
Approximate PSI with Near-Linear Communication

Wutichai Chongchitmate∗1, Steve Lu†2, and Rafail Ostrovsky‡ §3

1Chulalongkorn University
2Stealth Software Technologies, Inc.

3UCLA

Abstract

Private Set Intersection (PSI) is a protocol where two parties with individually
held confidential sets want to jointly learn (or secret-share) the intersection of these
two sets and reveal nothing else to each other. In this paper, we introduce a natu-
ral extension of this notion to approximate matching. Specifically, given a distance
metric between elements, an approximate PSI (Approx-PSI) allows to run PSI where
“close” elements match. Assuming that elements are either “close” or sufficiently “far
apart”, we present an Approx-PSI protocol for Hamming distance that improves the
overall efficiency compared to all existing approximate PSI solutions. In particular, we
achieve a near-linear Õ(n) communication and computation complexity, an improve-
ment over the previously best-known Õ(n2). We also show Approx-PSI protocols for
Edit distance (also known as Levenstein distance), Euclidean distance and angular dis-
tance by deploying results on low distortion embeddings to Hamming distance. The
latter two results further imply secure Approx-PSI for other metrics such as cosine
similarity metric. Our Approx-PSI for Hamming distance is up to 20 times faster and
communicating 30% less than best known protocols when (1) matching small binary
vectors; or (2) matching large threshold; or (3) matching large input sets. We also
apply our technique to analyze private approximate membership computation, which
can be viewed as asymmetric case of approximate PSI, and obtain a protocol with
sublinear communication.

∗wutichai.ch@chula.ac.th
†steve@stealthsoftwareinc.com
‡rafail@cs.ucla.edu
§This research was supported in part by DARPA under Cooperative Agreement HR0011-20-2-0025, the

Algorand Centers of Excellence programme managed by Algorand Foundation, NSF grants CNS-2246355,
CCF-2220450, CNS-2001096, US-Israel BSF grant 2022370, Amazon Faculty Award and Sunday Group.
Any views, opinions, findings, conclusions, or recommendations contained herein are those of the author(s)
and should not be interpreted as necessarily representing the official policies, either expressed or implied,
of DARPA, the Department of Defense, the Algorand Foundation, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for governmental purposes, notwithstanding
any copyright annotation therein.

1

1 Introduction

Secure computation protocols enable two or more parties to engage in distributed computa-
tion while preserving the confidentiality of their inputs. Among these, private set intersection
(PSI) has recently garnered significant research attention as a specialized secure computation
protocol. PSI allows parties to compute the intersection, the common elements between their
input sets without exposing other unrelated data. Consequently, at the end of the protocol,
the parties are only aware of the shared elements, ensuring confidentiality. This characteristic
has made PSI indispensable in various applications ranging from private contact discovery
and business data matching to efficient data management and contact tracing. We refer the
reader to recent literature [IKN+20,PRTY19,DPT20,CM20,MPR+20,RT21,RS21,GPR+21]
and references therein.

In numerous applications, identifying an exact overlap between both parties’ datasets
might be improbable or overly restrictive. Here, discovering approximate matches – elements
that share a “distance” under a specified threshold – becomes increasingly relevant. In the
rapidly evolving landscape of privacy-preserving data analysis, these secure protocols adept
at identifying such approximate matches are gaining traction, signifying their potential in
recognizing analogous elements spanning datasets. This can be useful in various applications,
such as:

• Biometric data: If two parties have databases of biometric data (like fingerprints or
facial features represented as vectors), they may want to find matches, or near matches
due to variations in sampling biometric data, without revealing the entirety of their
databases [Dau09,UCK+21].

• Genomic data: Parties might be interested in finding genomic sequences that are close
matches without revealing sensitive genomic data [MKHSO17,WHZ+15] as similarities
of such data are already useful in medical diagnoses or resulting features in biology.

• Security: Traditional methods of identifying malicious network traffic rely on exact
signature matches or IP addresses [MPDC19], potentially missing novel or slightly
altered threats. Near match intersection allows network security tools to detect traffic
patterns similar to known attack signatures and cover ranges of potentially malicious
IP addresses [CSF+07,WACL10].

• Image data: In fields like computer vision and image processing, parties may need to
match similar images without revealing their entire datasets. This is crucial for tasks
such as object recognition, content-based image retrieval, and image classification,
benefiting areas like autonomous vehicles, surveillance systems, and medical imaging
analysis [KM21].

Distance-Aware PSI. Recently, Chakraborti et al. [CFR23] introduced a variant of PSI,
called distance-aware PSI (DA-PSI). In this setting, two parties jointly compute a set of pairs
of elements, one from each of their individual datasets, that are within a specified threshold
based on a particular distance metric. More precisely, given input sets A,B ⊆ U for the

2

two parties, and a distance metric δ defined on U , the objective of DA-PSI is to securely
compute a set S = {(a, b) ∈ A×B : δ(a, b) ≤ d}, with d being a pre-defined threshold.

Nevertheless, a significant challenge associated with existing DA-PSI protocols is their
extensive communication complexity. This complexity limits their practicality, especially in
contexts demanding fast or nearly instantaneous feedback. In particular, the communication
and computation complexity of the DA-PSI protocol for the Hamming distance in [CFR23]
is Õ(n2), where n represents the size of sets A and B. Such scalability issues render these
protocols impractical for analyzing extensive data sets.

Structure-Aware PSI. Garimella et al. [GRS22] introduced another related PSI variant
called structure-aware PSI (sa-PSI). In this setting, the receiver’s set adheres to a specific
structure, for instance, a union of fixed-radius balls based on a particular distance metric.
The output is the same as the standard PSI for the receiver, but the efficiency (computation
and communication) is only influenced by the structure of the receiver’s set. In the case
of the union of balls, the efficiency would depends on the number of balls present in the
receiver’s set, rather than the total number of individual elements.

The sa-PSI concept is broad since the sender’s set structure can vary widely. Nonetheless,
a primary area of interest within sa-PSI centers around the previously mentioned case of a
union of disjoint balls with a fixed radius. Considering a distance metric δ and a ball radius
d, sa-PSI is similar to DA-PSI with distance threshold d. However, the distinctions lies in
their outputs: DA-PSI yields a set of pairs to both parties, when viewing in terminology
of sa-PSI, include both the sender’s elements and the centers of the receiver’s balls, while
sa-PSI outputs the intersection, meaning the elements in the unstructured set, to one of the
parties [GGM24]. When this result made known to the party with the unstructured set, the
centers of the balls are still concealed. Notably, in a semi-honest model, parties involved in
an sa-PSI protocol can subsequently exchange data to discern these pairs, suggesting that
sa-PSI implies DA-PSI under these conditions, but not the other way around. While the
efficiency of the sa-PSI protocols in [GRS22, GRS23,GGM24] are linear in the number of
balls, their construction is specifically for the ℓ∞ norm for integral vectors.

Private Approximate Membership Computation. Kulshrestha and Mayer [KM21]
introduced a variant of private membership testing (PMT), referred to as private exact
membership computation (PEMC) in [KM21], where a client queries whether its input be-
longs to a large database. In private approximate membership computation (PAMC), instead
of exact matching, the protocol outputs 1 if an element in the database is “sufficiently close”
to the queried element with respect to a certain metric. The authors constructed a PAMC
protocol for images by first converting them to binary strings where similar images are
close under the Hamming distance metric. Therefore, the protocol can also be applied to
any database of binary strings assuming they are uniformly distributed. Nevertheless, the
analysis of correctness of the protocol is conducted experimentally on images.

In this context, the objective is to construct a protocol that is sublinear in the database
size, as the obvious approach would be securely comparing the query to each element in
the database. While the PAMC protocol in [KM21] achieved sublinear communication, it
has high false negative rate (FNR), as determined experimentally. Specifically, the protocol,

3

using the parameters given in [KM21], has about 16% chance of failing to detect a match.

1.1 Approximate PSI

Here, we consider another setting of PSI where elements are from a metric space, i.e., a set U ,
equipped with a distance metric δ. Instead of computing the intersection or precise matches
of elements from each set, we consider approximate matches (with respect to δ), which are
pairs of elements that have distance at most d. When d = 0, this setting is equivalent to the
standard PSI. When d > 0 and the protocol output is the set of pairs of matches, the variant
is called DA-PSI by [CFR23]. Given that both input sets have size n, the upper bound
for matched pairs is n2. This creates challenges to avoid the quadratic communication as
in [CFR23].

To reduce the excessive communication costs, we introduce an additional constraint: for
any pairs of elements a ∈ A and b ∈ B, either δ(a, b) ≤ d or δ(a, b) ≥ td for some t > 3.
This allows for clustering elements from A and B, that are within distance d of each other.
Each cluster in each input set is represented by only one element from that cluster. By only
considering the representations of the clusters, we further assume that elements a, a′ ∈ A
satisfy δ(a, a′) ≥ td, and each element in A can match with at most one element in B and
vice versa. Finally, one party (or both) outputs which elements in their set near-match with
elements in the other party’s set.

Our proposed PSI variant offers flexibility: it can output either one party’s elements (as
in sa-PSI), both parties’ own elements, or element pairs (as in DA-PSI). We call this problem
an approximate PSI (Approx-PSI), and t the gap distinguishing matches from non-matches.
The setting in the first variant is similar to sa-PSI for the structure of the union of disjoint
fixed-radius balls with center (t − 1)d apart, with additional assumption on non-structure
side that elements must also be far apart. The setting where one party’s set is a single
element is similar to that of PAMC.

Nevertheless, imposing such a restriction is difficult when honest parties are unaware
of the counterpart’s elements. Our approach assumes both input sets lie within a subset
S ⊆ U , where every pair of elements in this subset is either near or far apart. There are
various applications where such conditions may arise naturally. For instance, a set may
contain a compilation of texts and their small-error-induced variants. A single base text
could have close relatives with just a handful of typographical mistakes while remaining
entirely distinct from other base texts within the same set. Similarly, it could be a set of
ID numbers engineered with error-correcting properties or checksums. Likewise, in similar
image matching, small changes in image resolution or lighting can make two images appear
almost identical, even if they are not the same, while completely different images are not
nearly so [KM21]. In these sets, items consist of those that are far apart together with their
variants which are nearly identical.

We note that when such condition does not hold across the input sets, our protocol can be
modified to remain correct when elements within each set are clustered and only represented
by elements that are far apart. The false negatives only occurs for the omitted elements
clustered around representatives as the transitive property of being near no longer holds.

Our goal is to find an approximate PSI protocol with linear communication complexity in
n, the size of both input sets, improving the result directly implies by the DA-PSI of [CFR23].

4

Euclidean and angular distance. Euclidean distance measures the straight-line dis-
tance between points in a multi-dimensional space, capturing geometric relationships among
continuous variables. It offers a holistic view of positional relationships between vectors, suit-
able for applications requiring similarity or dissimilarity assessment between multi-attribute
entities.

Angular distance measures the angle between vectors, focusing on their directions rather
than positions. It evaluates vector orientation or alignment, making it ideal for text similarity
in natural language processing or preference analysis in recommendation systems. Unlike
Euclidean distance, angular distance highlights relationships based on direction rather than
distance.

Integrating Euclidean and angular distance metrics into Approx-PSI protocols holds vast
potential, especially for spatial or multi-dimensional analysis. In machine learning and data
science, such protocols can facilitate secure k-means clustering or nearest neighbor searches
across distributed datasets. In financial analytics, Approx-PSI can enhance fraud detection
by identifying the closeness of transactions in a multi-dimensional feature space. In med-
ical research, it enables secure comparison of patient data across healthcare organizations,
finding similarities in symptoms or treatment responses without compromising privacy. This
expands Approx-PSI’s utility beyond set intersection to more nuanced, privacy-preserving
analytics in multi-dimensional data environments.

Edit distance. Edit distance, particularly Levenshtein distance, is crucial for assessing
similarity between sequences like text strings, genetic data, or numerical time-series. It
measures the minimum number of single-character edits – insertions, deletions, substitutions
– needed to transform one sequence into another, providing a detailed understanding of
sequence similarity or difference. This metric is essential in fields such as computational
biology, linguistics, data mining, and cybersecurity for operations like sequence alignment,
clustering, and anomaly detection [WHZ+15].

Approx-PSI for edit distance metrics enables secure, privacy-preserving computations
that require detailed data similarity analysis. For example, in genomic research, it allows se-
cure identification and evaluation of shared genetic markers. In natural language processing,
it can facilitate secure collaborative filtering or content recommendation by considering text
string edit distances. Thus, Approx-PSI with edit distance metrics significantly advances
secure multi-party computations involving sequence similarity.

1.2 Related Work

PSI for approximate or near-matches using Hamming distance has been studied in securely
comparing biometric or fuzzy data [OPJM10,HEKM11,UCK+21]. Secure Hamming distance
comparison can be adapted into DA-PSI or Approx-PSI protocols by comparing all n2 pairs
of elements [OPJM10,HEKM11]. Uzun et al. [UCK+21] developed a method for comparing
multiple elements simultaneously using fully homomorphic encryption (FHE). Their proto-
col, called fuzzy labeled PSI, is efficient in the client-server setting and uses a sub-sampling
technique that trades off some accuracy for nearly linear communication, though the com-
putation remains quadratic.

5

Chakraborti et al. [CFR23] formally defined and constructed the first DA-PSI for Ham-
ming distance that the communication and computation complexity do not depend on the
element size. Thus, the resulting protocol is more efficient when d ≪ ℓ. However, their
protocol is quadratic in the number of elements. Additionally, they also constructed DA-PSI
for integers with their difference as distance with linear communication complexity.

Garimella et al. [GRS22] defined and constructed the sa-PSI protocol for the case of
disjoint balls of u-bit integer vectors with ℓ∞ norm, and a more efficient one where centers
of the balls are far apart. The original protocols are secure against semi-honest adversaries,
and later improved in [GRS23] using derandomizable function secret sharing to be secure
against malicious adversaries, and in [GGM24] using incremental function secret sharing to
be more efficient, allow overlapping balls and switching the party with structured set.

Kulshrestha and Mayer [KM21] defined and constructed a PAMC protocol for matching
images under simple manipulations, such as resizing, blurring, edge cropping, or small ro-
tation. Since the protocol first maps images to 256-bit binary strings where similar images
have a small Hamming distance, it can be applied to any uniformly distributed binary strings
under Hamming distance metric. The constructed protocol is sublinear in communication
but has a high FNR, and it has only been evaluated experimentally for some parameters.

1.3 Our Results

In this work, we present Approx-PSI for Hamming distance, which can be converted to
Approx-PSI for three other distance metrics: Euclidean distance, angular distance and edit
distance. We summarize our results in Table 1. Our protocols are near linear in the number
of elements. Additionally, we construct a PAMC with negligible FNR which can be viewed
as Approx-PSI where one set is a single element.

Hamming distance. Our main result is an Approx-PSI protocol for Hamming distance

for gap t ≥ 2 with Õ(n1+ 1
t−1) communication. For t = O(log n), the protocol has near linear

Õ(n) communication, and only gains sub-linear multiplicative factor for t = O(log log n).
Our protocols are secure against semi-honest adversaries. We briefly discuss an extension to
security against malicious adversaries in Appendix I.

Approx-PSI for other distance metrics. We demonstrate how to achieve Approx-PSI
for Euclidean distance, angular distance (which implies cosine similarity), and edit distance
metrics using our Approx-PSI for Hamming distance. Our reductions from these other
distance metrics leverage the gap setting.

PAMC and unbalanced Approx-PSI. We also apply the technique we use to con-
struct Approx-PSI to reduce the FNR from [KM21], and analyze the result mathematically.
We construct the PAMC with negligible FNR in the same setting as [KM21]: uniformly
distributed binary strings under the Hamming distance and the database are not required
to have a gap like our Approx-PSI. The resulting protocol has sublinear Õ(nϵ) for some
1
3
< ϵ < 2

3
assuming efficient PIR protocol that communicates O(n 1

3) such as [LMRSW24].

6

Table 1: Asymptotic communication ad computation of our protocols in comparison to
existing works. The protocol in [UCK+21] has false positive and false negative, depending
on parameters m,B, T with T = O(ℓ). The protocol for the Euclidean distance assumes that
all input vectors are within a ball of constant radius. We assume log n < λ < ℓ to simplify
some notations.

Metric Prot. Gap Communication Computation

ℓ∞
[GRS23] O(1) O(nλ2ℓ+ λdℓ) O(ndℓ)
[GGM24] O(1) O(n2λdℓ) O(ndℓ)

Hamming

[UCK+21] 1 O
(

n2T
mB λ

)
O
(

n2T
m λ

)
[CFR23] 1 O(n2d2λ)

Ours

O(log n) O(nλℓ)
O(log log n) n1+o(1)λℓ

t = O(1) O(n1+ 1
t−1λℓ)

Euclidean Ours
O(log n) O(n(polylog n)λ2)

O(1) O(n1+ϵλ2)

Angular Ours
O(log n) O(n log2 nλ2)

O(1) O(n1+ϵλ2)

Edit Ours
O(ℓϵ log n) O(nλ2ℓ2 log ℓ)

O(ℓϵ) O(n1+ϵλ2ℓ2 log ℓ)

The protocol can naturally be extended to an unbalanced Approx-PSI, where one input set
is significantly larger than the other, in a more efficient manner.

2 High-Level Overview of our Approach

In this section, we provide an informal overview of our approximate PSI protocol, starting
with the protocol for Hamming distance. Inspired by the DA-PSI for the same distance
metric in [CFR23], our approach involves securely comparing the Hamming distance be-
tween two binary strings and applying this comparison for each element pair across two
input sets. In [CFR23], the authors introduce a subprotocol that securely compares the
Hamming distance between two elements, with communication complexity depending only
on the threshold d and the security parameter, not the element size ℓ. Despite this efficiency,
executing the subprotocol across all n2 pairs results in quadratic communication and com-
putation. Circumventing this quadratic complexity is challenging in standard DA-PSI, given
that the match count can reach n2.

In order to overcome this limitation, we consider the following primary aspects:

Input Restriction. We limit the potential inputs to those resulting in at most a linear
number of matches. The setting for our Approx-PSI effectively translates to scenarios where
each element in one input set corresponds to just one element in its counterpart. To enforce
this condition, we impose a structure for all elements in each input set: every pair of elements
should be either near or far apart. This reflects real-world scenarios where legitimate texts

7

or numbers differ significantly, while their errors deviate by only a few characters or digits.
The parties are required to consolidate their elements, ensuring each cluster is represented
only once within their input set. This setting caps the match count at a linear number of
matches, aligning with our goal for linear communication.

Near Linear Matching. Despite the linear match limit, in order to find them, the pro-
tocol needs to compare every possible pair still results in quadratic communication and
computation. Our strategy incorporates an additional phase to eliminate non-matching
pairs, utilizing the random projection technique in [KOR98] to minimize comparisons to a
near-linear count.

First, both parties jointly sample a random subset of positions. Then, each party calcu-
lates a set of element projections based on these agreed positions. Matched pairs are more
likely to have identical projections, unlike elements that are far apart. These projections
undergo an exact match evaluation using traditional PSI for security, reducing the problem
of near-matching to exact matching, which can be securely and efficiently computed using
standard PSI.

If two vectors differ by few positions, the probability that none of those positions are
chosen is high, leading to matching short vectors. Conversely, if the number of selected
positions is too small, many vectors, even non-matching ones, may project or “collide”
into identical vectors. This scenario increases the potential match count, leading to near-
quadratic communication.

We meticulously adjust the position selection probability to minimize collisions while
preserving actual matches. The probability can be amplified by repeatedly and independently
sampling positions and computing intersections of projections. Repeating this process a
logarithmic number of times ensures that our protocol finds all approximate matches with
negligible probability of error. This approach reduces Approx-PSI to a logarithmic number
of standard PSI computations.

Information Leakage. However, the intermediate steps of the aforementioned method
disclose more about the distance between elements in the input sets than the intended
Approx-PSI outcome should reveal. The process of projecting and comparing projections
potentially leaks information, even with PSI. For instance, vectors with identical projections
that fail the Hamming distance check might inadvertently reveal some bits of a party’s vector
to the other party.

To address this, both the PSI subprotocol and the secure Hamming distance comparison
subprotocol must output secret shares of their respective results. We use secret-share versions
of both PSI and the Hamming distance comparison test to hide these intermediate results.
There are known PSI protocols that output secret shares, with prominent examples being
circuit-based PSI protocols like those in [RS21,RR22]. While ready-to-use PSI protocols that
output secret shares of results exist, efficient Hamming distance checks outputting secret
shares remain unknown. The secure Hamming distance comparison subprotocol deployed
in [CFR23] is not suitable to be compiled to output secret shares. The reason is because the
subprotocol in [CFR23] inherently reveals both parties’ inputs when matched, which forces
their DA-PSI to output the result in pairs rather than only to the owner of each matched

8

element. As our Approx-PSI may be customized to give the result to one party, we cannot
follow their approach directly.

The secret-share Hamming distance comparison test can be constructed simply from
garbled circuit. The resulting subprotocol is efficient for small and median size elements.
For large elements (8000 bits or more), the length-independent comparison test can be con-
structed by combining the ideas from [CFR23, GS19, KMWF07]. We use [CFR23] as a
starting point, representing binary vectors as subsets of finite field elements, whose Ham-
ming distance corresponds to the size of set difference. These subsets can be further encoded
as matrices whose subtraction corresponds to the set difference, using the idea in [GS19].
Moreover, the dimension of the matrices corresponds to the threshold value and the size of
the set difference can be tested if above or below the threshold from the determinant of the
matrix difference. The parties can jointly and securely compute the determinant using addi-
tive homomorphic encryption in [KMWF07]. Further modification of the homomorphically
encrypted output gives the secret shares of the result. Finally, we utilize standard secret-
sharing scheme operations for addition and multiplication to manipulate the secret shares
between steps of our protocol.

Other Distance Metrics. We then combine the Approx-PSI protocol for Hamming dis-
tance with low distortion embedding from edit distance by [OR07], Euclidean distance
by [DM21] and angular distance by [DS18] to construct Approx-PSI protocols for these
distance metrics. We take advantage of the gap to guarantee that the pairs of elements
that are near or far apart remain so after the embedding. Using the relationship between
Euclidean distance, angular distance and cosine similarity, we also obtain the Approx-PSI
protocol for cosine similarity.

Euclidean Distance. As the Euclidean distance is one of the most used distance metrics,
there is a long line of work on embedding Euclidean distance or its related metrics such as
cosine distance and angular distance into the Hamming distance. The ideas follow from the
Johnson-Lindenstrauss lemma [JL84]. The recent line of work [PV14, OR15, HS20, DS20,
DM21] gives low distortion of balls or the unit sphere centered at the origin in RN with
Euclidean metric or angular metric into binary string with Hamming distance. We construct
the Approx-PSI using the similar method as the one with the edit distance.

Angular Distance and Cosine Similarity. Since cosine similarity, cosine distance and
angular distance can be computed from the Euclidean distance, the Approx-PSI for Eu-
clidean distance naturally gives the Approx-PSI for these metrics as well. Many Johnson-
Lindenstrauss-styled embeddings are done directly for the angular distance [PV14,OR15].
We obtain the Approx-PSI for the angular distance from these direct embeddings. This im-
plicitly give us a second way to reach the cosine similarity as it has tighter connection to the
angular distance. The result has better parameters compared to converting from Euclidean
distance one.

Edit distance. Ostrovsky and Rabani [OR07] showed how to embed edit distance metric
in Hamming distance metric with bounded distortion. Such embedding could not be used to

9

construct standard DA-PSI as the distortion could turn a match into a non-match and vice
versa. However, the Approx-PSI tolerates some degree of distortion. Thus, we can embed
elements in Hamming distance metric, securely compute matches and look up the original
elements in the result.

Private Approximate Membership Computation. A natural approach to construct
a PAMC protocol is to compare the client’s query to each database element to determine
whether they are close with respect to a given distance metric. This leads to O(n) secure
comparisons, and consequently Õ(n) communication and computation, where n is the size
of the database.

To overcome the linear communication, we follow the approach in [KM21], where the
server organizes the database elements into O(n) buckets, labeled by their hashes. Instead
of using a complex perceptual hashes as in [KM21], we use simple projection, as this allows
us to mathematically analyze the probability that the query is mapped to the same bucket
as its matched, rather than relying on experimental analysis. The client computes the same
hash on its query and executes a private information retrieval (PIR) protocol to obtain
the homomorphically encrypted bucket that the query belongs to. The client masks the
encrypted bucket using homomorphic addition and sends it back to the server. The server
and client then securely compare the masked database elements in the bucket and the masked
query. This results in a small number of comparisons.

The entire process is repeated k = Õ(nϵ) times to ensure that the query is in the same
bucket as its match at least once, except with negligible probability. We further optimize the
protocol by combining the (encrypted) buckets across all repetitions into a single database
for the PIR. This method allows our protocol to use additive homomorphic encryption in-
dependently of the PIR, with any efficient PIR protocol such as one in [LMRSW24].

3 Preliminaries

We denote the set {1, 2, . . . , n} as [n]. Let x ∈ {0, 1}∗. The length of x is denoted by |x|.
For i ∈ [|x|], we denote the ith character in x by xi. We use λ to represent the (statistical)
security parameter unless specified otherwise. We follow the standard definitions of negligible
functions and computational indistinguishability [GM84]. The probability of an event A over
random coins r is denoted by Prr[A], and simply Pr[A] when r is unspecified. The expectation
of a random variable X is denoted by E[X]. For a finite set S, we denote a uniformly random
selection of a from S by a← S. For a randomized algorithm A, let A(x; r) represent running
A on input x with random coins r. If r is chosen uniformly at random and the output is y,
we denote this as y ← A(x). When we write log x, we refer to the logarithm based 2 of x.

3.1 Approximate PSI

We consider the setting of two parties with input sets A,B whose elements are drawn from a
subset S of the universe U , equipped with a distance metric δ : U ×U → R≥0. The subset S
has the property that any pair of elements must be either near or far from each other. More
specifically, for any elements a, b ∈ S, either δ(a, b) ≤ d (called matched, close, or near) or

10

δ(a, b) ≥ td (called non-matched, or far) for some integer d > 0 and t > 1. We call d the
threshold and t the gap.

The approximate PSI (Approx-PSI) functionality is defined in Figure 1. The goal of
the Approx-PSI is to find pairs of elements, one from each input set, that are near, i.e.,
approximate matches. We allow three possibilities for the output: only one party receives
their matched elements; each party receives matched elements in their respective set; or both
parties receive a set of matches pairs.

FS
Approx−PSI

Parameters. upper bound on input size n, threshold d

Functionality.

1. Upon receiving a message (inputS, A) from the sender with A ⊆ S and |A| ≤ n,
store A; otherwise, ignore the message.

2. Upon receiving a message (inputR, B) from the receiver with B ⊆ S and |B| ≤ n,
store B; otherwise, ignore the message.

3. If both A and B are stored, compute M = {(a, b) ∈ A×B : δ(a, b) ≤ d};
otherwise, abort. Let MA = {a : (a, b) ∈M} and MB = {b : (a, b) ∈M}.

4. Send MB to the receiver. Optionally, send MA to the sender, or send M to both
parties.

Figure 1: Ideal functionality for approximate private set intersection

We note that any matched elements can be grouped by the following lemma.

Lemma 3.1. Suppose t > 3 and A,B ⊆ S. Then a ∈ A and b ∈ B are matched if and only
if any a′ ∈ A near a and any b′ ∈ B near b are also matched. In particular, if A and B have
no close elements within each set, then any a ∈ A is matched with at most one b ∈ B and
vice versa.

Proof. Suppose A,B ⊆ S, Suppose also that a ∈ A and b ∈ B are matched, i.e., and
δ(a, b) ≤ d. Let a′ ∈ A and b′ ∈ B satisfying δ(a, a′) ≤ d and δ(b, b′) ≤ d. If a, b are matched,
by the triangle inequality,

δ(a′, b′) ≤ δ(a, a′) + δ(a, b) + δ(b, b′) ≤ d+ d+ d = 3d < td.

Hence, a′, b′ are not far, and must be matched by the structure of S. Similarly, if a, b are
non-matched, by the triangle inequality,

td ≤ δ(a, b) ≤ δ(a, a′) + δ(a′, b′) + δ(b, b′) ≤ δ(a′, b′) + 2d.

Thus, δ(a′, b′) ≥ (t− 2)d > d. Hence, a′, b′ are not close, and must be non-matched.

11

Now assuming that A and B have no close elements within each set. If a ∈ A are matched
with both b, b′ ∈ B, then b, b′ are close, contradicting the assumption. Thus, a is matched
with at most one element in B. By symmetry, this property holds for b ∈ B as well.

When t > 3, this lemma implies that being matched or non-matched can be transferred
between close elements in S. Thus, we may group all a′ ∈ A within distance d from a into
one class represented by a. Whenever, a and b are matched (as output by FS

Approx−PSI), then
every a′ in the same class are matched to b as well. We call the process of removing all
a′ ∈ A within distance d from a representative a ∈ A clustering, and adding the a′ back if
a is matched with some b ∈ B declustering. By performing clustering and declustering in
the beginning and at the end of an Approx-PSI protocol with semi-honest parties, we may
further assume that elements of A are far apart, and so are elements of B.

3.2 Distance Metrics

In this work, we consider two distance metrics for binary strings: Hamming distance and
edit distance. We let ℓ denote the length of the string, i.e., the universe U = {0, 1}ℓ.

For x, y ∈ {0, 1}ℓ, the Hamming distance between x and y, denotedH(x, y), is the number
of positions i ∈ [ℓ] such that xi ̸= yi. We also denote H(x) = H(x, 0), the Hamming weight of
x. The edit distance (also known as Levenstein distance) between x and y, denoted ed(x, y),
is the minimum number of insert, delete and substitute operations (one character at a time)
needed to convert x to y.

In many practical contexts, the distance metric most frequently employed to measure
the separation between two points or vectors in space is the Euclidean distance. When the
vectors are normalized, we can consider them on a unit sphere and measure the shortest
path on the sphere connecting two vectors. This distance is called angular distance. The
Euclidean distance between two vectors can be computed from their dot product or angular
distance, and vice versa. We refer to Appendix A for their formulas and relationship.

4 Building Blocks: Secret-Shared Operations

Our construction requires several operations whose outputs are secret shared between two
parties to hide the intermediate results. In particular, the building blocks are secret-shared
PSI, secret-shared Hamming distance comparison test, and operations on secret-shared data
including scalar-vector multiplication.

4.1 Secret Sharing

In this work, we consider only a 2-out-of-2 secret sharing for binary strings and elements
of a finite field. For a secret s ∈ S, secret sharing of s are denoted Share(s) → ([s]0, [s]1)
(or [s]S, [s]R when the shares belong to the sender and the receiver in a 2-party protocol,
respectively) where for any s, s′ ∈ S and i ∈ {0, 1}, {[s]i : Share(s) → ([s]0, [s]1)} = {[s′]i :
Share(s′) → ([s′]0, [s

′]1)}. The secret can then be reconstructed by Recon([s]0, [s]1) = s.
When it is clear from context, we may omit the subscript and only denote the shares by
[s] when each party operates on their own share. We also denote the process when a party

12

FssPSI

Parameters. element set U , payload set {0, 1}σ, upper bound on set size m, output
size m′ > m

Functionality.

1. Upon receiving a message (inputS, Ã) from the sender where
Ã = {(ai, ãi)) : ai ∈ U , ãi ∈ {0, 1}σ}i∈[mA], mA ≤ m, store Ã.

2. Upon receiving a message (inputR, B̃) from the receiver where
B̃ = {(bi, b̃i)) : bi ∈ U , b̃i ∈ {0, 1}σ}i∈[mB], mA ≤ m, store B̃.

3. If both Ã and B̃ are stored, compute π = Reorder([m]) such that

zj =

{
(ãi∥b̃j′) if ∃ai ∈ A, s.t. ai = bj

02σ otherwise

for j′ = π(j), j ∈ [m]. Compute Share(z)→ ([z]S, [z]R). Send [z]S to the sender
and [z]R to the receiver.

Figure 2: Ideal functionality for secret-shared PSI

sends (and authenticates, in the malicious setting) their share to the other party to allow
the later party to reconstruct the secret as opening.

In the semi-honest setting and S = {0, 1}ℓ, Share(s) simply uniformly samples [s]0, [s]1 ∈
{0, 1}ℓ conditioned on [s]0 ⊕ [s]1 = s (replacing ⊕ by addition in mod p for the finite field
Fp.) The maliciously secure variant can be done using more complicated authenticated secret
sharing [NNOB12,FKOS15].

4.2 Secret-shared PSI

Two-party PSI protocols can be constructed from various techniques resulting in differ-
ent performance and properties [PRTY19,DPT20,CM20,MPR+20, RT21,RS21,GPR+21,
CILO22,RR22,BPSY23]. In this work, we focus on PSI Payload variant, where each party’s
input consists of two sets, an elements set for intersection and a set of values associated to
the elements. The output of the protocol also contains the associated values of the elements
in the intersection. These associated values are called “payloads.” Most PSI protocols can be
configured to transfer the payloads with differing efficiency [IKN+20,RS21,CILO22,RR22].

In our Approx-PSI construction, the output of PSI Payload should be secret shared
between parties. Such protocols are often constructed using circuit-based PSI techniques
such as the circuit-based variant of the PSI protocol in [RS21]. They call the variant circuit
PSI. We simplify the variant to better serve our purpose in Figure 2. See Appendix B.1 for
the ideal functionality in [RS21].

13

FssHamCom

Parameters. element size ℓ, threshold Hamming distance d

Functionality.

1. Upon receiving a message (inputS, [a]S, [b]S) from the sender where
[a]S, [b]S ∈ {0, 1}ℓ, store ([a]S, [b]S).

2. Upon receiving a message (inputR, [a]R, [b]R) from the receiver where
[a]R, [b]R ∈ {0, 1}ℓ, store ([a]R, [b]R).

3. If both ([a]S, [b]S) and ([a]R, [b]R) are stored, compute a = Recon([a]S, [a]R) and
b = Recon([b]S, [b]R). Let out = 1 if H(a, b) ≤ d and out = 0 otherwise. Send
[out]S and [out]R, secret shares of out to each party.

Figure 3: Ideal functionality for secret-shared Hamming distance comparison test

Here, the intersection of m-element sets is mapped to a slightly larger set m′ > m
(concretely m′ ≈ 1.27m in [RS21]). In the original version each party also learns a secret
shared bit indicating if each element is in the intersection, thus hiding even the intersection
size. In our work, we only need the protocol to output the shares of the payloads, and not
the actual PSI elements, in any order. Since the construction in [RS21] executes a garbled
circuit in the last step, we simply modify the circuit to only output the payload parts.

The protocol in [RS21] is already quite efficient, and can be further improved using more
recent oblivious key-value stores (OKVS) in [RR22, BPSY23] and VOLE setup [BCG+22]
resulting in a high-performance protocol. The communication and computation cost of the
secret-shared PSI when instantiated with the protocol above is linear in the number of
elements O(λn) [RS21].

4.3 Secret-shared Hamming distance comparison test

Similar to the DA-PSI for Hamming distance in [CFR23], our Approx-PSI protocol utilizes
a subprotocol for computing the Hamming distance. Unlike to one in [CFR23] that outputs
both input binary strings to both parties when matched, our protocol takes secret shares
of the strings as input, and outputs secret share of a single bit indicating whether the
Hamming distance between the two inputs is within a certain threshold or not. We define
the functionality FssHamCom in Figure 3.

We note that the secret-share inputs of FssHamCom can be added locally to obtain different
inputs with the same Hamming distance. More specifically, H(a, b) = H(a⊕ b) where [a⊕ b]
can be locally computed from [a] and [b] for additive secret sharing. Thus, we only need to
construct one with secret shares output. However, we cannot simply convert the protocol
in [CFR23] in the final step to output secret share as their immediate results reveal other
party’s input if they are matched.

14

The simplest way to realize this functionality is to through garbled circuit. However,
the communication complexity of the resulting protocol will depend on the length ℓ. To
obtain length-independent communication as in [CFR23], we consider a more complicated
technique described in Appendix D. The resulting protocol has communication complexity
Õ(d2) and computation complexity of Õ(ℓ+ d2) similar to the protocol in [CFR23].

4.4 Secret-shared vector multiplication

The final functionality used in our work is the secret-shared vector multiplication described
in Figure 4. Both parties hold secret shares of a bit c and a binary vector v⃗, and would like
to compute the product cv⃗, and output as secret shares between two parties.

FssVMult

Parameters. element size ℓ

Functionality.

1. Upon receiving a message (inputS, [c]S, [v⃗]S) from the sender, store ([c]S, [v⃗]S).

2. Upon receiving a message (inputR, [c]R, [v⃗]R) from the receiver, store ([c]R, [v⃗]R).

3. If both ([c]S, [v⃗]S) and ([c]R, [v⃗]R) are stored, compute c = Recon([c]S, [c]R) and
v⃗ = Recon([v⃗]S, [v⃗]R). If c ∈ {0, 1} and v⃗ ∈ {0, 1}ℓ, compute o⃗ut = cv⃗, and
Share(o⃗ut)→ ([o⃗ut]S, [o⃗ut]R). Send [o⃗ut]S and [o⃗ut]R to the sender and the
receiver, respectively.

Figure 4: Ideal functionality for Secret-Share Vector Multiplication

The functionality can be implemented using standard techniques for multiplication on
secret shares such as using setup triples using OT or HE preprocessing in the semi-honest
model, or using the standard frameworks for maliciously secure secret-shared operations such
as TinyOT [NNOB12], Tinier [FKOS15] and MD-SPDZ [Kel20] in the malicious model. See
Appendix E for a concrete protocol in the semi-honest model using OT. Using OT extension
techniques, the (amortized) communication and computation is O(ℓ) and o(1), respectively,
per multiplication. The OT can also be setup offline to improve online efficiency.

5 Gaining intuition about the problem: false starts

The starting point of our constructions is the Approx-PSI protocol for Hamming distance.
We begin by constructing an insecure version using the idea from [KOR98]. First, we ran-
domly select a subset of position I ⊆ [ℓ] such that each i ∈ [ℓ] is chosen independently
with probability p. We project every element of A,B ⊆ {0, 1}ℓ onto the position in I.
We denote the projection of individual element a ∈ {0, 1}ℓ by aI = (ai1 , ai2 , . . . , ai|I|) for

15

I = {i1, . . . , i|I|}, and denote the sets of projections AI = {aI : a ∈ A}, and BI defined
similarly. We also denote the reverse map by I−1

A (c) = {a ∈ A : aI = c} for c ∈ {0, 1}|I|.
When it is clear from context, we may drop the set to I−1(aI). For each c ∈ AI ∩ BI , we
can compute the probability that H(a, b) ≤ d when c = aI = bI . By repeatedly sampling I,
independently, and merging all pairs (a, b) from each projection, the probability that we fail
to find any matched pairs is negligible.

It is important to note that the goal of [KOR98] is to efficiently approximate the Hamming
distance between vectors, without considering security. As a result, this version of the
protocol is not secure, even when using PSI to compute AI ∩BI . If a projected vector is in
the intersection, it reveals that both parties share the same bits at the positions in I, even if
the vectors are not matched. We will address this leakage in the final version of the protocol.
For now, we focus on analyzing the correctness.

For i ∈ [k], where k is the number of repeats, the parties choose Ii ⊆ [ℓ] by choosing each
position independently with probability p. Let q = (1− p)d.

Lemma 5.1. When k ≥ (ln 2) logn+λ
q

, the probability that there exists a ∈ A, b ∈ B such that

H(a, b) ≤ d but aIi ̸= bIi for all i ∈ [k], is negligible.

Proof. Let a ∈ A, b ∈ B such that H(a, b) ≤ d. We have

Pr[aI ̸= bI] = 1− Pr[aI = bI] ≤ 1− (1− p)d = 1− q ≤ e−q.

Then
Pr[aIi ̸= bIi∀i ∈ [k]] ≤ e−kq,

and
Pr[aIi ̸= bIi∀i ∈ [k], ∃(a, b) ∈ A×B,H(a, b) ≤ d] ≤ ne−kq

by the union bound on A as each a ∈ A has at most one b that is matched. When kq ≥
(ln 2)(log n+ λ), we have negligible probability.

This lemma guarantees that any matched pair will be found from at least one of the
projections as long as the protocol repeats sufficiently many times, which is only O(log n+λ)
when q is constant.

Now we analyze the probability for non-matched pairs. Our goal is rule out as many
non-matched pairs as possible to ensure that the number of remaining pairs to be checked
is near-linear. To increase the probability that the pair a, b such that H(a, b) ≥ td are not
projected to the same vector, we first consider the case when t = log n. In other words, for
any a ∈ A and b ∈ B, either H(a, b) ≤ d or H(a, b) ≥ td where t = log n. We will ease this
assumption in the later sections.

5.1 First attempt (that does not work for most parameters)

We first observe that, under the condition λ = O(log n), any pair (a, b) with H(a, b) ≥ td
will not be projected to the same element with high probability.

Lemma 5.2. Assuming λ = O(log n) and 1
q
= 2λ/ logn+2, the probability that there exists a, b

such that H(a, b) ≥ td and aIi = bIi for some i ∈ [k] is negligible.

16

Proof. Let a ∈ A, b ∈ B such that H(a, b) ≥ td. We have

Pr[aI = bI] ≤ (1− p)td = qt.

When t = log n, we have qt = qlogn = 2log q logn = nlog q. Then

Pr[aIi = bIi∃i ∈ [k]] ≤ knlog q,

and
Pr[aIi = bIi∃i ∈ [k],∃(a, b) ∈ A×B,H(a, b) ≥ td]

≤ n2knlog q =
k

nlog(1/q)−2
.

Assuming λ = O(log n), we may choose 1
q
= 2

λ
logn

+2 = O(1). Then k = O(log n) = O(λ),
and the above probability is k

2λ
, which is negligible.

In this case, by projecting A and B onto the coordinates in Ii for i ∈ [k] with probability

p = 1 − q
1
d = 1 − 2−

λ
logn

+2

d , and computing the intersection AI ∩ BI , each party learns the
elements that matched with another party’s elements with overwhelming probability without
additional direct comparison. We could construct a secure Approx-PSI protocol by merging
the result of the intersection from each round.

The assumption λ = O(log n) is probable in some cases as λ is a statistical security
parameter. For example, we may choose λ = 40 and n = 220, which gives q = 1

16
. When

d = 4, each position is chosen with probability 0.5. However, in the general case when λ is
much larger than log n, the number of rounds k will be exponential in λ

logn
as k is proportional

to 1
q
, so is the communication from computing the intersections. Thus, we need a different

method to separate the non-matched pairs.
In term of security, we note that when I is jointly chosen uniformly, and the intersection

is computed using a PSI protocol, the resulting protocol is secure as the intermediate result
Cj can be computed from the projection of each party’s output.

5.2 Second attempt (that is too complicated to obtain security)

Now we consider a more complex solution when λ ≫ O(log n). In this case, projections
alone cannot completely rule out false positives, where H(a, b) ≥ td but project to the same
vector, while keeping the number of rounds poly-logarithmic. Each party needs to run a
2PC protocol to compare every pair of a ∈ A and B ∈ B (such as the one in [CFR23]) that
project to the same c. This process is repeated k times with independently sampled I.

Unfortunately, this method may not result in a linear number of comparisons, as the
number of possible pairs for each projection can be super-linear. To resolve this, parties
must select a “good” projection that results in a linear number of comparisons. However,
revealing the “good” projection also reveals the structure of the set. Thus, we consider a
special-purpose PSI that outputs ⊥ (privately as secret shares) when the projection produces
too many collisions.

A “good” projection I ⊆ [ℓ] is defined such that, for all a ∈ A, |I−1(aI)| ≤ τ for a fixed
constant τ ≥ 2. The PSI is modified to a special-purpose private multiset intersection that

17

only outputs when I is good. Instead of having I as an additional input to PSI, both parties’
input sets must be a multiset, where each element is associated with an integer representing
its repetitions. In this case, the number associating to aI is |I−1(aI)|. The protocol may
only output ⊥ when there exists aI in the intersection where |I−1(aI)| ≥ τ .

Both parties will perform the special-purpose PSI on the projected sets for k rounds. We
can construct a secure Approx-PSI protocol by privately compare all pairs that project to
the same elements in the output of the special-purpose PSI in each round, and then merging
the results from all rounds.

This solution requires a special-purpose variant of PSI for multisets. While theoretically
feasible, constructing it efficiently may be challenging. Additionally, intermediate results,
especially from bad projections, may reveal information not inferable from the final result.
Thus, the output may need to be secret-shared, further complicating the construction.

6 Approx-PSI Protocol

In this section, we build on the previous two ideas to construct an efficient and secure ap-
proximate PSI protocol. The independently repeating projection from the first idea already
identifies matches, provided the number of rounds is sufficiently large. The “good” or “bad”
projection from the second idea, however, can be improved to ensure that the projections are
not dropped entirely. Therefore, we redefine a “bad” projection as the union of conditions
from both the first and second ideas, where the latter applied for both sets.

Specifically, for a close pair (a, b), we call I ⊆ [ℓ] bad for (a, b) if one of the following
holds: (1) aI ̸= bI , (2) |I−1(aI)| ≥ 2, or (3) |I−1(bI)| ≥ 2. When a projection is bad for
(a, b), aI is dropped from AI if condition (2) holds, or bI is dropped from BI if condition (3)
holds. In case of (1), they do not appear in the intersection anyway (unless as a different
pair, like (a, b′) or (a′, b)). This method allows other pairs to proceed and be discovered
without dropping the entire projection, as was done in the second idea.

For i ∈ [k], where k will be determined later, we choose Ii ⊆ [ℓ] by choosing each position
to be in Ii independently with probability p. Both parties project their sets to coordinates
in Ii, denoted AIi and BIi , respectively. Let q = (1 − p)d. For a ∈ A, b ∈ B such that
H(a, b) ≤ d, we define

BAD(a, b) = {I ⊆ [ℓ] : aI ̸= bI or |I−1
A (aI)| ≥ 2 or |I−1

B (bI)| ≥ 2}

We assume that for any a ∈ A and b ∈ B, either H(a, b) ≤ d or H(a, b) ≥ td, and for any
a, a′ ∈ A and b, b′ ∈ B, H(a, a′) ≥ td and H(b, b′) ≥ td.

Lemma 6.1. When k ≈ (nt)
1

t−1 (λ+logn)

1− 1
t

, the probability that there exists a ∈ A, b ∈ B such

that H(a, b) ≤ d but Ii ∈ BAD(a, b) for all i ∈ [k] is negligible.

Proof. Let a ∈ A, b ∈ B such that H(a, b) ≤ d. We have

Pr[aI ̸= bI] = 1− Pr[aI = bI] ≤ 1− (1− p)d = 1− q.

Fix an element a ∈ A that is projected to aI . Let Xa′ be an indicator that a′I = aI . Then

E[|I−1(aI)|] =
∑
a′∈A

E[Xa′] = n(1− p)td = nqt.

18

By the Markov’s inequality,

Pr[|I−1(aI)| ≥ 2] ≤ nqt

2
.

Similarly,

Pr[|I−1(bI)| ≥ 2] ≤ nqt

2
.

By the Union bound, we have the probability that I is bad for (a, b) is at most

1− q + nqt.

Now we consider this probability as a function of q, f(q) = 1 − q + nqt. When t > 1, the
function takes the minimum value when f ′(q) = −1 + ntqt−1 = 0. Solving the equation
above gives q = 1

(nt)
1

t−1
. In this case, the above probability becomes

α(n, t) = 1− 1

(nt)
1

t−1

+
n

(nt)
t

t−1

= 1− β(t)

n
1

t−1

where β(t) = 1

t
1

t−1

(
1− 1

t

)
. Then the probability that Ii are bad for all i ∈ [k] is at most

α(n, t)k. Thus, the probability that for some close pair (a, b), all Ii’s are bad is at most

nα(n, t)k =
1

2λ

when k = λ+logn
log(1/α(n,t))

. Using an approximation log(1− x) ≈ −x, we have

k ≈ n
1

t−1 (λ+ log n)

β(t)
=

(nt)
1

t−1 (λ+ log n)

1− 1
t

We note that the second and third conditions for BAD imply that the projections are
sets, not multisets, and the number of pairs in the intersection is at most n. This means the
number of comparisons is at most nk.

Now we analyze this result for different asymptotic cases of t.

• When t = O(log n):
log(nt)

1
t−1 = O

(
logn+log logn

logn−1

)
= O(1). Thus, k = O(λ+ log n).

• When t = O(log log n):
log(nt)

1
t−1 = O

(
logn+log log logn

log logn−1

)
= O(log n/ log log n).

Thus, k = O(n
1

log logn (λ+ log n)) = no(1)(λ+ log n).

• When t = O(1):
k = O(n

1
t−1 (λ+ log n)).

19

Algorithm 1: Approx-PSI

Input : Sets A,B ⊆ {0, 1}ℓ, |A|, |B| ≤ n
Output: {a ∈ A : ∃b ∈ B,H(a, b) ≤ d} and {b ∈ B : ∃a ∈ A,H(a, b) ≤ d}

1 Each party replaces their input set by a representation of each cluster. We still
denote their clustered inputs by A and B ;

2 for j = 1 to k do
3 The parties jointly sample Ij ⊆ [ℓ] such that each i ∈ [ℓ] has probability

p = 1− 1

(nt)
1

d(t−1)
to be in Ij;

4 The parties project every element in their sets into coordinates in Ij. If more
than one element shares the same projection, randomly pick one of them. The
original elements are attached to its projection as payload. The projection sets
are denoted as ÃIj = {(aIj , a) : a ∈ A} and B̃Ij = {(bIj , b) : b ∈ B};

5 Each party sends ÃIj and B̃Ij to FssPSI and receives shares of the intersection

[z] ∈ ({0, 1}2|I|)n′
;

6 foreach i ∈ [n′] do
7 Each party sends shares [zi] to FssHamCom and receives shares of [outi]. ;
8 Both parties send the shares of [outi] and [zi] to FssVMult, and obtains shares

[z̃i];

9 end

10 Each party stores all shares of [z̃i] in Z̃j (separately as Z̃A
j and Z̃B

j)

11 end

12 For each j ∈ [k] and for each [z̃] = ([a], [b]) ∈ Z̃j, open [a] to the sender and [b] to
the receiver; let A′

j and B′
j denoted the opened values ;

13 The party computes {a : a ̸= 0ℓ ∈ A′
j,∃j ∈ [k]} and {b : b ̸= 0ℓ ∈ B′

j,∃j ∈ [k]}, and
outputs the elements in the set and their cluster in the original input set ;

We obtain the following Approx-PSI protocol, described in Algorithm 1, assuming the
following functionalities: the secret-shared PSI, the secret-shared Hamming distance com-
parison, and the secret-shared vector multiplication. The correctness of the protocol follows
from Lemma 6.1.

Here we proof the security of our main protocol through simulator construction. Suppose
an adversary corrupting the receiver. For each j ∈ [k], the simulator jointly samples Ij and
compute the projections honestly. It simulates FssPSI receiving B̃Ij from the adversary and

returning shares of 0. The simulator uses B̃Ij to reconstruct B′ and sends to FS
Approx−PSI and

obtain the output P ⊆ A× B. We may assume that the comparison is done after finishing
all intersection first. The simulator simulates FssHamCom by using P to compute out for each
b ∈ B′ and simulates secure multiplication to create shares of correct output.

Theorem 6.2. The protocol in Algorithm 1 is secure in the FssPSI, FssHamCom and FssVMult

hybrid model.

Proof. By symmetry, it suffices to construct a simulator S for the case when an adversary
corrupting the receiver. For each j ∈ [k], S follows the protocol to jointly sample I. It

20

simulates FssPSI to learn B̃I and outputs a secret share of 02|I|n
′
, instead of z, to S. S stores

B̃I . It also simulates FssHamCom and FssVMult, and outputs a random secret share of 0 and
02|I|n

′
, instead of out and z̃, to S, respectively. After k rounds, S uses the stored B̃I ’s to

reconstruct the receiver’s set B∗. It sends B∗ to FS
Approx−PSI to learn the set of Hamming

close pairs. Finally, S computes openings for each [z̃] ∈ Z̃I ’s that gives the Hamming close
pairs for each I.

We prove the indistinguishability through the following hybrids:

• H0: This is the real world interaction.

• H1: Same asH0 except S simulates the functionalities honestly. This hybrid is identical
to H0.

• H2: Same as H1 except S outputs shares of 02|I|n
′
instead of the correct output of

FssPSI. It then replaces the adversary’s input for FssHamCom with the correct one from
the adversary’s input to FssPSI. This hybrid is identical to H1 as single shares of 0

2|I|n′

and z are identically distributed.

• H3: Same asH2 except S outputs shares of 0 instead of the correct output of FSS−Ham−Compare.
It then replaces the adversary’s input for FssVMult with the correct shares of the out-
put of FssHamCom. This hybrid is identical to H2 as a single share of 0 and outi are
identically distributed.

• H4: Same as H3 except S outputs random shares instead of the correct output of
FssVMult. When S opens the shares in the final step, it opens to the correct outputs of
FssVMult. This hybrid is identical to H3 as each share of c̃′’s is uniformly random.

• H5: Same as H4 except S uses B̃I to reconstruct B∗ from the payload and fill the rest
with the special element ⊥. It uses B∗ to compute outputs in each step instead of B.
Note that B∗ may be smaller than B when there is an element that always collides
with others when projected to coordinates in I in every round. We show that such
elements occurs with negligible probability.

Claim. Except with negligible probability, B∗ = B.

Proof. Clearly, B∗ ⊆ B. We need to show that except with negligible probability, every
element of B appears in B∗. Note that b ∈ B does not appear in B∗ only when its projection
collides with another element in every round. In each round, the probability of such event
is at most nqt

2
by the proof of Lemma 6.1. Thus, the probability that B∗ ̸= B is at most(

nqt

2

)k

which is negligible for the choice of k in the lemma.

• H6: Same as H5 except S sends B∗ to FS
Approx−PSI and no longer interact with the

sender. It uses B∗ to compute openings for each C̃I ’s.

21

Table 2: Communication and computation complexity of each subprotocol in Approx-PSI
for Hamming distance.

Step Subprotocol Comm. Comp.

1. Clustering data - O(n(log n)ℓ)
2. Repeat k times
2.1 Sampling projections O(ℓ) O(ℓ)
2.2 Projecting vectors - O(nℓ)
2.3 SS-PSI O(n(ℓ+ λ)) O(n(ℓ+ λ))
2.4 Repeat n′ = O(n) times
2.4.1 SS Ham. comp. test O(ℓ) O(ℓ)
2.4.2 SS Vector Mult. O(ℓ) O(ℓ)
2.5 Opening share O(nℓ) -
3. Combining result - O(nkℓ)

Total O(nk(ℓ+ λ)) O(nk(ℓ+ λ))

6.1 Communication and Computation

In this section, we analyze the performance of our Approx-PSI protocol. The protocol
consists of one instance of FssPSI in each of the k rounds. n′ instance of FssHamCom and FssVMult

in each of the k rounds. We instantiate the functionalities used to construct the Approx-
PSI in Algorithm 1 as we discussed in Section 4, and compute theoretical communication
complexity and computation complexity of the protocol.

Clustering can be done via BK tree [BK73] or VP tree [Yia93]. The communication
and computation of FssPSI when instantiated with circuit PSI of [RS21], with or without
later improvement in [RR22], is O(n(ℓ + λ)). Here the PSI output size is n′ = O(n). The
communication and computation of FssHamCom instantiated using garbled circuit is O(ℓ).
The communication and computation of FssVMult instantiated using OT as described in Ap-
pendix E are O(ℓ) when amortized. Other subprotocols are simply sending data or local
computations as shown in Table 2. We remark that replacing the secret-shared Hamming
distance comparison test by ones with communication independent of ℓ such as the one in
Appendix D does not improve the asymptotic complexity of the overall protocol.

Here, the number of rounds k depends on the gap t as proved in Lemma 6.1. We conclude
the following corollary.

Corollary 6.3. The protocol in Algorithm 1 when FSS−PSI ,
FssHamCom and FssVMult are instantiated as described above has the communication and com-

putation complexity O(γ(t)n1+ 1
t−1 (λ+ log n)(ℓ+ λ)) where γ(t) = t

1
t−1

1− 1
t

.

When t = log n, logn
log logn

or log log n, the above communication is O(n(λ+ log n)(ℓ+ λ)),

O(n polylog(n)(λ+ log n)(ℓ+ λ)) or n1+o(1)(λ+ log n)(ℓ+ λ), respectively.

22

7 Other Distance Metrics

We construct Approx-PSI for different distance metrics by embedding the set (U , δ) into
the set of binary strings equipped with the Hamming distance ({0, 1}ℓ′ ,H). This approach
leverages the gap between matched and non-matched pairs, ensuring the two cases remain
separate after the embedding. However, this method does not work for standard DA-PSI
(where there is no gap, meaning t = 1), as the distance distortion from embedding could
cause matched pairs to become non-matched pairs, or vice versa.

We focus on three main distance metrics: edit distance, Euclidean distance, and angular
distance. As we discussed in Appendix A, Euclidean distance relates to cosine similarity,
cosine distance and angular distance. However, directly embedding into the angular metric
gives better results. We refer to Appendix F for more details.

8 Private Approximate Membership Computation

Private Approximate Membership Computation (PAMC) allows a client to check if their
input is sufficiently close to elements in a server’s database (see Appendix B.2 for a formal
definition). PAMC can be viewed as an asymmetric case of Approx-PSI where one party
holds a single element. While our Approx-PSI protocol can handle this by padding the
smaller set, such solution is inefficient for PAMC, where a simpler solution is to securely
comparing the query to each database element.

In [KM21], a PAMC protocol was constructed for Hamming distance using private in-
formation retrieval (PIR) (see Appendix C for more information and references) and secure
Hamming distance comparison. Here, the server divides the database into a large number
of buckets using perceptual hashes, where elements that are Hamming close are more likely
to be hashed to the same binary string, thus belong to the same bucket. The client uses
the same hashes on the query, and uses the result to query encrypted buckets via PIR, and
securely compares each bucket element’s Hamming distance to the query against a given
threshold.

The protocol in [KM21] has an experimentally derived false negative rate (FNR), meaning
it may fails to recognize approximate matches due to the query and the matched element
being mapped to different buckets. Because of the complexity of perceptual hashes, this
probability cannot be evaluated mathematically, although empirical results show perceptual
hashes (FNR 16.8%) outperforming simple projection (FNR 37.88%).

We improve the PAMC accuracy using random projection instead of the perceptual
hashes, allowing mathematical analysis. Using the same idea as in our Approx-PSI, we re-
peat the process k = nϵλ times to ensure the query and its match appear in the same bucket
at least once except with negligible probability. We then combine the encrypted buckets
from all rounds of projections into one new database for PIR, optimizing efficiency since the
communication of the PIR is sublinear. The full protocol is described in Algorithm 2.

Now we analyze the protocol to find appropriate parameters k and t. First, to have
buckets of small size, we need the number of buckets be O(n). We set t = log n to have the
same number of buckets as the size of the database, similar to the protocol in [KM21].

Lemma 8.1. Let β = O(log n). Assume that each element in the server database is sampled

23

Algorithm 2: Private Approximate Membership Computation

Parameter: Element size ℓ, distance threshold d, bucket size bound β
Input : Client x ∈ {0, 1}ℓ, Server A ⊆ {0, 1}ℓ, |A| = n.
Output : b ∈ {0, 1} to one of the parties.

1 For i = 1, . . . , k, Server uniformly samples Ii ⊆ [ℓ] of size |Ii| = t, and computes a
bucket list Bi such that Bi[p] = {a ∈ A : aIi = p} for p ∈ {0, 1}t. If there is a
bucket with |Bi[p]| > β, resamples Ii. Otherwise, Server fills the bucket to size β
with random elements. Server encrypts each element in every bucket, denoted B̃i.
Let B = {B̃i}i∈[k] be a database for PIR indexed by (i, p). Server sends {Ii}i∈[k] to
Client. ;

2 For i = 1, . . . , k, Client computes xi = xIi and queries B on all indices in {(i, xi)}.
Client receives B̃i[xi] = {cj}. For each j = 1, . . . , β, Client samples rj ← {0, 1}ℓ
and homomorphically adds rj to cj. Let c̃j denoted the result and B̃′

i = {c̃j}.
Client sends {B̃′

i} back to Server. ;

3 For each i = 1, . . . , k and j = 1, . . . , β, Server decrypts c̃j ∈ B̃′
i to aij. Server and

Client runs FHamCompare on input aij and x+ rj. Party P receives output
bij ∈ {0, 1}. They output

∧
i,j bij. ;

uniformly from {0, 1}ℓ. Then, except with negligible probability in λ, the server can find a
projection Ii such that each |Bi[p]| ≤ β by resampling Ii for O(λ) times.

Proof. Let Yp be an indicator that |Bi[p]| > β, and Y =
∑

p∈{0,1}t
Yp. Since E[Y] ≥ Pr[Y > 0],

we will bound the probability that there exists a bucket with more than β elements by

E[Y] =
∑

p∈{0,1}t
E[Yp] = nE[Yp] = nPr[Yp = 1].

For a ∈ A, let Xa be an indicator that a ∈ Bi[p], and X =
∑
a∈A

Xa. Under the assumption

that a← {0, 1}ℓ, Xa’s are independent and E[Xa] = Pr[a ∈ Bi[p]] =
1
2t

= 1
n
. Thus, E[X] = 1.

By the Chernoff bound and using β = O(log n),

Pr[Yp = 1] = Pr[X > β] ≤ e−
β2

2+β ≤ O(1
n
).

Thus, Pr[Y > 0] is bounded by a constant c < 1. Since Y > 0 means there is a bucket
with more than β elements, resulting in the server resamples Ii, such resampling can occur
at most O(λ) except with probability 2−λ.

Lemma 8.2. Let k = O(nϵλ) for some 0 < ϵ < 1
2
. If a query x has a match in A, then the

protocol in Algorithm 2 will output 1 except with negligible probability.

Proof. For any input x ∈ {0, 1}ℓ with a match y ∈ A, we have H(x, y) ≤ d. Thus, the
probability that they do not collide when projected to coordinates in I is at most

1−
(
ℓ−d
t

)(
ℓ
t

) = 1−
(
1− d

ℓ

)(
1− d

ℓ− 1

)
. . .

(
1− d

ℓ− t+ 1

)
≤ 1−

(
1− d

ℓ− t

)t

24

By similar analysis as in Lemma 5.1, the probability that they do not collide for all k rounds

is at most e−kq where q =
(
1− d

ℓ−t

)t
. Thus, we can choose k = O

(
λ
q

)
to make the failure

probability negligible in λ.
Now we let t = log n. We have

q = 2log(1−
d

ℓ−t
) logn = n−ϵ

where ϵ = − log(1− d
ℓ−t

). Thus, the number of rounds k = O(nϵλ).

For example, using the parameters in [KM21], ℓ = 256, t = 20 and d = 25, gives

ϵ ≈ 0.17. Using an efficient PIR such as [LMRSW24] that communicates O(n 1
3) bits, we

obtain an efficient PAMC.

Theorem 8.3. There exists a PAMC with negligible FNR with communication complexity
O(n 1+ϵ

3 ℓλ) and computation complexity O(n1+ϵℓλ) for some 0 < ϵ < 1.

We remark that, unlike the Approx-PSI protocol, our PAMC protocol does not require
any specific structure on inputs.

9 Implementation and Benchmarks

In this section, we discuss implementations of our Approx-PSI protocol for Hamming dis-
tance. The exact numbers of rounds are shown in Appendix H based on the theoretical
analysis in Section 6 as a function of security parameter, gap and the number of elements.
When the gap is t = log n, the protocol needs to run for about 80 rounds to ensure that
the probability that protocol would fail is at most 2−40. This is the number of times the
underlying PSI protocol is executed. For the smallest possible gap t = 4, the number of
rounds approximately double whenever the input sizes quadruple. When the underlying PSI
is linear time, for this fixed t = 4, the Approx-PSI protocol is Õ(n1.33).

9.1 Performance

We implement our Approx-PSI in C++ using EMP-Toolkit1 for communications, OTs (for
secret-shared operations) and garbled circuits. We use volepsi2 for the underlying OPPRF
protocol in the circuit PSI from [RS21]. We benchmarked our protocol on a virtual machine
with 8 vCPUs and 8GB of RAM (all of our implementations are singled-threaded). When
comparing to the result in [CFR23], we match their bandwidth of 60MB/s. For comparing
between our own result, we use the LAN setting.

First, we compare our Approx-PSI protocol with DA-PSI from [CFR23] for Hamming
distance by matching their FNR of 0.05, which corresponds to our security parameter of
λ = 5, and a garbled circuit baseline. Since we do not have access to the DA-PSI code,
we try to match their resources usage as closely as possible and use the numbers reported
in [CFR23]. Therefore, the comparison is only a rough estimate.

1https://github.com/emp-toolkit
2https://github.com/Visa-Research/volepsi

25

28 29 210 211 212 213
1

10

100

1000

10000

Binary vector length (ℓ)

C
om

m
u
n
ic
at
io
n
(M

B
)
in

lo
gs
ca
le

Approx-PSI, t = 8

Approx-PSI, t = 16

DA-PSI

GC Baseline

(a) Comm. vs vector length

28 29 210 211 212 213
0

250

500

750

1,000

Binary vector length (ℓ)

R
u
n
n
in
g
ti
m
e
(s
)

Approx-PSI, t = 8

Approx-PSI, t = 16

DA-PSI

GC Baseline

(b) Running time vs vector length

1 2 4 8 16 32
1

10

100

1000

10000

Threshold (d)

C
om

m
u
n
ic
at
io
n
(M

B
)
in

lo
gs
ca
le

Approx-PSI, t = 8

Approx-PSI, t = 16

DA-PSI

GC Baseline

(c) Comm. vs threshold

1 2 4 8 16 32
0

500

1,000

1,500

2,000

2,500

3,000

Threshold (d)

R
u
n
n
in
g
ti
m
e
(s
)

Approx-PSI, t = 8

Approx-PSI, t = 16

DA-PSI

GC Baseline

(d) Running time vs threshold

Figure 5: Running Time in seconds and Communication in logscale of MB of Approx-PSI,
DA-PSI and garbled circuit baseline for set size n = 100, and (a) - (b) fixed threshold d = 6;
(c) - (d) fixed element size ℓ = 8192. Our Approx-PSI uses gap t = 8, 16 and security
parameter λ = 5 to match the error rate of 0.05.

From Figure 5 (a) and (b), our protocol outperforms DA-PSI in both communication and
running time for short binary vectors, up to ℓ = 2048 for communication and up to ℓ = 4096
for running time, with a gap of t = 8 and without parallel computation. Even for ℓ = 1024,
our protocol is 10-20 times faster depending on the gap. From Figure 5 (c) and (d), our
protocol also outperforms DA-PSI when the matching threshold is above 4 bits for running
time and 16 bits for communication – both of which are minuscule relative to the total length
of the vectors. For instance, in the image matching application from [KM21], the distance
threshold is around 10% of the total vector length. We also note that the element size in
Figure 5 (c) and (d) is the largest reported in [CFR23] (ℓ = 8192). For shorter vectors,
such as ℓ = 256 in [KM21], our protocol demonstrates an even more significant performance
improvement. This further highlights the efficiency of our approach when dealing with
smaller input sizes.

Second, we demonstrate the performance of our Approx-PSI protocol for Hamming dis-
tance under various parameters. Table 3 shows the communication and running time of our
protocol as the input size increases, broken down by the main steps, using a much larger
security parameter of λ = 40 and a gap of t = log n. Both communication and running time
are nearly linear in relation to the input size, making our protocol scale better with large
input sets compared to the quadratic complexity seen in previous works.

We note that the secret-shared Hamming distance comparison test step dominates both
the communication and running time, followed by the secret-shared PSI step. These steps
are therefore the primary targets for further optimization.

26

Table 3: Communication and Running time of Approx-PSI for Hamming distance with
element size ℓ = 128, threshold d = 4, gap t = log n and security parameter λ = 40 for
various set size n = 256, 1024, 4096, resulting in number of rounds k = 96, 89, 86, respectively.

Step communication (MB) running time (s)

n 256 1024 4096 256 1024 4096

Projection 0.01 0.01 0.01 0.004 1.45 4.859
SS-PSI 214.57 848.65 3279.3 15.13 59.28 226.78

SS Ham.
comp.

243.58 902.85 3483.4 22.54 83.58 324.9

SS Vector
Mult.

4.52 16.71 64.41 0.659 2.285 8.652

Open & out-
put

3 11.12 42.92 0.365 1.256 4.71

Total 465.68 1779.3 6870 38.7 147.85 569.9

While a direct comparison is not possible due to different distance metrics, the sa-PSI
protocol in [GRS23] communicates around 30-100 GB for n = 2700 ℓ∞-balls under different
conditions. Based on this, our protocol is expected to be quite efficient.

References

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Pe-
ter Scholl. Efficient pseudorandom correlation generators: Silent ot extension
and more. In Advances in Cryptology–CRYPTO 2019: 39th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019,
Proceedings, Part III 39, pages 489–518. Springer, 2019.

[BCG+22] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nico-
las Resch, and Peter Scholl. Correlated pseudorandomness from expand-
accumulate codes. In Annual International Cryptology Conference, pages 603–
633. Springer, 2022.

[BK73] Walter A. Burkhard and Robert M. Keller. Some approaches to best-match
file searching. Communications of the ACM, 16(4):230–236, 1973.

[BPSY23] Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. Near-
Optimal oblivious Key-Value stores for efficient PSI, PSU and Volume-Hiding
Multi-Maps. In 32nd USENIX Security Symposium (USENIX Security 23),
pages 301–318, Anaheim, CA, August 2023. USENIX Association.

[CFR23] Anrin Chakraborti, Giulia Fanti, and Michael K Reiter. {Distance-Aware} pri-
vate set intersection. In 32nd USENIX Security Symposium (USENIX Security
23), pages 319–336, 2023.

27

[CGK20] Henry Corrigan-Gibbs and Dmitry Kogan. Private information retrieval with
sublinear online time. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 44–75. Springer, 2020.

[CILO22] Wutichai Chongchitmate, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Psi from
ring-ole. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 531–545, 2022.

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private
information retrieval. Journal of the ACM (JACM), 45(6):965–981, 1998.

[CM20] Melissa Chase and Peihan Miao. Private set intersection in the internet setting
from lightweight oblivious prf. In Daniele Micciancio and Thomas Ristenpart,
editors, Advances in Cryptology – CRYPTO 2020, pages 34–63, Cham, 2020.
Springer International Publishing.

[CSF+07] M Patrick Collins, Timothy J Shimeall, Sidney Faber, Jeff Janies, Rhiannon
Weaver, Markus De Shon, and Joseph Kadane. Using uncleanliness to predict
future botnet addresses. In Proceedings of the 7th ACM SIGCOMM conference
on Internet measurement, pages 93–104, 2007.

[Dau09] John Daugman. How iris recognition works. In The essential guide to image
processing, pages 715–739. Elsevier, 2009.

[DM21] Sjoerd Dirksen and Shahar Mendelson. Non-gaussian hyperplane tessellations
and robust one-bit compressed sensing. Journal of the European Mathematical
Society, 23(9):2913–2947, 2021.

[DMS22] Sjoerd Dirksen, Shahar Mendelson, and Alexander Stollenwerk. Sharp esti-
mates on random hyperplane tessellations. SIAM Journal on Mathematics of
Data Science, 4(4):1396–1419, 2022.

[DPT20] Thai Duong, Duong Hieu Phan, and Ni Trieu. Catalic: Delegated psi cardi-
nality with applications to contact tracing. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 870–
899. Springer, 2020.

[DS18] Sjoerd Dirksen and Alexander Stollenwerk. Fast binary embeddings with gaus-
sian circulant matrices: improved bounds. Discrete & Computational Geome-
try, 60:599–626, 2018.

[DS20] Sjoerd Dirksen and Alexander Stollenwerk. Binarized johnson-lindenstrauss
embeddings. arXiv preprint arXiv:2009.08320, 2020.

[FKOS15] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl.
A unified approach to mpc with preprocessing using ot. In International Con-
ference on the Theory and Application of Cryptology and Information Security,
pages 711–735. Springer, 2015.

28

[GGM24] Gayathri Garimella, Benjamin Goff, and Peihan Miao. Computation efficient
structure-aware psi from incremental function secret sharing. In Annual Inter-
national Cryptology Conference, pages 309–345. Springer, 2024.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of com-
puter and system sciences, 28(2):270–299, 1984.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.
Oblivious key-value stores and amplification for private set intersection. In
Annual International Cryptology Conference, pages 395–425. Springer, 2021.

[GRS22] Gayathri Garimella, Mike Rosulek, and Jaspal Singh. Structure-aware private
set intersection, with applications to fuzzy matching. In Annual International
Cryptology Conference, pages 323–352. Springer, 2022.

[GRS23] Gayathri Garimella, Mike Rosulek, and Jaspal Singh. Malicious secure,
structure-aware private set intersection. In Annual International Cryptology
Conference, pages 577–610. Springer, 2023.

[GS19] Satrajit Ghosh and Mark Simkin. The communication complexity of threshold
private set intersection. In Annual International Cryptology Conference, pages
3–29. Springer, 2019.

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure
{Two-Party} computation using garbled circuits. In 20th USENIX Security
Symposium (USENIX Security 11), 2011.

[HS20] Thang Huynh and Rayan Saab. Fast binary embeddings and quantized com-
pressed sensing with structured matrices. Communications on Pure and Ap-
plied Mathematics, 73(1):110–149, 2020.

[IKN+20] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Sax-
ena, Karn Seth, Mariana Raykova, David Shanahan, and Moti Yung. On de-
ploying secure computing: Private intersection-sum-with-cardinality. In 2020
IEEE European Symposium on Security and Privacy (EuroS&P), pages 370–
389. IEEE, 2020.

[IKOS06] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography
from anonymity. In 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06), pages 239–248. IEEE, 2006.

[JL84] William Johnson and Joram Lindenstrauss. Extensions of lipschitz maps into
a hilbert space. Contemporary Mathematics, 26:189–206, 01 1984.

[Kel20] Marcel Keller. Mp-spdz: A versatile framework for multi-party computation.
In Proceedings of the 2020 ACM SIGSAC conference on computer and commu-
nications security, pages 1575–1590, 2020.

29

[KM21] Anunay Kulshrestha and Jonathan Mayer. Identifying harmful media in {End-
to-End} encrypted communication: Efficient private membership computation.
In 30th USENIX Security Symposium (USENIX Security 21), pages 893–910,
2021.

[KMWF07] Eike Kiltz, Payman Mohassel, Enav Weinreb, and Matthew Franklin. Secure
linear algebra using linearly recurrent sequences. In Theory of Cryptography:
4th Theory of Cryptography Conference, TCC 2007, Amsterdam, The Nether-
lands, February 21-24, 2007. Proceedings 4, pages 291–310. Springer, 2007.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single
database, computationally-private information retrieval. In Proceedings 38th
annual symposium on foundations of computer science, pages 364–373. IEEE,
1997.

[KOR98] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for
approximate nearest neighbor in high dimensional spaces. In Proceedings of
the thirtieth annual ACM symposium on Theory of computing, pages 614–623,
1998.

[LMRSW24] Baiyu Li, Daniele Micciancio, Mariana Raykova, and Mark Schultz-Wu. Hint-
less single-server private information retrieval. In Annual International Cryp-
tology Conference, pages 183–217. Springer, 2024.

[MKHSO17] Mina Mohammadi-Kambs, Kathrin Hölz, Mark M Somoza, and Albrecht Ott.
Hamming distance as a concept in dna molecular recognition. ACS omega,
2(4):1302–1308, 2017.

[MPDC19] Luca Melis, Apostolos Pyrgelis, and Emiliano De Cristofaro. On collaborative
predictive blacklisting. ACM SIGCOMM Computer Communication Review,
48(5):9–20, 2019.

[MPR+20] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung.
Two-sided malicious security for private intersection-sum with cardinality. In
Annual International Cryptology Conference, pages 3–33. Springer, 2020.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai She-
shank Burra. A new approach to practical active-secure two-party computa-
tion. In Annual Cryptology Conference, pages 681–700. Springer, 2012.

[OPJM10] Margarita Osadchy, Benny Pinkas, Ayman Jarrous, and Boaz Moskovich. Scifi-
a system for secure face identification. In 2010 IEEE Symposium on Security
and Privacy, pages 239–254. IEEE, 2010.

[OR07] Rafail Ostrovsky and Yuval Rabani. Low distortion embeddings for edit dis-
tance. Journal of the ACM (JACM), 54(5):23–es, 2007.

[OR15] Samet Oymak and Ben Recht. Near-optimal bounds for binary embeddings of
arbitrary sets. arXiv preprint arXiv:1512.04433, 2015.

30

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light:
Lightweight private set intersection from sparse ot extension. In Alexandra
Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO
2019, pages 401–431, Cham, 2019. Springer International Publishing.

[PV14] Yaniv Plan and Roman Vershynin. Dimension reduction by random hyperplane
tessellations. Discrete & Computational Geometry, 51(2):438–461, 2014.

[RR22] Srinivasan Raghuraman and Peter Rindal. Blazing fast psi from improved
okvs and subfield vole. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, pages 2505–2517, 2022.

[RS21] Peter Rindal and Phillipp Schoppmann. Vole-psi: Fast oprf and circuit-psi from
vector-ole. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 901–930. Springer, 2021.

[RT21] Mike Rosulek and Ni Trieu. Compact and malicious private set intersection for
small sets. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pages 1166–1181, 2021.

[Sch18] Peter Scholl. Extending oblivious transfer with low communication via key-
homomorphic prfs. In Public-Key Cryptography–PKC 2018: 21st IACR Inter-
national Conference on Practice and Theory of Public-Key Cryptography, Rio
de Janeiro, Brazil, March 25-29, 2018, Proceedings, Part I 21, pages 554–583.
Springer, 2018.

[UCK+21] Erkam Uzun, Simon P Chung, Vladimir Kolesnikov, Alexandra Boldyreva, and
Wenke Lee. Fuzzy labeled private set intersection with applications to private
{Real-Time} biometric search. In 30th USENIX Security Symposium (USENIX
Security 21), pages 911–928, 2021.

[WACL10] Andrew G West, Adam J Aviv, Jian Chang, and Insup Lee. Spam mitigation
using spatio-temporal reputations from blacklist history. In Proceedings of the
26th Annual Computer Security Applications Conference, pages 161–170, 2010.

[WHZ+15] Xiao Shaun Wang, Yan Huang, Yongan Zhao, Haixu Tang, XiaoFeng Wang,
and Diyue Bu. Efficient genome-wide, privacy-preserving similar patient query
based on private edit distance. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages 492–503, 2015.

[YCP15] Xinyang Yi, Constantine Caramanis, and Eric Price. Binary embedding: Fun-
damental limits and fast algorithm. In International Conference on Machine
Learning, pages 2162–2170. PMLR, 2015.

[Yia93] Peter N Yianilos. Data structures and algorithms for nearest neighbor search
in general metric spaces. In Soda, volume 93, pages 311–21, 1993.

31

A Euclidean distance, Cosine Similarity and Angular

distance

Here we give formulas for the distances in Euclidean space, and their relationship. For any
x, y ∈ RN , with x = (x1, . . . , xN) and y = (y1, . . . , yN), we have

• Euclidean distance:

∥x− y∥2 =

√√√√ N∑
i=1

(xi − yi)2;

• cosine distance:
δcos(x, y) = 1− x · y

∥x∥2∥y∥2
;

We note that 1 − δcos(x, y) =
x · y

∥x∥2∥y∥2
is called the cosine similarity between x and

y. In numerous analytical and computational contexts, cosine similarity serves as a
prevalent metric to determine the degree of similarity or alignment between two data
sets.

• angular distance:

δθ(x, y) =
arccos

(
x·y

∥x∥2∥y∥2

)
π

.

When x, y are unit vectors, i.e., in the unit sphere SN−1, this distance is also called
geodesic distance as it is the length of the shortest path on the sphere connecting x
and y.

The cosine distance has values between 0 and 2 inclusive while the angular distance has
values between 0 and 1 inclusive. Clearly,

δθ(x, y) =
arccos(1− δcos(x, y))

π
,

and

∥x− y∥22 = ∥x∥22 + ∥y∥22 − 2(x · y)
= ∥x∥22 + ∥y∥22 − 2∥x∥2∥y∥2(1− δcos(x, y)).

The cosine distance and the angular distance do not concern the length of x, y when they
are nonzero vectors. In this case, we may assume that x, y ∈ SN−1, a unit sphere in RN .
Under this condition,

∥x− y∥2 =
√

2δcos(x, y).

Thus, secure computation of the Euclidean distance implies secure computation of the
cosine distance and cosine similarity as well.

32

B Ideal Functionalities

Here we provide various ideal functionalities for completion.

B.1 Circuit PSI

We describe the ideal functionality for circuit PSI from [RS21] in Figure 6.

FcPSI

Parameters. element set U , payload set {0, 1}σ, set size m, a map
Reorder : Um → {π : [m]→ [m′], injective} with m′ > m

Functionality.

1. Upon receiving a message (inputS, A, Ã) from the sender where
A = {a1, . . . , am} ⊆ U and Ã = {ã1, . . . , ãm} ∈ {0, 1}σ}, store (A, Ã).

2. Upon receiving a message (inputR, B, B̃) from the receiver where
B = {b1, . . . , bm} ⊆ U and B̃ = {b̃1, . . . , b̃m} ∈ {0, 1}σ}, store (B, B̃).

3. If both (A, Ã) and (B, B̃) are stored, compute π = Reorder(B), and uniformly
samples c0, c1 ← {0, 1}m′

and z0, z1 ← ({0, 1}2σ)m′
conditioned on

• c0j′ ⊕ c1j′ = 1, z0j′ ⊕ z1j′ = (ãj′∥b̃j′) if ∃ai ∈ A s.t. ai = bj

• c0j′ ⊕ c1j′ = 0, z0j′ ⊕ z1j′ = 02σ, otherwise

for j′ = π(j). Send c0, z0 to the sender and c1, z1, π to the receiver.

Figure 6: Ideal functionality for circuit PSI [RS21]

B.2 Private Approximate Match Computation

In [RS21], private approximate match computation (PAMC) was not defined as a function-
ality, but the paper described the security requirement for each party instead. Here, we
describe the ideal functionality for PAMC in Figure 7.

C Private Information Retrieval

Private information retrieval (PIR) [CKGS98,KO97] allows a client to query an entry from a
database managed by a server without revealing which entry is being queried. An straight-
forward method for this would be for the server to send the entire database to the client.
However, this approach is communication inefficient, especially when the database is large.
Non-trivial PIR protocols enable sublinear communication between the client and the server.

33

FPAMC

Parameters. element set U with distance metric δ, database size n, distance threshold
d, party receiving the output P ∈ {server, client}.

Functionality.

1. Upon receiving a message (DB, A) from the server where A = {a1, . . . , an} ⊆ U ,
store A.

2. Upon receiving a message (query, x) from the client where x ∈ U , store x.

3. If both A and x are stored, compute b ∈ {0, 1} where b = 1 if and only if there
exists a ∈ A such that δ(x, a) ≤ d. Send b to party P .

Figure 7: Ideal functionality for PAMC

It is important to note, though, that PIR does not prevent the client from learning about
entries they did not query.

Different PIR constructions vary in terms of computation, communication, memory re-
quirements, and the number of duplicated databases needed. Traditionally, single-database
PIR protocols are constructed using homomorphic encryption or oblivious RAM (ORAM) [KO97,
IKOS06]. To reduce server running time, an offline/online model is sometimes used [CGK20,
LMRSW24]. In this model, the server preprocesses the database using linear time before the
query. When the client sends a query, the server only needs sublinear time to respond.

In this work, we use the hintless single-server PIR from [LMRSW24] as each runtime-
constructed database is queried only once. The TensorPIR protocol achieves Õ(1) offline

communication and Õ(n 1
3) online communication, with Õ(n) computation for a database of

size n. For more details on the construction and security proof, we refer to [LMRSW24].

D Length-independent Secret-Shared Hamming Dis-

tance Comparison

We give more details on the protocol realizing FssHamCom which has communication complex-
ity O(λd2), independent of the length of an element. The protocol combines the ideas from
three different protocols from [CFR23,GS19,KMWF07].

As in the beginning of the protocol in [CFR23], we consider a binary vector of length ℓ
as an ℓ-subset whose elements indicated by each bit of the vector. The Hamming distance
can then be computed from the set difference. We use the idea from [GS19] that transforms
a subset into a sparse polynomial and then evaluates the polynomial at various points to
form a d × d matrix. The matrices has the property that the size of the corresponding set
difference is below d if and only if the subtraction of the matrices is singular. This property
can be checked securely using a secure determinant computation from [KMWF07]. The last

34

step of the protocol in [KMWF07] uses an additive homomorphic encryption. We can then
modify it to output a secret share of the indicator result.

We obtain the protocol in Algorithm 3. Let (KeyGen,Enc,Dec) be an additive homomor-
phic encryption. Let p be a prime integer such that p > 2ℓ and p > (4d2 + 2d)2λ.

Algorithm 3: Secret-Shared Hamming Distance Comparison Test

Input : a, b ⊆ {0, 1}ℓ
Output: [out]S, [out]R ∈ {0, 1} where out = [out]S ⊕ [out]R = 1 if H(a, b) ≤ d and

out = 0 otherwise
1 Parties compute Pa =

∑
i∈{0,1,...,ℓ−1} x

2i+ai and Pb defined similarly;

2 Parties jointly sample u← Fp;
3 Parties compute an (2d+ 1)× (2d+ 1) matrix

Ha =

Pa(u
0) · · · Pa(u

2d)
...

...
Pa(u

2d) · · · Pa(u
4d)


and Hb defined similarly;

4 Sender generates KeyGen→ (pk, sk) and sends (pk,Ha = Encpk(Ha)) to Receiver;
5 Receiver computes H = Ha − Encpk(Hb) (denote H = Ha −Hb), samples

u⃗, v⃗ ← F2d+1
p ;

6 Parties interactively compute Hkv⃗ for k = 1, . . . , 4d+ 1;
7 Receiver computes u⃗THkv⃗ for k = 1, . . . , d, and MH , and encryption of the minimal

polynomial mH of H.;
8 Parties evaluate garbled circuit that decrypts and secret shares an indicator that the

constant term of MH is zero.

The correctness of the protocol follows from the fact analyzed in [GS19] that det(Ha −
Hb) = 0 if and only if H(a, b) ≤ d. We utilize the homomorphic encryption method
in [KMWF07] to compute the determinant from the minimal polynomial of the matrix,
which can be computed from u⃗THkv⃗.

From the analysis in [KMWF07], the protocol above has communication and computation
complexity of O(λd2polylog d). When adding the local transformation in the first step, the
computation complexity is O(λ(ℓ+ d2polylog d)).

E Secret-Shared Scalar-Vector Multiplication from OT

Using OT, we can easily realize FssVMult in the semi-honest model. Let FOT be the 1-out-of-2
OT functionality. We describe the protocol in Algorithm 4.

As wS = rR ⊕ ([c]S · [v]R), we have [out]S = ([c]S · [v]S)⊕ ([c]S · [v]R) = [c]S · ([v]S ⊕ [v]R).
Similarly, [out]R = [c]R · ([v]S ⊕ [v]R). Using OT extension techniques, the (amortized)
communication and computation can be reduced to o(1) [Sch18,BCG+19].

35

Algorithm 4: Secret-Shared Vector Multiplication

Input : [v]S, [v]R ⊆ {0, 1}ℓ, [c]S, [c]R ∈ {0, 1}
Output: [out]S, [out]R ∈ {0, 1}ℓ where

out = [out]S ⊕ [out]R = ([c]S ⊕ [c]R) · ([v]S ⊕ [v]R)
1 Sender samples rS ← {0, 1}ℓ and sends (inputS, rS, rS ⊕ [v]S) to FOT. Receiver sends

(inputR, [c]R) to FOT and receives wR;
2 Receiver samples rR ← {0, 1}ℓ and sends (inputS, rR, rR⊕ [v]R) to FOT. Sender sends

(inputR, [c]S) to FOT and receives wS;
3 Sender outputs [out]S = ([c]S · [v]S)⊕ rS ⊕ wS, and Receiver outputs

[out]R = ([c]R · [v]R)⊕ rR ⊕ wR.

F Reduction to Other Distance Metrics

Here we give more details about the embedding from three other distance metric into Ham-
ming distance metric.

F.1 Edit Distance

Our protocol relies on the low distortion embedding by Ostrovsky and Rabani [OR07].

Theorem F.1 ([OR07]). There exists a polynomial time algorithm ϕ that for every δ > 0,
ϕ = ϕ(·, ℓ, δ) : {0, 1}ℓ → {0, 1}ℓ′ such that ℓ′ = O(ℓ2 log(ℓ/δ)) satisfying for any x, y ∈ {0, 1}ℓ

Γ(ℓ)−1ed(x, y) ≤ H(ϕ(x), ϕ(y)) ≤ Γ(ℓ)ed(x, y),

where Γ(ℓ) = 2O(
√
log ℓ log log ℓ), with probability at least 1− δ.

We note that asymptotically logM ℓ < Γ(ℓ) < ℓϵ for any large constant M and small
constant ϵ > 0. Applying the embedding and Approx-PSI for Hamming distance gives the
following corollary.

Corollary F.2. There exists a Approx-PSI for edit distance with communication and com-

putation O(n1+ 1
t−1 ℓ2(log n+ λ)2) for gap t′ = 2O(

√
log ℓ log log ℓ)t

Proof. Let d, t be the threshold and the gap of the underlying Approx-PSI for Hamming
distance, respectively. By Theorem F.1, for any a ∈ A and b ∈ B such that ed(a, b) ≤ d′,

H(ϕ(a), ϕ(b)) ≤ 2O(
√
log ℓ log log ℓ)ed(a, b) ≤ 2O(

√
log ℓ log log ℓ)d′.

For any a ∈ A and b ∈ B such that ed(a, b) ≥ t′d′,

H(ϕ(a), ϕ(b)) ≥ 2−O(
√
log ℓ log log ℓ)ed(a, b) ≥ 2−O(

√
log ℓ log log ℓ)t′d′.

Setting the right hand side of each inequality as d and td, respectively, gives t′ = 2O(
√
log ℓ log log ℓ)t.

Here we set δ = 1
n22λ

. Thus, ℓ′ = O(ℓ2(log n+ λ)).
The communication and computation of the resulting protocol is that of Approx-PSI for

Hamming distance where element size is ℓ′ = O(ℓ2(log n+ λ)).

36

F.2 Euclidean Distance

Similar to the Edit distance, there are embedding from the Euclidean distance to the Ham-
ming distance [PV14, HS20,DS20,DM21,DMS22]. Unlike the embedding for the edit dis-
tance, which is complicated, the embeddings for Euclidean following the simple ideas from
the Johnson-Lindenstrauss lemma [JL84]. The original lemma concerns the dimension re-
duction of vectors in RN . However, the technique can be used to constructed an embedding
into binary strings, represented by {−1, 1} instead of {0, 1}.

A hyperplane in RN is chosen randomly to cut RN into two halves. Vectors in one half
is mapped to −1 while the other half is mapped to 1. This can be computed by the sign of
inner product between the vectors and the normal vector of the hyperplane. The process is
repeated multiple times with independently chosen hyperplanes to obtain a binary vector.
The idea has been improved with better methods of chosing the hyperplanes and the analysis
of the resulting distortion. Here we choose the most recent results for our construction.

Theorem F.3 ([DM21]). There exists a polynomial time algorithm ϕ that for every 0 < ρ <
R and T ⊆ B(R) with |T | = n where B(R) is a Euclidean ball of radius R, ϕ : RN → {0, 1}ℓ
such that ℓ = O(R log(eR/ρ) logn

ρ3
), satisfying for any x, y ∈ T such that ∥x− y∥2 ≥ ρ

O(ℓ
R
)∥x− y∥2 ≤ H(ϕ(x), ϕ(y)) ≤ O(

ℓ
√

log(eR/ρ)

R
)∥x− y∥2

with probability at least 1− e−O(ℓρ/R).

While this multiplicative bound is easy to use, the condition ∥x − y∥2 ≥ ρ can be
problematic as the protocol cannot check this condition efficiently. Thus, we consider the
following additive bound which is a special case of the result in [DMS22].

Theorem F.4 ([DMS22]). There exists a polynomial time algorithm ϕ that for R > 0,
0 < δ < R/2, ρ = O(R

√
log(R/δ))) and T ⊆ B(R) with |T | = n where B(R) is a Euclidean

ball of radius R, ϕ : RN → {0, 1}ℓ such that ℓ = O
(

ρ2(logn+λ)
δ2

)
, satisfying for any x, y ∈ T ,∣∣∣∣∣

√
2πρ

ℓ
H(ϕ(x), ϕ(y))− ∥x− y∥2

∣∣∣∣∣ ≤ δ

with probability at least 1− e−O(δ2ℓ/ρ2).

Corollary F.5. There exists a Approx-PSI for Euclidean distance with gap t with commu-
nication and computation complexity

O(n1+ 1
t−1 t2 log t(log n+ λ)2).

Proof. Let d0, t0 be the threshold and the gap for the underlying Approx-PSI for Hamming
distance, respectively. From Theorem F.6, for a pair x, y ∈ RN with dθ(x, y) ≤ d, we
have H(ϕ(x), ϕ(y)) ≤ (d + δ)ℓ ≤ d0. For a pair x, y ∈ RN with dθ(x, y) ≥ td, we have
H(ϕ(x), ϕ(y)) ≥ (td− δ)ℓ ≥ t0d0. Thus, t0 must satisfy t0(d+ δ) ≤ td− δ.

Since any two vectors in the Euclidean ball of radius R has distance at most 2R, we may
assume that R

d
= O(t). Let δ = O(d), t0 ≤ td−δ

d+δ
= O(t). We can choose ρ = O(R

√
log t). We

have ℓ = O(t2 log t(log n + λ)). This give the communication and computation complexity

of the Approx-PSI for Euclidean distance O(n1+ 1
t−1

t2 log t(logn+λ)2)

37

For example, when t =

√
log

(
λ

logn

)
log n, the communication isO(n(log n+λ)2R

√
log

(
λ

logn

)
).

When t =

√
log

(
λ

logn

)
, the communication is O(n1+ϵ(log n + λ)2R

√
log

(
λ

logn

)
) where

ϵ = 1
t0−1

and t0 is the constant gap of the underlying Approx-PSI for Hamming distance.

When the vectors are in SN−1, we can obtain the result for cosine similarity and cosine
distance by transformation

δcos(x, y) =
∥x− y∥22

2
.

In this case, the gap is t = log
(

λ
logn

)
t20.

F.3 Angular Distance

The same hyperplane technique above also gives results for angular distance [PV14,YCP15,
OR15,DS18]. We consider the embedding described by Dirksen and Stollenwerk [DS18] as
its embedding size is smaller, and more concrete parameters are provided. Unlike the first
two distance metrics, the angular distance for any pair of vectors are bounded between 0
and 1.

Theorem F.6 ([DS18]). There exists a polynomial time algorithm ϕ that for every T ⊆
SN−1 with |T | = n, ϕ : SN−1 → {0, 1}ℓ such that ℓ = O(log

(
n
η

)
/δ2), satisfying for any

x, y ∈ T ∣∣∣∣H(ϕ(x), ϕ(y))ℓ
− δθ(x, y)

∣∣∣∣ ≤ δ

with probability at least 1− η.

We combine the embedding and the Approx-PSI for Hamming distance to get the fol-
lowing result.

Corollary F.7. There exists a Approx-PSI for the angular distance where matching vectors
have angular distance at most t1 and non-matching vectors have angular distance at least t2
with communication and computation complexity O(n1+ 1

t−1 t2(log n+λ)2) where t = O(t2/t1).

Proof. Let δ > 0 and ℓ as in Theorem F.6. For a pair x, y ∈ RN with dθ(x, y) ≤ t1,
we have H(ϕ(x), ϕ(y)) ≤ (t1 + δ)ℓ ≤ d. For a pair x, y ∈ RN with dθ(x, y) ≥ t2, we
have H(ϕ(x), ϕ(y)) ≥ (t2 − δ)ℓ ≥ td. Thus, t must satisfy t(t1 + δ) ≤ t2 − δ. That is
(t+ 1)δ ≤ t2 − tt1. Thus, we need t2 − tt1 > 0 and δ ≤ t2−tt1

t+1
< 1

t+1
as t2 < 1.

Setting η = 2λ and 1/δ = O(t) gives ℓ = O(t2(log n + λ)) and t = O(t2/t1). This
gives the communication and computation complexity of Approx-PSI for Angular distance

O(n1+ 1
t−1 t2(log n+ λ)2).

Here we consider t2 as a constant while t1 < t2/t becomes smaller as t increases.

38

G When inputs do not conform to the structure

Now we discuss what happens when the input sets are not conform to the structure. This
means there exists some a, b ∈ A ∪ B such that d < δ(a, b) < td. We further divide
the situations and how to deal with them in two cases: the mild case when every pair of
elements within each input set still conforms to the structure but not across the sets, and
the extreme case when the structure is not hold even within each set.

1. Every pair of elements within each input set conforms to the structure, meaning that
every pair of elements in A is either near or far, and the same holds for every pair in B.
This scenario can be verified by semi-honest parties since the condition is local. Each
party can check their own set during the clustering step. In this case, Lemma 3.1 does
not imply that if representatives of clusters in A and B are matched, then every pair of
elements, one from each cluster, will also be matched. This introduces the possibility
of false positives in the existing algorithm. Additionally, when representatives do not
match, it is possible that members of their cluster could still match, leading to false
negatives.

To address this, we can modify the protocol to prevent false positives by checking
every pair of elements from each matched cluster using FssHamCom. To prevent false
negatives, in each round, the parties uniformly select a new representative for each
cluster to be projected and sent to FssPSI . The number of rounds must increase to
ensure that if there is a matched pair in the clusters, the matched representatives
are chosen in some rounds. When every cluster has constant size, both modifications
increase communication and computation by a constant factor. Therefore, the resulting
protocol remains near-linear with negligible probability of either false positives or false
negatives.

2. Each pair of element, whether from the same input set or across sets, can be at any
distance apart. In this case, the projection method and the analysis in Lemma 6.1 still
hold. Here, the clustering is no longer unique, meaning there could be multiple ways
to cluster elements through a randomized clustering algorithm. Since Lemma 5.1 is no
longer hold, it is possible that the party’s elements could collide more often than we
previously analyzed. This could result in some matched pairs being undiscovered.

Using the same modification as in the previous case, we could reduce false negatives
by increasing the number of rounds. However, the analysis becomes more complicated
and highly dependent on the structure of the distances between elements. We leave
this case for further exploration in future work.

H Exact Number of Rounds in Approx-PSI for Ham-

ming Distance

Here we calculate the exact number of rounds shown in Table 4 using the calculation from
Section 6.

39

Table 4: Number of rounds for each value of gap t and number of elements in input sets
when the security parameter is λ = 40

gap t
number of elements

128 256 512 1024 4096 16384 65536

4 331 431 558 722 1203 1994 3293
5 189 232 285 349 521 773 1142
6 131 156 186 221 309 429 593
7 101 118 138 160 215 286 378
8 83 96 110 126 164 212 272
9 71 81 92 104 133 167 210
10 63 71 80 89 112 139 171
11 57 63 71 79 97 119 145
12 52 58 64 71 86 104 126
13 48 53 58 64 78 93 111
14 45 49 54 59 71 85 100
15 42 46 51 55 66 78 91
16 40 44 48 52 61 72 84
17 38 41 45 49 57 67 78
18 36 39 43 46 54 63 73

I Extension to the Malicious Setting

Throughout this work, we have focused on the approximate PSI in the semi-honest setting
for simplicity. In this section, we briefly explain how our Approx-PSI protocol for Hamming
distance can be extended to remain secure in the malicious setting as well, and so are the ones
for other distances. In the Algorithm 1, a malicious party may deviate from the protocol
by (1) clustering the elements incorrectly or the elements in their set do not conform to
the structure S; (2) providing incorrect element-projection pairs to FssPSI; (3) modify their
shares output from FssPSI, FssHamCom or FssVMult.

The deviation (3), as mentioned in Section 4, can be prevented using various authenti-
cated secret sharing techniques. When FssPSI is instantiated using the protocol in [RS21], we
may need to modify the circuit PSI to accommodate the secret sharing scheme we may use.

For (1), as discussed in Appendix G, it would result in false positive for elements in the
cluster or false negative for the elements not conforming to the structure S in the adversary’s
set. Neither of which would leak information on the honest party’s elements. In this case,
however, we need to modify the functionality to allow such mistakes.

Unlike the other two, the deviation (2) requires further machinery to fix. In particular,
the parties need to provide a zero-knowledge proof that their computed projection is correct.
Since the projection is publicly known linear map, an efficient ZKP can be incorporated into
the OKVS technique in the protocol in [RS21].

Since each of the above solution does not require more asymptotic communication, the
resulting maliciously secure protocol has the same asymptotic communication complexity as
the original protocol.

40

