
Isotropic Quadratic Forms, Diophantine
equations and Digital Signatures, DEFIv2

Martin Feussner and Igor Semaev

Selmer Center, University of Bergen, Bergen 5006, Norway
{martin.feussner,igor.semaev}@uib.no

Abstract. This work introduces DEFIv2 - an efficient hash-and-sign
digital signature scheme based on isotropic quadratic forms over a com-
mutative ring of characteristic 0. The form is public, but the construction
is a trapdoor that depends on the scheme’s private key. For polynomial
rings over integers and rings of integers of algebraic number fields, the
cryptanalysis is reducible to solving a quadratic Diophantine equation
over the ring or, equivalently, to solving a system of quadratic Dio-
phantine equations over rational integers. It is still an open problem
whether quantum computers will have any advantage in solving Dio-
phantine problems.

Keywords: Digital signatures · Isotropic quadratic forms · Diophantine
equations.

1 Introduction

Subset sum problem is usually treated as finding 0, 1-solutions to a linear Dio-
phantine equation in n variables. More precisely, given positive integers a1, . . . , an
and a it is to decide whether or not there exist xi in {0, 1} such that

x1a1 + . . .+ xnan = a.

This problem is known to be NP-complete [4]. Obviously, the subset sum problem
is equivalent to solving (deciding) the system of multivariate quadratic Diophan-
tine equations

x1a1 + . . .+ xnan = a, x2
1 − x1 = 0, . . . , x2

n − xn = 0.

To decide whether or not a more general system of multivariate quadratic Dio-
phantine equations

f1(x) = 0, . . . , fm(x) = 0, (1)

where x = (x1, . . . , xn), and fi ∈ Z[x], and deg fi ≤ 2, is solvable in rational
integers is therefore at least NP-hard. Finding explicit integer solutions to (1) is
generally difficult.

In this work a new hash-and-sign digital signature scheme called DEFIv2 is
presented. The security of the scheme is based on the hardness of computing

2 M. Feussner and I. Semaev

isotropic vectors over commutative rings of characteristic 0 for quadratic forms
with a trapdoor. Given a message, one may construct an isotropic vector for the
form, where one of the entries is its digest and the rest of the entries serve as a
signature.

The first version of the scheme was published on ePrint [1] and shared to
the pqc-forum [2] where the scheme was broken by Henry Bambury and Phong
Nguyen. The difference with the present version is in how vector Z is constructed
when the signature is generated, see Section 3.7. The construction in the earlier
version implies that a lattice similar to L in Section 5.5 contains a very short
secret vector which may be recovered with BKZ algorithm. That leads to recov-
ering the secret matrix B. The new version is immune to such lattice attacks as
secret vectors are significantly larger than the vectors in L produced with BKZ,
see Section 5.5 for details.

For polynomial rings R over Z and rings of integers of algebraic number fields
the cryptanalysis is reducible to solving quadratic Diophantine equations over
R or equivalently to solving systems of quadratic Diophantine equations over Z
such as (1). For Section 4 parameters (NIST security level 1) forging a signature
is equivalent to finding a relatively small solution to a nonhomogeneous quadratic
Diophantine equation in 4 variables over R = Z[X]/(q), where (q) is the ideal
in Z[X] generated by an irreducible polynomial q = q(X) of degree m = 28. It
is well known [8] that given one solution to a homogeneous quadratic equation
over a ring it is possible to get all other solutions with parametrisation. However,
this method is not applicable to nonhomogeneous equations. Also, there is a
restriction on the solution size. Equivalently, one has to find a relatively small
solution to a system of 28 multivariate quadratic Diophantine equations over Z
in 84 variables to forge a signature for a given message.

No modular transforms are used in the digital signature algorithm in this
work, all calculations are performed in the ring of integers. Therefore, the se-
curity of the proposed algorithm does not rely on solving multivariate polyno-
mial equations over finite fields as with Matsumoto-Imai [7] and Hidden Field
Equations (HFE) [12] cryptosystems and their derivatives. Also, advances in
solving common lattice problems as SVP (Shortest Vector Problem) and CVP
(Closest Vector Problem) does not seem to undermine the new scheme, see Sec-
tions 5.5 and 4 below.

Several cryptographic schemes were claimed to be constructed upon the hard-
ness of the subset sum problem and Diophantine equations. The most famous
one is the Merkle-Hellman public key crypto-system, where a super-increasing
vector, the scheme private key, was hidden with a modular linear transform to
get the public key. The scheme was broken in [13]. Its variations were broken
too, see [10] for a survey. Also, digital signature scheme [11] based on a quadratic
congruence modulo a composite integer and its extensions were broken, see [3].
A number of key exchange protocols built on the difficulty of solving general
Diophantine equations and finding equivalence for binary quadratic forms over
rational integers were published in [14] and [15] respectively, see also the ref-

DEFIv2 3

erences in those publications. The cryptographic schemes above differ from the
current proposal.

The idea of the new scheme and its cryptanalysis are due to Semaev, the
implementation and all computer experiments are due to Feussner.

2 Isotropic Quadratic Forms

Suppose R is any commutative ring of characteristic 0 with unity and without
zero divisors, a module over Z with finite or infinite basis α0, α1, . . . , αm−1, . . .
For a ∈ R, where a = a0α0 + a1α1 + . . . + am−1αm−1, ai ∈ Z, the function
|a| = max0≤i<m |ai| defines a norm on R. Also, for y = (y1, y2, . . . , yn) ∈ Rn we
set |y| = max1≤i≤n |yi|. Let

f(x1, . . . , xn) =
∑

1≤i≤n

ciix
2
i +

∑
1≤i<j≤n

2cijxixj (2)

be a quadratic form over R. Denote x = (x1, . . . , xn), then f(x) = xTCx, where
C ∈ Rn×n is a symmetric (n × n)-matrix with entries cij ∈ R. The quadratic
form is called isotropic if it may represent 0. That is f(z) = 0 for a non-zero
vector z ∈ Rn; the vector z is called isotropic. The security of the present digital
signature scheme is based on the hardness of computing isotropic vectors z ∈ Rn

for the form f(x). It is well known that given one solution to the homogeneous
quadratic equation f(x) = 0, it is possible to calculate all other solutions over R
by parametrisation [8]. However, in the proposed digital signature scheme some
entries of the target isotropic z ∈ Rn are prescribed by the hash value of a
message. That makes the method inefficient for forgeries.

How to create an isotropic quadratic form f(x) over R is shown in this
section below. In Section 3, we explain how to construct an isotropic vector z
for f(x). The vector z is a concatenation of the hash value h of the message and
its signature y. To verify the signature, one checks that f(z) = 0 in R. When
R = Z[X]/(q), where (q) is the ideal in Z[X] generated by a monic irreducible
polynomial q = q(X) ∈ Z[X], the cryptanalysis of the scheme is presented in
Section 5. Numerical parameters are proposed in Section 4, they provide 128-
bit security of the scheme which corresponds to the NIST security category 1
according to [6].

Let r, s, n be positive integers such that s ≥ 2 and n = r + s. Let J be a
diagonal matrix of size n× n with diagonal entries ±1 as

J = Diag (±1, . . . ,±1,±1),

where both 1 and −1 may occur. Suppose B ∈ Rn×n is a matrix of size n × n
over R and of rank n (the rows of B are linearly independent over R). It is easy
to see that

f(x) = f(x1, . . . , xn) = (Bx)TJ(Bx) = xTCx, (3)

where C = BTJB ∈ Rn×n, is an isotropic quadratic form. For matrices B
specified in Section 3 isotropic vectors are easy to calculate.

4 M. Feussner and I. Semaev

3 Signature Scheme

3.1 Private Key

Private key of the signature scheme is a matrix B ∈ Rn×n, constructed with
blocks as

sizes r s
r B11 0
s B21 B22

,

where Bij are matrices over R of sizes according to the definition above and the
matrix B22 is invertible in Rs×s. For efficiency reasons, the entries of B11, B21,
B22, B

−1
22 may be taken of relatively small norms. To construct B22, formulae in

Section 3.6 may be used.

3.2 Public Key

Public key of the signature scheme is the matrix C = BTJB ∈ Rn×n which
determines the quadratic form (3).

3.3 Signature Generation

Let M be a message and h ∈ Rr encodes its hash value. One may take the entries
of h of relatively small norms.

1. Given M , compute h ∈ Rr.
2. Set Z ′ = B11h ∈ Rr. Generate randomly Z ′′ ∈ Rs such that ZTJZ = 0,

where Z = (Z ′|Z ′′) ∈ Rn. See Section 3.7, where the construction is specified
for r = 1, s = 3.

3. Compute y ∈ Rs by
y = B−1

22 (Z ′′ −B21h) .

4. The signature for M is y.

In the variation of the scheme presented in Section 4, an extra parameter γy is
used. The generated signature y is correct if additionally |y| < γy.

3.4 Signature Verification

Let M,y be a signed message.

1. If y /∈ Rs, then reject. Otherwise, compute h ∈ Rr.
2. Set z = (h|y) ∈ Rn. If

f(z) = zTCz = 0,

then accept the signature, otherwise reject.

In the variation in Section 4, the signature is rejected if |y| ≥ γy as well.

DEFIv2 5

3.5 Verification Proof

Let M,y be a correctly generated signature. For z = (h|y) we have

B21 h+B22 y = Z ′′

and
Bz =

(
B11 0
B21 B22

)(
h
y

)
=

(
Z ′

Z ′′

)
= Z.

So,
f(z) = zTCz = [Bz]TJ [Bz] = ZTJZ = 0.

3.6 How to Generate B22

One may set

B22 = (

k∏
i=1

PiEi)F (4)

for randomly generated elementary and permutation matrices Ei and Pi respec-
tively and a unimodular matrix F ∈ Rs×s which is easy to invert and hard to
guess. The number k is a parameter, see explicit constructions in Section 4. Then

B−1
22 = F−1(

k∏
i=1

E−1
k−i+1P

−1
k−i+1).

A matrix E ∈ Rs×s is called elementary if E = Diag(1, . . . , 1) + Vij , 1 ≤ i, j ≤
s, i ̸= j, where Vij ∈ Rs×s is such that

Vij [u, v] =

{
b ̸= 0 if (u, v) = (i, j),

0 if (u, v) ̸= (i, j).

Then E−1 = Diag(1, . . . , 1)− Vij .

3.7 How to Generate Z

In this section we set r = 1, s = 3, n = 4. The construction may be easily
extended to larger parameters. Fix B11 = 1 in the definition of B and J =
Diag(1, 1,−1,−1). Then

1. Let (v1, v2, v3, v4) = HASH(M) ∈ R4. Compute h = v1v4 − v2v3 ∈ R.
2. Generate randomly (a1, a2, a3, a4), (d1, d2, d3, d4) ∈ R4 such that

a1a4 − a2a3 = det

(
a1 a2
a3 a4

)
= 1,

d1d4 − d2d3 = det

(
d1 d2
d3 d4

)
= 1.

Similar to (4), the matrices A =

(
a1 a2
a3 a4

)
and D =

(
d1 d2
d3 d4

)
may be formed

as products of randomly generated elementary and permutation matrices.

6 M. Feussner and I. Semaev

3. Compute (
V1 V2

V3 V4

)
=

(
d1 d2
d3 d4

)(
v1 v2
v3 v4

)(
a1 a2
a3 a4

)
.

4. Set

Z1 = h = V1V4 − V2V3,

Z2 = V1V2 + V3V4,

Z3 = V1V2 − V3V4,

Z3 = V1V4 + V2V3,

and Z = (Z1, Z2, Z3, Z4). Therefore,

ZTJZ = Z2
1 + Z2

2 − Z2
3 − Z2

4

= (V1V4 − V2V3)
2 + (V1V2 + V3V4)

2 − (V1V2 − V3V4)
2 − (V1V4 + V2V3)

2

= 0.

4 Proposed Parameters and Performance

In this section, we propose parameters for the scheme that correspond to the
NIST security category 1 level [6]. We refer to this scheme as DEFIv2-1. Let
r = 1, s = 3, n = 4 and m = 28. We set q = q(X) = Xm + X + 1 which is
an irreducible polynomial in Z[X]. That defines the ring R = Z[X]/(q), which
corresponds to a ring of integers in the algebraic number field K = Q(α), where
α is a root of q(X).

The matrix B22 ∈ R3×3 is constructed by (4). That is as a product of kB
random elementary (with only 1 non-zero off-diagonal entry containing only 1
non-zero coefficient ±1) and random permutation matrices and a matrix F ; the
latter itself may be decomposed into a product of elementary matrices and is
defined as

F =

1 −y 0
x 1 y
0 x 1

 =

1 0 0
x 1 0
0 0 1

1 0 0
0 1 y
0 0 1

1 0 0
0 1 0
0 x 1

1 −y 0
0 1 0
0 0 1

 .

The variables x, y have coefficients taken randomly from [−δF , δF] \ {0} and the
entries of B21 ∈ R3×1 have coefficients taken randomly from [−δB21

, δB21
] \ {0}.

The construction of A and D follows similarly as a product of only kAD random
elementary and random permutation matrices and no F .

To generate a valid B22, we ensure that each entry meets a minimum guess-
ing complexity, 2ΩB , before accepting it. If an entry fails this criterion, B22 is
regenerated. By construction, the polynomial coefficients of B22-entries are in
[−γB22

+ 1, γB22
− 1]. We use a metric to estimate the guessing complexity by

computing the inverse probability of each polynomial entry occurrence. That is

DEFIv2 7

a product of the precomputed inverse probabilities (likelihoods) of its coefficient.
The likelihood values are stored as rounded down base-2 integers in the imple-
mentation for efficiency — for example, a probability of 1

123 is stored as 6. In
total, 225 of B22 were generated at random to build and validate these tables.

We now introduce bound parameters: γC1
, γC2

, γC3
, γB22

, γB−1
22

, γy. These are
strict bounds on the absolute value of the polynomial coefficients in the blocks
of the public key matrix C, the secret matrices B22 and B−1

22 , and the signature
y respectively. The blocks of C ∈ Rn×n to which these bounds apply are:

sizes r s
r C1 C2

s C2 C3

Any of C,B22, B
−1
22 , y are regenerated if coefficients exceed the bound. This also

imposes a signature rejection condition if y does not satisfy the bound.
We also provide the parameter d, which represents the output size of FIPS202-

SHAKE256 in bits that the scheme operate with. The choice of d allows for each
polynomial coefficient in (v1, v2, v3, v4) = HASH(M) ∈ R4 to be represented
by a whole number d/4m of bits. Also, that takes into account increased col-
lisions further explained in Section 5. Each coefficient value is initially in the
range [0, 2d/4m−1]. To center the values around zero, we take them in the range
[−2d/4m−1, 2d/4m−1 − 1]. The final hash representation h = v1v4 − v2v3 ∈ R is
then computed from this.

The values for the parameters were chosen to result in an efficient imple-
mentation with minimized public key and signature size. The parameters are
provided Table 1.

Table 1. DEFIv2-1 parameters

m n s r kB kAD δF δB21 ΩB γC1 γC2 γC3 γB22 γ
B−1

22
γy d

28 4 3 1 13 10 4 8 112 211 212 215 27 211 245 336

The performance with the provided parameters is summarized in Table 2.
The secret key is a seed for the random number generator to generate the secret
key matrix B21 and byte packing of the secret key matrix B−1

22 . The average time
estimates (in milliseconds) are based on 104 iterations, compiled with the -O3
optimization flag, on a laptop with Windows 10 64-bit operating system and x64-
based processor: 12th Gen Intel(R) Core(TM) i7-12800H@2.40 GHz with 16.0
GB Ram. The reference implementation for DEFIv2-1 follows the submission
guidelines in [6] and is available at [17]. Although an optimized implementation
has not yet been developed, the performance metrics of the reference implemen-
tation (with the -O3 optimization flag) in Table 2 are comparable to those of
optimized implementations of some of the fastest secure digital signature schemes
currently available or proposed [16].

8 M. Feussner and I. Semaev

Table 2. Performance of DEFIv2-1

Public key 515 bytes
Private key 426 bytes
Signature 483 bytes
Public key + signature 998 bytes
Key generation 0.902 ms
Signature generation 0.126 ms
Signature verification 0.054 ms
Average trials for valid B 2.708
Average trials for valid C 2.095
Average trials for valid signature 1.003
Expected maximum trials for valid signature 3

5 Cryptanalysis

The security of the scheme depends on the basis ring R not counting the param-
eters r, s, n. In what follows we set R = Z[X]/(q), where (q) is the ideal in Z[X]
generated by a monic irreducible polynomial q = q(X) of degree m with integer
coefficients. Let |a|, a ∈ R be the maximum in absolute values of the coefficients
of a polynomial of degree < m which represents a modulo q(X). We call that
a max-norm. To simplify some arguments below, we may assume that R is the
ring of integers of the algebraic number field K = Q(α), where α is a root of
q(X).

For DEFIv2-1 we need to provide a 128-bit security for the message M hash
value representation, h = v1v4 − v2v3 ∈ R where (v1, v2, v3, v4) = HASH(M) ∈
R4. That is achieved by ensuring that v1, v2, v3, v4 are represented as polynomi-
als of degree < 28 with coefficients in [−4, 3]. The number of such polynomial
tuples is 84·28 = 2336. This hash value representation introduces an additional
layer of collisions: while a standard collision would occur when two different
messages M1 and M2 produce the same (v1, v2, v3, v4), the form h = v1v4 − v2v3
allows for distinct digests to result in the same h. For instance, changing signs
and permuting some of (v1, v2, v3, v4) results in the same h. The distribution of
the coefficients of the polynomial h, observed experimentally, implies that the
number of different h is over 2256.

5.1 Private Key Recovery

Given public matrix C recover a matrix B ∈ Rn×n such that C = BTJB.
That equation may be written as a system of (n2 + n)/2 quadratic Diophantine
equations in n(n − r) (we assume that B11 is public) variables, the entries of
B21 and B22, over R. That is generally hard to solve. If the entries of B are
represented by very sparse polynomials a guessing strategy may work to recover
them. For the proposed parameters, we avoid that by ensuring that each entry
meets some minimum guessing complexity. For B21 this is straightforward, there
are 2112 possibilities for each entry. For B22, we expect there to be more than

DEFIv2 9

2112 possibilities for each entry based on the chosen metric. An adversary, after
correctly guessing one entry from a column of B (say b22) may then attempt to
recover b32 and b42 from c = b222 − c22 = b232 + b242 by solving an instance of SVP
in a lattice of rank 2m and of volume V = NormK/Q(c). The last calculation may
be conservatively estimated by (2m)3 log22 V binary operation. From experiments
using over 220 such c generated with our proposed parameters, we get that
V > 2132. Recovering b22, b32, b42 should thus takes > 2143 binary operations.

5.2 Forgery Attack over Z

One may write the form (3) as

f(x) = xTCx = f0(x̄) + f1(x̄)α+ . . .+ fm−1(x̄)α
m−1, (5)

where fi(x̄) are quadratic forms over Z the variables of which are the coefficients
of the polynomials xi = xi0 + xi1α+ . . .+ xim−1α

m−1 and

x̄ = (x10, x11, . . . , xnm−1).

Forging the signature for a message M with the hash h = (x1, . . . , xr) is thus
equivalent to solving the system of quadratic Diophantine equations

f0(x̄) = 0, . . . , fm−1(x̄) = 0,

where the variables
xij , 1 ≤ i ≤ r, 0 ≤ j < m

are fixed by the entries of h. That is a system of m Diophantine equations in
(n − r)m variables. Such equations are generally hard to solve as discussed in
Section 1.

5.3 Forgery Attack over R

Let M be a message with the hash h ∈ Rr. In order to forge a signature one sets
(x1, . . . , xr) = h, and randomly chooses xr+1, . . . , xn−1 from R with bounded
max-norms. One may try to calculate z ∈ R such that f(x) = 0, where x =
(x1, . . . , xr, xr+1, . . . , xn−1, z). That is

f(x) = cnnz
2 + 2(cn1x1 + cn2x2 + . . .+ cnn−1xn−1)z + g(x1, . . . , xn−1) = 0.

Denote a = 2(cn1x1 + cn2x2 + . . . + cnn−1xn−1) and b = g(x1, . . . , xn−1). If
cnn ̸= 0, then z satisfies the quadratic equation

cnnz
2 + az + b = 0 (6)

with roots (−a±
√
a2 − 4bcnn)/2cnn. One of the roots is in R if and only if

v = a2 − 4bcnn = u2 (7)

10 M. Feussner and I. Semaev

for some u ∈ R, and
2cnn|a− u or 2cnn|a+ u. (8)

We will estimate the probability of the conditions with an heuristic argu-
ment. Let D = max |a2 − 4bcnn|, where the maximum is taken over all possible
values of x1, . . . , xn−1 with bounded max-norms as above. Condition (7) implies
that NormK/Q(v) is a square. The maximum of that norm is of magnitude Dm.
The probability that an integer of such magnitude is a square is D−m/2. For the
proposed parameters in Section 4, we ran experiments to estimate D. We ran-
domly generated 210 public keys, and for each, 210 random h, x1, . . . , xn−1 with
x1, . . . , xn−1 having coefficients in [−1, 1]. The minimum entry obtained from all
|b2 − 4dcnn| was 215.96. So we conservatively estimate D−m/2 ≪ 2−223.44 which
is very small.

The probability of (8) is around 2 |NormK/Q(2cnn)|−1, that is of magnitude
|2cnn|−m. For the proposed parameters, the value of 2 |NormK/Q(2cnn)|−1 from
216 randomly generated public keys was ≤ 2−201.20. We conclude that this forgery
is not efficient for cnn ̸= 0. If cnn = 0, then (6) has a root in R if and only if a|b
in R which happens with exponentially small probability too. Similar holds for
other cii.

More generally, for a parameter l such that 1 ≤ l ≤ n− r − 1 one randomly
chooses xr+1, . . . , xn−l from R with bounded max-norms. One then tries to cal-
culate z1, . . . , zl ∈ R such that f(x) = 0, where x = (x1, x2, . . . , xn−l, z1, . . . , zl).
The unknowns z1, . . . , zl must satisfy

g(z1, . . . , zl) = 0 (9)

for a quadratic polynomial g(z1, . . . , zl) in l variables with coefficients from R.
Since the problem is Diophantine, it is difficult to decide whether (9) is solvable
or not and calculate the solutions. Even for R = Z an efficient algorithm to
solve a general binary quadratic Diophantine equation may not exist as the
minimal solution size in bits may depend exponentially in the size of input as
with negative Pell equation, see [5].

5.4 Adapting Attack

Given signed message M,y, one may try to construct another signature y′ for
M . Let x = (h|y) = (x1, . . . , xn−1, xn). Therefore z = xn is a root in R of the
quadratic equation (6). If another root

x′
n = −a/cnn − xn ∈ R,

then one constructs another signature M,y′ as f(x1, . . . , xn−1, x
′
n) = 0. However,

x′
n ∈ R if and only if cnn divides a in R. For random a this happens with

probability |NormK/Q(cnn)|−1. This probability is of order |cnn|−m, and is very
small even for moderate m. One may try to modify at least one of xi, r+1 ≤ i ≤ n
in a similar way. The success probability is

1−
n∏

i=r+1

(1− |NormK/Q(cii)|−1). (10)

DEFIv2 11

It is easy to compute NormK/Q numerically given the roots of the polynomial
q(X). The probability (10) is therefore easy to compute and the maximum prob-
ability obtained using 216 randomly generated C was 2−165.48 for the parameters
in Section 4.

The adapting attack may be extended to modifying several entries of the
signature. One has to solve a Diophantine equation in l ≥ 2 variables similar to
(9), where one solution is given. The parametrisation produces solutions from
the field K and generally does not work for the ring R.

5.5 Lattice Attack

Suppose r = 1, s = 3 and Z ′′ ∈ R3 is constructed by Section 3.7 formulae. Every
signature y ∈ R3 results in one equation

(
B21|B22

)(h
y

)
= Z ′′,

where h is constructed from the hash of the message and
(
B21|B22

)
∈ R3×4 is

the scheme secret key. Given N signatures Mi, yi, i = 1, . . . , N , one may form a
matrix

H =

(
h1 h2 . . . hN

y1 y2 . . . yN

)
∈ R4×N ,

where hi are constructed from the hash of Mi. Let here

Z =
(
Z ′′
1 . . . Z ′′

N

)
∈ R3×N .

Then
(
B21|B22

)
H = Z and so

(
B21|B22|Z

)
=

(
B21|B22

) (
I4|H

)
, where I4 is a

unity (4×4)-matrix. The rows of
(
B21|B22|Z

)
belong to a module generated over

R by the rows of
(
I4|H

)
. One may construct an integer (4m×(4+N)m)-matrix

the rows of which represent over Z the rows of
(
I4|H

)
. Let L be a lattice of rank

4m generated by the rows of that matrix. Since the rows of
(
B21|B22|Z

)
, after

transforming into a (3m×(4+N)m)-matrix over Z, have relatively small entries
compared with the rows of

(
I4|H

)
and they belong to L, one may try to apply

a lattice reduction algorithm to recover some or all of them.
However, experimentally, with 29 randomly generated secret keys used to

sign 1 ≤ N ≤ 25 random messages, with the parameters in Section 4, the
largest vector vl in a LLL reduced basis of L was significantly shorter than
the shortest row-vector vs in the target matrix

(
B21|B22|Z

)
. More precisely,

∥vs∥
∥vl∥ > 3.34, where ∥ · ∥ denotes the Euclid norm of a vector. So, the rows of(
B21|B22|Z

)
should be impossible to recover directly from the reduced basis.

Using BKZ generally makes the reduced basis even smaller and therefore won’t
help to recover the secret.

12 M. Feussner and I. Semaev

6 DEFI Challenge

Here we provide details to our publicly available 90-bit challenge for DEFIv2
which we shall call DEFIv2-c. The parameters for this challenge are listed in
Table 3. In particular, we set R = Z[X]/(X16 +X + 1).

Table 3. DEFIv2-c parameters

m n s r kB kAD δF δB21 ΩB γC1 γC2 γC3 γB22 γ
B−1

22
γy d

16 4 3 1 9 9 4 8 63 210 211 212 26 29 242 256

The challenge is to find an attack on the scheme that requires less than 290

binary operations to deduce any of the secret entries of matrix B or to forge a
signature for the hash of a message. The challenge files contain data collected
from signing 214 randomly generated messages using one key-pair and is available
at [18]. It contains the following files which are formatted as JSON arrays:

– C.txt - contains a public key matrix C ∈ R4×4 in its uncompressed form.
– v.txt - contains the hash of a message as (v1, v2, v3, v4) ∈ R4.
– h.txt - contains the hash value representation h = v1v4 − v2v3 ∈ R.
– y.txt - contains the signature y ∈ R3 in its uncompressed form.
– z.txt - contains z = (h|y) ∈ R4 from the signature verification step.

Acknowledgments. The authors have no acknowledgments to make.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Feussner, M., Semaev, I.: Isotropic Quadratic Forms, Diophantine Equations and
Digital Signatures. Cryptology ePrint Archive, Paper 2024/679. Available at:
https://eprint.iacr.org/2024/679 (2024)

2. Feussner, M., Semaev, I.: pqc-forum: New Digital Signature Scheme -
DEFI. Available at: https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/x7-
nf3NuYTs/m/dGvflCePAQAJ (2024)

3. Estes, D., Adleman, L.M., Kompella, K., McCurley, K.S., Miller, G.L.: Breaking the
Ong-Schnorr-Shamir signature scheme for quadratic number fields. In: Advances in
Cryptology – Crypto’85, LNCS, vol. 218, pp. 3–13. Springer, Heidelberg (1986)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Series of Books in the Mathematical Sciences, W. H. Freeman
and Company, New York (1979)

5. Lagarias, J.C.: On the computational complexity of determining the solvability or
unsolvability of the equation X2−DY 2 = −1. Trans. Amer. Math. Soc. 260, 485–508
(1980)

DEFIv2 13

6. National Institute of Standards and Technology (NIST): Post-Quantum Cryptog-
raphy Standardization. Available at: https://csrc.nist.gov/projects/post-quantum-
cryptography/post-quantum-cryptography-standardization (accessed 2024)

7. Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for Efficient
Signature-Verification and Message-Encryption. In: Advances in Cryptology – Eu-
rocrypt’88, LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

8. Mordell, L.J.: Diophantine equations. Academic Press, London and New York (1969)
9. Nguyen, P.Q.: Hermite’s constant and Lattice Reduction. In: The LLL Algorithm,

Survey and Applications, pp. 145–178. Springer-Verlag, Heidelberg (2010)
10. Odlyzko, A.M.: The Rise and Fall of Knapsack Cryptosystems. AT&T Bell Labo-

ratories, Murray Hill, New Jersey (1984)
11. Ong, H., Schnorr, C.P., Shamir, A.: An efficient signature scheme based on

quadratic equations. In: Proceedings of the 16th ACM Symposium on Theory of
Computing (STOC’84), pp. 208–216 (1984)

12. Patarin, J.: Hidden Field Equations (HFE) and Isomorphisms of Polynomials (IP):
two new Families of Asymmetric Algorithms. In: Advances in Cryptology – Euro-
crypt ’96, LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

13. Shamir, A.: A polynomial-time algorithm for breaking the basic Merkle-Hellman
cryptosystem. IEEE Trans. on Information Theory 30, 699–704 (1984)

14. Yosh, H.: The key exchange cryptosystem used with higher order Diophantine
equations. IJNSA 3(2), 43–50 (2011)

15. Prasamsa, K.V., Kameswari, P.A., Raju, K.N., Surendra, T., Devi, D.M.: A key
exchange algorithm with binary quadratic forms to design complex security frame-
work. Advances in Mathematics: Scientific Journal 10(1), 589–595 (2021)

16. PQShield: NIST Signature Zoo. Available at: https://pqshield.github.io/nist-sigs-
zoo/ (accessed 2024)

17. Feussner, M: DEFIv2-1 [GitHub repository]. Available at:
https://github.com/martinfeussner/DEFIv2/tree/main/DEFIv2-1 (accessed
2024)

18. Feussner, M: DEFIv2-c [GitHub repository]. Available at:
https://github.com/martinfeussner/DEFIv2/tree/main/DEFIv2-c (accessed
2024)

