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Abstract—In this study, we introduce a new approach to secure
computing by implementing a platform that utilizes a non-volatile
memory express (NVMe)-based system with an FPGA-based
Torus fully homomorphic encryption (TFHE) accelerator, solid
state drive (SSD), and middleware on the host-side. Our platform
is the first to offer completely secure computing capabilities for
TFHE by using an FPGA-based accelerator. We defined secure
computing instructions to evaluate 14-bit to 14-bit functions
using TFHE. Our middleware allows for the communication of
ciphertexts, keys, and secure computing programs while invoking
secure computing programs through NVMe commands with
metadata. Our performance evaluation demonstrates that our
secure computing platform outperforms CPU-based and GPU-
based platforms by 15 to 120 times and 2.5 to 3 times, respectively,
in gate bootstrapping execution time. Additionally, our platform
uses 7 to 12 times less electric energy consumption during the
gate bootstrapping execution time than CPU-based platforms and
4.95 times less than a GPU-based platform. The performance of
a machine learning application running on our platform shows
that bootstrapping accounts for more than 80% of ciphertext
learning time.

I. INTRODUCTION

Securing data is vital because public and private organi-
zations recognize it as an asset when collecting, using, and
sharing information. Therefore, data protection regulations are
growing worldwide, and the demand for global privacy and
requirements is also increasing.

Along with these trends, there is a highly increasing demand
for secure computation, also known as privacy-preserving
methods. Gentry introduced a class of cryptographic methods
known as Fully Homomorphic Encryption (FHE) [28], which
is considered as one of the most compelling technologies in
secure computing. FHE-based privacy-preserving methods do
not require computing nodes to decrypt encrypted data to
perform secure computation.

Since its inception, FHE has sparked significant inter-
est, leading to the emergence of novel constructions fol-
lowing Gentry’s idea. This evolution has culminated in the
development of four FHE schemes, namely, BGV [12],
BFV [11,25], CGGI (also known as TFHE (Torus FHE)) [20],
and CKKS [10,18], which are considered the most representa-
tive and are currently undergoing international standardization
under ISO [41]. This progression shows growing interests in
FHE and continuous advancements in the field, making it an
exciting area of research.

Bootstrapping is a critical procedure for FHE to decrease
ciphertext errors by homomorphically evaluating a decryption
circuit [28]. The usual computation in bootstrapping is the

inner product of two vectors encoding polynomials. One vector
is a transformation of a ciphertext, and the other is the
encryption of the secret key used to generate the ciphertext.
The computational complexity of polynomial multiplications
is N times larger than that of decrypting the ciphertext,
where N is the ideal degree of the polynomial ring. Because
N typically ranges from 210 to 216 depending on the FHE
mechanism and security parameters [20, 30], there is a strong
demand for speeding up the bootstrapping procedure. Some
FHE accelerators have been built for this purpose using graph-
ical processing units (GPU), field-programmable gate arrays
(FPGA), or application-specific integrated circuits (ASIC). All
the FHE accelerators listed in [30] implement number theoretic
transform (NTT) into hardware. However, further work must
be conducted on FHE-based secure computing platforms that
integrate TFHE accelerators.

We designed and implemented a secure computing plat-
form based on non-volatile memory express (NVMe) with
an FPGA-based TFHE accelerator, solid state drive (SSD),
and host-sided middleware to speed up non-linear or bit-wise
operations. Our secure computing platform uses NVMe com-
mands to read, write, and execute secure computing programs
containing a sequence of secure computing instructions. The
NVMe commands also read and write ciphertexts and keys.
We defined a set of secure computing instructions to evaluate
any 14-bit to 14-bit function using TFHE.

Our accelerator has an optimized circuit for performing
N−point NTT or inverse NTT (INTT) with N = 16384
operating at 200MHz using the method described in [39] to
eliminate bit-reversal operations, pre-processing of multiplying
NTT twiddle factors with the inputs and post-processing of
multiplying INTT twiddle factors with proper normalization.
Section VI shows that our secure computing platform out-
performs CPU-based and GPU-based platforms by 15 to 120
times and 2.5 to 3 times, respectively, in gate bootstrapping
execution time, and uses 7 to 12 times less electric energy
consumption during the gate bootstrapping execution time
than CPU-based platforms and 4.95 times less than a GPU-
based platform. Finally, the performance of a machine learning
application running on our platform shows that bootstrapping
accounts for more than 80% of the ciphertext learning time
for more than 11-bit precision.

The remainder of this paper is organized as follows. Sec-
tion II discusses existing work related to this study and
clarifies our contributions to FHE-based secure computing.
Section III describes the basic architecture of the proposed
secure computing platform. Sections IV and V describe the
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design and implementation of the proposed accelerator and
middleware, respectively. Section VI presents the performance
evaluation of our secure computing platform implementation.
Finally, Section VII summarizes the study and discusses future
work.

II. RELATED WORK

A detailed survey of FHE was presented in [34]. A sur-
vey of FHE accelerators was also conducted in [30]. Three
studies have been conducted on FHE-based secure comput-
ing platforms. In [47], an FPGA-based accelerator called
SmartSSD [31] was used to implement the basic operations
required for CKKS. In [23], a secure computing platform
was implemented with an FPGA-based accelerator for NTT,
focusing on accelerating the Chinese Remainder Transform
(CRT) and using Direct Memory Access (DMA) to use host
DRAM to communicate commands and data between the
CPU and FPGA. In contrast to [23], our platform focuses
on speeding up NTT in a TFHE-specific manner. However, a
reduced instruction set computer (RISC)-based secure comput-
ing platform for TFHE was developed in [36], mainly focusing
on accelerating CMux-tree operations without accelerating the
bootstrapping procedure.

Among the FHE accelerators based on GPU [6, 7, 38, 49],
ASIC [3, 43], and FPGA [2, 8, 23, 27, 40, 42, 45, 47], we chose
FPGA as our initial hardware target prior to ASIC because
bootstrapping is known as a memory-bandwidth-bound work-
load for a CPU with an arithmetic intensity (the ratio between
the number of executed operations and the number of bytes
transferred between the CPU and main memory) of less than 1
(see [13]). It is believed that FPGA is more suitable for such
a workload than GPU because it allows multiple arithmetic
logics to access different internal memory blocks or caches
simultaneously. However, there has been no work on detailed
TFHE bootstrapping performance comparison between GPU
and FPGA.

Several studies have been conducted on FPGA-based accel-
erators that implement NTT for TFHE [8, 27], CKKS [2, 40],
and BGV/BFV [42, 45]. For instance, an FPGA-based TFHE
accelerator [8] uses a fixed-point Fast Fourier Transform (FFT)
to achieve a high throughput and low control overhead. An-
other FPGA-based TFHE accelerator [29] uses an approximate
multiplication-less integer FFT. Another FPGA-based TFHE
accelerator [48] introduced an optimization technique called
bootstrapping key unrolling which was designed based on
the tradeoff between bootstrapping performance and FPGA
resource consumption. Another FPGA-based TFHE accelera-
tor [50] implements TFHE on ZYNQ ZCU102 FPGA board.
These four FPGA-based TFHE accelerators were implemented
for Small-Degree Polynomials (SDP) with N = 1024. In
contrast, our FPGA-based TFHE accelerator has a different
design goal of speeding up the multiplication of polynomials
without losing precision for a large value of N . Supporting
Large-Degree Polynomials (LDP) with N = 16384 or greater
has the following advantages. First, LDP can provide higher
plaintext precision in Programmable Bootstrapping (PBS) [21]
than SDP. Second, given the same plaintext precision in PBS,

LDP can encode more outputs of single-value or multi-value
functions than SDP.

In [27], an FPGA-based programmable vector engine that
supports the processing of an application-specific instruction
set was designed without accelerating the bootstrapping proce-
dure. In [37], a TFHE accelerator on a commodity CPU-FPGA
hybrid machine was designed for the parallel execution of mul-
tiple homomorphic Boolean gates to increase the processing
throughput without reducing latency. We focus on reducing
the latency in executing bootstrapping ciphertexts encoded in
LDPs.

The study in [29] extensively evaluated the performance
of an FPGA-based accelerator during bootstrapping, focusing
on the latency, throughput, and power consumption. However,
a significant gap remains in the literature, as no study has
yet comprehensively assessed an FHE-based secure computing
platform that includes an accelerator and a host CPU in terms
of these performance metrics.

In terms of security of FHE, existing attacks and coun-
termeasures for the attacks on TFHE also apply to our ar-
chitecture including IND-CCA/IND-CPA/IND-CPAD attacks
[17, 26, 33], lattice-based attacks [9, 22, 44, 46], side-channel
attacks [5, 19], key-recovery attacks [14, 16] and application-
level attacks [15].

Our major contributions are as follows.
• We are the first to provide a full-fledged secure computing

platform for TFHE using an FPGA-based accelerator
supporting LDP. The platform defines virtual registers for
manipulating secure computing instructions designed for
TFHE and host-sided middleware to communicate cipher-
texts, keys, and programs to compute. We can invoke a
secure computing program over the accelerator through
middleware using NVMe commands with metadata.

• We are also the first to provide a platform-level compari-
son instead of a processor-level comparison among differ-
ent processors such as CPU, GPU, and FPGA, showing
that a secure computing platform with an FPGA-based ac-
celerator can outperform software-based and GPU-based
secure computing platforms in terms of speed and energy
consumption for executing bootstrapping operations for
LDP. We have shown that NTT and Inverse NTT (INTT)
with N = 16384 are memory-I/O-bound workloads for
the GPU.

III. ARCHITECTURE

We introduce two architectures for our secure computing
platform: Basic architecture and extended architecture. In this
paper, we focus on the detailed design, implementation and
performance evaluation of the basic architecture. Detailed
design and implementation of the extended architecture is left
for future work.

A. Basic Architecture

Figure 1 shows the basic architecture of our secure com-
puting platform. This architecture was chosen to process data
close to its location. The architecture comprises a Host, an
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Accelerator, and NVMe SSDs. NVMe is a family of specifica-
tions (https://nvmexpress.org/specifications/) that defines how
the host software communicates with non-volatile memory
across multiple transports such as PCI Express (PCIe), Remote
Direct Memory Access (RDMA) and TCP.

A secure computing application running on the host controls
the behavior of the accelerator through middleware and an API
by using NVMe Read/Write commands. The accelerator (i)
intercepts each NVMe Read/Write command issued to NVMe
SSDs, (ii) stores a copy of the data carried by the command
in its main memory, and (iii) depending on the command
type and properties of the command data, referred to as
secure computing metadata, runs a program for homomorphic
calculation and returns the result. The main reason for using
NVMe as the carrier for secure computing data and metadata is
to reduce the overall latency of FHE-based secure computing
by performing storage I/O and computing in a single I/O
command, thereby avoiding unnecessary data transfer from
the host main memory to the accelerator after the host reads
the data from the storage or the accelerator to the host main
memory before the host writes the data to the storage. In
other words, our accelerator is a computing storage accelerator.
In addition, unlike SmartSSD [31], in which an FPGA and
an SSD are standalone peripheral component interconnect
(PCIe) devices connected under a PCIe switch, our architecture
further avoids ”double transfer” of the same data over the
same PCIe segment between the FPGA and the PCIe switch,
one for transferring the data between the host and FPGA and
another for transferring the data between the FPGA and SSD,
which halves the I/O throughput [32]. Instead, our architecture
maintains the I/O throughput by physically separating the PCIe
segment between the host and FPGA and the downstream
PCIe segment between the FPGA and SSD. In implementing
the basic architecture, PCIe is the NVMe transport between
the host and accelerator and between the accelerator and the
NVMe SSDs.
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Fig. 1: Basic architecture

B. Extended Architecture
Figure 2 shows an extended architecture of our secure

computing platform for providing scalability and robustness.
In the extended architecture, groups of hosts, SSD servers and
accelerators are inter-connected via a network called inter-
cluster network and orchestrated by Kubernetes. A group of
accelerators forms an accelerator cluster inside which accel-
erators can directly communicate via a intra-cluster network.

Each host and accelerator is implemented as a Kubernetes
worker node controlled by a Kubernetes master node. In
the extended architecture, NVMe over fabrics (NVMe-oF) is
used for NVMe transport between the hosts and SSD servers,
and Kubernetes Container Storage Interface (CSI) is used for
orchestrating SSD servers with other Kubernetes components.
The use of Kubernetes in the extended architecture provides
auto-scaling, load balancing, self-healing and dynamic config-
urations features to make our architecture scalable and robust.
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Fig. 2: Extended architecture

IV. ACCELERATOR

A block diagram of the accelerator implementation is shown
in Figure 3. Our accelerator was implemented on a HiTech
Global HTG-937 board equipped with a Xilinx XCVU47P
FPGA with three super logic regions (SLRs) and 16GB of
high bandwidth memory (HBM). The accelerator consists of
a Secure Computing Engine (hereafter referred to as the com-
puting engine) and an NVMe Bridge. The computing engine
first inputs an NVMe command or command completion with
its associated data to the NVMe bridge; it extracts secure
computing data and metadata from the input and stores the
secure computing data in a Virtual Register (VR). Second, the
engine executes a program containing a sequence of secure
computing instructions, depending on the type of secure com-
puting data indicated in the secure computing metadata and
the type of NVMe Command. Third, the engine outputs the
NVMe command or command completion and its associated
data containing either the input or computed data to the NVMe
bridge.

The computing engine has the following components.
• The main memory stores VRs, VR tables, and page

tables. It also has a stack region used by the push
and pop instructions, defined in Section IV-D. An HBM
is a memory device that provides sufficient memory
access bandwidth. The main memory is partitioned into
a persistent area for which paging operations are not
applied and a non-persistent area for which the paging

https://nvmexpress.org/specifications/
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operations are used. See Section IV-C for details on the
paging operations.

• The cache memory consists of many block RAM
(BRAM) blocks for high-speed distributed memory ac-
cess.

• The data movers move secure computing data and meta-
data between the main memory, cache memory, central
processor, and module processor. Data movers have first-
in first-out (FIFO) buffers.

• The module processor provides ring or vector operations.
Multiple logic blocks in the module processor can si-
multaneously access different BRAM blocks in the cache
memory. The module operations supported by the module
processor are presented in Table I. All module opera-
tions were implemented as high-level synthesis (HLS)
modules, except for NTT and INTT. The NTT/INTT
circuit was implemented as a register transfer level (RTL)
module as described in Section IV-E. Module operations
are performed element-wise except for NTT, RING ROT,
VECTOR ROT, and SAMPLE EXT. The module pro-
cessor has one MicroBlaze soft-core microprocessor to
process the module operations.

• The central processor executes microprograms to control
the data movers and module processor and manage the
main memory. A MicroBlaze soft-core microprocessor is
used as the central processor.

• The multiplexers and demultiplexsers exchange NVMe
commands and command completions with their associ-
ated data input from the NVMe bridge among the soft-
core microprocessor, data movers, and NVMe bridge.

The NVMe bridge provides a bridging function for NVMe
commands; that is, it forwards an NVMe command from
the host to the NVMe SSDs, either forwards Write Data
from the host to the NVMe SSDs or forwards Read Data
from the NVMe SSDs to the host, and forwards an NVMe
command completion received from the NMVe SSDs to the
host. Before forwarding an NVMe command or command
completion, the NVMe bridge passes NVMe Read/Write data
to the computing engine for copying and data computation.
The NVMe bridge has a MicroBlaze soft-core microprocessor.
We use IntelliProp’s NVMe bridge IP core licensed for Xilinx
XCVU47P FPGA.

A. Secure computing metadata

Each piece of secure computing data or sc_data accompa-
nies secure computing metadata or sc_metadata containing
the type of sc_data, Key Identifier identifying the set of keys
associated with sc_data, data identifier of sc_data, and
size of sc_data. The domain of the type field is listed in
Table II.

Any sc_data carried in the NVMe Read/Write command
data are stored in the VR corresponding to the associated
sc_metadata. In addition, sc_data of Type 3 (TLWE-
CoR) carried with an NVMe Read Command or Type 4
(TLWE-CoW) carried with an NVMe Write Command invokes
the execution of a secure computing program stored in the VR
register of Type 0, or the program register (see Figure 4).
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Fig. 3: Accelerator block diagram

TABLE I: Module processor operations. NTT operation is
implemented as Register Transfer Level (RTL) modules. All
other operations are implemented as High Level Synthesis
(HLS) modules

Name of Internal
Operation

Module
Type Description

NTT Ring NTT and INTT

MULMOD64 Vector
64-bit element-wise multipli-
cation modulo prime p =
264 − 232 + 1 for CMux

ADDMOD64 Vector
64-bit element-wise addition
modulo prime p = 264 −
232 + 1 for CMux

KEY_SWITCH Vector Public functional Key Switch-
ing

DECOMP Vector Gadget Decomposition

ADD32_ACC Vector 32-bit element-wise addition
to ACC

SUB32_ACC Vector 32-bit element-wise subtrac-
tion to ACC

ADD32_VR Vector 32-bit element-wise addition
to VR

SUB32_VR Vector 32-bit element-wise subtrac-
tion to VR

INT_MULT32 Vector 32-bit element-wise scalar
multiplication to VR

RING_ROT Ring Circular rotation of ring coef-
ficients

VECTOR_ROT Vector Circular rotation of Vector el-
ements

SAMPLE_EXT Ring Sample Extract

ACC: Accumulator

TABLE II: Secure computing metadata types

Type Type Name Description

0 PRG Secure computing program
1 TV Test vector

2 KEY Key used for TFHE bootstrapping op-
erations

3 TLWE-CoR TLWE ciphertext invoking Compute-
on-Read (CoR) operation

4 TLWE-CoW TLWE ciphertext invoking Compute-
on-Write (CoW) operation
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Fig. 4: NVMe Read/Write command processing

B. Virtual registers and virtual addressing

Virtual Registers (VRs) are variable-length data structures
maintained inside an accelerator and are manipulated using
NVMe Read/Write commands. They are distinguished from
soft-core microprocessor registers in that a VR can be so large
that its entire part does not fit into FPGA logical elements. For
example, a TFHE bootstrapping key can be a few gigabytes
in size.

A VR number identifies each VR and is uniquely calculated
from the Type, Key Identifier, and Data Identifier contained in
sc_metadata associated with the corresponding sc_data.
The VR table stores the pairs of VR numbers and virtual
addresses for each VR.

The type and data identifier specified in Table III determines
the size of the VR. We use a 32-bit integer to encode an
element in T = R/Z for all data types other than the NTT-
applied keys, which used 64-bit integers to multiply ring
polynomials using NTT.

The accelerator uses a 38-bit virtual address with a 26-
bit page number and a 12-bit offset. BKNTT, KSK, and
PrvKSKNTT denote keys. BKNTT is a bootstrapping key
that is transformed linearly. Specifically, NTT is applied to
the bootstrapping key. KSK is a key-switching key used in
the public functional key-switching mechanism of TFHE.
PrvKSKNTT is a key-switching key used in the private-
functional key-switching mechanism of TFHE and is trans-
formed linearly in the same manner as BKNTT. Parameters
N , k, n, ℓ, and t denote the degree of the polynomial
representing the ideal, the number of polynomials encoding
a secret key in a Torus Ring Learning with Errors (TRLWE)
sample, the bit length of the Torus LWE (TLWE) secret key,
the number of digits in the radix Bg of the TFHE Gadget
Decomposition algoritym [20], and the number of digits in
the binary-decomposed TLWE samples.

C. Paging

Similar to legacy computers, the proposed accelerator in-
vokes a paging function when the main memory is full. The
paging algorithm implemented on the accelerator uses NVMe
SSDs as the swap area. It maintains the contents of the
received VRs to be stored in the main memory or swap area

TABLE III: Virtual register sizes (BKNTT: NTT-applied boot-
strapping key, KSK: key-switching key, PrvKSKNTT: NTT-
applied private-functional key-switching key)

Type Data Identifier VR Size in bytes

0 (PRG) 0 configurable
1 (TV) any (k + 1) ·N · 4

2 (KEY)
1 (BKNTT) n ·N · ℓ · (k + 1)2 · 8

2 (KSK) (n+ 1) · t ·N · 4
3 (PrvKSKNTT) (k+1) · (n+1) · t ·N · 8

3 (TLWE-CoR) any (n+ 1) · 4
4 (TLWE-CoW) any (n+ 1) · 4

in the following manner. Each VR content initially sent to
the accelerator through an NVMe command is temporarily
held in a FIFO queue in the cache memory and then moved
to the main memory. Suppose that the central processor of
an accelerator attempts to access a VR, say x. Suppose that
neither x is in the main memory nor sufficient space is
available to store x. In this case, the paging algorithm (i)
selects another VR, say y, stored on a page of the main
memory, copies the page’s content to the swap area, and (ii)
copies x to the page. Paging operations (i) and (ii) are page-
out and page-in operations, respectively. The copy source of
a page-in operation is either the swap area for the previously
received VR or the cache memory for the newly received VR.

The accelerator includes a page table dedicated to Type 3
(TLWE-CoR) and Type 4 (TLWE-CoW) VRs, with a page
size that matches the VR size. All other VRs are stored in
the persistent area of the main memory, for which paging
operations are not required. Each entry in the page table
contains a flag and physical address for the corresponding
page. If the flag is unset, the physical address field contains the
physical address of the main memory. Otherwise, it contains
the LBA of a logical block in the swap area. The page-in and
page-out operations rely on NVMe Read/Write commands to
transfer pages between the accelerator and NVMe SSDs.

D. Secure computing instruction set

The accelerator supports the following secure computing
instructions, summarized in Table IV.

• return sends the content of VR n containing a TLWE
sample to the host or the SSD.

• move moves the content of VR n2 containing a TLWE
sample to VR n1.

• push moves the content of VR n containing a TLWE
sample to the top of the stack and increments the stack
pointer.

• pop moves the content of the stack top to VR n and
decrements the stack pointer.

• bootstrap uses the content of VR tv contain-
ing a TFHE test vector, performs Gate Bootstrapping
(GBS) [20] for VR n containing a TLWE sample, and
stores the output to VR n. Note that GBS also realizes
Programmable Bootstrapping (PBS) [21] for a function
f(x) provided by the TFHE test vector, in which case
the default TFHE test vector for the identity function is
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replaced with the provided one. Note that a pair of a
bootstrapping key and key-switching key used for GBS
is identified by the Key ID field of sc_metadata
associated with VR register n.

• homadd instruction adds the content of VR n2 contain-
ing a TLWE sample and VR n1 containing another TLWE
sample and stores the result to VR n1. homadd internally
executes ADD32_VR.

• homsub subtracts the content of VR n2 containing a
TLWE sample from VR n1 containing another TLWE
sample and stores the result to VR n1. homsub internally
executes SUB32_VR.

• homintmult multiplies the content of VR n containing
a TLWE sample by value v and stores the result in VR
n. homintmult internally executes INT_MULT32.

TABLE IV: Secure computing instruction set (VRs n, n1, and
n2, each containing a TLWE sample. VR tv contains a TFHE
test vector)

Name Type Arg. 1 Arg. 2 Description

return 0 n none return n
move 1 n1 n2 n1 ← n2

push 2 n none ++stackptr← n
pop 3 n none n← stackptr--

bootstrap 4 tv n
perform GBS or PBS
for n with tv

homadd 5 n1 n2 n1 ← n1 + n2

homsub 6 n1 n2 n1 ← n1 − n2

homintmult 7 n v n← n · v

Table V shows the sequence of instructions of a secure
computing program that homomorphically performs a mul-
tiplication of two integers, x and y. Also, Table VI shows
an example sequence of NVMe commands used for running
the example secure computing program. Note that once the
VRs are loaded into the accelerator via NVMe Read/Write
Commands, they only need to be reloaded once they are
updated. For example, Steps 1-6 in Table VI are not required
for the next run of another secure computing program that
uses the same BK, KSK, and TV1. In addition, for NVMe
SSDs supporting the NVMe Metadata feature, the number of
NVMe Commands in the sequence is reduced by half using
sc_metadata and its associated sc_data contained in the
same NVMe Read/Write Command.

E. NTT implementation and optimized CMux

Because bootstrapping is the most time-consuming opera-
tion in TFHE, the NTT/INTT circuit in the module processor
was implemented as an RTL module to optimize its circuit
design. The NTT/INTT circuit supports N -point NTT/INTT
with N = 16384.

The NTT/INTT circuit implements an optimized scheme
described in [39], which eliminates pre-FFT (Fast Fourier
Transform) processing and post-IFFT (Inverse FFT) process-
ing (including bit reversing) by merging NTT twiddle factors
{ψi |0 ≤ i < N} and FFT twiddle factors {ωi|0 ≤ i < N}
where ω is a primitive N th root of unity and ψ is a prim-
itive 2N -th root of unity, and thus ψ = ω2. For readers

TABLE V: An example of a secure computing program for
computing xy = {(x+y)2/4− (x−y)2/4} homomorphically
(ri is the VR number for TLWE sample si. tv is the VR
number for the test vector representing the function f(z) =
z2/4. TLWE samples s2 and s3 contain encrypted data for x
and y, respectively. VR r1 stores a temporal result and a final
result to return)

No. Instruction Argument(s)
1 mov r1, r2
2 homadd r1, r3
3 bootstrap tv, r1
4 homsub r2,r3
5 bootstrap tv, r2
6 homsub r1, r2
7 return r1

TABLE VI: An example sequence of NVMe commands
(Write(d) represents an NVMe Write command with data d.
Read(d) represents an NVMe Read command with data d.
MD(x, y, z) represents the NVMe metadata of Type x, Key
Identifier y, and Data Identifier z. An NVMe command com-
pletion (not shown in the figure) is returned for each NVMe
command. Abbreviations: BK: bootstrapping key. KSK: key-
switching key. PRG: secure computing program)

No. NVMe Command Comment

1 Write(MD(2,0,1)) BKNTT
2 Write(k0) BKNTT data

3 Write(MD(2,0,2)) KSK
4 Write(k1) KSK data

5 Write(MD(1,0,0)) TV1
6 Write(v1) TV1 data

7 Write(MD(0,0,0)) PRG
8 Write(p) PRG data

9 Write(MD(3,0,1)) TLWE-CoR

10 Write(s1) TLWE-CoR data for TLWE sample s1
encrypting value x

11 Write(MD(4,0,2)) TLWE-CoW

12 Write(s2)
TLWE-CoW data for TLWE sample s2
to be used for encrypting f(x). Secure
computing program p is invoked here.

13 Read(MD(4,0,2)) TLWE-CoW

14 Read(s2) TLWE-CoW data for TLWE sample s2
encrypting value f(x)

convenience, the NTT and INTT constructions for N = 8
are shown in Figure 5. The NTT and INTT constructions
are the same as those in Figure 1 in [39]. In the proposed
implementation, ω = 10930245224889659871 and ψ =
3333600369887534767. Appendix A provides mathematical
derivations for the NTT and INTT constructions using the
two types of butterfly elements. There is another optimization
scheme described in [24] in which a specific N th root of unity
for which the 64-th root of unity is 8, but the scheme is not
used for our accelerator because not all twiddles derived from
the specific N th root of unity have a power of two. Thus,
more logic resources are required to implement the two types
of butterfly circuits (one for power-of-2 twiddles and another
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for other twiddles).
For a complete INTT operation, a normalization factor of

1/N is required for each output element of the INTT as shown
in Figure 5. This scaling can be precomputed [39] for the input
of an NTT operation depending on the arithmetic operation
that uses the NTT in its implementation. In TFHE, the CMux
gate [20], as defined below, is an arithmetic operation in which
1/N scaling can be precomputed.

CMux(C, d0, d1) =
(k+1)ℓ∑
i=1

ui · Ci + d0 = ⟨u,C⟩+ d0,

where C = (Ci)1≤i<(k+1)ℓ is a Torus Ring GSW (TRGSW)
sample, d0 and d1 are TRLWE samples, and u =
(u1, u2, ..., u(k+1)ℓ) ∈ (Z[X]/(XN + 1))(k+1)ℓ is the output
of the Gadget Decomposition for d1 − d0 and ⟨x, y⟩ denotes
the inner product of two vectors x and y.

In [20], CMux gates were used inside the TFHE Blind
Rotate algorithm, which is invoked from the TFHE Gate Boot-
strapping algorithm (Case 1) or the TFHE Vertical Packing
algorithm used together with the TFHE Circuit Bootstrap-
ping [20] (Case 2). In Case 1, Ci is the ith TRGSW sample
of bootstrapping key BK. In Case 2, Ci is the ith TRGSW
sample of the output of Circuit Bootstrapping, calculated
as a linear sum of the elements of private functional key-
switching key PrvKSK. Because Ci is generally a linear sum
of constant polynomials in both cases and takes advantage
of the linearity property of NTT, our optimized CMux gate
uses pre-scaled and pre-transformed keyntt = (keyntti)i =
(NTT(N)(keyi/N))i, where keyi is the ith element of BK or
PrvKSK, as follows:

⟨u,C⟩ = 1

N

(k+1)ℓ∑
i=1

INTT(N)
(

NTT(N)(ui)⊙ NTT(N)(Ci)
)

= INTT(N)

(k+1)ℓ∑
i=1

NTT(N)(ui)⊙ NTT(N)(Ci/N)


= INTT(N)

(k+1)ℓ∑
i=1

NTT(N)(ui)⊙ ⟨c′i, keyntt⟩

 (1)

where NTT(N)(·) and INTT(N)(·) are N -point NTT and INTT
functions, respectively. ⊙ denotes the Hadamard product.
c′i = (c′i,j)1≤j≤(n+1)t is an integer vector with c′i,j = δij for
Case 1 where δij is the Kronecker delta function, and c′i,j =
−c̃i,j−1 div t,j−1 mod t for Case 2 where (c̃i,j,k)1≤j≤n+1,1≤k≤t

are t bit-decomposed TLWE samples generated from the i-th
TLWE sample in private-functional key-switching [20]. This
optimization halves the number of NTT operations performed
in CMux. To date, we have implemented only Case 1.

Figure 6 shows two types of radix-2 butterfly calculation
elements: one for NTT and the other for INTT. Our imple-
mentation integrates these two types of butterfly calculation
elements into a single integrated butterfly circuit, as shown
in Figure 7. The integrated butterfly circuit has the same
construction as the NTT and INTT parts of the unified butterfly
circuit described in Ref. [51].

Figure 8 shows the pipeline and parallel processing model
for computing NTT and INTT in the module processor. The
NTT/INTT circuit in the module processor has 32 integrated
butterfly circuits operating in parallel at 200MHz, and is
partitioned into two sub-circuits of 16 integrated butterfly
circuits, where each sub-circuit processes one of the two
polynomials in a sample (a, b) ∈ {Z[X]/(XN + 1)}2. Data
processing within each integrated butterfly circuit is pipelined
such that the subsequent coefficients and twiddles are read
from the BRAM during the butterfly calculation for the current
coefficients and twiddles. Each integrated butterfly circuit
performs 512 butterfly calculations in the pipeline to compute
one row of NTT or INTT. Note that the transfer of coefficients
between the HBM and BRAM is performed by the data mover
in the background of the module processor pipeline, which
never causes pipeline stall owing to the high bandwidth of the
HBM.

Figure 9 shows the die layout of the accelerator. Two design
policies were applied to reduce data transfer among the SLRs.
First, each sub-circuit of the module processor is laid out in a
different SLR (i.e., SLR#2 and SLR#3 in Figure 9). Second,
the data movers are placed in SLR#1, which is the closest SLR
to the HBM, as the data movers are the interface between the
HBM and other FPGA logic.

F. Computing modulo prime p = 264 − 232 + 1

NTT for a 32-bit torus can use any prime number greater
than (232 − 1)2 = 264 − 233 + 1. We chose a Proth prime
p = 264 − 232 + 1 = 18446744069414584321 as used in
existing open-source TFHE implementations because modulo
calculation for a Proth prime requires no integer multiplication
calculation. For two integers x, y ∈ [0, p), z = xy can
be decomposed into three parameters a, b ∈ [0, 232) and
c ∈ [0, 264) as z = a · 296 + b · 264 + c, z mod p for z is
calculated using addition, subtraction, shift, and comparison
operations as follows.

z mod p =


m(z), if z < 2p
m
(
m(b · 232)+
m
(
m(c) + p−m(a+ b)

))
, otherwise

where

m(j) =

{
j, if j < p
j + uint32(−1), if j ∈ [p, 2p).

Although a 32-bit polynomial ring multiplication via NTT
requires 64-bit to 64-bit integer multipliers compared with
naive 32-bit polynomial ring multiplication without NTT us-
ing 32-bit to 32-bit integer multipliers, the former requires
only 4(N/2) log2N = 2Nlog2N cycles of 32-bit to 32-bit
integer multiplications when a 64-bit to 64-bit multiplier is
implemented by four 32-bit to 32-bit multipliers. In contrast,
the latter requires N2 cycles of 32-bit to 32-bit integer
multiplications.

V. MIDDLEWARE

Set/get sc_metadata and sc_data to/from the accel-
erator and allow the accelerator to execute secure comput-
ing programs via NVMe commands, the middleware of our
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Fig. 5: N -point NTT and INTT constructions for N = 8 (ω
and ψ are N th and 2N th roots of unity, respectively. {ωi :
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NTT twiddle factors, respectively. fi is the ith input element
in the time domain. f(ωi) is the value in the frequency domain
for fi. INTT’s row number is in reverse order of NTT’s row
number)

platform uses the Blobstore feature of Storage Performance
Development Kit (SPDK) (https://spdk.io/). Figure 10 shows
the middleware architecture. The middleware API functions
and the internal API functions from SPDK and SPDK Blob-
store (hereafter the blobstore) are callback-based functions
to achieve high-performance and nonblocking NVMe storage
access; functions directly or indirectly interact with an abstrac-
tion thread library primarily based on the Portable Operating
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Fig. 6: Two types of radix-2 butterfly circuits at row
log2 n (Left: NTT butterfly, Right: INTT butterfly, n =
2, 4, . . . , 2i, . . . , N, 0 ≤ j < n/2, ωn = ωN/n, ψn = ψN/n.
N is a power of 2)
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Fig. 7: Integrated Butterfly Circuit

System Interface (POSIX).
The blobstore manages user data as blobs. A blob consists of

blob data that contains user data and blob metadata describing
attributes, such as the size of the blob data. Blob data and
metadata are stored as clusters, each consisting of one or more
pages stored in consecutive logical blocks. The first cluster
stores pieces of blob metadata in its corresponding region,
and the remaining clusters store pieces of blob data. The host
RAM maintains a copy of the blob metadata region.

The accelerator can assemble VRs without overhead be-
cause it accesses the blob metadata region of the disk or
maintains a copy of the blob metadata region in the HBM
or BRAM (1) by using the extended portion of blob metadata
to pass secure computing metadata between the middleware
API and the Blobstore API, and (2) by mapping between the
blob metadata and sc_metadata in one of the following
ways.

The mapping is straightforward for NVMe SSDs supporting
NVMe Metadata; the middleware places sc_metadata into
the NVMe Metadata part of an NVMe Read/Write command
for reading or writing a page or pages of a cluster. For

https://spdk.io/
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other NVMe SSDs that do not support NVMe Metadata, the
middleware partitions the entire NVMe LBA space into two
equally-sized LBA subspaces, using the first LBA subspace
to store all clusters and the second LBA subspace to store
sc_metadata. Let L = log2(Smax) where Smax is the max-
imum size of the blob storage, p(i, j, k) be the kth page of the
jth cluster of the ith blob, a(i, j, k) be the LBA of p(i, j, k),
respectively. Then, the LBA of the sc_metadata for the
jth cluster of the ith blob is calculated as a(i, j, 0)+2L−1, as
shown in Figure 11. The current middleware and accelerator
implementations are based on the latter scheme. Note that
a more space-efficient subspace management is possible for
the latter scheme by packing pieces of sc_metadata into
consecutive logical blocks in the second LBA subspace to

provide more room for the first LBA subspace.
The middleware API functions were written in Rust (https:

//www.rust-lang.org/) and are listed in Table VII. Because the
blob sizes for some VRs, such as BKNTT, can be large, two
methods were defined for blob read and write commands. One
method specifies the file name as the source and destination
of the blob data in write_blob1 and read_blob1, re-
spectively. The second method specifies the memory address
as the source and destination of blob data in write_blob2
and write_blob2, respectively.

TABLE VII: Middleware API functions (The last two argu-
ments of each API function are a callback function and its
argument)

Function Arguments

create blob
- md: Metadata
- cb_fn: spdk_blob_op_with_id_complete
- cb_arg: *mut c_void

delete blob
- blobid: BlobId
- cb_fn: spdk_blob_op_complete
- cb_arg: *mut c_void

write blob1

- blobid: BlobId
- data_file: String
- cb_fn: spdk_blob_op_complete
- cb_arg: *mut c_void

write blob2

- blobid: BlobId
- data: &mut Vec<u8>
- cb_fn: spdk_blob_op_complete
- cb_arg: *mut c_void

read blob1

- blobid: BlobId
- data_file: String
- cb_fn: spdk_blob_op_complete
- cb_arg: *mut c_void

read blob2

- blobid: BlobId
- data: &mut Vec<u8>
- cb_fn: spdk_blob_op_complete
- cb_arg: *mut c_void

U
se

r S
pa

ce

Middleware API (Rust program)

Secure Computing Applications (User Space)

SPDK Blobstore API (C program)

SPDK Library (C program)

  NVMe Transport Module (PCIe, NVMe-oF, etc.)

Fig. 10: Middleware architecture

VI. PERFORMANCE EVALUATION

In addition to developing a full-fledged secure computing
platform for TFHE using an FPGA-based accelerator, we
provide a system-level comparison of FPGA-based, GPU-
based and CPU-based secure computing platforms. We then

https://www.rust-lang.org/
https://www.rust-lang.org/
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performed a simple linear regression with ciphertexts on our
platform and compared the learning results when the com-
putational accuracies were 10 and 14 bits. This section uses
the following TFHE parameters to evaluate our secure com-
puting platform with an FPGA-based accelerator: n = 800,
α = 2−19, N = 16384, k = 1, Bg = 26, l = 5, t = 7 where
α is the standard deviation of the noise. This parameter set
provides 128-bit classical security [4] using a lattice parame-
ter estimator tool (https://github.com/malb/lattice-estimator).
Table VIII shows the sizes of fixed-length VRs with this
parameter set.

Note that N = 16384(= 214) was chosen for providing
14-bit plaintext accuracy via PBS and k = 1 was chosen
following all known TFHE implementations. (Bg, l) = (26, 5)
was chosen to satisfy that l · log2Bg is as close to as but
no more than the bit length of Torus. In our architecture,
Bg is the parameter that controls tradeoff between reliability
of decryption and processing speed. Smaller Bg makes the
amount of noise accumulated in the ciphertext lower, and
hence increases the reliability of decryption. On the other
hand, smaller Bg makes l larger, which in turn makes the size
of BKNTT and bootstrapping processing time larger. For ex-
ample (Bg, l) = (24, 8) makes BKNTT size and bootstrapping
time 8/6 = 1.3 times larger than those for (Bg, l) = (26, 5)
at the cost of increasing decryption reliability.

TABLE VIII: Evaluated virtual register sizes (BK: bootstrap-
ping key, BKNTT: NTT-applied bootstrapping key, KSK: key-
switching key)

Type Data Identifier VR Size in bytes

2 (KEY) 1 (BKNTT) 2.10GB
2 (KSK) 367MB

3 (TLWE-CoR) any 3.2KB

4 (TLWE-CoW) any 3.2KB

A. Amount of FPGA resources

Table IX lists the number of FPGA resources used. BRAM
resources are the most utilized resource in FPGA. Table X

lists the number of FPGA logic resources for each function.
The computing engine uses logic resources three times more
than the NVMe bridge does.

TABLE IX: FPGA resources (LUT: Look-Up Table, FF: Flip
Flop, BRAM: Block RAM, URAM: Ultra RAM, DSP: Digital
Signal Processor)

Resource Utilization Available Utilization (%)

LUTs 625520 1303680 47.98
FFs 763718 2607360 29.29

BRAM Blocks 1265.50 2016 62.72
URAM Blocks 96 960 10.00

DSP Slices 1564 9024 17.33

TABLE X: Breakdown of FPGA resources (NB: NVMe
Bridge, CE: Computing Engine. Registers are constructed
from FFs)

Name LUTs Registers BRAM URAM DSP
Blocks Blocks Slices

NB 134504 115600 233 0 9
CE 461123 615303 1023.5 64 1549

Other 29893 32818 8 32 6

B. Secure computing instruction execution time

Table XI lists the average, minimum, and maximum ex-
ecution times of each secure computing instruction by our
accelerator. The minimum and maximum values for Boot-
strap execution time are within ±10us of the average value.
Table XII shows the average execution times of GBS for
comparing a software-based platform, a GPU-based platform,
and our FPGA-based platform.

Our FPGA-based platform uses an AMD Ryzen 9
5950X (3.4-4.9GHz/16-core/32-thread/ 64MB cache) CPU
with 128GB RAM as its host-side CPU. We took ten runs
for each secure computing instruction on the accelerator.

The software-based platform uses TFHEpp, an open-source
TFHE implementation [35], running on two CPU architec-
tures: AMD Ryzen 9 5950X (the same CPU as the host-side
CPU of our FPGA-based platform) and Apple M1 (an ARM-
based system-on-a-chip (SoC) processor) with 16GB RAM.
As an open-source software, we used the gatebootstrappingntt
test suite from the TFHPpp [35] with commit c6c5a38, using
the same parameter set as our accelerator. Ten measurements
were taken for the gatebootstrappingntt test suite on
the CPU.

For GPUs, NVIDIA Tesla T4 on AWS EC2
g4dn.2xlarge and NVIDIA A100 with 40GB HBM
on a local PC with AMD Ryzen 7 5800X (3.8-4.7GHz/8-
core/16-thread/ 32MB cache) CPU with 128GB RAM
were used, both running a modified version of the cuFHE
library [1] to add support for N = 16384. The source
code of the modified cuFHE library is available at
https://github.com/eaglys-platform/cuFHE16384.git. The
original cuFHE library only supports GBS for N = 1024

https://github.com/malb/lattice-estimator
https://github.com/eaglys-platform/cuFHE16384.git
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and contains several flaws in its NTT implementation, such
as the lack of multiplication by a twiddle factor inside
the radix-2 butterfly. We also addressed these flaws for
a fair comparison. We implemented two GPU schemes:
Schemes 1 and 2. In Scheme 1, each thread performs one
butterfly calculation at each butterfly stage of NTT/INTT by
allocating eight streaming multiprocessors (SMs) for each
NTT and INTT, and at most 8(k + 1)(= 16) NTT or INTT
operations run in parallel on 16 SMs. In Scheme 2, each
thread sequentially performs eight butterfly calculations at
each stage of NTT/INTT by allocating one SM for each
NTT, and at most (k + 1)ℓ(= 10) NTT or INTT operations
run in parallel on 10 SMs. While both Schemes 1 and 2
worked with T4, Scheme 2 did not work with A100 due to a
runtime resource shortage error. With T4, Scheme 1 achieves
a higher parallelism than Scheme 2, whereas Scheme 2 avoids
device-level thread synchronization during GBS processing,
including NTT and INTT. In both schemes, there are 1024
threads per SM. Both schemes were implemented to generate
less than 1024 · M instantaneous threads where M is the
maximum number of SMs and M = 40 for T4 and M = 108
for A100. For the GPUs, 100 GBS measurements were taken.

Note that device-level thread synchronization is required
among threads across all SMs. We also note that the entire
NTT or INTT input or output data for N = 16384 coefficients
of a polynomial fit into the L2 cache of the GPU device,
whereas the data do not fit into the L1 cache of a single SM.
Regarding the GBS processing time for N = 16384, our accel-
erator outperformed the CPU-based and GPU-based platforms
by 15 to 120 times and by 2.5 to 3 times, respectively.

Figure 12 shows the GPU and FPGA processing break-
downs of GBS. The GPU is three to four times slower than
the FPGA in processing NTT and INTT, whereas there is no
significant difference for non-NTT/INTT operations. Figure 13
shows the GPU processing breakdown of the NTT and INTT.
A comparison of Schemes 1 and 2 of Tesla T4 in Figure 13
shows the tradeoff between parallelism and synchronization
in the GPU. Figure 13 also shows that NTT and INTT are
memory-bandwidth-bound workloads for the GPU. Comparing
T4 and A100 on Scheme 1 NTT/INTT performance in Fig-
ure 12, A100 shows higher NTT/INTT processing time than
T4. This is because A100 has more SMs than T4, and hence
it takes longer time for device-level thread synchronization.

Our FPGA outperforms the GPU in terms of GBS process-
ing time for large degree (such as N = 16384) polynomials
because (i) our FPGA allows multiple integrated butterfly
circuits to access different BRAM blocks in parallel, (ii) our
FPGA pipelines butterfly calculation and memory access, and
(iii) our FPGA does not require device-level thread synchro-
nization.

C. Secure computing program execution time

Table XIII lists the execution time of a secure computation
program on our platform. We use the secure computing pro-
gram listed in Table V. Correctness of the program is validated
by comparing the decrypted and decoded return value z with
the multiplication of the two cleartext input values x and y for

TABLE XI: Secure computation instruction execution time
on our accelerator. The minimum and maximum values for
Bootstrap execution time are within ±10us of the average
value

Instruction Average Minimum Maximum

Bootstrap 249.96ms 249.96ms 249.97ms
HomAdd 124us 124us 125us
HomSub 124us 124us 125us

HomIntMult 90us 90us 90us

TABLE XII: GBS execution time comparison

CPU-based Platform
Ryzen 9 Apple M1

3.97s 30.8s

GPU-based Platform

Tesla T4 A100

617ms (Scheme 1)
731ms (Scheme 1)

754ms (Scheme 2)

FPGA-based Platform 250ms
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TSi: T4 Scheme i(i = 1, 2), AS1: A100 Scheme 1

Fig. 12: GPU and FPGA Processing Breakdown for GBS

x, y, z ∈ [a, b), and the validation succeeds if |z − xy|/b ≤ h
where a = −10.0, b = 10.0, h = 0.3. According to Table XIII,
since the program contains two bootstrap instructions,
each taking 249.96ms, bootstrapping dominates the overall
performance of the execution time of a secure computing
program compared to the execution time of other instructions
and the processing time of the NVMe Write command for
invoking the program and writing the program’s output to the
SSD.

D. Power and energy consumption

Tables XIV, XV, and XVI show the electric power and
energy consumption, and GBS throughput per USD of the soft-
ware, A100 GPU, and FPGA-based platforms, respectively.
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Device synchronization
Memory access

Fig. 13: GPU Processing Breakdown for NTT and INTT

TABLE XIII: Secure computation execution time on our
platform for a program homomorphically computing xy. The
total includes the computing time and the processing time
of the NVMe Write command for invoking the program and
writing the TLWE sample carrying the return value to the SSD.

Computing time Total

500.39ms 502.28ms

The power consumption of the Ryzen 9 CPU was mea-
sured using the AMD µProf tool (https://www.amd.com/en/
developer/uprof.html). The power consumption of the Ap-
ple M1 CPU was measured using the Mx Power Gad-
get tool (https://www.seense.com/menubarstats/mxpg/). The
power consumption of A100 GPU was measured using the
nvidia-smi command. Because the virtual performance
monitoring unit (vPMU) feature is disabled in the AWS
hypervisor, power data for CPU hositng T4 is unavailable.
The power consumption of our FPGA accelerator board is
measured using a Tektronics A622 current probe and Pico-
Scope 3206A oscilloscope with the current probe attached
to the 12V PCIe power connector of the FPGA board. The
probe measures current every 500ms and provides 10mV
outputs for each Ampere. For example, if the probe outputs
20mV, the measured current is 20(mv)/10(mV/A)=2(A), and
hence the measured power is 2(A)×12(V)=24(W). Energy
consumption was calculated using the power consumption
and GBS execution time, as described in Section VI-B. The
GBS throughput per USD is 3600 · 1000/(CE), where C

is the electricity price in USD/kWh, and E is the energy
consumption per GBS in joules. We use C = 0.086 which
is the average price for industrial electricity consumers in the
United States for 2023 (https://www.statista.com/statistics/).

Table XVII shows the breakdown of the power consump-
tion on the FPGA chip (XCVU47P) of our accelerator esti-
mated using the Xilinx Vivado tool (https://www.xilinx.com/
products/design-tools/vivado.html), with a default toggle rate
of 12.5%, where the toggle rate reflects how often the outputs
of the gates change per clock cycle on average. The estimated
total on-chip power in Table XVII(a) is less than the measured
power of the FPGA board during GBS in Table XIV because
Table XVII(a) is calculated based on the reference clock
frequency of 150MHz. We use the dynamic clock reconfig-
uration feature of the phase-locked loop (PLL) to increase the
operating frequency to 200MHz.

Our FPGA-based platform may consume more power when
idle or processing GBS than software and GPU-based plat-
forms. However, during GBS execution, our platform con-
sumes less energy than other platforms. Our platform uses 12
times less energy than Ryzen 9 and seven times less energy
than Apple M1. It also uses 4.95 times less energy than A100-
based platform. Our platform offers higher GBS throughput
per watt and GBS throughput per USD than any other plat-
form. As shown in Table XVII, the HBM consumes more
than 50% of the dynamic power of the FPGA chip. Because
NTT and INTT are memory-bandwidth-bound workloads, our
accelerator is optimally designed to utilize the most needed
power. In future work, we plan to explore the implementation
of a power-saving scheme to reduce the energy consumption
during idle states.

TABLE XIV: Comparison of power consumption (Upper:
During idle state, Lower: During GBS)

CPU-based Platform

Ryzen 9 Apple M1

18.61W 0.082W

63.08W 4.64W

GPU(A100)-based Platform

CPU+GPU (GPU-only)

52.32W (33.61W)

131.80W (72.42W)

FPGA-based Platform

CPU+FPGA (FPGA-only)

60.84W (42.23W)

77.79W (59.18W)

TABLE XV: Comparison on energy consumption per GBS

CPU-based Platform
Ryzen 9 Apple M1

250.42J 142.91J

GPU(A100)-based Platform
CPU+GPU (GPU-only)

96.21J (52.87J)

FPGA-based Platform
CPU+FPGA (FPGA-only)

19.44J (14.80J)

https://www.amd.com/en/developer/uprof.html
https://www.amd.com/en/developer/uprof.html
https://www.seense.com/menubarstats/mxpg/
https://www.statista.com/statistics/
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
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TABLE XVI: Comparison on GBS throughput per USD

CPU-based Platform
Ryzen 9 Apple M1

167161 29291

GPU(A100)-based Platform 435095

FPGA-based Platform 2153316

TABLE XVII: Breakdown of the power consumption on FPGA
chip

(a) On-Chip Power

Element Power %

Hard IP 0.59W 1%
Dynamic 45.63W 88%

Static 5.89W 11%
Total 52.11W 100%

(b) Dynamic Power

Element Power %

Clocks 3.71W 8%
Signals 5.75W 13%
Logic 4.47W 10%

BRAM 2.07W 5%
URAM 0.24W 1%

DSP 0.73W 2%
I/O 0.03W < 1%

HBM 25.27W 52%
Other 3.36W 9%
Total 45.63W 100%

E. Application performance

Finally, we demonstrate the performance of a machine learn-
ing application running on our secure computing platform.

Auto-MPG dataset (https://www.tensorflow.org/tutorials/
keras/regression?hl=en) was used for a simple linear regres-
sion application and choose the column “Horsepower” and
“MPG” as the explanatory variable and the objective variable,
respectively. The total number of data samples in the dataset
is 392. The dataset was pre-processed and then a randomly
chosen subset of D samples of the pre-processed dataset was
input to the linear regression application. In the pre-processing
stage, the dataset was normalized by dividing each data sample
by the scaled size parameter, where scaled size is a positive
integer with an upper bound of (b−a)/2w for a given precision
of w bits. Table XVIII shows the upper bound of scaled size
versus w for the simple linear regression model given by
y = Ax+B.

We iteratively run ciphertext learning, or the simple linear
regression learning model calculated homomorphically using
our secure computing platform for pre-processed D data
samples that are encoded in w bits in cleartext and encrypted
as TLWE samples with increasing D, where scaled size for
w is chosen from Table XVIII.

The iteration started from D = 2 until an overflow was
detected. We consider that an overflow occurs when the dif-
ference between the decrypted result of ciphertext learning and
the result of cleartext learning, or the cleartext calculation of
the simple linear regression model for the same pre-processed
D data samples exceeds a certain threshold.

Tables XIX and XX present a comparison of the model
training results between cleartext learning and ciphertext learn-
ing for w = 14 and D = 15, where the relative error
represents the absolute value of the difference between the
cleartext value and the value of the decrypted and decoded

ciphertext. Table XIX shows that the relative error of ciphertext
learning compared with cleartext learning was less than 0.5%
for w = 14 and D = 15.

Table XXI shows Dmax, or the maximum number of D, so
an overflow does not occur in cleartext learning. We observed
an overflow even at D = 2 for w = 10. Therefore, using
SDP with N = 210 for ciphertext learning on this dataset is
impossible. Additionally, to perform ciphertext learning over
the entire dataset, at least 18-bit precision is required.

Table XXII presents a comparison of the model training
results between cleartext learning and ciphertext learning for
(w,Dmax) ∈ {(11, 2), (12, 4), (13, 7), (14, 15)}. For both
cleartext learning and cipertext learning the relative error
decreases with a larger w. Finally, Table XXIII shows the
total execution time (tl) of ciphertext learning for (w,Dmax)
mentioned above and the total bootstrapping time (tb) during
ciphertext learning, where tb is calculated as the product of
the total number of bootstrap instructions executed and
the mean bootstrap instruction execution time shown in
Table XI.

Tables XXI and XXII show that as w increases, more data
samples can be analyzed with greater precision. Moreover,
Table XXIII shows that bootstrapping accounted for more
than 80% of the ciphertext learning time and the percentage
increased with Dmax determined by precision w. These tables
indicate that bootstrapping significantly dominates ciphertext
learning time and further improvements in both precision and
bootstrapping speed are expected.

Note that the purpose of showing the application perfor-
mance is to show that the proposed platform with providing
14-bit plaintext accuracy works for a small machine learing
application. The application performance also shows that 14-
bit plaintext accuracy is still insufficient for applying our
platform to wider range of applications, and thus extending
our platform to support 16-bit or more plaintext accuracy is
needed for real-world deployment.

TABLE XVIII: Upper bound of scaled size versus required
precision (w)

w Upper Bound of scaled size
10 51
11 102
12 204
13 409
14 819
15 1638
16 3276
17 6553
18 13107

TABLE XIX: Comparison on the model’s training results for
w = 14 and D = 15

model Cleartext Ciphertext Relative
Learning Learning Error

A -0.05481 -0.05005 0.0048
B 0.03086 0.02930 0.0016

https://www.tensorflow.org/tutorials/keras/regression?hl=en
https://www.tensorflow.org/tutorials/keras/regression?hl=en
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TABLE XX: Comparison on the model’s training progress for
w = 14 and D = 15

Term Cleartext Ciphertext Relative
Learning Learning Error∑

xiyi 0.05923 0.05981 0.0006∑
xi 3.15000 3.15308 0.0031∑
yi 0.29024 0.29053 0.0003∑

xi
∑

yi 0.91427 0.91553 0.0013∑
xi

∑
yi/D 0.06095 0.06104 0.0001∑

xiyi −
∑

xi
∑

yi/D -0.00172 -0.00122 0.0005∑
x2
i 0.69293 0.68604 0.0069

(
∑

xi)
2 9.92250 9.94141 0.0189

(
∑

xi)
2/D 0.66150 0.66162 0.0001∑

x2
i − (

∑
xi)

2/D 0.03143 0.02441 0.0070
(
∑

x2
i − (

∑
xi)

2/D)−1 0.31812 0.40894 0.0908
A -0.05481 -0.05005 0.0048∑

(y − ax) 0.46291 0.44922 0.0137
B 0.03086 0.02930 0.0016

TABLE XXI: Maximum number of data samples without
overflow (Dmax) versus required precision (w)

w Dmax

11 2
12 4
13 7
14 15
15 37
16 81
17 174
18 392

TABLE XXII: Comparison on the model’s training results
versus (w,Dmax)

(w,Dmax) Model Cleartext Ciphertext Relative
Learning Learning Error

(11,2) A
B

-0.08572
0.28572

-0.10620
0.31250

0.0205
0.0268

(12,4) A
B

-0.07477
0.13694

-0.09033
0.14771

0.0156
0.0108

(13,7) A
B

-0.04174
0.05628

-0.03540
0.05371

0.0063
0.0026

(14,15) A
B

-0.05481
0.03086

-0.05005
0.02930

0.0048
0.0016

TABLE XXIII: Bootstrap and ciphertext learning time (tb and
tℓ) versus (w,Dmax)

(w,Dmax) tℓ tb tb/tℓ
(11,2) 6.151s 4.999s 81.27%
(12,4) 9.394s 7.999s 85.15%
(13,7) 14.23s 12.50s 87.84%

(14,15) 27.26s 24.50s 89.88%

VII. CONCLUSION

We successfully developed and implemented an exception-
ally secure computing platform that utilizes NVMe technology,
an FPGA-based TFHE accelerator, an SSD, and middleware
on the host side. Our platform stands out from the crowd as it
supports a set of secure computing instructions that enable the
evaluation of any 14-bit to 14-bit function using TFHE and
virtual registers. Our performance evaluations demonstrated
that our platform outperformed the CPU-based and GPU-
based platforms by 15 to 120 times and 2.5 to 3 times,
respectively, in gate bootstrapping execution time. Further-
more, our platform has lower electric energy consumption

during the gate bootstrapping execution time, outperforming
the CPU-based one by 7 to 12 times and a GPU-based one by
4.95 times, respectively. We also demonstrated the application
performance of a simple linear regression model running on
our platform.

Moving forward, we are confident of our ability to develop
a compiler and assembler to convert applications into instruc-
tions that can be executed on our secure computing platform
by using our middleware API. We also plan to implement and
evaluate the extended architecture to include clusters of FPGA-
based accelerators and NVMe SSDs interconnected through
a high-speed network by using Kubernetes and NVMe-oF
to increase the scalability and robustness of our platform.
Finally, we can confidently extend the platform’s capabilities
to support secure computing of 16-bit to 16-bit or higher
precision functions.

APPENDIX

This section provides the equations and algorithms that lead
to the NTT and INTT constructions described in Section IV-E.

A. Equations

We derived equations used as the basis for NTT and INTT
butterflies, as shown in Figures 5, 6, and 7. Let ωN = ω and
ψN = ψ. The following equations were used: ω2

N = ωN/2,
ψ2
N = ψN/2, ωN

N = 1, and ωN/2
N = −1.

1) Equations for NTT butterfly: We denote NTT(N)
i (f) and

DFT(N)
i (f) as the ith output of N -point NTT and Discrete

Fourier Transform (DFT) for the time-domain input vector
f = (f0, . . . , fN−1) ∈ (Z/pZ)N , respectively.

An NTT butterfly is composed using a Cooley-Tukey (CT)
butterfly by partitioning the input vector F into two subvectors
Fev and Fod where Fev contains even elements from the
starting index 0 of F and Fod contains odd elements from
the starting index 0 of F .

Let ΨN = (1, ψN , . . . , ψ
N−1
N ). Let

Ai =

{
NTT(N/2)

i (Fev) if 0 ≤ i < N/2

NTT(N/2)
i−N/2(Fev) o.w.

,

Bi =

{
NTT(N/2)

i (Fod) if 0 ≤ i < N/2

NTT(N/2)
i−N/2(Fod) o.w.

.

Then, equations used for NTT butterfly are derived as follows:

NTT(N)
i (f) = DFT(N)

i (ψN ⊙ f) =
N−1∑
j=0

ψj
Nfjω

ij
N .

where ⊙ denotes the Hadamard product.
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(i) For 0 ≤ i < N/2,

NTT(N)
i (f) =

N/2−1∑
j=0

(f2jψ
2j
N )ω

i(2j)
N

+

N/2−1∑
j=0

f2j+1ψ
2j+1
N ω

i(2j+1)
N

=

N/2−1∑
j=0

f2jψ
j
N/2ω

ij
N/2

+ ψNω
i
N

N/2−1∑
j=0

f2j+1ψ
j
N/2ω

ij
N/2

= NTT(N/2)
i (fev) + ψNω

i
NNTT(N/2)

i (fod)

= Ai + ψNω
i
NBi.

(ii) For N/2 ≤ i < N ,

NTT(N)
i (f) =

N/2−1∑
j=0

(f2jψ
2j
N )ω

i(2j)
N

+

N/2−1∑
j=0

f2j+1ψ
(2j+1)
N ω

i(2j+1)
N

= ω
N/2·2j
N

N/2−1∑
j=0

(f2jψ
2j
N )ω

(i−N/2)(2j)
N

+ ω
N/2·(2j+1)
N

·
N/2−1∑
j=0

(f2j+1ψ
2j+1
N )ω

(i−N/2)(2j+1)
N

=

N/2−1∑
j=0

(f2jψ
j
N/2)ω

(i−N/2)j
N/2

− ψNω
(i−N/2)
N

N/2−1∑
j=0

(f2j+1ψ
j
N/2)ω

(i−N/2)j
N/2

= NTT(N/2)
i−N/2(fev)

− ψ−1
N ω

−(i−N/2)
N NTT(N/2)

i−N/2(fod)

= Ai − ψNω
(i−N/2)
N Bi.

We note that Ai−N/2 = Ai and Bi−N/2 = Bi for N/2 ≤ i <
N by ωN/2

N/2 = 1. So,

NTT(N)
i (f) = Ai − ψNω

(i−N/2)
N Bi

= Ai−N/2 − ψNω
(i−N/2)
N Bi−N/2.

Each pair of Ai and Bi is the input of an NTT but-
terfly with a pair of (Ai + ψ−1

N ω−i
N Bi) and (Ai−N/2 −

ψ−1
N ω

−(i−N/2)
N Bi−N/2) as its outputs for 0 ≤ i < N/2 and

N/2 ≤ i < N , respectively.

2) Equations for INTT butterfly: We denote INTT(N)
i (F )

and uIDFT(N)
i (F ) as the ith output of N -point, unnormalized

Inverse NTT, and unnormalized Inverse DFT, respectively, for
the frequency-domain input vector F = (F0, . . . , FN−1) ∈
(Z/pZ)N , respectively.

Let Ψ−1
N = (1, ψ−1

N , . . . , ψ
−(N−1)
N ). Then, equations used

for INTT butterfly are derived as follows:

INTT(N)
i (F ) = uIDFT(N)

i (F )⊙Ψ−i
N = ψ−i

N

N−1∑
j=0

(Fj)ω
−ij
N ,

An INTT butterfly is composed of a Gentleman-Sande (GS)
butterfly whicn partitions the output vector INTT(N)(F ) into
two subvectors, one containing even elements of INTT(N)(F )
and the other containing odd elements of INTT(N)(F ).

Let

g = (gj)0≤j<N/2 = (Fj + fj+N/2)0≤j<N/2,

h = (hj)0≤j<N/2 = ((Fj − Fj+N/2)ψ
−1
N ω−j

N )0≤j<N/2.

(i) For i = 2r such that 0 ≤ r < N/2,

INTT(N)
2r (F ) = ψ−2r

N

N/2−1∑
j=0

Fjω
−2rj
N

+

N/2−1∑
j=0

Fj+N/2ω
−2r(j+N/2)
N


= ψ−r

N/2

N/2−1∑
j=0

Fjω
−rj
N/2

+

N/2−1∑
j=0

Fj+N/2ω
−rj
N/2


= ψ−r

N/2

N/2−1∑
j=0

(
Fj + Fj+N/2

)
ω−rj
N/2

= INTT(N/2)
r (g).

(ii) For i = 2r + 1 such that 0 ≤ r < N/2,

INTT(N)
2r+1(F ) = ψ

−(2r+1)
N

N/2−1∑
j=0

Fjω
−(2r+1)j
N

+

N/2−1∑
j=0

Fj+N/2ω
−(2r+1)(j+N/2)
N


= ψ−r

N/2ψN

N/2−1∑
j=0

Fjω
−j
N ω−rj

N/2

−
N/2−1∑
j=0

Fj+N/2ω
−j
N ω−rj

N/2


= ψ−r

N/2

·
N/2−1∑
j=0

(
(Fj − Fj+N/2)ψ

−1
N ω−j

N

)
ω−rj
N/2

= INTT(N/2)
r (h).
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Each pair of Fj and Fj+N/2 (0 ≤ j < N/2) is the input of
an INTT butterfly with the pair of (Fj + Fj+N/2) and (Fj −
Fj+N/2)ψ

−1
N ω−j

N as its outputs.

B. Algorithms

Algorithm 1 computes the NTT of a vector of length N .
Algorithm 1 computes in-place. The outputs from Algorithm
1 remain in bit-reversed order. We remind the reader that our
goal is to compute the convolution of polynomials represented
as vectors. Readers can refer to Equation (1) from Section IV-E
for the definition of the convolution. If the bits of the output
from Algorithm 1 are in canonical order, an additional cost
is incurred when computing the convolutions. Algorithms 1
and 2 do not output normalized transforms to save time when
calculating convolutions.

Algorithm 1 Number Theoretic Transform based on
Cooley-Tukey

Input: N , length of transform (N is a power of 2.)
Input: Φ = (ψN/2r+1

ωj2r )0≤r<log2 N,0≤j<2r ,
two-dimensional list of pre-computed twiddles with the
second dimension listed in bit-reversed order.

Input: a, data vector of length N in bit-canonical order
Output: NTT(a) in bit-reversed order

1: for 0 ≤ r < log2N do // NTT Row number minus 1
2: m← 2r

3: k ← N/2r+1

4: for 0 ≤ i < m do
5: j1 ← 2ik
6: j2 ← j1 + k // Interval length is k − 1
7: for j1 ≤ j < j2 do // Butterfly operations here
8: t← aj
9: u← aj+kΦr,i

10: aj ← t+ u
11: aj+k ← t− u
12: end for
13: end for
14: end for

Algorithm 2 Inverse Number Theoretic Transform based on
Gentleman-Sande
Input: N , length of transform (N is a power of 2.)
Input: Φ∗ = (ψ−N/2r+1

ω−j2r )0≤r<log2 N,0≤j<2r ,
two-dimensional list of precomputed twiddles with the
second dimension listed in bit-reversed order.

Input: a, data vector of length N in bit-reversed order
Output: INTT(a) in bit-canonical order

1: for 0 ≤ r < log2N do // INTT Row number minus 1
2: m← N/2r+1

3: k ← 2r

4: for 0 ≤ i < m do
5: j1 ← 2ik
6: j2 ← j1 + k // Interval length is k − 1
7: for j1 ≤ j < j2 do // Butterfly operations here
8: t← aj
9: u← aj+k

10: aj ← t+ u
11: aj+k ← (t− u)Φ∗

log2 N−r−1,i

12: end for
13: end for
14: end for

Algorithms 1 and 2 are similar to Algorithms 7 and 8 in
Ref. [39]. However, we note that Algorithms 7 and 8 from
[39] contain errors corrected here.
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