥ κc, or
the proof is trivially broken (by the prover setting ρ = b = 1).

Optimizing proof generation. Since the second prover message is computed many
times, computing it from scratch each time can add significant overhead. For a running
example in this paper, we consider the case of the proof of knowledge for discrete log (the
classic Schnorr proof). Throughout, we use additive group notation and denote group
elements with upper-case letters and scalars with lower-case letters. In addition, we denote
the group generator by G and the group order by q. By default, our description refers to
elliptic-curve groups, although everything carries over directly to finite fields. The Sigma
protocol is as follows:

1. Statement: a group element Q with witness w (i.e., Q = w ·G)

2. ProverFirstMessage: choose a random r ∈R Zq and compute R = r ·G

3. ProverSecondMessage: compute z = r + e · w mod q

4. VerifyProof: verify that Q, R are group elements, and that z ·G = R + e ·Q

A naive implementation of the prover would run ProverSecondMessage from scratch for
every iteration, requiring an expected ρ·2b modular multiplications and additions. However,
observe that the internal loop is over a specific set of values ei, and in particular over
ei = 0, . . . , 2t − 1. As a result, given zi = r + ei · w mod q, it is possible to compute

zi+1 = r + ei+1 · w = r + (ei + 1) · w = (r + ei · w) + w = zi + w mod q.

Thus, in each iteration, it suffices to carry out a single modular addition rather than a
modular multiplication and addition. This is very significant. Furthermore, due to the linear
structure of many (most) Sigma protocols, this type of optimization is typically possible.

Optimizing proof verification. The proof verification involves verifying ρ copies of
the basic Sigma protocol. Rather than verifying each proof independently, we can use
batch verification techniques, and in particular the small exponents test in [BGR98]. This
method generates a random linear combination of the different equations, and verifies
equality of the result (details below). In addition, Sigma protocol verification often includes

2A proof with a larger ρ won’t be accepted for a smaller ρ since the lengths won’t match. However, we
can modify the verifier so that it ignores anything beyond κc, and the same soundness bounds hold.
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validity checks on the statement (e.g., it is a valid subgroup element), and such checks
should only be carried out once. We demonstrate the batch verification optimization
for the proof of knowledge of discrete log proof, described above, for prime-order groups
(which are anyway what are used in practice). For this proof, for every i, the verifier needs
to check that zi ·G = Ri + ei ·Q. These equalities can be batch-verified more efficiently
by constructing random linear combinations, and verifying equality only of the sum. In
order to illustrate this technique on a simpler example, consider the task of verifying that
Ai = ai ·B for i = 1, . . . , ρ (where Ai, Bi are group elements and ai is a scalar in Zq). This
would cost ρ full-length elliptic-curve multiplications (where full-length means that the
scalar is of length log2 q). However, if instead we chose random values σi of length s and
computed σi ·Ai and finally verified

∑ρ
i=1 σi ·Ai = [

∑ρ
i=1 σi · ai mod q] ·B, then the cost

would be ρ short elliptic-curve multiplications and one full-length multiplication. If the
length s of σi is a quarter of the length of the order q of the curve, then this is about 1/4
of the overall cost. Intuitively, security holds since if one of the equalities doesn’t hold,
then the probability that this inequality will be cancelled out with a random choice of σi

is 2−s.
In more detail, for the specific case of discrete log proof verification (zi ·G = Ri +ei ·Q),

the batch verification is carried out as follows:

1. Choose random σ1, . . . , σρ ∈R {0, . . . , 2κs − 1}

2. Compute zsum =
ρ∑

i=1
σi · zi mod q, esum =

ρ∑
i=1

σi · ei mod q and Rsum =
ρ∑

i=1
σi ·Ri

3. Verify that Rsum = zsum ·G− esum ·Q

The proof of this method (why it’s correct and secure) is standard, and appears in
Appendix A. Regarding efficiency, the cost of this optimized verification is 2 full elliptic-
curve multiplications (EC-MULT) and ρ short EC-MULTs of length κs each. In the case
of 256-bit curves and κs = 64, this means that a short EC-MULT is 1/4 of the cost of a
full EC-MULT. With these parameters, the overall cost is reduced from ρ EC-MULTs (and
ρ very short EC-MULTs) to ρ/4 + 2 EC-MULTs, which is one quarter of the time.

An interesting point to note here is that standard EC-MULT in good libraries (like
OpenSSL) is constant time. This means that computing σi ·Ri for a 64-bit value σi will
be the same cost as for a 256-bit value. Thus, in order to full utilize this optimization, a
non-constant time EC-MULT must be implemented and used. Note that this is not an
issue at all for zero-knowledge verification, since all values are public. We also remark that
without such a non-constant time EC-MULT, the plain verification of Ri = zi ·G− ei ·Q
will actually cost two full EC-MULTs, even though ei is extremely short (e.g., 9 bits). Thus,
a non-constant time operation has a significant impact here. For example, for secp256k1,
the time to verify with the above optimization using constant-time EC-MULT is 1.2ms,
but the time to verify using non constant-time EC-MULT is 0.58ms.

Experimental results. We compare the best running times for a naive implementation
(with the best parameters for that implementation), where by naive we mean without
the optimizations demonstrated in Section 2.3. The parameters that we use for the naive
proof are b = 3 and ρ = 43 for both secp256k1 and Ed25519, and for the optimized proof
are: b = 4 and ρ = 32 for secp256k1, and b = 3 and ρ = 43 for Ed25519 (these are the
optimal choices of (b, ρ) for each version). In Sections 3 and 4 we discuss these choices of
parameters in depth. We show the results of our experiments on a 2019 MacBook Pro with
a 2.3 GHz 8-Core Intel i9 CPU and on a 2023 MacBook Pro with an Apple M3 Pro CPU.
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Table 1: Running times for Fischlin for the discrete log relation, comparing our optimized
implementation to a straightforward one. The times are in milliseconds, averaging over
1,000 executions. Intel and M3 are as described above.

Prover Verifier
Naive Optimized Gain Naive Optimized Gain

Intel – secp256k1 1.13 0.93 18% 0.98 0.58 41%
Intel – Ed25519 0.96 0.76 21% 1.86 1.62 13%
M3 – secp256k1 0.51 0.42 18% 0.47 0.36 23%
M3 – Ed25519 0.57 0.45 21% 1.35 1.12 17%

We stress that the comparison for the verifier time for the case of secp256k1 shows the
running times for different parameters – for naive we use ρ = 43 whereas for optimized we
use ρ = 32. This is significant since the running time for verification depends primarily on
ρ. Thus, although the verification is indeed 41% faster, it is important to note that this is
also due to the ability to use different parameters and not just because of the optimized
verification procedure. If we compare the verification time for ρ = 32 for both the naive and
optimized verification on the Intel machine, we obtain times of 0.75 and 0.58, respectively,
demonstrating a 22% improvement that is due to the batch verification method. Note
that the verification times for Ed25519 are significantly slower than expected since our
current implementation does not support non-constant time multiplication, and so the
cost of computing ei ·Q is the same as if ei was a full-size element of Zq.

Prover versus verifier cost. It is worth noting that as b gets bigger and ρ gets smaller,
the cost of verification gets lower. This is because the verification does not require multiple
hashing and is just a function of ρ. As a result, it may sometimes make more sense to use
parameters that give a higher prover time but a lower overall prove-and-verify time. This
depends on the protocol in question (e.g., each party generates one proof and verifies one
other, or maybe each party generates one proof and verifies 5 other). This is demonstrated
below for our optimized implementation.

Table 2: Running times for the discrete log proof with different parameters (ρ is taken as
⌈128/b⌉ always), on a 2019 MacBook Pro with a 2.3 GHz 8-Core Intel i9 CPU. Times are
in milliseconds, averaged over 1,000 executions.

Prover Verifier
b 3 4 5 6 3 4 5 6
secp256k1 0.94 0.93 1.07 1.47 0.75 0.58 0.48 0.41
Ed25519 0.76 0.77 1.00 1.37 1.62 1.23 1.03 0.9

To illustrate what the optimal choice would be for secp256k1, in a protocol where each
party generates one proof and verifies one proof the best choice of parameters would be
b = 4 (since that minimizes the sum of the prover and verifier time), whereas in a protocol
where each party generates one proof and verifies 5 proofs the best choice of parameters
would be b = 5. As above, the Ed25519 verification times are slower than they should be
due to our library currently only supporting constant-time operations.

3 Theoretical Security Bounds and Cost
The proof of security of Fischlin’s transform appears in [Fis05]. In this section, we review
those bounds, and show that our simplification of the transform (that fixes S = 0) provides
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far simpler bounds that are also more simple to understand.
Let sm and sz denote the size of m and z in the Sigma protocol. For the security

bounds and complexities of Fischlin transform, we let εcomp denote the completeness error
and let εsound denote the (special) soundness error.

We provide a novel analysis of the Fischlin transform below for the case that S = 0
(meaning that the prover needs to find hashes that equal 0 for all iterations). We show
that this significantly simplifies the analysis, without significantly impacting efficiency. We
then show that these bounds are the same as proven by [Fis05] for this special case, and
thus the proof remains the same.

Completeness error. In the transform we describe above, formally the completeness
error is 0 since the prover just repeats until it succeeds (see Step 4(a)iv). Thus, what
we really mean by completeness error here is the probability that the prover fails in a
single attempt and thus needs to repeat the proof. In our simplified transform, the failure
probability in each iteration (of i = 1, . . . , ρ) is at most e−2t−b . This is because the prover
fails unless it finds hi = 0. Now, for any given ei the probability that hi equals 0 is 2−b

and there are 2t attempts. This implies that the prover fails with probability

(
1− 2−b

)2t

=
[(

1− 2−b
)2b
]2t−b

< e−2t−b

.

The prover needs to succeed in all iterations, and therefore the probability that there is
any failed iteration can be bounded using the union bound over all ρ iterations. This
yields the following completeness error bound

εcomp ≤ ρ · e−2t−b

= 2−2t−b log e+log ρ.

For the concrete parameters that we use (fixing t = b + 5 and ρ ≤ 64; discussed more
below), the completeness error is at most 2−40, meaning that a proof would need to be
repeated with an extremely low probability. Furthermore, even if such a repeat is needed
(an expected once every 240 proofs), this has very little impact on efficiency since it merely
requires a second attempt (the probability that a third attempt is needed is 2−80).

The above argument can be easily formalized, but we show now that it is actually
identical to that of [Fis05] for the case that S = 0. Fischlin [Fis05, Page 10] showed that
the completeness bound is ρ · e−(S+1)2t−b + S · (ρ−1) · eρ ln(e(2S+1)) · e−(S+1)2t−b .3 Plugging
in S = 0, we have that this equals ρ · e−2t−b , which is exactly our bound above.

Soundness error. Regarding soundness, the only way that the prover can succeed in
proving without querying H with the same (x, m⃗, i) twice is to obtain hi = 0 for every
i ∈ [ρ] with a single hash computation. The probability of this occurring is 2−b for each
i ∈ [ρ] and so the probability that this happens for every i is

(
2−b
)ρ, meaning that the

soundness error for a fixed prefix (x, m⃗) is εsound ≤ 2−ρ·b. As shown in [Fis05], we can
therefore conclude that for an adversary making Q queries to the random oracle with any
prefix (x, m⃗, . . .), the soundness is bounded by

εsound ≤ (Q + 1) · 2−ρ·b.

As for the case of completeness above, we show that this is exactly the same bound
as in [Fis05] for the case of S = 0. Specifically, [Fis05, Page 12] shows that εsound ≤
(Q + 1) · (S + 1) ·

(
S+ρ−1

ρ−1
)
· 2−ρ·b. Plugging in S = 0, we have that this equals (Q + 1) · 2−ρ·b

which is exactly the same bound that we obtained.
3The notation we use is the same, except that we use ρ for the value r in [Fis05].
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Proof size. The size of the proof, π = (m⃗, e⃗, z⃗), is ρ · (sm + t + sz), where sm and sz

denote the size of the first and third prover messages m and z, respectively. (When using
the flexible parameter method, the proof also includes the values b, ρ, but these are small.)
It is important to note that b does not impact the size of the proof, and it depends only on
ρ. This means that optimizing for proof size would potentially provide a different trade-off
than for proof time.

Expected number of hashes computed by the prover. Considering the case of
S = 0, the prover succeeds in an iteration if it finds a hash that equals 0. Given that
the hash output is of length b bits, it follows that each hash equals 0 with probability
2−b and so the expected number of hash computations in a single iteration is 2b and the
expected number of hash computations overall is ρ · 2b. We note that the prover may need
to compute the proof from scratch if it fails, but this happens with probability εcomp, and
the expected number of iterations is 1

1−εcomp
. Thus, the overall expected number of hash

computation is 1
1−εcomp

· ρ · 2b, which is very close to ρ · 2b for the parameters that we use.

Summary of the bounds. We summarize the bounds in the following table:

Table 3: Summary of the original bounds in [Fis05] and the bounds where S = 0. For
completeness and soundness, for a value s given the bound is 2−s.

Bounds S ≥ 0 (Fischlin) S = 0
Completeness

[
(S + 1) · 2t−b log e

]
− [ρ log(e(2S + 1)) + log(ρS)] 2t−b log e− log ρ

Soundness ρ ·
(

b− log
(

e · S+ρ
ρ−1

))
− log(S + 1) ρ · b

Expected #hash ∼ 2b · ρ 1
1−εcomp

· 2b · ρ
Proof size ρ · (sm + t + sz)

On the additional parameter S. As our analysis above shows, choosing S = 0 versus
S > 0 yields a better soundness bound. In addition, it has no effect on the expected
running time of the protocol. Thus, the only reason to choose S to be non-zero is to
decrease the completeness error, especially when t− b is small (since the completeness error
is 2−2t−b·log e+log ρ). However, in such a case, one can always increase t without impacting
the expected running time, which as we showed above does not depend on t (except for
the length of ei which has a minor impact on the efficiency of the hash computation and
the prover response).4 Furthermore, achieving negligible completeness isn’t necessary in
practice, especially when the only cost is to rerun the protocol an additional time.

4 Optimal Parameters and Experimental Results
As we have discussed, one of the challenges with implementing the Fischlin transform is
the need to choose the parameters ρ, b, t (and S in the original transform). One can of
course always find the optimal parameters experimentally, but this can be painful since
it requires running multiple experiments for every different protocol and every different
computing platform (as we will see, the relation between the cost of computing the hash
versus the rest of the proof has a major impact on efficiency). In this section, we will
provide a straightforward rule for choosing t as a function of ρ and b, and we will show how
to analytically estimate the optimal parameters to provide a good choice of parameters
with minimal experimentation.

4The length of ei has a more significant impact on the verification time, since ei is used to multiply
group elements. However, since t is anyway very small, increasing it by a few bits makes no real difference.
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Choosing t as a function of ρ and b. Given a specific choice of ρ and b and a target
completeness error εcomp = 2−σ,5 one can compute t directly so that the completeness
error is at most 2−σ. From the bounds we have shown, in order to have completeness 2−σ

we need to set t so that 2t−b log e− log ρ ≥ σ, which holds if and only if

t ≥ log
(

σ + log ρ

log e

)
+ b = log(σ + log ρ)− log log e + b.

This can therefore easily be computed. We now make the choice of t even easier by showing
that for a concrete completeness error of 2−40 we can provide a simple rule depending
on ρ alone. Given that log log e ≈ 0.529, we require that t ≥ log(40 + log ρ)− 0.529 + b.
Notice that log 46 ≈ 5.523 and thus log(40 + 6) − 0.529 < 5. This means that as long
as log ρ ≤ 6, or equivalently ρ ≤ 64, it suffices to take t = b + 5. Furthermore, it never
suffices to take t = b + 4 since log 40− 0.529 > 4. In the other direction, we look at when
t = b + 6 is not enough. This occurs when log(40 + log ρ)− 0.529 > 6 which occurs when
log(40 + log ρ) > 6.529 or log ρ > 26.529 − 40 > 52. Thus, t = 6 suffices up to ρ = 252,
which will never be chosen in practice. We therefore conclude with the following rule:

Rule for t: for any value of b, for ρ ≤ 64 set t = b + 5 and for ρ > 64 set t = b + 6.

This rule can be hard-coded and so choosing t is immediate and trivial.

The challenge of choosing ρ and b. The notable trade-off regarding efficiency is due
to choosing between b and ρ. Fixing a target soundness error of 2−κ, we have that ρ · b = κ
(for the case of S = 0). This therefore means that the expected running time increases
only linearly with ρ and exponentially with b. As such, it may appear that it is better to
take b as small as possible and ρ as large as possible. However, this hides the fact that
the expected ρ · 2b iterations are hash operations and computing ProverSecondMessage,
whereas ProverFirstMessage also needs to be computed ρ times. Note also that in typical
Sigma protocols, ProverFirstMessage requires more expensive operations (e.g., for elliptic-
curve proofs, it requires multiplying EC points by a scalar – aka group exponentiations),
whereas ProverSecondMessage requires only operating on the scalar values themselves. (See
the discrete log Sigma protocol example given in Section 2.3 under “optimizing proof
generation”.) As a result, finding the right trade-off between b and ρ means running
experiments to minimize the cost of ρ “expensive” operations versus ρ · 2b “inexpensive”
operations. This trade-off depends on the specific Sigma protocol as well as the computation
platform (e.g., it is greatly influenced by whether or not the hash can be computed using
hardware acceleration and how expensive the EC operations are which depends on the
curve being used and the level of optimizations available).

Analytical parameter optimization. As mentioned above, the cost of generating a
proof is dominated by the cost of computing the first prover message ρ times, and then
computing ρ ·2b hash computations and second prover messages. For most Sigma protocols,
the cost of computing the second prover message z is small, and we will therefore ignore it
in our analysis below. If not, then the equations below need to be updated to include this
cost, but the methodology is the same.

Let T1 denote the cost of computing the first prover message, let Thash denote the
cost of computing the hash on the appropriate size, and let a be a constant such that
T1 = a · Thash. We note that the value a can easily be found experimentally on any specific
computing device. Then, we have that the cost of computing a proof is

T = ρ · T1 + ρ · 2b · Thash = ρ · a · Thash + ρ · 2b · Thash = Thash · (a · ρ + ρ · 2b).6
5Recall that what we mean here is the probability that the proof will fail and needs to be repeated.
6As noted above, if the cost of the second prover message is significant, then the equation becomes

T = ρ · T1 + ρ · 2b · (Thash + T2), where T2 is the cost of computing the second prover message.
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According to this, given a (found experimentally on the device being used), we have that
the cost of proving can be minimized by finding the minimum of the function T = a·ρ+ρ·2b.
To further simplify this to a univariate function, since we know that b · ρ = κc, we can
write T = a · ρ + ρ · 2κc/ρ and find the minimum of this function for ρ > 0.

Regarding the cost of verifying, this is naively ρ times the cost of the standard
verification of the proof, but this can be optimized using batch verification, as described
in Section 2.3. For discrete log, as an example, this cost is dominated by computing
z · G − e · Q. In this case, e is very short (of length t only) and thus this is dominated
by a single exponentiation. Thus, minimizing the verifier cost is simply minimizing ρ.
However, in protocols where all parties send and receive proofs, the cost can be minimized
by minimizing the combined cost of proving X proofs and verifying Y proofs (depending
on the protocol) under the constraint that ρ · b = κc. Below, we focus on the prover cost
only, with the understanding that it can all be generalized to the overall cost depending
on the protocol in a straightforward way.

We will use our running example of a proof of knowledge of discrete log (over two
different curves) in order to demonstrate our methodology; other examples are given in
Section C. Recall that the discrete log Sigma protocol is described in Section 2.3. For
the knowledge of discrete log proof, the first prover message is a single elliptic-curve
multiplication of the group generator by a random scalar. We denote this operation by
MUL-G . (Note that MUL-G is often much more efficient than an elliptic curve multiplication
of an arbitrary point, since a pre-computed table of G, 2G, 4G, . . . can be used.) Denoting
the cost of MUL-G by Tmulg, we have that the cost function is T = ρ · Tmulg + ρ · 2b · Thash,
and so as described above our aim is to find a such that Tmulg = a · Thash so that we can
find the minimum of the function a · ρ + ρ · 2b.

We computed a for two curves – secp256k1 and Ed25519 – on three different computing
platforms: a 2019 MacBook Pro with a 2.3 GHz 8-Core Intel i9 CPU, web assembly
(WASM) using Node.js V21 on the aforementioned MacBook Pro, and on a 2023 MacBook
Pro with an Apple M3 Pro CPU. We note that these calculations and even computing the
optimal parameters could theoretically be done at run-time. The results appear in Table 4.

Table 4: Operations costs on different platforms in ms (MUL-G is scalar multiplication of
the EC generator point). Intel, WASM and M3 are as described above.

MUL-G
secp256k1

MUL-G
Ed25519

SHA256
64 bytes

secp256k1 /
SHA256

Ed25519/
SHA256

Intel 0.0146 0.0085 0.000639 23 13
WASM 0.068 0.0051 0.00109 62 47
M3 0.0078 0.008 0.000165 47 48

It is interesting to note that operations behave very differently on different platforms.
In our WASM implementation (using Node.js V21), the ratio for Ed25519 to SHA256 is
much lower than for secp256k1 to SHA256, but this is reversed in Intel. We would therefore
expect in WASM for secp256k1 that the optimum would be fewer exponentiations and
more hash computation. Indeed, as we show below, the optimal parameters obtained differ
for these platforms.

We used WolframAlpha to find the minimum of each function (for each curve and
platform) for κc = 128. In Table 5, we provide the parameters found analytically for the
functions. We provide the actual minimums, along with natural number parameters that
we derive from them. Note that since we want ρ · b to be as close as possible to κc = 128,
we adjust the minimums obtained appropriately.

www.wolframalpha.com
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Table 5: Analytically computed trade-offs for different protocols and different environments
for soundness 2128. ρmin denotes the actual function minimum, and ρ denotes the closest
approximate choice that is amenable for ρ · b = 128.

secp256k1 Ed25519
ρmin ρ b ρmin ρ b

Intel 33.6 32 4 38.6 43 3
WASM 26.9 32 4 28.6 32 4
M3 28.6 32 4 28.4 32 4

Experimental results. We now present actual running times for different parameters,
demonstrating that our analytic results are very close. Note that since the actual minimum
for ρ is not necessarily a valid choice for ρ (since we always want ρ · b = 128), our choice
as to whether or not to take a larger or smaller ρ is a pure guess. The following results are
the average over 1,000 executions, and demonstrate that our analytic approach works very
well, and gives a very good estimate of the best parameters to be used.

Table 6: Running times for Fischlin for discrete log; average over 1,000 executions.

secp256k1 Ed25519
ρ = 43
b = 3

ρ = 32
b = 4

ρ = 26
b = 5

ρ = 22
b = 6

ρ = 43
b = 3

ρ = 32
b = 4

ρ = 26
b = 5

ρ = 22
b = 6

Intel 0.94 0.93 1.07 1.47 0.76 0.77 1.00 1.37
WASM 3.79 3.39 3.54 4.04 3.93 3.52 3.53 4.13
M3 0.49 0.41 0.42 0.50 0.56 0.45 0.45 0.52
Size (KB) 3.11 2.32 1.88 1.60 3.06 2.28 1.86 1.57

5 Fischlin for n-Special Soundness and Batch Proofs

5.1 Extending the Fischlin Transform

The Fischlin transform of [Fis05] applies to Sigma protocols with special soundness, as in
Definition 1. In this section, we extend the Fischlin transformation to the more general
case where n different accepting transcripts (with the same first message) are needed to
extract, rather than 2. As we will show, this is of interest for batch proofs (e.g., proving
knowledge of many discrete logs at one). We begin by recalling the definition of n-special
soundness.

Definition 2 (n-special soundness). A Sigma protocol has n-special soundness for a
relation R if there exists a polynomial-time extractor K that given any x and any set of n
transcripts T = {(m, ei, zi)}i∈[n] such that all have the same first prover message m, all
ei messages are distinct, and VerifyProof(x, m, ei, zi) = 1 for all i ∈ [n], it holds that K
outputs w such that (x, w) ∈ R.

We now show how to extend the Fischlin transform to achieve straight-line extraction
for the case of n-special soundness, rather than regular special soundness. We actually take
the exact same transformation (with S = 0) but with different parameters. The proofs of
completeness and zero-knowledge properties remain unchanged, since they do not utilize
the special soundness property. We therefore focus on extraction from here on.
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Extraction method. We show how to construct an extractor for the case of n-special
soundness. The extractor goes through all the queries and answers in an attempt to obtain
n valid random oracle queries that have common (x, m⃗, i) and n distinct (ei, zi) pairs
such that VerifyProof(x, mi, ei, zi) = 1.7 Once these transcripts are found, we can simply
apply the extractor of Definition 2 to extract the witness. Therefore, all we need to do
is show that the probability that a successful prover does not query the oracle so that n
such accepting transcripts are found is low. Stated differently, we calculate the soundness
bounds for this strategy.

If a prover succeeds in proving without querying n accepting transcripts, then for a
given x, m⃗ and for each i, there must be at most n− 1 distinct challenges e1, · · · , en−1 that
the prover queried to the random oracle. Given that an individual query returns 0 with
probability 2−b, the probability that the prover can find an accepting transcript for a given
i with at most n− 1 hash queries is at most (n− 1) · 2−b. Since the prover needs to succeed
for all i = 1, . . . , ρ with at most n− 1 hash queries (since success for any single i suffices
to extract the witness), the probability that it generates an accepting proof without ever
generating n accepting transcripts is at most(

(n− 1) · 2−b
)ρ = 2−ρ·(b−log(n−1)).

As for the case of special soundness as shown by [Fis05], the soundness error for an
adversary making at most Q queries to the random oracle is therefore

εsound ≤ (Q + 1) · 2−ρ·(b−log(n−1)).

This means that the loss in soundness from the case of special soundness is ρ · log(n− 1)
(i.e., from ρ · b to ρ · (b− log(n− 1))). This loss can be compensated by either increasing
ρ or b, in the same way as described above for special soundness. That is, for special
soundness we choose ρ and b so that ρ · b ≥ κc. Here, the only change needed is to choose
ρ and b so that ρ · (b− log(n− 1)) ≥ κc.

Computational cost. As above, let T1 denote the computational cost of computing the
first prover message in the Sigma protocol, and assume that the second prover message has
insignificant computational cost. Then, we have that the expected cost of computing the
Fischlin transform to the Sigma protocol with n-special soundness is T = ρ ·T1 +ρ ·2b ·Thash.
Recall that for (regular) special soundness, the equation for the cost of generating a proof
is exactly the same. However, this is misleading, since here we need ρ · (b− log(n−1)) ≥ κc,
whereas for regular special soundness we only needed ρ · b ≥ κc. To make this comparison
clear, we can rewrite the equations only as a function of ρ:

• Regular special soundness: T = ρ · T1 + ρ · 2
κc
ρ · Thash

• n-special soundness: T = ρ ·T1 +ρ ·2
κc
ρ +log(n−1) ·Thash = ρ ·T1 +ρ · (n−1) ·2

κc
ρ ·Thash

We therefore see that generating a proof with n-special soundness has n times the number
of expected hash function operations, as expected, but the same amount of first prover
message computations. Of course, this comparison holds when ρ is fixed; however, there is
no requirement to choose the same value of ρ and as we have seen, the optimal ρ changes
when there are more hash computations.

5.2 Batch Proofs
An application of specific interest for n-special soundness is batch proofs. For example,
the batch Schnorr proof of [GLSY04] enables one to prove knowledge of n discrete logs

7For efficiency purposes, in the actual transform we split the computation of this hash into two parts,
but this is inconsequential here.
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close to the cost of proving knowledge of a single discrete log. However, extracting the
discrete logs requires rewinding n + 1 times to extract all n discrete logs, and so cannot be
UC secure. We will demonstrate our method on this Sigma protocol, and remark that it is
useful in some settings of MPC, like in Feldman VSS for a dishonest majority [CL24]. For
the sake of concreteness, the proof of [GLSY04] is given below:

1. Statement: a set of group elements Q1, . . . , Qn with witnesses w1, . . . , wn (i.e., Qi =
wi ·G for all i ∈ [n])

2. ProverFirstMessage: choose a random r ∈R Zq and compute R = r ·G

3. ProverSecondMessage: compute z ← r +
∑n

i=1 ei · wi mod q

4. VerifyProof: verify that ({Qi}n
i=1, R) are group elements and R = z ·G−

∑n
i=1 ei ·Qi

Observe that the first prover message for this batch proof has the same cost as for the
standard discrete log Sigma protocol for a single statement. This is what makes it so
attractive from an efficiency perspective.

In order to see why our approach is significant, it is instructive to compare the cost of
applying the Fischlin transform with (n + 1)-special soundness to this batch proof to the
alternative of simply running the basic discrete log proof n times. As we have mentioned,
the cost of the first prover message for the batch case is the same as for a single proof.
Furthermore, the batch proof for n statements has (n + 1)-special soundness, since the
extractor needs to obtain n + 1 responses to interpolate the polynomial of degree-n defined
by p(x) = r +

∑n
i=1 wi · xi. We have the following costs:

• n copies of a single proof: the expected cost of proving is T = n·ρ·T1 +n·ρ·2
κc
ρ ·Thash

• A single batch proof: the expected cost of proving is T = ρ · T1 + ρ · n · 2
κc
ρ · Thash

We conclude that for the same ρ, the cost of the single batch proof has the same number
of hashes, but only ρ computations of T1 versus n · ρ computations of T1 when generating
n copies of a single proof. Thus, this is clearly already much more efficient. Furthermore,
as we will see below, different choices of ρ and b will be optimal here.

Analytic parameter optimization. Using the same method as in Section 4, we
compute the optimal trade-off for the batch proof, for different values of n. We compute
this only for a 2019 MacBook Pro with an Intel 2.3 GHz i9 CPU for which a = 23 for
secp256k1 and a = 13 for Ed25519. The equation that we use here is T = a ·ρ + ρ ·n · 2ρ/κc .

Table 7: Analytically computed trade-offs for the batch discrete log on a 2019 MacBook
Pro with an Intel 2.3 GHz i9 CPU. Recall that t = b + 5 for all ρ ≤ 64, and the soundness
is ρ · (b− log n).

Protocol n = 16 n = 128 n = 256
secp256k1 ρmin = 64.9: ρ=64, b=6 ρmin = 83.5: ρ=64, b=9 ρmin = 86: ρ=64, b=10
Ed25519 ρmin = 71.8: ρ=64, b=6 ρmin = 85.6: ρ=64, b=9 ρmin = 87.1: ρ=64, b=10

In contrast to the case of a single proof., there is no difference between the parameters
for secp256k1 and Ed25519 here According to our experiments, for our final best method
using all our optimizations shown below, we have that we should take ρ = 64 for all values of
n ≥ 8 for secp256k1, and for n ≥ 5 for Ed25519; below that, we take ρ = 43. We therefore
have the following parameter recommendations (for the case of a = 23). For secp256k1,
take [ρ = 43, b = log n+3, t = b+5] for 2 ≤ n < 8, and take [ρ = 64, b = log n+2, t = b+5]
for n ≥ 8. For Ed25519, take [ρ = 43, b = log n + 3, t = b + 5] for 2 ≤ n < 5, and take
[ρ = 64, b = log n + 2, t = b + 5] for n ≥ 5.



Yi-Hsiu Chen, Yehuda Lindell 17

5.3 Optimizing the Batch Proof
Unfortunately, a naive implementation of the batch proof of [GLSY04] described above
turns out to be extremely inefficient, and much worse than just repeating the basic proof.
The main reason is that the cost of computing z = r +

∑n
i=1 ei · wi mod q is not at all

insignificant! In our optimization for the single-proof discrete log described in Section 2.3,
we showed that each iteration requires a single modular addition only. In contrast, here
we need to compute a degree-n polynomial which is much more expensive than hashing.
In this section, we describe implementation optimizations that we carried out in order to
achieve much faster running times.

Reducing the number of multiplications and additions. The naive approach is to
simply compute zi = ri +

∑n
j=1 ei

j · wj mod q in ProverSecondMessage in every iteration.
Using Horner’s algorithm for polynomial evaluation, this costs n modular multiplications
and additions in every iteration, and so the expected number of these operations is n ·ρ · 2b.

The first thing to notice is that the sum
∑n

j=1 ej · wj mod q is the same for all i ∈ [ρ]
(i.e., it is the same in each of the ρ proofs generated, and only the ri value changes). Thus,
we can compute

∑n
j=1 ei

j ·wj mod q once only for all ei = 0, . . . , T where T = maxi∈[ρ](ei)
(in the worst case, T = 2t−1, but we expect it to be lower), and then merely add ri in order
to obtain zi within the internal loop. This reduces the cost to n ·T modular multiplications
and additions, instead of n · ρ · 2b. We remark that since T is not known ahead of time, the
computation of each

∑n
j=1 ei

j · wj mod q should be computed on-demand the first time
than an ei is needed, and then just retrieved from the array each time after that. This
yields the following algorithm, written as a single flow:

Prover:

• Input: Statements Q1, . . . , Qn and witnesses w1, . . . , wn

• Parameters: ρ, b such that ρ · (b− log n) ≥ κc and t ∈ {b + 5, b + 6} as described

• The algorithm:

1. For i = 1, . . . , ρ,
(a) ri ∈R Zq

(b) Ri ← ri ·G
2. For ei = 0, . . . , 2t − 1

(a) poly[ei] =
∑n

j=1 ei
j · wj mod q

This is computed using Horner’s algorithm, and is best computed on-demand
inside the internal loop.

3. Let R⃗ = (R1, . . . , Rρ)

4. common-h← H(Q1, . . . , Qn, R⃗, sid)
5. For i = 1, . . . , ρ:

(a) For ei = 0, . . . , 2t − 1
i. zi ← ri + poly[ei] mod q

ii. hi ← Hb(common-h, i, ei, zi)
iii. If hi = 0, break
iv. If ei = 2t − 1, redo the proof from the beginning

(If this occurs, then it means that no break ever took place, meaning that the proof
failed.)
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6. e⃗← (e1, . . . , eρ)
7. z⃗ ← (z1, . . . , zρ)

8. π ←
(

R⃗, e⃗, z⃗, b, ρ
)

9. Output π

The cost of the internal loop is just a single modular addition, like in the optimization for a
single discrete log proof. However, the cost of computing the poly array is still significant.

Verifier:

1. Parse π as
(

R⃗, e⃗, z⃗, b, ρ
)

2. If the size of R⃗, e⃗, and z⃗ are not ρ, then output reject

3. If b · (ρ− log n) < κc, then output reject

4. Verify that all Q1, . . . , Qn, R1, . . . , Rρ are on the curve (in the subgroup) and non-zero

5. common-h← H(x, R⃗, sid)

6. For i ∈ {1, . . . , ρ}

(a) Halt and output reject if Ri ̸= zi ·G−
∑n

j=1 ei
j ·Qj

(The sum
∑n

j=1 ei
j · Qj must also be computed using Horner’s algorithm.)

(b) Halt and output reject if Hb(common-h, i, ei, zi) ̸= 0

7. Output accept

Additional optimizations. In order to further optimize the implementation, we observe
the following two facts. First, the most computationally intense part of the prover’s
algorithm is to evaluate the polynomial p(x) =

∑n−1
j=0 wj · xj over many values of x (these

are the ei values). Thus, our optimizations should focus on this step. Second, the Fischlin
transform actually does not care what values of e are used. It is written for e = 0, . . . , 2t−1,
but in actuality any fixed set of 2t points would work in exactly the same way. This means
that we can use faster methods for polynomial evaluation that rely on specific points.
Below, we will explore options for this.

Using one step of FFT to further reduce the cost of computing poly. As observed
above, we actually don’t care at all about which set of ei values are used, as long as there
is a large enough set. As such, one could use n’th roots of unity and FFT to compute
these values. However, this requires having n’th roots of unity of the right size, which is
not always the case. However, we can always use the first step of FFT with ei and −ei in
order to lower the cost by a half.

In order to see how this works, let p(x) =
∑n

i=1 wi · xi mod q and define p0(x) =∑n/2
i=1 w2·i · xi mod q and p1(x) =

∑n/2−1
i=0 w2·i+1 · xi mod q. Then it holds that p(x) =

p0(x2)+x·p1(x2) mod q, implying that for any a ∈ Zq, it holds that p(a) = p0(a2)+a·p1(a2)
and p(−a) = p0(a2)− a · p1(a2). This yields the following algorithm:

1. For ei = 0, . . . , 2t−1

(a) Compute α← p0(ei
2) mod q using Horner

(b) Compute β ← p1(ei
2) mod q using Horner

(c) Output poly[ei]← α + ei · β mod q
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(d) Output poly[−ei]← α− ei · β mod q (note that −ei = q − ei)

The cost of computing 2t values of ei in {q − 2t−1, q − 2t−1 + 1, . . . , 0, . . . , 2t−1 − 1, 2t−1}
therefore becomes n · 2t−1 instead of n · 2t, which is half the cost.

Using additional steps of FFT. It is well known that there exists an n’th root of
unity in a field of size q if and only if n divides q − 1. In such a case, we can run FFT
to compute n points, rather than just 2 (the above method of using one step of FFT is
equivalent to saying that there is a 2’th root of unity, which is always true). For secp256r1,
we have that 24 divides q− 1; for secp256k1 we have that 26 divides q− 1, and for Ed25519
we have that 22 divides q − 1. As such for these curves, we can run the above method at
depths 4, 6 and 2, respectively. In order to see how this “partial” FFT works, observe that
all is needed is to halt the recursion after the number of supported steps, and to then call
Horner to compute the polynomial on the remaining number of points.

Using finite differences to reduce the cost of computing poly. Another optimization
idea is to use finite difference of polynomials to avoid multiplications. Here, we describe
in detail a polynomial evaluation technique from [Knu97, Section 4.6.4] that works on
sequential values. First, we introduce the difference operator ∆ notation.

Definition 3. Given a function f , The first order (forward) difference of f is

∆1 [f ] (x) def= f(x + 1)− f(x).

A higher order difference of f can be recursively defined as

∆i+1 [f ] (x) def= ∆1 [∆i [f ]
]

(x) = ∆i [f ] (x + 1)−∆i [f ] (x) for i ∈ N.

When the order is 1, it can be omitted and written as ∆ [f ] (x).
In order to make it clearer as to what the forward difference is, observe that

∆2 [f ] (x) = ∆1 [f ] (x + 1)−∆1 [f ] (x) = f(x + 2)− 2 · f(x + 1) + f(x), and

∆3 [f ] (x) = ∆2 [f ] (x + 1)−∆2 [f ] (x) = f(x + 3)− 3 · f(x + 2) + 3 · f(x + 1)− f(x).

Linearity and commutativity. Note that the operator ∆ is commutative, and so
∆i+1 [f ] (x) = ∆i [∆ [f ]] (x). In order to see this, we first observe that the operator is
linear, in the sense that: ∆i [f ] (x) + ∆i [g] (x) = ∆i [f + g] (x). We prove this by induction.
The base case is immediate since

∆1 [f ] (x)+∆1 [g] (x) = f(x+1)+g(x+1)−f(x)−g(x) = (f+g)(x+1)−(f+g)(x) = ∆1 [f + g] (x).

Assume this holds for k, and we prove for k + 1. We have:

∆k+1 [f ] (x) + ∆k+1 [g] (x) = ∆k [f ] (x + 1)−∆k [f ] (x) + ∆k [g] (x + 1)−∆k [g] (x)
=
(
∆k [f ] (x + 1) + ∆k [g] (x + 1)

)
−
(
∆k [f ] (x) + ∆k [g] (x)

)
= ∆k [f + g] (x + 1)−∆k [f + g] (x)
= ∆k+1 [f + g] (x)

where the third equality is from the assumption of the induction regarding k. This implies
commutativity since

∆i+1 [f ] (x) = ∆i [f ] (x + 1)−∆i [f ] (x) = ∆i [f(x + 1)− f(x)] = ∆i [∆ [f ]] (x)

where the second equality follows by writing g(x) = f(x + 1) in which case ∆i [f(x + 1)] =
∆i [g] (x)) and so the equality follows from linearity.
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Finite difference property of polynomials. We prove the following proposition which
is central to our new algorithm in Appendix B.

Proposition 1. Let f(x) be an n-degree polynomial with a being the coefficient of xn.
Then ∆ [f ] (x) is a degree-(n− 1) polynomial and ∆n [f ] (x) = a · n! is a constant.

The algorithm – background. Given the polynomial f(x) = wn ·xn + · · ·+ w1 ·x + w0,
to visualize how we can evaluate on 2t positions, we put ∆k [f ] (i) for k ∈ [n] ∪ {0} and
i ∈ Zq into a matrix:

...
... · · ·

...
f(i) ∆1 [f ] (i) · · · ∆k [f ] (i) ∆k+1 [f ] (i) · · · ∆n [f ] (i)

f(i + 1) ∆1 [f ] (i + 1) · · · ∆k [f ] (i + 1) ∆k+1 [f ] (i + 1) · · · ∆n [f ] (i + 1)
...

... · · ·
...

 .

Our goal is to calculate 2t elements in the left most column in order to obtain 2t values
f(i). By Proposition 1, we know that ∆n [f ] (i) = wn · n! for all i ∈ Zq. This implies that
the entire rightmost column all have the same value wn · n!. Thus, once we can compute a
single value in this column, the rest are obtained by just copying.

Next we show how it is possible to compute values in the matrix from others. By
Definition 3:

(a) ∆k+1 [f ] (i) = ∆k [f ] (i + 1)−∆k [f ] (i) and

(b) ∆k [f ] (i + 1) = ∆k [f ] (i) + ∆k+1 [f ] (i) (this follows from (a) above)

If we visualize these operations in the matrix, we have that knowing the values of two
grays cells at the appropriate relative positions, we can calculate the white ones using a
single addition operation as illustrated below:

(a) (b)

Given the above operations, we can construct an algorithm to efficiently compute f(x)
on T consecutive values x = a, . . . , a + T − 1 for some a. The idea is to begin with n
computations of the polynomial f , and then use those values to efficiently fill out the rest
of the matrix using those values.

We also use the matrix diagram to visualize the steps, where light-gray cells represent
the ones that are being calculated in the current step and dark-gray cells represent the
ones that were already calculated. The three phases are depicted as follows:

Phase 1 of the algorithm Phase 2 of the algorithm Phase 3 of the algorithm
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The algorithm. We proceed to describe each of the three phases:

1. Calculate n + 1 consecutive evaluations in the top of the left column of
the matrix: We begin by computing n + 1 values f(a), f(a + 1), . . . , f(a + n).

2. Fill out the upper left triangle of the matrix: We use the operation (a) above
to fill out the values as shown in the diagram below. The columns of the matrix are
denoted i and the rows are denoted j.

• For i = 1, . . . , n

For j = a + n− i, . . . , a

∆i [f ] (j)← ∆i−1 [f ] (j + 1)−∆i−1 [f ] (j)

3. Compute the rest of the matrix, including the rest of the first column:
We use operation (b) above in order to work back from the upper left triangle, and
fill out the rest of matrix, which includes the entire first column (which contains the
values that we want).

• ∆n [f ] (a + 1)← ∆n [f ] (a)

• For j = a + 2, . . . , a + T − 2

– ∆n [f ] (j)← ∆n [f ] (j − 1)
– For i = n− 1 down to 0

If ∆i [f ] (j) is not calculated,8 ∆i [f ] (j)← ∆i [f ] (j−1)+∆i+1 [f ] (j−1)

• f(a + T − 1) = f(a + T − 2) + ∆1 [f ] (a + T − 2).

In Step 1, we did not specify how exactly to compute f(a), f(a + 1), . . . , f(a + n). One
way is to set a = −n/2, then we can use “one-step FFT” and Horner’s rule, which gives us
an algorithm with n2/2 addition and multiplication. Note that we cannot apply additional
steps of FFT since we require consecutive evaluation points.

Cost: In summary, the algorithm requires n2

2 multiplications and additions for Step 1,
and ∼ n · 2t additions (to fill out the rest of the matrix of size 2t). In comparison, the
one-step FFT approach has complexity n · 2t−1 multiplications and additions. The cost
ratio between these methods depends on the cost of multiplication versus addition. For
example, for 256-bit modular additions and multiplications, on MacBook Pro 2019 with
an Intel 2.3 GHz i9 CPU the cost of multiplication is 2.4 times the cost of addition. As
such, we have that the one-step FFT approach would cost 3.4 · n · 2t−1 additions, whereas
the finite differences approach would cost 3.4 · n2

2 + n · 2t additions. In this case, the finite
differences approach is faster for n < 0.7

1.7 · 2t = 0.412 · 2t. As we have shown above, for this
batch proof, we always take either b = log n + 3 or b = log n + 2 and t = b + 5. Thus, we
have that t = log n + 7 or t = log n + 8 always, and so 0.412 · 2t is always much bigger than
n. To be concrete, consider the case of n = 128 with t = 14 (as in Table 7). With the finite
differences approach, the approximate cost is the equivalent of 2.125 million additions. In
contrast, the cost of the one-step FFT approach is 3.57 million additions. For another
example, for the case of n = 16 with t = 12, the approximate cost is the equivalent of
65,971 additions. In contrast, the cost of the one-step FFT approach is 111,411 additions.

8In the range of j ∈ {−n/2, . . . , n/2} half of the matrix has already been computed, so we don’t want
to compute it again.
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Implementation details. Since we wish to have a complexity that depends on the
expected cost ρ · 2b and not 2t, we can compute this matrix on-demand, by first filling
out the first n rows, and then computing additional rows (at the cost of n additions) only
when a new value is needed. In addition, when working this way, we only need to allocate
an initial n× n matrix, and the rest can be computed using only the previous and current
row. This can be significant when 2t is large.

A different look of the finite differences method. The finite differences method is
actually an algorithm that receives any d sequential points p(a), p(a + 1), . . . , p(a + d) on
a degree-d polynomial p(x), and after carrying out an initial d2 additions can compute
additional points p(a + d + 1), p(a + d + 2), . . . each one with an additional cost of just d
additions. Equivalently, after receiving d sequential points, the algorithm computes the
next N − d sequential points at the cost of just N · d additions.

5.4 Experimental Results for the Batch Discrete Log Proof
In this section, we present experimental results for the batch discrete log proof, comparing
the following methods for different values of n:

• Repeat: this simply involves running the basic discrete log proof separately for each
statement; this is the baseline

• Horner: this involves computing each polynomial using Horner’s method only (but
computing the values once only on-demand)

• Horner+1-FFT: this involves running 1-step of FFT and using Horner to compute
the rest of the polynomial

• FFT: this involves running as many steps as possible of FFT and then using Horner

• Final: this is our final implementation that uses the finite difference method, together
with Horner and one step of FFT in order to compute the first n points

Experimental results. We provide graphs below for secp256k1 and Ed25519. Times
are in milliseconds, and are the average over 1,000 executions. In each figure the graph on
the left-hand side shows running-times for batch sizes of up to 32, and the graph on the
right-hand side shows for batch sizes of up to 256 (the graph on the left shows the first 32
in more detail).

Figure 1: Batch Discrete Log for secp256k1
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Figure 2: Batch Discrete Log for Ed25519

The results are very interesting. For secp256k1, we can see that for most parameters
our finite difference method outperforms all others. Furthermore, the improvements over
naive repetition are striking. For example, for secp256k1 and n = 16 we have 13.6ms for
repetition and 3.61ms for finite differences (3.8 times faster), for n = 32 we have 28ms for
repetition and 5.4ms for finite differences (5.2 times faster). The improvements are similar
for Ed25519. It is also worth noting that the finite difference method outperforms Horner
with one step of FFT, running about 1.25 times faster for n’s in the range of 16-32, and
running about twice as fast for larger n’s.

Interestingly, Horner becomes worse than plain repetition for large batches (the
polynomial evaluation becomes more expensive). Another interesting result is that for
large batches FFT performs worse than Horner for Ed25519. This is because FFT for
Ed25519 only has depth 2, but requires using FFT values of ei which are large. These
larger values make all operations more expensive.

Finally, observe that the running times (apart from repetition) look a bit like a step
function, increasing at n = 4, 8, 16. This is primarily because we need to increase b by
⌈log n⌉ for soundness, and so there are jumps at the powers of 2.

Proof size. We conclude by remarking that the proof size of the batch proof is much
smaller than repeating multiple times. Indeed, the size of the batch proof is the same size
as an individual proof, and thus batching n proofs together reduces the proof size by a
factor of n. This can be very significant.
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A Proof of Batch Verification
The proof of correctness and security of the batch verification method of Section 2.3 is as
follows. Correctness follows from the fact that

Rsum =
ρ∑

i=1
σi ·Ri =

ρ∑
i=1

σi ·(zi ·G−ei ·Q) =
ρ∑

i=1
(σi ·zi)·G−

ρ∑
i=1

(σi ·ei)·Q = zsum ·G−esum ·Q.

Security follows from the fact that if there exists a j ∈ [ρ] for which Rj ̸= zj ·G− ej ·Q,
then it follows that Rsum = zsum ·G− esum ·Q if and only if

ρ∑
i=1

σi ·Ri =
(

ρ∑
i=1

σi · zi

)
·G−

(
ρ∑

i=1
σi · ei

)
·Q

which holds if and only if

σj ·Rj +

∑
i ̸=j

σi ·Ri

 = σj · zj ·G− σj · ej ·Q +

∑
i ̸=j

σi · zi

 ·G−
∑

i ̸=j

σi · ei

 ·Q
which in turn holds if and only if

σj · (Rj − (zj ·G− ej ·Q)) =

∑
i ̸=j

σi · zi

 ·G−
∑

i ̸=j

σi · ei

 ·Q−
∑

i ̸=j

σi ·Ri

 .

Note that σ1, . . . , σρ are all chosen after all the other values are fixed. Consider now the
mental experiment where all σi with i ̸= j are chosen first, and then σj is chosen last.
This means that the right-hand side is a fixed group element (which could be zero or any
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other point). Furthermore, Rj ̸= zj ·G− ej ·Q, and so Rj − (zj ·G− ej ·Q) ̸= 0. Since
we are dealing with prime-order groups, every non-zero element is a generator. Thus, the
set {σj · (Rj − (zj ·G− ej ·Q))}σj∈{0,1}κs is of size 2κs . Since the value on the right-hand
side is fixed before σj is chosen, and since σj is chosen uniformly, this implies that equality
holds with probability at most 2−κs , as required.9

B Proof of Proposition 1
Proof. We prove the proposition by induction. Let p(x) be a degree-n polynomial such
that the coefficient of xn is a. For the base case of n = 1 case, we can write p(x) = a ·x + b,
and we have:

∆1 [p] (x) = p(x + 1)− p(x) = a · (x + 1) + b− ax− b = a

Thus, ∆ [f ] (x) is an (n− 1) = 0-degree polynomial and ∆n [f ] (x) = ∆1 [p] (x) = a = a ·n!,
as required.

Next, assume that the theorem holds for n = k and so for any degree-k polynomial p(x)
it holds that ∆ [p] (x) is a degree-(k− 1) polynomial and ∆k [p] (x) = a · k!. We prove that
it holds for n = k + 1. Let p(x) = a · xk+1 + g(x) where g is a k-degree polynomial. Then

∆ [p] (x) = p(x + 1)− p(x)
= a · (x + 1)k+1 + g(x + 1)− a · xk+1 − g(x)
= a ·

(
(x + 1)k+1 − xk+1)+ ∆ [g] (x)

= a ·

(
k+1∑
i=0

(
k + 1

i

)
· xi − xk+1

)
+ ∆ [g] (x)

= a ·
k∑

i=0

(
k + 1

i

)
· xi + ∆ [g] (x)

= a · (k + 1) · xk + h(x)

for some polynomial h(x) (the fourth equality is from (1 + x)n =
∑n

i=0
(

n
i

)
· 1n−1 · xi). By

the assumption, we have that ∆ [g] (x) is a degree-(k − 1) polynomial, and thus h(x) is a
degree-(k − 1) polynomial (the highest order in the sum is xk and the rest are smaller).
Thus, we have that ∆ [p] (x) is a degree-k polynomial, as required.

Furthermore, since we have already established that h(x) is a degree-(k−1) polynomial,
the coefficient of xk in the degree-k polynomial ∆ [p] (x) is a · (k + 1). We have

∆k+1 [p] (x) = ∆k [∆ [p]] (x) = ∆k
[
a · (k + 1) · xk

]
(x)+∆k [h] (x) = a ·(k+1) ·k!+0 = a ·(k+1)!

where the first equality is by commutativity, the second by linearity (and the identity
proven above for ∆ [p] (x)), and the third equality is by the induction assumption (and
that h is of degree-k − 1). This completes the proof.

C Additional Examples
In this section, we consider two more Sigma protocol examples. Specifically, we look at
two proofs of knowledge needed in the multiparty ECDSA protocol of [HLNR18]: the
first is called ZKElGamalCommit and is a proof of knowledge of an ElGamal commitment
value, and the second is called ZKElGamalCommit-Mult-Private-Scalar, and it is a proof

9This is a well-known technique, but the proof has been included for the sake of completeness.
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of knowledge that an ElGamal commitment has been multiplied by a private scalar and
rerandomized.

Formally, let Q be a random group element. Then an ElGamal commitment to a value
x is the pair (A, B) = (r ·G, r ·Q + x ·G); such commitments are useful since they are
additively homomorphic. The relations for the two proofs we consider are:

RElGamalCommit =
{(

(G, Q, A, B), (x, r)
)
| A = r ·G and B = r ·Q + x ·G

}
and

RElGamalCommit-Mult-Private-Scalar

=
{(

(G, Q, A1, B1, A2, B2), (c, r)
)
| A2 = c ·A1 + r ·G and B2 = c ·B1 + r ·Q

}
.

Observe that if (A1, B1) = (r1 ·G, r1 ·Q+x·G) is a commitment to x, then A2 = (c·r1+r)·G
and B2 = (c · r1 + r) ·Q + c · x ·G and thus (B1, B2) is an independent commitment to
c · x, using rerandomization r.

Sigma protocols. The Sigma protocols for these two relations (see [HLNR18, Sections
A.1.2 and A.1.4]) are as follows:

• ZK-ElGamalCommit:

1. Statement: a group element Q, a pair of elements (A, B) with witness (x, r)
such that A = r ·G and B = r ·Q + x ·G

2. ProverFirstMessage: choose random r′, x′ ∈R Zq and compute A′ = r′ ·G and
B′ = r′ ·Q + x′ ·G

3. ProverSecondMessage: compute zx = x′ + e · x mod q and zr = r′ + e · r mod q

4. VerifyProof: verify that Q, A, B, A′, B′ are group elements, and that A′ =
zr ·G− e ·A and B′ = zr ·Q + zx ·G− e ·B

• ZK-ElGamalCommit-Mult-Private-Scalar:

1. Statement: a group element Q, two pairs of elements (A1, B1) and (A2, B2)
with witness (c, r)

2. ProverFirstMessage: choose random c′, r′ ∈R Zq and compute A′ = c′ ·A1 +r′ ·G
and B′ = c′ ·B1 + r′ ·Q

3. ProverSecondMessage: compute zc = c′ + e · c mod q and zr = r′ + e · r mod q

4. VerifyProof: verify that Q, A1, B1, A2, B2, A′, B′ are group elements, and{
A′ = zc ·A1 + zr ·G− e ·A2

B′ = zc ·B1 + zr ·Q− e ·B2

These Sigma protocols are considerably more expensive than the simple proof of knowledge
of discrete log. In particular, the prover first message for discrete log is a single multiplication
of the generator point, whereas for ElGamalCommit the first message has two multipli-
cations of the generator and one of a random point, and for ElGamalCommit-Mult-
Private-Scalar the first message has one multiplication of the generator and three of
random points.
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Analytically finding the parameters. We begin by analytically finding the optimal
parameters for the different computing environments above for these two Sigma protocols.
We denote by MUL-G the operation of multiplying the generator point by a scalar, and by
MULT the operation of multiplying an arbitrary point by a scalar. We remark that the
former operation is typically much cheaper since precomputation is used for the generator.
We compute these parameters for the secp256k1 curve only.

The first step to computing these parameters is to find the ratio between MUL-G and
MULT for each platform (we already have the ratio between MUL-G and SHA256 , and so
this suffices). Once we have this ration, we can compute the equations. However, note
that using Shamir’s trick, the computation of a ·G + b ·Q is about 58% the cost of a ·G
and b ·Q separately.

• Intel: MULT is 2.3 times the cost of MUL-G . Recall that MUL-G is 42 times Thash
on this platform. This yields the following equations:

1. ElGamalCommit:

T = (MUL-G + 0.58 · (MUL-G + MULT) · ρ + ρ · 2128/ρ · Thash

=
(

(42 + 0.58 · (42 + 2.3 · 42) · ρ + ρ · 2128/ρ
)
· Thash

=
(

122.4 · ρ + ρ · 2128/ρ
)
· Thash

2. ElGamalCommitMultScalar:

T = (2 ·MULT + 0.58 · (MUL-G + MULT) · ρ + ρ · 2128/ρ · Thash

=
(

(2 · 2.3 · 42 + 0.58 · (42 + 2.3 · 42) · ρ + ρ · 2128/ρ
)
· Thash

=
(

273.6 · ρ + ρ · 2128/ρ
)
· Thash

• WASM: MULT is the same cost as MUL-G , and MUL-G is 171 times the cost of
SHA256. In the same way as above, we obtain:

1. ElGamalCommit: T = 369.4 · ρ + ρ · 2128/ρ

2. ElGamalCommitMultScalar: T = 540.4 · ρ + ρ · 2128/ρ

We remark that the same batch verification technique for discrete log can be used for
verification in both of the above proofs. Using WolframAlpha, we have the following parameters:

Table 8: Analytically computed trade-offs for different protocols and different environments
for soundness 2128 and completeness 2−40 using secp256k1. Intel/WASM are as in Table 4.

Protocol Intel WASM

ElGamalCommit ρmin = 24.4
ρ = 26, b = 5

ρmin = 19.2
ρ = 19, b = 7

ElGamalCommitMultScalar ρmin = 20.2
ρ = 22, b = 6

ρmin = 18.0
ρ = 19, b = 7

Experimental results.

www.wolframalpha.com
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Table 9: Running times for the prover for Fischlin in milliseconds for secp256k1; average
over 1,000 executions. Intel/WASM are as in Table 4.

b = 3 b = 4 b = 5 b = 6 b = 7 b = 8 b = 9
ElGamalCommit (Intel) 2.49 2.23 2.22 2.50 3.40 5.03 8.47
ElGamalCommit (WASM) 13.2 10.6 9.45 9.31 10.5 13.7 22.2
ElGamalCommitMultScalar (Intel) 5.35 4.38 4.00 4.47 4.87 6.10 9.65
ElGamalCommitMultScalar (WASM) 34.2 26.2 22.1 20.3 19.6 21.3 27.7

As we can see, the prediction was accurate for ElGamalCommit on Intel and for
ElGamalCommitMultScalar on WASM, but off by one for ElGamalCommit on WASM and
for ElGamalCommitMultScalar on Intel. In order to complete the picture, we also provide
the running times for the verifier:

Table 10: Running times for the verifier for Fischlin in milliseconds for secp256k1; average
over 1,000 executions. Intel/WASM are as in Table 4.

b = 3 b = 4 b = 5 b = 6 b = 7 b = 8 b = 9
ElGamalCommit (Intel) 1.65 1.25 1.04 0.97 0.90 0.80 0.70
ElGamalCommit (WASM) 9.23 7.06 5.67 4.97 4.8 3.8 3.58
ElGamalCommitMultScalar (Intel) 1.73 1.37 1.17 1.04 0.93 0.71 0.69
ElGamalCommitMultScalar (WASM) 9.9 7.67 6.27 5.38 4.72 4.26 3.86
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