
Cougar: Cubic Root Verifier Inner Product
Argument under Discrete Logarithm Assumption

Hyeonbum Lee , Seunghun Paik , Hyunjung Son , and Jae Hong Seo ⋆

Department of Mathematics & Research Institute for Natural Sciences,
Hanyang University, Seoul 04763, Republic of Korea

{leehb3706, whitesoonguh, dk9050rx, jaehongseo}@hanyang.ac.kr

Abstract. An inner product argument (IPA) is a cryptographic primi-
tive used to construct a zero-knowledge proof system, which is a notable
privacy-enhancing technology. We propose a novel efficient IPA called
Cougar. Cougar features cubic root verifier and logarithmic communica-
tion under the discrete logarithm (DL) assumption. At Asiacrypt2022,
Kim et al. proposed two square root verifier IPAs under the DL assump-
tion. Our main objective is to overcome the limitation of square root
complexity in the DL setting. To achieve this, we combine two distinct
square root IPAs from Kim et al.: one with pairing (Protocol3; one was
later named Leopard) and one without pairing (Protocol4). To construct
Cougar, we first revisit Protocol4 and reconstruct it to make it compatible
with the proof system for the homomorphic commitment scheme. Next,
we utilize Protocol3 as the proof system for the reconstructed Protocol4.
Finally, to facilitate proving the relation between elliptic curve points
appearing in Protocol4, we introduce a novel Plonkish-based proof sys-
tem equipped with custom gates for mixed elliptic curve addition. We
show that Cougar indeed satisfies all the claimed features, along with
providing a soundness proof under the DL assumption. In addition, we
implemented Cougar in Rust, demonstrating that the verification time of
Cougar increases much slowly as the length of the witness N grows, com-
pared to other IPAs under the DL assumption and transparatent setup:
BulletProofs and Leopard. Concretely, Cougar takes 0.346s for verification
in our setting when N = 220, which is a 50× speed-up from Bulletproofs.

Keywords: Inner product argument, zero knowledge proof, polynomial com-
mitment, discrete logarithm assumption

1 Introduction

Zero-Knowledge Proof (ZKP) is one of the privacy-enhancing technologies
spotlighted by many international organizations and others [42]. ZKP is a pro-
tocol allowing a prover to convince a verifier that a statement is true without

⋆ Corresponding Author.

https://orcid.org/0000-0003-0435-4394
https://orcid.org/0000-0003-1105-1607
https://orcid.org/0009-0004-9134-979X
https://orcid.org/0000-0003-0547-5702

2 Lee et al.

Schemes Comm. Prover Verifier Assumption Setup Pairing
Updatable IPA[23] O(log2N) O(N) O(log2N) DL, DPair Trusted Yes

Dory[41] O(log2N) O(N) O(log2N) SXDH Trustless Yes
Bulletproofs[11,16] O(log2N) O(N) O(N) DL Trustless No

Leopard[39,38] O(log2N) O(N) O(
√
N) DL Trustless Yes

Protocol4[39] O(log2N) O(N) O(
√
N log2N) DL Trustless No

TENET[40] O(
√

log2N) O(N · 2
√

log2 N) O(N/2
√

log2 N) DL, DPair Trustless Yes
This Work O(log2N) O(N) O(3

√
N
√

log2N) DL Trustless Yes
Comm., Prover, and Verifier mean cost of communication, prover computation, and
verifier computation, respectively. Pairing means requirement of pairing-friendly groups.

Table 1. Comparison Table of IPAs for length-N vectors

leaking any additional information [32]. ZKP schemes are employed as foun-
dational components in various cryptographic applications, including identifi-
cation [25,20], verifiable computation [7,9,50,12], and confidential transactions
[48,16,36,22,31]. To this end, ZKP for proving the satisfiability of the arithmetic
(AC) is essential, and several constructions [35,11,16,6,29,18,33,21] have been
proposed.

Among them, one notable approach is to utilize an inner product argu-
ment (IPA) as a building block of the ZKP scheme [11,16,18,41,22]. Bootle et
al. [11] first proposed an IPA with logarithmic proof size under the discrete log-
arithm (DL) assumption, and later, Bünz et al. [16] improved the IPA, which
is called Bulletproofs. In [18], Bünz et al. proposed a paradigm for constructing
ZKPs by applying a polynomial commitment scheme (PCS), which can be seen
as a specialized form of IPA, to a polynomial interactive oracle proof (PIOP)
system. Following this paradigm, the complexity of ZKPs heavily relies on that
of the IPA. Hence, the efficient construction of an IPA is crucial for designing
efficient ZKPs.

Bulletproofs is a widely known IPA because of its efficient proof size and
lack of reliance on trusted parties. However, one of the main drawbacks of Bul-
letproofs is its linear verification cost, which makes it challenging to apply in
certain applications, such as verifiable computation and incrementally verifiable
computation. To avoid linear verification, Daza et al. [23] proposed a sublin-
ear verifier IPA using bilinear pairing. However, the sublinear IPA [23] requires
a trusted setup, which means that a trusted third party is necessary to gen-
erate a common reference string (CRS), whereas Bulletproofs does not. After,
Lee [41] proposed a sublinear pairing-based IPA, called Dory, without a trusted
setup. However, Dory depends on stronger cryptographic assumptions, such as
the symmetric external Diffie-Hellman (SXDH) assumption.

Without relying on more cryptographic assumptions than Bulletproofs, Kim
et al. [39] proposed two square root verifier IPAs, pairing-based IPA (Protocol3)
and pairing-free IPA (Protocol4). Both IPAs provide linear prover and logarithm
communication, equivalent to Bulletproofs. In [38], Kim et al. presented opti-
mizations and a concrete implementation of Protocol3, which is called Leopard.

Cubic Root Verifier Inner Product Argument 3

Contribution. In this paper, we introduce the first cubic root verifier and
logarithmic communication IPA, called Cougar, under the DL assumption with
transparent setup. Our IPA maintains the same assumptions and setup as previ-
ous IPAs, such as [11,16,39]. In Table 1, we provide a comparison on computation
and communication complexity between previous IPA proposals and ours.

To achieve cubic root verifier, we deepen our understanding of previous
paring-free IPA Protocol4 from the lens of a two-tier commitment scheme. From
this, we present a generalization of Protocol4 and improve its verifier’s complex-
ity by combining with Leopard in the second layer. With these framework-level
improvements, we also propose novel techniques to efficiently deal with relations
between elliptic curve points in Protocol4. First, we present a Plonkish-based
proof system tailored for these relations, which utilizes new custom gates for
mixed elliptic curve group operations. Moreover, we present a Plonk-friendly en-
coding method for a homomorphic PCS, enabling an efficient consistency check
between committed vectors and intermediate wire values in AC.

We prove that Cougar satisfy the claimed features under the DL assumption.
Furthermore, we also conducted experimental analyses of Cougar by implement-
ing it in our experimental environment. We compared Cougar with other previous
IPAs under the same setting: BulletProofs and Leopard. We showed that the ver-
ification cost of Cougar increases much slower than these two prior works as the
length of the witness vectors increases.

1.1 Technical Overview

Two-tier Commitment with Proof. We first revisit Protocol4, pairing-free
square root verifier IPA [39]. The main idea of Protocol4 is a two-tier commitment
scheme with a proof for the second layer. The two-tier commitment scheme
comprises two layers. In the first layer, mn-length vectors are compressed into
n elliptic curve points using a parallel Pedersen commitment scheme with a
m-dimensional commitment key. Subsequently, these n elliptic curve points are
interpreted as 3n-length vectors in the embedding field. In the second layer,
these vectors are further compressed into a single elliptic curve point through a
Pedersen commitment scheme with a 3n-dimensional commitment key.

The proof of the second layer is intricately connected to the commitment
scheme used in the second layer. Concretely, the proof should ensure knowledge of
the first layer results and the elliptic curve relation between them. To address this
issue, homomorphic commitment and a related proof system are required. From
this viewpoint, we generalize the second layer commitment from the Pedersen
commitment to any homomorphic commitments.

Proof for Elliptic Curve Relation. The second-layer proof concerns the
elliptic curve relation. It is constructed by reducing the elliptic curve relation to
an arithmetic relation over the embedding field and then adapting the Plonkish
proof system [55], which is specialized for elliptic curve operations.

In the second-layer, the prover must convince knowledge of vectors and their
corresponding elliptic curve relation. Designing a proof system that satisfies both

4 Lee et al.

conditions is challenging, as the elliptic curve relation involves all committed
vectors. To address this, we propose a Plonk-friendly extended PCS derived from
a homomorphic PCS, compatible with the Plonkish proof system for elliptic curve
operations. Specifically, this new PCS ensures consistency between committed
vectors and wire polynomials from Plonkish arithmetization.

Cubic Root Verifier Inner Product Argument. From the above results,
we conclude that the protocol features O(log2 mn) communication and O(m +
∥VEval(n log2 m)∥), where ∥VEval(n log2 m)∥ is the verifier complexity of Eval, the
evaluation protocol of the PCS for degree O(n log2 m) polynomials. Then, we
apply Leopard evaluation protocol, which features square root verifier complex-
ity. Finally, we set the parameters m = 3

√
N and n =

3
√
N2, where N is the

length of the witness vectors. Then, the total verifier complexity is O(m +
∥VEval(n log2 m)∥) = O(3

√
N + 3

√
N
√

log2 N), which is the cubic root of N .

1.2 Related Works

ZK Argument based on Discrete Logarithm Setting. Groth [34] first
proposed a sublinear ZK argument for AC under the DL assumption, and Seo
[49] improved it. These works also feature constant round complexity. Later
works [11,16,18,41,22,39] focus on reducing communication complexity (to loga-
rithmic scale) rather than round complexity (allowing logarithmic complexity).
Starting from Bulletproofs [11,16], various works have been proposed to improve
the verifier complexity of Bulletproofs [41,22,39,24]. In a different view point,
Kim et al. [39] proposed a sublogarithmic communication ZK argument for the
first time, and then Lee et al. [40] enhanced it from a linear verifier cost to a sub-
linear one with sublogarithmic communication. Furthermore, Zhang et al. [56]
proposed an efficient framework for IPA to handle arbitrary length of vectors di-
rectly, and some works [30,53] proposed improved IPAs for specific applications.

ZK Argument based on Unknown order group. DL-based ZK arguments
feature a small proof size but require a large verification cost. To handle this,
Búnz et al. [18] and Arun et al. [2] proposed short size ZK arguments with
logarithmic verification. However, both schemes demands large prover cost.

ZK Argument based on Lattice Setting. To overcome vulnerability against
quantum computer-aided attacks, several ZK arguments from cryptographic as-
sumptions on lattice, e.g. short integer solution, ring learning with errors, have
been proposed [3,14,17,4]. However, lattice based ZK arguments has more expen-
sive communication costs than DL based ZK arguments due to limited challenge
sampling issue.

ZK Argument based on Collision Resistant Hash function. In another
direction for post-quantum security, zero-knowledge (ZK) schemes based on
cryptographic hash functions have also been proposed [8,6,13,52]. Since hash-
based ZK schemes do not rely on cryptographic groups, the computations for

Cubic Root Verifier Inner Product Argument 5

both the prover and the verifier are relatively simple. However, without an un-
derlying algebraic structure, it is challenging to apply algebraic techniques such
as proof aggregation and algebraic reduction.

2 Preliminaries

We first define the notations used in the paper. [ℓ] denotes a set of integers
from 1 to ℓ. We denote a negligible function as negl. For a prime p, we denote
asymmetric bilinear groups of order p, G1,G2, and Gt with a non-degenerated
bilinear map e : G1 × G2 → Gt. We use additive notation to describe group
operations on G1, G2, and Gt. To denote a scalar multiplication, we denote
[k]G for a scalar k ∈ Zp and G ∈ G. We prefer to use upper and lowercase
letters to denote group elements and field elements, respectively. We use bold
font to represent vectors in Zm

p or Gm. For a vector a ∈ Zm
p and i ∈ [m], we

use ai(non-bold style letter with a subscript i) to denote the i-th element of a.
We use ∥ notation to represent concatenation of two vectors, i.e., for a, b ∈ Zm

p ,
a ∥ b = (a1, . . . , am, b1, . . . , bm).

For a, b ∈ Zm
p , G ∈ Gm

1 , and H ∈ Gm
2 , we use the following vector notations:

– Component-wise addition : a + b = (a1 + b1, . . . , am + bm) ∈ Zm
p and

G+H = (G1 +H1, . . . , Gm +Hm) ∈ Gm.
– Component-wise product : a ◦ b = (a1b1, . . . , ambm) ∈ Zm

p .
– Multi-Scalar Multiplication : [x]G =

∑
i∈[m][xi]Gi ∈ G1.

– Inner Pairing Product : E(G,H) =
∑

i∈[m] e(Gi, Hi) ∈ Gt.

Parallel Multi-Scalar Multiplication. Let a ∈ Zm×n
p be a matrix and G ∈

Gm be group elements. We denote [a]G := ([a1]G, . . . , [an]G), where ai ∈ Zm
p

is the i-th column vector of matrix a.

Argument of Knowledge. Let R be a polynomial-time verifiable relation
consisting of common reference string (CRS), statement, and witness, denoted
by σ, x, and w respectively. An interactive argument system for relation R
consists of three probabilistic polynomial-time algorithms (PPTs) (K,P,V). The
K algorithm takes the security parameter λ and outputs CRS σ, which is the
input of P and V. P and V generate a transcript interactively, denoted by tr ←
⟨P(σ, x, w),V(σ, x)⟩. At the end of the transcript, V outputs a bit, 0(reject) or
1(accept). An argument of knowledge (AoK) is a special case of an argument
system that satisfies the properties of completeness and witness extractability.

Definition 1 (Argument of Knowledge). Let R be a polynomial-time veri-
fiable relation. We call that the argument system (K,P,V) for the relation R an
Argument of knowledge if the following properties hold:
[Completeness]: For every PPT adversary A, the following inequality holds:

Pr

 tr ← ⟨P(σ, x, w),V(σ, x)⟩
tr is accepting

∣∣∣∣∣∣
σ ← K(1λ);
(x,w)← A(σ)
∧(σ, x;w) ∈ R

 > 1− negl(λ)

6 Lee et al.

[Witness Extended Emulation]: For every deterministic polynomial prover
P∗, which may not follow P, and all pairs of PPT adversaries (A1,A2), there
exists a PPT emulator E, the following inequality holds:∣∣∣∣∣∣∣∣∣

Pr

[
A1(tr) = 1

σ ← K(1λ); (x, s)← A2(σ);
tr ← ⟨P∗(σ, x, s),V(σ, x)⟩

]
−

Pr

[
A1(tr) = 1 ∧
(σ,w, x) ∈ R

σ ← K(1λ); (x, s)← A2(σ);
(tr, w)← EO(σ, x), tr is accepting

]
∣∣∣∣∣∣∣∣∣ < negl(λ)

The emulator E can access the oracle O = ⟨P∗(σ, x, s),V(σ, x)⟩, which outputs
the transcript between P∗ and V. E permits to rewind P∗ at a specific round and
rerun V using fresh randomness. s can be considered as the state of P∗.

Trusted Setup. In some arguments, the key generation algorithm takes a trap-
door that should not be revealed to anyone, including the prover and verifier.
In this case, CRS generation should be run by a trusted third party. A setting
requiring a trusted party is called the trusted setup.

Definition 2 (Discrete Logarithm Relation Assumption). Let G be a
group generator that takes security parameters λ and then outputs G, describing
a group of order p. We say that G satisfies the discrete logarithm relation (DLR)
assumption if, for all non-uniform polynomial-time adversaries A, the following
inequality holds:

Pr

[
a ̸= 0 ∧ ga = 1G

∣∣∣∣∣ (p, g,G)← G(1λ), g $← Gn;
a← A(g, p, g,G)

]
≤ negl(λ)

It is well-known that the discrete logarithm relation (DLR) assumption is
equivalent to the discrete logarithm (DL) assumption [16,39].

Definition 3 (Commitment Scheme). A commitment scheme C consists of
three PPT algorithms: a key generation Gen, a commitment Com, and an open
Open. A commitment scheme C = (Gen,Com,Open) over a message space M, a
random space R, and a commitment space C is defined by:

– Gen(1λ, ℓ)→ ck : On input security parameter λ and dimension of message
space ℓ, sample commitment key ck

– Com(ck,m; r)→ C : Take commitment key ck, message m ∈ M, and ran-
domness r ∈ R, output commitment C ∈ C

– Open(ck,m, r, C)→ 0/1 : Take commitment key ck, message m ∈ M, ran-
domness r ∈ R, and commitment C ∈ C output 1 if Com(ck,m; r) = C, 0
otherwise.

Since the Open algorithm can be described by using Com algorithm, we omit the
Open algorithm from the commitment scheme C. Now, we call C = (Gen,Com) a
commitment scheme if the following properties hold:
[Binding]: For any expected PPT adversary A,

Pr

[
m0 ̸= m1

∣∣∣∣ ck← Gen(1λ, ℓ); (m0, r0,m1, r1)← A(ck)
∧C0 = C1where Ci = Com(ck,mi; ri)

]
≤ negl(λ)

Cubic Root Verifier Inner Product Argument 7

[Hiding]: For any expected PPT adversary A = (A1,A2)∣∣∣∣∣∣Pr
b = b′

∣∣∣∣∣∣
ck← Gen(1λ, ℓ); (m0,m1, state)← A1(ck);

b
$←{0, 1}, r $←R,

C ← Com(ck,mb; r); b
′ ← A2(ck, C, state),

− 1
2

∣∣∣∣∣∣ ≤ negl(λ)

Additionally, we call a commitment scheme C is (additively) homomorphic if the
following property holds:
[(Additive) Homomorphic]: For any commitment key ck ← Gen(1λ, ℓ) and
pairs of message-randomness (m0, r0), (m1, r1) ∈ M × R, the following equality
holds: Com(ck,m0; r0) + Com(ck,m1; r1) = Com(ck,m0 +m1; r0 + r1)

Homomorphic Vector Commitment Schemes. A homomorphic vector com-
mitment scheme is a homomorphic commitment for N -dimensional message, etc.
ZN
p or GN . We introduce two widely used homomorphic vector commitment

schemes: Pedersen vector commitment [43] and AFGHO group commitment [1].

Pedersen vector commitment. Pedersen vector commitment, denoted by CPed =
(GenPed,ComPed), is a commitment scheme over message space ZN

p as follows:
– GenPed(1

λ, N)→ (G, H):

1. Sample G
$←GN and H

$←G
2. Output ck = (G, H) ∈ GN ×G

– ComPed((G, H),a; r)→ C:

1. Compute C = [a]G+ [r]H
2. Output C ∈ G

Specially, we sometimes use subscript Ped, p for Pedersen commitment over group
Gp of order p to distinguish base group.

AFGHO group commitment. AFGHO group commitment CGC = (GenGC,ComGC)
is a commitment scheme over message space GN

1 as follows:
– GenGC(1

λ, N)→ (F ,K):

1. Sample F
$←GN

2 and K
$←Gt

2. Output ck = (F ,K) ∈ GN
2 ×Gt

– ComGC((F ,K),G; r)→ C:

1. Compute C = E(G,F) + [r]K
2. Output C ∈ Gt

Polynomial Commitment Scheme [37,18]. A polynomial commitment scheme
(PCS) is a special case of the commitment scheme that commits the given poly-
nomial within the specific degree bound d. PCS allows convincing polynomial
evaluation without opening the polynomial itself. Concretely, PCS contains an
argument system Eval = (K,P,V) for the following relation:

REval =

{
(ckPC, C ∈ C, z, y ∈ Zp, d ∈ N; f ∈ Z≤d

p [X]) :
C = Com(ckPC, f(X)) ∧ y = f(z)

}
(1)

The formal definition of PCS is given as below:

Definition 4 (Polynomial Commitment Scheme). A polynomial commit-
ment scheme PCS = (Gen,Com,Eval) consists of key generation algorithms Gen,
commitment algorithm Com, and argument system Eval for the relation REval. We
call PCS = (Gen,Com,Eval) is a polynomial commitment scheme if the following
properties hold:
– The (Gen,Com) is commitment schemesatisfies the binding property.
– The argument system Eval is an AoK for the relation REval in Eq. (1)

8 Lee et al.

3 Construction of Cubic Root Verifier IPA

3.1 Two-tier Commitment Scheme and Inner Product Argument

A two-tier commitment is a commitment scheme for a two-dimensional array,
e.g. Zm×n

p . Using two-tier commitment scheme has some merits. To construct
an IPA with a two-tier commitment, the size of the common reference string
(CRS) can be reduced sublinear of N = mn, concretely, O(n+m). This reduced
CRS leads to a reduction in the verification cost of IPA [19,41,39,38]. A two-
tier commitment scheme is constructed by combining two distinct commitment
schemes C1 = (Gen1,Com1) and C2 = (Gen2,Com2). For a matrix in Zm×n

p ,
commit m row vectors using the first commitment algorithm Com1 in parallel.
After then, with regard m commitments from Com1 as a message of Com2, use
the second commitment algorithm Com2, and output it.

Definition 5 (Two-tier Commitment Scheme). Let C1 = (Gen1,Com1) and
C2 = (Gen2,Com2) be commitment schemes over (message, commitment, ran-
domness) space (Zn

p ,C1,R1) and (Cm
1 ,C2,R2) respectively. Then, the commitment

scheme C = (Gen,Com) over space (Zm×n
p ,C2,R1 × R2) is called as a two-tier

commitment scheme based on C1 and C2 defined by:
– Gen(1λ,mn)→ ck = (ck1, ck2):

1. Run Gen1(1
λ, n)→ ck1

2. Run Gen2(1
λ,m)→ ck2

3. Return ck = (ck1, ck2)

– Com(ck,M ; (r, rf))→ C:
1. Comp. Com1(ck1,Mi; ri)→ Ci,∀i
2. Comp. Com2(ck2,C; rf)→ C
3. Return C

Specially, we use roman-style to denote commitment from two-tier commit-
ment schemes. In terms of IPA, the binding property of the commitment is
sufficient for ensuring soundness. So, we omit the randomness r in the commit-
ment algorithm, which does not affect the binding property. Hereafter, we simply
write Com(ck,M) to describe the commitment algorithm for a message M .

Pairing-based Two-tier Commitment Scheme. From two commitment
schemes C1 = (GenPed,ComPed) and C2 = (GenGC,ComGC) over spaces (Zmn

p ,Gn
1 ,G1)

and (Gm
1 ,Gm

2 ,Gt) respectively, one can construct a homomorphic two-tier com-
mitment scheme. The homomorphic two-tier commitment is widely used for con-
structing sublinear verifier IPA schemes [19,41,39]. The homomorphic property
helps to apply the folding technique in Bulletproofs; however, this construction
is restricted to a choice of a base group: pairing-friendly elliptic curves.

Doubly-Pedersen Two-tier Commitment Scheme. To remove reliance on
the pairing operation, Kim et al. proposed Pedersen commitment for the el-
liptic curve points, which are already committed by the Pedersen commitment
scheme. This approach can be viewed as a two-tier commitment scheme using
the Pedersen commitment on both the first and second layers. For convenience,
we call this commitment scheme as the Doubly-Pedersen two-tier commitment
scheme. The doubly-Pedersen two-tier commitment process for a ∈ Zm×n

p is as
follows: First, commit each row vector of a using Pedersen vector commitment

Cubic Root Verifier Inner Product Argument 9

Protocol.Row

Comm. : O(log2m)
Verifier : O(m)

Protocol.Col

Comm. : O(log2 n)
Verifier : O(log2 n)

AggMEC

Comm. : O(∥ΠEval(n log2m)∥)
Verifier : O(∥VEval(n log2m)∥)

Total Complexity
Comm. : O(log2mn+ ∥ΠEval(n log2m)∥)
Verifier : O(m+ ∥VEval(n log2m)∥)

Eval

PlonkishEval

Fig. 1. Overall Process of the Protocol

on the group of elliptic curve points G = E(Zq) over the field Zq. After the
first layer commitment, one gets n distinct elliptic curve points. For the second
layer commitment, one considers n elliptic curve points in E(Zq) as coordinates
of the field elements in Zq and then recommits them using the Pedersen vector
commitment on the elliptic curve Gq of order q.

Homomorphic Vector Commitment in Second Layer. To apply the fold-
ing technique [11,16] to the doubly-Pedersen commitment-based IPA, the prover
must provide additional proofs to validate the group operations introduced by
the Pedersen commitment in the first layer. This is because the doubly-Pedersen
two-tier commitment scheme lacks a homomorphic property [39]. Since the ho-
momorphic property of the second commitment simplifies the construction of
additional proofs, it is preferable to use a homomorphic commitment at the sec-
ond layer. Furthermore, the role of the second commitment is to compress a
large message into a single commitment, e.g., reducing a vector in ZN

q to a single
element in C. Therefore, the second commitment should satisfy the compression
property, converting an N -dimensional message into a single element.

For a precise description, let us consider the Pedersen commitment scheme
C1 = (GenPed,ComPed) over (Zm

p ,Gp = E(Zq)) at the first layer and a homomor-
phic commitment scheme C2 = (Gen2,Com2) over (Z2n

q ,C) at the second layer.
At the second commitment, we consider group elements (elliptic curve points)
as pair of Zq elements following affine coordinates. Now, we consider two-tier
commitment scheme CTC = (GenTC,ComTC) as follows:

– GenTC(1
λ,mn)→ ck = (G, ck2):

1. Run GenPed,p(1
λ, n)→ G ∈ Gn

p

2. Run Gen2(1
λ, 2m)→ ck2 ∈ G2m

q

3. Return ck = (G, ck2)

– ComTC((G, ck2),a ∈ Zm×n
p)→ C ∈ Gq:

1. Comp. ComPed,p(G,ai)→ (Ci)
m
i=1 ∈ Gm

p

2. Comp. Com2(ck2,C)→ C ∈ C
3. Return C

Inner Product Argument with Two-tier Commitment. We focus on con-
struction of IPA with commitment scheme CTC for the following relation:

Rm,n
GenPT4 =

{(
G,H ∈ Gm

p , ck2,P ∈ Gq, c ∈ Zp;a, b ∈ Zm×n
p

)
:

P = ComTC((G ∥H, ck2),a ∥ b) ∧ c = ⟨a, b⟩

}
(2)

10 Lee et al.

Following the framework in [39], we construct an IPA in two parts: the reduc-
tion part and the proof of the multi-elliptic curve (MEC) operation part. The
reduction part reduces the argument from the relation Rm,n

GenPT4 to Rm/2,n
GenPT4(Row-

reduction) or R1,n
GenPT4 to R1,n/2

GenPT4(Column-reduction). The overall process of the
proposed IPA is as follows: first, the prover and verifier run row-wise reduction
Protocol.Row recursively until the row of the witness reaches m = 1. Then, they
run column-wise reduction Protocol.Col recursively until the column of the wit-
ness reaches n = 1. Next is proof for the MEC operation part. In this part, the
prover and verifier run AggMEC for ensuring elliptic curve relation between wit-
ness vectors. In this phase, Eval and PlonkishEval are used as subroutines. Notice
that both have verifier complexity ∥VEval(n log2 m)∥. We illustrate the overall
process in Figure 1.

3.2 Reduction Protocol

In the reduction protocol, the prover and verifier recursively run the reduction
process: reduction from an argument for vectors to those for half-sized vectors.
Contrary to Bulletproofs [11,16] or Leopard [38], the prover and verifier store
the history of reduction processes because the verifier has not been convinced
of the group operation relation between received commitments yet. The states
stV and stP role recording the history of the verifier and prover, respectively.
stV and stP are used to run the aggregated multi-elliptic curve operation proof,
AggMEC, which guarantees the validity of the inner value of commitment for
every round.

We construct two type of reduction protocol: row-wise reduction protocol
Protocol.Row and column-wise reduction protocol Protocol.Col but core idea of
them are equivalent. In the reduction process, the P sends crossed inner prod-
uct values cL, cR with commitments L,R, whose messages are pairs of half-sized
witness vectors, to V. Then, V sends challenge x to P. Contrary to other IPAs
based on homomorphic commitments, V cannot update the instance P̂ for the
next round. To resolve this issue, P sends an updated instance P̂ to V. In this
phase, V should verify the well-construction of P̂, but we postpone the verifi-
cation of it and run the reduction recursively. We describe Protocol.Row and
Protocol.Col in Algorithm 1 and Algorithm 3 (in Appendix A) respectively.

Theorem 1. Assume that both Protocol.Col provide perfect completeness and
computational witness-extended emulation. Then, Protocol.Row in Algorithm 1
has perfect completeness and computational witness-extended emulation under
the DL assumption.

Theorem 2. Assume that AggMEC provides perfect completeness and computa-
tional witness-extended emulation. Then, Protocol.Col in Algorithm 3 has perfect
completeness and computational witness-extended emulation under the DL as-
sumption.

Due to space constraints, we defer the proofs for Theorem 1 and Theorem 2 in
Appendix B and Appendix C, respectively.

Cubic Root Verifier Inner Product Argument 11

Algorithm 1 Protocol.Row
Protocol.Row(G,H, (ckk)

µ
k=s, ckCol,P, c, stV ;a, b, stp)

where ckk = (ckL,k, ckR,k, ckP,k), ckCol = (ckP,k)
µ+ν+1
k=µ+1

1: if m = 1, base case s = µ then:
2: P and V run Protocol.Col(G,H, ckCol,P, c, stV ;a, b, stP)
3: else
4: if stP =⊥ and stV =⊥ then
5: P sets P = [a]G ∥ [b]H and adds (·, ·,P) into the bottom row of stP .
6: V adds (ckP,0, ·, ·,P, ·) into the bottom row of stV .
7: else
8: P refers P in the bottom row of stP
9: end if

Set m̂ = m
2

and a = [aL∥aR], b = [bL∥bR], G = GL∥GR, H = HL∥HR

10: P computes cL, cR and L,R and sends them to V:
L = [aL]GR ∥ [bR]HL, R = [aR]GL ∥ [bL]HR ∈ G2n

p ,
cL = ⟨aL, bR⟩, cR = ⟨aR, bL⟩ ∈ Zp,
L = Com2(ckL,s,L), R = Com2(ckR,s,R) ∈ Gq

11: V chooses x $←Z∗
p and returns it to P

12: P computes P̂ and sends it to V:
P̂ = [x−1]L+ P + [x]R ∈ G2n

p , P̂ = Com2(ckP,s, P̂) ∈ Gq

13: Both P and V update:
Ĝ = GL + [x−1]GR, Ĥ = HL + [x]HR ∈ Gm̂

p , ĉ = x−1cL + c+ xcR ∈ Zp

14: P updates â = aL + xaR, b̂ = bL + x−1bR ∈ Zm̂×n
p .

15: V adds (cks,L,R, P̂, x) into the bottom row of stV .
16: P adds (L,R, P̂) into the bottom row of stP .
17: Both P and V run Protocol.Row(Ĝ, Ĥ, (ckk)

µ
k=s+1, ckCol, P̂, ĉ, stV ; â, b̂, stP)

18: end if

3.3 Proof for Elliptic Curve Relation

By Theorem 1 and 2, it is sufficient to construct AggMEC to complete IPA for
relation Rm,n

GenPT4 in Eq. (2). AggMEC guarantees the well-constructed updated
instances P̂ from every round of reductions. That is, the k-th row of state tuples
(stV ; stP)k = (ckk, (Lk,Rk,Pk, xk); (Lk,Rk,P k)) satisfy the following:

1. Commitment

Lk = Com2(ckL,k,Lk),Rk = Com2(ckR,k,Rk) for k = 1, . . . , µ

Pk = Com2(ckP,k,P k) for k = 0, . . . , µ+ ν − 1, Pµ+ν = Com2(ck, [a]G ∥ [b]H) (3)

2. Elliptic Curve Operation on Gp = E(Zq)

µ−1∧
k=0

(
P k+1 = [x−1

k]Lk+1 + P k + [xk]Rk+1 ∈ G2n
p

)
(4)

µ+ν∧
k=µ

(
P k+1 = (P

(q1)
k + [xk]P

(q2)
k ∥ P (q3)

k + [x−1
k]P

(q4)
k) ∈ Gn/2k−µ

p)
)

(5)

12 Lee et al.

Plonkish: Proof system for elliptic curve relation. Plonk [29] is one of the
well-known methods to represent the circuit satisfiability of the given arithmetic
circuit (AC) as the constraints system. By Lagrange interpolation, the latter
can be converted to showing the equality of polynomials which can be proved
efficiently by PIOP instantiated by PCS [18]. Plonkish [55] is an extension of
Plonk by constructing a constraint system about the execution trace for run-
ning specific operation, such as elliptic curve operation. The details of designing
execution traces for elliptic curve operations are deferred to Appendix F.

Throughout this paper, we will denote PlonkishEval as the proof system for
elliptic curve operation utilizing Plonkish method with PCS Eval. It takes a com-
mitment key ckPC for the underlying PCS, selector polynomials {si(X)}Ng−1

i=0 ,
gate polynomials {gi(X1, . . . XM)}Ng−1

i=0 , and permutation polynomials {ri(X)}M−1
i=0

as public inputs. For witnesses, PlonkishEval takes wire polynomials {w(i)(X)}M−1
i=0 ,

which is encoding of inter-values of elliptic curve operation. The detailed proce-
dure of PlonkishEval is provided in Algorithm 4 in Appendix E.

Two Roots of Unity. To construct the protocol, we consider two roots of unity:
one for the commitment part and the other for the execution trace of the elliptic
operation. Using the two roots of unity, we encode vectors into interpolated
polynomial on the power of unities. First, we consider total number d of elements
consisting of message vectors Lk, Rk, and P k of Lk, Rk, and Pk. Since each Lk,
Rk consist of 2n elements for all k ∈ [µ], and P k consists of 2n elements for
k = 0, . . . µ and n/2k−µ−1 for all k = µ+ 1 . . . µ+ ν, the total number d should
be 6nµ+ 4n− 2. We denote the d-th root of unity as ζ.

Next, we consider the root of unity for the execution trace. In Eq. (4) and
(5), the elliptic curve operation consists of 4nµ+ n− 1 complete additions and
4nµ+4n−2 multi-scalar multiplications. Each multi-scalar multiplication can be
represented as 2 log2 q complete additions. Then, the total number of complete
additions for Eq. (4) and (5) is at most 8n(µ+1) log2 q. We choose a sufficiently
large integer D that satisfies D ≥ 8n(µ+1) log2 q and d|D (d is a divisor of D).
Next, we define the D-root of unity ξ, which will be used for interpolating the
wire polynomial in Plonkish. Note that ζ = ξt for some t and each ζi and ξi is
the root of the polynomial Xd − 1 and XD − 1 respectively.

Plonkish-friendly Extended Polynomial Commitment Scheme. To prove
the consistency of the wire polynomial and commitments Lk,Rk,Pk, we con-
struct a commitment scheme for the message vectors Lk,Rk and P k considering
compatibility with the polynomial commitment scheme. To this end, we first en-
code vectors Lk,Rk and P k into polynomials FL,k, FR,k, FP,k and then commit
them. The encoding function Enctype takes ξ, index k and a vector a, returning
a polynomial Ftype,k in Zq[X], where type ∈ {L,R, P}. The encoding process
extends 2n vectors to D-degree polynomials. We intend that each encoded func-
tion is activated at different positions. That is, for two encoded functions Ftype1,k1

and Ftype2,k2
with (type1, k1) ̸= (type2, k2), Ftype1,k1

(ξi)Ftype2,k2
(ξi) = 0 holds for

all i ∈ [D]. In our setting, decoding of a polynomial Ftype,k can be performed
uniquely when the type type and position k are determined. Furthermore, the

Cubic Root Verifier Inner Product Argument 13

Fig. 2. Structure of Wire Polynomial. Best viewed in color.

sum of two encoded functions preserves their original non-zero evaluations at ξi.
We define the encoding function as follows:

– EncL(ξ, k ∈ [µ],a ∈ Z≤2n
q)→ FL,k ∈ Zq[X]

Construct degree D polynomial FL,k(X) such that:

FL,k(ξ
i) =

{
a[j − 2n(k − 1)], if i = (3j − 2)t for 2n(k − 1) < j ≤ 2nk

0, otherwise

– EncR(ξ, k ∈ [µ],a ∈ Z≤2n
q)→ FR,k ∈ Zq[X]

Construct degree D polynomial FR,k(X) such that:

FR,k(ξ
i) =

{
a[j − 2n(k − 1)], if i = (3j − 1)t for 2n(k − 1) < j ≤ 2nk

0, otherwise

– EncP (ξ, k ∈ {0, . . . , µ+ ν + 1},a ∈ Z≤2n
q)→ FP,k ∈ Zq[X]

Construct degree D polynomial FP,k(X) such that:

FP,k(ξ
i) =

{
a[j − 2nk], if i = 3jt for 2nk < j ≤ 2n(k + 1)

0, otherwise

Using the encoding function, we define the commitment Com2 based on the ho-
momorphic polynomial commitment ComPC. The cktype,k consists of four tuples:
(ckPC, ξ, type, k). We describe the commitment Com2 for message a as follows:

– Com2(cktype,k,a = (a(1),a(2)) ∈ Z4n
q)→ A

1. Enctype(ξ, k,a(i))→ F
(i)
type,k for i ∈ {1, 2}

2. ComPC(ckPC, F
(i)
type,k)→ A(i) for i ∈ {1, 2}

3. Output A = (A(1),A(2))

Consistency Proof. Recall that the goal of AggMEC is to prove the rela-
tions Eq. (3) and Eq. (4), (5). Since the latter two relations can be ensured by

14 Lee et al.

Algorithm 2 AggMEC
AggMEC(P Pub, ckk, (Lk,Rk,Pk, xk); (Lk,Rk,P k))
ckk = (ckL,k, ckR,k, ckP,k), each ckk contains ckPC

1: P and V set A(i) =
∑µ

k=1(L
(i)
k +R

(i)
k) +

∑µ+ν
k=0 P

(i)
k for i ∈ {1, 2}

2: P sets a(i) =
∑µ

k=1(F
(i)
L,k + F

(i)
R,k) +

∑µ+ν
k=0 F

(i)
P,k for i ∈ {1, 2}:

F
(i)
L,k = EncL(ξ, k,L

(i)
k), F (i)

R,k = EncR(ξ, k,R
(i)
k), F (i)

P,k = EncP (ξ, k,P
(i)
k)

3: P construct wire polynomials {w(i)(X)}2i=1 from execution table with public in/out
P Pub and then computes W (1),W (2),Q(1),Q(2) and sends them to V:
q(i)(X) = w(i)(X)−a(i)(X)

Xd−1
,W (i) = ComPC(ckPC, w

(i)),Q(i) = ComPC(ckPC, q
(i))

4: V chooses z, ρ $←Zq and sends them to P.
5: P and V compute:

V =
∑2

i=1(
∑µ

k=1([ρ
4k−2−i]L

(i)
k + [ρ4k−i]R

(i)
k) + ρ4µ(

∑µ+ν
k=0 [ρ

2k−1+i]P
(i)
k))

6: P computes FV (X):
FV =

∑2
i=1(
∑µ

k=1(ρ
4k−2−iF

(i)
L,k + ρ4k−iF

(i)
R,k) + ρ4µ(

∑µ+ν
k=0 ρ

2k−1+iF
(i)
P,k))

7: P sends s, t(1), t(2), r(1), r(2) to V: s = FV (z), t(i) = q(i)(z), r(i) = w(i)(z)

8: V chooses τ $←Zq and sends them to P.
9: P and V set P = V+

∑2
i=1([τ

i]A(i) + [τ2+i]Q(i)) and
y = s+

∑2
i=1(τ

i(r(i) − t(i)(zd − 1)) + τ2+it(i))

10: P set FP = FV +
∑2

i=1(τ
ia(i) + τ2+iq(i))

11: P sets wire polynomials {w(i)}M−1
i=0 ∈ Zq[X] containing w(1) and w(2).

12: P and V set run Eval(ckPC,P, z, y;FP) and Eval(ckPC,W
(i), z, r(i);w(i))for i ∈ {1, 2}

13: P and V run PlonkishEval(ckPC; {si(X), gi(X0, . . . , XM−1)}Ng−1
i=0 , {ri}M−1

i=0 ; {w(i)}M−1
i=0)

PlonkishEval, we now focus on checking Eq. (3) and the consistency between
Lk,Rk,Pk and the wire polynomial of the execution trace. First, to ensure
consistency of Lk,Rk,P k, we first merge every commitment Lk,Rk,Pk to one
commitment A, whose message polynomial is the sum of encoding polynomials,
a(X) =

∑
Ftype,k(X). Then the difference polynomial w(X) − a(X) is divided

by Xd − 1 due to w(ξi) − a(ξi) = 0 for all i. The verifier can check it by using
Eval after receiving a commitment of the wire polynomial w(X). Furthermore,
we employed V and FV to ensure Eq. (3), i.e., each Lk,Rk,Pk corresponds to
the commitment of Lk,Rk,P k, respectively. Through the randomness ρ chosen
by the verifier, these commitments and the encoding polynomials of Lk,Rk,P k

can be merged into V and FV , respectively. Finally, we aggregate these consis-
tency checks by constructing P and FP with a randomness τ from the verifier.
Then the verifier can check them all at once by opening them at another ran-
dom point z, convincing these relations with negligible soundness error by the
Schwartz-Zippel Lemma. Using these techniques, we present the AggMEC pro-
tocol in Algorithm 2.

Theorem 3. Assume that a polynomial commitment scheme PCS = (Gen,ComPC,
Eval) satisfies all properties of Definition 4 and the homomorphic property. Then,

Cubic Root Verifier Inner Product Argument 15

AggMEC in Algorithm 2 has perfect completeness and computational witness-
extended-emulation.

Due to the space limit, the proof of Theorem 3 is presented in Appendix D.

3.4 Cougar: Cubic Root Verifier IPA

Using Sublinear Verifier PCS. To reduce verifier complexity, we adopt the
sublinear verifier PCS LeopardPC [38] from the above construction. This achieves
a cubic root complexity for the verifier. Full details of LeopardPC are provided in
Appendix G.

Complexity Analysis. In this paragraph, we provide a complexity analysis of
Cougar divided into Protocol.Row, Protocol.Col, and AggMEC.

1. Row-reduction, Algorithm 1

– [Prover Cost]: For commitments L,R and P̂ at i-th round, P computes
O(N2i) Gp operations and O(n log2 m) Gq operations. For updating Ĝ, Ĥ

and â, b̂, ĉ at i-th round, P computes O(m2i) Gp operation and O(n · m2i) Zp

respectively. Then, the total prover cost is O(N) Zp and O(N)Gp operations.
– [Verifier Cost]: For updating Ĝ, Ĥ and ĉ at i-th round, V computes

O(m2i) Gp operation and 2 multiplication in Zp. Then, the total verifier cost
is O(m) Gp and O(log2 m) Zp operations.

– [Communication Cost]: For each round, P sends L, R, P̂, cL, and cR. Then,
the total communication cost is 3 log2 m|Gq|+ 2 log2 m|Zp|.

2. Column-reduction, Algorithm 3

– [Prover Cost]: For a inner product cL and cR at i-th round, the prover
computes O(n

2i) Zp operations. For updating P̂, â, b̂, and ĉ at i-th round, P
computes O(n

2i) Gp and Zp operations, O(n
2i log2 m) Gq operations. Then,

the total prover cost is O(n log2 m) Gq operations.
– [Verifier Cost]: For updating ĉ at each round except the final round, V

computes 2 multiplication in Zp. In the final round, V computes one Zp oper-
ation for verification. Then, the total verifier cost is O(log2 n) Zp operations.

– [Communication Cost]: For each round, the prover sends P̂, cL, and cR.
The total communication cost is log2 n|Gq|+ 2 log2 n|Zp|.

3. Aggregated MEC, Algorithm 2

– [Prover Cost]: From line 1 to 11, P treats at most log2 N polynomials of
degree D. Then, P computes O(D log2 N) = O(n log2 N) operations, includ-
ing Zp, Gp, and Gq. And the cost of Eval and PlonkishEval is O(∥PEval(D)∥).
Then, total prover cost is O(n log2 N + ∥PEval(D)∥).

– [Verifier Cost]: From line 1 to 11, V computes O(log2 N) Gq operations.
And the cost of Eval and PlonkishEval is O(∥VEval(D)∥). Then the total verifier
cost is O(log2 N + ∥VEval(D)∥).

16 Lee et al.

– [Communication Cost]: From line 1 to 11, P sends V 4 Gq elements and 5
field elements. Additionally, for Eval and Plonkish the prover sends O(∥ΠEval(D)∥).
Then total communication cost is O(∥ΠEval(D)∥)

Cubic Root Verifier IPA from Parameter Setting. Let N = mn be the
length of the witness vectors with n =

3
√
N2 and m = 3

√
N . Since Leopard

features (∥PEval(D)∥, ∥VEval(D)∥, ∥ΠEval(D)∥) = (O(D), O(
√
D), O(log2 D)), we

conclude that the Cougar features O(N) prover cost, O(log2 N) communication
cost and O(3

√
N
√
log2 N) verifier cost, which is the cubic root of N .

Theorem 4. Cougar is an IPA, which features O(log2 N) communication cost,
O(N) prover cost and O(3

√
N
√
log2 N) verifier cost where N is length of wit-

ness. Cougar provides perfect completeness and computational witness extended
emulation under the DL assumption.

Proof. The prover, verifier, and communication costs can be checked in the above
analysis. By Theorem 1, Theorem 2, and Theorem 3 and the soundness of Leop-
ard under the DL assumption [38], Cougar satisfies perfect completeness and
computational witness-extended-emulation under the DL assumption. ⊓⊔

Efficiency Analysis. We implemented Cougar in Rust, employing the BN254
and Grumpkin curves as a half-pairing cycles. We run Cougar from N = 210 to
N = 220 and compared it with previous IPAs from the DL assumption, including
BulletProofs and Leopard. Under our experimental results, the measured time
spent by verifier in N = 220 is 0.346s, which is 50× speed-up from BulletProofs.
We also emphasize that as N enlarges, the growth of the verifier time of Cougar
is much slower than those of BulletProofs and Leopard. In addition, we checked
that the (estimated) verifier time of Cougar becomes faster than that of Leopard
for a larger N , though the concrete verifier time of Cougar is slower than Leopard
in our experiments. For more details about implementation, we recommend the
reader refer to the Appendix I and our source code in github1.

1 https://github.com/Cryptology-Algorithm-Lab/Cougar

https://github.com/Cryptology-Algorithm-Lab/Cougar

Cubic Root Verifier Inner Product Argument 17

References

1. M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-
preserving signatures and commitments to group elements. J. Cryptol., 29(2):363–
421, 2016.

2. A. Arun, C. Ganesh, S. V. Lokam, T. Mopuri, and S. Sridhar. Dew: Transparent
constant-sized zksnarks. In Public-Key Cryptography – PKC 2023, pages 542–571.
Springer, 2023.

3. C. Baum, J. Bootle, A. Cerulli, R. del Pino, J. Groth, and V. Lyubashevsky. Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In Advances
in Cryptology – CRYPTO 2018, pages 669–699. Springer, 2018.

4. C. Baum and A. Nof. Concretely-efficient zero-knowledge arguments for arith-
metic circuits and their application to lattice-based cryptography. In Public-Key
Cryptography – PKC 2020, pages 495–526. Springer, 2020.

5. S. Bayer and J. Groth. Efficient zero-knowledge argument for correctness of a
shuffle. In EUROCRYPT 2012, volume 7237 of LNCS, pages 263–280. Springer,
2012.

6. E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable zero knowledge with
no trusted setup. In Annual International Cryptology Conference, pages 701–732.
Springer, 2019.

7. E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. Snarks for c:
Verifying program executions succinctly and in zero knowledge. In CRYPTO 2013,
volume 8043 of LNCS, pages 90–108. Springer, 2013.

8. E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward.
Aurora: Transparent succinct arguments for r1cs. In EUROCRYPT 2019, volume
11476 of LNCS, pages 103–128. Springer, 2019.

9. E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive
zero knowledge for a von Neumann architecture. In USENIX Security 2014, pages
781–796, 2014.

10. D. Boneh, J. Drake, B. Fisch, and A. Gabizon. Efficient polynomial commitment
schemes for multiple points and polynomials. Cryptology ePrint Archive, 2020.

11. J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In EUROCRYPT
2016, volume 9666 of LNCS, pages 327–357. Springer, 2016.

12. J. Bootle, A. Cerulli, J. Groth, S. Jakobsen, and M. Maller. Arya: Nearly linear-
time zero-knowledge proofs for correct program execution. In ASIACRYPT 2018,
Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part I, volume 11272
of LNCS, pages 595–626. Springer, 2018.

13. J. Bootle, A. Chiesa, and J. Groth. Linear-time arguments with sublinear verifica-
tion from tensor codes. In Theory of Cryptography: 18th International Conference,
TCC 2020, Durham, NC, USA, November 16–19, 2020, Proceedings, Part II 18,
pages 19–46. Springer, 2020.

14. J. Bootle, V. Lyubashevsky, N. K. Nguyen, and G. Seiler. A non-pcp approach
to succinct quantum-safe zero-knowledge. In Advances in Cryptology – CRYPTO
2020, pages 441–469. Springer, 2020.

15. S. Bowe, J. Grigg, and D. Hopwood. Recursive proof composition without a trusted
setup. Cryptology ePrint Archive, Report 2019/1021, 2019.

16. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bullet-
proofs: Short proofs for confidential transactions and more. In IEEE Symposium
on Security and Privacy 2018, pages 315–334. IEEE Computer Society, 2018.

18 Lee et al.

17. B. Bünz and B. Fisch. Multilinear schwartz-zippel mod n and lattice-based succinct
arguments. In Theory of Cryptography Conference, pages 394–423. Springer, 2023.

18. B. Bünz, B. Fisch, and A. Szepieniec. Transparent snarks from dark compilers.
In EUROCRYPT 2020, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I,
volume 12105 of LNCS, pages 677–706. Springer, 2020.

19. B. Bünz, M. Maller, P. Mishra, N. Tyagi, and P. Vesely. Proofs for inner pairing
products and applications. In ASIACRYPT 2021, Singapore, December 6-10, 2021,
Proceedings, Part III, volume 13092 of LNCS, pages 65–97. Springer, 2021.

20. M. Burmester, Y. Desmedt, and T. Beth. Efficient zero-knowledge identification
scheme for smart cards. Comput. J., 35(1):21–29, 1992.

21. B. Chen, B. Bünz, D. Boneh, and Z. Zhang. Hyperplonk: Plonk with linear-time
prover and high-degree custom gates. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 499–530. Springer,
2023.

22. H. Chung, K. Han, C. Ju, M. Kim, and J. H. Seo. Bulletproofs+: Shorter proofs
for a privacy-enhanced distributed ledger. IEEE Access, 10:42067–42082, 2022.

23. V. Daza, C. Ràfols, and A. Zacharakis. Updateable inner product argument with
logarithmic verifier and applications. In PKC 2020, volume 12110 of LNCS, pages
527–557. Springer, 2020.

24. M. Dutta, C. Ganesh, and N. Jawalkar. Succinct verification of compressed sigma
protocols in the updatable srs setting. In IACR International Conference on Public-
Key Cryptography, pages 305–336. Springer, 2024.

25. U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. J. Cryptol.,
1(2):77–94, 1988.

26. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO 1986, volume 263 of LNCS, pages 186–194.
Springer, 1987.

27. Filecoin. blstrs, 2024. https://github.com/filecoin-project/blstrs.
28. A. Gabizon and Z. J. Williamson. Proposal: The turbo-plonk program syntax for

specifying snark programs, 2020.
29. A. Gabizon, Z. J. Williamson, and O. Ciobotaru. Plonk: Permutations over

lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptol-
ogy ePrint Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/953.
pdf.

30. S. Gao, Z. Peng, F. Tan, Y. Zheng, and B. Xiao. Symmeproof: Compact zero-
knowledge argument for blockchain confidential transactions. IEEE Transactions
on Dependable and Secure Computing, 2022.

31. S. Gao, Z. Peng, F. Tan, Y. Zheng, and B. Xiao. Symmeproof: Compact zero-
knowledge argument for blockchain confidential transactions. IEEE Transactions
on Dependable and Secure Computing, 20(3):2289–2301, 2023.

32. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Comput., 18(1):186–208, 1989.

33. A. Golovnev, J. Lee, S. Setty, J. Thaler, and R. S. Wahby. Brakedown: Linear-time
and field-agnostic snarks for r1cs. In Annual International Cryptology Conference,
pages 193–226. Springer, 2023.

34. J. Groth. Linear algebra with sub-linear zero-knowledge arguments. In CRYPTO
2009, volume 5677 of LNCS, pages 192–208. Springer, 2009.

35. J. Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT
2016, volume 9666 of LNCS, pages 305–326. Springer, 2016.

https://github.com/filecoin-project/blstrs
https://eprint.iacr.org/2019/953.pdf
https://eprint.iacr.org/2019/953.pdf

Cubic Root Verifier Inner Product Argument 19

36. A. Jivanyan. Lelantus: Towards confidentiality and anonymity of blockchain trans-
actions from standard assumptions. Cryptology ePrint Archive, Report 2019/373,
2019.

37. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polyno-
mials and their applications. In ASIACRYPT 2010, volume 6477 of LNCS, pages
177–194. Springer, 2010.

38. S. Kim, G. Lee, H. Lee, and J. H. Seo. Leopard: Sublinear verifier inner product
argument under discrete logarithm assumption. IEEE Transactions on Information
Forensics and Security, 18:5332–5344, 2023.

39. S. Kim, H. Lee, and J. H. Seo. Efficient zero-knowledge arguments in discrete
logarithm setting: Sublogarithmic proof or sublinear verifier. In ASIACRYPT
2022, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part II, volume 13792 of
LNCS, pages 403–433. Springer, 2022.

40. H. Lee and J. H. Seo. TENET: sublogarithmic proof and sublinear verifier in-
ner product argument without a trusted setup. In Advances in Information and
Computer Security - 18th International Workshop on Security, IWSEC 2023, Yoko-
hama, Japan, August 29-31, 2023, Proceedings, volume 14128 of Lecture Notes in
Computer Science, pages 214–234. Springer, 2023.

41. J. Lee. Dory: Efficient, transparent arguments for generalised inner products and
polynomial commitments. In TCC 2021, Raleigh, NC, USA, November 8-11, 2021,
Proceedings, Part II, volume 13043 of LNCS, pages 1–34. Springer, 2021.

42. OECD. Emerging privacy-enhancing technologies. OECD Digital Economy Papers,
(351), 2023.

43. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In CRYPTO 1991, volume 576 of LNCS, pages 129–140. Springer, 1991.

44. N. Pippenger. On the evaluation of powers and monomials. SIAM Journal on
Computing, 9(2):230–250, 1980.

45. PSE. halo2curves, 2024. https://github.com/privacy-scaling-explorations/
halo2curves.

46. PSE. halo2_proofs, 2024. https://github.com/zcash/halo2/tree/main/halo2_
proofs.

47. J. Renes, C. Costello, and L. Batina. Complete addition formulas for prime order
elliptic curves. In M. Fischlin and J. Coron, editors, EUROCRYPT 2016, volume
9665 of LNCS, pages 403–428. Springer, 2016.

48. E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In IEEE Symposium
on Security and Privacy 2014, pages 459–474. IEEE, 2014.

49. J. H. Seo. Round-efficient sub-linear zero-knowledge arguments for linear algebra.
In PKC 2011, volume 6571 of LNCS, pages 387–402. Springer, 2011.

50. S. Setty, S. Angel, T. Gupta, and J. Lee. Proving the correct execution of concur-
rent services in zero-knowledge. In OSDI 2018, Carlsbad, CA, USA, October 8-10,
2018, pages 339–356. USENIX Association, 2018.

51. R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. Doubly-efficient
zkSNARKs without trusted setup. In IEEE Symposium on Security and Privacy
2018, pages 926–943. IEEE, 2018.

52. T. Xie, Y. Zhang, and D. Song. Orion: Zero knowledge proof with linear prover
time. In Annual International Cryptology Conference, pages 299–328. Springer,
2022.

53. T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au, and Z. Ding. Dualring: generic
construction of ring signatures with efficient instantiations. In Annual International
Cryptology Conference, pages 251–281. Springer, 2021.

https://github.com/privacy-scaling-explorations/halo2curves
https://github.com/privacy-scaling-explorations/halo2curves
https://github.com/zcash/halo2/tree/main/halo2_proofs
https://github.com/zcash/halo2/tree/main/halo2_proofs

20 Lee et al.

54. A. Zapico, V. Buterin, D. Khovratovich, M. Maller, A. Nitulescu, and M. Simkin.
Caulk: Lookup arguments in sublinear time. In CCS 2022, Los Angeles, CA, USA,
November 7-11, 2022, pages 3121–3134. ACM, 2022.

55. zcash. The halo2 book, 2022. https://zcash.github.io/halo2/.
56. J. Zhang, M. Su, X. Liu, and G. Wang. Springproofs: Efficient inner product

arguments for vectors of arbitrary length. In 2024 IEEE Symposium on Security
and Privacy (SP), pages 67–67. IEEE Computer Society, 2023.

A Deferred Protocol Description

In this section, we display protocol descriptions for Protocol.Col.

Algorithm 3 Protocol.Col
Protocol.Col(G,H, (ckP,k+µ)

ν
k=s,P, c, stV ;a, b, stP)

1: if n = 1, base case s = ν then:
2: P sends a and b to V
3: V checks c ?

= a · b and set P Pub = [a]G ∥ [b]H ∈ Z4
q

4: P and V run AggMEC(P Pub, stV ; stP)
5: else
6: if stP =⊥ and stV =⊥ then
7: P sets P = [a]G ∥ [b]H and adds (P) into the bottom row of stP

V adds (ckP,µ,P, ·) into the bottom row of stV .
8: else
9: P refers P in the bottom row of stP

10: end if
Set n̂ = n

2
and a = aL∥aR, b = bL∥bR, P = P (q1) ∥ P (q2) ∥ P (q3) ∥ P (q4)

11: P computes cL and cR and sends them to V:
cL = ⟨aL, bR⟩ ∈ Zp, cR = ⟨aR, bL⟩ ∈ Zp.

12: V chooses x $←Z∗
p and returns it to P

13: P computes P̂ and sends it to V:
P̂ = (P (q1)+[x]P (q2) ∥ P (q3)+[x−1]P (q4)) ∈ G2n̂

p , P̂ = Com2(ckP,µ+s, P̂) ∈ Gq

14: Both P and V compute ĉ = x−1cL + c+ xcR ∈ Zp

15: Additionally, P computes â = aL + xaR, b̂ = bL + x−1bR ∈ Zn̂
p .

16: V adds (ckP,µ+s, P̂, x) into the bottom row of stV .
17: P adds (P̂) into the bottom row of stP .
18: Both P and V run Protocol.Col(G,H, (ckP,k+µ)

ν
k=s+1, P̂, ĉ, stV ; â, b̂, stP)

19: end if

B Proof of Theorem 1

Proof. (Completeness) For a base case m = 1, the completeness is held by the
completeness of Protocol.Col and AggMEC. Let us consider the case m > 1. In
this case, we show that if the input (G,H, ckP,s,P, c;a, b) belongs to Rm,n

GenPT4,

https://zcash.github.io/halo2/

Cubic Root Verifier Inner Product Argument 21

then the updated input (Ĝ, Ĥ, ckP,s+1, P̂, ĉ; â, b̂) belongs to Rm/2,n
GenPT4. Following

the P algorithm, we get the following equations:

ĉ = x−1cL + c+ xcR = ⟨aL, x
−1bR⟩+ ⟨a, b⟩+ ⟨xaR, bL⟩ = ⟨â, b̂⟩

P̂ = [x−1]L+ P + [x]R

= x−1[aL]GR ∥ [x−1bR]HL + [a]G ∥ [b]H + [xaR]GL ∥ x[bL]HR

= âĜ ∥ b̂Ĥ

P̂ = Com2(ckP,s+1, P̂) = ComTC((Ĝ ∥ Ĥ, ckP,s+1), â ∥ b̂)

Therefore, we can conclude that updated input (Ĝ, Ĥ, ckP,s+1, P̂, ĉ; â, b̂) belongs
to Rm/2,n

GenPT4.
(Witness-extended-emulation) For the computational witness-extended emula-
tion, we construct an expected polynomial time extractor ERow whose goal is to
extract a witness by using a polynomially bounded tree of accepting transcripts.
To this end, we utilize the general forking lemma [11], which is stated as follows:

Theorem 5 (General Forking Lemma). Let (K,P,V) be a (2µ + 1)-move,
public coin interactive protocol with µ challenges x1, . . . , xµ in sequence. Let
ni ≥ 1 for i ∈ [µ]. Consider an (n1, . . . , nµ)-tree of accepting transcripts with
challenges in the following format. The tree has N =

∏µ
i=1 ni leaves with depth

µ. The root of the tree is labeled with the statement. Each node of depth i has
exactly ni children, each labeled with a distinct value of the i-th challenge xi.

Let E be a witness extractor that succeeds with probability 1−negl(λ) for some
negligible function negl(λ) in extracting a witness from an (n1, . . . , nµ)-tree of
accepting transcripts in probabilistic polynomial time. Assume that

∏µ
i=1 ni is

bounded above by a polynomial in the security parameter λ. Then, (K,P,V) has
witness-extended emulation.

ERow takes public inputs (G,H, (ckk)
µ
k=1, ckCol,P, c, stV ;a, b, stP). By premise,

ERow exploits two PPT extractors ECol and EMEC , that extract witness a, b ∈
Z1×n
p and stP respectively. Note that stP consists of tuples of commitments

(Lk,Rk,P k), which satisfies the Eq. (3) and (4).
We show how to extract witness a, b from accepting transcripts. By the

general forking lemma, it is sufficient to construct an extractor ERow that extracts
a witness from a suitable tree of accepting transcripts in probabilistic polynomial
time. We begin with (4, . . . , 4︸ ︷︷ ︸

log2 m

)-tree of accepting transcripts. Since the number

of leaves of the tree is polynomially bound, 4log2 m, we can apply the general
forking lemma.

First, for the base case m = 1, the extracted witness a, b from ECol satisfies
the desire condition so that ERow outputs the a, b in polynomial time.

In the case m > 1, we construct extractor ERow by inductively extrac-
tion. That is, retrieves s-round witness a(s), b(s) ∈ Zm/2s×n

p from next steps
a(s+1), b(s+1) ∈ Zm/2s+1×n

p recursively.

22 Lee et al.

First, ERow run ECol and get extracted witnesses a(µ), b(µ) ∈ Z1×n
p , which is

valid witness for the relationR1,n
GenPT4. Now, we assume that âi, b̂i ∈ Zm/2s+1×n

p is
valid witness of instance (Ĝi, Ĥi, P̂i, ĉi), that are updated instance using chal-
lenge xi for the relation Rm/2s+1,n

GenPT4 . From the tree of accepting transcript, we
can get 4 instance-witness pairs:(Ĝi, Ĥi, P̂i, ĉi; âi, b̂i). Furthermore, the ERow

can get s-round prover’s commitments L,R,P, P̂ and their messages L,R,P , P̂
from s-round transcripts and EMEC respectively. From 3 distinct tuples, ERow

can construct the following linear system:x−1
1 1 x1

x−1
2 1 x2

x−1
3 1 x3

LP
R

 =

P̂ 1

P̂ 2

P̂ 3

 =

[â1]Ĝ1 ∥ [b̂1]Ĥ1

[â2]Ĝ2 ∥ [b̂2]Ĥ2

[â3]Ĝ3 ∥ [b̂3]Ĥ3

 (6)

Since the right-hand side of Eq. (6) is decomposed by Ĝ = GL + [x−1]GR and
Ĥ = HL + [x]HR and each G and H are not effected by challenge x, ERow can
get represented vectors l, r,p ∈ Zm/2s×2n

p of L,R,P ∈ G2n under base G ∥H.
Let ERow parse l, r,p to 4 segments l(t),p(t), r(t) ∈ Zm/2s×n/2

p where t ∈ [4]. Let
the representation vectors put on Eq. (6). Then

[x−1
i l(1) + p(1) + xir

(1)]GL = [â]GL (7)

[x−1
i l(2) + p(2) + xir

(2)]GR = [x−1
i â]GR (8)

[x−1
i l(3) + p(3) + xir

(3)]HL = [b̂]HL (9)

[x−1
i l(4) + p(4) + xir

(4)]HR = [xib̂]HR (10)

By DL assumption on G, the representation vectors of both side should be
equivalent. From Eq.(7), Eq.(8) and Eq.(9), Eq.(10), we get

− l(1) + xi(l
(2) − p(1)) + x2

i (p
(2) − r(1)) + x3

i r
(2) = 0

− l(4) + xi(l
(3) − p(4)) + x2

i (p
(3) − r(4)) + x3

i r
(3) = 0

for x1, . . . , x4. Then each terms of xk
i should be zero. Let p(i) denote ãL = p(1),

ãR = p(2), b̃L = p(3), b̃R = p(4). Then, we can obtain the following equation:

x−1
i cL + c+ xicR = ĉ = ⟨â, b̂⟩

= x−1
i ⟨ãL, b̃R⟩+ ⟨ã, b̃⟩+ xi⟨ãR, b̃L⟩

(11)

Similarly, x1, . . . , x4 guarantees c = ⟨ã, b̃⟩. Therefore, the extracted witnesses ã

and b̃ is valid witness for the relation Rm/2s,n
GenPT4 . By inductively retrieving process

and general forking lemma, ERow can extract witness vectors a and b. ⊓⊔

C Proof of Theorem 2

Proof. (Completeness) For a base case m = 1, the completeness can get straight-
forward by our premise: completeness of AggMEC and (G,H, ck1,P, c;a, b) ∈

Cubic Root Verifier Inner Product Argument 23

R1,1
GenPT4. Let consider the case m > 1. In this case, we show that if the in-

put (G,H, ckP,µ+s,P, c;a, b) belongs to R1,n
GenPT4, then the updated input (G,H,

ckP,µ+s+1, P̂, ĉ; â, b̂) belongs to R1,n/2
GenPT4. Following the P algorithm, we get the

following equations:

ĉ = x−1cL + c+ xcR = ⟨aL, x
−1bR⟩+ ⟨a, b⟩+ ⟨xaR, bL⟩ = ⟨â, b̂⟩

P̂ = (P (q1) ∥ [x]P (q4)) + (P (q2) ∥ [x−1]P (q3))

= [aL]G ∥ [x−1bR]H + [xaR]G ∥ [bL]H = [â]G ∥ [b̂]H

P̂ = Com2(ckν , P̂) = ComTC((G ∥ H, ckν),a ∥ b)

Therefore, we can conclude that updated input (G,H, ckP,µ+s+1, P̂, ĉ; â, b̂) be-
longs to R1,n/2

GenPT4.
(Witness-extended-emulation) For the computational witness-extended emula-
tion, we construct an expected polynomial time extractor ECol whose goal is
to extract a witness by using a polynomially bounded tree of accepting tran-
scripts. ECol takes public inputs (ppν , G,H,P, c, stV ;a, b, stP). By premise, ECol

exploits a PPT extractor EMEC , that extract stP which consists of commitments
(P k)

µ+ν+1
k=µ+1, which satisfies Eq. (5) and Pk = Com2(ckν ,P k) In the similar way

in proof of Theorem 1, we show that how to extract witness a, b from accepting
transcripts. By the general forking lemma, it is sufficient to construct an extrac-
tor ERow that extracts a witness from a suitable tree of accepting transcripts in
probabilistic polynomial time. We begin with (3, . . . , 3︸ ︷︷ ︸

log2 n

)-tree of accepting tran-

scripts. Since the number of leaves of the tree is polynomially bound, 3log2 n, we
can apply the general forking lemma.

First, in the base case n = 1, the P sends witnesses a, b to V and V check
the relation directly. That means the witness a and b belongs to transcripts and
ECol can extract them.

Now we consider the case n > 1. We construct extractor ECol by inductively
extraction. That is, retrieves s-round witness a(s), b(s) ∈ Z1×n/2s

p from next
round witnesses a(s+1), b(s+1) ∈ Z1×n/2s+1

p recursively.
First, ECol can extract final round witnesses a(ν+1) and b(ν+1). We assume

that â, b̂ ∈ Z1×n/2s+1

p is valid witness of instance (G,H, P̂i, ĉi), that are affected
by challenge xi for the relation R1,n/2s+1

GenPT4 . From the tree of accepting transcript,
we can get 3 instance-witness pairs:(G,H, P̂i, ĉi; âi, b̂i). Furthermore, ECol can
get k-round prover’s commitments (P, P̂) and their message (P , P̂) from tran-
script and EMEC respectively. From 2 distinct tuples, ECol can construct follow-
ing linear system:[

1 x1

1 x2

] [
P (q1)

P (q2)

]
=

[
[â1]G
[â2]G

]
,

[
1 x−1

1

1 x−1
2

] [
P (q3)

P (q4)

]
=

[
[b̂1]H

[b̂2]H

]
(12)

By DL assumption, ECol solves the linear equation and then get the repre-
sentation p(q1),p(q2) ∈ Zn/2s+1

p of P (q1),P (q2) ∈ Gn/2s+1

under base G and

24 Lee et al.

p(q3),p(q4) ∈ Zn/2s+1

p of P (q3),P (q4) ∈ Gn/2s+1

under base H respectively. Then
p = p(q1) ∥ p(q2) ∥ p(q3) ∥ p(q4) is naturally representation of P . Let p(qi) denote
ãL = p(q1), ãR = p(q2), b̃L = p(q3), b̃R = p(q4). In the similar way in Eq. (11) of
Theorem 1, 3 distinct challenges guarantee extracted vectors ⟨ã, b̃⟩ is equal to
the value c. Therefore, the extracted witnesses ã and b̃ is valid witness for the
relation R1,n/2s

GenPT4. By inductively retrieving process and general forking lemma,
ECol can extract witness vectors a and b. ⊓⊔

D Proof of Theorem 3

Proof. (Completeness) Assume that the input ckk, (Lk,Rk,Pk, xk); (Lk,Rk,P k)
satisfies Eq. (3), (4), and (5). By the homomorphic property of polynomial com-
mitment scheme and perfect completeness of Eval and PlonkishEval, V accepts
both Eval and PlonkishEval. Therefore, we are shown the completeness of AggMEC.
(Witness-Exetended Emulation) For the computational witness-extended emu-
lation, we construct an expected polynomial-time extractor EMEC whose goal
is to extract a witness by using a polynomially bounded tree of accepting tran-
scripts. EMEC takes public inputs ckk, (Lk,Rk,Pk, xk) and returns witness vec-
tors (Lk,Rk,P k) satisfying Eq. (3), Eq. (4), and Eq. (5).

By the general forking lemma, it is sufficient to construct an extractor EMEC

that extracts a witness from a suitable tree of accepting transcripts in probabilis-
tic polynomial-time. We begin with a (6 logm+ 2 log n+ 2, 5)-tree of accepting
transcripts. Since the number of leaves in the tree is polynomially bounded, we
can apply the general forking lemma [16].

By our premise, one can construct a PPT extractor EEval for PCS.Eval. In
addition, since the above premise implies that the PlonkishEval is an AoK, one can
construct a PPT extractor EPlonkish for PlonkishEval that extracts wire polynomials
{w(i)(X)}M−1

i=0 . The EMEC uses them as sub-routines.
First, for i ∈ {1, 2}, the EMEC gets FP (X) and w(i)(X) by feeding EEval with

(ckPC,P, z, y) and (ckPC,W
(i), z, r(i)), respectively. From the 5 transcripts from

distinct challenge τ , the EMEC extracts FV , a polynomial a(i)(X), and quotient
polynomials q(i)(X) by regarding the following relation as a polynomial with
respect to τ of degree 4: FP = FV +

∑2
i=1(τ

ia(i) + τ2+iq(i)). Note that w(i)(X),
a(i)(X), and q(i)(X) satisfy a(i)(z) = w(i)(z)− q(i)(z)(zd − 1) for i ∈ {1, 2}.

From the 6 logm+2 log n+2 transcripts from distinct challenge ρ, the EMEC

extracts polynomials F
(i)
L,k, F

(i)
R,k, F

(i)
P,k by regarding the following relationship as

a polynomial with respect to ρ of degree 6 logm+ 2 log n+ 1:

FV =

2∑
i=1

(
µ∑

k=1

(
ρ4k−2−iF

(i)
L,k + ρ4k−iF

(i)
R,k

)
+ ρ4µ

(µ+ν∑
k=0

ρ2k−1+iF
(i)
P,k

))
.

The extracted polynomials satisfy the following relation:

L
(i)
k = ComPC(ckPC, FL,k), R

(i)
k = ComPC(ckPC, FR,k), P

(i)
k = ComPC(ckPC, FP,k) (13)

Finally, EMEC outputs L(i)
k ,R

(i)
k ,P

(i)
k by decoding F

(i)
L,k, F

(i)
R,k, F

(i)
P,k respectively.

Cubic Root Verifier Inner Product Argument 25

It remains to check that these extracted vectors are valid witnesses satisfying
all relations from Eq. (3) to (5). First, by the extraction process, the extracted
vectors L

(i)
k ,R

(i)
k ,P

(i)
k satisfy Eq. (13), so does Eq. (3). In addition, by the con-

struction of A(i), the polynomial a(i) is equal to the sum of F (i)
L,k, F

(i)
R,k, F

(i)
P,k, i.e.

a(i) =
∑µ

k=1(F
(i)
L,k+F

(i)
R,k)+

∑µ+ν
k=0 F

(i)
P,k. This implies that the evaluations of wire

polynomial w(i) at appropriate ξi contain those of F (i)
L,k, F

(i)
R,k, F

(i)
P,k, where each

value matches with the values of L(i)
k ,R

(i)
k ,P

(i)
k at the corresponding positions

for i ∈ {1, 2}. Furthermore, the wire polynomials {w(i)(X)}M−1
i=0 extracted from

EPlonkish ensure that L
(i)
k ,R

(i)
k ,P

(i)
k satisfy the relation Eq. (4) and Eq. (5).

To sum up, the extracted vectors L
(i)
k ,R

(i)
k ,P

(i)
k are actually the valid wit-

nesses, concluding that AggMEC satisfies computational witness extended emu-
lation. ⊓⊔

E Plonkish: Proof for Elliptic Curve Relation

Plonkish is a generalization of Plonk [29], one of the well-known methods to
represent the circuit satisfiability of the given AC as the constraints system.
Since it supports custom gates, such as elliptic curve operations, we employed
it to check the elliptic curve relation at Eq. (4) and Eq. (5). In this section, we
provide supplementary description of Plonkish. Here, we focus on introducing
the general workflow of Plonkish only; details about the constraint systems will
be provided in the next section.

We first provide a basic idea of Plonk arithmetization. For each gate in the
circuit, Plonk constructs a constraint equation according to the type, e.g., addi-
tion or multiplication, of the gate. To represent this, Plonk adopts an auxiliary
variable called the selector that indicates which types of gates are enabled or
not in the current gate. To ensure that the given two gates are connected, Plonk
exploits the constraints using a permutation, which ensures that the values in
the wires that connecting gates do not change after permutation on them. With
Lagrange Interpolation for left inputs, right inputs, outputs, and selectors sep-
arately, using a cyclic group generated by the D-th root of unity ξ of Zq, all
constraint equations except the permutation constraints can be expressed as a
single polynomial equation. Note that in this section, [ℓ] denotes a set of integers
from 0 to ℓ− 1.

Plonkish generalizes Plonk by handling all the values occurred in the execu-
tion of the circuit as the execution trace ZD×M

q . Each row represents the inputs,
outputs, or auxiliary values occurred in the corresponding execution step. This
execution trace can be represented as a sequence of polynomials by applying
Lagrange interpolation with respect to each column. Each gate can be written
as polynomial comprised of column polynomials that are engaged to the current
gate. After then, arguments for gate identity and permutation can be constructed
using these polynomials. Formally, let {w(i)(X)}M−1

i=0 be the polynomials that
represents the execution trace of the given circuit, which correspond to the col-
umn polynomials mentioned. For the number Ng of the types of gates in the

26 Lee et al.

circuit, we denote {ci(X)}Ng−1
i=0 as the gate polynomials for the circuit. Each gate

polynomial can be represented as ci(X) = gi(w
(0)(X), w(1)(X), . . . , w(M−1)(X))

for some M -variate polynomial gi. Let us define {si(X)}Ng−1
i=0 as the selector

polynomials.
In addition, for the permutation argument, we denote a permutation σ :

[D] × [M] → [D] × [M]. σ(i, j) = (σ(i, j)1, σ(i, j)2) is equivalent to w(i)(ξj) =
w(σ(i,j)1)(ξσ(i,j)2). Suppose D = 2k and δ is a T -th root of unity, where T ·2S+1 =
q with odd T and k ≤ S. We use δi · ξj as the label for a value corresponding to
(σ(i, j)1, σ(i, j)2), as mentioned in [55]. Define IDi(ξ

j) = δi ·ξj that is an identity
polynomial of w(i)(ξj) and ri(ξ

j) = δσ(i,j)1 · ξσ(i,j)2 . The idea behind the permu-
tation argument technique is the fact that

∏D−1
h=0

∏M−1
i=0

w(i)(ξh)+u1IDi(ξ
h)+u2

w(i)(ξh)+u1ri(ξh)+u2
is

equal to 1 when w(i)(ξj) = w(σ(i,j)1)(ξσ(i,j)2) for random values u1, u2. We can
check the details for the technique in [5].

Plonkish is a protocol for arithmetic circuit satisfiability, and the circuit satis-
fiability is ensured when (1) w(i)(ξj) = w(σ(i,j)1)(ξσ(i,j)2) for i ∈ [D], j ∈ [M] and
(2)

∑Ng−1
i=0 si(X)ci(X) = 0 mod XD−1. As shown in several studies [28,29,55],

the relations can be efficiently proved by the Polynomial IOP instantiated by
PCS [18]. In short, to check polynomial relations, the prover commits polyno-
mial and then the verifier sends random point as challenge. After then, the prover
responds evaluations. To verify the responds, the prover and verifier run Eval in-
teractive proof. Thanks to the Fiat-Shamir transform, interactive proof Eval can
be converted to non-interactive proof system.

We provide a brief idea of [29] to construct the polynomial relation covering
both (1) and (2) as follows: First, in line 3, the prover computes z(X), which is
the interpolation of the values obtained by multiplying

∏M−1
i=0

w(i)(ξh)+u1IDi(ξ
h)+u2

w(i)(ξh)+u1ri(ξh)+u2

one by one for h ∈ [D]. Then, as shown by [5], z(X) satisfies z(ξX)/z(X) =∏M−1
i=0 (w(i)(X) + u1IDi(X) + u2)/

∏M−1
i=0 (w(i)(X) + u1ri(X) + u2) mod XD − 1

and z(ξ0) = 1 for random challenges u1, u2. Hence, by combining these con-
straints and the gate constraints by another random challenge u3, the prover
computes t(x), as described in line 5. Now, checking that t(ξi) = 0 for i ∈ [D]
is sufficient to convince the relations (1) and (2), which can be done by several
runs of Eval. We describe Plonkish protocol in Algorithm 4.

Throughout the algorithm, note that committing t(X) and q(X) in line 5
would require a longer commitment key than D, namely, deg(t(X)) ·D. Since the
degree of all polynomials appearing in Cougar is at most D except them, directly
increasing the length of ckPC would lead to inefficiency in the computational cost
for both the prover and verifier. To avoid this, as did in halo2 library [55], we
parse t(X) and q(X) into polynomials of degree at most D and commit them
separately. More precisely, if we denote dt as the larger one among the maximum
degree of the used custom gate and the number of columns, then the degrees of
t(X) and q(X) are D · dt and D · (dt − 1), respectively. In this case, we denote
t1(X), . . . , tdt

(X) and Q1(X), . . . qdt−1(X) as unique polynomials of degree at
most D satisfying t(X) =

∑dt

i=1 X
D(i−1)ti(X) and q(X) =

∑dt−1
i=1 XD(i−1)qi(X).

In this setting, the prover sends commitments Ti and Qj from each ti(X) and

Cubic Root Verifier Inner Product Argument 27

Algorithm 4 PlonkishEval

PlonkishEval(ckPC, {si(X), gi(X0, . . . , XM−1)}Ng−1
i=0 , {ri(X)}M−1

i=0 ; {w(i)(X)}M−1
i=0)

Precompute: CIDi = ComPC(ckPC, IDi(X)), Cri = ComPC(ckPC, ri(X)), i ∈ [M]

1: P sends W (i) = ComPC(ckPC, w
(i)(X)) to V

2: V chooses u1, u2
$←Zq and sends it to P

3: P sends Z = ComPC(ckPC, z(X)) to V where

z(X) =H0(X) +

D−2∑
j=0

(
Hj+1(X)

j∏
h=0

M−1∏
i=0

w(i)(ξh) + u1IDi(ξ
h) + u2

w(i)(ξh) + u1ri(ξh) + u2

)
.

Hj(X) =
∏

i ̸=j,i∈[D]

X − ξi

ξj − ξi for all j ∈ [D].

4: V chooses u3
$←Zq and sends it to P.

5: P sends T = ComPC(ckPC, t(X)), Q = ComPC(ckPC, q(X)) to V where

t(X) =

Ng−1∑
i=0

si(X)gi(w
(0)(X), . . . w(M−1)(X)) + u3 · z(X)

M−1∏
i=0

(w(i)(X) + u1IDi(X) + u2)

− u3 · z(ξX)

M−1∏
i=0

(w(i)(X) + u1ri(X) + u2) + u2
3 · (z(X)− 1)H0(X)

q(X) =
t(X)

zH(X)
, where zH(X) =

D−1∏
i=0

(X − ξi).

6: V chooses u4
$←Zq and sends it to P.

7: P sends {αi = w(i)(u4)}M−1
i=0 , β = z(u4), γ = z(ξu4),

{ϕi = IDi(u4)}M−1
i=0 , and {ψi = ri(u4)}M−1

i=0 to V.
8: V evaluates ρ1 and ρ2 = ρ1/zH(u4) using the values received from P

ρ1 =

Ng−1∑
i=0

si(u4) · gi(α0, . . . , αM−1) + u3 · β
M−1∏
i=0

(αi + u1 · ϕi + u2)

− u3 · γ
M−1∏
i=0

(αi + u1 · ψi + u2) + u2
3 · (β − 1)H0(u4)

9: P and V set run Eval(ckPC, T, u4, ρ1; t(X)), Eval(ckPC,W (i), u4, αi;w
(i)(X))i∈[M],

Eval(ckPC, Q, u4, ρ2; q(X)), Eval(ckPC, Z, u4, β; z(X)), Eval(ckPC, Z, ξu4, γ; z(X)),

Eval(ckPC, CIDi , u4, ϕi; IDi(X))i∈[M], and Eval(ckPC, Cri , u4, ψi; ri(X))i∈[M].

28 Lee et al.

qj(X) in line 5, and later be requested to open each of them at the random
challenge u4 provided by the verifier.

From the perspective of the verifier, it can compute values expected to be
T (u4) and Q(u4) by combining received evaluation points in line 6. However,
Eval cannot directly proceed with t(X) and q(X) because they are not commit-
ted. To mitigate this, we assume that the prover additionally sends evaluation
points t̂1 := t1(u4), . . . , t̂dt

:= tdt
(u4) and q̂1 := q1(u4), . . . , q̂dt−1 := qdt−1(u4) to

the verifier. Then the verifier checks

ρ1
?
=

dt∑
i=1

t̂i · ud(i−1)
4 , ρ2

?
=

dt−1∑
i=1

q̂i · ud(i−1)
4

and run Eval(ckpc, Ti, u4, t̂i; ti(X)) and Eval(ckpc, Qj , u4, q̂j ; qj(X)) for i ∈ [dt]
and j ∈ [dt − 1], respectively.

Indeed, this modification carries additional communications of (2dt−3) group
elements in Gt and additional (2dt − 3) executions of LeopardPC.Eval. In partic-
ular, the prover needs to compute each Ti and Qj , i.e., requiring more compu-
tations. Nevertheless, with the batching technique presented in Section H, the
computational cost for the verifier would be significantly reduced compared to
the case when we use the commitment key of length dt ·D.

PlonkishEval. Using the constraints system that will be described in the next
subsection, we can construct the polynomial gMA for mixed elliptic point addi-
tion, which takes five polynomials {w(i)(X)}4i=0 corresponding to each column
as inputs. With two selector polynomials s1(X), s2(X), we denote PlonkishEval
as an instantiation of Plonkish with the custom gate polynomial gMA.

F Cougar-Friendly Constraint System

We present a Plonkish-type constraint system tailored for proving elliptic
curve relations by introducing novel custom gates. Throughout this section, we
denote the degree of an operation as the depth of the arithmetic circuit with
respect to multiplication gates.

Constraints and Affine Representation. To ensure the elliptic curve rela-
tions Eq. (4) and (5), the prover should construct an execution trace consisting
of elliptic curve additions and doublings. The authors of [39] addressed this by
considering an elliptic curve point as a triplet in Z3

q using the projective co-
ordinate representation, which demands large communication and computation
costs. By using the constraint system for elliptic curve operation in affine repre-
sentation [55], we do not need to stick to projective representation like [39].

Custom Gate for Projective-Affine Mixed Operations. As presented in
halo2 [55], the custom gates for them on the affine representation would reduce
the number of input gates. However, many implementations of elliptic curve

Cubic Root Verifier Inner Product Argument 29

Algorithm 5 Double-and-Add for Scalar Multiplication
Input: P = (X,Y, 1) on E : y2z = x3 + axz2 + bz3 defined over Zp and k ∈ Zq.

1: Initialize R← (0, 1, 0)

2: Compute (k1, . . . , k⌈log2 q⌉) ∈ {0, 1}⌈log2 q⌉ such that k =
∑⌈log2 q⌉

i=1 ki2
i−1.

3: For i from ⌈log2 q⌉ to 0 do:
4: Update R← [2]R+ [ki]P .
5: Return R.

groups use group operations on projective coordinates [47] to improve efficiency
by avoiding modular inversions. In particular, they utilize mixed addition to
further reduce the number of field operations needed, which is an elliptic curve
addition for two curve points of a projective representation and an affine repre-
sentation, respectively, returning their sum in projective representation. There-
fore, using custom gates for affine representation would be less efficient compared
to the case without considering constructing an execution trace.

We address this issue by constructing a custom gate for mixed elliptic curve
operations presented in [47]. For a projective point P = (X1, Y1, Z1) and an
affine point Q = (X2, Y2) on the prime-order short Weierstrass elliptic curve
y2 = x3 + b2, the mixed addition P +Q = (X3, Y3, Z3) can be computed by

X3 = (X1Y2 +X2Y1)(Y1Y2 − 3bZ1)− 3b(Y1 + Y2Z1)(X1 +X2Z1),

Y3 = (Y1Y2 + 3bZ1)(Y1Y2 − 3bZ1) + 9bX1X2(X1 +X2Z1),

Z3 = (Y1 + Y2Z1)(Y1Y2 + 3bZ1) + 3X1X2(X1Y2 +X2Y1).

In addition, the point doubling [2]P = (X3, Y3, Z3) can also be performed by

X3 = 2X1Y1(Y
2
1 − 9bZ2

1),

Y3 = (Y 2
1 − 9bZ2

1)(Y
2
1 + 3bZ2

1) + 24bY 2
1 Z

2
1 ,

Z3 = 8Y 3
1 Z1.

Note that these operations are of degree 4, and [47] provided efficient algorithms
for computing them via field additions and multiplications. By using these oper-
ations, we can compute the scalar multiplication on the elliptic curve through the
well-known double-and-add algorithm, which is presented in Algorithm 5. Since
the doubling for the first iteration of the loop always results in the identity point,
we omit it when configuring an execution trace for this operation.

However, the custom gates for mixed elliptic curve operations should be
carefully combined with our two-tier commitment scheme. This is because in
the second layer of the two-tier commitment, each elliptic curve group element
is converted to a tuple of field elements by viewing them as an affine coordinate.

2 Of course, [47] provided general results for curves of the form y2 = x3 + ax+ b. We
presented a special case for the sake of efficiency.

30 Lee et al.

Fig. 3. Description of the execution trace for computing [6]P.

That is, the final result should be presented in affine point representation. For-
tunately, checking the equality of two points P = (X1, Y1, Z1) and Q = (X2, Y2)
can be efficiently done by the following degree 2 operation:

X1 = X2Z1, Y1 = Y2Z1

In addition, since at least one of the two input points should be represented as
an affine coordinate for all operations, such a position would be utilized to hold
values of Li, Ri, and P i for the sake of consistency check procedures during
AggMEC. Therefore, all of these operations can be implemented at most degree
4 ACs, harmonizing well with our Cougar construction.

Efficient Construction of Execution Trace for Scalar Multiplication.
We now construct a Plonkish-style execution trace for these basic operations. By
using them as building blocks, our goal is to give an efficient construction of an
execution trace for the scalar multiplication, which is a dominating operation in
both relations Eq. (4) and (5).

We consider the execution trace for seven columns, where two columns are
assigned for two selectors, S1 and S2, and the remaining ones are for one projec-
tive point P = (X1, Y1, Z1) and one affine point Q = (X2, Y2), respectively. Here,
we used two selectors for representing four types of operations, namely, addition,
addition by identity, doubling, and equality check, that would be encountered
during the scalar multiplication. For each operation, we assign the values of se-
lectors as (S1, S2) = (1, 1), (0, 1), (1, 0), and (0, 0), respectively. Of course, it is
more natural to employ four selectors corresponding to these four operations; we
decided to use two selectors to reduce the number of columns. Moreover, because
the outputs of mixed addition and doubling are points in projective coordinate,
we assign the output of these operations to the next row of columns for storing
projective points. This also saves the number of columns. To help understand,
we provide an execution trace for checking Q = [6]P in Fig. 3. In this figure,
[k]P (i) means the ith coordinate of the point [k]P , and the prime symbol means
the affine representation of the point. The points without the prime symbol are
the projective representations. For the general case Q = [k]P for k ∈ Zq, exactly
2⌈log q⌉ rows are sufficient for constructing the execution trace.

We note that these custom gates can be efficiently calculated by running the
algorithms introduced by [47, Algorithm 8, 9] in the Lagrange domain.

Cubic Root Verifier Inner Product Argument 31

Compatibility with Plonk-Friendly Encoding. By using the above con-
struction, the prover can construct the intended execution trace for ensuring the
elliptic curve relations. However, in order to make the execution trace compati-
ble with the plonk-friendly encoding technique, the prover should carefully place
each L, R, and P in the right position for each ζi.

To address this, we take a closer look at the equations in each relation, Eq. (4)
and (5). First, in the k’th round of the row reduction (Eq. (4)), the prover should
construct an execution trace for ensuring the relation

Pk+1,i = [x−1
k]Lk+1,i + Pk,i + [xk]Rk+1,i

for the challenge xk and each i’th coordinate of P k+1, Lk+1, P k, and Rk+1,
respectively. To this end, the prover can compute this in order of computing (1)
L̃k+1,i := [x−1

k]Lk+1,i, (2) R̃k+1,i := [xk]Rk+1,i, (3) P̃k+1,i := L̃k+1,i + Pk,i +

R̃k+1,i, and checking (4) Pk+1,i = P̃k+1,i. Here, the permutation argument is re-
quired for processing the third step because the outputs of the first step (L̃k+1,i)
and the second step (R̃k+1,i) should be referred to. According to our construc-
tion, each first and second step requires 2⌈log q⌉ rows, and each Lk+1,i and Rk+1,i

appear at the first row of each position. Hence, by computing L̃k+1,i + Pk,i first
during the third step, the prover can coordinate each Lk+1,i, Rk+1,i, and Pk,i

with the period of 2⌈log q⌉. Of course, the remaining rows after the fourth step
can be filled with an appropriate number of dummy operations, e.g., copying the
check operations in the fourth step. Therefore, the execution trace for convincing
the whole Eq. (4) can be constructed by successively iterating the above process
over each coordinate and reduction stage.

The execution trace for the column reduction (Eq. (5)) can also be con-
structed in a similar manner, or even simpler. For the k’th round of reduction,
the prover needs to convince the following relation

Pk+1,i = P
(q1)
k,i + [xk]P

(q2)
k,i , Pk+1,i+l = P

(q3)
k,i + [x−1

k]P
(q4)
k,i ,

for the challenge xk and each coordinate of P k+1, P
(q1)
k , P (q2)

k , P (q3)
k , and P

(q4)
k ,

respectively. Here, we assumed that the length of P k+1 is 2l and that for each
P

(qj)
k is l. Similar to above, the prover can compute this by computing (1)

P̃k+1,i := [xk]P
(q2)
k,i +P

(q1)
k,i , and checking (2) Pk+1,i = P̃k+1,i. The same procedure

suffices for computing Pk+1,i+l. In this case, the permutation argument is not
required, and the construction of the execution trace can be done in the same
way as above using dummy operations appropriately.

To sum up, by aggressively exploiting dummy operations to adjust the po-
sitions of the coordinates of each Lk,Rk, and P k, the prover can construct an
execution trace compatible with the proposed Plonk-friendly encoding technique.

Reducing Dummy Rows. Although the above-mentioned method can con-
struct the desirable execution trace, the excessive use of dummy operations
makes it longer, which increases the computational cost for running LeopardPC.Eval

32 Lee et al.

Fig. 4. Final construction of the execution trace.

on both the prover and verifier. For this reason, we present a more efficient con-
struction of the execution trace by reducing dummy rows as much as possible.

We note that in the column reduction process, each component of P k is
not needed to be placed with the same period as that for the row reduction.
Recall that the goal of Plonk-friendly encoding is to facilitate the check of the
membership of each Lk, Rk, and P k on the wire polynomial. Thus, we place
each P k in the column reduction with the same period as Lk, Rk, and P k in
the row reduction. This would not require modification in the previous AggMEC
algorithm, while saving 2dn rows during constructing the execution trace.

In addition, we place each Lk,Rk, and P k in the same order of their in-
dex to simplify the indexing. For the row reduction, we placed input vectors
Lk+1,Rk+1, and P k with a period of 2⌈log2 q⌉. On the other hand, because the
order of recorded components for column reduction does not match with the
input vector, we instead place the output P k+1 of the process with the same
period. However, in this case, the output P µ+1 of the last row reduction, i.e., the
input of the first column reduction, is not recorded. We mitigate this by man-
ually recording each component of P µ+1 into the execution trace with dummy
rows containing these components. To match the period, we add an appropriate
number of dummy rows except for the last component Pµ+1,2n. This is because
the next component Pµ+2,1, the output of the first column reduction, should be
separated from Pµ+1,2n with the period.

Remark that the execution trace should contain at least (6n log2 m+4n−2)d
rows because it should contain each Li, Ri, and P i, i.e., this approach gives
an execution trace with an optimal number of rows. We illustrated the final
construction of the execution trace in Fig. 4. This figure depicts a concrete case
when log2 q = 256, i.e., each Lk,i, Rk,i, and Pk,i is placed with a period of 512.

G Polynomial Commitment Scheme from Leopard

In this section, we provide details about the LeopardPC, which is a key ingre-
dient to instantiate Cougar. Remark that [39, Section E.1.] provided a basic idea
for constructing this; we present the full description for the sake of completeness.

Cubic Root Verifier Inner Product Argument 33

LeopardPC is a natural tweak of Protocol3 [39] as a PCS. The construction idea
is basically the same as the PCS introduced by [15], which was built upon Bul-
letProofs. More precisely, we can construct PCS from IPA by regarding the point
evaluation of the polynomial as an inner product between the coefficient vector
and the vector comprised by the powers of the evaluation point. The asymptotic
communication and computation complexities of Eval from this approach are the
same as those of the underlying IPA. Note that Protocol3 features square root
verifier cost and logarithmic communication cost; hence so does LeopardPC.Eval.

Following the above approach, we provide the full description of LeopardPC
as follows: Let (G1,G2,Gt) be a bilinear group, where G1 = E(Zp). For a poly-
nomial a(X) ∈ Z<mn

p [X] and positive integers m,n ∈ N, we will denote its
coefficient vector as a ∈ Zmn

p , namely, a = (a0, . . . , amn−1) such that a(X) =∑mn−1
i=0 aiX

i. LeopardPC = (Gen,Com,Eval) over a message space Z<mn
p [X] and

a commitment space Gt is defined as follows3:

– Gen(1λ)→ ckPC ∈ Gm
1 ×Gn

2 .
– Com(ckPC = (G,H), a(X))→ P := (G⊗H)a ∈ Gt.

In addition, Eval = (K,P,V) is an interactive argument system for the fol-
lowing relation:

RLeopardPC.Eval =

 ckPC = (G,H) ∈ Gm

1 ×Gn
2 ,

C ∈ Gt, z, y ∈ Zp, d ∈ [mn];
a(X) ∈ Z<mn

p [X]

 :
C = (G⊗H)a

∧
y = a(z)

A typical strategy to cope with the above relation is to modify the above relation
into that for IPA: For z = (1, z, . . . , zmn−1), we can rewrite a(z) = ⟨a, z⟩. For
this reason, the construction of Eval is almost identical to Protocol3 except for
some modifications regarding the fact that z is also known to the verifier. The
precise description of LeopardPC.Eval is given in Algorithm 6. Here, bit(k) refers
to the bit decomposition of a number k.

We now show that LeopardPC is indeed the PCS, i.e., satisfying the conditions
in Definition 4, under the DL assumption. In fact, G⊗H in the above relation
can be seen as the commitment key of the Pedersen vector commitment defined
over the group Gt, along with a certain structure. Since the binding property
of the Pedersen vector commitment depends on the DLR assumption, one can
expect that the same holds for LeopardPC under a structure-aware version of the
DLR assumption.

For this reason, we first provide a definition of generalized discrete logarithm
relation (GDLR) assumption, which was previously defined in [39, Definition 8].
For simplicity, we denote Gb as a bilinear group generator that takes the security
parameter λ and outputs a bilinear group (G1,G2,Gt) of order p, generators g, h
for G1 and G2, respectively, and a pairing operator e.

3 We will not consider hiding property because zero-knowledge property is unnecessary
in our context.

34 Lee et al.

Algorithm 6 LeopardPC.Eval

LeopardPC.Eval(ckPC = (G,H) ∈ Gm
1 ×Gn

2 , P ∈ Gt, z, y ∈ Zp;a ∈ Zmn
p)

where m = 2µ and n = 2ν

1: V picks U $←Gt and sends it to P
2: P and V set P0 = P + [y]U , G0 = G,H0 = H.

Additionally, P set a0 = a and z0 = [zm(i−1)+(j−1)] ∈ Zm×n
p

3: for i = 0, . . . , µ− 1 do
4: P parses ai, zi, and Gi to

ai = [ai,L ∥ ai,R], zi = [zi,L ∥ zi,R], Gi = Gi,L∥Gi,R

5: P computes:
Li = [ai,L](Gi,R ⊗H) + [⟨ai,L,zi,R⟩]U ∈ Gt

Ri = [ai,R](Gi,L ⊗H) + [⟨ai,R,zi,L⟩]U ∈ Gt

6: P sends Li, Ri to V
7: V chooses ri

$←Z∗
p and sends it to P

8: P computes:
ai+1 = ai,L + r−1

i ai,R, zi+1 = zi,L + rizi,R ∈ Zm/2i+1×n
p

Gi+1 = Gi,L + [ri]Gi,R ∈ Gm/2i+1

1

Pi+1 = [ri]Li + Pi + [r−1
i]Ri ∈ Gt

9: end for
10: for j = 0, . . . , ν − 1 do
11: P sets i = j + µ and then parses ai, zi, and Hj to

ai = ai,L ∥ ai,R, zi = zi,L ∥ zi,R, Hj = Hj,L∥Hj,R

12: P computes:
Li = [ai,L](Gµ ⊗Hj,R) + [⟨ai,L,zi,R⟩]U ∈ Gt

Ri = [ai,R](Gµ ⊗Hj,L) + [⟨ai,R,zi,L⟩]U ∈ Gt

13: V chooses ri
$←Z∗

p and sends it to P
14: P computes:

ai+1 = ai,L + s−1
j ai,R, zi+1 = zi,L + sjzi,R ∈ Zn/2j−1

p

Hj+1 = Hj,L + [sj]Hj,R ∈ Gn/2j+1

2

Pi+1 = [si]Li + ·Pi + [s−1
i]Ri ∈ Gt

15: end for
16: P sends a = aµ+ν ∈ Zp to V
17: V computes:

r[k + 1] = ⟨bit(k), (r0, . . . , rµ+ν−1)⟩ for k = 0, . . .m+ n− 1
Parse r to rrow ∥ rcol where rrow ∈ Zm

p and rcol ∈ Zn
p

G = ⟨rrow,G0⟩, H = ⟨rcol,H0⟩, z = rrowz0rcol

18: V checks:
P0 +

∑
i∈[µ+ν]([ri]Li + [r−1

i]Ri) = e([az]G,H)

Cubic Root Verifier Inner Product Argument 35

Definition 6. For m,n ∈ N and the security parameter λ ∈ N, let GDLRsp be
a sampler defined by

GDLRsp(1λ) : (p, g, h,G1,G2,Gt, e)← Gb(1λ);G
$←− Gm

1 ;H
$←− Gn

2 ;

Output (p,G⊗H,Gt),

Then, we say that GDLRsp satisfies the general discrete logarithm relation (GDLR)
assumption if all non-uniform polynomial-time adversaries A, the following in-
equality holds:

Pr

[
a ̸= 0 ∧ ga = 1Gt

(p, g ∈ Gm×n
t ,Gt)← GDLRsp(1λ)
a← A(p, g,Gt)

]
where 1Gt is the identity of Gt and negl(λ) is a negligible function in λ.

As shown by [39, Theorem 5], if the DL assumption on both G1 and G2 hold,
then the GDLR assumption also holds. In addition, by assuming the GDLR
assumption, the binding property of LeopardPC holds immediately.

Now it remains to check that LeopardPC.Eval is an AoK for the relation
RLeopardPC.Eval. As we mentioned, this relation can be understood as a special case
of that for Protocol3, and Algorithm 6 is in fact almost identical to Protocol3. We
note that Protocol3 satisfies perfect completeness and computational witness-
extended emulation under the GDLR assumption [38]. In fact, we made the
same modifications as [15] for constructing LeopardPC.Eval, without considering
zero-knowledge. That is, the proof strategies for computational witness-extended
emulation of ours and theirs are identical, except for replacing the DLR assump-
tion with the GDLR assumption. We refer to [38] and [15] for more detailed
information.

To sum up, LeopardPC satisfies all conditions in Definition 4 under the DL
assumption on G1 and G2. In addition, it does not require the trusted setup
and features squared root verification cost and logarithmic communication cost
with respect to the length of the witness. Therefore, it is a desirable PCS for
instantiating Cougar.

H Optimization Tricks

In this section, we provide the optimization tricks to improve the prover and
verifier cost of Cougar, which were omitted in the main text due to page limit.

Batched Execution of LeopardPC.Eval. During AggMEC, the prover needs to
execute LeopardPC.Eval on several polynomials and various evaluation points. In
fact, by employing the techniques used in [15,10], these processes can be done in
a batched manner. To convince the verifier that the evaluations of several polyno-
mials f1(X), . . . , fk(X) at different evaluation points u1, . . . , uk are v1, . . . , vk,
respectively, it suffices to show the existence of polynomials q1(X), . . . , qk(X)
such that fi(X)− vi = qi(X)(X − ui). Following the idea of [15,10], the prover

36 Lee et al.

(1) constructs q̂i(X) :=
∑k

i=1 r
i−1
1 qi(X) for a random challenge r1 received from

the verifier, (2) commits q̂(X), (3) opens f1(X), . . . , fk(X), and q̂(X) at another
random point r2 provided by the verifier, sending w1 := f1(r2), . . . , wk := fk(r2)
and wk+1 := q̂(r) to the verifier. Now, the verifier convinces the prover’s claim
if wk+1 =

∑k
i=1 r

i−1
1

wi−vi
r2−ui

holds.
We note that a single run of LeopardPC.Eval suffices for the third step through

random linear combination on the commits of each polynomial. More precisely,
for a random challenge r3 received from the verifier, it suffices to ensure that the
evaluation of f̂(X) =

∑k
i=1 r

i−1
3 fi(X) + rk3 q̂(X) at r2 is

∑k
i=1 r

i−1
3 wi + rk3wk+1.

Since LeopardPC is a homomorphic commitment, the commitment of f̂ can be
computed from those of f1, . . . , fk and q̂, i.e., the verifier can be computed itself.

Thus, only a single execution of LeopardPC.Eval suffices for AggMEC, along
with a constant number of group operations on Gt for merging commitments.

Concrete Parameter Selection for Verifier’s Computation Cost. Under
the suggested parameter in Section 3.4, the verifier cost of Cougar becomes cu-
bic root with respect to the length of the witness vectors. However, when we
consider the efficiency on concrete parameters, the huge constant in front of
D = O(n log2 m) leads to inefficiency, which requires the proper choice of m
and n parameters to reduce D. To give a way to select m and n, we provide a
concrete size of D, which is determined by m, n, and q.

D = 12n log2 m log2 q + 4n log2 q︸ ︷︷ ︸
Protocol.Row

+(4n− 4) log2 q︸ ︷︷ ︸
Protocol.Col

.

That is, for small N , the term log2 q would dominate the verifier’s computation
cost, so the parameters (m,n) should be selected carefully.

To this end, first recall that the verifier’s computational costs consist of
(1) checking c = a · b in the last of Protocol.Col through 2 log2 N field op-
erations, (2) computing A(1), A(2), and V through multi-scalar multiplication
of length O(log2 N) each on Gt during AggMEC, (3) running several times of
LeopardPC.Eval during PlonkishEval, and (4) checking the output of the AC for
Plonkish is [a]G∥[b]H through multi-scalar multiplication of length 2m on Gp.
Among them, we will focus on the third and fourth terms, whose computational
cost depends on the choice of m,n for a fixed N = mn. Note that a single run of
LeopardPC.Eval for a polynomial of length D requires multi-scalar multiplication
of
√
D on both G1 and G2. With the batching technique, a single execution of

LeopardPC.Eval suffices during the entire AggMEC. Thus, if we denote the unit
cost of each group operation in Gp, G1, and G2 as cp, c1, and c2, respectively,
finding the optimal parameter is equivalent to solving the following optimization
problem:

minimize C := (c1 + c2)
√

12n log2 q log2 m+ (8n− 4) log2 q + cp · 2m,

subject to N = mn.

Cubic Root Verifier Inner Product Argument 37

Since dealing with C directly would be rather cumbersome because of the log2 m
and (8n− 4) log2 q in the radical symbol, we instead consider minimizing

Ĉ = (c1 + c2)
√
12n log2 q log2 N + 8n log2 q + cp · 2m,

by replacing each term with log2 N and 8n log2 q, respectively. Now if we set
n = N

m , A = 2
√
log2 q, and B = 3N log2 N + 2N , then we obtain

Ĉ = A · c1 + c2
2

√
B

m
+A · c1 + c2

2

√
B

m
+ cp · 2m. (14)

Hence, applying the AM-GM inequality in Eq. (14) yields the following inequal-
ity:

Ĉ ≥ 3 · 3

√
2cp ·

(
c1 + c2

2

)2

A2B = 6cp
3

√
3

(
c1 + c2
2cp

)2

log2 q
3

√
N

(
log2 N +

2

3

)
,

and equality holds when

m =
3

√
A2B

4

(
c1 + c2
2cp

)2

=
3

√(
c1 + c2
2cp

)2

(3N log2 N + 2N) log2 q. (15)

We note that such parameter choice ensures that the computational com-
plexity of the verifier is O(3

√
N log2 N), which is a slight improvement from

O(3
√
N
√
log2 N) in Theorem 4. In addition, to avoid the case when m > N , we

select m = N if the R.H.S. of Eq. (15) surpasses N .

Merging Multiscalar Multiplications on Gt. The previous paragraph ad-
dressed the number of required group operations on Gp, G1, and G2. We now
move our focus to that on Gt. Although the asymptotic required number of
Gt during the whole protocol is O(log2 N), the effect of them on the concrete
efficiency of the verifier would become non-negligible because of the relatively
expensive unit cost for the group operation. We can precisely count the input
length of each multiscalar multiplication on Gt during AggMEC as follows:

– 3 log2 m+ log2 n+ 1 for computing each A(i), i ∈ {1, 2}.
– 6 log2 m+ 2 log2 n+ 2 for computing V.
– 5 for computing P = V+ [τ]A(1) + [τ2]A(2) + [τ3]Q(1) + [τ4]Q(2).
– 36 for random linear combination during the batching technique.
– 2 log2 D for the final process of LeopardPC.Eval.

Our strategy to address this is to merge multiscalar multiplications on Gt into a
single but longer multiscalar multiplication. We note that the cost of multiscalar
multiplication is sublinear to the length of the input vector [44].

To this end, we observed that with the batched evaluation technique, the
verifier does not need to compute P earlier. Computing them before running the
batched LeopardPC.Eval at the end of AggMEC is sufficient. In addition, if we

38 Lee et al.

take a closer look at the batching process, we can figure out that the verifier
computes the linear combination of a bulk of commitments before running the
final process. Finally, at the end of LeopardPC.Eval, the verifier needs to check the
consistency of the final commitment by using challenges and other commitments
communicated during the protocol (line 18 in Algorithm 6). We note that the
former two processes can be delayed because they do not affect the process of the
remaining protocol except for the last batched LeopardPC.Eval. Hence, the verifier
can postpone these multiscalar multiplications and merge them to the last part of
LeopardPC.Eval. Moreover, note that V and [τ]A(1)+[τ2]A(2) share the same base
group points: L(c)

i ,R
(c)
i , and P

(c)
i for c ∈ {1, 2}. Thus, it suffices for the verifier to

compute a multiscalar multiplication of length (2 log2 D+6 log2 m+2 log2 n+40)
at the last of LeopardPC.Eval.

Precomputation for Efficient Commitment. Our homomorphic commit-
ment Com2 requires O(D) computation independent of the length of the vectors.
To avoid the prover’s large computation, we apply the precomputation technique
in [54]. That is, the committer computes commitment (Hi = ComPC(ckPC, Hi(X))),
where Hi(X) =

∏
j ̸=i(

1
ζj−ζi) · X

D−1
X−ζi for all i. Then, the commitment to L ∈ ZN

q

can be computed by N linear computation of (Hi). Hereafter, we consider the
computation cost of Com2 for N -length message vector as O(N).

I Implementation Results

We implemented Cougar with a famous half-pairing cycle of curves: BN254
and Grumpkin. For PCS, we utilize LeopardPC instantiated with BN254. We used
the Fiat-Shamir transformation [26] to make them non-interactive. Every code
was written in Rust, and every experiment was done in the following setting: a
single thread of an AMD EPYC 7543P (2.8GHz) CPU with 512GB RAM.

I.1 Parameter Selection

For selecting m,n from the given N , we used the formula introduced in
Eq. (15) with measuring coefficients cp, c1, and c2 on our choice of elliptic curves.
To this end, we first measured the ratio of unit group operations in our experi-
mental experiments, namely, Gp for Grumpkin and G1,G2 for BN254. We eval-
uate the time elapsed for 1 million group operations in each group. For cp = 1,
we obtain c1 = 1.0 and c2 = 3.2 with an 1-sigma error from 100 runs of the ex-
periments. In addition, since points in the Grumpkin curve can be represented
as a tuple of 254-bit integers, we set log2 q = 256, which is the closest power of
two from 254. We report the choice of m,n, and D for N = 210 to N = 220 in
Table 2.

Cubic Root Verifier Inner Product Argument 39

Fig. 5. Evaluation results of each IPA. We present log-log plots of each quantity for
various N from 210 to 220. The solid line in the verification time indicates the linear
regression for each IPA in log-log plot. Best viewed in color.

N 210 211 212 213 214 215 216 217 218 219 220

m 28 29 29 29 210 210 210 211 211 211 213

n 22 23 23 24 24 25 26 26 27 28 28

D 217 217 218 219 219 220 221 222 223 224 224

Table 2. Selected parameters m,n and corresponding D for witnesses of length N . We
set N around 210 to 220. Each parameter is chosen by the formula in Eq. (15).

I.2 Evaluation Results

We implemented Cougar by following the algorithms described in the paper,
with optimization tricks in Section H. For elliptic curve operations in BN254
and Grumpkin, we used halo2curves crate [45] of version 0.6.1. In addition,
we utilized some parts of halo2_proofs crate [46] of version 0.3.0 to deal with
polynomials during AggMEC. For more detailed information, we recommend the
reader refer to our source code4.

Comparison with IPAs based on the DL Assumption. For comparison,
we also implemented BulletProofs [16] and Leopard [39,38] under our experimen-
tal setting and conducted the same experiments as above. In order to implement
Bulletproofs, we chose the Secp256k1 curve, which is used in many cryptocur-
rencies. On the other hand, to implement Leopard we chose the BLS12-381 curve,
which is a well-known pairing friendly curve. We used halo2curve crate of the
same version as above and blstrs crate [27] of version 0.7.1 for Secp256k1 and
BLS12-381, respectively. We note that Secp256k1, BLS12-381, and BN254 are
known to provide 127-bit, 117-bit, and 102-bit security for the DL assumption,
respectively. For implementing Leopard, we followed several optimization tricks
introduced by [38].

We report the time elapsed for proof generation and verification on each
IPA. We also provide the proof size for each scheme. We conducted for various
4 https://github.com/Cryptology-Algorithm-Lab/Cougar

https://github.com/Cryptology-Algorithm-Lab/Cougar

40 Lee et al.

N
Proving time (s) Verification time (s) Proof Size (KB)

BPs Leopard Cougar BPs Leopard Cougar BPs Leopard Cougar
210 0.91 0.44 206.5 0.04 0.02 0.06 0.76 11.58 50.14
211 1.73 0.64 221.8 0.07 0.02 0.08 0.82 12.74 52.51
212 3.37 1.24 452.6 0.11 0.02 0.09 0.89 13.89 54.11
213 6.59 1.86 854.8 0.20 0.03 0.10 0.95 15.04 55.71
214 13.03 3.64 902.4 0.38 0.03 0.12 1.02 16.19 58.08
215 25.83 5.58 1842 0.70 0.04 0.13 1.09 17.34 59.68
216 51.10 11.25 3315 1.27 0.05 0.15 1.15 18.50 61.28
217 101.5 18.14 7014 2.48 0.06 0.21 1.22 19.65 64.42
218 201.8 36.11 13051 4.55 0.08 0.23 1.28 20.80 66.02
219 401.6 60.12 26646 8.71 0.09 0.30 1.35 21.95 67.62
220 801.2 120.1 27866 17.34 0.13 0.35 1.42 23.10 69.98

Table 3. Evaluation results of each IPA for various N from 210 to 220.

N from 210 to 220. The evaluation results for each IPA are presented and visu-
alized in Table 3 and Fig. 5, respectively. From this figure, we can observe that
the verification time of Cougar increases slowly than that for BulletProofs and
Leopard, though the time for small N = 210 or 211 surpasses the cost for them.
To further support this, we also conducted linear regression on the verification
time in log scale for each log2 N . We note that for the regression coefficients α̂, β̂
such that log2 y = α̂ log2 x + β̂, we have that y = 2β̂ · xα̂, i.e., the coefficient
α̂ for slope indicates the exponent of the verification cost with respect to N .
As shown in the figure, the regression results fit well with the measured data.
Concretely, the mean squared error for each scheme is given by 0.006, 0.013, and
0.009, respectively. The regression coefficients (α̂, β̂) for BulletProofs, Leopard
and Cougar, are (0.887,−13.758), (0.282,−8.777), and (0.243,−6.465), respec-
tively. We guess that the coefficient α̂ is less than the theoretically estimated
values (α̂ = 1, 1/2 and 1/3 for each scheme, respectively) because the computa-
tional complexity for multi-scalar multiplication is O

(
N

log2 N

)
for input vectors

of length N . Nevertheless, this result indicates that the rate of increase in the
verification cost for Cougar is slower than that of BulletProofs and Leopard.

In contrast to Bulletproofs and Leopard, one can figure out that the proving
time of Cougar increases stepwise. This is because the proving time of Leopard
highly depends on D. As shown in Table 2, the rate of the increase in D is
slower than N , and more importantly, this tendency exactly coincides with the
tendency of the proof generation time depicted in Fig. 5.

Comparison with Hyrax as a PCS. Recall that one of the main usage of
IPA is to instantiate Poly IOPs, and the Cougar also can be naturally utilized as
a PCS as well. For this reason, we also compare the PCS version of Cougar with
Hyrax-PCS [51], which is another PCS based on the DL assumption and featuring
squared root verifier and communication costs. Although both BulletProofs and
Leopard can be converted to PCS, we will not compare Hyrax-PCS with them
because they are already compared with ours in terms of IPA.

Cubic Root Verifier Inner Product Argument 41

N 210 211 212 213 214 215 216 217 218 219 220

P (s) 0.057 0.093 0.141 0.271 0.465 0.845 1.420 2.771 4.747 9.323 17.117
V (s) 0.007 0.009 0.007 0.013 0.012 0.018 0.020 0.032 0.036 0.049 0.057

C (KB) 1.45 2.48 2.54 4.61 4.67 8.79 8.86 17.11 17.17 33.67 33.74

Table 4. Evaluation results of Hyrax-PCS. P, V, C, refers to proving time, verification
time, and communication cost, respectively.

Since Hyrax-PCS does not require pairing operations, we used the Secp256k1
curve to implement it. We conducted the same experiments and halo2curves
library as above under the same environment. The results are given in Tab. 4. We
can observe that the verifier time of Hyrax-PCS is faster than that of Cougar, even
faster than that of Leopard, in our experiment. Moreover, the communication cost
is lower in all experimental settings. This is because Hyrax-PCS does not rely
on pairing operations, so they do not require sending heavy group elements in
Gt. Nevertheless, we note that Hyrax-PCS features square root communication
cost, so the communication cost increases extremely fast when N becomes large.
According to our experimental result, the communication cost of Hyrax-PCS
surpasses that of Leopard when N ≥ 219, and the (expected) crossing over point
between Hyrax-PCS and Cougar is N = 223.

In addition, we also estimate the verification cost by conducting linear re-
gression on the data in Tab. 4, as we did for comparing IPAs. With the same
notation as the previous paragraph, we obtain the regression coefficients (α̂, β̂) =
(0.325,−10.650). Since the regression coefficient for Cougar is (0.243,−6.465),
i.e., having a smaller α̂ than Hyrax-PCS, we can conclude that the verification
time of the proposed Cougar is asymptotically faster than that of Hyrax-PCS.

	Cougar: Cubic Root Verifier Inner Product Argument under Discrete Logarithm Assumption

