
Succinctly Verifiable Computation over
Additively-Homomorphically Encrypted Data:

Making Privacy-Preserving Blueprints Practical

Scott Griffy1, Markulf Kohlweiss2, Anna Lysyanskaya1, and Meghna Sengupta3

1 Brown University, {anna_lysyanskaya,scott_griffy}(at)brown.edu
2 University of Edinburgh and IOG, Edinburgh, markulf.kohlweiss(at)ed.ac.uk

3 University of Edinburgh, M.Sengupta-1(at)ed.ac.uk

Abstract. With additively homomorphic encryption (AHE), one can
compute, from input ciphertexts Enc(x1), . . . ,Enc(xn), and additional
inputs y1, . . . , yk, a ciphertext cf = Enc(f(x1, . . . , xn, y1, . . . , yk)) for any
polynomial f in which each monomial has total degree at most 1 in the x-
variables (but with arbitrary degree in the known y-variables). For AHE
that satisfies a set of natural requirements, we give a zero-knowledge
proof system for showing that a ciphertext cf is the result of homomorphi-
cally evaluating f on ciphertexts (c1, . . . , cn) = (Enc(x1), . . . ,Enc(xn))
and private inputs y1, . . . , yk that correspond to commitments C1, . . . , Ck

where the encrypted values, x1, . . . , xn are unknown to the prover. Our
proofs are succinct, i.e., their size is independent of the number of ci-
phertexts n, and is instead O(k log d) where k is the number of private
inputs, and d is the maximum degree of any variable in f .

We give two ways of instantiating this framework: with ElGamal-
based encryption (under the DDH assumption) and with a variant of
the Camenisch-Shoup cryptosystem (under the DCR and Strong RSA
assumptions). Both yield proof systems where computing and verifying
the proof takes a comparable amount of time to homomorphically eval-
uating f .

Next, we show that our framework yields a dramatically improved
privacy-preserving blueprint (PPB) system. Introduced by Kohlweiss,
Lysyanskaya, and Nguyen (Eurocrypt’23), an f -PPB system allows an
auditor with secret input x to create a public encoding pk of the function
f(x, ·) that reveals nothing about x. Yet, it allows a user to compute an
encoding, or escrow Z, of the value f(x, y) on input the user’s private
data y corresponding to a commitment Cy; Z will verifiably correspond
to the commitment Cy. The auditor will be able to recover f(x, y) from
Z, but will learn no other information about y. For example, if f is the
watchlist function where f(x, y) outputs y only in the event that y is on
the list x, then an f -PPB allows the auditor to trace watchlisted users
in an otherwise anonymous system.

Using our succinct zero-knowledge proof system for additively homo-
morphic computation we achieve the following results: (1) We provide
efficient schemes for a bigger class of functions f ; for example, we show
how to realize f that would allow the auditor to trace private payment

2 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

transactions of a criminal suspect which was previously not efficient. (2)
For the watchlist and related functions, we reduce the size of the escrow
Z from linear in the size of the auditor’s input x, to logarithmic. Addi-
tionally, we define and satisfy a stronger notion of security for f -PPBs,
where a malicious auditor cannot frame a user in a transaction in which
the user was not involved in.

Table of Contents

1 Introduction . 4
1.1 Our Framework for Verifiable Computation 7
1.2 Non-Frameability and Why It Matters . 10
1.3 Related Work and Efficiency Analysis . 11

2 Preliminaries . 12
2.1 Zero-knowledge Proofs of Knowledge . 13
2.2 Additively Homomorphic Encryption . 14
2.3 Privacy Preserving f -Blueprint Schemes (PPBs) 15

3 Succinct Proofs for Verifiable Secure Computation on Additively-
Homomorphic Ciphertexts . 16
3.1 Basic Building Blocks . 17
3.2 Efficient Proof System for Rf for k = 1 . 19
3.3 Proof System for Multivariate Polynomials 22

4 Instantiations of Commitments to Additively-Homomorphic
Ciphertexts . 22
4.1 Encryption Schemes . 23
4.2 Commitments to |QRn2 | and Camenisch-Shoup Ciphertexts 24

5 Applications of our Framework to Privacy-Preserving Blueprints 27
5.1 Non-Frameable Privacy-Preserving Blueprints 28
5.2 Instantiation of Consistent HEC Schemes . 32
5.3 Efficient Instantiation of HEC Evaluation Proof Ψ2 34

A Discussion on Non-frameability vs. Deniability . 41
B Full Definitions for Privacy Preserving f -Blueprint Schemes 42
C Additional preliminaries . 46

C.1 Motivation for BB-PSL . 46
C.2 Useful Lemmas for Composite-Order Groups 47
C.3 More eqrep relations and constructions . 48

D Additional HEC definitions, constructions, and proofs 54
D.1 Security Properties of HEC Scheme . 54
D.2 Multi-attribute HEC Scheme . 55
D.3 Constructions of HEC Schemes . 56

E Additional Constructions and Proofs of Security for RP , Rf , and Ψ2 . . 60
E.1 Proof of security for the RP proof system . 60
E.2 Proofs for the Ψ2 proof system . 62
E.3 Construction of NIZKs in Ψ2 Proof Scheme 63
E.4 Construction and proof of security for the Rf proof system 65

F Commitments to Ciphertexts . 66
F.1 Additional Notes and Proofs for Simplified Camenisch-Shoup . . . 66
F.2 Security Proof of Damgård-Fujisaki Commitments for G = Zn2 . . 68
F.3 Commitments to Gp Elements and ElGamal Ciphertexts 71
F.4 Proofs of Hiding and Binding for |QRn2 |-commitments in Fig. 4.3 75

4 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

F.5 Construction of Commitments to Camenisch-Shoup Ciphertexts . 76
F.6 Proofs for Commitments to Camenisch-Shoup Ciphertexts 76

1 Introduction

The need for privacy preserving blueprints. Not all citizens are lawful and
not all governments democratic, thus cryptographers have developed powerful
tools to trade off our fundamental need to protect our personal privacy with the
legitimate needs of systems and governments to enforce rules and laws and to reg-
ulate finance. Among these tools, anonymous credentials [Cha90,LRSW99,CL01],
[Lys02,CL02,CV02,CL04,BCL04,BL13,HS21,RWGM23,TZ23,HSS23] and related
technologies such as e-cash [CFN90] are prominent examples: such systems al-
low a user with a cryptographic commitment Cy to his data y to prove that y
is somehow certified by some authority or authorities; in the case of anonymous
payments, they further allow to prove that a payment transaction based on the
user’s private data y was executed correctly.

In a recent paper, Kohlweiss, Lysyanskaya and Nguyen (KLN) [KLN23] added
privacy-preserving blueprints (PPBs) to the repertoire of cryptographic algo-
rithms to depolarise privacy and accountability. In an f -PPB system, the goal
is to allow an authorized auditor to learn f(x, y) where x is the auditor’s secret
input that’s fixed once and for all, and y is a user’s secret input to a transaction;
if a PPB system is used in tandem with an anonymous credential system, y can
include meaningful information about the user’s identity. Via an appropriate
choice of f , an f -PPB system makes it possible to perform audits of the system
while leaking no information other than what’s leaked by f . For example, for x
representing a watchlist of suspected criminals, let fwatchlist be defined as fol-
lows: fwatchlist(x, y) = y if y is on the list x, and ⊥ otherwise. An fwatchlist -PPB
would allow the auditor to trace all of the suspects’ transactions, but none of
the transactions of other people. A PPB further requires that the secret x cor-
responds to a publicly known commitment Cx that can be further certified by
an external party, so that a malicious auditor cannot make up x at will.

In a PPB system, first, the auditor sets up his public key pk and secret
key sk on input his secret x and a commitment Cx to x for which the auditor
knows the opening (and which may be signed by an external validator who cer-
tifies that x is a correct input). A PPB includes a public verification procedure
VerPK(pk, Cx) for ensuring that pk corresponds to the commitment Cx. Now the
system is ready for blueprinting transactions; there is no limit on the number
of such transactions. In a transaction, a user with secret input y and a commit-
ment Cy to y to which the user knows the opening r (and which meaningfully
corresponds to some information about this user, for example validated via an
anonymous credential system), computes the escrow Z = Escrow(pk, y, r) of y
under pk. A PPB includes a public verification procedure VerEscrow(pk, Cy, Z)
for ensuring that Z corresponds to pk and Cy. Finally, using sk, the auditor runs
the decryption algorithm to recover z = f(x, y) from Z. The reason that it is

PPBs via Verifiable Computation 5

called a privacy-preserving blueprint is that we can think of pk as a “blueprint”
of the function f(x, ·) of the user’s y.

An f -PPB is realizable for any efficiently computable function f from ei-
ther fully homomorphic encryption (FHE) or non-interactive secure computation
(NISC) [KLN23] by representing the function as a circuit. However, this general
approach is not suitable for practical use. KLN additionally gave a more prac-
tical construction of fwatchlist -PPB from the ElGamal cryptosystem and proof
systems about discrete logarithm relations in the random-oracle model, though
even with this more practical construction, the size of their escrow is linear in
the size of the watchlist.

As we argue below, this linear size is not sufficient to be useful in practice.
To bridge this gap, we develop a commit-and-prove framework for working with
additively-homomorphically encrypted data. Additively homomorphic encryp-
tion (Definition 4) allows one to compute, on input ciphertexts c1, . . . , cn that en-
crypt x1, . . . , xn, and additional inputs y1, . . . , yk, the value f(x1, . . . , xn, y1, . . . , yk)
for any polynomial f in which each monomial has total degree at most 1 in the
x-variables (but can be arbitrary in the y-variables).

Our first contribution: A modular framework for succinct verifiable
secure computation on additively-homomorphically encrypted data.
In this paper, we give a non-interactive zero-knowledge proof system (in the

random-oracle model) for showing that a ciphertext cout is the result of homo-
morphically evaluating f on c1, . . . , cn and private inputs y1, . . . , yk that cor-
respond to commitments C1, . . . , Ck. Our proof system, described in Section 3
outputs succinct proofs, i.e. their size is O(k log d) where k is the number of
private inputs, and d is an upper bound on the degree of any variable in f ; note
that the size of the proof is independent on the number n of the x-variables.
For the proof to be efficient, we must include “intermediate” ciphertexts in the
proof that allows the verifier to follow along to be convinced of the final evalua-
tion. Thus, to protect these intermediate ciphertexts from being decrypted, only
commitments to them will be created as part of the proof; this is the essence of
the “commit-and-prove" approach which allows our proofs to be very modular.
We begin (in Section 3.1) with the “commit” part of this approach by defining
commitments to ciphertexts; then Sections 3.2 and 3.3 contain the proof system
itself. We give two different practical instantiations of this framework: one under
the DDH assumption (using the ElGamal cryptosystem) and the other under
the Strong RSA and Decisional Composite Residuosity assumptions (using the
Camenisch-Shoup cryptosystem): Section 4.1 is dedicated to the description of
these additively homomorphic cryptosystems, while Section 4.2 constructs com-
mitments to their respective ciphertexts and the basic proof systems that serve
as building blocks for the framework.

Our second contribution: Realizing PPBs for central bank digital
currencies (fCBDC -PPBs). Since the KLN paper first appeared, privacy-
preserving blueprints received some attention in the civil liberties discourse [Sta23]
because (among other things) of the following motivating application to central
bank digital currencies (CBDCs): suppose that the auditor’s input x is a list of

6 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

suspected financial criminals’ unique identifiers. Suppose a user’s input y con-
tains this user’s unique identifier yid as well as seed yseed from which all of this
user’s e-coins’ serial numbers are generated. This is consistent with, e.g., compact
e-cash [CHL05] and related schemes [CHL06,CHK+06,KKS22,TBA+22], includ-
ing those proposed specifically for the CBDC application [KKS22,TBA+22]. The
function f is as follows: f(x, y) = y if yid ∈ x, and ⊥ otherwise. A PPB with
these properties will allow the auditor to not only identify that a transaction
was carried out by a suspect, but also to recover the seed yseed and trace all of
the user’s transactions, even as the rest of the users of the systems’ privacy is
protected. This application to anonymous payments is attractive to those who
advocate that a CBDC can be privacy-preserving even while enabling lawful
investigations. Unfortunately, the alternative to yielding ground on this to law
enforcement is that central banks throughout the world would adopt a CBDC
that provides no privacy — even from third-party observers — to individuals,
in the name of compliance with law enforcement.4

Recently, [DEF+24] proposed an updatable PPB scheme with a scoring-based
watchlist and dynamic user-risk scores, similar to banks’ anti-money laundering
due diligence. However, for the CBDC application, fwatchlist is not the right
function. Instead, we need fCBDC (x, y) = y if y = (yid , yseed), and yid ∈ x.
KLN give a practical construction that works for fwatchlist but not for fCBDC ,
because of their use of ElGamal encryption. Instead of recovering y, the auditor
in their construction can only recover gy where g is a generator of a group in
which the discrete logarithm problem is hard. From gy it is possible to recover y
by brute-force search if only a small number of bits of y are still unknown; but
it wouldn’t be possible to recover yseed , since the size of a pseudorandom seed
must be too large to allow brute-force search. Here, we give a construction for the
correct f . Let f(x, y) = y if y = (y1, y2), and y1 ∈ x, and ⊥ otherwise. We give
a practical instantiation of a f -PPB construction (Section 5.2). By “practical”,
we mean that it can be instantiated efficiently using proof systems for discrete
logarithm relations in the random-oracle model.

The existence of a practical cryptographic system that can provide this trac-
ing capability in a way that is transparent to citizens who, even if they shouldn’t
know who is on the suspect list, can still see the size of the list and the fact that
there was a lawfully obtained warrant for placing a person on it, would strike a
reasonable balance, and, as a result, may sway the policy conversation (in which
law enforcement voices are often louder than those of privacy advocates) in favor
of using more anonymous systems for CBDCs.

Our third contribution: Exponential improvement in the size of the
escrow Z. The KLN approach is also not good enough for either fCBDC -PPBs
or even fwatchlist -PPBs because we expect the watchlist x to be quite large. In
the KLN construction, the size of the escrow Z was linear in the size of the

4 For example, the analysis of CBDC design choices provided by the White
House [Gov22] is lukewarm on using anonymous systems employing zero-knowledge
proofs for that reason. See page 14 and page 17 of [Gov22].

PPBs via Verifiable Computation 7

watchlist x. Using the fact that our framework produces succinct proofs, we give
a substantial improvement:

We give practical constructions of a fCBDC -PPB and a fwatchlist -PPB where
the size of Z is logarithmic in the size of x; this is achieved because the proof
system we use in the construction (in Section 5.3) uses our succinct approach
(i.e. our first contribution described above).
Our fourth contribution: Stronger security. The KLN definition of secu-
rity [KLN23] does not rule out that a malicious auditor would be able to produce
pk, sk, Cy and Z such that the decryption algorithm will output z ̸= f(x, y). In
Sect. 1.2, we discuss how the KLN construction of fwatchlist -PPB allowed for a
“framing” attack: a malicious auditor causing an escrow to decrypt to the iden-
tity of an honest user y who is not a party to the transaction. Addressing these
security issues using our new proof framework from our first contribution and
the reworked functionality is our fourth and final contribution.

We improve the definition of security of PPB to that of non-frameable PPB:
we add the requirement that the decryption algorithm’s output be publicly ver-
ifiable. In Section 5.1, we present this improved definition. Our constructions
(which are also presented in Section 5.1) achieve non-frameability.

Summary of how this paper is organized. In Section 1.1 below we give a more
detailed overview of our techniques for achieving verifiable computation over
additively homorphically encrypted data, and why they lead to an efficient con-
struction of fCBDC -PPBs. In Section 1.2 we explain why and how we improved
the definition of privacy-preserving blueprints to incorporate non-frameability.
To conclude the introduction, in Section 1.3, we review related work and provide
efficiency analysis and comparison with KLN.

After going over the preliminaries in Section 2, we dive into our commit-and-
prove framework in Section 3: In Section 3.1, we go over the “commit” part, and
in Sections 3.2 and 3.3, over the “prove” part. Section 4 explains how to adapt
the ElGamal and the Camenisch-Shoup cryptosystems; the (adapted) additively
homomorphic encryption schemes are given in Section 4.1; while the commitment
schemes for committing to ciphertexts and related proof systems that fit the
requirements of our framework are given in Sections 4.2 (for Camenisch-Shoup)
and Appendix F.3 (for ElGamal). Armed with these tools, in Section 5 we define
and realize non-frameable privacy-preserving blueprints.

1.1 Our Framework for Verifiable Computation

Let us focus on a concrete example. At a high level, a fCBDC -PPB scheme
will work as follows: The auditor will first find the coefficients of the polynomial
P (χ) = a0+a1χ+. . .+anχ

n of degree n whose roots are values on the list x, and it
will output a public key pk of an encryption scheme, as well as the encryptions
of the coefficients of P ; i.e. X = (pk, a0 pk, . . . an pk), where m pk denotes an
encryption of a message m under the public key pk (and we drop the subscript
when clear from the context). Let f(a0, . . . , an, yid, y, s) =

(
s
∑n

i=0 aiy
i
id
)
+ y.

8 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Note that if fCBDC (x, yid, y) ̸= ⊥, then f(a, yid, y, s) = y; else, if the user picks
s uniformly at random, then f(a, yid, y, s) is also random. Thus, the goal is for
the user to compute cf , an encryption of f(a0, . . . , an, yid, y, s), from X.

If the underlying encryption scheme is additively homomorphic, then cf =
f(a0, . . . , an, yid, y, s) can be computed using homomorphic addition: Let the
symbol ‘⊕’ denote the homomorphic operation on ciphertexts, and let ⊙ denote
multiplying a ciphertext by a scalar. Then cf =

(⊕n
i=0(sy

i
id)⊙ ai

)
⊕ y . We also

need the user to compute a zero-knowledge proof that cf was computed correctly
from X and the user’s secret inputs s, y and yid that correspond to commitments
Cs, Cy and Cyid . While general-purpose ZK proof systems can be used here, a
proof system designed hand-in-hand with the underlying encryption scheme can
take advantage of efficient Σ-protocols and impose only a minimal overhead over
encryption; the classical results on efficient multi-party computation of Cramer,
Damgård and Nielsen [CDN01] serve as the inspiration for this approach.

We suggest a modular, commit-and-prove [BCF+] approach for construct-
ing a proof that a given ciphertext is the result of computing on additively-
homomorphically encrypted data. For example, here the output ciphertext cf
is the result of applying a series of homomorphic operations, starting with the
input ciphertexts { ai } and the user’s inputs. In order to prove correctness of
cf in our framework, one forms commitments to the intermediate steps of this
computation (for example, the intermediate ciphertexts ai ⊙ yiid) and proves
that each of these intermediate steps was carried out correctly.

Thus, our main new building block is an additively homomorphic encryption
scheme equipped with (1) a cryptographic commitment scheme for committing to
ciphertexts; and (2) proof systems for proving properties of committed cipher-
texts, such as the property that a committed ciphertext c was obtained from
committed ciphertexts c1 and c2, along with a committed scalar a, as follows:
c = c1 ⊕ (c2 ⊙ a). (See Sect. 3.1 for the more formal treatment.)

Next, let us explain how to instantiate this framework with the ElGamal cryp-
tosystem. Let G be a group of prime order q with generator g1; an ElGamal public
key is a group element g2; an encryption of M ∈ G is (gr1, gr2M) where for random
r ∈ Zq. ElGamal is not, strictly speaking, an additively homomorphic encryp-
tion scheme, but a multiplicatively homomorphic one: (gr1, gr2M)⊕(gr′1 , gr

′

2 M ′) =

(gr+r′

1 , gr+r′

2 MM ′). However, we can define a “lifted” ElGamal cryptosystem:
to encrypt the message m, use the ElGamal cryptosystem to encrypt gm1 ; i.e.
m = (gr1, g

r
2g

m
1). The problem is that, instead of outputting m, the decryp-

tion algorithm outputs gm1 ; converting it to m requires that m come from a
small space, so that it can be found via brute-force search; we call this flavor
of encryption “semi”-encryption. Still, for some applications (such as realizing
fwatchlist-PPBs), this is good enough.

Our techniques for achieving succinct proofs. The naïve way for computing a
proof π of correctness of cf is to form a commitment to the ciphertext that is the
result of each intermediate step in the computation (for example, the values ai ⊙
yiid in the example above), meaning that the size of the proof will need to be linear

PPBs via Verifiable Computation 9

in the degree d of the polynomial f (and in the description of the polynomial
altogether). To reduce the dependence on the degree from d to O(log d), we use a
degree reduction technique inspired by the sum-check protocol of Lund, Fortnow,
Karloff and Nisan [LFKN92]. The sum-check protocol was used more recently in
cryptography by Goldwasser, Kalai and Rothblum [GKR08] and follow-up work
on “proofs for Muggles” [XZZ+19,ZLW+21]. Pietrzak [Pie19,HHKP23] was the
first to use it to halve the degree of a polynomial (as we do) rather than to
eliminate a linear variable as in the other cited work. As far as we know, our
paper is the first time that this technique is used in order to prove correctness
of commit-and-prove-style computation on encrypted data.5 We compare our
technique to more works in Sec. 1.3.

The overall idea, described in Section 3.2 (and generalized to the multivariate
case in Section 3.3), is to recursively halve the degree of the polynomial. Suppose
that we need to prove that a ciphertext cf = f(x1, . . . , xn, y1, . . . , yk) ; the prover
and verifier both know { xi }i∈[n]; further, the prover knows y1, . . . , yk (and thus
can compute cf) while the verifier knows just the corresponding commitments
{Cyi = Com(yi; ri)}. Suppose the degree of y1 in f is d. The recursive step is
to reduce the proof of this statement to the proof that another ciphertext cf ′ is
an encryption of f ′(x1, . . . , xn, y1, . . . , yk), where in f ′ the degree of y1 is d/2.
This can be accomplished using the Schwartz-Zippel lemma: we obtain f ′ from
f by replacing each occurrence of yd/2 with a random scalar α; in the interactive
version of the sum-check protocol α would be chosen by the verifier, but here it
is chosen by the random oracle. It is important that the ciphertext cf ′ used in
the recursive step not be given to the verifier in the clear; otherwise, it will leak
information to the adversary who knows the decryption key. Instead, our proof
system works for committed ciphertexts.

To obtain a commitment to an ElGamal ciphertext a = (A,A′), we first
extend Pedersen commitments (with generators g and h) to commit to group
elements. To commit to A, we sample sA, rA ← Zq and the commitment is
CA = (CA,1, CA,2) = (AgsA , gsAhrA); similarly, we can form a commitment
CA′ = (CA′,1, CA′,2). Thus, a commitment to a is C a = (CA, CA′). It is easy to
see that this commitment scheme has convenient homomorphic properties: if ‘∗’
denotes applying the group operation componentwise, then C a ∗C b = C a+ b .
As shown in Sect. 4, this allows for efficient proof systems for properties of com-
mitted ciphertexts needed for our framework. Additionally, we show in Sect. 4
that our framework can also be instantiated, under the Paillier assumption, with
a semantically secure variant of the Camenisch-Shoup cryptosystem [CS03].

Why fCBDC -PPB was not achievable in KLN. KLN’s limitation was that it
used lifted ElGamal, and thus, in the event that the user was on the watchlist,
the decryption algorithm was only able to recover gy from the escrow, rather
than y in the clear. As explained earlier, this is not good enough if y comes

5 Previous work [BG13] used a completely different technique to give a succinct proof
that a committed value corresponds to the evaluation of a polynomial, but with the
important distinction that the polynomial was known to both Prover and Verifier.

10 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

from a large enough domain (for example if it contains a seed for a PRF) and
cannot be brute-force-searched. The Camenisch-Shoup based instantiation of the
framework we just discussed allows the decryption algorithm to recover y, which
yields fCBDC -blueprints. It turns out that the ElGamal-based instantiation can
work as well (with some efficiency limitations), if we split the payment tracing
seed into sufficiently small chunks, see Appx. D.2.

1.2 Non-Frameability and Why It Matters

Our additional contribution to privacy-preserving blueprints is an additional
property — non-frameability, — and our constructions satisfy it. The concept
of non-frameability was first introduced in the work of Camenisch [Cam97]. The
paper introduced it for the group signature scheme setting as the property that
the manager (even if they collude with a group member) cannot falsely accuse
group members. Subsequently, Bellare, Shi and Zhang [BSZ05] formalized the
property and called it Non-frameability - again for group signature schemes.

At a high-level there are similarities with the property of non-frameability
as we define it and as defined by [BSZ05]. Both properties require that if some
authority (the opener in the case of [BSZ05] and the auditor in our case) wants
to prove that a user took some action (signing a message in the case of [BSZ05]
and authenticating themselves in an anonymous credential scheme in the case
of blueprints) they must provide verifiable proof. One difference between the
schemes is that in [BSZ05] the opener traces any user indiscriminately. In our
case, the auditor’s functionality is not "trace" but the function f . (In the case
of watchlists, that means the auditor can trace iff the user is on the watchlist.)
Also, a group signature scheme provides tracing for group members who are
signing messages, whereas in blueprints, the functionality is to trace users who
are using an anonymous credential scheme, which does not imply that these
traceable users sign any messages. Thus, it is not trivial to construct blueprints
from the group signature scheme in [BSZ05].

The watchlist PPB scheme of [KLN23] is frameable, i.e., a malicious auditor
can collude with a malicious user to produce Z that will decrypt to the identity
of an honest user who was not a party to the transaction (and who may or may
not be on the watchlist). The gist of their scheme is that pk includes encrypted
coefficients of a polynomial P such that P (y) = 0 if and only if y is on the
watchlist x. The escrow Z = (Ẑ, π) produced by the user whose identity is y
consists of the encryption Ẑ of rP (y) + y for a random r chosen by the user,
as well as a proof π that indeed Ẑ was computed correctly. In order to frame
the user with identity y∗, a malicious user whose identity is y and to whom the
coefficients of the polynomial P are known (as would be the case if the auditor
is malicious) needs to solve for r∗ in the r∗P (y) + y = y∗, and will produce an
escrow Z = (Ẑ, π) by following the original algorithm, but just using r = r∗.

This attack is outside the KLN security model, and therefore does not contra-
dict their security analysis (which is correct). One could also argue that frame-
ability, also known as deniability, can be a feature and not a bug. We discuss
this at greater length in Appx. A.

PPBs via Verifiable Computation 11

In Sect. 5.1, we improve the KLN definition of privacy-preserving blueprints
by incorporating non-frameability. The decryption algorithm must now produce
a proof πz of correct decryption, and a new algorithm Judge verifies this proof.
The proof πz is important when the auditor’s output is used as evidence in
legal proceedings6 or as input in a smart contract, e.g., an Ethereum Eigenlayer
slashing operation or crime restitution.

In order to obtain a practical non-frameable f -PPB for the watchlist func-
tion, we modify the KLN construction as follows: our Escrow algorithm will
output (Ẑ, Ẑ ′, π), where Ẑ is an encryption of rP (y) + y (just as before), and
the additional value Ẑ ′ is an encryption of r′P (y), while, as before, the proof π
is to ensure that Ẑ and Ẑ ′ were computed correctly. If π verifies, the decryption
algorithm will decrypt Ẑ iff Ẑ ′ decrypts to 0; it will output ⊥ otherwise. Our
succinct proofs are compatible with this non-framing construction.

1.3 Related Work and Efficiency Analysis

Freedman, Nissim, and Pinkas (FNP) [FNP04] were the first to give a protocol
for the evaluating an encrypted polynomial. Unlike here, the evaluator in their
work was not committed to a particular input y on which to evaluate it; it only
needed to ensure that some y exists that makes the evaluation correct. In our
scheme, the user commits to a y before the protocol starts and must use this y
throughout the protocol, making our proof system much more involved. Further,
because of the hash functions needed in their construction [FNP04], proving the
correct y was used would be expensive. Despite recent work in making hash func-
tions verifiable [GKR+21] it is still best to avoid proving hash functions in zero
knowledge if possible. FNP initiated the study on secure set intersection (PSI)
which is by now an extremely well-studied [CMdG+21,CM20,RS21,GPR+21]
[CRR21,RR22] special case of secure two-party computation. Our framework
can be seen as a building block for verifiable PSI [KMRS14,ATD16,JWP22],
since verifiable evaluation of encrypted polynomials is a subroutine in many of
these protocols.

Recent years have seen an explosion of techniques for zero-knowledge proof
systems [BMM+21,CBBZ23,GLS+23,WHV24,BFK+24]; many of these are for
general circuits, but especially worthy of comparison to our work are those of
them that, like us, take advantage of efficient Σ-protocols for algebraic relations
over committed values and, like us, also achieve succinctness [BBB+18,ACC+22].
In general, the main difference of our work from these is that our framework is
suitable for verifiable computation on encrypted data, which is a scenario to
which these cited works do not directly apply.

For example, bulletproofs [BCC+16,BBB+18,BMM+21,LMR19] are an es-
pecially promising way to achieve a succinct proof of correct computation over
6 Interestingly, this is currently rarely the case for existing investigations employing

mass or targeted surveillance. Instead, law enforcement follow a complicated process
of parallel construction where not always lawfully attained evidence is used to inform
a lawful investigation [Boy].

12 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

linear data. To the best of our knowledge, Bünz, Maller, Mishra, Tyagi, and
Vesely [BMM+21] currently prove the relation that resembles ours most closely:
their relations are of the form

∏
i∈[d] A

ai
i given vector commitments to group ele-

ments {Ai}i∈[d] and scalars {ai}i∈[d]. At a high-level, if we set Ai = Enc(xi) and
ai = yi, then bulletproofs could be used to prove the homomorphic operation on
these encryptions,

∏
i∈[d] Enc(xi)

yi

which could be useful for blueprints. Unfortu-
nately, their adaptation of bulletproofs requires the use of pairings. Additionally,
using bulletproofs would require a large proof to verify a vector commitment
to {yi}i∈[d]. Our solution only requires verifying commitments to {y2i}i∈[log(d)]

which is much easier to prove. While the technique in [BMM+21] achieves a log-
arithmic verifier complexity, this desirable verifier complexity requires a trusted
setup and the CRS cannot be sampled in the ROM. Our solution achieves linear
verifier complexity (similar to [LMR19]) and does not require a trusted setup.
Their technique also requires the inversion of scalars, which is not possible in Zn

without knowing the factorization of n (for example, computing x−1 such that
(gx∗x

−1

= g ∈ Zn). Thus, bulletproofs do not apply directly to our results when
using the Camenisch-Shoup cryptosystem and require more expensive operations
in the ElGamal setting (since our proofs do not require pairings).7

Bhadauria, Hazay, Venkitasubramaniam, Wu, and Zhang [BHV+23] provide
a way for a prover to compute and prove the encryption of an evaluation of
a polynomial without knowing the polynomial. Where our work differs is that
their proof system achieves zero-knowledge only in the event that the secret key
of the encryption scheme is unknown to the adversary. Bartusek, Garg, Jain and
Policharla’s work [BGJP23] is related in spirit to privacy-preserving blueprints:
they show a scheme that makes it possible to identify an originator of harmful
content (relative to a database of harmful content) while protecting privacy in
all other circumstances.

Comparing our construction to that of KLN, our escrows contain 58 group el-
ements and 52 scalar elements per recursion. Thus, our ElGamal escrows contain
2.6kB * log(n) (where n is the size of the watch list) and our Camenisch-Shoup
escrows should take roughly 10 times that at 28kB * log(n) (where the modulus
is 2048 bits). This means our ElGamal escrow becomes more efficient than KLN
when there are more than 60 suspects on the watchlist. The computation time
of each escrow is roughly the same between our construction and KLN.

2 Preliminaries

Notation We will write the set of integers from 1 to m as [m]. We use bold font
to represent vectors, e.g.: a = (a1, . . . , an).

7 Like much other work our techniques are certainly inspired by Bulletproofs and its
predecessors.

PPBs via Verifiable Computation 13

2.1 Zero-knowledge Proofs of Knowledge

Black-box partially straight-line (BB-PSL) NIZK. Non-interactive zero-
knowledge (NIZK) proofs are an important building block for us. We follow the
KLN notation and definitions (Sec. 2.1 of [KLN23]) of the completeness and ZK
properties of NIZK proof system, provided in abbreviated form in Def. 1 below.

Definition 1 (Completeness and ZK of NIZK [KLN23]). Let R be a
relation. Let S be a setup model (e.g., the CRS model or the random oracle
model). Let PS and VS be (non-interactive) algorithms for the prover and the
verifier in the S-setup model. (PS,VS) constitute a complete proof system if for
all (x,w) ∈ R, Pr

[
π ← PS(x,w) : VS(x, π) = 0

]
= 0.

They satisfy the zero-knowledge property if for any PPT adversary Adv in the
experiment of Fig. 2.1, the advantage function ν(λ) defined below is negligible:
AdvNIZKAdv = |Pr[NIZKAdv,0(1λ) = 0]− Pr[NIZKAdv,1(1λ) = 0]| = ν(λ)

NIZKAdv,0(1λ)

return AdvS(·),P
S(·,·)(1λ)

NIZKAdv,1(1λ)

return AdvOS(·),OP(·,·)(1λ)

OS(m)

st, h, τExt ← SimS(st,m)

return h

OP(x,w)

if (x,w) /∈ R : return ⊥
st, π ← Sim(st,x)

return π

Fig. 2.1: NIZK game

Let us review BB-PSL simulation extractable proof systems [KLN23] (Def. 2).
The straight-line extractor here does not extract the entire witness, but just some
function of it; simultaneously, a black-box extractor (that’s allowed to rewind
the adversary) can extract the entire witness. In Appx. C.1, we motivate this
definition further.

Definition 2 (Black-box partial straight-line simulation extractabil-
ity). A proof system (as defined in Def. 1) is BB-PSL simulation extractable if
the advantage (defined below) of any PPT adversary is negligible: AdvNISimBBPSLExt

Adv,f =

Pr[f -NISimBBPSLExtAdv(1λ) = 1] = ν(λ) for some negligible function ν.

Proofs of Equivalent Representations of Discrete Logarithms. Using
known techniques, we can construct a Σ-protocol that proves the relation in
Def. 3 in both cyclic groups of prime order where the DDH and CDH problems
are hard as well as Zn2 . We describe such a protocol in Appx. C.3. When using
this protocol, we employ Camenisch-Stadler notation to denote witnesses and
relations [CS97], e.g. NIZK[witness : statement].

14 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

f -NISimBBPSLExtAdv(1λ)

1 : Q,QS ← []; (x, π)← AdvÕS(·),OSim(·)(1λ)

2 : w← ExtBB(Adv)(QS,x, π);w
′ ← ExtSL(QS,x, π)

3 : return VOS(x, π) ∧ (x, π) ̸∈ Q ∧
(
(x,w) ̸∈ R ∨w′ ̸= f(w)

)
OS(m) ÕS(m)

1 : st, h, τExt ← SimS(st,m)

2 : QS.add((m,h, τExt))

3 : return h, τExt

OSim(x)

1 : st, π ← Sim(st,x)

2 : Q.add((x, π))
3 : return π

Fig. 2.2: f -NISimBBPSLExt game

Definition 3 (Relation for proof of multiplication of witnesses over
bases in cryptographic groups). Let Reqrep-G∗(x,w) be the relation that
accepts if the following two conditions hold:
(1) x = (µ, {xi, {gi,1, . . . , gi,m}}ki=1), all the xis and gi,js are elements of G, and
witness w = ({bi}ki=0, {wj}mj=1) is such that xi = bi

∏m
j=1 g

wj

i,j where bi ∈ B.
(2) If ∀i ∈ [m], wi =

∏
j∈µ(i) wj where µ is a map µ : [m]→ P([m]) and P([m])

is the set of all subsets of [m].

We instantiate this definition with G = Gp, a cyclic group of order p, and with
G = Zn2 . In the former case, B = {1}, yielding exact equality of representation.
In the latter, B = {−1, 1}, so the relation only holds for the absolute values.

2.2 Additively Homomorphic Encryption

Additively homomorphic g-semi-encryption scheme. We need an appro-
priate additively homomorphic (AH) semantically secure public-key encryption
scheme. Our application can tolerate a relaxed version of encryption, in which
the decryption algorithm need not recover the original plaintext m, but just
some function g(m), where g is a (not necessarily efficiently) invertible func-
tion. This relaxation allows us to view the ElGamal cryptosystem as additively
homomorphic. Let us define it formally.

Definition 4 (Additively homomorphic g-semi-encryption scheme). A
set of three polynomial-time algorithms AH = (KeyGenAH ,EncAH ,DecAH) con-
stitutes a semantically secure homomorphic g-semi-encryption scheme if it satis-
fies the following input-output specification as well as correctness, security, and
homomorphic properties:

Input-output specification KeyGenAH and EncAH have the same input-output
specifications as those for key generation and encryption algorithms, respec-
tively, for a public-key encryption scheme. DecAH (skAH , c) takes as input a

PPBs via Verifiable Computation 15

secret key skAH and a ciphertext, and outputs a value m′ = g(m) for some
m ∈M where M is the message space of the encryption scheme8.

Correctness For all (pk, sk) ∈ KeyGenAH , for all m ∈M, for all c ∈ EncAH (pk,m),
DecAH (sk, c) = g(m). I.e., the decryption algorithm correctly recovers g(m)
from an encryption of m.

Security A semantically secure g-semi-encryption scheme must satisfy the same
definition of semantic security as a regular semantically secure encryption
scheme [GM82].

Additively homomorphic properties (1) M is an algebraic ring and (2)
there is an efficient deterministic algorithm OpAH that takes as input the
public key pkAH and two ciphertexts, c1 and c2 and outputs a ciphertext c′

such that for all pkAH ∈ KeyGenAH , for all m1,m2 ∈M, for all ciphertexts
c1 ∈ Enc(pkAH ,m1) and c2 ∈ Enc(pkAH ,m2), if c′ = OpAH (pkAH , c1, c2),
then c′ ∈ Enc(pkAH ,m1 +m2).

For our constructions in Sec. 4.1 we define M as Zp for a prime p for ElGamal
or ZN for an RSA modulus N for Camenisch-Shoup.

Further (inspired by Cramer, Damgård and Nielsen’s [CDN01] formalization
of an additively homomorphic cryptosystem), we also need a way to sample
new encryptions of messages, i.e., compute c′ ← Enc(pkAH ,m) given any c ∈
Enc(pkAH ,m). I.e. we require that this be achieved by forming a fresh encryption
of 0, c0 ← Enc(pkAH , 0) and then adding to c, resulting in c′ = c⊕ c0. Further,
we need AH to include efficient algorithms for obtaining c′ ∈ Enc(pkAH , am)
from c ∈ Enc(pkAH ,m) and a ∈M.

Notation for additively-homomorphic encryption. We will generally use the low-
ercase c label to refer to ciphertexts (while uppercase C refers to commitments).
If c1 and c2 are ciphertexts, will use c1⊕c2 to denote the output of Op(pk, c1, c2).
We use a pk to represent an encryption of a under the public key pk using the
scheme AH ; we will drop the subscript and denote it a when pk is clear from
the context. By a = c ⊕ d we denote that the ciphertext a was generated by
running the algorithm Op(pk, c , d); thus a = c+ d . y ⊙ a denotes applying
this operation y times; in our instantiations this will yield ya and is efficient for
large y with repeated squaring;

⊕n
i=0 ai denotes applying Op n times on the

set { ai : i ∈ [0...n]}.

2.3 Privacy Preserving f-Blueprint Schemes (PPBs)

[KLN23] defines a blueprint scheme as in Def. 2.3. We will modify their defini-
tion to serve our new use-case of non-frameable privacy preserving blueprints in
Sect. 5.1. A blueprint scheme has three parties - an auditor, a set of users and a
set of recipients.

KLN define a secure f -blueprint scheme as one that possesses the following
properties - (a) Correctness of VerPK and VerEscrow, (b) Correctness of Dec (c)
8 In general,M and g may depend on the public key, pkAH , but in our constructions,

this is not the case. Our scalar commitments share this same message space.

16 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Setup(1λ, cpar) → Λ: Outputs public parameters Λ including 1λ and commitment scheme, cpar .
KeyGen(Λ, x, rx) → (pkA, skA): The key generation algorithm for auditor A.
VerPK(Λ, pkA, Cx) → 1 or 0: Takes the auditor’s public key pkA and a commitment Cx as input,

verifies that the auditor’s public key was computed correctly for the commitment Cx.
Escrow(Λ, pkA, y, ry) → Z: Takes Λ, pkA, and commitment value and opening (y, ry) as input and

outputs an escrow Z for commitment C = Com(y; ry).
VerEscrow(Λ, pkA, Cy, Z) → 1 or 0: Takes the auditor’s public key pkA, a commitment Cy , and an

escrow Z as input and verifies that the escrow was computed correctly for the commitment Cy .
Dec(Λ, skA, Cy, Z) → f(x, y) or ⊥: Takes the auditor’s secret key skA, a commitment Cy and an

escrow Z as input. It decrypts the escrow and returns the output f(x, y) if Cy is a commitment
to y and VerEscrow(Λ, pkA, Cy, Z) = 1.

Fig. 2.3: An f -blueprint scheme

Soundness (d) Blueprint Hiding (e) Privacy against Dishonest Auditor and (f)
Privacy with Honest Auditor. We recall these definitions in Appx. B.

3 Succinct Proofs for Verifiable Secure Computation on
Additively-Homomorphic Ciphertexts

In this section, we describe our new succinct proof system for verifiable secure
computation, as introduced on Page 5 in our first contribution. Suppose that
we have an additively homomorphic g-semi cryptosystem Γ Enc = (Setup,Enc,
Dec,⊕,⊙) as discussed in Sec. 2.2. Let pk be a public key for this cryptosys-
tem. Given a set of ciphertexts c1, . . . , cn whose plaintexts are x1, . . . , xn, and
a set of scalars y1, . . . , yk, the additively homomorphic property of the cryp-
tosystem allows anyone to compute a ciphertext cf which is the encryption of
f(x1, . . . , xn, y1 . . . , yk), where f is a polynomial. This polynomial is of max de-
gree 1 in any xi, or, in other words: the polynomial is made up of n monomials,
{fi}i∈[n], where fi = aix

bi
i

∏k
j=1 y

di,j

j , bi is a bit ({0, 1}), ai is a coefficient of
f , and di,j is an integer. In this section, we provide a framework for efficiently
obtaining a proof system, in the random-oracle model, for the following relation,
parameterized9 by the polynomial f :

Rf ((r1, . . . , rk, y1, . . . , yk), (C1, ..., Ck, c1, . . . , cn, cf)) = 1 iff

∃x1, . . . , xn such that
Cj = Com(yj , rj) ∀1 ≤ j ≤ k

∧ci ∈ Enc(pk, xi) ∀1 ≤ i ≤ n

∧cf ∈ Enc(pk, f(x1, . . . , xn, y1, . . . , yk))

Our proof system is complete, zero-knowledge and satisfies the definition of
a (not straight-line extractable) proof of knowledge in the random-oracle model.
To compile it into a partially straight-line extractable (g-BB-PSL) proof system,
it will be sufficient to combine it with a g-BB-PSL proof of knowledge of the
opening of the commitments C1, . . . , Ck which we do in Sec. 5.3.
9 This relation is also parameterized by the parameters of the associated commitment

and encryption schemes (for Com and Enc) along with the public key, pk, but we
omit this for readability since it is clear from context.

PPBs via Verifiable Computation 17

Construction of a proof system for Rf . Using a general NIZK proof system to
prove Rf would yield a proof of size Ω(kdmax) where dmax is the largest degree
among any yi, i ∈ [k]. To make this more succinct, our proof system that halves
the degree with each step. This reduces the size of the proof from linear in
dmax to O(k log(dmax)), which is an exponential improvement. The proof size is
independent on the number of monomials in f and ciphertexts, and depends
only on k (the number of variables y1, . . . , yk) and the degree dmax.

Each step of this proof will reduce the task of proving the correct evaluation
of a polynomial f to that of another polynomial, f ′. To achieve succinctness, at
each step we will pick a variable and ensure that the degree of f ′ in that variable
is at most half that of f . For example, proving that cf = f(x1, x2, y1, y2) where
f = x1y

8
1y2 + x2y

7
1y2 will be reduced to proving that cf ′ = f ′(x1, x2, y1, y2)

where f ′ = x′
1y

4
1y2 + x′

2y
3
1y2. We can see that the degree of f ′ in y1 has been

reduced by 4 here compared to f .10 In this section, we will explain how the
ciphertexts x′

1 and x′
2 can be computed from x1 and x2 by both the prover

and verifier in a way that ensures that proving the correctness of f ′ implies
the correctness of f . Because we want to achieve zero knowledge even when
the adversary knows the secret key of the encryption scheme, a zero-knowledge
simulator cannot simply make up an arbitrary value for cf ′ : the adversary would
be able to decrypt it and detect simulation. Thus, we need to instead commit
to this value and perform the proof that the committed value was computed
correctly. We call these commitments to additively homomorphic ciphertexts and
we define them in Sec. 3.1 and construct them in Sec. 4.

3.1 Basic Building Blocks

Commitment to {y1, . . . , yk}. Our relation Rf is defined relative to a non-
interactive commitment scheme for scalars (CSetup,Com). Com takes as input an
element y from the message space,M, and a random value r sampled uniformly
at random from [R] for some integer R.
Proofs of correct modular addition and multiplication of committed
values. In order to construct this proof system, we need to add and multiply the
values in our scalar commitments together (using ring arithmetic in the message
space,M). This will be used to realize eqrep and thus realize our commitments
to ciphertexts. Let us define the following relations11:

– Radd((x1, r1, x2, r2, x3, r3), (C1, C2, C3)) = 1 iff ∀i ∈ [3] : Ci = Com(xi; ri),
and x3 = x1+x2 ∈M. Let (Proveadd,Verifyadd) be a BB NIZK proof system
for Radd.

– Rmult((x1, r1, x2, r2, x3, r3), (C1, C2, C3)) = 1 iff ∀i ∈ [3] : Ci = Com(xi; ri),
and x3 = x1x2 ∈M. Let (Provemult, Verifymult) be a BB NIZK proof system
for Rmult.

10 As noted in Sec. 1.1 and related work, these techniques resemble [LFKN92] and
Bulletproofs but present unique challenges when applied to committed ciphertexts.

11 RComAH
is trivial with additively homomorphic commitments, but we present this

function for generality.

18 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

We also need this commitment scheme to have a zero-knowledge proof of knowl-
edge (ProveCom,VerifyCom) of opening, i.e. a BB NIZK for the relation RCom =
((m, r), (C)) iff Com(m; r) = C.
Commitment to ciphertexts. In order to prove correctness of an intermediate
step in a longer computation over (semi-)encrypted data without revealing the
ciphertext obtained in that step itself (which would leak data), we need to be able
to commit to ciphertexts and prove properties of committed ciphertexts. Thus,
we need a non-interactive statistically hiding, computationally binding commit-
ment scheme ComAH (parameterized by public parameters params generated by
SetupAH) for committing to ciphertexts c ∈ EncAH (pk, ·) and we need protocols
for proving statements about committed ciphertexts, as described below. We use
a subscript notation (i.e. ComAH) to distinguish this scheme from our commit-
ments to scalars which do not have a subscript (the commitment function for
scalars is Com). If randomness is not supplied to ComAH , it will sample random-
ness and output it, e.g.: (C, r) = ComAH (a) implies that C = ComAH (a ; r).
Proofs of relations between committed ciphertexts. We need BB NIZK
proof systems for (1) proving knowledge of a committed ciphertext; (2) proving
that a committed ciphertext is the result of applying OpAH to other committed
ciphertexts; (3) proving that a committed ciphertext is the result of applying
OpAH to another committed ciphertext α times, where α is the opening of a
commitment (under the scalar commitment scheme Com) to an element of M;
and (4) proving that a committed ciphertext is an encryption of a committed
scalar. (4) is often called “verifiable encryption” (VE). More precisely, let us
define the following relations12:

– RComAH
((c, r), C) = 1 iff C = ComAH (c; r);

– R⊕((c1, r1, c2, r2, c3, r3), (C1, C2, C3)) = 1 iff ∀i ∈ [3] : Ci = ComAH (ci; ri)
and c3 = OpAH (c1, c2);

– R⊙((c1, r1, c2, r2, x, r3), (C1, C2, C3)) = 1 iff ∀i ∈ [2] : Ci = ComAH (ci; ri),
C3 = Com(x; r3) and c2 = c1 ⊙ x.

– RVE ((c1, r1, rc1 , y, r2), (C1, C2)) = 1 iff C1 = ComAH (c1; r1), C2 = Com(y; r2)
and c1 = EncAH (pkAH , y; rc1).

Our construction will use as building blocks BB NIZK proof systems (ProveComAH ,
VerifyComAH) for the relation RComAH

, (Prove⊕,Verify⊕) for the relation R⊕, (Prove⊙,
Verify⊙) for the relation R⊙, and (Proveenc,Verifyenc) for the relation RV E . As
before, we omit the parameters and public keys from these relations when it is
clear. These proof systems exist generically for any cryptosystem and any set
of commitment schemes by representing the Com function as a circuit; however,
for the specific instantiations of semi-encryption and commitment schemes we
consider, we also show how to construct them efficiently in Sec. 4.

Notation. We will use the following notation when invoking a proof system (in-
spired by the Camenisch-Stadler notation): π = NIZK[X,W : R(X,W)] denotes
12 Similar to our commitments to scalars, R⊕ is not necessary if the commitments are

additively homomorphic but we present this here for generality.

PPBs via Verifiable Computation 19

that the proof π is computed using the proof system for R on input a statement
X and a witness W . When X is clear from the description of the relation R, we
may omit it. For example, if we have A = ComAH (a ; ra), B = ComAH (b ; rb),
and C = Com(c; rc) and want to prove that a = bc, we’ll denote the output of the
prover’s computation as π = NIZK[a , b , c, ra, rb, rc : A = ComAH (a , ra) ∧B =
ComAH (b , rb) ∧ C = Com(c; rC , aC) ∧ a = b ⊙ c]. This π is computed by
calling Prove⊙(A,B,C, a , ra, b , rb, c, rc). If π is accepted by the verification al-
gorithm (i.e. Verify⊙(A,B,C, π) = 1) we can extract openings for A, B and C
to ciphertexts a , b and scalar c respectively, such that a = b ⊙ c.

3.2 Efficient Proof System for Rf for k = 1

In this section we show how to efficiently instantiate a NIZK proof for the relation
Rf when k = 1, i.e. there is a single variable y. Our main result in Appx. E.4
subsumes the result in this section; however, this section makes it easier for the
reader to understand the results in Appx. E.4.

Observe that it is sufficient 13 to provide a proof system for the polynomial
P =

∑n−1
i=0 xiy

i. Thus we give a proof system for the relation RP . Further, it
is sufficient to give a proof system for a slightly more general relation, R∗

P in
which the statement contains not the ciphertext cP but a commitment CP =
ComAH (cP , rP). To get a proof system for RP , prover and verifier set CP =
ComAH (cP , 0) and invoke the proof system for R∗

P . Assume WLOG14 that n
(the number of ciphertexts) is a power of two. More formally,

R∗
P ((r, y, cP , rP) , (Cy, c0, . . . , cn−1, CP)) = 1 iff

RP (r, y, Cy, c0, . . . , cn−1, cP) = 1 ∧ CP = ComAH (cP , rP).

Input to the recursive step. Our PoK∗
P algorithm in Algorithm 2 recursively

computes a proof until R∗
P is satisfied, i.e., CP is a commitment to cP = e =

P (x0, . . . , xn−1, y) . The input to PoK∗
P includes an auxiliary input aux, in ad-

dition to the statement and witness for the relation R∗
P . aux consists of com-

mitments to a logarithmic number of powers of y, i.e. commitments {Cy2i}
to {y2i} = {y2, y4, y8, ..., yn/2} and NIZK proofs that for i > 2, each Cy2i is
computed correctly from Cy2i−1 (using the proof system (Provemult,Verifymult)

described above). aux is of size that is logarithmic in n and the verifier need not
13 From here, to obtain the proof system for any f = a00 +

∑n−1
i=0

∑n−1
j=0 ai,jxjy

i, we

use the homomorphic properties of the cryptosystem to compute c′i =
∑n−1

j=0 ai,jxj

for 0 ≤ i < n, (deterministically, using the all-0 string for encryption) incorporate
the term a00 by letting c′′0 = c′0 ⊕ a00 and then invoke the proof system for P on
input ciphertexts c′′0 , c

′
1, . . . , c

′
n−1. Here we assume that the degree of y is n, but this

is WLOG as the complexity of the proof system is not dependant on the number of
ciphertexts.

14 This is without loss of generality: to reduce to this case, prover and verifier can both
compute the extra ciphertexts cn, . . . , c2a−1 (so that the total number is a power of
two) by encrypting 0 with fixed randomness.

20 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

verify any proofs in it more than once. We assume that the prover remembers how
it computed aux (so we won’t explicitly pass the openings of the commitments
in aux to the recursive step). Alg. 1 is a “wrapper” algorithm that, on input the
statement-witness pair for relation RP transforms it into the statement-witness
pair for relation R∗

P , initializes aux with {Cy2i} and their proofs of correctness,
initializes the transcript, τ , and calls PoK∗

P .

Ensuring soundness for the recursive proof. The prover and verifier can both
compute encrypted evaluations of the polynomial P (x0, . . . , xn−1, γ) on any in-
put γ using the ciphertexts {ci}. They can further break P into two parts such
that P (x0, . . . , xn−1, γ) = P1(x0, . . . , xn/2−1, γ)+P2(xn/2, . . . , xn−1, γ) where P1

contains the monomials xiγ
i for i < n/2, and P2 contains monomials of higher

degree in γ. We can represent P as P (x0, . . . , xn−1, γ) = P1(x0, . . . , xn/2−1, γ)+

γn/2P3(xn/2, . . . , xn−1, γ) where P3(γ) = P2(γ)/γ
n/2.

To recurse, the prover commits to ciphertexts e1 = P1(x0, . . . , xn/2−1, y) ,
e2 = P2(xn/2−1, . . . , xn−1, y) , e3 = P3(xn/2, . . . , xn−1, y) , and then proves
(using the proof systems for proving properties of committed ciphertexts) that
e = e1 ⊕ e2 and e2 = yn/2 ⊙ e3 using the commitment Cyn/2 found in aux.
Thus, the prover has reduced the task of proving that CP is a commitment
to e = P (x0, . . . , xn−1, y) for a polynomial P of degree n − 1 to the task
of proving that CP1 is a commitment to e1 = P1(x0, . . . , xn/2−1, y) and CP3

is a commitment to e3 = P3(x0, . . . , xn/2−1, y) , where P1 and P3 are both
polynomials of degree n/2− 1.

To take advantage of recursion, we need to use just one recursive call in order
to prove that the openings of CP1 and CP3 (i.e., e1 and e3 respectively) are en-
crypted evaluations of P1 and P3. To do so, prover and verifier define a new poly-
nomial P ′ of degree (n− 1)/2 by taking a random linear combination of P1 and
P3: let α be the output of the random oracle on input the elements of the proof
that have been computed so far. Let P ′(x0, . . . , xn−1, y) = P1(x0, . . . , xn−1, y)+
αP3(x0, . . . , xn−1, y). By the Schwartz-Zippel Lemma (Lemma 13), if committed
e1 ̸= P1(y) or committed e3 ̸= P3(y) , then with overwhelming probability
over the choice of α, e1 ⊕ (α ⊙ e3) ̸= P ′(x0, . . . , xn−1, y) . Let CP ′ be a com-
mitment to the ciphertext e′ = e1 ⊕ (α⊙ e3); the prover can provide a proof
that indeed CP ′ is a commitment to e′ computed this way based on CP1

and
CP3

and α using the proof systems for committed ciphertexts.
Next, we use recursion to prove that CP ′ corresponds to correctly evaluating

the polynomial P ′, i.e. it is a commitment to P ′(x0, . . . , xn−1, y) . To do so, we
call PoK∗

P on input ciphertexts (c′0, . . . , c′n/2−1) where c′i = xi ⊕ (α⊙ xn/2 + i).

Theorem 1 Our scheme in Algs. 1 and 2 are complete and ZK (Def. 1).

Theorem 2 The PoK∗
P function in Alg. 2 is black-box (BB) simulation ex-

tractable with respect to Def. 2 for the relation R∗
f .

For compactness, here we only present the prover’s algorithms; the verifier’s
algorithms (provided in Appx. E.4) should follow from the prover’s algorithms.

PPBs via Verifiable Computation 21

Algorithm 1 PoKP (r, y, Cy, c0, . . . , cn−1, cP)→ π

Let ci = { xi }i∈[0...n−1]);
Prover needs to prove that cP = e =

⊕n
i=0(xi ⊙ yi)

To format cP for the recursion, we commit to it with known randomness e.g. 0
1: CP ← ComAH (cP ; 0)

2: For i = 1 to logn, let (C
y2i , ri) = Com(y2i)

and let π
y2i ← NIZK[(z, ri−1, ri) : Cy2i−1 = Com(z; ri−1)∧Cy2i = Com(z2; ri)].

3: Initialize aux = ({C
y2i , πy2i }i∈[log(n)]), τ = (Cy, c0, . . . , cn−1, cP).

4: return aux,PoK∗
P (ry, y, cP , rP , Cy, c0, . . . , cn−1, CP , aux, τ)

Algorithm 2 PoK∗
P (ry, y, cP , rP , Cy, c0, . . . , cn−1, CP , aux, τ)→ π′

Let ci = { xi }i∈[0...n−1]; cP = e

Prover needs to prove that CP = ComAH (e ; rP) where e =
⊕n−1

i=0 xi ⊙ yi =∑n−1
i=0 yixi and Cy = Com(y; ry)

If the degree of the polynomial is low enough, prove its computation directly:
1: if n = 1, return (π1) where π1 ← NIZK[r : ComAH (x0 , r) = CP]

If not, we will need to reduce the degree needed to prove C and recurse.
To do so, first, commit to the lower half of the polynomial:

2: (C1, ρ1) = ComAH (e1) where e1 =
⊕n/2−1

i=0 xi · yi =
∑n/2−1

i=0 yixi

Next, commit to the upper half of the polynomial
3: (C2, ρ2) = ComAH (e2)

where e2 =
⊕n/2−1

i=0 xi+n/2 ⊙ yi+n/2 =
∑n/2−1

i=0 yi+n/2xi+n/2

Lastly, commit to the upper half of the polynomial with the degree lowered by half
4: (C3, ρ3) = ComAH (e3) where e3 =

⊕n/2−1
i=0 xi+n/2 ⊙ yi =

∑n/2−1
i=0 yixi+n/2

Query the random oracle on the current transcript of the proof so far, (C1, C2, C3, τ)
5: α← H(C1, C2, C3, τ)

Compute the encryptions of the new coefficients for a reduced degree polynomial
6: ∀i ∈ [n/2− 1], c′i = x′

i = xi ⊕ (xi+n/2 ⊙ α)
Compute a new evaluation over this reduced degree polynomial:

7: (C′
P , r

′) = ComAH (e′) where e′ =
⊕n/2−1

i=0 x′
i ⊙ yi

Prove that this new commitment C′
P is consistent with CP ,C1,C2, and C3.

8: πα ← NIZK[r, ρ1, ρ2, ρ3, r
′, ry, y, e , e1 , e2 , e3 , e

′ :
9: ComAH (e , r) = CP ∧ ComAH (e′ , r′) = C′

P ∧ ∀1 ≤ i ≤ 3 : ComAH (ei , ρi) = Ci

10: ∧ e = e1 ⊕ e2
11: ∧ e2 = yn/2 ⊙ e3 ▷ proven relative to Cyn/2 in aux

12: ∧ e′ = e1 ⊕ (α⊙ e3)]
13: π = (C1, C2, C3, C

′
P , πα)

14: τ ′ = (π, τ) ▷ Append this proof to the transcript
15: return

(
π,PoK∗

P (ry, y, e
′ , r′, Cy, c

′
0, . . . , c

′
n/2−1, C

′
P , aux, τ

′)
)

For readability, in the list of inputs to the prover, we underline those inputs that
are also given to the verifier.

22 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

We prove Thms. 1 and 2 in Appx. E.1. We show how to instantiate our NIZK
proofs from eqrep in Appx. E.3.

3.3 Proof System for Multivariate Polynomials

We present our algorithm for polynomials with multiple yi values in Appendix
E.4 in Alg. 8. This algorithm proves the relation Ry described at the start of
this section. In essence, the algorithm will perform the same recursive step as
Alg. 2 until it has reduced the degree of a yi variable to 0. The algorithm then
recurses on the remaining k − 1 yi variables until none are left. At this point,
the evaluation has been fully proven.

For intuition, we describe how our protocol would prove the correct com-
putation of an example polynomial: f(x1, x2, y1, y2) = a1x1y1y2 + a2x2y

2
1y2.

Our proof function will first focus on y1, finding that the maximum degree
of this variable, dmax = 2. It will then compute f1(x1, x2, y1, y2) = a1x1y1y2
and f2(x1, x2, y1, y2) = a2x2y

2
1y2 as well as f3(x1, x2, y1, y2) = (a2x2y

2
1y2)/y1 =

a2x2y1y2. The proof function will then commit to encryptions of these polyno-
mials, and hash the transcript to receive the challenge, α. It will then prove the
relation f(. . .) = f1(. . .)+f2(. . .) and f2(. . .) = y∗f3(. . .) (for compactness, we’ve
replaced the input to functions, x1, x2, y1, y2, with ellipses). It will then compute
f ′(. . .) = f1(. . .)+αf3(. . .) = a1x1y1y2+a′2x2y1y2 where a′2 = a2∗α. This process
will repeat for f ′, with the prover recomputing dmax for y1 to be 1. The prover
will then compute f ′

1, f
′
2, and f ′

3 (similar to how they computed f1, f2, and f3)
but this time, the prover will find that f ′

1(. . .) = 0 (since no monomial has degree
of y1 less than dmax/2 = 1/2) and f ′

3(. . .) = (a1x1y1y2+a′2x2y1y2)/y1 = a1x1y2+
a′2x2y2. Thus, f ′′(. . .) = f ′

1(. . .)+αf ′
3(. . .) = 0+α′(a1x1y2+a′2x2y2) (for the chal-

lenge, α′). Thus, the prover has removed y1 from the polynomial to be proven.
Once this repeats to remove y2, the prover is left with f∗(. . .) = a∗1x1 + a∗2x2

where a∗1 and a∗2 are some combination of the coefficients of f and the challenges
from the previous recursive steps. This is a linear function in the xi’s where the
α’s are known by the verifier so the verifier can simply compute the encryption
of f∗(. . .) at this point and the prover can prove that they’ve committed to this
encryption. We give our results for this relation in Theorems 4 and 3 which we
prove in Appx. E.4.

Theorem 3 Our scheme in Alg. 8 is complete and ZK (Def. 1).

Theorem 4 The function in Alg. 8 is black-box (BB) simulation extractable
with respect to Def. 2 for the relation Rf defined in Sect. 3.

4 Instantiations of Commitments to Additively-
Homomorphic Ciphertexts

As explained in Page 5 in our first contribution, for our proof system from Sec. 3
to be efficient, we require schemes to compute over commitments to additively

PPBs via Verifiable Computation 23

homomorphic ciphertexts that we define in Sec. 3.1. In this section, we introduce
some efficient instantiations of these schemes.

We first define variants of ElGamal and Camenisch-Shoup encryption, in
Sec. 4.1. Specifically, we define “lifted” ElGamal and Camenisch-Shoup in a
“commitment-friendly” group. We then construct commitments to ciphertexts
and associated proof systems for adding and multiplying ElGamal ciphertexts
and Camenisch-Shoup ciphertexts. We use (Lifted) ElGamal which is a g-semi-
encryption as defined in Sec. 3 with message space M = Zp and g(x) = hx

mod p. Camenisch-Shoup encryption has the advantage that it allows for the
efficient computation of discrete logarithms in a subgroup of size n where n is
an RSA modulus. Thus, with Camenisch-Shoup encryption, we can efficiently
decrypt ciphertexts when the message space has exponential size. Thus, our
Camenisch-Shoup construction is a g-semi-encryption where g is the identity
function (i.e. a standard encryption scheme). In our Camenisch-Shoup construc-
tion, the message space is M = Zn. In Sec. 4.2 we construct commitments to
Camenisch-Shoup ciphertexts. As the setting of ElGamal is simpler, we defer
it to Appx. F.3 though we review some elements of ElGamal encryption which
explain why it is similar to Camenisch-Shoup.

4.1 Encryption Schemes

We review (Lifted) ElGamal encryption in Fig. 4.1a and a modified Camenisch-
Shoup encryption in Fig. 4.1b. We include an extra generator (h) for lifting
to exponents in ElGamal so that we can draw parallels between ElGamal and
Camenisch-Shoup (ElGamal encryption generally uses the default generator, h =
g). We see that both ElGamal and Camenisch-Shoup have similar homomorphic
properties. Specifically for two encryptions, (gr, krhm) and (gr

′
, kr

′
hm′

), (gr ·
gr

′
, krhm ·kr′hm′

) is a valid encryption of g(m+m′) in both encryption schemes.
Also, exponentiation is similar, i.e. ((gr)y, (krhm)y) is a valid encryption of g(ym)
in both encryption schemes.

Our modification to Camenisch-Shoup encryption includes replacing some
values (parameter g ∈ Zn and ciphertext c) with their absolute values. Modify-
ing Camenisch-Shoup in this way ensures that the elements of honest Camenisch-
Shoup ciphertexts lie in a “commitment-friendly” sub-group |QRn2 | where |QRn2 | =
{|x| : x ∈ QRn2}, QRn2 is the quadratic residues in Zn2 (elements that have a
square root in Zn2), and | · | is the absolute value function such that |x| of an
element x ∈ Zn2 is n2 − x if x > ⌊n2/2⌋ and x otherwise. One nice property of
|QRn2 | is that it is cyclic (which helps with our hiding and ZK proofs) and also
|QRn2 | is efficiently sampleable by sampling a random element of Zn2 , squaring
it, and taking its absolute value.

Critically, elements of |QRn2 | are always equal to their absolute value i.e.
|x| = x for elements in |QRn2 |. This is important because it means that using
eqrep-Zn2 (as defined in Sec. 2.1) to prove relations between |QRn2 | elements
works perfectly, where-as for Zn2 it only holds for the absolute values of these
elements. As an example, if we wanted to prove that we know a such that c = ga

in Z∗
n2 , we could only prove that c = bga where b ∈ {−1, 1}. Ultimately, we

24 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Fig. 4.1: Encryption schemes

Setup(1λ)→ paramsElG

1 : Generate cyclic group of
prime order p, Gp

2 : g, h←$ Gp

3 : return (g, h,Gp)

KeyGen(paramsElG)→ (pk, sk)

1 : x←$ Zp;

2 : return pk← gx, sk← x;

Enc(pk = k,m)→ c

1 : r ←$ Zp;

2 : return c = (gr, krhm)

Dec(sk, c = (c0, c1))→M

1 : z = csk0 = kr

2 : return c1/z = M = hm

g2n

(a) Lifted ElGamal

Setup(1λ)→ paramsCS

1 : Sample a safe RSA modulus,
n = pq = (2p′ + 1)(2q′ + 1)

2 : g′ ←$ |QRn2 |, g = |(g′)n|, h = (1 + n),

3 : return paramsCS = (n, g, h)

KeyGen(paramsCS)→ (pk, sk)

1 : sk = x←$ [n2/4], pk = k = |gx| // in |QRn2 |

2 : return pk, sk

Enc(pk,m ∈ [n])→ c

1 : r ←$ [n/4],

2 : return c = (|gr|, |krhm|) // in |QRn2 |

Dec(sk, c = (c0, c1))→ m

1 : t = 2−1 mod n

2 : M = c1/c
x
0 // in Zn2

3 : return m = ((M2t mod n2)− 1)/n

(b) Simplified Camenisch-Shoup

use |QRn2 | since we want to ensure that after performing exponentiation and
multiplication proofs over commitments to ciphertexts, the ciphertext decrypts
to the expected value. We can see in Fig. 4.1b that the encryption scheme de-
crypts the absolute value of a ciphertext exactly the same as the original cipher-
text. This is clear from rewriting the decryption process as m = (((c21/(c

2
0)

x)t

mod n2)− 1)/n. The first operation the decryptor does is square both elements
of the ciphertext, and our claim follows from the fact that |x|2 = x2 ∈ Zn2 .
The proofs of our ElGamal commitments use the eqrep-Gp protocol (in Sec. 2.1)
which does not have the same limitations as eqrep-Zn2 . Unfortunately, |QRn2 |
is not efficienctly recognizable, but if every ciphertext comes with a proof of
correct encryption (starting from honest parameters) we can be assured that the
resulting ciphertext lives in |QRn2 |. We show in Appx. F.1 that in our modified
Camenisch-Shoup scheme, g and h are both in the group |QRn2 |. Thus, if we can
create commitments to elements of |QRn2 |, we can use them to commit to our
modified Camenisch-Shoup ciphertexts and construct the associated protocols
for multiplication and exponentiation.

4.2 Commitments to |QRn2 | and Camenisch-Shoup Ciphertexts

To construct commitments to Camenisch-Shoup ciphertexts, we need to con-
struct commitments to the elements of the group in which components of a
Camenisch-Shoup ciphertexts lie. We accomplish this by using Damgård-Fujisaki

PPBs via Verifiable Computation 25

integer commitments [DF02] that are similar to Pedersen commitments. We
adapt Damgård-Fujisaki commitments to “live” in Zn2 in Fig. 4.2 in functions
SetupDF and ComDF. We prove them secure in Appx. F.2. To give intuition, these
commitments appear very similar to Pedersen commitments, using two genera-
tors of a group as the public parameters and exponentiating them in a similar
way to commit to integers. In this scheme, B is such that 2B is larger than the
order of |QRn2 | (i.e. 2B = n2/4). Using Damgård-Fujisaki commitments that

Fig. 4.2: Simplified Damgård-Fujisaki commitments in Zn2

SetupDF(1
λ)→ paramsDF :

1: Sample a safe RSA modulus,
n = pq = (2p′ + 1)(2q′ + 1)

2: Sample random g, h ∈ Zn2 .
3: return params = (g, h)

CommitDF(params,m)→ (C,O) :

1: To commit to integer, m, com-
pute: C = gmhr where r ←$

[2B+λ]
2: return (C,O) where O = r

live in Zn2 will allow us to use the eqrep-Zn2 protocol from Def. 3 to complete
proofs of multiplication and exponentiation of our |QRn2 | commitments15.

Next, by employing Damgård-Fujisaki commitments that live in Zn2 , we can
construct a scheme for committing to elements of |QRn2 | (and then we can use
|QRn2 | commitments to construct commits to Camenisch-Shoup ciphertexts).
We show this scheme in Fig. 4.3 in functions SetupQR and ComQR. Similar to in
the Damgård-Fujisaki commitments, B is such that 2B is larger than the order of
|QRn2 |. We show that such commitments are hiding and binding in Appx. F.4.
We can see that these |QRn2 | commitments are multiplicatively homomorphic,
i.e. if you take two |QRn2 | commitments c = (c1, c2) committing to element M
and d = (d1, d2) committing to element N , then if you compute their pair-wise
multiplication: e = (c1 ∗ d1, c2 ∗ d2), this results in a commitment to M ∗ N
with opening information sc+sd, rc+ rd, computed pair-wise, where sc, rc is the
opening information for c and sd, rd is the opening information for d.

Auxiliary proofs for commitments to |QRn2 | We now describe protocols
that we can use to create proofs of opening, multiplication, and exponentiation
of elements in |QRn2 | which can be verified using only their commitments.

15 We could use Damgård-Fujisaki commitments as-is (such that they live in Zn), but
our |QRn2 | commitments would then consist of elements in Zn2 and Zn, requiring a
new eqrep protocol that spans both groups. It is not clear if this alternative approach
would be more efficient or simpler.

26 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Fig. 4.3: |QRn2 |-Commitments

SetupQR(1
λ)→ paramsQR

1: Sample a safe RSA modulus,
n = pq = (2p′ + 1)(2q′ + 1)

2: Sample random g ← |QRn2 |
3: Sample random (g′, h′)← Zn2

4: return params = (n, g, g′, h′)

ComQR(params,M)→ (C,O)

1: (s, r)←$ [2B+λ]
2: C = (|Mgs|, (g′)s(h′)r)
3: return (C,O) where O = (s, r)

Proof of knowledge of opening for |QRn2 |-commitments. Comparing Fig. 4.3 to
Fig. 4.2, we can see that the second part of a |QRn2 | commitment is simply a
Damgård-Fujisaki commitment that lives in Zn2 . Using the Damgård-Fujisaki
commiment opening proof protocol [DF02], we can create a proof of opening of
the second part of the commitment which suffices as a proof of opening for a
|QRn2 | commitment as we can extract s, r from C2 and compute: M = |C1/(g

s)|.

Proof of multiplication of |QRn2 |-commitments. We show how to prove knowl-
edge of multiplication of committed |QRn2 | elements by utilizing the homo-
morphic property of the commitments. Given three commitments, C1, C2, C3,
committing to |QRn2 | elements E1, E2, E3 (where each commitment consists of
two elements of |QRn2 |, Ci = (Ci,1, Ci,2)), we prove that a fourth commitment
C4 = (C4,1, C4,2) is a commitment to 1 ∈ |QRn2 |, where C4,1 = C1,1/(C2,1C3,1)
and C4,2 = C1,2/(C2,2C3,2) – the verifier can compute C4 using (Ci)i∈[3]. This
is equivalent to proving multiplication because of the homomorphic properties
of the relation and can be proven using eqrep-Zn2 from Sect. 2.1 using relation
R((γ1, γ2, β1, β2), (C4,1, C4,2)) = 1 iff C4,1 = β1g

γ1 ∧C4,2 = β2(g
′)γ1(h′)γ2 ∧β1 ∈

{−1, 1} ∧ β2 ∈ {−1, 1}. This proves that |C4| = (|gγ1 |, (g′)γ1(h′)γ2) which is a
commitment to 1. The prover uses γ1 = s1 − s2 − s3 and γ2 = r1 − r2 − r3 to
satisfy this relation, where (si, ri) is the opening of Ci.

Proof of exponentiation of |QRn2 |-commitments with Damgård-Fujisaki commit-
ments. We prove this with eqrep-Zn2 from Sec. 2.1. This proof operates over two
commitments C1, C2 to |QRn2 | elements E1, E2 (resp.) and one commitment Cy

to scalar y and proves that E1 = Ey
2 . First let C1 = (C1,1, C1,2), C2 = (C2,1, C2,2)

and Cy = (g′)y(h′)ry . This can be proven with relation R((γ1, γ2, β1, β2), (C1, C2,
Cy)) = 1 iff C1,1 = β1C

y
2,1g

γ1∧C1,2 = β2C
y
2,2g

γ1hγ2∧β1 ∈ {−1, 1}∧β2 ∈ {−1, 1}.
The Prover uses γ1 = s1 − ys2 and γ2 = r1 − yr2 to satisfy this relation. If the
prover can open C2 then, C1,1 = β1E

y
2g

ys2+γ1 and C1,2 = β2(g
′)ys2+γ1(h′)yr2+γ2

which is exactly a commitment to |Ey
2 |.

Commitments to Camenisch-Shoup encryptions Since we constructed
commitments to elements of |QRn2 | along with their associated proof protocols,

PPBs via Verifiable Computation 27

we can use these commitments with Camenisch-Shoup ciphertexts. We present
the full construction in Appx. F.5 and describe it in Fig. 4.4. The Prove functions
in Fig. 4.4 satisfy the relations between committed ciphertexts described in Sec.
3.1. Similar to Sect. 3.2, we underline elements known to the verifier so that the
reader can intuit how the proof is verified. We prove Theorem 5 in Appx. F.6.

– SetupCS (1
λ)→ params: Generates the parameters for a Camenisch-Shoup encryp-

tion scheme, paramsCS from Fig. 4.1b, the parameters for a |QRn2 | commitment
scheme, paramsQR from Fig. 4.3, and for a scalar commitment scheme, paramsDF.

– ComCS (params, c)→ (C,O): Takes in a Camenisch-Shoup encryption, c = (c1, c2)
and uses the |QRn2 | commitment scheme to commit to each element, (C1, O1) =
ComQR(c1), (C2, O2) = ComQR(c2) with the opening being O = (O1, O2).

– ProveComAH
CS (params, c,M,O,C) → π: Parse the encryption into two |QRn2 | ele-

ments, c = (c1, c2). Perform a proof of opening of both |QRn2 | commitments (C1

and C2) to c1 and c2.
– Prove⊕CS (params, ca, cb, cc, Oa, Ob, Oc, Ca, Cb, Cc) → π: Parse the encryption, ca =

(ca,1, ca,2) and similarly parse cb and cc. Compute two |QRn2 |multiplication proofs
over Ca, Cb, and Cb proving that ca,1 ∗ cb,1 = cc,1 and ca,2 ∗ cb,2 = cc,2. Output
these proofs as π.

– Prove⊙CS (params, ca, cb, Oa, Ob, ry, y, Ca, Cb, Cy) → π: Let Cy = Com(y; ry). Simi-
lar to the Prove⊕CS function, parse ca and cb into their |QRn2 | elements. Perform
two proofs of exponentiation of |QRn2 | commitments for cyb,1 = ca,1 and cyb,2 = ca,2.
Output these proofs as π.

– ProveencCS (params, pkAH , ca, ra, Oa, y, ry, Ca, Cy)→ π: Parse the encryption as ca =
(gyhra , gra) where g, h are the parameters for the encryption scheme. Parse the
commitments similar to previous functions. Commit to the generator (g) and public
key (h) of the Camenisch-Shoup scheme, yielding Cg and Ch. Use these |QRn2 |
commitments to prove that ca,1 = gyhra and that ca,2 = gra . Output these proofs
as π.

Fig. 4.4: Summary of Camenisch-Shoup commitments

Theorem 5 (Security of Camenisch-Shoup commitments) The construc-
tion in Fig. F.4 in Appx. F.5 (partially described in Fig. 4.4) satisfies four prop-
erties: (1) statistically hiding; (2) computationally binding; (3) our protocols
in Fig. F.4 (ProveComAH

CS , ProveencCS , Prove⊙CS , and Prove⊕CS) are computationally
zero-knowledge; and (4) computationally black-box knowledge extractable assum-
ing that the Strong RSA and Decisional Composite Residuosity assumptions hold.

5 Applications of our Framework to Privacy-Preserving
Blueprints

Given this new efficient framework for verifiable computation on ciphertexts, we
are now equipped to build a PPB scheme that supports the fCBDC functional-
ity, has more succinct escrow proofs, and can withstand the framing attack in

28 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Sec. 1.2. We present the non-frameability result first as this allows us to recall
the generic construction of PPB from homomorphic-enough encryption (HEC),
which one can think of as a passively secure PPB. In Sec. 5.2 we instantiate HEC
using additively homomorphic encryption in such a way that Camenisch-Shoup
gives us a HEC for fCBDC , and in Sec. 5.3 we show a succinct proof system
which ensures escrows are created honestly.

5.1 Non-Frameable Privacy-Preserving Blueprints

To systematically prevent framing attacks and formally define and prove non-
frameability, we extend the formal definition of a blueprint scheme of [KLN23],
see Sect. 2.3. We change the Dec algorithm to additionally output a proof of
correct decryption and introduce a Judge algorithm for verifying this proof.

Definition 5 (A non-frameable f-blueprint scheme). For a non-interactive
commitment scheme (CSetup,Com), a non-frameable f -blueprint scheme consists
of all the algorithms of a basic f -blueprint scheme with an adapted Dec algorithm
and an additional Judge algorithm:

Dec(Λ, skA, Cy, Z)→ (f(x, y), πz) or ⊥: Takes the auditor’s secret key skA, com-
mitment Cy and escrow Z such that VerEscrow(Λ, pkA, Cy, Z) = 1 as input.
Decrypts the escrow and returns the output f(x, y) if Cy is a commitment
to y. Additionally it returns a proof, πz, that proves to the Judge algorithm
that f(x, y) was decrypted correctly from Z.

Judge(Λ, pkA, Cx, Cy, Z, z, πz) → 0 or 1: Takes as input the public key of the
auditor, pkA, the commitment to the watchlist and user data, Cx and Cy,
the escrow, Z, the decrypted value, z, a proof of correct decryption, πz and
verifies that z was obtained correctly from escrow Z.

Intuitively, non-frameability requires the Judge algorithm to only accepts valid
results.

Definition 6 (Non-Frameability). Let Cx and Cy be commitments computed
from (x, rx) and (y, ry) respectively. Non-frameability guarantees that any pkA,
Z, z, πz that passes Judge(Λ, pkA, Cx, Cy, Z, z, πz) will imply that f(x, y) = z with
overwhelming probability. More formally, for all PPT adversaries A, there exists
a negligible function ν such that: Pr

[
NonFramingAdvBlu (λ) = 1] < ν(λ)

KLN uses a “homomorphic-enough” encryption (HEC) scheme to generically
construct their PPB scheme. We extend their construction by adapting Dec and
adding Judge in Fig. 5.4.

The KLN HEC scheme is parameterized by a function family and is correct if
it is possible to compute any function from that family using only the ciphertexts.
Existing HEC schemes that are only correct as defined by KLN will not be
sufficient to construct non-frameable blueprint schemes.

Our main insight for adapting the generic construction of blueprints from
a HEC scheme is that the adversary now controls the randomness r to the

PPBs via Verifiable Computation 29

NonFramingAdvBlu (λ)

1 : cpar ← CSetup(1λ)

2 : Λ← Setup(1λ, cpar)

3 : (pkA, x, rx, y, ry, Z, z, πz)← A(1λ, Λ)
4 : Cx = Comcpar (x, rx);Cy = Comcpar (y, ry)

5 : return [(Judge(Λ, pkA, Cx, Cy, Z, z, πz) = 1) ∧ (f(x, y) ̸= z)]

Fig. 5.1: Experiments NonFramingAdvBlu (λ)

HEC encryption algorithm, in addition to the randomness rZ , and can thus
exercise additional control over the output of HECenc. Thus, we need to create
a definition that is stronger than correctness that we refer to as HEC consistency.
We will construct such HEC schemes using AHE in Sec. 5.2.

Definition 7 (Consistent homomorphic-enough cryptosystem (HEC)
for a function family). Let F = {f | f : domainf,x × domainf,y 7→ rangef}
be a set of polynomial-time computable functions. We say that algorithms HEC =
(HECsetup,HECenc,HECeval,HECdec,HECdirect) constitute a HEC for
F if they satisfy the input-output, consistency, and security requirements below:

– HECsetup(1λ) → hecpar takes the security parameter as input, outputs the pa-
rameters hecpar .

– HECenc(hecpar , f, x) → (X, d) takes parameters hecpar , a function f ∈ F , and
a value x ∈ domainf,x as input, outputs an encrypted representation X of the
function f(x, ·), and a decryption key d.

– HECeval(hecpar , f,X, y) → Z takes as input the parameters hecpar , a function
f ∈ F , an encrypted representation of f(x, ·), and a value y ∈ domainf,y and
outputs a ciphertext Z, an encryption of f(x, y).

– HECdec(hecpar , d, Z) → z takes as input the parameters hecpar , the decryption
key d, and a ciphertext Z, decrypts Z to obtain a value z.

– HECdirect(hecpar , X, z) → Z on input hecpar , an encrypted representation X
of some function, and a value z, outputs a ciphertext Z.

Fig. 5.2: Algorithms of HEC scheme for F

HEC consistency. For a given adversary Adv and HEC, let AdvHEC,Adv be the
probability that the experiment HECconsistent in Fig. 5.3 accepts. HEC is
consistent if AdvHEC,Adv is negligible for all PPT algorithms Adv.
HEC security. We provide the formal definitions for the Security of x, security
of x and y from third parties, and security of DirectZ in Appx. D.1.

Relying on HEC consistency we reprove Theorem 2 of [KLN23].

30 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

HECconsistentAdv(λ)

1 : hecpar ← HECsetup(λ)

2 : (f, x, r, y, rZ)← Adv(1λ, hecpar)

3 : if f /∈ F ∨ x /∈ domainf,x ∨ y /∈ domainf,y

4 : return 0

5 : (X , d)← HECenc(hecpar , f, x; r)

6 : Z ← HECeval(hecpar , f,X , y; rZ)

7 : if HECdec(hecpar , d, Z) ̸= f(x, y)

8 : return 1

9 : return 0

HECcorrectAdv(λ)

1 : hecpar ← HECsetup(λ)

2 : (f, x, st)← Adv(1λ, hecpar)

3 : if f ∈ F, x ∈ domainf,x

4 : (X , d)← HECenc(hecpar , f, x)

5 : (y, rZ)← Adv(st, X)

6 : if y ∈ domainf,y

7 : Z ← HECeval(hecpar , f,X , y; rZ)

8 : if HECdec(hecpar , d, Z) ̸= f(x, y)

9 : return 1

10 : return 0

Fig. 5.3: The HEC consistency game and for comparison the original correctness
game of KLN: In the HEC consistency game, the adversary outputs x, y, and
the randomness for the HEC scheme (r, rZ), and the encryption and evaluation
algorithms cannot produce a ciphertext that decrypts to a plaintext other than
f(x, y).

Theorem 6 If HEC is a consistent and secure homomorphic-enough cryptosys-
tem, the commitment scheme is binding, and the NIZK PoKs Ψ1, Ψ2 and Ψ3 are
zero-knowledge and BB-PSL simulation extractable then our generic blueprint
scheme is a secure, non-frameable f -blueprint scheme.

Proof. Since the property of HEC consistency implies HEC correctness, the
proofs of correctness of VerEscrow, VerPK and Dec from the original PPB proof
of KLN remains unchanged. Similarly, the Soundness of the generic f -blueprint
scheme is also proven using the BB-Extractability of the NIZK Ψ2 using the same
reduction technique as KLN. The proofs for the properties of Blueprint Hiding,
Privacy against dishonest auditor and Privacy against honest auditor do not
involve the decryption proof and are unchanged from KLN. We thus focus on
the proof of non-frameability.

Lemma 1 Let Ψ1, Ψ2, and Ψ3 be a BB extractable NIZK schemes, let (CSetup,
Com) be a computationally binding commitment scheme, and HEC be consistent,
then our proposed scheme achieves Non-frameability.

Proof. Consider Fig. 5.1. Suppose, for the sake of contradiction, that there ex-
ists a PPT adversary A such that AdvNonFraming

A,Blu = ν(λ) is non negligible. Let
(pkA, x, rx, y, ry, Z, z, πz), be the adversary’s output in the experiment for which
Cx = Comcpar (x, rx) and Cy = Comcpar (y, ry).

We first extend the experiment by running the extractors for the proofs πA

for Ψ1 in pkA, πU for Ψ2 in Z and πz for Ψ3. If any of the extractors fail with
non-negligible probability we break the BB extractability of the corresponding

PPBs via Verifiable Computation 31

Setup(λ, cpar ,S1,S2,S3)

1 : hecpar ← HECsetup(1λ)

2 : return Λ = (λ, cpar , hecpar , S1,S2, S3)

KeyGen(Λ, x, rx)

1 : parse Λ = (λ, cpar , hecpar ,S1, S2,S3)

2 : (X , d)
r← HECenc(hecpar , f, x)

3 : Cx ← Comcpar (x; rx);Cd
rd← Comcpar (d)

4 : πA ← PoKS1
Ψ1

{
(x, d, r, rx, rd) :

5 : (X , d) = HECenc(hecpar , f, x; r)

6 : ∧ Cx = Comcpar (x; rx)

7 : ∧ Cd = Comcpar (d; rd)
}

8 : pkA ← (X , Cx, Cd, πA); skA ← (pkA, d, rd)

9 : return (pkA, skA)

VerPK(Λ, pkA, Cx)

1 : parse Λ = (λ, cpar , hecpar ,S1, S2,S3)

2 : parse pkA = (X , C′
x, πA)

3 : return VS1
1 ((X , hecpar , f, Cx, cpar), πA)

4 : ∧ (C′
x = Cx)

Judge(Λ, pkA, Cx, Cy, Z = (Ẑ, πU), z, πZ)

1 : parse Λ = (λ, cpar , hecpar ,S1, S2,S3)

2 : parse pkA = (_,_, Cd,_)

3 : return VS3
3 ((z, hecpar , Ẑ, Cd), πZ)

4 : ∧ VerPK(Λ, pkA, Cx)

5 : ∧ VerEscrow(Λ, pkA, Cy, Z)

Escrow(Λ, pkA, y, ry)

1 : parse Λ = (λ, cpar , hecpar , S1, S2, S3)

2 : parse pkA = (X , Cx,_)

3 : if VerPK(Λ, pkA, Cx) = 0

4 : return 0

5 : Ẑ
r
Ẑ← HECeval(hecpar , f,X , y)

6 : Cy ← Comcpar (y; ry)

7 : πU ← PoKS2
Ψ2

{
(y, ry, rẐ) :

8 : Ẑ = HECeval(hecpar , f,X, y; rẐ)

9 : ∧ Cy = Comcpar (y; ry)
}

10 : return (Ẑ, πU)

VerEscrow(Λ, pkA, Cy, Z = (Ẑ, πU))

1 : parse Λ = (λ, cpar , hecpar , S1,S2, S3)

2 : parse pkA = (_, Cx,_,_)

3 : return VerPK(Λ, pkA, Cx)

4 : ∧ VS2
2 ((Ẑ, hecpar , f,X,Cy, cpar), πU)

Dec(Λ, skA, Cy, Z = (Ẑ, πU))

1 : parse Λ = (λ, cpar , hecpar , S1, S2, S3)

2 : parse skA = (pkA, d, rd)

3 : parse pkA = (_,_, Cd,_)

4 : if VerEscrow(Λ, pkA, Cy, Z) = 0

5 : return ⊥

6 : z ← HECdec(hecpar , d, Ẑ)

7 : πZ ← PoKS3
Ψ3

{
d, rd :

8 : z = HECdec(hecpar , d, Ẑ)

9 : ∧ Cd = Comcpar (d; rd)
}

10 : return (z, πZ)

Fig. 5.4: Construction of generic f -blueprint scheme from HEC and NIZK PoKs
Ψ1, Ψ2 and Ψ3 with setup S1,S2, and S3 respectively.

NIZK scheme. Otherwise, we obtain witnesses (x′, d, r, r′x, rd), (y′, r′y, rẐ), and
(d′, r′d) for which (X , d) = HECenc(hecpar , f, x′; r), Cx = Comcpar (x

′; r′x), Cd =

Comcpar (d; rd), Ẑ = HECeval(hecpar , f,X, y′; rẐ), Cy = Comcpar (y
′; r′y), z =

HECdec(hecpar , d′, Ẑ) and Cd = Comcpar (d
′; r′d).

The events where A outputs 1 can be divided into four cases: (i) when x ̸= x′

(ii) when x = x′ but y ̸= y′, (iii) the case where x = x′ and y = y′ but d ̸= d′ (iv)
x = x′, y = y′ and d = d′. We express the probabilities of these events with the

32 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

functions ν0(λ), ν1(λ), ν2(λ), and ν3(λ) respectively. Since ν(λ) is non negligible
and these three events covers all cases where Adv would output 1, at least one
of ν0(λ), ν1(λ), ν2(λ) or ν3(λ) must be non negligible.

Suppose ν1(λ) is non negligible. By the structure of the experiment and the
validity of the witness we know that Cx = Comcpar (x; rx) and Cx = Comcpar (x

′; r′x),
and we can thus construct an adversary against the binding property of the
commitment by outputting (x, rx, x

′; r′x). By the same argument we show that
ν2(λ) and ν3(λ) are negligible. Finally, in the fourth case, we have that (X , d) =
HECenc(hecpar , f, x; r) and Ẑ = HECeval(hecpar , f,X, y; rẐ), and f(x, y) ̸=
HECdec(hecpar , d, Ẑ). We can thus construct an adversary against the consis-
tency property of the HEC scheme by outputting (f, x, r, y, rẐ).

5.2 Instantiation of Consistent HEC Schemes

It turns out that the FHE based HEC scheme of [KLN23] is already consistent,
see Appx. D.3.

In this section, we provide a consistent HEC scheme for realizing a non-
frameable CBDC and watchlist PPB scheme. In Fig. 5.5 we construct the al-
gorithms HECeval and HECdec for the function family {fn,k}n,k∈Z, where n
is the length of the auditor’s list x = {x1, . . . , xn} and k is the bit length of
the user’s attribute yat , where the user’s input consists of the user’s identifier
yid and an attribute: y = (yid , yat). fn,k is defined as fn,k(x, y) = y if yid ∈ x
and fn,k = ∅ otherwise. We discuss why this watchlist function is useful for the
watchlist/CBDC application in Sec. 1. yid uniquely identifies a user and yat could
be any useful data about the user such as a seed for tracing the user’s anony-
mous payments. We construct a HECeval algorithm for multiple attributes in
Appx. D.2 and show the full construction of our HEC scheme in Appx. D.3.

Overview of the construction. The HECenc algorithm (Fig. 5.5) takes as in-
put the list x of n watchlisted identities, and computes a polynomial P (χ) =∑

i∈[n] aiχ
i such that P (yid) = 0 if and only if yid ∈ x. Then, it samples a key

pair (pkAH , skAH) for a semantically secure g-semi-encryption scheme (Def. 4),
and outputs the public key X = (pkAH , {Ai = Enc(pkAH , ai)}i∈[0...n]) where the
ai’s are coefficients of P , and the decryption key d = (skAH , x).

On input the public key X and the value y = (yid , yat), HECeval will
output the escrow Z = (Zid , Zat , Znf) which consists of three ciphertexts under
the key pkAH ; these will decrypt to the values (yid , yat , 0) if and only if yid ∈ x;
otherwise they will decrypt to uniformly random elements of the message space,
independent of y. As we show in more detail in Fig. 5.5, additively homomorphic
properties of the underlying (semi-)encryption scheme allow the evaluator to
form the ciphertext E so that it will be an encryption of P (yid). The evaluator
also encrypts the identity yid and attribute yat , yielding ciphertexts Yid and Yat .
The escrow of yid is then formed as Zid = (r1 ⊙ E) ⊕ Yid = ((r1 ⊙ P (yid)) ⊕
yid = r1P (yid) + yid , which is an encryption of yid if E is an encryption
of 0 (i.e. whenever yid ∈ x), and an encryption of a random value otherwise,

PPBs via Verifiable Computation 33

thanks to the randomizer r1. Similarly, the escrow of yat is Zat = (r2 ⊙ E) ⊕
Yat = r2P (yid) + yat . To make the HEC consistent, we include Znf = r3⊙E =

r3P (yid) , which will decrypt to 0 if and only if yid ∈ x.
HECdec takes as input the HEC decryption key d = (skAH , x) and the

escrow Z. It recovers y′id , y
′
at , and y′ by decrypting the escrows (Zid , Zat , Znf)

using the secret key, skAH . By the correctness property the decryption algorithm
for g-semi-encryption, we know that for Z ∈ HECenc(X, y), y′ = g(r3P (yid)) =
g(0) if and only if yid ∈ x; so if y′ ̸= g(0), HECdec outputs ⊥. Else, we know
that yid ∈ x, so HECdec must somehow determine (1) yid from y′id = g(yid),
and (2) yat from y′attr = g(yat). Let us explain how HECdec can do so.

If g is the identity function then this step is trivial; we will show in Sec. 4
that we can achieve an additively homomorphic g-semi-encryption scheme where
g is the identity function under the decisional composite residuosity assumption
using the Camenisch-Shoup cryptosystem.

If, however, g is a one-way injective function, then (1) can be done by looking
for g(yid) on the list g(x1), . . . , g(xn) where xi ∈ x and (2) can only be done
by exhaustive search, which is only possible if yat comes from a small space.
This is the approach that was (implicitly) taken by the original PPB paper of
Kohlweiss et al.: since the ElGamal cryptosystem is only additively homomorphic
when viewed as a g-semi-encryption scheme, and g is a one-way function, they
could only achieve attributes from a small space.

HECeval(hecpar , fn,k, X, y; rẐ)

1 : parse X = (pkAH , A0, ..., An),

y = (yid , yat), // |yat | = k

rẐ = (rid , rat , r1, r2, r3)

2 : E ←
n⊕

i=0

(Ai ⊙ yi
id)

3 : Yid ← Enc(pkAH , yid ; rid)

4 : Yat ← Enc(pkAH , yid ; rat)

5 : Zid ← (r1 ⊙ E)⊕Yid

6 : Zat ← (r2 ⊙ E)⊕Yat ;Znf = r3 ⊙ E

7 : return Z = (Zid , Zat , Znf)

HECdec(hecpar , d, Z)

1 : parse d = (skE , fn,k, x),

Z = (Zid , Zat , Znf)

2 : y′
id ← Dec(skE , Zid)

3 : y′
at ← Dec(skE , Zat)

4 : y′ ← Dec(skE , Znf)

5 : if y′ ̸= g(0), return ∅
6 : return (yid , yat)

where g(yat) = y′
at ∧ g(yid) = y′

id

∧ yid ∈ x ∧ yat ∈ domainf,y,at

Fig. 5.5: HEC algorithms: we omit the functions HECenc and HECdirect as
they are unchanged from KLN and instead present them in Appx. D.3.

Theorem 7 (Security of the construction in Fig. 5.5) Assuming our AHE
scheme is secure, our construction in Fig. D.3 in Appx. D.3 (partially described
in Fig 5.5) achieves HEC consistency as defined in Def. 5.3; and security of y,

34 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

security of x and y from third parties, and security of DirectZ, as defined in
Def. 14.

Proof of Thm. 7 We focus on consistency and prove the remaining properties
as Lemmas 10, 11, and 12 in Appx. D.3 following KLN. Because we include
Znf = E ⊙ r3 in the escrow, an auditor can prove that this is an encryption of
0. This ensures that the yid is actually on the watchlist as the polynomial has
roots at each entry of the watchlist. Formally, if an adversary were to be able
to produce a (f, x, st, r, y, rZ) such that Z ← HECeval(hecpar , f,X , y; rZ) but
HECdec(hecpar , d, Z) ̸= f(x, y), we see that E ⊙ r3 = 0 in this case, which
implies that r3P (y) = 0. This is only true if y ∈ x since r3 > 0. In this case,
because HECeval is proven to be correctly computed, E ⊙ r1 decrypts to 0.
Thus, y′ = Dec(Y). Thus, this decrypts to the correct value.

5.3 Efficient Instantiation of HEC Evaluation Proof Ψ2

In this section we show how to use the techniques introduced in Sect. 3.2 to effi-
ciently instantiate a NIZK proof used in the Escrow algorithm in Fig. 5.4 to com-
pute πU. This proof is for the following relation: RΨ2((y, ry, rẐ), (Ẑ,X, fn,k, Cy)) =

1 iff Ẑ = HECeval(hecpar , fn,k, X, y; rẐ) ∧Cy = Com(y; ry) where fn,k is the
watchlist blueprinting function described at the start of this section. We can use
similar techniques to that of Ψ2 to construct proofs for Ψ1 and Ψ3.

In Alg. 3, we give the construction of Ψ2 for HECeval. This function calls
the proof function for Rf from Sec. 3 on lines 11, 12, and 13 in order to prove
correct computation of Zid , Zat , and Znf . Because of the succinctness of our
proof for Rf , the complexity of our proof will be O(log(n)) since we evaluate
with a constant number of variables.

Our proof system must have the zero-knowledge and extractability properties
needed for the proofs of both blueprint hiding (Def. 9) and user privacy (Def. 10
and 11) for our construction in Fig. 5.4. The zero-knowledge property is stan-
dard; for extractability recall that we require both the usual black-box proof of
knowledge property, as well as partial straight-line extraction of g(y); g is some
function such that g(y), jointly with x is sufficient to compute f(x, y) because
there is some efficiently computable function f∗ such that f∗(x, g(y)) = f(x, y).
In order to achieve straight-line extractability of g(y), our proof system requires
that the prover g-semi-encrypt y under a public key “in the sky”, i.e. a public key
that’s part of the parameters generated during setup; the knowledge extractor’s
trapdoor will be the decryption key. To that end, we use a public-key g-semi-
encryption scheme (Γsky = {KeyGensky ,Encsky ,Decsky}). (Using our notation
from Def. 2, the prover retrieves the public key in the sky by querying setup S2.)

We present the verification functions for PoKΨ2
and PoK∗

P in Appx. E.
We prove Thms. 8 and 9 in Appx. E.2.

Theorem 8 Our scheme in Alg. 3 is complete and ZK (Def. 1).

PPBs via Verifiable Computation 35

Algorithm 3 PoKS2

Ψ2
(hecpar , f,X, y, ry, rẐ)→ π

parse X = (pkAH , { ai }i∈[0...n]); rẐ = (r1, r2, r3, rid, rattr)
1: (yid , yat)← y; (Cid , rid) = Com(yid); (Cat , rat) = Com(yat);Cy ← Com(y; ry)
2: Zid = EncAH (pkAH , yid ; rid)⊕ (r1 ⊙ e);Zat = EncAH (pkAH , yat ; rattr)⊕ (r2 ⊙ e)
3: Znf = r3 ⊙ e ;Z = (Zid , Zat , Znf)
4: pksky ← S2(1

λ);Csky = Encsky(pksky , y; rsky);
5: πsky = NIZK[y, ry, rsky : Csky = Enc(pksky , y; rsky) ∧ Cy = Com(y; ry)]
6: ∀i ∈ [3], (Cri , ρi) = Com(ri)
7: fid(a0, . . . , an, yid , r1) = yid + a0r1y

0
id + a1r1y

1
id + . . .+ anr1y

n
id

8: fat(a0, . . . , an, yid , yat , r2) = yat + a0r2y
0
id + a1r2y

1
id + . . .+ anr2y

n
id

9: fnf (a0, . . . , an, yid , r3) = a0r3y
0
id + a1r3y

1
id + . . .+ anr3y

n
id

10: πy = NIZK[yid , rid , yat , rat : Cid = Com(yid ; rid)∧Cat = Com(yat ; rat)∧ (yid , yat) =
y ∧ Cy = Com(y; ry)]

11: πid = NIZK[yid , rid , r1, ρid : Zid = EncAH (fid(a0, . . . , an, yid , r1)) ∧ Cid =
Com(yid ; rid) ∧ Cr1 = Com(r1; ρ1)]

12: πat = NIZK[yid , rid , yat , rat , r2, ρ2 : Zat = EncAH (fat(a0, . . . , an, yid , yat , r2))∧Cid =
Com(yid ; rid) ∧ Cat = Com(yat ; rat) ∧ Cr2 = Com(r2; ρ2)]

13: πnf = NIZK[yid , r3 : Znf = EncAH (fnf (a0, . . . , an, yid , r3)) ∧ Cid = Com(yid ; rid) ∧
Cr1 = Com(r1; ρ1)]

14: return (πid , πat , πnf , πsky , Csky , {Cri}i∈[3], πy)

Theorem 9 (g∗-BB-PSL for Ψ2) If PoK∗
P is a BB NIZK for the relation RP

(where RP is defined as RP ((C,Cyid
, X, n), (O,Oyid

, yid)) = 1 iff C = ComAH (
EncAH (pkAH ,

⊕n
i=0(ai ⊙yiid);O))∧Cyid

= Com(y,Oyid
)) and if Γsky = {KeyGensky ,

Encsky ,Decsky} is a semantically secure g-semi-encryption scheme, our Ψ2 proof
is a g∗-BB-PSL protocol, where g∗(y, rẐ) = g(y).

Acknowledgements

Anna Lysyanskaya and Scott Griffy were supported by NSF Grants 2312241,
2154170, and 2247305 as well as the Peter G. Peterson Foundation and the
Ethereum Foundation. Markulf Kohlweiss and Meghna Sengupta were supported
by Input Output (iohk.io) through their funding of the University of Edinburgh
ZK Lab. We’d also like to acknowledge Victor Youdom Kemmoe and Eileen
Nolan for their helpful discussions.

References

ACC+22. Thomas Attema, Ignacio Cascudo, Ronald Cramer, Ivan Damgård, and
Daniel Escudero. Vector commitments over rings and compressed Σ-
protocols. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022,
Part I, volume 13747 of LNCS, pages 173–202. Springer, Cham, November
2022.

AHH+23. Nuttapong Attrapadung, Goichiro Hanaoka, Ryo Hiromasa, Takahiro Mat-
suda, and Jacob C. N. Schuldt. Maliciously circuit-private multi-key FHE
and MPC based on LWE. DCC, 91(5):1645–1684, 2023.

36 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

ATD16. Aydin Abadi, Sotirios Terzis, and Changyu Dong. VD-PSI: Verifiable del-
egated private set intersection on outsourced private datasets. In Jens
Grossklags and Bart Preneel, editors, FC 2016, volume 9603 of LNCS,
pages 149–168. Springer, Berlin, Heidelberg, February 2016.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on Security and Privacy,
pages 315–334. IEEE Computer Society Press, May 2018.

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and
Christophe Petit. Efficient zero-knowledge arguments for arithmetic cir-
cuits in the discrete log setting. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
327–357. Springer, Berlin, Heidelberg, May 2016.

BCF+. Daniel Benarroch, Matteo Campanell, Dario Fiore, Jihye Kim, Jiwon
Lee, Hyunok Oh, and Anaïs Querol. Proposal: Commit-and-prove zero-
knowledge proof systems and extensions. https://docs.zkproof.org/
pages/standards/accepted-workshop4/proposal-commit.pdf.

BCL04. Endre Bangerter, Jan Camenisch, and Anna Lysyanskaya. A cryptographic
framework for the controlled release of certified data. In Security Protocols
Workshop, volume 3957 of Lecture Notes in Computer Science, pages 20–
42. Springer, 2004.

BdMW16. Florian Bourse, Rafaël del Pino, Michele Minelli, and Hoeteck Wee. FHE
circuit privacy almost for free. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 62–89.
Springer, Berlin, Heidelberg, August 2016.

BFK+24. Alexander R. Block, Zhiyong Fang, Jonathan Katz, Justin Thaler, Hen-
drik Waldner, and Yupeng Zhang. Field-agnostic SNARKs from expand-
accumulate codes. In Leonid Reyzin and Douglas Stebila, editors,
CRYPTO 2024, Part X, volume 14929 of LNCS, pages 276–307. Springer,
Cham, August 2024.

BG13. Stephanie Bayer and Jens Groth. Zero-knowledge argument for polyno-
mial evaluation with application to blacklists. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS,
pages 646–663. Springer, Berlin, Heidelberg, May 2013.

BGJP23. James Bartusek, Sanjam Garg, Abhishek Jain, and Guru-Vamsi Policharla.
End-to-end secure messaging with traceability only for illegal content. In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V,
volume 14008 of LNCS, pages 35–66. Springer, Cham, April 2023.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser,
editor, ITCS 2012, pages 309–325. ACM, January 2012.

BHV+23. Rishabh Bhadauria, Carmit Hazay, Muthuramakrishnan Venkitasubrama-
niam, Wenxuan Wu, and Yupeng Zhang. Private polynomial commit-
ments and applications to MPC. In Alexandra Boldyreva and Vladimir
Kolesnikov, editors, PKC 2023, Part II, volume 13941 of LNCS, pages
127–158. Springer, Cham, May 2023.

BL13. Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light.
In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM
CCS 2013, pages 1087–1098. ACM Press, November 2013.

https://docs.zkproof.org/pages/standards/accepted-workshop4/proposal-commit.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop4/proposal-commit.pdf

PPBs via Verifiable Computation 37

BMM+21. Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi
Vesely. Proofs for inner pairing products and applications. In Mehdi Ti-
bouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part III, volume
13092 of LNCS, pages 65–97. Springer, Cham, December 2021.

Boy. Dennis Boyle. The problem of “parallel construction” in
criminal investigations. https://www.boylejasari.com/
the-problem-of-parallel-construction-in-criminal-investigations/.
Accessed: 2024-02-13.

BSZ05. Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group sig-
natures: The case of dynamic groups. In Alfred Menezes, editor, CT-
RSA 2005, volume 3376 of LNCS, pages 136–153. Springer, Berlin, Hei-
delberg, February 2005.

BV11. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS,
pages 97–106. IEEE Computer Society Press, October 2011.

Cam97. Jan Camenisch. Efficient and generalized group signatures. In Walter
Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 465–479.
Springer, Berlin, Heidelberg, May 1997.

CBBZ23. Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk:
Plonk with linear-time prover and high-degree custom gates. In Carmit
Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part II, volume
14005 of LNCS, pages 499–530. Springer, Cham, April 2023.

CDN01. Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty
computation from threshold homomorphic encryption. In Birgit Pfitz-
mann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 280–299.
Springer, Berlin, Heidelberg, May 2001.

CFN90. David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash.
In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages
319–327. Springer, New York, August 1990.

Cha90. David Chaum. Showing credentials without identification transferring sig-
natures between unconditionally unlinkable pseudonyms. In Jennifer Se-
berry and Josef Pieprzyk, editors, AUSCRYPT’90, volume 453 of LNCS,
pages 246–264. Springer, Berlin, Heidelberg, January 1990.

CHK+06. Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyan-
skaya, and Mira Meyerovich. How to win the clonewars: Efficient periodic
n-times anonymous authentication. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 201–
210. ACM Press, October / November 2006.

CHL05. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact
e-cash. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS, pages 302–321. Springer, Berlin, Heidelberg, May 2005.

CHL06. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Balancing ac-
countability and privacy using e-cash (extended abstract). In Roberto De
Prisco and Moti Yung, editors, Proceedings of the 5th International Con-
ference on Security and Cryptography for Networks (SCN), volume 4116
of Lecture Notes in Computer Science, pages 141–155. Springer, 2006.

CL01. Jan Camenisch and Anna Lysyanskaya. An identity escrow scheme with
appointed verifiers. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of
LNCS, pages 388–407. Springer, Berlin, Heidelberg, August 2001.

https://www.boylejasari.com/the-problem-of-parallel-construction-in-criminal-investigations/
https://www.boylejasari.com/the-problem-of-parallel-construction-in-criminal-investigations/

38 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

CL02. Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and appli-
cation to efficient revocation of anonymous credentials. In Moti Yung, edi-
tor, CRYPTO 2002, volume 2442 of LNCS, pages 61–76. Springer, Berlin,
Heidelberg, August 2002.

CL04. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anony-
mous credentials from bilinear maps. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 56–72. Springer, Berlin, Hei-
delberg, August 2004.

CM20. Melissa Chase and Peihan Miao. Private set intersection in the inter-
net setting from lightweight oblivious PRF. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of
LNCS, pages 34–63. Springer, Cham, August 2020.

CMdG+21. Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei
Dai, Ilia Iliashenko, Kim Laine, and Michael Rosenberg. Labeled PSI from
homomorphic encryption with reduced computation and communication.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 1135–
1150. ACM Press, November 2021.

CRR21. Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver:
Silent VOLE and oblivious transfer from hardness of decoding structured
LDPC codes. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part III, volume 12827 of LNCS, pages 502–534, Virtual Event, August
2021. Springer, Cham.

CS97. Jan Camenisch and Markus Stadler. Proof systems for general statements
about discrete logarithms. Technical Report TR 260, Institute for Theo-
retical Computer Science, ETH Zürich, March 1997.

CS03. Jan Camenisch and Victor Shoup. Practical verifiable encryption and
decryption of discrete logarithms. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 126–144. Springer, Berlin, Heidelberg, August
2003.

CV02. Jan Camenisch and Els Van Herreweghen. Design and implementation of
the idemix anonymous credential system. In Vijayalakshmi Atluri, editor,
ACM CCS 2002, pages 21–30. ACM Press, November 2002.

DD22. Nico Döttling and Jesko Dujmovic. Maliciously circuit-private FHE
from information-theoretic principles. Cryptology ePrint Archive, Report
2022/495, 2022.

DEF+24. Bernardo David, Felix Engelmann, Tore Kasper Frederiksen, Markulf
Kohlweiss, Elena Pagnin, and Mikhail Volkhov. Updatable privacy-
preserving blueprints. In Kai-Min Chung and Yu Sasaki, editors, Advances
in Cryptology - ASIACRYPT 2024 - 30th International Conference on the
Theory and Application of Cryptology and Information Security, Kolkata,
India, December 9-13, 2024, Proceedings, Part I, volume 15484 of Lecture
Notes in Computer Science, pages 105–139. Springer, 2024.

DF02. Ivan Damgård and Eiichiro Fujisaki. An integer commitment scheme based
on groups with hidden order. In ASIACRYPT 2002, volume 2501 of LNCS,
2002.

FNP04. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In Christian Cachin and Jan Camenisch,
editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 1–19. Springer,
Berlin, Heidelberg, May 2004.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of STOC 2009, pages 169–178, 2009.

PPBs via Verifiable Computation 39

GKL21. Matthew Green, Gabriel Kaptchuk, and Gijs Van Laer. Abuse resistant
law enforcement access systems. In Anne Canteaut and François-Xavier
Standaert, editors, EUROCRYPT 2021, Part III, volume 12698 of LNCS,
pages 553–583. Springer, Cham, October 2021.

GKR08. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating
computation: interactive proofs for muggles. In Richard E. Ladner and
Cynthia Dwork, editors, 40th ACM STOC, pages 113–122. ACM Press,
May 2008.

GKR+21. Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy,
and Markus Schofnegger. Poseidon: A new hash function for zero-
knowledge proof systems. In Michael Bailey and Rachel Greenstadt, edi-
tors, USENIX Security 2021, pages 519–535. USENIX Association, August
2021.

GLS+23. Alexander Golovnev, Jonathan Lee, Srinath T. V. Setty, Justin Thaler,
and Riad S. Wahby. Brakedown: Linear-time and field-agnostic SNARKs
for R1CS. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part II, volume 14082 of LNCS, pages 193–226. Springer,
Cham, August 2023.

GM82. Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to
play mental poker keeping secret all partial information. In 14th ACM
STOC, pages 365–377. ACM Press, May 1982.

Gov22. United States Government. Technical design choices for
a U.S. central bank digital currency system. https://
bidenwhitehouse.archives.gov/wp-content/uploads/2022/09/
09-2022-Technical-Design-Choices-US-CBDC-System.pdf, 2022.

GPR+21. Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. Oblivious key-value stores and amplification for private set in-
tersection. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part II, volume 12826 of LNCS, pages 395–425, Virtual Event, August
2021. Springer, Cham.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryp-
tion from learning with errors: Conceptually-simpler, asymptotically-
faster, attribute-based. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer,
Berlin, Heidelberg, August 2013.

HHKP23. Charlotte Hoffmann, Pavel Hubácek, Chethan Kamath, and Krzysztof
Pietrzak. Certifying giant nonprimes. In Alexandra Boldyreva and
Vladimir Kolesnikov, editors, PKC 2023, Part I, volume 13940 of LNCS,
pages 530–553. Springer, Cham, May 2023.

HS21. Lucjan Hanzlik and Daniel Slamanig. With a little help from my friends:
Constructing practical anonymous credentials. In Giovanni Vigna and
Elaine Shi, editors, ACM CCS 2021, pages 2004–2023. ACM Press, Novem-
ber 2021.

HSS23. Julia Hesse, Nitin Singh, and Alessandro Sorniotti. How to bind anony-
mous credentials to humans. In Joseph A. Calandrino and Carmela Tron-
coso, editors, 32nd USENIX Security Symposium, USENIX Security 2023,
Anaheim, CA, USA, August 9-11, 2023, pages 3047–3064. USENIX Asso-
ciation, 2023.

IR90. K. Ireland and M.I. Rosen. A Classical Introduction to Modern Number
Theory. Graduate Texts in Mathematics. Springer, 1990.

https://bidenwhitehouse.archives.gov/wp-content/uploads/2022/09/09-2022-Technical-Design-Choices-US-CBDC-System.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2022/09/09-2022-Technical-Design-Choices-US-CBDC-System.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2022/09/09-2022-Technical-Design-Choices-US-CBDC-System.pdf

40 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

JWP22. Yuting Jiang, Jianghong Wei, and Jing Pan. Publicly verifiable private
set intersection from homomorphic encryption. In Security and Privacy in
Social Networks and Big Data - 8th International Symposium, SocialSec
2022, Xi’an, China, October 16-18, 2022, Proceedings, volume 1663 of
Communications in Computer and Information Science, pages 117–137.
Springer, 2022.

KKS22. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh. PEReDi:
Privacy-enhanced, regulated and distributed central bank digital curren-
cies. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors,
ACM CCS 2022, pages 1739–1752. ACM Press, November 2022.

KL20. J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman &
Hall/CRC Cryptography and Network Security Series. CRC Press, 2020.

KLN23. Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen. Privacy-
preserving blueprints. In Carmit Hazay and Martijn Stam, editors, EURO-
CRYPT 2023, Part II, volume 14005 of LNCS, pages 594–625. Springer,
Cham, April 2023.

KM15. Markulf Kohlweiss and Ian Miers. Accountable metadata-hiding escrow:
A group signature case study. PoPETs, 2015(2):206–221, April 2015.

KMRS14. Seny Kamara, Payman Mohassel, Mariana Raykova, and Seyed Saeed
Sadeghian. Scaling private set intersection to billion-element sets. In Nico-
las Christin and Reihaneh Safavi-Naini, editors, FC 2014, volume 8437 of
LNCS, pages 195–215. Springer, Berlin, Heidelberg, March 2014.

LFKN92. Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Al-
gebraic methods for interactive proof systems. J. ACM, 39(4):859–868,
1992.

LMR19. Russell W. F. Lai, Giulio Malavolta, and Viktoria Ronge. Succinct argu-
ments for bilinear group arithmetic: Practical structure-preserving cryp-
tography. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, ACM CCS 2019, pages 2057–2074. ACM Press,
November 2019.

LRSW99. Anna Lysyanskaya, Ron Rivest, Amit Sahai, and Stefan Wolf. Pseudonym
systems. In Howard Heys and Carlisle Adams, editors, Selected Areas in
Cryptography, volume 1758 of LNCS, 1999.

Lys02. Anna Lysyanskaya. Signature schemes and applications to cryptographic
protocol design. PhD thesis, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, September 2002.

OPCPC14. Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky.
Maliciously circuit-private fhe. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology – CRYPTO 2014, pages 536–553, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

OPP14. Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-
Cherniavsky. Maliciously circuit-private FHE. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 536–553. Springer, Berlin, Heidelberg, August 2014.

PEB21. Charlotte Peale, Saba Eskandarian, and Dan Boneh. Secure complaint-
enabled source-tracking for encrypted messaging. In Giovanni Vigna and
Elaine Shi, editors, ACM CCS 2021, pages 1484–1506. ACM Press, Novem-
ber 2021.

Pie19. Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum,
editor, ITCS 2019, volume 124, pages 60:1–60:15. LIPIcs, January 2019.

PPBs via Verifiable Computation 41

RR22. Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved
OKVS and subfield VOLE. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, ACM CCS 2022, pages 2505–2517. ACM Press,
November 2022.

RS21. Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and
circuit-PSI from vector-OLE. In Anne Canteaut and François-Xavier Stan-
daert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages
901–930. Springer, Cham, October 2021.

RWGM23. Michael Rosenberg, Jacob D. White, Christina Garman, and Ian Miers.
zk-creds: Flexible anonymous credentials from zkSNARKs and existing
identity infrastructure. In 2023 IEEE Symposium on Security and Privacy,
pages 790–808. IEEE Computer Society Press, May 2023.

Sch80. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701–717, oct 1980.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256–266. Springer, Berlin, Heidelberg, May 1997.

Sta23. Jay Stanley. Paths toward an acceptable public digital currency.
ACLU White Paper, 2023. https://www.aclu.org/wp-content/uploads/
legal-documents/cbdc_white_paper_-_0882_0.pdf.

TBA+22. Alin Tomescu, Adithya Bhat, Benny Applebaum, Ittai Abraham, Guy
Gueta, Benny Pinkas, and Avishay Yanai. UTT: Decentralized ecash with
accountable privacy. Cryptology ePrint Archive, Report 2022/452, 2022.

TZ23. Stefano Tessaro and Chenzhi Zhu. Revisiting BBS signatures. In Carmit
Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume
14008 of LNCS, pages 691–721. Springer, Cham, April 2023.

WHV24. Ruihan Wang, Carmit Hazay, and Muthuramakrishnan Venkitasubrama-
niam. Ligetron: Lightweight scalable end-to-end zero-knowledge proofs
post-quantum zk-snarks on a browser. In IEEE Symposium on Security
and Privacy, SP 2024, San Francisco, CA, USA, May 19-23, 2024, pages
1760–1776. IEEE, 2024.

XZZ+19. Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papaman-
thou, and Dawn Song. Libra: Succinct zero-knowledge proofs with opti-
mal prover computation. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 733–764.
Springer, Cham, August 2019.

ZLW+21. Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang
Xie, and Yupeng Zhang. Doubly efficient interactive proofs for general
arithmetic circuits with linear prover time. In Giovanni Vigna and Elaine
Shi, editors, ACM CCS 2021, pages 159–177. ACM Press, November 2021.

A Discussion on Non-frameability vs. Deniability

Non-frameability is a desirable feature, but it is fundamentally at odds with
deniability. In a deniable system, data may be authenticated at the moment
when it is received, but this authentication information quickly becomes useless.
This way, Alice cannot use her authenticated transcript from a conversation with
Bob to prove to a third party what Bob did or did not say. Typically, to define
deniability, one would explicitly give Alice an algorithm to “frame” Bob, i.e., to

https://www.aclu.org/wp-content/uploads/legal-documents/cbdc_white_paper_-_0882_0.pdf
https://www.aclu.org/wp-content/uploads/legal-documents/cbdc_white_paper_-_0882_0.pdf

42 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

authenticate any transcript on his behalf. That way, a real transcript will not
be any more believable than a bogus one, and Bob may convincingly deny ever
talking to Alice. Deniability of a ciphertext’s origin, for example, is valuable for
encrypted messaging systems, especially when users might face coercion, and
in other contexts [PEB21,GKL21]. Kohlweiss and Miers [KM15] attempted to
address the question whether the properties of non-frameability and deniability
can both be achieved together and reached disappointing conclusions, as did
Bartusek et al. [BGJP23].

In a system like PPBs, deniability would allow for an efficient algorithm
for creating a convincing-looking escrow that would decrypt to any value the
algorithm takes as input. A deniable PPB would give an auditor a meaningful
ability to monitor the system only so long as it trusts the escrow recipients
that they did not make up the escrows but in fact collected them as part of
a legitimate transaction. It may be an interesting direction to pursue in future
work if well-motivated in practice.

In this work, however, similarly to Bartusek et al. [BGJP23], we prioritized
non-frameability and thus abandoned deniability, because, in our view, systems
like ours that are designed to detect illegal activity require not only the ability to
identify a watchlisted user’s actions but also the means to only convince a judge
of these actions if they have in fact taken place. It is more important to us that
innocent users cannot be credibly accused of wrongdoing than that perpetrators
be able to deny theirs activities.

B Full Definitions for Privacy Preserving f-Blueprint
Schemes

A blueprint scheme has three parties - an auditor, a set of users and a set of
recipients. It is defined as follows:

Definition 8. For a non-interactive commitment scheme (CSetup,Com),
an f -blueprint scheme consists of the following probabilistic polynomial time
algorithms:

Setup(1λ, cpar) → Λ: This algorithm takes as input the security parameter 1λ

and the commitment parameters cpar output by CSetup(1λ). It outputs the
public parameters Λ which includes 1λ and cpar .

KeyGen(Λ, x, rx)→ (pkA, skA): The key generation algorithm for auditor A takes
1λ, Λ, and commitment value and opening (x, rx) as input, and outputs the
key pair (pkA, skA). The values (x, rx) define a commitment Cx.

VerPK(Λ, pkA, Cx) → 1 or 0: This is the algorithm that, on input the auditor’s
public key pkA and a commitment Cx, verifies that the auditor’s public key
was computed correctly for the commitment Cx.

Escrow(Λ, pkA, y, ry) → Z: This algorithm takes Λ, pkA, and commitment value
and opening (y, ry) as input and outputs an escrow Z for commitment
C = Com(y; ry).

PPBs via Verifiable Computation 43

VerEscrow(Λ, pkA, C, Z)→ 1 or 0: This algorithm takes the auditor’s public key
pkA, a commitment C, and an escrow Z as input and verifies that the escrow
was computed correctly for the commitment C.

Dec(Λ, skA, C, Z) → f(x, y) or ⊥: This algorithm takes the auditor’s secret key
skA, a commitment C and an escrow Z as input. It decrypts the escrow and
returns the output f(x, y) if C is a commitment to y and VerEscrow(Λ, pkA,
C, Z) = 1.

[KLN23] also defines a secure f -blueprint scheme as one that possesses the fol-
lowing properties:

Correctness of VerPK and VerEscrow: For honestly generated values (cpar ,
pkA, Cx, C, Z), the algorithms VerEscrow and VerPK should accept with proba-
bility 1.

Correctness of Dec: For honestly generated values (cpar , pkA, skA, C, Z),
Dec(Λ, skA, C, Z) = f(x, y) should hold with overwhelming probability .

Soundness: For all PPT adversariesA involved in the experiment in Fig. B.1,
there exists a negligible function ν such that:

AdvSoundAdv,Blu = Pr
[
SoundAdvBlu (λ) = 1

]
= ν(λ)

SoundAdvBlu (λ)

1 : cpar ← CSetup(1λ)

2 : Λ← Setup(1λ, cpar)

3 : x, rx ← Adv(1λ, Λ)

4 : (pkA, skA)← KeyGen(Λ, x, rx)

5 : (C, y, ry, Z)← Adv(pkA)

6 : return [C = Com(y; ry)∧
7 : VerEscrow(Λ, pkA, C, Z) ∧ Dec(Λ, skA, C, Z) ̸= f(x, y)]

Fig. B.1: Experiments SoundAdvBlu (λ)

Definition 9 (Blueprint Hiding). The blueprint-hiding property makes sure
that pkA just reveals that x is a valid first argument to f . Otherwise, x is hidden
even from an adversary who (1) may already know a lot of information about x
a-priori; and (2) has oracle access to Dec(Λ, skA, ·, ·).

This is formalized by requiring that there exist a simulator Sim = (SimSetup,
SimKeygen,SimDecrypt) such that for any PPT adversary the following two games
are indistinguishable:

1. Real Game: Λ is chosen honestly, the public key pkA is computed correctly
for adversarially chosen x, rx, and the adversary’s decryption queries (C,Z)
are answered with Dec(Λ, skA, C, Z).

44 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

2. Ideal Game: Λ is computed using SimSetup, the public key pkA is computed
using SimKeygen independently of x (although with access to the commit-
ment CA), and the adversary’s decryption query Zi is answered by first
running SimDecrypt to obtain enough information about the user’s data yi
to be able to compute f(x, yi). "Enough information" means that for an
efficiently computable f∗ and a function g such that f(x, y) = f∗(x, g(y))
for all possible inputs (x, y), SimDecrypt obtains y∗i = g(yi).

Formally, for all probabilistic poly-time adversaries Adv involved in the game
described in Fig. B.2, the advantage function satisfies:

AdvBHAdv,Sim =
∣∣∣Pr [BHrealAdvBlu (λ) = 0

]
− Pr

[
BHidealAdvBlu,Sim(λ) = 0

] ∣∣∣ = ν(λ)

for some negligible ν.

BHrealAdvBlu (λ)

1 : cpar ← CSetup(1λ)

2 : Λ← Setup(1λ, cpar)

3 : (x, rx, stAdv)← Adv(1λ, Λ)

4 :

5 : (pkA, skA)← KeyGen(Λ, x, rx)

6 : return AdvO0(pkA,skA,·,·)(pkA, stAdv)

BHidealAdvBlu,Sim(λ)

1 : cpar ← CSetup(1λ)

2 : (Λ, st)← SimSetup(1λ, cpar)

3 : (x, rx, stAdv)← Adv(1λ, Λ)

4 : dsim ← (|x|,Com(x; rx))

5 : (pkA, skA)← SimKeygen(1λ, st, dsim)

6 : return AdvO1(pkA,st,x,·,·)(pkA, stAdv)

O0(pkA, skA, C, Z)

1 : if ¬VerEscrow(Λ, pkA, C, Z)

2 : return ⊥
3 : return Dec(Λ, skA, C, Z)

O1(pkA, st, x, C, Z)

1 : if ¬VerEscrow(Λ, pkA, C, Z)

2 : return ⊥
3 : y∗ ← SimDecrypt(st, C, Z)

4 : return f(x, y) = f∗(x, y∗)

Fig. B.2: Experiments BHrealAdvBlu (λ) and BHidealAdvBlu,Sim(λ)

Definition 10 (Privacy against Dishonest Auditor). There exists a sim-
ulator such that the adversary’s views in the following two games are indistin-
guishable:
1. Real Game: The adversary generates the public key and the data x cor-

responding to this public key, honest users follow the Escrow protocol using
adversarial inputs and openings.

2. Privacy-Preserving Game: The adversary generates the public key and
the data x corresponding to this public key. Next, for adversarially chosen in-
puts and openings, the users run a simulator algorithm that depends only on
the commitment and f(x, y) but is independent of the commitment openings.

PPBs via Verifiable Computation 45

More formally, there exists algorithms Sim = (SimSetup,SimEscrow) such that,
for any PPT adversary Adv involved in the game described in Fig. B.3, the
following equation holds for some negligible function ν:

AdvPADAAdv,Blu,Sim =
∣∣∣Pr [PADAAdv,0

Blu,Sim(λ) = 1
]
− Pr

[
PADAAdv,1

Blu,Sim(λ) = 1
] ∣∣∣ = ν(λ)

PADAAdv,b
Blu,Sim(λ)

1 : cpar ← CSetup(1λ)

2 : Λ0 ← Setup(1λ, cpar); (Λ1, st)← SimSetup(1λ, cpar)

3 : (x, rA, pkA, stAdv)← Adv(1λ, Λb)

4 : if VerPK(Λb, pkA,Com(x; rA)) = 0 : return ⊥

5 : return AdvOb(·,·)(stAdv)

O0(y, ry)

1 : return Escrow(Λ0, pkA, y, ry)

O1(y, ry)

1 : return SimEscrow(st, Λ1, pkA,Com(y; ry),

2 : f(x, y))

Fig. B.3: Game PADAAdv,b
Blu (λ)

Definition 11 (Privacy with Honest Auditor). There exists a simulator
Sim such that the adversary’s views in the following two games are indistinguish-
able:
1. Real Game: The honest auditor generates the public key on input x pro-

vided by the adversary, and honest users follow the Escrow protocol on input
adversarially chosen openings.

2. Privacy-Preserving Game: The honest auditor generates the public key
on input x provided by the adversary. On input adversary-generated com-
mitments and openings, the users run a simulator that is independent of y
(although with access to the commitment Cy) to form their escrows.

In both of these games, the adversary has oracle access to the decryption algo-
rithm.

We formalize these two games in Fig. B.4. We require that there exists a
simulator Sim = (SimSetup,SimEscrow) such that, for any PPT adversary Adv
involved in the game described in the figure, the following equation holds:

AdvPWHA
Blu,Sim =

∣∣∣Pr [PWHAAdv,0
Blu,Sim(λ) = 0

]
− Pr

[
PWHAAdv,1

Blu,Sim(λ) = 0
] ∣∣∣ = ν(λ)

for some negligible function ν.

46 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

PWHAAdv,b
Blu,Sim(λ)

1 : cpar ← CSetup(1λ)

2 : Λ0 ← Setup(1λ, cpar);Λ1 ← SimSetup(1λ, cpar)

3 : M ← []

4 : x, rx ← Adv(1λ, Λb)

5 : (pkA, skA)← KeyGen(Λb, x, rx)

6 : return AdvO
Escrow
b (·,·),ODec(Λb,skA,·,·)(pkA)

OEscrow
0 (y, ry)

1 : return Escrow(Λ0, pkA, y, ry)

OEscrow
1 (y, ry)

1 : C = Com(y; ry)

2 : Z ← SimEscrow(st, Λ1, pkA, C)

3 : M [C,Z]← f(x, y)

4 : return Z

ODec(Λ1, skA, C, Z)

1 : if M [C,Z] is defined return M [C,Z]

2 : return Dec(Λ1, skA, C, Z)

Fig. B.4: Game PWHAAdv,b
Blu,Sim(λ)

C Additional preliminaries

C.1 Motivation for BB-PSL

For concreteness, let us imagine that π is the NIZK we get by running a Σ-
protocol for a proof of knowledge, and making it non-interactive by replacing
the message from the verifier with the output of the random oracle. The prover’s
side of the Σ-protocol consist’s two algorithms, P1 and P2. P1(pk,m, r;R) gen-
erates the first message, a, of the proof of knowledge of how c = Enc(pk,m, r)
was computed using random coins R; P2(pk,m, r, e;R) generates the prover’s
response, z, to the challenge e using the same randomness. The verifier’s part
of the Σ protocol is just the algorithm V (pk, c, a, e, z). It is well-known that, in
the random-oracle model, the following proof system is black-box simulation-
extractable: the prover computes a = P1(pk,m, r;R), e = H(pk, c, a), and
z = P2(pk,m, r, e;R) and outputs the proof π = (a, z). To verify π, the veri-
fier computes e = H(pk, c, a) and runs V (pk, c, a, e, z).

However, when we plug this proof system into the attempted construction
above of a CCA-secure cryptosystem from a semantically secure one, we don’t
(easily) get a proof of CCA security. This is because the adversary can interleave
his decryption queries and his random-oracle queries in such a way that he will
force the security reduction to run in exponential time in the number q of queries.

PPBs via Verifiable Computation 47

In order to respond to the ith decryption query (ci, πi) where πi = (ai, zi),
the reduction needs to rewind the adversary to the point in time where the
adversary queried the random oracle to get ei = H(pk, ci, ai). By first issuing all
the random-oracle queried in reverse order, i.e. obtaining eq = H(pk, cq, aq), and
then eq−1, . . . , e1 before issuing any decryption queries at all, and then querying
for the decryptions of (c1, π1), . . . , (cq, πq), the adversary will ensure that the
reduction will need to rewind O(2q) times 16. This is because each time the
reduction rewinds the adversary, they also need to rewind for each previous
query to ensure the adversary receives the correct decryptions to run normally.
Thus, each decryption query doubles the number of required rewinds.

There are two ways of fixing this problem. One is to use a straight-line ex-
tractable proof system that does not need to rewind at all; but that can be
inefficient. The other way to fix it (implicitly in the spirit of Shoup and Gen-
naro) is to not require the straight-line extraction of the entire witness: the
reduction does not need both m and r to proceed, just the message m alone is
sufficient. The fact that, with rewinding, it is possible to extract the entire wit-
ness is still crucial since it guarantees that the adversary’s interaction with the
security reduction results in exactly the same view as in its interaction with the
decryption oracle: if not, then a separate reduction would break the soundness
of the proof system.

C.2 Useful Lemmas for Composite-Order Groups

Lemma 2 (n+ 1) ∈ QRn2

Proof of Lemma 2. In Ireland and Rosen’s textbook [IR90] Proposition 5.1.1
gives us that an element, a, in Zn2 if a quadratic residue iff a(p−1)/2 = 1(mod p)

and a(q−1)/2 = 1(mod q). We can see that (n+ 1)(p−1)/2 =
(p−1)/2∑

i=0

1(p−1)/2−i ·

n(p−1)/2−i = 1 + kn for some k. Since n is divisible by both p and q, this value
is simply 1 mod p and q. Thus, (n+ 1) is in QRn2 .

Lemma 3 (−1) ∈ QNRn2 for RSA modulus, n.

Proof of Lemma 3. Using Proposition 5.1.1 from Ireland and Rosen’s textbook
[IR90] again we see that (−1)(p−1)/2 mod p is equal to (−1)(4k+2)/2 mod p
since we are working with primes that are equal to 3 mod 4. Thus, this equals
(−1)2k+1 mod p. Note that 2k+1 is odd and thus this equals (−1) mod p thus
failing the criteria in Proposition 5.1.1 and thus (−1) ∈ QNRn2 .

Lemma 4 (Any element to the 2-nd power likely generates QRn2) Let
a ̸= 1, a ∈ Zn2 be an element output by a polynomial-time adversary on input
n. Then the probability that ⟨a2⟩ ≠ QRn2 is negligible. As a corollary, we know
that sampling a random element in QRn2 or squaring a random element in Zn2

results in a generator of QRn2 .
16 The adversary must also base the first message of each Σ-protocol on the output of

the random oracle from the last query to ensure rewinding is impossible.

48 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Proof of Lemma 4. QRn2 is cyclic and thus every element in QRn2 can be
represented as gi for some g. We see that any gi doesn’t generate QRn2 when
i|#QRn2 . The order of QRn2 is pqp′q′ and thus, this only occurs when i is a
multiple of p, q, p′, q′. Thus, there are at most pqp′+pqq′+pp′q′+ qp′q′ elements
that don’t generate QRn2 . When we compare this to the total elements, we see:
(pqp′ + pqq′ + pp′q′ + qp′q′)/pqp′q′ = 1/q′ + 1/p′ + 1/p+ 1/q which is negligible
if p, q, p′, q′ are large.

Lemma 5 If 2B > ord(g) then no PPT adversary running in time polynomial
to λ can distinguish distribution {gs : s←$ 2B+λ} from {u : u←$ ⟨g⟩} for any g
such that g ∈ Zn2 and ord(g) > 2.

We refer to [DF02] for a proof of Lemma 5.

Lemma 6 If x, x′ ∈ QRp and y, y′ ∈ QNRp then xy ∈ QNRp, xx′, yy′ ∈ QRp.

Lemma 7 For n = pq where p, q are safe primes, if x, x′ ∈ QRn2 and y, y′ ∈
QNRn2 then xy ∈ QNRn2 , xx′, yy′ ∈ QRn2

Lemma 8 #QRn2 = Zn2/4

Proofs of Lemmas 7, 6, and 8 are present in [KL20] (deriving Lemma 8 from
[KL20] is a trivial exercise and stems from the fact that QRn2 ∼= QRp ×QRq ×
QRp′ ×QRq′).

C.3 More eqrep relations and constructions

In [KLN23], they define the following relation in Def. 12 and use it to construct
their protocols.

Definition 12 (Relation for proof of equality of discrete logarithm rep-
resentations in cyclic groups of prime order). Let Reqrep-Gp

be the follow-
ing relation: Reqrep-Gp(x,w) accepts if x = (G, {xi, {gi,1, . . . , gi,m}}ki=1) where G
is the description of a group of order q, and all the xis and gi,js are elements of
G, and witness w = {wj}mj=1 such that xi =

∏m
j=1 g

wj

i,j .

We can enhance this protocol to multiply witnesses with the relation in Def. 3
in Sec. 2.1.

Using known techniques, e.g. KLM from which we took the following descrip-
tion, we can construct the protocol in Def. 12 in cyclic groups of prime order
where the DDH and CDH assumptions are hard. We do so in Def. 13.

Definition 13 (Σ-protocol for proof of equality of discrete logarithm
representations cyclic groups of prime order). Let Reqrep-Gp

be the follow-
ing relation: Reqrep-Gp

(x,w) accepts if x = (G, {xi, {gi,1, . . . , gi,m}}ki=1) where G
is the description of a group of order q, and all the xis and gi,js are elements of
G, and witness w = {wj}mj=1 such that xi =

∏m
j=1 g

wj

i,j .

PPBs via Verifiable Computation 49

P→V On input the (x,w) ∈ Reqrep-Gp
, the Prover chooses ej ← Zq for 1 ≤ j ≤

m and computes di =
∏m

j=1 g
ej
i,j for 1 ≤ i ≤ k. Finally, the Prover sends to

the Verifier the values com = (d1, . . . , dn).
P←V On input x and com, the Verifier responds with a challenge chal = c for

c← Zq.
P→V The Prover receives chal = c and computes si = ei + cwi mod q for

1 ≤ i ≤ m, and sends res = (s1, . . . , sm) to the Verifier.
Verification The Verifier accepts if for all 1 ≤ i ≤ n, dixc

i =
∏m

j=1 g
sj
i,j; rejects

otherwise.
Simulation On input x and chal = c, the simulator chooses sj ← Zq for 1 ≤

j ≤ m, and sets di = (
∏m

j=1 g
sj
i,j)/x

c
i for 1 ≤ i ≤ k. He then sets com =

(d1, . . . , dn) and res = (s1, . . . , sm).
Extraction On input two accepting transcripts for the same com = (d1, . . . , dn),

namely chal = c, res = (s1, . . . , sm), and chal′ = c′, res′ = (s′1, . . . , s
′
m),

output wj = (sj − s′j)/(c− c′) mod q for 1 ≤ j ≤ m.

It’s easy to see how the relation in Def. 3 can be satisfied by the protocol in
Def. 13 if the map µ only maps to sets of size 1 (i.e., there are no multiplicative
relations between the witnesses, wi). Though, we want to be able to prove this
for arbitrary µ. In Appx. C.3 we will explain how to construct this.

Constructing a protocol to prove the relation in Def. 3 In this section
we will refer to the relation in Def. 12 as eqrep-Gp and the relation in Def. 3 for
G = Gp and β = {1} as eqrep-Gp

∗. We gave a construction to prove eqrep-Gp

relations in Def. 13, though this is not fully general as it does not allow for
arbitrary multiplication of witnesses. In this section, we give a construction of
an example relation for the eqrep-Gp

∗ protocol for G = Gp and β = {1}. In Alg. 4
we show how to implement a eqrep-Gp

∗ protocol from an underlying eqrep-Gp

protocol by construction intermediate Pedersen commitments. In this example,
we are proving that a Pedersen commitment Ca is committed to the product of
the values in three other Pedersen commitments, Cb, Cc, and Cd. Formally, Alg. 4
proves the following relation: R((Ca, Cb, Cc, Cd), (a, b, c, d, ra, rb, rc, rd)) = 1 iff
Ca = gahra ∧ Cb = gbhrb ∧ Cc = gchrc ∧ Cd = gdhrd ∧ a = bcd. Because E
is a commitment to bc with fresh randomness, revealing it to the verifier does
not affect the zero knowledge of the scheme. The only other communication in
this proof for eqrep-Gp is the proof for an eqrep relation. Thus this scheme is
zero knowledge. We can see that the relation proves that E = gbchcβ2 which is
a valid Pedersen commitment to bc. Thus, because the prover also proves that
Ca = Edhβ2 , the verifiers knows that Ca = gbcdhdβ2 which is a valid Pedersen
commitment to bcd and thus, a = bcd. This means we’ve proven soundness with
extraction for this protocol. Using the notation from Def. 3, the map µ would be
µ(a) = {b, c, d} (and µ(x) = {x} otherwise). This would ensure that the witness
a = bcd with no constraints on the other witnesses. Using the multiplication
proof in Algorithm 4, the relation in Def. 3 can be constructed by “flattening”
the given relation (i.e. reducing the size of the sets in the image of µ). To do
this, take i ∈ [m] such that |µ(wi)| > 1. Take two wj , wk ∈ µ(wi) and commit to

50 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

these values (and their product) using a Pedersen commitment: cj = gwjhrj , ck =
gwkhrk , c = gwjwkhr. The prover then uses the protocol in Def. 13 to prove that
ck is the product of these two values, reusing the si and ei values to open cj and
ck. We can now recurse, but we see that the map for the relationship we need to
prove µ′(wi) now includes w′ = wjwk instead of wj , wk, thus reducing the size
of the set. If we recurse like this for each non-singleton set in the image of µ′,
we can see that this eventually reduces to a map with only singletons and can
thus be proven directly using 13.

Algorithm 4 Example eqrep-Gp
∗ proof

1: ρ←$ Zp;E = gbchρ

2: β1 = ρ− crb;β2 = ra − dρ
3: Send E to the verifier
4: Prove the following relation via eqrep-Gp

5: PoKeqrep-Gp [a, b, c, ra, rb, rc, β1, β2 :
Ca = gahra ∧ Cb = gbhrb ∧ Cc = gchrc ∧ Cd = gdhrd

∧ E = Cc
bh

β1 ∧ Ca = Edhβ2]

Constructing a protocol for the relation in 3 for G = |QRn2 | and
β = {−1, 1} Construction 1 shows an example construction of a proof of a re-
lation for eqrep-Zn2 defined in Sec. 2.1. We note that to reduce a construction of
eqrep-Zn2 to the soundness of Damgård-Fujisaki commitments, we need to create
Damgård-Fujisaki commitments to each witness in the relation and use a proof
of opening in the protocol to ensure we can extract the witnesses. This step is not
necessarily required, but is sufficient to realize eqrep-Zn2 and allows us to reduce
to the auxiliary proofs for Damgård-Fujisaki commitments rather than number
theoretic lemmas. In this example, we’ll use Damgård-Fujisaki commitments in
Zn2 which we prove are secure in Appx. F.2. In this example, we prove the expo-
nentiation of an element in a |QRn2 | commitment (which we define in Sec. 4.2)
by a scalar committed to by a Damgård-Fujisaki commitment. This proof can be
seen as proving the relation R((c1, c2, t, d1, d2), (x1, r1, x2, r2, x3, r3,M,N, x1, x2,
x3)) = 1 iff c2 = gx1hr1 ∧ t = gx2hr2 ∧ d2 = gx3hr3 ∧ c1 = Mgx1 ∧ d1 = Ngx3

∧ N = Mx2 .
For this proof, both the prover P and the verifier V have a scalar commitment

t to value x2 along with two |QRn2 | commitments c = (c1, c2) and d = (d1, d2)
to two Zn2 elements, M , and N . The prover wants to show that N = Mx2 .
Damgård and Fujisaki [DF02] give a multiplication protocol which yields a com-
mitment scheme for integers in any group that satisfies certain properties. We
prove in Appx. F.2 that QRn2 and Zn2 both satisfy these properties. We can see
that the second elements of both of our |QRn2 | commitments (c2 and d2) are
exactly Damgård-Fujisaki commitments. We also note that our commitments to

PPBs via Verifiable Computation 51

scalars (the commitment t in this example) are simply Damgård-Fujisaki com-
mitments. The Damgård-Fujisaki exponentiation proof is a Σ-protocol and thus
has transcripts a, e, z. If the prover uses the z value from a proof of opening of
the scalar commitment (t) and reuses this z value in a relation to the |QRn2 |
commitments, the prover can prove this exponentiation property for the c, and
d commitments. We construct this exponentiation protocol in Construction 1.
This example should give the reader enough intuition to build a proof for any
eqrep-Zn2 relation by adding more Damgård-Fujisaki commitments to witnesses
similar to the extension of eqrep-Gp to eqrep-Gp

∗.
The prover must also prove knowledge of the opening of each commitment

in addition to running this protocol.

Construction 1 (|QRn2 |-commitments - proof of exponentiation) The
goal is for the prover to prove that the |QRn2 |-commitment d is committed to
N = Mx2 where c is a |QRn2 |-commitment to M and t is a Damgård-Fujisaki
commitment to the integer x2. Both prover and verifier have the public val-
ues: x = (c, d, t) where c = (c1, c2), d = (d1, d2), c2 = gx1hr1 , t = gx2hr2 ,
d2 = gx3hr3 , c1 = Mgx1 , and d1 = Mx2gx3 . The prover has the secret val-
ues: w = (x1, x2, x3, r1, r2, r3,M). First, the prover uses the proof of knowl-
edge of commitment opening from Damgård and Fujisaki [DF02] to prove that
t = gx2hr2 . The prover then shows that the prover can open c and d such that
M = ±c1/gx1 and N = ±d1/gx3 . The prover then produces the following NIZK:

Prove(w)→ π

ρ1 ←$ [CT2λ] (ρ1 will hide ex2)

ρ2 ←$ [C2B+2λ] (ρ2 will hide er2)

ρ3 ←$ [CT 22λ] (ρ3 will hide e(−x2x1 + x3))

ρ4 ←$ [CT2B+2λ] (ρ4 will hide e(−r1x1 + r3))

a1 = gρ1hρ2 ; a2 = cρ1

1 gρ3 ; a3 = cρ1

2 gρ3hρ4

e = H(a1, a2, a3)

z1 = ρ1 + ex2; z2 = ρ2 + er2; z3 = ρ3 + e(−x1x2 + x3; z4 = ρ4 + e(−r1x2 + r3)

return π = (a1, a2, a3, z1, z2, z3)

Verify(x, π)→ {0, 1}
gz1hz2 = a1t

e

cz11 gz3 = a2d
e
1

cz12 gz3hz4 = a3d
e
2

return 1 if the above equations hold and 0 otherwise.

Lemma 9 (Strong special soundness property of [DF02]) If we find a, e,
e′, z1, z

′
1, z2, z

′
2 such that a, e, z1, z2 and a, e′, z′1, z

′
2 are both valid transcripts for

a Damgård-Fujisaki opening protocol. If gz1hz2 = ace and gz
′
1hz′

2 = ace
′
, where

c is a Damgård-Fujisaki commitment, then we know that (e − e′)|(z1 − z′1) and
(e−e′)|(z2−z′2) and we can extract a b such that bg(z1−z1)/(e−e′)h(z2−z′

2)/(e−e′) =
c

52 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Proof of Lemma 9 can be found in [DF02]. This is stronger than simple extraction
as it ensures that e− e′ divides both z1 − z′1 and z2 − z′2.

Theorem 10 Our exponentiation protocol in Construction 1 has special sound-
ness i.e. given two accepting transcripts, there exists an efficient extractor that
extracts an opening of d to Mx2 , c to M and t to x2.

Special soundness proof overview. Over the course of the proof, we’ll extract
∆e = e − e′ as well as ∀i ∈ [4], ∆zi = zi − z′i, δzi = ∆zi/∆e∀i ∈ [4] along with
β1, β2, and β3 such that: b1gδz1hδz2 = t, b2c

δz1
1 gδz3 = d1, and b3c

δz1
2 gδz3hδz4 = d2.

Our proof will proceed as follows: First, we’ll extract the opening of t, then
we’ll extract the values from the third equation, cz12 gz3hz4 = a3d

e
2, and use our

knowledge of the opening of t to help us. Lastly, we’ll extract values from the
second equation (cz11 gz3 = a2d

e
1) using our knowledge of the last two extrac-

tions (from the first and third equations). Using these extracted values, we’ll
be able to prove that the commitments are sound. We need to proceed in this
order to ensure we’ve extracted enough values to compute (z3− z′3)/(e− e′) and
(z4− z4)/(e− e′). Without knowing previously extracted values, we cannot triv-
ially reduce to the soundness of the proof of knowledge of opening protocol in
[DF02] because c1 and c2 are used as the bases for verification in the second two
equations. We will see that we can carefully craft final messages s1, s2 to give
to the [DF02] challenger which will allow us to compute (z3 − z′3)/(e − e′) and
(z4 − z′4)/(e− e′) in the final two equations to prove them secure. In the proof,
we’ll use ∆ and δ to refer to values used in the extraction. For example, ∆z1 will
refer to z1 − z′1 after rewinding a prover and δz1 will refer to (z1 − z′1)/(e− e′).

Proof of special soundness. Since we have the prover prove they know the open-
ings of t, c, and d individually, our extractor can compute c = (Mgx1ad, g

x1hr1),
d = (Ngx3ad, g

x3hr3), and t = gx2hr2bt.
Using rewinding, we can extract ∆z1 = z1−z′1, ∆z2 = z2−z′2, ∆z2 = z2−z′2,

∆z3 = z3 − z′3, ∆z4 = z4 − z′4, and ∆e = e − e′. We can see that the first
equality, gz1hz2 = a1t

e appears exactly like a proof of opening for Damgård-
Fujisaki commitments, and thus, we can extract δz1 = ∆z1/∆e, δz2 = ∆z2/∆e,
b1, from this due to Lemma 9. To show why we can extract, we can create a
reduction to the soundness of proof of opening of [DF02].

Our reduction will take t from our adversary, then claim to the [DF02] open-
ing soundness challenger that we can open this. We can discard all other values
from the adversary when doing this. Then, we also pass a1 to the challenger
and we receive the challenge, e from the challenger and pass this to the adver-
sary. The adversary will then produce z1, z2, and we can discard the other z
values and simply pass the first two to the challenger. We see that this satisfies
gz1hz2 = a1t

e and thus is a valid proof and thus we can rewind and use the
same algorithm as the challenger in the knowledge proof of [DF02] to extract
δz1 , δz2 , b1 such that t = gδz1hδz2 b1 and b21 = 1.

The rest of our proof will create more reductions to the soundness game in
[DF02], but the details will be omitted.

PPBs via Verifiable Computation 53

Next, we observe that we can continue rewinding until we obtain an even
e − e′. See that any subset of [C] must be at least half even or odd and the
adversary must be able to answer a super polynomial subset of [C]. Thus, with
probability at least 1/4 it will be the case that e and e′ will both be even or
both be odd, thus ensuring that e − e′ is even. Let us focus on the case where
e− e′ is even, knowing that we’ll only reduce our chance of breaking soundness
in this case by 1/4 which is still efficient.

Next, we’ll prove that because our extractor can open c2, if we can’t extract
δz3 = ∆z3/∆e, δz4 = ∆z4/∆e, and β3 such that c

δz1
2 gδz3hδz4β3 = d2, we can

reduce to the proof of opening protocol. We can see that this is true with another
reduction similar to our reduction for t. We pass d2, a3 to the challenger to
receive e to pass back to the adversary. After our adversary proves they can
open c2, we receive x1, r1, b3 such that gx1hr1b3 = c2 and b23 = 1. We see that
the verifier accepts, so, cz12 gz3hz4 = a3d

e
2 and thus, c∆z1

2 g∆z3h∆z4 = a3d
∆e
2 . We

can replace this with (β3)
∆z1 gx1∆z1hr1∆z1 g∆z3h∆z4 = a3d

∆e
2 . Since e − e′ is

even and we know that e − e′ divides ∆z1 , we know that ∆z1 is even. Because
b2 = 1 and ∆z1 is even, we see that gx1∆z1hr1∆z1 g∆z3h∆z4 = a3d

∆e
2 . We then

give: s1 = x1∆z1 + ∆z3, s2 = r1∆z1 + ∆z4 to the challenger, which satisfies
gs1hs2 = a3d

e
2. Thus, because of the knowledge extractor for proof of opening,

we know we can rewind the adversary and compute δs1 = (s1 − s′1)/(e − e′) as
well as δs2 = (s2 − s′2)/(e − e′) and β3. Because the adversary proved opening
of d2, we have x3, r3, bd2 such that δs1 = x3, δs2 = r3, bd2 = β3. We can then
extract δz3 with the following equation: δz3 = x3 − x1δz1 = (z3 − z′3)/(e− e′)
This is because δs1 = x1 implies that:
x3(e− e′) = s1 − s′1 = x1z1 + z3 − x1z

′
1 − z′3

x3(e− e′)− x1z1 + x1z
′
1 = z3 − z′3

x3(e− e′)− x1(z1 − z′1) = z3 − z′3
x3(e− e′)− x1δz1 ∗ (e− e′) = z3 − z′3
x3 − x1δz1 = (z3 − z′3)/(e− e′)
We then know that:
δs2 = (s2 − s′2)/(e− e′) = (r1z1 + z4 − r1z

′
1 − z′4)/(e− e′)

And that r3 = δs2 and thus:
r3(e− e′) = (r1z1 + z4 − r1z

′
1 − z′4)

r3(e− e′)− r1z1 + r1z
′
1 = (z4 − z′4)

r3(e− e′)− r1(z1 + z′1) = (z4 − z′4)
And we know that δz1 = (z1 + z′1)/(e− e′), so:
r3(e− e′)− δz1 ∗ (e− e′) = (z4 − z′4)
δz4 = r3 − δz1 = (z4 − z′4)/(e− e′)
This gives us that d2 = gx1δz1+δz3hr1δz1+δz4β3. Which must agree with x3, r3, bd2 .
Because we know that δz1 = x2 from the opening of t, we know that d2 =
gx1x2+δz3hr1x2+δz4 bd2

.
We will now rewind the second equation, c2z11 g2z3 = a2d

2e
1 to extract values

and prove them sound. We know that gx1 = c1/M from the opening of c.
Since we know that ∆z1 and ∆z3 are divisible by ∆e, we can proceed to

extract the structure of d1.

54 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

cz11 gz3 = a2d
e
1

Mz1gx1z1gz3 = a2d
e
1

Mz1−z′
1gx1(z1−z′

1)gz3−z′
3 = de−e′

1

M (z1−z′
1)gx1(z1−z′

1)g(z3−z′
3) = d

(e−e′)
1

M (z1−z′
1)/(e−e′)gx1(z1−z′

1)/(e−e′)g(z3−z′
3)/(e−e′) = d1

bMδz1 gx1δz1 gδz3 = d1
bMx2gx1x2gδz3 = d1
bgx1x2+δz3 = d1/M

x2

We can see that b ∈ {−1, 1} since be−e′ = 1 and thus, d is a correct commit-
ment to |Mx2 |.

Honest verifier zero knowledge. If the ranges are adjusted correctly, our con-
struction achieves HVZK, similar to the proof in [DF02].

D Additional HEC definitions, constructions, and proofs

D.1 Security Properties of HEC Scheme

In this section, we provide formal definitions for the security properties of the
HEC scheme which are unchanged from [KLN23].

SecXAdv
b (λ)

1 : hecpar ← HECsetup(1λ)

2 : (f, x0, x1, st)← Adv(1λ, hecpar)

3 : if f ∈ F, x0, x1 ∈ domainf,x

4 : X,_← HECenc(hecpar , f, xb)

5 : return Adv(hecpar , X, st)

6 : return Adv(⊥, st)

SecXYAdv
b (λ)

1 : hecpar ← HECsetup(1λ)

2 : (f, x0, x1, st)← Adv(1λ, hecpar)

3 : if f ∈ F, x0, x1 ∈ domainf,x

4 : X,_← HECenc(hecpar , f, xb)

5 : (y0, y1, st)← Adv(X, st)

6 : if y0, y1 ∈ domainf,y

7 : Z ← HECeval(hecpar , f,X, yb)

8 : return Adv(Z, st)

9 : return Adv(⊥, st)

DirectZAdv
b (λ)

1 : hecpar ← HECsetup(1λ)

2 : (f, x, y, rX , st)← Adv(1λ, hecpar)

3 : if f ∈ F, x ∈ domainf,x, y ∈ domainf,y

4 : X,_ = HECenc(hecpar , f, x; rX)

5 : Z0 ← HECeval(hecpar , f,X, y)

6 : Z1 ← HECdirect(hecpar , X, f(x, y))

7 : return Adv(hecpar , Zb, st)

8 : return Adv(⊥, st)

Fig. D.1: HEC correctness, consistency and security games

PPBs via Verifiable Computation 55

Definition 14 (Security of x, security of x and y from third parties,
and security of DirectZ.). Consider Fig. D.1. HEC provides security for
x if for any PPT Adv, |pSecX

Adv,0 (λ)−pSecX
Adv,1 (λ)| is negligible. HEC provides security

for x and y from third parties if or any PPT Adv, |pSecXY
Adv,0 (λ) − pSecXY

Adv,1 (λ)| is
negligible. HEC provides security of DirectZ if or any PPT Adv, |pDirectZ

Adv,0 (λ)−
pDirectZ
Adv,1 (λ)| is negligible.

Explanation for DirectZ. This is an algorithm we need in order to use a HEC in
our construction of PPBs. Intuitively, recall that the security of PPBs requires
that there be a simulator that can simulate the output of Escrow just given z =
f(x, y), without knowledge of x or y. DirectZ allows the simulator to compute
the encryption of z directly. For example, if z = f(x, y) where f is a one-way
function of y for any fixed x, then access to just the Eval function is not sufficient
to compute the encryption of z, since Eval requires y as input, and no such pre-
image y cannot be computed from z because f is a One-Way Function.

D.2 Multi-attribute HEC Scheme

In this section, we provide a HEC scheme that satisfies Def. 6 and supports
multiple attributes. Including multiple attributes increases the size of values that
can be escrowed. In the case of ElGamal, this becomes poly(λ)ℓ and in the case of
Camenisch-Shoup, this becomes (Zn)

ℓ. Notice in the case of ElGamal, this allows
us to efficiently encrypt and decrypt public keys. This is still not as efficient as in
the case of Camenisch-Shoup as the key has to be broken up into logarithmically
sized chunks in the case of ElGamal. This makes proving properties of keys
escrowed with the ElGamal scheme inefficient while with Camenisch-Shoup, the
key can be encrypted while retaining more algebraic structure.

This allows for our Camenisch-Shoup scheme to potentially achieve more
efficient proofs for extended properties such as retrospective blueprints.

Our function family for multi-attributes is {fn,k,ℓ}n,k,ℓ∈Z, where n is the
length of the auditor’s list x = {x1, . . . , xn} and k is the bit length of each user
attribute yattri , where the user’s input consists of the user’s identifier yid and ℓ
attributes: y = (yid , y

attr
1 , . . . , yattrℓ). fn,k,ℓ is defined as follows:

fn,k,ℓ(x, y) =

{
y yid ∈ x

∅ otherwise
(1)

We construct a HEC scheme for this function in Fig. D.2. In our previous
construction in Alg. 3 we have a commitment to E which is the commitment
C. Remember, C is a commitment to the auditor’s polynomial p(χ) evaluated
at the users identity yid . Thus, E will be an encryption of zero if the user is
on the watchlist (yid ∈ x). In Fig. D.2, we then scale C with the different ran-
domization factors ({rE ,i}i∈[ℓ) yielding the new commitments: {Ci}i∈[ℓ] to these
scaled encryptions. If the user is not on the watchlist, these ℓ commitments now
encrypt random values. We then homomorphically add each scaled encryption

56 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Ci with the encryptions of attributes {Yi}i∈[ℓ] to ensure that they can only be
decrypted if the user is on the watchlist. We need to use separate randomiza-
tion scalars for each attribute because we will reveal each encryption. If the
encryptions used the same random scalar, the adversary could homomorphically
remove them by dividing one encryption by the other. Using independent ran-
domness ensures that each of these commitments are scaled by a random factor
and are independent of one another. We still need to include an encryption of
E scaled by a random factor Znf = rnf ⊙ E to ensure non-framing. Because we
only compute one commitment to E , when modifying the Ψ2 proof from Sec. 3
to work for multiple attributes, we only need to perform the proof of correct
encryption of E once. Then, we simply use our auxiliary proofs of commitments
to ciphertexts to prove that the rest of the encryptions of attributes are correct,
without needing to reprove the commitment to E . This makes our Ψ2 scheme’s
communication size equal to O(log(x) + ℓ) for multiple attributes.

Fig. D.2: Multi-attribute HEC functions

HECeval(hecpar , fn,k,ℓ, X, y; rZ)

1 : parse X = (pkAH , A1, ..., An+1),

y = (yid , y
at
1 , ..., yatℓ),

rZ = ({rE,1, ..., rE,ℓ}, {r1, ..., rℓ}, rnf)

2 : E ←
n+1⊕
i=1

(Ai ⊙ yi
id)

3 : ∀i ∈ [ℓ] : Yi ← Enc(pkAH , yat
i ; ri)

4 : ∀i ∈ [ℓ] : Zi ← ((rE,i ⊙ E)⊕Yi

5 : Znf = rnf ⊙ E

6 : return Z = ({Z1, ..., Zℓ}, Znf)

HECdec(hecpar , d, Z)

1 : parse d = (skE , fn,k,ℓ, x),

Z = ({Z1, ..., Zℓ}, Znf)

2 : ∀i ∈ [ℓ] : yat
g,i ← Dec(skE , Zi)

3 : yg ← Dec(skE , Znf)

4 : if yg ̸= g(0)

5 : return ∅
6 : for yid ∈ x

7 : if g(yid) = yg

8 : return (yid , y
at
1 , ..., yatℓ)

where ∀i ∈ [ℓ] : yat
i ∈ domainf,y

∧ g(yat
i) = yat

g,i

9 : return ∅

D.3 Constructions of HEC Schemes

KLN Construction of HEC from Fully Homomorphic Encryption (FHE)
In Def. 15, we review the definition of Circuit-private fully homomorphic encryp-
tion (CP-FHE) as from [AHH+23,OPCPC14]. We then review the construction
of HEC from CP-FHE from [KLN23] and then prove that it is a consistent HEC
scheme.

PPBs via Verifiable Computation 57

Definition 15 (Circuit-private fully homomorphic encryption (CP-FHE)).
Algorithms (FHEKeyGen,FHEEnc,FHEDec,FHEEval) form a secure fully homo-
morphic public-key encryption scheme [Gen09,BV11,BGV12,GSW13] if:

Input-output specification: FHEKeyGen(1λ, Λ) takes as input the security
parameter and possibly system parameters Λ and outputs a secret key skFHE

and a public key pkFHE . FHEEnc(pkFHE , b) takes as input the public key and
a bit b ∈ {0, 1} and outputs a ciphertext c. FHEDec(skFHE , c) takes as in-
put a ciphertext c and outputs the decrypted bit b ∈ {0, 1}. FHEEval(pkFHE ,
C, c1, . . . , cn) takes as input a public key, a Boolean circuit C : {0, 1}n 7→
{0, 1}, and n ciphertexts and outputs a ciphertext cC; correctness (below)
ensures that cC is an encryption of C(b1, . . . , bn) when ci encrypts bi.

Correctness of evaluation: For any integer n (polynomial in λ) for any cir-
cuit C with n inputs of size that is polynomial in λ, for all x ∈ {0, 1}n,
the event that FHEDec(skFHE , C) ̸= C(x) where (skFHE , pkFHE) are outputs
of FHEKeyGen, ciphertexts ci are outputs of FHEEnc(pkFHE , xi), and cC is
output of FHEEval(pkFHE , C, c1, . . . , cn), has probability 0.

Security: FHE must satisfy the standard definition of semantic security.
Compactness: What makes fully homomorphic encryption non-trivial is the

property that the ciphertext cC should be of a fixed length that is indepen-
dent of the size of the circuit C and of n. More formally, there exists a
polynomial s(λ) such that for all circuits C, for all (skFHE , pkFHE) out-
put by FHEKeyGen(λ) and for all input ciphertexts c1, . . . , cn generated by
FHEEnc(pkFHE , ·), cC generated by FHEEval(pkFHE , C, c1, . . . , cn) is at most
s(λ) bits long.

Circuit-privacy: As defined by [Gen09,OPP14,BdMW16,DD22] an FHE scheme
is circuit private for a circuit family C if for any PPT algorithm Adv that
outputs (R, C0, C1, (x1, r1), . . . , (xn, rn)), the probability of distinguishing the
homomorphic evaluation of C0 on {ci = FHEEnc(pkFHE , xi; ri)}i∈[n] where
pkFHE is computed as FHEKeyGen(1λ;R) cannot be distinguished from the
corresponding evaluation of C1 on the same ciphertexts, as long as C0(x1, . . . , xn) =
C1(x1, . . . , xn).

Construction of HEC for any f from CP-FHE. For a Boolean function
g : {0, 1}ℓx × {0, 1}ℓy 7→ {0, 1}, an ℓy-bit string y and a value z ∈ {0, 1}2, let
Cgy,z(x) be the Boolean circuit that outputs g(x, y) if z1 = 0, and z2 otherwise.

Recall that our goal is to construct a secure f -HEC scheme with a direct
encryption algorithm; suppose that the length of the output of f is ℓ; for 1 ≤
j ≤ ℓ, let fj(x, y) be the Boolean function that outputs the jth bit of f(x, y).
Suppose we are given an FHE scheme that is circuit-private for the families of
circuits {Cj} defined as follows: Cj = {C

fj
y,z(x) : y ∈ {0, 1}ℓy , z ∈ {0, 1}2}.

HECsetup(1λ)→ hecpar : Generate the FHE parameters hecpar , if needed.
HECenc(hecpar , f, x) → (X, d) : Generate (skFHE , pkFHE) ← FHEKeyGen(1λ,

hecpar). Let |x| = n; set ci ← FHEEnc(pkFHE , xi). Output X = (pkFHE , c1,
. . . , cn), and decryption key d = skFHE .

58 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

HECeval(hecpar , f,X, y)→ Z : Parse X = (pkFHE , c1, . . . , cn). For j = 1 to ℓ,
compute Zj ← FHEEval(pkFHE , C

fj
y,00, c1, . . . , cn). Output Z = (Z1, . . . , Zℓ).

HECdec(hecpar , d, Z)→ z : Output (FHEDec(d, Z1), . . . ,FHEDec(d, Zℓ)).
HECdirect(hecpar , X, z)→ Z : Parse X = (pkFHE , c1, . . . , cn). For j = 1 to ℓ,

compute Zj ← FHEEval(pkFHE , C
fj
0ℓ,1zj

, c1, . . . , cn). Output Z = (Z1, . . . , Zℓ).
Theorem 7. For a FHE scheme, (FHEKeyGen,FHEEnc,FHEDec,FHEEval) with
the Correctness property, for a circuit family {Cfj : f ∈ F} (as defined in
[KLN23]), the construction in [KLN23] is a consistent HEC for the family F .

Proof. Let us assume the existence of an adversary A that is able to produce a
(f, x, st, r, y, rZ) such that Z ← HECeval(hecpar , f,X, y; rZ) but HECdec(hecpar ,
d, Z) ̸= f(x, y). We can then construct an adversary A′ from adversary A which
outputs x, y and Φf

y where the output of the circuit Φf
y(x) = f(x, y).

This gives us a tuple (x, y, Φf
y) for which the keys skFHE , pkFHE ∈ FHEKeyGen(λ),

c ∈ FHEEnc(FHEPK, x) from the output of HECenc(hecpar , f, x; r) and cΦ ∈
FHEEval(FHEPK, Φ, c) from Z are as required, but FHEDec (FHESK, cΦ) ̸= Φ(x).
Since the correctness of FHE (as provided in Appx. D.3) is defined over all
possible inputs x and y, all randomness tapes, and for all circuits Φ, the tuple
(x, y, Φf

y) is clearly a violation of the correctness condition. This proves that the
HEC construction is indeed consistent.

As shown by [KLN23] both Security of x, SecX and the security of x and
y from third parties, SecXY is obtained by the semantic security of the FHE.
The security of DirectZ follows from the circuit privacy.

Additional proofs for consistent HEC scheme

Lemma 10 (Security of DirectZ for Fig. D.3) Our construction in Fig. D.3
achieves security of DirectZ defined in Def. 14.

Proof of Lem. 10 We prove the theorem for the two separate cases of when the
user is in the watchlist and when they are not.

For the former, since the user is on the watchlist, f(x, y) ̸= 0. In HECeval,
(Zid , Zat) is an encryption of f(x, y) and in HECdirect, Znf is an encryption of
0. Considering the experiments DirectZAdv

0 and DirectZAdv
1 , since the cipher-

text of f(x, y) is output in both cases, the indistinguishability of the experiments
can be reduced to the IND-CPA security of the underlying encryption scheme.

In the case where the user is not on the watchlist, f(x, y) = ∅. Since sep-
arate randomness is used for each of r1, r2, and r3 in HECeval, therefore
each ciphertext is the encryption of a random value, Zid = r1P (yid) + yid ,
Zat = r2P (yid) + at and Znf = r3P (yid) because P (yid) ̸= 0. This makes the
three ciphertext values indistinguishable from random in DirectZAdv

0 . In exper-
iment DirectZAdv

1 , the HECdirect function simply encrypts random values
when f(x, y) = 0. Therefore, the two experiments are indistinguishable and we
achieve security of DirectZ.

PPBs via Verifiable Computation 59

HECdec(hecpar , d, Z)

1 : parse d = (skE , fn,k,ℓ, x),

Z = (Zid , Zat , Znf)

2 : y′
id ← Dec(skE , Zid)

3 : y′
at ← Dec(skE , Zat)

4 : y′ ← Dec(skE , Znf)

5 : if y′ ̸= g(0)

6 : return ∅
7 : for yid ∈ x

8 : if g(yid) = y′
id

9 : return (yid , yat)

where yat ∈ domainf,y,at

∧ g(yat) = y′
at

10 : return ∅
HECenc(hecpar , fn,k, x)

1 : (pkAH , skE)← KeyGen(1λ)

2 : s←$MpkAH

3 : P ← s

n∏
i=1

(χ− xi)

4 : for i in{1, . . . , n+ 1}
5 : Ai ← Enc(pkAH , Pi)

6 : return (X = (pkAH , A1, . . . , An+1),

7 : d = (skE , fk, x)))

HECeval(hecpar , fn,k,ℓ, X, y; rẐ)

1 : parse X = (pkAH , A1, ..., An+1),

y = (yid , yat),

rẐ = (rid , rat , r1, r2, r3)

2 : if r3 = 0, return ⊥

3 : E ←
n+1⊕
i=1

(Ai ⊙ yi
id)

4 : Yid ← Enc(pkAH , yid ; rid)

5 : Yat ← Enc(pkAH , yat ; rat)

6 : Zid ← (r1 ⊙ E)⊕Yid

7 : Zat ← (r2 ⊙ E)⊕Yat

8 : Znf = r3 ⊙ E

9 : return Z = (Zid , Zat , Znf)

HECdirect(hecpar ,X , z)

1 : parse X = (pkAH , A1, . . . , An+1)

2 : z = (z1, z2, z3)

3 : if z = ∅
4 : β1 ←$MpkAH

5 : β2 ←$MpkAH

6 : β3 ←$MpkAH

7 : return (Enc(pkAH , β1),

8 : Enc(pkAH , β2),Enc(pkAH , β3))

9 : return (Enc(pkAH , g(z1)),

10 : Enc(pkAH , g(z2)),Enc(pkAH , g(z3)))

Fig. D.3: HEC algorithms

Lemma 11 (Security of x and y for Fig. D.3) Our construction in Fig. D.3
achieves security of x and y from third parties.

Proof of Lem. 11. Let us assume there exists an adversary for whom |pSecXY
Adv,0 (λ)−

pSecXY
Adv,1 (λ)| is non-negligible. This implies that either (i) the adversary can dis-

tinguish an encryption of x0 from x1 or (ii) the adversary can distinguish an
encryption of y0 from y1. From Lem. 12, the adversary distinguishing an encryp-
tion of x0 from an encryption of x1 can be reduced to the IND-CPA game of the
underlying scheme. This holds similarly for y0 and y1.

Lemma 12 (Security of x for Fig. D.3) Our construction in Fig. D.3 achieves
Security of y

60 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Proof of Lem. 12. Let us assume there exists an adversary Adv for whom
|pSecX

Adv,0 (λ)−pSecX
Adv,1 (λ)| is non-negligible. Let x0 and x1 be the input for which Adv

wins the SecX game by correctly distinguishing the ciphertext of x0 from the
ciphertext of x1. In that case, we can construct an IND-CPA adversary Adv′ that
wins the IND-CPA game by using the same input x0 and x1. This is possible
since Adv does not possess the secret key for the HEC scheme. Thus, IND-CPA
security of the underlying encryption scheme implies the SecX security of the
HEC scheme.

E Additional Constructions and Proofs of Security for
RP , Rf , and Ψ2

We present the omitted verification function for RP (described in Section 3.2)
in Alg. 5.

Algorithm 5 V∗
P (Cy, c0, . . . , cn−1, CP , aux, π, τ)→ {0, 1}

1: if n = 1,
2: parse π = (π1)
3: Verify π1 using the eqrep protocol in Appx. C.3
4: return 0 if π1 didn’t verify, otherwise, return 1
5: parse π = ((C1, C2, C3, C

′
P , πα), π

′)
Query the random oracle with the current transcript (τ) of the proof

6: α← H(C1, C2, C3, τ)
Compute the encryptions of the new coefficients for a reduced degree polynomial

7: ∀i ∈ [n/2− 1], c′i = x′
i = xi ⊕ (xi+n/2 ⊙ α)

8: Verify πα using CP , C1, C2, C3, C
′
P , c0, . . . , cn−1, c

′
0, . . . , c

′
n/2−1

and the verification function for commitments to AHE described in Section 3.1.
9: If πα failed to verify, return 0, otherwise, continue.

10: parse τ = (π, τ ′)
11: return V∗

P (Cy, c
′
0, . . . , c

′
n−1, C

′
P , aux, π

′, τ ′)→ {0, 1}

E.1 Proof of security for the RP proof system

Proof of Thm. 1 (Completeness and ZK). Completeness is clear by inspection.
The zero knowledge property of Alg. 2 relies on the hiding and zero knowledge

property of our underlying ciphertext and scalar commitment scheme and asso-
ciated protocols described in Sec. 3.1 and constructed in Sec. 4. Since we have
committed to all values and do all proofs with a NIZK scheme with a trapdoor
that allows our simulator to produce proofs for relations not in the language, we
can simply choose random elements as our commitments and simulate all proofs.
We show the simulator for PoKP and PoK∗

P in Algs. 7 and 6 for completeness.
We can see that if we replace the real commitments and proofs one-by-one with

PPBs via Verifiable Computation 61

hybrids, an adversary that can distinguish these hybrids can defeat either the
hiding of the commitment or the zero knowledge of the proof systems.

We quickly review the Schwartz-Zippel lemma [Sch80,Sho97] in Lemma 13.
We will use this in our proof of black-box simulation extractability proof for
Alg. 2 in Thm. 2

Lemma 13 (Schwartz-Zippel [Sch80,Sho97]) For two distinct polynomials,
r(χ), r′(χ), over a field, F of size p, the probability that r(α) = r′(α) when α
is sampled randomly from F is d/p where d is the larger degree out of either
polynomial, d = max{deg r, deg r′}. Where “distinct polynomials” means there
exists some power where the coefficients for r and r′ differ.

We need one more form of the Schwartz-Zippel lemma in order to prove our
construction sound for Camenisch-Shoup encryptions which we show in Lemma
14

Lemma 14 (Schwartz-Zippel for Zn) For two distinct polynomials, r(χ), r′(χ),
over a ring, Zn where n = pq for p, q prime, the probability that r(α) = r′(α)
when α is sampled randomly from Zn is d/p where d is the larger degree out of
either polynomial, d = max{deg r, deg r′} and WLOG q ≥ p. Where “distinct
polynomials” means there exists some power where the coefficients for r and r′

differ.

Proof of Lemma 14. Let us label the polynomial, r(χ)− r′(χ), as t(χ). We can
see that because t(α) = 0 mod n, we have that t(α) = 0 mod p and t(α) = 0
mod q since p|n and q|n. Let us define a map from Zn[x] to Zp[x], ϕp where
for t(χ) = t0 + t1χ + ... + tdχ

d we have that ϕp(t(χ)) =
∑

siχ
i where si =

ti mod p. Thus, if t(α) = u mod n, then s(α) = u mod p. We also know
that the polynomial, t(χ) in Zn[χ] is not identically zero for one of the two
polynomial ϕp(t) or ϕq(t). If this were not true, then the coefficients of t(χ)
in Zn would be multiples of both p and q (since p, q prime and pq = n) and
thus the coefficients would be multiples of n. This would mean the coefficients
would be zero in Zn but we’ve assumed that t(χ) ∈ Zn[x] is not identically zero.
WLOG we’ll assume ϕp(t) is a non-zero polynomial in Zp[χ]. We thus know
that we can map this polynomial onto a non-zero polynomial in Zp[χ]. We’ll
call this polynomial s(χ) ∈ Zp[χ]. Thus, we know that s(α) = 0 mod p since
t(α) ∈ Z[x] is some multiple of n and p|n. Because s(α) = 0 mod p and s(χ)
mod p is not identically zero, we can use Lemma 13 for the field Zp to determine
the probability of this evaluating to 0 (for a random evaluation point) is d/p.
Because this must be true if t(α) = 0 mod n, this must only occur with at most
d/p probability. By choosing p to be the smaller prime factor of n, we’ve proven
our bound in Lemma 14. ⊓⊔

Proof of Thm. 2 (Simulation extractability of PoK∗
P). This property of Alg. 2

relies on the BB-extraction and binding of our underlying ciphertext and scalar

62 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

commitment scheme and associated protocols described in Sec. 3.1 and con-
structed in Sec. 4. We can use the simulator (SimPoKP) in Alg. 7 for this reduc-
tion. Because our simulator is zero knowledge, the BB-simulation-extractability
adversary gets no advantage when given these proofs.

To do this, we’ll prove that C is correctly computed and that we can extract
the witnesses for the relation. We can prove that we can extract recursively. As
a base case, we see that when ProveRecursive is called with n = 1. We can see
on line 1 that in this case, the correct computation of P is directly computed.

Thus, if we can prove that C is correctly computed, assuming that C ′
P is cor-

rectly computed, we can use induction to conclude that the original commitment
given to the recursion from Ψ2.P (on line 4 of Alg. 3) was correctly computed.
From the proof, πrec , we know that P ′(y) = e1+αe3. We see that α is computed
from a hash of the transcript, including C1 and C3. Thus, the adversary cannot
make e1 or e3 depend on α, since this would reduce to either distinguishing a ran-
dom oracle or double opening C1 or C3. We now rewrite these polynomials and fix

y to reform these as: q(χ) = e1+χe3 and q′(χ) =
n/2−1∑
i=0

yiai+
n/2∑
i=0

χyiai+n/2. For

the proof to succeed, q(χ) must equal q′(χ) when evaluated at the random value,
α. We know from the Schwartz-Zippel lemma (Lemma 13) that the probability
of this occurring when q(χ) is distinct from q′(χ) is negligible in the size of the
ring, Zτ . Thus, with overwhelming probability, these must be equivalent poly-
nomials. Because α is multiplied by the right term and not the left, and (with
overwhelming probability) the polynomials are equivalent, this further proves

that e1 =
n/2−1∑
i=0

yiai and e3 =
n/2∑
i=0

yiai+n/2. This is because e1 is the 0-degree

coefficient in q(χ) and
n/2−1∑
i=0

yiai is the 0-degree coefficient in q′(χ) (with similar

reasoning for e3 and
n/2∑
i=0

yiai+n/2 for being the 1-st degree coefficient of q(χ) and

q′(χ)). We then see that πC proves that e2 = e3⊙yn/2. Thus, e2 = e3⊙yn/2 and

since we proved e3 correctly with πC , we now know that e2 =
n/2∑
i=0

χyi+n/2ai+n/2.

We then see that πrec proves that e = e1 + e2, which proves that e =
n∑

i=0

χyiai,

thus, proving C to be correctly formed. Thus, after extracting all witnesses from
the underlying NIZKs, we know that these are correct witnesses for the relation.

E.2 Proofs for the Ψ2 proof system

Proof of Thm. 8 (Completeness and ZK). Our scheme is correct by inspection.
We see that because the proof only consists of commitments and zero-knowledge
proofs, it is zero-knowledge as well.

Proof of Thm. 9 (BB-PSL). We assume in this theorem that we can extract a
witness for the relation Rf in a black-box way (Thm. 2) by instantiating the

PPBs via Verifiable Computation 63

Algorithm 6 SimPoKP(Cy, c0, . . . , cn−1, cP)→ π

1: CP ← ComAH (∗; 0) where ∗ is a random value
2: For i = 1 to logn, let (C

y2i , ri) = Com(∗)
and let π

y2i ← Sim[(z, ri−1, ri) : Cy2i−1 = Com(z; ri−1) ∧ C
y2i = Com(z2; ri)].

3: Initialize aux = ({C
y2i }, {πy2i }).

4: return SimPoK∗
P (Cy, c0, . . . , cn−1, CP , aux)

Algorithm 7 SimPoK∗
P (Cy, c0, . . . , cn−1, CP , aux)→ π

1: if n = 1, return (aux, π1) where π1 ← Sim[r : ComAH (x0 , r) = CP]
2: (C1, ρ1) = ComAH (∗)
3: (C2, ρ2) = ComAH (∗)
4: (C3, ρ3) = ComAH (∗)
5: α← H(τ)
6: ∀i ∈ [n/2− 1], c′i = x′

i = xi ⊕ (xi+n/2 ⊙ α)

7: (C′
P , r

′) = ComAH (∗)
8: πα ← Sim[r, ρ1, ρ2, ρ3, r

′, ry, y, e , e1 , e2 , e3 , e
′ :

9: ComAH (e , r) = CP ∧ ComAH (e′ , r′) = C′
P ∧ ∀1 ≤ i ≤ 3 : ComAH (ei , ρi) = Ci

10: ∧ e = e1 ⊕ e2
11: ∧ e2 = yn/2 ⊙ e3 ▷ proven relative to Cyn/2 in aux

12: ∧ e′ = e1 ⊕ (α⊙ e3)]
13: Append (C1, C2, C3, C

′
P , πα) to aux

14: return
(
SimPoK∗

P (Cy, c
′
0, . . . , c

′
n/2−1, C

′
P , aux

)
)

NIZKs in Alg. 3 with the proof function for Rf in Alg. 8 (Appendix E.4). Thus,
we know that the ciphertext (Csky) containing g(y) is correct, and thus, our
straight line extractor (defined in 2) can extract g(y) = g∗(y, rẐ) by decrypting
this ciphertext.

E.3 Construction of NIZKs in Ψ2 Proof Scheme

In Algs. 3 and 2, we perform the following four proofs:

πẐ ← NIZK[O,OY , r1, r2, r3,E ,Y , O,Oid , yid , y :

∧ Com(yid , Oid) = Cid ∧ Com(y, ry) = Cy ∧ y = (yat , yid)

∧ ComAH (E , O) = C ∧ ComAH (Y , OY) = CY

∧Y = EncAH (pkAH , y; r3)

∧
(
(E ⊙ r1)⊕Y ,E ⊙ r2

)
= Ẑ]

64 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

πα ← NIZK[O,O1, O2, O3, O
′, ry, y, Oz, z, rz, e , e1 , e2 , e3 :

ComAH (e ,O) = C ∧ ComAH (e′ , O′) = C ′

∧ ∀1 ≤ i ≤ 3 : ComAH (ei , Oi) = Ci

∧ ComAH (e′ , O′) = C ′;Com(z,Oz) = Cz;

∧ e = e1 ⊕ e3

∧ e3 = z ⊙ e2

∧ e′ = e1 ⊕ (α⊙ e2)]

π2 ← NIZK[y, rz, y, O, ry : Com(y, ry) = Cy

∧ ComAH (e , O) = C ∧ e =

n⊕
i=0

ai ⊙ yi

∧ Com(y; rz) = Cz]

πz ← NIZK[z, z′, rz, r′z : Com(z, rz) = Com(z′, r′z) = Cz ∧ z = z′ ∗ z′]
For πẐ , we see that we need to construct a proof for Ẑ =

(
(E ⊙ r1) ⊕ Y ,

E ⊙ r2
)
. We can prove each element in Ẑ separately. Proving Ẑ1 = r2 ⊙ E

is straightforward. The prover creates a commitment to r2 and then invokes
our multiplication protocol Provemult

AH for our ciphertext commitments and scalar
commitments.

For proving Ẑ2 = r1 ⊙ E ⊕ Y , the prover needs to create intermediate com-
mitments to r1 ⊙ E and Y , CE and CY . The proof for r1 ⊙ E will be formed
similar to our proof for r2 ⊙ E , i.e. by committing to r1 and then invoking our
Provemult

AH protocol. The prover then proves that C is committed to the product
of CE and CY . This can be done using our Proveadd function for commitments
to ciphertexts.

For πα, we have a number of addition and multiplication proofs. The prover
is trying to show that e = e1 ⊕ e3 and e3 = ze2 . This is straightforward as
the prover can apply Proveadd and Provemult directly to C1, C2, C3, and Cz. For
the last proof e′ = e1 ⊕ αe2 , the prover will need to create an intermediate
commitment to αe2 and use Provemult to prove that it was computed with C2, C1

and α (we can create a canonical commitment to α to reuse our multiplication
protocol as-is). We then compute Proveadd on this intermediate commitment and
C1 to prove the final product contained in C ′.

For π2, the prover performs a number of intermediate commitments for each
i ∈ [n]. The prover computes and proves intermediate commitments to each
Hi = yi ⊙ ai and then computes and proves intermediate commitments to

larger products of the elements, Di =
i⊕

j=1

aiy
i for i ∈ [n], using the previous

commitment to prove the next, i.e. Di = Di−1 ⊕Hi.
Note that this could be done much more efficiently by having the verifier

compute the homomorphic operation on the commitment themselves, but us-
ing intermediate commitments and proofs assumes less about our underlying
commitments. While this is easy to do with Pedersen commitments, the size of

PPBs via Verifiable Computation 65

value committed to by Damgård-Fujisaki commitments grows as homomorphic
operations are performed on them. Having the prover use Proveadd and Provemult

ensures that our values stay low as discussed in Sec. 4.2 in Remark 1.
For πz, the prover creates commitment C ′

z to y(n+1)/4 and proves via Provemult

that the value in this commitment multiplied by itself is equivalent to Cz.

E.4 Construction and proof of security for the Rf proof system

We construct our multivariable proof system in Alg. 8. In this proof function,
we prove a special class of polynomials, which is simpler to present, though
just as powerful. In this class of polynomials, we break the polynomial down in
terms of monomials (polynomials with a single term) of powers of the different
yi variables. Specifically, each polynomial is defined by a vector of coefficients,
(a1, ..., an), and a vector of powers of yi’s, for each ai, ((d1,1, . . . , d1,k), . . . , (dn,1, . . . , dn,k))
such that di,j is the power of yj in the monomial with coefficient ai. The result-
ing form of the polynomial looks as: f =

∑n
i=1 aixi

∏k
j=1 y

di,j

j . We then show
that any polynomial (which is linear in the xi’s) can be proven correct using
this proof by possibly duplicating xi’s and adding an extra encryption of 1 to
the xi’s to ensure the polynomial can have a degree-0 term in any xi. As in
Alg. 2, we assume that the prover also has already created a commitment to
each {yi, y2i , y4i , y8i , ..., y

di
i } where di is the largest power of yi in the polynomial

and proved that it was correct, and these commitments and proofs are included
in the aux variable passed to the proof and they are implicit and used in line 17
in Alg. 8. We also prove the relation such that the verifier only has a commit-
ment to cf instead of the actual ciphertext, similar to PoK∗

P in Sect. 3.2. This
allows us to recursively call PoK∗

f without revealing intermediate ciphertexts.
In this proof of knowledge, we reduce the degree of y1 by half at each step.

We assume that the maximum degree of each variable, yi, is a power of 2 17.
After a logarithmic number of recursions, we’ll have that y1 only has degree 1
when calling the proof. This will be divided out in line 10 of the proof (in Alg. 8)
and thus, we’ll be left with f4 (the polynomial we recurse on) being a degree 0
polynomial in y1. Thus, on the next recursive step, we’ll trigger the conditional
on line 4 and will remove y1 from the witnesses (and polynomial). Thus, our
proof will remove variables, yi, one-by-one, until we have 0 left, in which we’ll
trigger the conditional on line 1, in which we’re almost finished since at this
point, f is a function of linear operations on the xi values which the verifier can
compute. The prover simply needs to prove that the Cf is a commitment to the
cf computed by the verifier. We note the steps that a verifier can also compute
with a star (∗).

Complexity analysis. We can see that at each step, we reduce the degree of
one of the yi variables by half. By the end, all of the yi variables have been
17 If not, we can add a “dummy” monomial with the smallest power of 2 in each vari-

able such that this degree is larger than any degree of that variable in the original
polynomial. This dummy monomial can simply have a coefficient of 0 to ensure it
doesn’t affect the outcome.

66 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

removed from the polynomial and thus because our polynomial is linear in the
xi’s, the verifier can compute the encryption themselves, meaning our proof is
independent of n. Thus, our complexity will be O(k log(dmax)) where dmax is the
maximum degree among all yi variables in the polynomial.

Proof of theorems 3 and 4. For zero knowledge, it’s easy to see that because
we’re committing to every encryption and variable, and using ZKPs to manip-
ulate them, our proof is also ZK. On the last recursion, the verifier does see
an encryption in the clear, which seems to contradict zero-knowledge, but we
can see that this is simply a combination of the original coefficients (xi) and
random outputs from the random oracle. For BB extraction, we can prove this
by induction. If f4(. . .) is correctly computed, and C∗

4 is truely a commitment
to c∗1⊕αc∗3. Then, we know that f3(. . .) and f1(. . .) must be correctly computed
(due to similar logic as the proof for PoKfy). Thus, because we’ve also proven
that f2(. . .) = ydmax/2 and f(. . .) = f1(. . .) + f2(. . .), we’ve proven correctness
of f(. . .). When dmax = 0, we simply relabel our witnesses, removing one which
isn’t necessary to prove f(. . .) anymore. As our base case, we have that if there
are no yi variables left, we can prove correctness of the encryption of cf .

F Commitments to Ciphertexts

F.1 Additional Notes and Proofs for Simplified Camenisch-Shoup

Subgroup Generators g and h are both in the group |QRn2 | = {|x| : x ∈ QRn2 ∧
x < n2/2} We see that g is in |QRn2 | because it is equal to |(g′)2n|. Squaring
g′ ∈ Zn2 ensures that the result is in QRn2 and taking the absolute value of an
element in QRn2 ensures the result is in |QRn2 |. We prove that h is ∈ QRn2

using Lemma 2 and h ∈ |QRn2 | follows from the fact that |1 + n| = 1 + n.

Additional notes about the simplified Camenisch-Shoup scheme. Another mod-
ification we’ve made to the Camenisch-Shoup cryptosystem is that we remove
the third element from ciphertexts. Camenisch and Shoup [CS03] construct their
scheme with a third element to prove CCA security. We’ve removed the third
element from these ciphertexts as we do not need CCA security for our scheme.
Since we don’t need the third element to correctly decrypt honest ciphertexts, we
can simply drop the element and attain CPA security. CPA security is sufficient
for our purposes since we provide proofs of correct encryption.

Correctness and CPA security of simplified Camenisch-Shoup in Fig. 4.1a. Since
the third element is only used in [CS03] for CCA security, our decryption algo-
rithm works for honest encryptions. This is because hm = (1+n)m =

∑m
i=0

(
m
i

)
1m−ini =

1 +mn + (m − 1)n2 + ... = 1 +mn mod n2 and yr can be cancelled out with
ux. We can see that taking the absolute value of ciphertexts does not affect
this correctness because part of the decryption squares the ciphertexts. Because
c2 = (|c|)2, after squaring the ciphertexts our decryption algorithm works cor-
rectly. Security holds via a straightforward reduction from the CCA security of
the original Camenisch-Shoup scheme.

PPBs via Verifiable Computation 67

Algorithm 8 PoK∗
f (params, f,X,W)

parse f =
∑n

i=1 aixi

∏k
j=1 y

di,j
j ; in other words, f consists of n monomials

(m1, ...,mn) and for 1 ≤ i ≤ n, the ith monomial involves is linear in xi; it is
a product of xi and the monomials of y-variables, mi(y1, . . . , yk) =

∏k
j=1 y

di,j
j

where di,j is the degree of variable yj in the ith monomial.
parse X = (pkAH , x1 , . . . , xn , C1, . . . , Ck, Cf)

and W = (y1, ..., yk, cf , r1, ..., ry, rf).
W = (y1, . . . , yk, r1, . . . , rk, cf = f(x1, . . . , xn, y1, . . . , yk) , rf)

1: if k = 0,
2: return Prove that Cf is the commitment to cf =

∑n
i=1 aixji (the verifier can

compute cf autonomously).
3: Let dmax be the maximum degree of y1 in any monomial.
4: if dmax = 0 (i.e. y1 does not appear in f),
5: return PoKf (params, f ′, X ′,W ′) where f ′ = f , X ′ = (pkAH , x1 , . . . , xn , C2,

. . . , Ck, Cf), W ′ = (y2, . . . , yk, r1, . . . , rk, cf = f(x1, . . . , xn, y1, . . . , yk) , rf).
6: Recursive step:
7: ∗ Let (e′1, ..., e

′
t) be the indices such that y1 in the monomials (me′1

, ...,me′t
)

has degree ≥ dmax/2. Let (e∗1, ..., e
∗
s) be the indices of the remaining monomials

(me∗1
, ...,me∗s) with degree < dmax/2 over y1. Note that s+ t = n.

8: ∗ Let f1(x1, ..., xn, y1, ..., yk) =
∑t

i=1 ae∗i
xe∗i

∏k
j=1 y

de∗
i
,j

j

9: ∗ Let f2(x1, ..., xn, y1, ..., yk) =
∑s

i=1 ae′i
xe′i

∏k
j=1 y

de′
i
,j

j

10: ∗ Let f3(x1, ..., xn, y1, ..., yk) =
∑s

i=1 ae′i
xe′i

(
∏k

j=1 y
de′

i
,j

j)/y
dmax,1/2

1

11: Compute ∀i ∈ [3], c∗i = (fi(x1, ..., xn, y1, ..., yk)) computed homomorphically from
the input to the prover, and let ∀i ∈ [3], (C∗

i , κi) = Com(c∗i).
12: Let α = H(τ) where τ is a trascript of the proof so far (along with the statement

and parameters) that includes C∗
1 ,, C∗

2 and C∗
3 .

13: ∗ Let x′
1, . . . , x

′
n be a reordering of x1, . . . , xn such that x′

1, . . . x
′
t correspond to

the monomials in which y1 was of degree < dmax/2, and x′
t+1, . . . , xn correspond to

those where the degree was ≥ dmax/2.
14: ∗ Let (x∗

1, . . . , x
∗
n) = (x′

1, . . . , x
′
t, αx

′
t+1, . . . , αx

′
n). Compute x∗

1 ,. . . , x∗
n , and let X∗

be the same as X except that x1 ,. . . , xn are replaced by x∗
1 ,. . . , x∗

n , so the order
in which the encrypted x variables appear in X∗ corresponds to the order in which
they appear in the monomials of f4.

15: ∗ Let f4(x1, ..., xn, y1, ..., yk) = f1(x1, ..., xn, y1, ..., yk) + αf3(x1, ..., xn, y1, ..., yk).
16: Compute c∗4 = Enc(f4(x1, ..., xn, y1, ..., yk)) homomorphically using X∗, and

(C∗
4 , r

∗
4) = Com(c∗4)).

17: Prove that c∗2 = c∗3 ⊙ y
dmax/2
1 using the commitments, C∗

i and openings, κi, using
Provemult

AH , yielding πα.
18: Prove that cf = c∗1⊕c∗2 using the commitments, Cf , C∗

i and openings, rf , κi, using
ProveaddAH , yielding πf .

19: Prove that c∗4 = c∗1 ⊕ αc∗3 using the commitments, C4, C∗
i and openings, r4, κi,

using ProveaddAH , yielding π4.
20: return (πf , πα, π4,PoKf (params, f4, X

∗,W))

68 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Remark 1 (Reducing the size of scalars.). Our protocols for commitments must
have a maximum size of the witnesses (the committed values). We label this
as T . This bound ensures that our protocols remain zero knowledge. For our
Camenisch-Shoup scheme, this will need to be T = Zn since Zn is our message
space for these ciphertexts. We run into a problem with |QRn2 | commitments
that we didn’t have with Gp commitments here because the scalar commitments
we use (Damgård-Fujisaki commitments) do not directly commit to the mes-
sage space of Camenisch-Shoup commitments. Thus, in order to keep exponents
small after an exponentiation proof, we’ll also include a proof of modular arith-
metic over n in our exponentiation proof. This ensures that the values needed
in the proofs never grow large enough to violate our zero knowledge property.
This proof of modular arithmetic works by computing a commitment to n and
then proving that a remainder of n in a commitment is equal to the original
commitment summed with a multiple of n. This ensures that honest provers can
reduce the size of the commitments while still proving equivalence modulo n.
As an example, let a prover have two |QRn2 | commitments and one scalar com-
mitment, CM = (|MgsMaM |, (g′)sM (h′)rM), CN = (|NgsNaN |, (g′)sN (h′)rN),
Cy = (g′)y(h′)r. To prove that |N | = |My mod n|, the prover will construct
|QRn2 | commitment CP = (|PgsP aP |, (g′)sP (h′)rP) where |P | = |My| and
CQ = (|QgsQaQ|, (g′)sQ(h′)rQ) where |Q| = |Mn|. They will then prove that
|N | = |My mod n ∗ (Mn)k| where k = y − (y mod n). This can be done gener-
ically using eqrep−n∗ described in Sec. 2.1. Notice that a prover could select
an incorrect k value in this proof. This is not a problem because larger scalars
only affects zero knowledge and not soundness. Thus any honestly created com-
mitments and proofs will remain zero knowledge and any malicious proofs will
remain sound.

F.2 Security Proof of Damgård-Fujisaki Commitments for G = Zn2

We present our modified version of Damgård-Fujisaki commitments which lie in
Zn2 in Fig. F.1. In this construction, 2B is roughly the order of ϕ(n2) (where ϕ
is Euler’s totient function) though 2B is computable without knowing ϕ(n2) (as
defined in [DF02]).

Damgård and Fujisaki [DF02] list four properties sufficient for an Abelian
group to create an integer commitment scheme. They then prove that the group
Zn satisfies these properties. We will prove these properties for the group Zn2 .

The assumptions Damgård and Fujisaki required to prove their integer com-
mitment scheme secure are shown below. They [DF02] provide a construction
and prove that if a group meets all four requirements, their construction is se-
cure. We will modify these requirements slightly and prove that Zn2 satisfies
them. In these assumptions, C is some number which is super polynomial in the
security parameter, but smaller than the primes, p, q, p′, q′.

Damgård-Fujisaki commitment properties:

PPBs via Verifiable Computation 69

Fig. F.1: Simplified Damgård-Fujisaki commitments in Zn2

Setup(1λ)→ params :

1: Sample O(λ)-bit SG primes p′, q′ and compute p = 2p′+1, q = 2q′+1, n = pq.
2: Sample random g, h ∈ Zn2 .
3: return params = (g, h)

Commit(params,m)→ (C,O) :

1: To commit to integer, m, compute: C = gmhr

where r ←$ [2B+λ]
2: Let the opening be O = r
3: return (C,O)

1. Strong root property - Let Adv be any PPT algorithm. After generating
the group with security parameter, λ, then, with a description of the group,
G, (without the trapdoor) and a random h ∈ G, Adv is tasked with outputting
y ∈ G and a number, t > 1, such that yt = h. The probability of this
occurring is negligible.

2. Small order property - Let Adv be an PPT algorithm. With a description
of the group, G, Adv is tasked with outputting b ∈ G, σ ∈ Z such that b ̸= 1,
b2 ̸= 1, 0 < σ < C, and bσ = 1. The probability of this occurring is negligible.

3. No large even powers in orders - Any element in G of the form a2t has
odd order.

4. Many elements with only large prime factors in orders - If h is chosen
randomly in G, then theres is an overwhelming (1−O(2−λ)) probability that
the order of h has no prime factors less than C.

Damgård and Fujisaki [DF02] prove that Zn satisfies these properties where
n = pq and p ≡ q ≡ 3(mod 4) and p, q are safe primes. The primes, p and q, are
not given to the adversary in these assumptions.

We now prove that these properties hold for Zn2 with n formed the same
way as in Damgård-Fujisaki [DF02]. We review the strong RSA assumption
(Assumption 1 of [DF02]), and prove a useful lemma (Lemma 15).

Assumption 1 (Strong RSA assumption[DF02]) Given n = pq (where |n| =
O(2λ)), and a number, t ∈ Zn, no PPT algorithm can find a pair, v, e such that
ve = t and e > 1 with non-negligible probability in λ.

Lemma 15 If a = b mod n2, then a = b mod n.

Proof of Lemma 15 Take values a, b ̸= 0 ∈ Zn2 such that a = b mod n2. This
implies that a = mn2 + d, b = on2 + d for some m, o ∈ Z where 0 < d < n2.

70 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

This implies that a = m′n + d, o′n + d where m′ = mn, o′ = on. If we take the
remainder of d mod n, as d = ln + ρ for some l ∈ Z where 0 < ρ < n, we find
that the following equation holds: a = (m′ + l)n+ ρ, (o′ + l)n+ ρ. Since division
with remainder is unique for 0 ≤ ρ < n, we’ve shown that a and b are equal mod
n.

Proof of DF Property 1 for Zn2 . Assume we have a PPT algorithm that given
t ∈ Zn2 can produce a g ∈ Zn2 , y such that gy = t mod Zn2 . We are then tasked
with creating a reduction to strong RSA in Zn. Let our reduction take t in Zn

and give t + bn mod n2 to this adversary where b is a random number drawn
from 0 to n−1. The adversary then provides g, y such that gy = (t+bn) mod n2.
Since this equality holds in Zn2 , it holds in Zn as well due to Lemma 15. We can
see that t + bn = t mod n. Thus gy = t mod n. Lastly, we have to prove that
(t + bn) is distributed indistinguishably from a uniform drawing from Zn2 . We
can see that t+bn can “reach” almost every element of Zn2 since if t = n−1 and
b = n−1, then t+bn = n−1+(n−1)n = n−1+n2−n = n2−1 and if t = 1, b = 0,
we get 1. Then, we see that there are no duplicates of t + bn across this range
since no t, b, t′, b′ ∈ {0, ...,m − 1} exist such that t + bn = t′ + b′n. There are
(n − 1)n possible possible combinations of t and b from our ranges. Thus, each
value mapped to by t + bn uniformly maps to a random element of Zn2 except
for values of Zn2 where n is a factor. There are only n samples of Zn2 that are
divisible by n out of a total of n2 instances and thus the probability of drawing
one of these samples is negligible and our assumed strong RSA adversary in Zn2

must be able to solve problems when the challenge is not a multiple of n with
non-negligible probability.

Proof of DF Property 2 for Zn2 . The only possible orders of elements in Zn2 are
2, 4, p, q, p′, q′ or some product of these. If the adversary outputs a b with σ = 2,
we see that is must be that b2 = 1 and thus this is not a valid solution. If σ is
a multiple of p, q, p′, or q′, then σ > C and thus this solution doesn’t work for
this property. Thus, the only possible values for σ is 4. We can see that, in this
case, if b2 is a non-trivial root of 1 (i.e. b2 ̸= −1) we can factor by rewriting
(b − 1)(b + 1) = 0 mod n2 thus ensuring that taking the gcd of b − 1 or b + 1
with p, q, p′, or q′ yields a factorization. We see that if b4 = 1 and b2 = −1, this
must be true in Zp and Zq due to the Chinese remainder theorem. We can see
that because p ≡ 3 mod 4, it must be that p = 4k+3 and thus (p− 1)/2 is odd
and so (−1)(p−1)/2 = −1 implying that (−1) is not a quadratic residue mod p.
Thus, if b4 = 1 but b2 = −1, this would be a contradiction and thus b2 must be
a non-trivial square root allowing us to factor.

Proof of DF Property 3 for Zn2 . We see that the order of ϕ(n2) is 2pqp′q′ and
thus, if a2t has even order, then a has order 4k but 4 ∤ 2pqp′q′ and thus does not
divide the order of the group and thus we have a contradiction and a2t cannot
have even order.

Proof of DF Property 4 for Zn2 . If we find a non-trivial square root of 1, we
factor and we showed in the proof of DF Property 2 that if we find a 4-th root

PPBs via Verifiable Computation 71

of 1, it must be that when we square the value, we can factor. Thus, these must
be hard to sample, otherwise, it would be trivial to factor. Thus, the only orders
of sampleable elements (by a PPT algorithm) must be some product of p, q, p′
and q′. We can simply set C < p, q, p′, q′ and p, q, p′, q′ ≈ O(2λ) to satisfy this.

F.3 Commitments to Gp Elements and ElGamal Ciphertexts

In this section, we introduce commitments to group elements (in Gp) and then
construct a commitment scheme to ElGamal ciphertext in Fig. F.3 which relies
on those commitments to group elements. Note that the generators g and h used
in this section are distinct from those used in the encryption schemes in Sec. 4.1.
In this section, g and h refer to commitment bases for a Pedersen commitment.

Commitments to Gp group elements. In Alg. F.2 we present a commitment
scheme for committing to group elements. Our parameters for the scheme are
the same as a Pedersen commitment, yielding g and h. We then commit to a
group element by computing C1 = Mgs and C2 = gshr. We can see that C2 is a
Pedersen commitment and that s is hidden by C2. Thus, for any M,C1, C2 ∈ Gp,
there exists an s, r that forms a valid opening. We can see that using the opening
information, the group element can be retrieved by computing M = C1/g

s.

Proof of opening of an committed group element. We can create a ZK proof of
knowledge of an opening of the commitment C = (C1, C2) = ComGp

(M) by
proving knowledge of an opening for C2 as a Pedersen commitment, i.e. it is the
proof of knowledge of representation of C2 in bases g and h.

Proof of equality of committed group elements. Proving that two group commit-
ments C = (C1, C2) = (Mgs, gshr) and C ′ = (C ′

1, C
′
2) = (M ′gs

′
, gs

′
hr′) are com-

mitted to the same value (M = M ′) reduces to a proof of knowledge of equality of
representations: NIZK[M,M ′, s, r, s′, r′ : C1/C

′
1 = gs−s′ ∧ C2/C

′
2 = gs−s′hr−r′].

We can see that this proof works because C1/C
′
1 = M ′gs/(M ′gs

′
) = gs−s′ and

C2/C
′
2 = gshr/(gs

′
hr′) = gs−s′hr−r′ . If the second commitment were committed

to a distinct value, then C1/C
′
1 would equal Mgs/(Mgs

′
) = (M/M ′)gs−s′ which

the adversary could not prove was equivalent to gs−s′ .

Proof of multiplication of committed group elements. We can also prove that a
commitment Cc = (Cc,1, Cc,2) = (cgsc , gschrc) opens to the product c of two
group elements a, b committed to by two other group element commitments,
Ca = (Ca,1, Ca,2) = (agsa , gsahra) and Cb = (Cb,1, Cb,2) = (bgsb , gsbhrb) us-
ing eqrep-Gp. This can be done by having the verifier and prover compute D1 =
Cc,1/(Ca,1Cb,1) = cgsc/(bgsbagsa) and D2 = Cc,2/(Ca,2Cb,2) = gschrac/(gsahragsbhrb).
We can see that if the relation is true, c will be cancelled out by ab in D1, leading
to D1 being simply the result of an exponentiation of g (we’ll label this exponent
β1 = sc−sa−sb). Further, we see that if the relation is true, D2 is a Pedersen com-
mitment to β1. The prover then proves the relation: PoKeqrep-Gp

[sa, sb, sc, ra, rb, rc, β1, β2 :
D1 = gβ1 ∧D2 = gβ1hβ2] where β1 = sc − sa − sb and β2 = rc − ra − rb. We

72 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

can see that if D1 can be represented as gβ1 and D2 can be represented as a
Pedersen commitment to β1, we know that Cc is a commitment to ab.

Proof of exponentiation of committed group elements. We can also prove the
exponentiation of a Gp commitment using a scalar in a Pedersen commitment.
This can be done by using the eqrep-Gp relation described in Sec. 2.1. An expo-
nentiation proof takes group element commitments Ca to Gp element, a, and Cb

to element b. It also takes in a Pedersen commitment Cy to y. The goal of this
proof is to prove that a = by. To do this, we prove that PoKeqrep-Gp [y, ry, β1, β2 :
Cy = gyhry ∧ Ca,1 = Cy

b,1g
β1 ∧ Ca,2 = Cy

b,2g
β1hβ2] where β1 = sa − ysb and

β2 = ra − yrb and where Cy = gyhry , Ca,1 = agsa , Cb,1 = bgsb , Cb,2 = gsbhrb ,
and Ca,2 = gsahra .

Another notable feature of this commitment scheme is that the commitments
are homomorphic, i.e. if C = ComGp(M ; (s, r)) and C ′ = ComGp(M

′; (s′, r′)),
then C · C ′ = ComGp

(MM ′; (s+ s′, r + r′)).

Fig. F.2: Commitments to Gp elements

SetupGp
(1λ)→ params

1: Generate a group of prime order p,Gp = ⟨g⟩.
(or using an existing group e.g. from a bilinear pairing)

2: Generate a random element h ∈ Gp as the base for opening.
3: return params = (Gp, g, h)

CommitGp(params,M ∈ Gp)→ C,O

4: s←$ Zp; r ←$ Zp

5: C ← (C1, C2) = (Mgs, gshr)
6: return C,O = (s, r)

Theorem 11 Our construction in Fig. F.2 is binding.

Proof of Thm. 11 If a PPT adversary can produce (C,M,M ′, s, s′, r, r′) such
that C1 = Mgs = M ′gs

′
and C2 = gshr = gs

′
hr′ where M ̸= M ′, we can

double open C2 as a Pedersen commitment. We see that if M ̸= M ′, then s ̸= s′

because otherwise M = C1/g
s = C1/g

s′ = M ′. Thus, s ̸= s′ and s, r, s′, r′ is a
valid double opening for C2 as a Pedersen commitment. The binding property of
Pedersen commitments relies on the computational Diffie-Hellman assumption
and so our Gp commitments are computationally binding.

Theorem 12 Our construction in Fig. F.2 is hiding.

PPBs via Verifiable Computation 73

Proof of Thm. 12 For any M,C1, C2 ∈ Gp, we see that ∃s, r such that C1 =
Mgs, C2 = gshr. This is because g is a generator for Gp and thus ∃ s such that
gs = C1/M . Because C2 is a Pedersen commitment which is perfectly hiding,
there exists an r such that C2 = gshr for our picked s. Finally, because s is
chosen randomly from Zp, we see that any M is equally likely given C and thus
this commitment scheme is perfectly hiding.

So far, we’ve constructed commitments to elements of Gp and discussed their
associated proof protocols for opening and multiplication. Next we’ll use these
commitments and the intuition about their protocols to build commitments to
ElGamal ciphertexts. We build these commitments to ElGamal ciphertexts in
Fig. F.3. Verifying these proofs is a direct application of the eqrep-Gp verification
protocol. We put square brackets [·] around secret values for proof functions. We
can see in this ElGamal commitment scheme that we set it up by generating
Pedersen commitment bases, g, h, while labeling the parameters for the ElGa-
mal encryption scheme as g′ and h′. To commit, we form a Gp commitment to
each the two elements of an ElGamal ciphertext, c = (c1, c2), yielding C1, C2 as
a commitment to c1 and C3, C2 as a commitment to c2. Because our Gp com-
mitments are perfect hiding and computationally binding to elements of Gp, our
ElGamal commitments are perfectly hiding and computationally binding as well.

Proofs over commitments to ciphertexts. Inspecting our construction, we see that
many of our proofs (ProveComElG ,ProveaddElG ,Provemult

ElG) consists of simply performing
the proof on both group elements. For example, to prove knowledge of an opening
of an ElGamal commitment, we open the Pedersen commitments of each Gp

commitment, C2 and C4. This allows an extractor to recover s1, s2, r1, r2 allowing
the extractor to compute c1 = C1/g

s1 and c2 = C3/g
s2 . This is how we described

opening those Gp commitments earlier in this section. As another example, we
see in ProveaddElG that we want to prove that Cc is committed to ciphertext c
where c = ab and Cb is committed to ciphertext b and Ca is committed to
ciphertext a. We label this add “addition” because multiplying two ciphertexts
results in the addition of their encrypted messages. Intuitively, Provemult

ElG requires
the verifier to use the homomorphic properties of the commitment scheme to
multiply two group elements and then requires the prover to prove that the
resulting commitment is equivalent to Ca. We can see in this algorithm that
D1 = Cc,1/(Ca,1Cb,1) will be a power of g if (and only if) c = ab because
D1 = cgsc/(agsabgsb) = cgsc−sa−sb/(ab). The same is true for D3 and D4.

Proving a ciphertext is an encryption of a Pedersen committed message. Proving
that a committed ciphertext is an encryption of a Pedersen committed message
somewhat breaks our ciphertext commitment scheme’s paradigm of simply per-
forming proofs on either element in the ciphertext. In this proof, ProveencElG , the
prover must prove that the commitment is correctly formed for the message y
(whereas in the other proofs, we assume the ciphertexts are correctly formed
and proofs can be created without knowledge of the randomness of ciphertexts).
Thus, we prove that c1 = (g′)ρc and c2 = kρc(h′)y where g′ and h′ are the gener-
ators for the encryption scheme (in the case of ElGamal, g′ = h′ but in Sec. 4.2

74 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

we’ll see that these may differ). We can see that verifying π ensures that the
prover knows c (along with its randomness and message) such that is correct
ElGamal encryption of y with randomness ρc and Cy is a scalar commitment
to y.

Fig. F.3: Commitments to ElGamal ciphertexts

SetupElG(1λ, paramsElG)→ params

parse paramsElG = (Gp, g
′, h′)

1: (g, h)←$ Gp

2: params = (g, h, paramsElG)
3: return params

CommitElG(params, c = (c1, c2)) →
C,O

1: s1, s2 ←$ Zp; r1, r2 ←$ Zp

2: C ← (C1, C2, C3, C4)
= (c1g

s1 , gs1hr1 , c2g
s2 , gs2hr2)

3: return (C,O = (s1, s2, r1, r2))

ProveComElG(params, C,M,O)→ π

parse C = (C1, C2, C3, C4),
O = (s1, s2, r1, r2)

1: π = NIZKeqrep [s1, s2, r1, r2 :
C2 = gs1hr1 , C4 = gs2hr2]

2: return π

ProveencElG(params, pk = k, Cc, Cy,
[c, ρc, y, Oc, Oy])→ π

parse params = (g, h, paramsElG)
paramsElG = (Gp, g

′, h′)
Oc = (sc,1, sc,2, rc,1, rc,2)
c = ((g′)ρc , kρc(h′)y),
Oy = (ry)

1: π = NIZK[
sc,1, sc,2, sy, ρc, rc,1, rc,2, ry, y :

2: Cy = gyhry

3: ∧Cc,1 = (g′)ρcgsc,1

4: ∧Cc,2 = gsc,1hrc,1

5: ∧Cc,3 = kρc(h′)ygsc,2

6: ∧Cc,4 = gsc,2hrc,2]
7: return π

Provemult
ElG(params, Ca, Cb, Cy,
[c, a, b, y, Oa, Ob, Oy])→ π

parse Oa = (sa,1, sa,2, ra,1, ra,2)
Ob = (sb,1, sb,2, rb,1, rb,2)
Oy = (ry)

1: β1 = sa,1 − ysb,1
2: β2 = ra,1 − yrb,1
3: β3 = sa,2 − ysb,2
4: β4 = ra,2 − yrb,2
5: π = NIZK[y, ry, β1, β2, β3, β4 :
6: Cy = gygry

7: ∧Ca,1 = (Cb,1)
ygβ1

8: ∧Ca,2 = (Cb,2)
ygβ1hβ2

9: ∧Ca,3 = (Cb,3)
ygβ3

10: ∧Ca,4 = (Cb,4)
ygβ3hβ4]

11: return π

ProveaddElG(params, Ca, Cb, Cc,
[a, b, c, Oa, Ob, Oc])→ π

parse Oa = (sa,1, sa,2, ra,1, ra,2)
Ob = (sb,1, sb,2, rb,1, rb,2)
Oc = (sc,1, sc,2, rc,1, rc,2)

1: D1 ← Cc,1/(Ca,1 ∗ Cb,1)
2: D2 ← Cc,2/(Ca,2 ∗ Cb,2)
3: D3 ← Cc,3/(Ca,3 ∗ Cb,3)
4: D4 ← Cc,4/(Ca,4 ∗ Cb,4)
5: β1 = sc,1 − sa,1 − sb,1
6: β2 = rc,1 − ra,1 − rb,1
7: β3 = sc,2 − sa,2 − sb,2
8: β4 = rc,2 − ra,2 − rb,2
9: π = NIZK[β1, β2, β3, β4 :

10: D1 = gβ1

11: ∧D2 = gβ1hβ2

12: ∧D3 = gβ3

13: ∧D4 = gβ3hβ4]
14: return π

PPBs via Verifiable Computation 75

Theorem 13 (Hiding of the commitments in Fig. F.3) Our commitments
to ElGamal ciphertexts in Fig. F.3 are statistically hiding.

Proof (Proof of Thm. 13). We can see that (C1, C2) is identical to a Gp com-
mitment to c1 and (C3, C4) is identical to a Gp commitment to c2, we can see
that they statistically hide c1 and c2.

Theorem 14 (Binding of the commitments in Fig. F.3) Our commitments
to ElGamal ciphertexts in Fig. F.3 are computationally binding.

Proof (Proof of Thm. 14). We can see that (C1, C2) is identical to a Gp com-
mitment to c1 and (C3, C4) is identical to a Gp commitment to c2, thus, if a
PPT adversary can produce a double opening such that one of these commit-
ments opens to some c′1 or c′2 in Gp, we obtain a double opening for our Gp

commitments.

Theorem 15 (Zero-knowledge of Fig. F.3) Our protocols in Fig. F.3 (ProveComElG ,
ProveencElG , Provemult

ElG , and ProveaddElG) are zero-knowledge against any PPT adver-
sary.

Proof (Proof of Thm. 15). We can see that in each of these NIZKs, we simply
return a proof computed from the eqrep−p∗ protocol. Thus, we can use the
simulator for this protocol to produce proofs in the zero knowledge games. Thus,
if a PPT adversary can distinguish these simulated proofs from real proofs, we
can break the zero knowledge of the eqrep−p∗ protocol.

Theorem 16 (Black box knowledge extraction of Fig. F.3) Given a PPT
adversary that can produce a proof that verifies for our protocols in Fig. F.3
(ProveComElG , ProveencElG , Provemult

ElG , and ProveaddElG) there exists an extractor with
black-box access to the adversary that can extract a witness that proves the rela-
tions true.

Proof (Proof of Thm. 16). Similar to our proof of zero-knowledge for these
protocols, because these protocols simply return eqrep-Gp proofs, we can use the
black-box extractor for these proofs to extract the witnesses. This extractor is
described in Sec. 2.1.

F.4 Proofs of Hiding and Binding for |QRn2 |-commitments in
Fig. 4.3

We provide number theory background in Appx. C.2.

Hiding proof for Fig. 4.3. To prove that our commitments are hiding, we show
that, for any group element M , the commmitment algorithm (which samples a
commitment C = (|Mgs|, gshr)) provides a distribution that is statistically close
to the distribution (R1, R2) ∈ (|QRn2 | × Zn2) drawn uniformly at random.

76 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

We can see that since n = pq where p, q are safe primes, then g with over-
whelming probability generates QRn2 due to Lemma 4. If s is large, gs is indis-
tinguishable from a random element of QRn2 since s is much larger than ord(g)
(Lemma 5). Let ⋆ be the “multiply-and-absolute-value” operation in that it takes
two elements, multiplies them and then takes the absolute value. We see that
|QRn2 | is a group under this operator as x ⋆ y = |x ∗ y| = |x| ∗ |y|, 1 = |1|,
(|QRn2 |, ⋆) is closed since QRn2 is closed and | · | maps QRn2 to |QRn2 |, and the
inverse of any x ∈ (|QRn2 |, ⋆) is |x−1| where x−1 ∈ QRn2 (|x ∗ x−1| = |1|). Let
| · | : QRn2 → |QRn2 | be the map defined by the absolute value function. We see
that | · | is a homomorphism as |x ∗ y| = |x| ∗ |y| and |1| = |1|. We can see that
|x| is bijective as the only values of Zn2 that map to the same value have the
form −x and x, but if x ∈ QRn2 , then −x ̸∈ QRn2 since (−1) is not a quadratic
residue (Lemma 3). We also defined |QRn2 | as the image of this function and
thus because it is also injective, it is bijective. Thus, (QRn2 , ∗) ∼= (|QRn2 |, ⋆).
This means that |QRn2 | is cyclic and any randomly sampled element of |QRn2 |
is likely a generator due to Lemma 4. Thus, M ⋆ gs is indistinguishable from a
random element of |QRn2 |.

We note that C2 is simply a Damgård-Fujisaki integer commitment and thus
is indistinguishable from a random element in Zn2 .

Binding proof for |QRn2 |-commitments in Fig. 4.3. If a PPT adversary can
open a commitment C = (C1, C2) to two values M,M ′ ∈ {|x| : x ∈ |QRn2 |}
(providing openings, s, s′, r, r′) such that M ̸= M ′, we see that it must be that
C1/g

s ̸= C1/g
s′ . If s ̸= s′, we see that C2, (s, r), (s

′, r′) is a double opening
for the Damgård-Fujisaki integer commitment scheme. Because we proved that
these Damgård-Fujisaki commitments are binding for Zn2 (In Appendix F.2),
this double opening violation still holds even if C1 and C2 are created maliciously
(i.e., they are not in QRn2 , but instead some arbitrary element of Zn2). Thus,
s = s′ and it must be that |C1/g

s| = |C1/g
s′ |. This tells us that |M | = |M ′| ∈

Zn2 and since |M | = M∀M ∈ |QRn2 |, we see that M = M ′ ∈ |QRn2 |. Thus
it is impossible (based on the strong RSA assumption) for a PPT adversary
to double open our |QRn2 | commitments without double opening a Damgård-
Fujisaki commitment.

F.5 Construction of Commitments to Camenisch-Shoup Ciphertexts

In Fig. F.4, we give a formal construction of our Camenisch-Shoup commitments.

F.6 Proofs for Commitments to Camenisch-Shoup Ciphertexts

We split Thm. 5 into the following theorems:

Theorem 17 (Zero-knowledge of proofs in Fig. F.4) Our protocols in Fig. F.4
(ProveComCS , ProveencCS , Provemult

CS , and ProveaddCS) are zero-knowledge against any
PPT adversary.

PPBs via Verifiable Computation 77

Fig. F.4: Commitments to Camenisch-Shoup ciphertexts

SetupCS (1
λ, paramsCS , paramsDF) →

params

1: parse paramsCS = (Zn2 , g∗, h∗)
2: parse paramsDF = (Zn2 , g′, h′)
3: g ←$ |QRn2 |
4: params = (G, g, g∗, h∗, g′, h′)
5: return params
CommitCS (params, c)→ C,O

1: parse c = (c1, c2)
2: s1, s2 ←$ [2B+λ]; r1, r2 ←$ [2B+λ]
3: a1, a2, b1, b2 ←$ {−1, 1}
4: C1 ← a1c1g

s1 ;C2 ← b1(g
′)s1(h′)r1

5: C3 ← a2c2g
s2 ;C4 ← b2(g

′)s2(h′)r2

6: C ← (C1, C2, C3, C4)
7: O ← (a1, a2, s1, s2, r1, r2, b1, b2)
8: return (C,O)
ProveaddCS (params, Ca, Cb, Cc,

[a, b, c, Oa, Ob, Oc])→ π

1: parse Ca = (Ca,i)i∈[4]

2: Cb = (Cb,i)i∈[4]

3: Cc = (Cc,i)i∈[4]

4: Oa = (aa,i, sa,i, ra,i, ba,i)i∈[2]

5: Ob = (bb,i, sb,i, rb,i, bb,i)i∈[2]

6: Oc = (bc,i, sc,i, rc,i, bc,i)i∈[2]

7: ∀i ∈ [4], Di ← Cc,i/(Ca,i ∗ Cb,i)
8: γ1 ← sc,1 − sa,1 − sb,1
9: γ2 ← rc,1 − ra,1 − rb,1

10: γ3 ← sc,2 − sa,2 − sb,2
11: γ4 ← rc,2 − ra,2 − rb,2
12: β1 ← ac,1/(aa,1 ∗ ab,1)
13: β2 ← bc,1/(ba,1 ∗ bb,1)
14: β3 ← ac,2/(aa,2 ∗ ab,2)
15: β4 ← bc,2/(ba,2 ∗ bb,2)
16: π = NIZK[{γi, βi}i∈[4] :
17: D1 = β1g

γ1

18: ∧D2 = β2(g
′)γ1(h′)γ2

19: ∧D3 = β3g
γ3

20: ∧D4 = β4(g
′)γ3(h′)γ4

21: ∧{βi}i∈[4] ∈ {−1, 1}]
22: return π

ProveComCS (params, C, [M,O])→ π

1: parse C = (C1, C2, C3, C4),
2: O = (a1, a2, s1, s2, r1, r2, b1, b2)
3: π = NIZK[O :

C2 = b1(g
′)s1(h′)r1 ∧ C4 =

b2(g
′)s2(h′)r2

∧b1 ∈ {−1, 1} ∧ b2 ∈ {−1, 1}]
4: return π
Provemult

CS (params, Ca, Cb, Cy,
[a, b, y, Oa, Ob, Oy, by, {bi}i∈[4]])→ π

1: parse Ca = (Ca,i)i∈[4]

2: Cb = (Cb,i)i∈[4]

3: Oa = (aa,i, sa,i, ra,i, ba,i)i∈[2]

4: Ob = (bb,i, sb,i, rb,i, bb,i)i∈[2]

5: γ1 ← sa,1 − ysb,1; γ2 ← ra,1 − yrb,1
6: γ3 ← sa,2 − ysb,2; γ4 ← ra,2 − yrb,2
7: β1 ← aa,1/ab,1;β2 ← ba,1/bb,1
8: β3 ← aa,2/ab,2;β4 ← ba,2/bb,2
9: π = NIZK[{γi, βi}i∈[4] :

10: Cy = by(g
′)y(g′)ry

11: ∧Ca,1 = b1(Cb,1)
y(g′)γ1

12: ∧Ca,2 = b2(Cb,2)
y(g′)γ1(h′)γ2

13: ∧Ca,3 = b3(Cb,3)
y(g′)γ3

14: ∧Ca,4 = b4(Cb,4)
y(g′)γ3(h′)γ4

15: ∧βy, β1, β2, β3, β4 ∈ {−1, 1}]
16: return π
ProveencCS (params, pkAH = k, Ca, Cy,

[a, ra, y, Oa, Oy, by, {bi}i∈[4]])→ π

1: parse Ca = (Ca,i)i∈[4]

2: Oa = (aa,i, sa,i, ra,i, ba,i)i∈[2]

3: π = NIZK[Oa, sy, ra, ry, y :
Cy = by(g

′)y(h′)ry

∧Ca,1 = b1(g
∗)ra(g′)sa,1

∧Ca,2 = b2(g
′)sa,1(h′)ra,1

∧Ca,3 = b3k
ra(g∗)y(g′)sa,2

∧Ca,4 = b4(g
′)sa,2(h′)ra,2

∧by, b1, b2, b3, b4 ∈ {−1, 1}]
4: return π

78 Scott Griffy, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Proof (Proof of Thm. 17). We can see that in each of these NIZKs, we simply
return a proof computed from the eqrep protocol. Thus, we can use the simulator
for this protocol to produce proofs in the zero knowledge games. Thus, if a PPT
adversary can distinguish these simulated proofs from real proofs, we can break
the zero knowledge of the eqrep protocol.

Theorem 18 (Black box knowledge extraction of proofs in Fig. F.4) Given
a PPT adversary that can produce a proof that verifies for our protocols in
Fig. F.4 (ProveComCS , ProveencCS , Provemult

CS , and ProveaddCS) there exists an extrac-
tor with black-box access to the adversary that can extract a witness that proves
the relations true.

Proof (Proof of Thm. 18). Similar to our proof of zero-knowledge for these
protocols, because these protocols simply return eqrep proofs, we can use the
black-box extractor for these proofs to extract the witnesses. This extractor is
described in Sec. 2.1.

Theorem 19 (Hiding of the commitments in Fig. F.4) Our commitments
to Camenisch-Shoup ciphertexts in Fig. F.4 are statistically hiding.

Proof (Proof of Thm. 19). We can see that (C1, C2) is identical to a |QRn2 |
commitment to c1 and (C3, C4) is identical to a |QRn2 | commitment to c2, we
can see that they statistically hide c1 and c2.

Theorem 20 (Binding of the commitments in Fig. F.4) Our commitments
to Camenisch-Shoup ciphertexts in Fig. F.4 are computationally binding.

Proof (Proof of Thm. 20). We can see that (C1, C2) is identical to a |QRn2 |
commitment to c1 and (C3, C4) is identical to a |QRn2 | commitment to c2,
thus, if a PPT adversary can produce a double opening such that one of these
commitments opens to some c′1 or c′2 in |QRn2 |, we obtain a double opening for
our |QRn2 | commitments.

	Introduction
	Our Framework for Verifiable Computation
	Non-Frameability and Why It Matters
	Related Work and Efficiency Analysis

	Preliminaries
	Zero-knowledge Proofs of Knowledge
	Additively Homomorphic Encryption
	Privacy Preserving f-Blueprint Schemes (PPBs)

	Succinct Proofs for Verifiable Secure Computation on Additively-Homomorphic Ciphertexts
	Basic Building Blocks
	Efficient Proof System for Rf for k=1
	Proof System for Multivariate Polynomials

	Instantiations of Commitments to Additively-Homomorphic Ciphertexts
	Encryption Schemes
	Commitments to |QRn2| and Camenisch-Shoup Ciphertexts

	Applications of our Framework to Privacy-Preserving Blueprints
	Non-Frameable Privacy-Preserving Blueprints
	Instantiation of Consistent HEC Schemes
	Efficient Instantiation of HEC Evaluation Proof 2

	Discussion on Non-frameability vs. Deniability
	Full Definitions for Privacy Preserving f-Blueprint Schemes
	Additional preliminaries
	Motivation for BB-PSL
	Useful Lemmas for Composite-Order Groups
	More eqrep relations and constructions

	Additional HEC definitions, constructions, and proofs
	Security Properties of HEC Scheme
	Multi-attribute HEC Scheme
	Constructions of HEC Schemes

	Additional Constructions and Proofs of Security for RP, Rf, and 2
	Proof of security for the RP proof system
	Proofs for the 2 proof system
	Construction of NIZKs in 2 Proof Scheme
	Construction and proof of security for the Rf proof system

	Commitments to Ciphertexts
	Additional Notes and Proofs for Simplified Camenisch-Shoup
	Security Proof of Damgård-Fujisaki Commitments for G=Zn2
	Commitments to Gp Elements and ElGamal Ciphertexts
	Proofs of Hiding and Binding for |QRn2|-commitments in Fig. 4.3
	Construction of Commitments to Camenisch-Shoup Ciphertexts
	Proofs for Commitments to Camenisch-Shoup Ciphertexts

