
Aether: Approaching the Holy Grail in Asynchronous BFT

Xiaohai Dai∗, Chaozheng Ding∗, Julian Loss†, and Ling Ren‡

∗Huazhong University of Science and Technology
†CISPA Helmholtz Center for Information Security

‡University of Illinois at Urbana-Champaign

{xhdai, chaozhengding}@hust.edu.cn, loss@cispa.de, renling@illinois.edu

Abstract
State-of-the-art asynchronous Byzantine Fault Tolerance
(BFT) protocols integrate a partially-synchronous optimistic
path. Their holy grail is to match the performance of a
partially-synchronous protocol in favorable situations and that
of a purely asynchronous protocol in unfavorable situations.
While prior works have excelled in favorable situations, they
fall short when conditions are unfavorable. To address these
shortcomings, a recent work, Abraxas (CCS'23), retains stable
throughput in all situations but incurs very high worst-case
latency in unfavorable situations due to slow detection of op-
timistic path failures. Another recent work, ParBFT (CCS'23)
ensures good latency in all situations but suffers from reduced
throughput in unfavorable situations due to the use of extra
Asynchronous Binary Agreement (ABA) instances.

To approach our holy grail, we propose Aether, which
specifically attains performance on par with purely asyn-
chronous protocols in unfavorable situations—in both
throughput and latency. Aether also runs two paths simulta-
neously: two-chain HotStuff as the optimistic path and a new
primitive Dual-functional Byzantine Agreement (DBA) for the
pessimistic path. DBA packs functionalities of biased ABA
and Validated Asynchronous Byzantine Agreement (VABA).
In Aether, each replica inputs 1 to DBA if its pessimistic path
is faster, and 0 otherwise. DBA’s ABA functionality promptly
signals the optimistic path’s failure by outputting 1, ensuring
Aether’s low latency in unfavorable situations. Meanwhile,
Aether executes DBA instances to continuously produce pes-
simistic blocks through their VABA functionality. Upon de-
tecting a failure, Aether commits the last two pessimistic
blocks to maintain high throughput. Besides, Aether lever-
ages DBA’s biased property to ensure the safety of committing
pessimistic blocks. Extensive experiments validate Aether’s
high throughput and low latency across all situations.

1 Introduction

The explosive popularity of blockchain technology [9, 58]
has reignited significant interest in Byzantine Fault Tolerant

(BFT) consensus over the past decade [53, 54]. At its core,
BFT consensus empowers distributed replicas to reach an
agreement on data, even in scenarios where a subset of these
replicas, termed Byzantine replicas, may deviate arbitrarily
from the protocol.

BFT consensus protocols traditionally fall into three cat-
egories based on their network assumptions: asynchronous,
partially-synchronous, and synchronous. Asynchronous pro-
tocols [6, 20, 55] ensure safety and liveness under arbitrary
network conditions, whereas (partially-)synchronous proto-
cols are prone to network attacks [43]. On the flip side,
asynchronous protocols are known to be inherently ran-
domized [24], which makes them less efficient and more
challenging to design than their synchronous and partially-
synchronous counterparts (e.g., PBFT [15] and HotStuff [56]
which can be fully deterministic).

1.1 Asyn. protocols with an optimistic path
To harness the strengths of both (partially-)synchronous and
asynchronous protocols, a line of research has proposed in-
corporating an optimistic path into an asynchronous proto-
col [11, 17, 27, 41]. This typically involves using a partially-
synchronous protocol, like two-chain HotStuff [34], as the
optimistic path, while an asynchronous protocol, often Vali-
dated Asynchronous Byzantine Agreement (VABA), acts as
the pessimistic fall-back path.

This dual-path paradigm considers two situations: favor-
able and unfavorable. A favorable situation is characterized by
a non-faulty leader on the optimistic path and good network
conditions, enabling the protocol to make progress through
the optimistic path. On the contrary, an unfavorable situa-
tion arises when we have a faulty leader or poor network
conditions, in which case the protocol will fall back to the
pessimistic path to achieve liveness.

The holy grail in this dual-path paradigm is to match the
performance of a partially-synchronous protocol in favor-
able situations and the performance of a purely asynchronous
protocol in unfavorable ones. It is critical to optimize per-
formance in unfavorable situations, as they can be common

1



in practice. Specifically, a leader may become temporarily
inoperative, or the network connecting to the leader might
experience jitter, making such situations frequently occur. Fur-
thermore, even a short period of poor consensus performance,
particularly those resulting from unfavorable situations, can
significantly degrade user experience in upper-layer applica-
tions and should be diligently avoided.

While existing protocols successfully achieve high perfor-
mance in favorable situations, a significant gap remains in un-
favorable situations. Specifically, earlier works like Ditto [27]
and BDT [41] follow a sequential-path design where the
pessimistic path is launched only after the optimistic path’s
failure is detected. This delay in launching the pessimistic
path results in poor efficiency in unfavorable situations. We
give a more thorough comparison with these and other exist-
ing works in Section 6.

To deal with issues of sequential-path protocols, two recent
works ParBFT [17]1 and Abraxas [11], follow a parallel-path
design which operates two paths simultaneously. By continu-
ously running the pessimistic path in the background, parallel-
path protocols avoid much of the overhead encountered in the
sequential-path design during unfavorable situations.

In spite of these improvements, ParBFT and Abraxas still
fall short of fully matching the performance of asynchronous
protocols in unfavorable situations. Concretely, ParBFT em-
ploys an individual Asynchronous Binary Agreement (ABA)
instance at each height to detect the optimistic path’s fail-
ure. This achieves low latency in unfavorable situations but
introduces an idle period where no new block is generated,
resulting in reduced throughput (i.e., number of committed
blocks) compared to purely asynchronous protocols. On the
other hand, Abraxas’s pessimistic path leverages consecutive
VABA instances to continuously generate blocks even dur-
ing optimistic periods. Since there is no idle time, Abraxas
achieves essentially the same throughput as purely asyn-
chronous protocols. The downside, however, is that blocks
from the pessimistic path can be committed only after a spe-
cial indicator transaction on the pessimistic path confirms the
optimistic path’s failure. This indicator transaction is submit-
ted after many communication rounds (empirically, more than
80 rounds). Thus, though Abraxas achieves high throughput
on average, it might incur very high latency in the worst case.

Therefore, we pose the following natural question: Is there
an asynchronous protocol whose throughput and latency are
on par with the state-of-the-art of: 1) partially-synchronous
protocols under favorable situations, and 2) purely asyn-
chronous protocols in unfavorable situations?

1.2 Our solution
We answer this question affirmatively by proposing Aether.
Aether combines the advantages of Abraxas and ParBFT.

1In [17], two versions of ParBFT are proposed. Our focus is on the first
one, ParBFT1, which we simply refer to as ParBFT in this paper.

0 5 10 20 100
Leader failure (%)

0

25

50

75

100

125

Th
ro

ug
hp

ut
 (K

 tx
/s

)

Abraxas
ParBFT

Aether
Two-chain VABA

Ditto

(a) Throughput comparison

0 5 10 20 100
Leader failure (%)

0

2

4

6

8

La
te

nc
y 

(s
)

Abraxas
ParBFT

Aether
Two-chain VABA

Ditto

(b) Latency comparison

Figure 1: Performance under varying probabilities (ρ) of
leader failure. ρ=0 denotes a favorable situation where opti-
mistic paths operate smoothly. Conversely, ρ=100% denotes
an unfavorable situation where optimistic paths fail.

More precisely, Aether delivers performance akin to that of
partially-synchronous protocols under favorable situations;
in unfavorable situations, Aether still offers throughput and
latency comparable to those of a purely asynchronous proto-
col. In addition, in situations that fall between favorable and
unfavorable, Aether consistently maintains nearly the best
throughput and latency among existing protocols.

At a high level, Aether executes the optimistic and pes-
simistic paths in parallel, much like Abraxas and ParBFT.
The optimistic path runs the two-chain HotStuff, whereas the
pessimistic path involves a sequence of asynchronous con-
sensus instances. These instances have dual functions: they
monitor whether the optimistic path works well like ABA,
and also facilitate the generation of new blocks reminiscent
of VABA. Besides, the two-chain HotStuff’s committing rule
only ensures that t + 1 non-faulty replicas acquire the lock
data, which is then taken as the input to the asynchronous
instance. Inputs from these t + 1 non-faulty replicas must
force the asynchronous instance to produce a matching out-
put, calling for a “biased validity”.

We introduce Dual-functional Byzantine Agreement (DBA),
a novel primitive to implement the asynchronous instance dis-
cussed above, which combines the functionalities of biased
ABA and VABA. In addition to the validated block, as re-
quired by standard VABA, the input for a DBA instance also
includes a binary value. The output is a pair comprising a
binary value and a block value, particularly ensuring biased
validity for the binary value. DBA can be constructed by
adding merely a single communication round prior to any
existing VABA protocol. Thus, its performance is similar to
VABA. We note that although DBA bears some similarity to
Cachin et al.’s VABA [14], they actually differ significantly,
as will be discussed in Section 3.2.2.

With the DBA primitive defined, Aether executes consec-
utive DBA instances as the pessimistic path. The binary de-
cision from DBA indicates the success or failure of the opti-
mistic path. Upon detecting a failure in the optimistic path,
Aether promptly commits blocks on the pessimistic path, thus

2



Table 1: Performance comparison. δ and ∆ denote the actual network delay and timer parameter. c and L represent the maximum
transaction count and block size of a block. κ denotes the computational security parameter, while λ is the lookback parameter in
Abraxas. Performance in unfavorable situations is measured assuming the adversary mounts arbitrary attacks.

Favorable situations Unfavorable situations

Latency Throughput Communication Latency Throughput Communication

Two-chain HotStuff [27] 5δ c/(2δ) O(nL+nκ) / / /

Two-chain VABA [27] 10.5δ 2c/(7δ) O(n2L+n2κ) 10.5δ c/(7δ) O(n2L+n2κ)

Ditto [27] 5δ c/(2δ) O(nL+nκ) 3∆+10.5δ c/(2∆+7δ) O(n2L+n2κ)

Abraxas [11] 5δ c/(2δ) O(n2L+n2κ) 3.5λδ+14δ ‡ c/(7δ) O(n2L+n2κ)

ParBFT [17] 5δ c/(2δ) O(n2L+n2κ) 22δ c/(22δ) O(n2L+n2κ)

Aether 5δ c/(2δ) O(n2L+n2κ) 18.5δ 3c/(23δ) O(n2L+n2κ)

† As a common implementation practice, transactions are constantly packaged and broadcast through an underlying mempool [27]. A consensus block only contains hashes
of some transaction packages. Therefore, L is typically pretty small, approximately κ, which should not negatively impact the performance a lot [11].
‡ λ cannot be set too small, as this would make Abraxas resort to pessimistic paths too often, degrading performance. The Abraxas paper recommends setting λ to 20 [11].

promising low latency in unfavorable situations. Thanks to
the biased validity of DBA, if any non-faulty replica commits
a block through the optimistic path, the binary output from
DBA acknowledges this commit. This also instructs every
non-faulty replica to commit the same block through the pes-
simistic path if it has not yet committed, thus guaranteeing
the block consistency. Moreover, DBA instances are compa-
rable in efficiency to VABA, helping Aether achieve good
throughput under unfavorable situations.

Experimental results to evaluate Aether are shown in Fig-
ure 1, where the x-axis represents the probability (ρ) of leader
failure on the optimistic path. It shows that under favorable
situations (ρ = 0), Aether achieves high throughput and low
latency, matching Ditto, which operates as a purely partially-
synchronous protocol in such situations. On the other hand,
when leaders are always faulty (ρ = 100%), Aether demon-
strates throughput and latency on par with two-chain VABA, a
purely asynchronous protocol. Furthermore, as the probability
of leader failure varies between 0 and 100%, reflecting a mix
of favorable and unfavorable situations occurring randomly,
Aether consistently achieves almost the highest throughput
and lowest latency compared to other protocols.

Table 1 presents a more detailed and comprehensive com-
parison between Aether and existing protocols, corroborat-
ing Aether’s good performance with theoretical analysis. δ

denotes the actual network delay, and c represents the maxi-
mum transaction count within a block. Aether demonstrates a
low latency of 5δ and a high throughput of c/(2δ) in favor-
able situations. This matches the performance of a partially-
synchronous protocol (specifically, two-chain HotStuff). On
the other hand, in unfavorable situations, Aether manages to
maintain a latency of 18.5δ and a throughput of 3c/(23δ).
These are just slightly worse than a purely asynchronous pro-
tocol (specifically, two-chain VABA) but significantly better
than prior works Abraxas in terms of latency and ParBFT in
terms of throughput.

2 Models And Preliminaries

2.1 Model

The system consists of n replicas, with up to t being Byzan-
tine where n≥ 3t +1. Each replica is identified by a unique
number and is denoted as pi (1≤ i≤ n). Byzantine replicas
may deviate from the protocol arbitrarily and are presumed to
be under the control of an adaptive adversary. This adversary
can corrupt replicas as the protocol progresses and drop a
corrupted replica’s messages from the network a posterior.
The remaining replicas, termed non-faulty, faithfully adhere
to the protocol. Each pair of replicas is connected through a
pairwise authenticated communication channel. The system
operates in an asynchronous network where no assumption
is made about network delays. The adversary is assumed to
fully control the network and can arbitrarily delay and reorder
any messages as long as it eventually delivers them.

A Public Key Infrastructure (PKI) is established across
the replicas and digital signatures are used to ensure the au-
thenticity and integrity of transmitted messages. Addition-
ally, we employ two distinct instances of threshold signature
schemes [8, 39]: one with a threshold of n− t, and the other
with a threshold of t + 1. The algorithm for generating a
threshold signature share is denoted as SignShr, while Comb
constructs a threshold signature from sufficient shares. To sim-
plify our notation, we omit the use of private or public keys as
parameters in SignShr or Comb. To differentiate between the
two threshold signature schemes, we use SignShrr and Combr
to denote calls to these algorithms with the threshold parame-
ter r. We assume the adversary is computationally bounded
and cannot break the security of (threshold) signatures.

2.2 State machine replication

We focus on the State Machine Replication (SMR) problem.
Each replica pi in SMR locally maintains a growing chain,
denoted as Ci, which is modeled as a write-once array. An
object in the array is named a block, which consists of mul-

3



tiple transactions. Transactions are continuously generated
by clients or upper-layer applications, and are inserted into a
buffer of each replica i, denoted as buf i. Transactions cached
in the buffer are sorted based on the times they are received
by the replica. When a replica pi proposes a block, it selects
a number of transactions from its buffer buf i. Without loss of
generality, we assume the maximum number of transactions
that can be included in a block is c. Therefore, the block pro-
posed by pi consists of the first c transactions from the buffer,
denoted buf i[: c].

Ci is initialized as empty, namely Ci[k] =⊥ for each index
k (k ≥ 1). A block B is said to be committed by pi when it is
written to the chain Ci. All transactions in B are then deleted
from pi’s buffer buf i. In this paper, we focus on protocols that
commit blocks sequentially, i.e., if Ci[k] ̸=⊥, then for every
k′ < k, Ci[k′] ̸=⊥. SMR serves to maintain a consistent chain
among non-faulty replicas, whose definition is as follows:

Definition 1. Let Π be a protocol executed among replicas
p1, ..., pn, where each non-faulty replica holds a transaction
buffer buf i. We say that Π implements SMR if it satisfies the
following properties:

• Consistency: For two non-faulty replicas pi and p j, if
Ci[k] ̸=⊥ and C j[k] ̸=⊥, then Ci[k] = C j[k].

• Liveness: If a transaction tx is added to every non-faulty
replica’s buffer, then every non-faulty replica will even-
tually commit a block containing tx.

• Completeness: For each index k (k ≥ 1) and each non-
faulty replica pi, either buf i remains forever empty or
eventually Ci[k] ̸=⊥.

2.3 (Biased) ABA
The Asynchronous Binary Agreement (ABA) abstraction [10,
25] represents the most basic form of asynchronous BFT
consensus, which serves to agree on a binary value. To be
more specific, an ABA protocol is defined as follows:

Definition 2. Let Π be a protocol executed among replicas
p1, ..., pn, where replica pi holds a binary input bi and gener-
ates an output. We say that Π achieves ABA if it satisfies the
following properties in an asynchronous network whenever,
at most t replicas are corrupt:

• Agreement: If two non-faulty replicas output values b
and b′, then b = b′.

• Termination: If all non-faulty replicas complete in-
putting, every non-faulty replica will eventually output.

• Validity: If all non-faulty replicas input the same bit b,
then each non-faulty replica outputs b.

The ABA protocol can be adapted to exhibit a bias towards
0 by replacing ‘validity’ property with a ‘biased validity’
property, which is defined as follows:

• Biased validity: If at least t +1 non-faulty replicas input
the bit 0, all non-faulty replicas will output 0.

An ABA protocol achieving the biased-validity property is
termed a biased ABA. Our design does not utilize a biased
ABA directly. Instead, we introduce a new abstraction named
DBA that incorporates properties akin to those in biased ABA,
which is detailed in Section 3.

2.4 VABA
Different from ABA, the Validated Asynchronous Byzantine
Agreement (VABA) abstraction facilitates consensus on ar-
bitrary values [14]. VABA introduces an external validation
predicate Q, typically defined by higher-layer applications.
To be more specific, VABA is defined as follows.

Definition 3. Let Π be a protocol executed among replicas
p1, ..., pn, where replica pi holds input vi and replicas termi-
nate upon generating output. We say that Π achieves VABA
if it satisfies the following properties in an asynchronous net-
work whenever, at most t replicas are corrupt:

• Agreement: If two non-faulty replicas output values v
and v′, then v = v′.

• Termination: If all non-faulty replicas complete in-
putting, every non-faulty replica will eventually output.

• External validity: If a non-faulty replica outputs v, then
Q(v) must be True.

• Quality: If a non-faulty replica outputs v, then with prob-
ability over 1/2, v is input by a non-faulty replica.

Various implementations of VABA [2,14,31,42] have been
developed over the past decades. Note that while the qual-
ity property is not explicitly defined in [14, 31], both works
guarantee this property.

3 Building Block: DBA

3.1 Definition of DBA
We propose a new abstraction called Dual-functional Byzan-
tine Agreement (DBA), which simultaneously achieves con-
sensus on a binary value as well as an arbitrary value. Roughly
speaking, DBA combines the functionalities of biased ABA
and VABA. Initially, it may seem that VABA inherently ful-
fills the functionality of biased ABA, making the definition of
DBA redundant. However, this is not the case, as biased ABA
has a distinct validity property from VABA. In the context
of this paper, the arbitrary value is typically a block. There-
fore, within the remainder of this paper, we will use the term
“block” to represent the arbitrary value in DBA. Formally, a
DBA protocol is defined as follows:

Definition 4. Let Π be a protocol executed among replicas
p1, ..., pn, where replica pi holds a binary value bi, a proof σ,

4



plus a block Bi as input, and generates a binary value b and
a block B as output. Two external validation predicates, P
and Q, are introduced: Q validates the legitimacy of the block
value, similar to the validation in VABA, while P validates the
legitimacy of the binary value based on the proof. Replicas
terminate upon generating output. We say that Π achieves
DBA if it satisfies following properties whenever at most t
replicas are corrupt:

• Agreement: For any two non-faulty replicas outputting
⟨b,B⟩ and ⟨b′,B′⟩, then b = b′ and B = B′.

• Termination: If all non-faulty replicas complete in-
putting, every non-faulty replica will eventually output.

• External validity: For any output ⟨∗,B⟩ from a non-
faulty replica, Q(B) = True.

• Quality: If a non-faulty replica outputs ⟨∗,B⟩, then with
probability over 1/2, B is input by a non-faulty replica.

• Biased validity. If at least t +1 non-faulty replicas input
⟨0,∗⟩, then all non-faulty replicas will output ⟨0,∗⟩.

• Proof validity: If a non-faulty replica outputs ⟨0,∗⟩, at
least one replica (Byzantine or non-faulty) must have
inputted ⟨0,σ,∗⟩ with P(σ) = True.

To aid presentation, in the context of DBA’s input, b plus
σ is referred to as the “binary input”, while B is termed the
“block input”. Correspondingly, in the output ⟨b,B⟩, we refer
to b and B as the “binary output” and “block output”, respec-
tively. It is important to note that the block inputs of different
replicas, like the input values in VABA, do not have to be
identical. The properties of biased validity and proof validity
specifically pertain to DBA’s binary values, while quality and
external validity are applicable to the block values. Besides,
DBA discards the validity property defined in the original
(biased) ABA abstraction. This implies that even if all non-
faulty replicas input a binary value of 1 but some faulty replica
inputs 0, DBA can output 0.

3.2 Construction of DBA: AlgDBA
Since the combination of binary input and block input can be
regarded as a single value, an initial approach to constructing
DBA might involve adapting an existing VABA protocol to
accept the combined inputs as a singular value. This approach
could fulfill most of the properties outlined in Definition 4,
but it falls short of meeting the biased validity requirement.
To solve this problem, we introduce a communication round
before executing the VABA protocol.

3.2.1 AlgDBA protocol

This protocol, given in Algorithm 1, adds a communication
round to amplify the bit of 0, prior to executing VABA. In this
round, each replica broadcasts its binary input accompanied

Algorithm 1: AlgDBA with instance identity h (for pi)

1 Let ⟨bi,σi,Bi⟩ denote the input of pi.
2 if bi = 0 then
3 broadcast (h,0,σi,SignShrt+1(h,0))
4 else
5 broadcast (h,1,σi,SignShrn−t(h,1))

6 on receiving (h,0,σ j,∗) s.t. P(σ j) = True from p j:
// amplify the bit of 0

7 if pi has not broadcast 0 then
8 broadcast (h,0,σ j,SignShrt+1(h,0))
9 on receiving t +1 (h,0,σ j,∗) that P(σ j) = True:

10 S← all the sig. shares from t +1 messages;
11 sig0← Combt+1(h,0,S);
12 input ⟨0,sig0,Bi⟩ to VABAh if it has not done
13 on receiving n− t (h,1,∗,∗):
14 S← all the sig. shares from n− t messages;
15 sig1← Combn−t(h,1,S);
16 input ⟨1,sig1,Bi⟩ to VABAh if it has not done
17 on outputting ⟨b,sig,B⟩ from VABAh:
18 output ⟨b,B⟩

by a threshold signature share. If the binary input is 0, the
threshold parameter for the signature share is set to t + 1.
Conversely, for a binary input of 1, the threshold is set to n− t
(see Lines 2-5 in Algorithm 1). If a replica receives a valid
message containing 0, it will also broadcast 0 if it has not yet
done so (Lines 6-8), which amplifies the broadcast of 0.

At the end of this round, if a replica gathers t +1 messages
containing 0, it creates a complete threshold signature sig0
based on signature shares in these messages, certifying the
bit 0. The replica then uses ⟨0,sig0,B⟩ as input to the VABA
instance, where B is the block input of AlgDBA (Lines 9-12).
Alternatively, if it receives n− t valid values of 1, it creates a
complete threshold signature sig1 for the value 1, leading to
the input ⟨1,sig1,B⟩ for the following VABA instance (Lines
13-16). Finally, VABA outputs one of these inputs, with the
bit and block values forming the output of AlgDBA (Lines
17-18). It is important to note that within this construction,
the predicate Q of VABA must validate both the binary and
block parts of an input. In particular, validation of the binary
part typically involves verifying the bit’s threshold signature.

For lack of space, the correctness analysis of AlgDBA is
deferred to Appendix A.

3.2.2 Relation to Cachin et al. [14]

Cachin et al. [14] first introduced VABA and its variant, biased
binary VABA. Biased binary VABA is very similar to biased
ABA, as it also restricts the protocol to binary values with
biased validity. While we draw inspiration from their work,
our work is significantly different from theirs. The end goal of
Cachin et al. [14] is to construct VABA that agrees on a block

5



Figure 2: The structure of an epoch in Aether.

value, and they defined and used the biased binary variant
in that process. In contrast, our DBA is a new primitive that
simultaneously achieves agreement on a binary value and
a block value. To obtain DBA, we modify existing VABA
protocols and use them as building blocks.

4 Aether Design

In this section, we present the design of Aether. Due to space
limitations, the theoretical analysis, including both correctness
and performance analysis, is provided in Appendix B.

4.1 Overview and intuition
Aether operates in epochs, designated by incrementing in-
teger identifiers starting from 1. Each epoch comprises an
optimistic path and a pessimistic path in parallel, as depicted
in Figure 2. The optimistic path employs a structure of chain-
based blocks, where the Quorum Certificate (QC) for a block
is encapsulated within the next block. The pessimistic path
is implemented through consecutive DBA instances, each
producing a block and a binary value. Blocks generated
in the two paths are referred to as “opt-blocks” and “pess-
blocks”, respectively. Opt-blocks within an epoch are num-
bered with heights starting from 1, denoted as Bh. Similar to
a partially-synchronous protocol, a leader is designated for
each height on the optimistic path, following a round-robin
manner. DBA instances and their outputted pess-blocks in an
epoch are also numbered starting from 1, denoted as DBAh
and Ch, respectively.

4.1.1 Design intuition

In the context of Aether, we make a clear distinction between
the terms “certify” and “commit” concerning a block. An
opt-block is deemed “certified” when the corresponding QC
is obtained, and a pess-block is considered “certified” if it
is outputted from a DBA instance. Taking Figure 2 as an
example, the opt-block Bh is certified, since the QC for it is
contained in Bh+1. Both pess-blocks Ch and Ch+1 are certified,
as they are outputted from DBAh and DBAh+1, respectively.
Due to the quorum intersection argument, the opt-block at a
given height will be unique. Additionally, according to DBA’s
consistency property, the pess-block at a given height will also
be unique. Conversely, “commit” denotes that a block, either
an opt-block or a pess-block, is eligible to be written to the
SMR chain C .

(a) Commit Bh through the two-chain rule.

(b) DBAh+1 outputs 0 indicating the readiness to commit Bh.

(c) DBAh+1 outputs 1 indicating the readiness to commit Ch.

(d) Commit both Ch and Ch+1 when DBAh+1 outputs 1.

Figure 3: Examples to show the block committing rules. We
omit some elements in the figures for conciseness.

Within this parallel-path structure, it is possible to have two
certified blocks at the same height, h: an opt-block Bh and a
pess-block Ch. A primary task is to decide which block to com-
mit. This is precisely the reason why we augmented VABA
to DBA to make a binary decision. In particular, we leverage
the binary output from the DBA instance at the next height,
namely DBAh+1, to commit the block at height h. On the
other hand, to attain performance comparable to a partially-
synchronous protocol in favorable situations, Aether must
be capable of rapidly committing blocks through the opti-
mistic path, particularly employing the two-chain rule akin
to two-chain HotStuff [27]. Thus, two distinct rules for block
committing co-exist: one using binary outputs on the pes-
simistic path, and the other using the two-chain rule on the
optimistic path.

The next challenge is to ensure consistency between these
two commit rules. Specifically, for a given height, if a replica
commits an opt-block using the two-chain rule, we must en-
sure that another replica will also commit this opt-block even
if it follows the pessimistic path’s binary output. This con-
sistency is achieved through the biased-validity property of
DBA. In short, if a replica commits Bh via the two-chain
rule, then at least t + 1 non-faulty replicas have inputted 0
to DBAh+1, signaling their intention to commit Bh. Due to
the biased-validity property, DBAh+1 will output 0, which
indicates committing Bh.

6



4.1.2 Overall design

Each replica participates in both the optimistic and pessimistic
paths. The optimistic path, resembling the two-chain HotStuff,
involves designated leaders proposing opt-blocks, which are
then voted by replicas using threshold signature shares. The
pessimistic path, on the other hand, consists of consecutive
DBA instances. The input for a DBA instance (DBAh+1) de-
pends on which block at the preceding height h—either opt-
block Bh or pess-block Ch—gets certified first. An opt-block
is certified by a QC contained in the subsequent opt-block,
whereas a pess-block is certified upon being outputted from a
DBA instance. Therefore, a replica’s binary input for DBAh+1
hinges on which of these two events occurs first: (1) receipt
of Bh+1 or (2) output from DBAh. If Bh+1 is received earlier,
it inputs 0 to DBAh+1; otherwise, it inputs 1.

Committing an opt-block or a pess-block is based on either
the two-chain rule or the output from DBA. As depicted in
Figure 3a, upon receiving an opt-block Bh+2, a replica can
immediately commit the opt-block from two heights prior (Bh)
via the two-chain rule. On the other hand, if a replica receives
0 from DBAh+1, as illustrated in Figure 3b, it can commit the
opt-block at the preceding height (Bh). Otherwise (namely
if DBAh+1 outputs 1), the replica commits the pess-block at
the preceding height (Ch), as shown in Figure 3c.

Besides, the 1 output from DBAh+1 indicates a failure in
the optimistic path. In this scenario, each replica concludes the
current epoch and progresses to the next. To enhance through-
put, the pess-block Ch+1 generated from DBAh+1 is also com-
mitted together with Ch. As demonstrated in Figure 3d, both
Ch and Ch+1 are committed when DBAh+1 outputs 1.

In favorable situations, Aether continuously commits
blocks through the two-chain rule, achieving performance
akin to partially-synchronous protocols. In contrast, under
unfavorable situations, Aether remains capable of committing
blocks using the pessimistic path, thereby ensuring liveness.
Since DBA can be effectively constructed based on a VABA
protocol with efficient modifications, DBA offers performance
comparable to VABA, enabling Aether to match performance
of purely asynchronous protocols in unfavorable situations.

4.2 Data structures and utilities
We describe data structures and utilities in this section, which
are summarized as Algorithm 2. An opt-block Bh on the opti-
mistic path is characterized by the data structure {h,QC,d},
where h represents its height number, QC is a certificate for
the preceding block Bh−1, and d denotes a transaction batch
from the buffer buf.

On the pessimistic path, each replica can generate a trans-
action batch at a height h, serving as the block input to the
DBAh instance. From these block inputs, only one is out-
putted from DBAh and is referred to as “certified”, denoted
as Ch. Consequently, a replica’s input I to the DBAh instance

Algorithm 2: Data structures & utilities for pi

1 struct Opt-Block:
2 {h,QC,d}
3 struct DBAInput:
4 {b,σ,C}
5 struct DBAOutput:
6 {b,C}

7 define GenOptBlk(h,QC):
8 d← GenTxBatch();
9 B.h← h; B.QC← QC; B.d← d;

10 return B
11 define InvokeDBA(h,b,σ):
12 d← GenT xBatch();
13 I.b← b; I.σ← σ; I.C← d;
14 invoke DBAh with I
15 define GenT xBatch():
16 d← a batch of transactions from buf i;
17 return d
18 define Commit(blk):
19 len← Ci.len(); Ci[len+1]← blk;
20 delete tx from buf i for each tx ∈ blk

follows the format {b,σ,C}, where b is a binary value indi-
cating its opinion on which block at height h−1 is certified
earlier, and C denotes the block input. If b = 0, the replica
believes the opt-block Bh−1 is certified earlier, and σ is set
to QC of Bh−1. Otherwise (b = 1), the replica believes that
the pess-block Ch−1 is certified earlier, leaving σ = ⊥. The
output from DBAh is consistent across replicas, and has the
format {b,C}, where b is a bit indicating the agreed-upon
result regarding which block at height h−1 is certified earlier.
C is a block output derived from one of the block inputs. For
convenience, we omit the height numbers in data structures of
DBA inputs and outputs. Instead, their heights are implied by
the height numbers of DBA instances. For example, “invoking
DBAh with I” implies I has a height number h, and “DBAh
outputs O” implies O has a height number h.

We also define some functions utilized in Aether, including
GenOptBlk, InvokeDBA, and Commit. Both GenOptBlk and
InvokeDBA need to extract a batch of transactions from the
replica’s transaction buffer buf, which is achieved by calling
the GenT xBatch function.

4.3 Detailed design when h > 1
Algorithm 3 outlines an epoch in Aether, which operates in
consecutive heights2. This subsection describes the general
protocol for heights greater than 1, with special considerations

2We put termination and invocation of DBA (Lines 17-18 of Algorithm 3)
as part of the optimistic path, as these actions are triggered by receiving an
opt-block. Similarly, we put committing an opt-block (Lines 24-25) as part of
the pessimistic path, as these actions are triggered by receiving a pess-block.

7



Figure 4: Actions taken when t1 < t2 in Aether.

for the first height discussed in the next subsection.
The external validity function P in DBA is defined as a

(n− t)-threshold signature verification function. The binary
input or output in the DBA instance is 0 if the corresponding
opt-block is certified earlier than the pess-block, and is 1
otherwise. In other words, a replica inputs 0 if it believes the
optimistic path is functioning well and inputs 1 if it perceives
a lack of progress with the optimistic path. An output of 0
from a DBA instance indicates agreement among replicas
that the optimistic path performs well, while an output of 1
indicates agreement that the optimistic path has encountered
a failure.

For a height, consider two time points for replica pi:

• t1: the time when the opt-block Bh is certified, indicated
by receiving an opt-block Bh+1

• t2: the time when the pess-block Ch is certified, indicated
by receiving the output from the DBAh instance.

If the optimistic path operates effectively, the DBA instance
at height h, namelyDBAh, will be launched upon the reception
of the opt-block Bh. Subsequently, it takes 2δ for Bh to be
certified by the QC contained in the subsequent opt-block
Bh+1, whereas a minimum of 7δ is required for DBAh to
output the certified pess-block Ch. Therefore, we should have
t1 < t2 when the optimistic path is functioning well. The
comparison between t1 and t2 hence serves as an indicator of
whether the optimistic path is working well. pi takes different
actions based on this comparison.

4.3.1 Case 1: t1 < t2

In this case, pi receives Bh+1 earlier than the output from
DBAh, indicating that the optimistic path works well as ex-
pected. pi leverages the two-chain rule to commit block Bh−1
(when h≥ 2) and casts a vote for the received block Bh+1, as
described in Figure 4 and Lines 15-16 in Algorithm 3. Addi-
tionally, pi stops participating in the DBAh−1 (when h ≥ 2)
instance (Line 17). Besides, pi inputs to DBAh+1 its opinion
that Bh is certified earlier than Ch. To be concrete, its binary
input to DBAh+1 is 0 plus QC of Bh contained in Bh+1 (Line
18). We denote QC of Bh as QCh. This ensures the consistency
of committed blocks. Intuitively, if a non-faulty replica com-
mits Bh after receiving Bh+2, at least t +1 non-faulty replicas
must have received Bh+1 earlier and inputted 0 to DBAh+1.
Therefore, DBA’s biased validity guarantees that DBAh+1 will

Algorithm 3: An epoch in Aether for pi

1 Let Lh denote the leader of height h on opt. path.
2 h← 1, prevPessBlk←⊥.

// optimistic path
3 if pi is L1 then
4 B1← GenOptBlk(1,⊥); broadcast B1

// pessimistic path
5 InvokeDBA(1,0,⊥)

// optimistic path
6 on receiving B1:
7 send SignShrn−t(B1) to L2
8 on receiving n-t sign. shares on Bk (denoted as S):
9 if pi is Lk+1 then

10 qc← Combn-t(Bk,S); Bk+1← GenOptBlk(k+1,qc);
11 broadcast Bk+1

12 while the epoch is not concluded:
13 wait until Bh+1 is received or DBAh outputs O
14 if Bh+1 is received earlier then

// optimistic path
15 Commit(Bh−1) if h≥ 2;
16 send SignShrn−t(Bh+1) to Lh+2;
17 stop participating in DBAh−1 if h≥ 2;
18 InvokeDBA(h+1,0,Bh+1.QC);
19 broadcast Bh+1 if it has not done yet
20 else

// pessimistic path
21 if O.b = 0 then
22 stop participating in the optimistic path;
23 InvokeDBA(h+1,1,⊥);
24 if h≥ 2 and Bh−1 isn’t committed then
25 wait to receive Bh−1 and Commit(Bh−1);
26 prevPessBlk← O.C
27 else
28 Commit(prevPessBlk); Commit(O.C);
29 conclude the epoch
30 h← h+1

output 0, directing any non-faulty replica to commit Bh if it
has not done so already. Besides, pi will also broadcast Bh+1
to make sure other replicas receive this block (Line 19).

4.3.2 Case 2: t1 ≥ t2

In this case, DBAh outputs before receiving Bh+1. When
DBAh outputs 0, it indicates an agreement that the optimistic
path has been functioning well until height h−1. However,
from this one replica’s perspective, something is wrong with
the optimistic path at height h. So the replica conveys this
opinion by inputting 1 to the next DBA instance, namely
DBAh+1, and stops participating in the optimistic path. Con-
versely, if DBAh outputs 1, signifying agreement among repli-
cas that a failure has occurred with the optimistic path, the

8



(a) DBAh outputs 0.

(b) DBAh outputs 1.

Figure 5: Actions taken when t1 ≥ t2 in Aether.

replica concludes the current epoch after committing pess-
blocks. To delve into more details, we consider two sub-cases.

Case 2.1: DBAh outputs 0. As illustrated in Figure 5a and
detailed in Lines 21-22 of Algorithm 3, pi promptly stops
participating in the optimistic path of this epoch. Addition-
ally, it inputs 1 to the subsequent DBA instance, expressing
its opinion that the optimistic path has failed (Line 23). It can
also commit the block at height h−1 (when h≥ 2), namely
Bh−1. If it has not received Bh−1 yet, it will wait for the re-
ception of Bh−1 and then commit Bh−1. The pseudocode for
this case is described in Lines 24-25. Furthermore, the pess-
block outputted from DBAh, namely Ch, will be cached for
now (Line 26) and will be committed later if the subsequent
DBA instance outputs 1.

Case 2.2: DBAh outputs 1. This sub-case indicates agree-
ment among replicas that the optimistic path has failed. Con-
sequently, every replica within this sub-case commits two
pess-blocks and then concludes the current epoch. Actions
taken by pi are presented in Figure 5b and Lines 27-29 of
Algorithm 3. After consecutively committing the opt-blocks
until Bh−2, pi commits two pess-blocks, Ch−1 and Ch. No-
tably, Ch−1 has been cached in the variable prevPessBlk, and
Ch is outputted from the current DBA, namely DBAh. Sub-
sequently, pi concludes its participation in the current epoch
and progresses to the next epoch.

4.4 Detailed design when h = 1

In the initial opt-block B1, QC for the preceding block is set
to an empty value ⊥ (Line 4 in Algorithm 3), following the
approach in two-chain HotStuff [27]. The first DBA instance,
DBA1, is invoked with a binary input of 0 and QC set to the
empty value⊥, as outlined in Line 5. Any replica that receives
a message in the form of (0,⊥,SignShrt+1(0)) during the first
round of DBA1 instance will straightforwardly recognize this
binary input of 0 as valid.

5 Implementation and Evaluation

In this section, we present the implementation of Aether and
conduct a comparison with other protocols. Our chosen base-
lines include Abraxas and ParBFT, both of which employ the
parallel-path paradigm similar to Aether. We include Ditto as
another baseline that represents the sequential-path paradigm.
In favorable situations, Ditto’s performance matches that of
a partially-synchronous protocol. We also include two-chain
VABA, a purely asynchronous protocol, as a baseline for the
evaluation of unfavorable situations.

5.1 Implementation and experimental setup
5.1.1 Implementation

We directly adopt the available open-source codes of our base-
lines ParBFT3 and Abraxas4. Two-chain VABA and Ditto
share the same repository5. All these implementations are
built on the same code framework in Rust, which typically in-
cludes a mempool to decouple transaction transmission from
consensus messages. Through mempool, each replica contin-
uously packages a batch of transactions into a payload, which
is then broadcast to others. In the consensus message, a block
contains only hashes of these payloads, effectively reducing
the size of consensus messages and enhancing performance.

To ensure a fair comparison, we implement Aether using
the same framework as the baselines. The VABA protocol em-
ployed in DBA is instantiated with sMVBA [31]. To improve
performance, we introduce minor modifications to sMVBA.
These include adding a block in each PB instance and chaining
blocks across different sMVBA instances, a structure adopted
by two-chain VABA [27]. Besides, the view-change phase has
been streamlined to a single round following AMS-VABA [4].

5.1.2 Experimental setup

For all protocols, we set the size of a transaction to 512 bytes.
The size of a payload and the queue capacity in the mempool
are configured to be 500 kilobytes and 100,000, respectively.
The maximum number of payloads contained in a block is
limited to 32, and the minimum interval to propose a payload
is set to 100 milliseconds. In Ditto, the timing parameter ∆ is
configured to 5 seconds, while the lookback parameter λ in
Abraxas is fixed at 20.

Except for two-chain VABA, each protocol employs pre-
determined leaders for optimistic paths. Depending on leader
crash frequency, we consider following three scenarios, akin
to those defined in Abraxas. Each scenario is characterized by
the parameter ρ, signifying the probability of leader crashes.

1. ρ = 0: This implies that leaders operate without crashes.
In this scenario, all protocols, except two-chain VABA,

3https://github.com/ac-dcz/parbft-parbft1-rust
4https://github.com/sochsenreither/abraxas
5https://github.com/danielxiangzl/Ditto

9



0 50 100
Throughput (K tx/s)

0

2

5

8

10

12

La
te
nc
y 
(s
)

Abraxas
ParBFT

Aether
Two-chain VABA

Ditto

(a) ρ = 0

0 20 40 60 80
Throughput (K tx/s)

0

5

10

15

La
te
nc

y 
(s
)

Abraxas
ParBFT

Aether
Two-chain VABA

Ditto

(b) ρ = 10%

0 20 40 60 80
Throughput (K tx/s)

0

2

5

8

10

12

La
te
nc

y 
(s
)

Abraxas
ParBFT

Aether
Two-chain VABA

Ditto

(c) ρ = 20%

0 20 40
Throughput (K tx/s)

0

2

4

6

8

10

La
te

nc
y 

(s
)

Abraxas
ParBFT

Aether
Two-chain VABA

Ditto

(d) ρ = 100%
Figure 6: Latency vs. throughput.

are expected to commit blocks through optimistic paths.

2. ρ = 100%: In this scenario, leaders always crash, and all
protocols commit blocks through pessimistic paths.

3. ρ = 10% or ρ = 20%: Each leader has a 10% or 20%
probability of crashing in this scenario, representing an
intermediate point between the previous two scenarios.
Optimistic protocols commit blocks through their opti-
mistic paths intermittently.

Our experiments are conducted on AWS, where each
replica is deployed as an m5d.2xlarge instance. Each in-
stance is equipped with 8 vCPUs and 32GiB memory, running
Ubuntu 20.04 as the operating system. Replicas are connected
through a network link with up to 10 Gbps bandwidth. These
replicas are spread in a geographically distributed manner,
uniformly across five regions: N.Virginia, Stockholm, Tokyo,
Sydney, and N.California.

5.1.3 Performance metrics

Our evaluation focuses on two key metrics: end-to-end latency
and throughput. End-to-end latency is assessed as the average
time taken for a transaction to be committed, measured from
the moment it is submitted by the client to the moment it is
committed. Throughput is calculated as the number of com-
mitted transactions per second. Each experiment is conducted
over a duration of 5 minutes to report a stable performance.
We repeat each experiment three times and utilize error bars
or averages to mitigate experimental errors.

5.2 Trade-off between throughput and latency
In all experiments in this section, we set the number of repli-
cas to 16. By progressively increasing the rate at which clients
submit transactions, the system eventually becomes saturated.
Plotting each pair of latency and throughput produces a figure
that simultaneously demonstrates the latency under unsat-
urated conditions and the peak throughput under saturated
conditions. Experimental results are illustrated in Figure 6,
with throughput and latency on the x-axis and y-axis, respec-
tively. Each data point in the figure is marked with an error

bar, representing both the average and standard deviation of
the experimental results.

As shown in Figure 6a, when the optimistic path always
operates well, Aether attains low latency and high throughput,
comparable to Ditto and ParBFT.6 Notably, Ditto matches
a partially-synchronous protocol’s performance, as it adopts
the sequential-path paradigm and only runs the optimistic
path in this scenario. Thus, in favorable situations, Aether’s
performance is on par with a partially-synchronous protocol.

At the other end of the spectrum, when the optimistic
path always fails, as shown in Figure 6d, Aether still main-
tains good performance, slightly inferior to the purely asyn-
chronous protocol (two-chain VABA) but significantly better
than Ditto or ParBFT. In this scenario, Ditto takes a con-
siderable amount of time to switch between the failed opti-
mistic path and the pessimistic path, resulting in poor per-
formance. While ParBFT runs two paths concurrently, it
requires additional ABA instances to commit pess-blocks.
These ABA instances do not generate new blocks by them-
selves, leading to idle periods and reduced performance. In
contrast, Aether commits pess-blocks by consecutively run-
ning DBA instances, which can promptly detect the optimistic
path’s failure without introducing extra consensus instances,
thereby delivering superior performance.

In the intermediate scenarios, a protocol with an optimistic
path intermittently commits blocks through this path, lead-
ing to a blended result between the scenarios of ρ = 0 and
ρ = 100%. Regarding peak throughput, Aether consistently
outperforms others as illustrated in Figure 6b and Figure 6c.
In terms of latency, Aether and two-chain VABA consistently
demonstrate the lowest among these protocols.

To sum up, across all scenarios, Aether consistently attains
the (near-)best performance among all protocols. Specifically,
it achieves performance on par with partially-synchronous
protocols in favorable situations and on par with purely asyn-
chronous ones in unfavorable situations.

6Abraxas reports lower performance than expected, possibly due to its
implementation being based on an earlier version of Ditto.

10



0 25 50 75 100
Time (s)

0

2

5

8

10

12

Tr
an
sa
ct
io
ns
 (M

)

Abraxas
ParBFT
Aether
Two-chain VABA
Ditto

(a) ρ = 0

0 25 50 75 100
Time (s)

0

2

4

6

8

Tr
an
sa
ct
io
ns
 (M

)

Abraxas
ParBFT
Aether
Two-chain VABA
Ditto

(b) ρ = 10%

0 25 50 75 100
Time (s)

0

2

4

6

8

Tr
an
sa
ct
io
ns
 (M

)

Abraxas
ParBFT
Aether
Two-chain VABA
Ditto

(c) ρ = 20%

0 25 50 75 100
Time (s)

0

1

2

3

4

5

Tr
an
sa
ct
io
ns
 (M

)

Abraxas
ParBFT
Aether
Two-chain VABA
Ditto

(d) ρ = 100%
Figure 7: Throughput over time.

0 50 100 150 200
Transaction sequence number (K)

0

1

2

3

4

5

La
te
nc
y 
(s
)

Abraxas
ParBFT

Aether
Two-chain VABA

Ditto

(a) ρ = 0

0 50 100 150 200
Transaction sequence number (K)

0

2

4

6

8

10

La
te

nc
y 

(s
)

Abraxas
ParBFT

Aether
Two-chain VABA

Ditto

(b) ρ = 10%

0 50 100 150 200
Transaction sequence number (K)

0.0

2.5

5.0

7.5

10.0

12.5

La
te
nc
y 
(s
)

Abraxas
ParBFT

Aether
Two-chain VABA

Ditto

(c) ρ = 20%

0 50 100 150 200
Transaction sequence number (K)

0

2

4

6

8

10

La
te

nc
y 

(s
)

Abraxas
ParBFT

Aether
Two-chain VABA

Ditto

(d) ρ = 100%
Figure 8: Latency over the transaction sequence numbers.

5.3 Throughput stability
In this section, we continue to use 16 replicas. Our experi-
ments are specifically conducted at each system’s saturation
point, where a system achieves its peak throughput without
significant deterioration in latency. At this point, the system
can reliably sustain high throughput.

Starting from the moment the system reaches the satura-
tion point, we record the accumulated number of committed
transactions over time. More precisely, each time a new block
is committed, we record the current time and calculate the
number of committed transactions by counting in transactions
included in this block. We also explore four scenarios with
varying values of ρ, whose results are depicted in Figure 7.

In the ρ = 0 scenario, all protocols exhibit stable through-
put, as evidenced by the smooth curves in Figure 7a. This is
expected, as the two-chain VABA protocol continuously com-
mits blocks through the two-chain instances, while other pro-
tocols steadily commit blocks through the optimistic path. On
the other hand, in the ρ = 100% scenario, two-chain VABA,
ParBFT, and Aether can maintain stable throughput, as shown
in Figure 7d. However, Ditto and Abraxas display unstable
throughput, as indicated by the jagged curves. This instability
arises from the extended periods required for Ditto to com-
plete the path switch and for Abraxas to wait for a minimum of
λ pess-blocks, during which no blocks are being committed.

In the ρ = 10% or ρ = 20% scenario, all protocols except
VABA exhibit less stable throughput as they alternate between
committing blocks through the optimistic path and the pes-
simistic path. Nevertheless, Aether continues to showcase
superior stability than Abraxas and Ditto.

5.4 Latency stability

Latency stability holds significant importance for upper-layer
applications, as unstable latency can result in poor user ex-
perience. We evaluate latency stability by recording each
transaction’s latency. These experiments are also conducted
with 16 replicas and at each system’s saturation point.

Experimental results are depicted in Figure 8. In the ρ = 0
scenario (Figure 8a), all protocols exhibit stable latency. In the
ρ = 100% scenario (Figure 8d), Aether maintains relatively
stable latency by committing pess-blocks through successive
DBA instances. While Aether’s latency deviation is slightly
larger than that of two-chain VABA, it is more stable than
others. Aether’s slightly larger deviation than VABA can be
attributed to the fact that, within an epoch, pess-blocks gen-
erated in the second-to-last DBA instance are not committed
until the final DBA instance outputs, resulting in higher la-
tency for these pess-blocks. In contrast, Abraxas displays
significant latency fluctuations due to its lookback mecha-
nism, where blocks generated in the initial two-chain instance
must wait for the production of λ subsequent blocks. ParBFT
and Ditto both exhibit notable latency instability, because
their respective ABA instances and path-switch mechanisms
introduce large latency variations.

In the ρ = 10% (Figure 8b) and ρ = 20% (Figure 8c) sce-
narios, Aether and VABA still maintain stable latency, with
fluctuation significantly lower than other protocols.

11



7 16 40 80
Number of replicas

0

25

50

75

100

125

Th
ro
ug

hp
ut
 (K

 tx
/s
)

Abraxas
ParBFT

Aether
Two-chain VABA

Ditto

(a) ρ = 0

7 16 40 80
Number of replicas

0

20

40

60

80

Th
ro
ug
hp
ut
 (K

 tx
/s
)

Abraxas
ParBFT

Aether
Two-chain VABA

Ditto

(b) ρ = 10%

7 16 40 80
Number of replicas

0

20

40

60

80

Th
ro
ug
hp
ut
 (K

 tx
/s
)

Abraxas
ParBFT

Aether
Two-chain VABA

Ditto

(c) ρ = 20%

7 16 40 80
Number of replicas

0

10

20

30

40

50

Th
ro
ug

hp
ut
 (K

 tx
/s
)

Abraxas
ParBFT

Aether
Two-chain VABA

Ditto

(d) ρ = 100%
Figure 9: Throughput vs. system size.

5.5 Scalability evaluation
We comprehensively evaluated scalability across various pro-
tocols, analyzing their throughput under varying numbers of
replicas: 7 replicas, 16 replicas, 40 replicas, and 80 replicas.
Throughput measurements were specifically taken at the satu-
ration point. Additionally, experiments were conducted with
different probabilities of leader replicas, whose results are
shown in Figure 9.

As depicted in Figure 9a, Aether, alongside ParBFT,
achieves a high throughput when leaders on the optimistic
path keep performing well. Notably, in the case of 40 or 80
replicas, they exhibit a slightly lower throughput compared to
Ditto, potentially attributed to their elevated communication
overhead O(n2), stemming from the parallel pessimistic path.
In scenarios where the optimistic path fails to function, as
illustrated in Figure 9d, Aether consistently maintains high
throughput comparable to two-chain VABA, across different
replica counts. When leaders on the optimistic path fail with a
probability of 10% or 20%, Aether outperforms all other pro-
tocols under varying system sizes, as evidenced by Figure 9b
or Figure 9c. In summary, Aether consistently demonstrates
excellent scalability across diverse probabilities of leader fail-
ures.

6 Related Work
We summarize asynchronous BFT protocols in this section
and defer the discussion of (partially-)synchronous protocols
to Appendix C.

The simplest form of asynchronous BFT is ABA, which
reaches agreements on binary values [1,44,48,52]. VABA and
MVBA instead focus on agreeing on arbitrary values [2,14,26,
42]. Building upon ABA or VABA, Asynchronous Common
Subset (ACS) and SMR can be constructed [21, 32, 43, 57].

Despite efforts to enhance the performance of asyn-
chronous protocols, a performance gap persists when com-
pared to partially-synchronous protocols. To address this gap,
a series of works introduce an optimistic path to asynchronous
protocols, categorized into two paradigms: sequential-path
and parallel-path. The sequential-path paradigm executes the
optimistic and pessimistic path in sequence [7,37,49], necessi-

tating path switches [27,41]. These switches delay the launch
of the pessimistic path and affect performance in unfavorable
situations. To overcome this, the parallel-path paradigm, ex-
emplified by Abraxas [11] and ParBFT [17], launches two
paths simultaneously, avoiding the need for path switches.
However, while Abraxas achieves high throughput in all situ-
ations, it suffers from high latency under unfavorable situa-
tions. In contrast, ParBFT consistently delivers low latency
but suffers from reduced throughput in unfavorable situations.
Aether proposed in this paper achieves both high throughput
and low latency in both favorable and unfavorable situations.

Another class of protocols [18,35,50] leverages a Directed
Acyclic Graph (DAG)-based approach. These protocols, how-
ever, inherently suffer from O(n2L + n3κ) communication
overhead, rendering them less scalable compared to many
previously discussed protocols. Besides, these approaches
generally depend on multiple rounds of Reliable Broadcast
(RBC) to achieve consensus, resulting in high latency. For
instance, DAGRider and Tusk require latencies of 12δ and 9δ,
respectively, even under favorable situations. BullShark [51],
a noteworthy DAG-based protocol, also introduces an opti-
mistic path to enhance performance. In favorable situations,
it requires two sequential RBCs to commit, incurring a la-
tency of 6δ, slightly larger than the 5δ offered by a partially-
synchronous protocol (e.g., two-chain HotStuff) or our Aether.
However, it has a complex process of transitioning to the
pessimistic path in unfavorable situations, resulting in an ex-
pected latency of 30δ due to 10 sequential RBCs. This is
significantly higher than the 10.5δ typical of purely asyn-
chronous protocols (e.g., two-chain VABA) or 18.5δ offered
by Aether.

7 Conclusion
Existing dual-path asynchronous BFT protocols exhibit either
low throughput or high latency under unfavorable situations.
To address this, we propose a novel protocol named Aether,
which executes consecutive DBA instances on the pessimistic
path. DBA operates as a fusion of biased ABA and VABA,
which can be implemented through low-cost modifications
to existing VABA protocols. On one hand, DBA promptly

12



detects optimistic path failures, ensuring low latency under
unfavorable situations. On the other hand, Aether leverages
DBA instances to continuously produce blocks without idle
periods, thereby achieving high throughput in unfavorable
situations. In summary, Aether attains performance on par
with partially-synchronous protocols under favorable situa-
tions and comparable to purely asynchronous protocols in
unfavorable situations, as demonstrated by our experiments.

References

[1] Ittai Abraham, Naama Ben-David, and Sravya Yan-
damuri. Efficient and adaptively secure asynchronous
binary agreement via binding crusader agreement. In
Proceedings of the 2022 ACM Symposium on Principles
of Distributed Computing, pages 381–391. ACM, 2022.

[2] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik
Nayak, and Ling Ren. Synchronous byzantine agree-
ment with expected o (1) rounds, expected communica-
tion, and optimal resilience. In Proceedings of the 23rd
International Conference on Financial Cryptography
and Data Security, pages 320–334. Springer, 2019.

[3] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren,
and Maofan Yin. Sync hotstuff: Simple and practical
synchronous state machine replication. In Proceedings
of the 41st IEEE Symposium on Security and Privacy,
pages 106–118. IEEE, 2020.

[4] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegel-
man. Asymptotically optimal validated asynchronous
byzantine agreement. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing,
pages 337–346. ACM, 2019.

[5] Mohammad Javad Amiri, Chenyuan Wu, Divyakant
Agrawal, Amr El Abbadi, Boon Thau Loo, and Moham-
mad Sadoghi. The bedrock of byzantine fault tolerance:
A unified platform for {BFT} protocols analysis, im-
plementation, and experimentation. In 21st USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 24), pages 371–400, 2024.

[6] Diogo S Antunes, Afonso N Oliveira, André Breda,
Matheus Guilherme Franco, Henrique Moniz, and Ro-
drigo Rodrigues. {Alea-BFT}: Practical asynchronous
byzantine fault tolerance. In 21st USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 24), pages 313–328, 2024.

[7] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Kneže-
vić, Vivien Quéma, and Marko Vukolić. The next 700
bft protocols. ACM Transactions on Computer Systems,
32(4):1–45, 2015.

[8] Renas Bacho and Julian Loss. On the adaptive security
of the threshold bls signature scheme. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 193–207, 2022.

[9] Imran Bashir. Mastering Blockchain. Packt Publishing
Ltd, 2017.

[10] Michael Ben-Or. Another advantage of free choice:
Completely asynchronous agreement protocols. In Pro-
ceedings of the 2nd Annual ACM Symposium on Prin-
ciples of Distributed Computing, pages 27–30. ACM,
1983.

[11] Erica Blum, Jonathan Katz, Julian Loss, Kartik Nayak,
and Simon Ochsenreither. Abraxas: Throughput-
efficient hybrid asynchronous consensus. In Proceed-
ings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, page 519–533. ACM,
2023.

[12] Ethan Buchman. Tendermint: Byzantine Fault Tolerance
in the Age of Blockchains. PhD thesis, University of
Guelph, 2016.

[13] Vitalik Buterin and Virgil Griffith. Casper the friendly
finality gadget. arXiv preprint arXiv:1710.09437, 2017.

[14] Christian Cachin, Klaus Kursawe, Frank Petzold, and
Victor Shoup. Secure and efficient asynchronous broad-
cast protocols. In Proceedings of the 2001 Annual
International Cryptology Conference, pages 524–541.
Springer, 2001.

[15] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance. In Proceedings of the 1999 USENIX
Symposium on Operating Systems Design and Imple-
mentation, pages 173–186. USENIX, 1999.

[16] Xiaohai Dai, Liping Huang, Jiang Xiao, Zhaonan Zhang,
Xia Xie, and Hai Jin. Trebiz: Byzantine fault toler-
ance with byzantine merchants. In Proceedings of the
38th Annual Computer Security Applications Confer-
ence, pages 923–935. ACM, 2022.

[17] Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren. Parbft:
Faster asynchronous bft consensus with a parallel opti-
mistic path. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security,
page 504–518. ACM, 2023.

[18] George Danezis, Lefteris Kokoris-Kogias, Alberto Son-
nino, and Alexander Spiegelman. Narwhal and tusk: A
dag-based mempool and efficient bft consensus. In Pro-
ceedings of the 17th European Conference on Computer
Systems, pages 34–50. ACM, 2022.

13



[19] Danny Dolev, Michael J Fischer, Rob Fowler, Nancy A
Lynch, and H Raymond Strong. An efficient algorithm
for byzantine agreement without authentication. Infor-
mation and Control, 52(3):257–274, 1982.

[20] Sisi Duan, Michael K. Reiter, and Haibin Zhang. Beat:
Asynchronous bft made practical. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 2028–2041. ACM, 2018.

[21] Sisi Duan, Xin Wang, and Haibin Zhang. Fin: Practical
signature-free asynchronous common subset in constant
time. In Proceedings of the 2023 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
815–829, 2023.

[22] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Consensus in the presence of partial synchrony. Journal
of the ACM, 35(2):288–323, 1988.

[23] M Fischer, R Fowler, and N Lynch. A simple and ef-
ficient byzantine generals algorithm. In Proceedings,
Second Symposium on Reliability in Distributed Soft-
ware and Database Systems, Pittsburgh, 1982.

[24] Michael J. Fischer, Nancy A. Lynch, and Michael S.
Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382,
1985.

[25] Roy Friedman, Achour Mostefaoui, and Michel Raynal.
Simple and efficient oracle-based consensus protocols
for asynchronous byzantine systems. IEEE Transac-
tions on Dependable and Secure Computing, 2(1):46–56,
2005.

[26] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing
Xu, and Zhenfeng Zhang. Dumbo-ng: Fast asyn-
chronous bft consensus with throughput-oblivious la-
tency. In Proceedings of the 2022 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
1187–1201. ACM, 2022.

[27] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Son-
nino, Alexander Spiegelman, and Zhuolun Xiang.
Jolteon and ditto: Network-adaptive efficient consensus
with asynchronous fallback. In Proceedings of the 2022
International Conference on Financial Cryptography
and Data Security, pages 296–315. Springer, 2022.

[28] Neil Giridharan, Florian Suri-Payer, Ittai Abraham,
Lorenzo Alvisi, and Natacha Crooks. Motorway: Seam-
less high speed bft. arXiv preprint arXiv:2401.10369,
2024.

[29] Neil Giridharan, Florian Suri-Payer, Matthew Ding,
Heidi Howard, Ittai Abraham, and Natacha Crooks.
Beegees: stayin’alive in chained bft. In Proceedings of

the 2023 ACM Symposium on Principles of Distributed
Computing, pages 233–243, 2023.

[30] Guy Golan Gueta, Ittai Abraham, Shelly Grossman,
Dahlia Malkhi, Benny Pinkas, Michael Reiter, Dragos-
Adrian Seredinschi, Orr Tamir, and Alin Tomescu. Sbft:
A scalable and decentralized trust infrastructure. In
Proceedings of the 49th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Net-
works, pages 568–580. IEEE, 2019.

[31] Bingyong Guo, Yuan Lu, Zhenliang Lu, Qiang Tang,
Jing Xu, and Zhenfeng Zhang. Speeding dumbo: Push-
ing asynchronous bft closer to practice. Cryptology
ePrint Archive, 2022.

[32] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu,
and Zhenfeng Zhang. Dumbo: Faster asynchronous bft
protocols. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security,
pages 803–818. ACM, 2020.

[33] Timo Hanke, Mahnush Movahedi, and Dominic
Williams. Dfinity technology overview series, con-
sensus system. arXiv preprint arXiv:1805.04548,
2018.

[34] Mohammad M Jalalzai, Jianyu Niu, Chen Feng, and
Fangyu Gai. Fast-hotstuff: A fast and robust bft protocol
for blockchains. IEEE Transactions on Dependable and
Secure Computing, 2023.

[35] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and
Alexander Spiegelman. All you need is dag. In Pro-
ceedings of the 2021 ACM Symposium on Principles of
Distributed Computing, pages 165–175. ACM, 2021.

[36] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: Speculative
byzantine fault tolerance. In Proceedings of 21st ACM
SIGOPS Symposium on Operating Systems Principles,
pages 45–58. ACM, 2007.

[37] Klaus Kursawe and Victor Shoup. Optimistic asyn-
chronous atomic broadcast. In Proceedings of the 32nd
International Colloquium on Automata, Languages and
Programming, pages 204–215. Springer, 2005.

[38] Leslie Lamport, Robert Shostak, and Marshall Pease.
The byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4(3):382–401,
1982.

[39] Benoît Libert, Marc Joye, and Moti Yung. Born and
raised distributively: Fully distributed non-interactive
adaptively-secure threshold signatures with short shares.
In Proceedings of the 2014 ACM symposium on Princi-
ples of distributed computing, pages 303–312, 2014.

14



[40] Jian Liu, Wenting Li, Ghassan O. Karame, and Nadara-
jah Asokan. Scalable byzantine consensus via hardware-
assisted secret sharing. IEEE Transactions on Comput-
ers, 68(1):139–151, 2018.

[41] Yuan Lu, Zhenliang Lu, and Qiang Tang. Bolt-dumbo
transformer: Asynchronous consensus as fast as the
pipelined bft. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security,
pages 2159–2173. ACM, 2022.

[42] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang.
Dumbo-mvba: Optimal multi-valued validated asyn-
chronous byzantine agreement, revisited. In Proceed-
ings of the 39th ACM Symposium on Principles of Dis-
tributed Computing, pages 129–138. ACM, 2020.

[43] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and
Dawn Song. The honey badger of bft protocols. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 31–42.
ACM, 2016.

[44] Achour Mostéfaoui, Hamouma Moumen, and Michel
Raynal. Signature-free asynchronous byzantine consen-
sus with t< n/3 and o (n2) messages. In Proceedings of
the 2014 ACM Symposium on Principles of Distributed
Computing, pages 2–9. ACM, 2014.

[45] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. Decentralized Business Review, page
21260, 2008.

[46] Jianyu Niu, Fangyu Gai, Mohammad M Jalalzai, and
Chen Feng. On the performance of pipelined hotstuff. In
IEEE INFOCOM 2021-IEEE Conference on Computer
Communications, pages 1–10. IEEE, 2021.

[47] Marshall Pease, Robert Shostak, and Leslie Lamport.
Reaching agreement in the presence of faults. Journal
of the ACM, 27(2):228–234, 1980.

[48] Michael O. Rabin. Randomized byzantine generals. In
Proceedings of the 24th Annual Symposium on Founda-
tions of Computer Science, pages 403–409. IEEE, 1983.

[49] HariGovind V. Ramasamy and Christian Cachin. Parsi-
monious asynchronous byzantine-fault-tolerant atomic
broadcast. In Proceedings of the 2005 International
Conference On Principles Of Distributed Systems, pages
88–102. Springer, 2005.

[50] Maria A. Schett and George Danezis. Embedding a de-
terministic bft protocol in a block dag. In Proceedings of
the 2021 ACM Symposium on Principles of Distributed
Computing, pages 177–186. ACM, 2021.

[51] Alexander Spiegelman, Neil Giridharan, Alberto Son-
nino, and Lefteris Kokoris-Kogias. Bullshark: Dag bft
protocols made practical. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 2705–2718. ACM, 2022.

[52] Sam Toueg. Randomized byzantine agreements. In Pro-
ceedings of the 3rd Annual ACM Symposium on Princi-
ples of Distributed Computing, pages 163–178. ACM,
1984.

[53] Xin Wang, Sisi Duan, James Clavin, and Haibin Zhang.
Bft in blockchains: From protocols to use cases. ACM
Computing Surveys, 54(10):1–37, 2022.

[54] Yang Xiao, Ning Zhang, Wenjing Lou, and Y. Thomas
Hou. A survey of distributed consensus protocols for
blockchain networks. IEEE Communications Surveys &
Tutorials, 22(2):1432–1465, 2020.

[55] Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram
Kannan, and David Tse. {DispersedLedger}:{High-
Throughput} byzantine consensus on variable band-
width networks. In 19th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 22),
pages 493–512, 2022.

[56] Maofan Yin, Dahlia Malkhi, Michael K. Reiter,
Guy Golan Gueta, and Ittai Abraham. Hotstuff: Bft
consensus with linearity and responsiveness. In Pro-
ceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, pages 347–356. ACM, 2019.

[57] Haibin Zhang and Sisi Duan. Pace: Fully parallelizable
bft from reproposable byzantine agreement. In Proceed-
ings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 3151–3164, 2022.

[58] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping
Chen, and Huaimin Wang. Blockchain challenges and
opportunities: A survey. International Journal of Web
and Grid Services, 14(4):352–375, 2018.

A Correctness Analysis of AlgDBA

In this section, we prove our AlgDBA construction adheres
to all the properties outlined in Section 3.1.

A.0.1 Agreement, quality, and external validity

These properties of AlgDBA are derived directly from VABA.

A.0.2 Termination

AlgDBA’s termination property is stated in Theorem 2, sup-
ported by Lemma 1.

15



LEMMA 1. Every non-faulty replica will receive either t+1
values of 0 or n− t values of 1 during the first communication
round in AlgDBA.

Proof. This is established through two cases.
Case 1: At least one non-faulty replica has the binary

input of 0. In this case, each non-faulty replica will receive a
message containing 0. According to Lines 6-8 in Algorithm 1,
each non-faulty replica will also broadcast a message with
0 if it has not yet broadcast this message. Therefore, each
non-faulty replica will eventually receive t + 1 values of 0
during the first round.

Case 2: Every non-faulty replica has a binary input of 1.
Here, each non-faulty replica broadcasts a message containing
1, leading to each receiving n− t values of 1.

THEOREM 2. AlgDBA achieves termination.

Proof. Based on Lemma 1, every non-faulty replica can gen-
erate a valid input for VABA. Following the termination prop-
erty of VABA, all non-faulty replicas will eventually produce
an output from VABA and thus from AlgDBA.

A.0.3 Proof validity

Suppose by contradiction a non-faulty replica outputs ⟨0,∗⟩,
but no replica inputs 0 with a valid proof σ. In such a case,
no one can receive t + 1 messages containing 0 to create a
valid signature sig0 or form a valid input of 0 to VABA, as
described in Lines 9-12 in Algorithm 1. Thus, the binary
output from VABA or AlgDBA cannot be 0, contradicting the
initial assumption.

A.0.4 Biased validity

If at least t+1 non-faulty replicas input ⟨0,∗⟩, it implies that at
most n− t−1 replicas, whether non-faulty or Byzantine, will
input ⟨1,∗⟩. Hence, the condition in Line 13 of Algorithm 1
will not be met. Even a Byzantine replica cannot forge a valid
threshold signature on 1. Therefore, every replica, whether
non-faulty or Byzantine, can only input a tuple containing
the bit 0 to VABA. This ensures that the output from VABA
and AlgDBA will contain the bit 0, thus guaranteeing biased
validity.

B Analysis of Aether

Our analysis of Aether covers two main aspects: correct-
ness and efficiency. Correctness analysis examines whether
Aether fulfills SMR’s three properties, namely consistency,
liveness, and completeness.

B.1 Consistency analysis
To aid presentation, we denote an iteration of the loop (Lines
13-29 in Algorithm 3) with the parameter h as iterh. Theorem
8 addresses the consistency property, supported by Lemmas
3, 4, 5, 6, and 7.

LEMMA 3. If a non-faulty replica concludes an epoch in
the iteration iterh, all non-faulty replicas will also conclude
that epoch in iterh.

Proof. If a non-faulty replica concludes an epoch in iterh,
it implies that DBAh outputs 1. According to DBA’s biased-
validity property, at least n−2t non-faulty replicas must have
inputted 1 to DBAh. Consequently, as per the rules of Case 2.1,
these n−2t non-faulty replicas must have stopped voting for
the opt-block Bh. This means no valid QCh can be generated,
and no valid Bh+1 can be constructed, effectively stopping on
the optimistic path. On the other hand, a replica will input
to DBAh+1 only after DBAh outputs. Based on DBA’s agree-
ment property, every non-faulty replica will output 1 from
DBAh and consequently conclude the epoch in iterh.

LEMMA 4. Within an epoch, if a non-faulty replica commits
an opt-block at height h and another non-faulty replica output
b from DBAh+1, then b must be 0.

Proof. We assume these two non-faulty replicas to be pi and
p j where pi commits an opt-block Bh and p j receives b from
DBAh+1. Bh must be committed through the rules of either
Case 1 or Case 2.1 in Section 4.3. If it is Case 1, at least
n− t replicas, among which n−2t are non-faulty, must have
voted for Bh+1. This implies that at least n− 2t non-faulty
replicas would use 0 as the binary input to DBAh+1. Since
n−2t ≥ t +1, the biased validity ensures DBAh+1 outputs a
binary value of 0. If Bh is committed through Case 2.1, based
on DBA’s agreement property, p j would also receive a binary
output of 0 from DBAh+1.

LEMMA 5. Within an epoch, if two non-faulty replicas
commit two blocks at the same height, then either both two
blocks are opt-blocks, or both are pess-blocks.

Proof. We prove this lemma via contradiction. Without loss
of generality, assume two non-faulty replicas pi and p j com-
mit opt-block Bh and pess-block Ch, respectively. Based on
Lemma 4, p j will receive 0 from DBAh+1 if it receives an out-
put at all. According to the protocol described in Section 4.3,
p j must commit a pess-block Ch−1 or Ch+1. We consider the
following two situations:

Situation 1: p j commits Ch and Ch+1. Per the rules of
Case 2.2, p j must receive a binary output of 1 from DBAh+1,
contradicting the earlier conclusion that DBAh+1 outputs 0.

Situation 2: p j commits Ch−1 and Ch. Per the rules of
Case 2.2, p j must receive a binary output of 1 from DBAh.
With the biased-validity property, at least n− 2t non-faulty

16



replicas must have inputted 1 to DBAh. Thus, per the rules of
Case 2.1, these replicas would stop voting for the opt-block
Bh, preventing the generation of a valid QCh or Bh+1. This
makes it impossible for pi to commit Bh through Case 1. Ad-
ditionally, p j will conclude the current epoch in iteration iterh.
By Lemma 3, all non-faulty replicas will conclude the epoch
in iterh without inputting to DBAh+1, making it impossible
for pi to commit Bh through Case 2.1. This contradicts the
assumption that pi commits an opt-block Bh.

Therefore, it is impossible for one non-faulty replica to
commit an opt-block and the other to commit a pess-block at
the same height, establishing the lemma.

LEMMA 6. Within an epoch, if two non-faulty replicas
commit two blocks at the same height, these two blocks must
be identical.

Proof. Per Lemma 5, either both blocks are opt-blocks, or
both are pess-blocks. If they are pess-blocks, then according to
DBA’s agreement property, these two blocks must be identical.
Now, we consider the situation where both are opt-blocks.

As described in Section 4.3, an opt-block Bh is committed
through either Case 1 or Case 2.1. If Bh is committed through
Case 1, a QC for Bh must be generated. If Bh is commit-
ted through Case 2.1, DBAh+1 must produce an output Oh+1
where Oh+1.b = 0 and Oh+1.d = Bh. By DBA’s proof validity
property, a replica must have input a valid tuple ⟨0,σ,∗⟩ to
DBAh+1, where σ is the QC for Bh. In short, if an opt-block
is committed, it must be certified by a QC.

Let the two committed opt-blocks be Bh and B′h, certified by
QCh and QC′h, respectively. By a standard quorum intersection
argument on QC and QC′, we have Bh = B′h.

LEMMA 7. If two non-faulty replicas conclude the same
epoch, they must commit the same number of blocks within
that epoch.

Proof. Based on Lemma 3, these two replicas must conclude
the epoch in the same iteration, which we denote as iterl .
According to Algorithm 3, both replicas must receive 1 from
DBAl . Since every non-faulty replica inputs 0 to DBA1 (as
stated in Line 5 of Algorithm 3), the biased-validity property
ensures that DBA1 will output 0. Consequently, l must be
equal to or greater than 2. Additionally, both replicas must
have received 0 from the preceding DBA instance DBAl−1.

At any height k, where 1≤ k≤ l-2, both replicas commit an
opt-block Bk. At heights l-1 and l, they commit a pess-block,
Cl−1 or Cl , respectively. Therefore, these two replicas commit
the same number of blocks in that epoch.

THEOREM 8 (CONSISTENCY). For two non-faulty replicas
pi and p j, if Ci[k] ̸=⊥ and C j[k] ̸=⊥, then Ci[k] = C j[k].

Proof. Lemma 7 states that the epoch in which pi commits
Ci[k] must be the same as the epoch where p j commits C j[k].
Furthermore, within that epoch, the height at which pi com-
mits Ci[k] must be the same as the height where p j commits
C j[k]. In other words, pi and p j commit Ci[k] and C j[k] at the
same height within the same epoch. According to Lemma 6,
Ci[k] and C j[k] must be identical.

B.2 Liveness analysis
We say the protocol concludes an epoch if any non-faulty
replica concludes it. By Lemma 3, non-faulty replicas agree
on the number of iterations in each epoch. A transaction is
considered committed if it is included in a committed block.

As described in Section 2.2, each replica’s buffer arranges
pending transactions in the order of their reception times.
Therefore, a unique index k, starting from 1, is assigned to
each transaction within buf i. Each time a block is committed,
any transaction included in this block will be removed from
buf i, and the indices of remaining transactions are adjusted
downwards. Recall that in Section 2.2, the maximum transac-
tion count in a block is denoted as c. For a given transaction
tx in replica pi’s buffer, the committing of pi’s newly pro-
posed block results in one of two outcomes for tx: either tx
is included within the block and becomes committed, or the
index of tx decreases by c. To unify the two cases, we define
that when tx’s index becomes 0 or negative, tx is committed.

Consider the moment when tx enters the buffer of every
non-faulty replica and suppose tx is placed at index ki in
replica pi’s buffer. Whenever an index ki falls to 0 or below,
tx is committed by pi. Let K represent the sum of tx’s indices
in the buffers of all non-faulty replicas, expressed as K =

∑pi∈H ki, where H is the set of non-faulty replicas. It follows
naturally that each time a block from a non-faulty replica is
committed, K decreases.

The liveness property is outlined in Theorem 10, whose
proof relies on Lemma 9.

LEMMA 9. If a non-faulty replica commits a block, every
non-faulty replica will eventually commit this block.

Proof. Without loss of generality, assume that a non-faulty
replica pi commits a block B. If B is a pess-block, it must be
committed through an output of 0 from DBA. By the termina-
tion property of DBA, each non-faulty replica will output 0
and commit B.

If B is an opt-block, assume pi commits B at height h during
an epoch. According to Line 19 in Algorithm 3, pi will broad-
cast B, and each non-faulty replica will eventually receive B.
For another non-faulty replica p j, we consider the following
two cases. If p j receives Bh+2 before Ch+1, then p j will also
commit B through the two-chain rule. Otherwise, namely if
p j receives Ch+1 before Bh+2, it must receive a binary output
from DBAh+1. According to Lemma 4, this binary output
must be 0, which directs p j to commit B.

17



THEOREM 10 (LIVENESS). If a transaction tx is added to
every non-faulty replica’s buffer, every non-faulty replica will
eventually commit a block containing tx.

Proof. Let T0 denote the moment when tx is added to every
non-faulty replica’s buffer. Let u = ⌈K/c⌉. Two situations
unfold:

Situation 1: At least u non-faulty opt-blocks proposed
after T0 are committed within an epoch. Each time a non-
faulty opt-block is committed, K will be reduced by c. There-
fore, after u non-faulty opt-blocks are committed, K will be
reduced by c · u. Since u = ⌈K/c⌉, K− u · c ≤ 0. As K rep-
resents the sum of all indices of tx in non-faulty replicas’
buffers, at least one index is negative or 0, indicating that tx is
committed by some non-faulty replica. Denote this non-faulty
replica as pi which commits a block B containing tx. Accord-
ing to Lemma 9, each non-faulty replica will also commit
B.

Situation 2: Less than u non-faulty opt-blocks proposed
after T0 are committed within each epoch. In this situation,
each epoch is concluded after some opt-blocks and two pess-
blocks are committed. DBA’s quality property ensures that
the probability of the outputted pess-block being proposed by
a non-faulty replica is over 1/2. Similar to Situation 1, each
time a non-faulty pess-block is committed, K will be reduced
by c. As the epochs advance, the probability that at least u
non-faulty pess-blocks being committed will approach 1. In
other words, K will keep decreasing and eventually become
negative or 0. Thus, tx will eventually be committed by some
non-faulty replica. By Lemma 9, every non-faulty replica will
also commit tx.

B.3 Completeness Analysis
THEOREM 11 (COMPLETENESS). For each index k (k ≥ 1)
and each non-faulty replica pi, either buf i remains forever
empty or eventually Ci[k] ̸=⊥.

Proof. If no new transactions are input by clients, buf i will
remain forever empty, thereby validating the theorem. Next,
we consider the situation where transactions are continuously
input by clients.

For a given transaction tx, according to the established live-
ness property, each non-faulty replica will eventually commit
a block that contains tx. Consequently, when transactions are
continuously input, each non-faulty replica will keep commit-
ting new blocks. Since blocks are committed sequentially, for
every index k (k ≥ 1), Ci[k] will eventually be non-empty.

To sum up, the completeness property is established.

B.4 Efficiency analysis
Recall that δ denotes the actual network delay, while c and L
represent the maximum transaction count and block size of a
block, respectively. Besides, we assume the size of shares and

signatures to all have length κ. Our analysis focuses on the
efficiency of Aether when employing sMVBA [31] to con-
struct AlgDBA. Inspired by AMS-VABA [4] and two-chain
VABA [27], we introduce two improvements to sMVBA.
Firstly, we reduce its view-change phase from two communi-
cation rounds to just one, in a manner akin to AMS-VABA [4],
effectively reducing its expected worst-case latency to 10.5
rounds. Secondly, we require each replica to broadcast a block
within the second Provable Broadcast (PB) instance. For clar-
ity, we refer to these blocks as PB2-blocks. Accordingly, orig-
inal pess-blocks proposed in the first PB instance are termed
PB1-blocks. When a replica commits the PB1-block proposed
by the view leader (distinct from the leader of Aether’s op-
timistic path), it must have received a QC for this leader’s
PB2-block. The replica will include this QC in its PB1-block
in the subsequent sMVBA/AlgDBA instance, leading to a
chain of blocks across sMVBA/AlgDBA instances, similar to
two-chain VABA [27]. This way, committing a PB1-block in
an AlgDBA will also commit a PB2-block from the preceding
AlgDBA, thus improving DBA’s throughput.

Favorable situation. In a favorable situation, blocks are
continuously committed through the optimistic path. Every
2δ interval, a new opt-block is produced, and a block from
two heights prior is committed. This process results in a
throughput of c/(2δ) and a latency of 5δ. Even in this favor-
able situation, both two paths are executed. On the optimistic
path, each replica will send signature shares to leaders and
broadcast its received opt-block, leading to a communication
overhead of O(n2L+ nκ). The pessimistic path consists of
consecutive AlgDBA instances, leading to an overhead of
O(n2L+n2κ). Therefore, total communication overhead in a
favorable situation is O(n2L+n2κ).

Unfavorable situation. In an unfavorable situation, only
two AlgDBA instances produce outputs per epoch. For sim-
plicity, we refer to them as AlgDBA1 and AlgDBA2, respec-
tively. As AlgDBA is constructed as an extension of sMVBA
with an additional communication round, its expected worst-
case latency is 11.5 rounds. At the end of an epoch, three
blocks are committed: two PB1-blocks generated in AlgDBA1
and AlgDBA2, respectively, and one PB2-block generated
in AlgDBA1. Consequently, the throughput is calculated as
3c/(11.5δ ·2) = 3c/(23δ). The latency for the first PB1-block
is 23δ, corresponding to the duration of two AlgDBA in-
stances. The PB2-block, proposed two rounds later than the
first PB1-block, has a latency of 21δ. The second PB1-block,
committed immediately upon the output of AlgDBA2, has a
latency of 11.5δ. Therefore, the average latency across these
blocks is (23δ+21δ+11.5δ)/3, which equals 18.5δ. As for
the communication overhead, the optimistic path in the unfa-
vorable situation fails to make progress. Therefore, its com-
munication overhead is that of the pessimistic path, which is
also O(n2L+n2κ).

18



C Additional Related Work

In this section, we summarize the additional related works
except in Section 6, specifically including the synchronous
BFT consensus and partially-synchronous BFT consensus.

C.1 Synchronous BFT consensus
Synchronous BFT consensus protocols are designed under
the network assumption that each message can be delivered
within a predefined period, denoted as ∆, after its transmis-
sion. Representatives in this category encompass many early
works [19, 23, 38, 47] as well as some recent studies [3, 33].
However, protocols designed for synchronous networks en-
counter a challenge in setting the right value for ∆. If ∆ is
set too small, the synchronous assumption becomes fragile.
Conversely, if ∆ is set too large, the resulting protocol will be
slow, as its performance must directly depend on ∆ [3].

C.2 Partially-synchronous BFT consensus
Given the FLP impossibility [24], which states that deter-
ministic fault-tolerant asynchronous consensus is impossible,
Dwork et al. propose an intermediate network assumption
called partial synchrony [22]. The partial synchrony model
assumes the network to be synchronous after an unknown
Global Stabilization Time (GST), which has been the main-
stream model for practical systems for a long time.

One of the most notable works adopting the partially-
synchronous assumption is PBFT [15]. Building on PBFT,
subsequent works aim to reduce consensus latency by intro-
ducing a fast committing path [16, 30, 36, 40]. Drawing inspi-
ration from the flourishing blockchain technology [45], struc-
tures like blocks and chains are incorporated into BFT con-
sensus to pipeline consecutive consensus instances, thereby
enhancing throughput. Example chained BFT consensus in-
clude Tendermint [12], Casper [13], and HotStuff [56]. Some
works [29, 46] address liveness issues in chained-BFT where
faulty leaders can prevent progress. Besides, Motorway con-
structs a data dissemination layer to improve throughput dur-
ing periods of bad networks [28]. Amiri et al. propose a uni-
fied platform named Bedrock for partially-synchronous BFT
protocols analysis, implementation, and experimentation [5].

Despite its popularity, the partially-synchronous protocols
have raised concerns about their robustness [20, 43]. An ad-
versary with network manipulation capacities can compro-
mise the liveness of a partially-synchronous protocol. Conse-
quently, a recent line of work is revisiting the asynchronous
network in response to these concerns [21, 32, 57].

19


	Introduction
	Asyn. protocols with an optimistic path
	Our solution

	Models And Preliminaries
	Model
	State machine replication
	(Biased) ABA
	VABA

	Building Block: DBA
	Definition of DBA
	Construction of DBA: AlgDBA
	AlgDBA protocol
	Relation to Cachin et al. cachin2001secure


	Aether Design
	Overview and intuition
	Design intuition
	Overall design

	Data structures and utilities
	Detailed design when h > 1
	Case 1: t1 < t2
	Case 2: t1 t2

	Detailed design when h = 1

	Implementation and Evaluation
	Implementation and experimental setup
	Implementation
	Experimental setup
	Performance metrics

	Trade-off between throughput and latency
	Throughput stability
	Latency stability
	Scalability evaluation

	Related Work
	Conclusion
	Correctness Analysis of AlgDBA
	Agreement, quality, and external validity
	Termination
	Proof validity
	Biased validity


	Analysis of Aether
	Consistency analysis
	Liveness analysis
	Completeness Analysis
	Efficiency analysis

	Additional Related Work
	Synchronous BFT consensus
	Partially-synchronous BFT consensus


