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Enabling Lattice-based Authentication Encrypted
Search with Ciphertext Broadcast for Cloud Storage

Yibo Cao, Shiyuan Xu, Xiu-Bo Chen, Gang Xu, Siu-Ming Yiu, and Zongpeng Li

Abstract—The development of cloud computing facilitates data
outsourced sharing and storage, but also brings up several
security issues. Public key authenticated encryption with keyword
search (PAEKS) enables the encrypted search over cloud data
while resisting the insider keyword guessing attacks (IKGAs).
However, existing PAEKS schemes are limited to a single
receiver, restricting application prospects in cloud storage. In
addition, quantum computing attacks and key leakage issues
further threaten the data security, which attracted extensive
attention from researchers. Therefore, designing an encrypted
search scheme to resist the above-mentioned attacks is still far-
reaching. In this paper, we first propose BroSearch, a lattice-
based authentication encrypted search with ciphertext broad-
cast. It utilizes lattice sampling algorithms to authenticate the
keyword and offers searchability over broadcasting ciphertext
while enjoying IKGAs-resistant in a quantum setting. To get
around key leakage issues, we then incorporate the minimal
cover set technique and lattice basis extension algorithm to
construct FS-BroSearch, as an enhanced version. Furthermore,
we give rigorous security analysis (IND-CKA and IND-IKGA)
and comprehensive performance evaluation of both schemes.
Specifically, the time cost of BroSearch is at least 0.61, 0.82,
and 0.83 times compared to prior arts in terms of ciphertext
calculation, trapdoor generation, and search procedures, which
is practical and effective for cloud storage.

Index Terms—Cloud storage, encrypted search, ciphertext
broadcast, keyword authentication, lattice, forward security.

I. INTRODUCTION

IN recent years, more and more organizations have out-
sourced their data to cloud servers to reduce storage main-

tenance and enhance service elasticity [1], [2]. However, as
semi-honest entities, cloud servers are vulnerable to a variety
of malicious attacks, including internal keyword guessing
attacks (IKGAs), which pose significant risks to data privacy.
To alleviate this issue, public key authenticated encryption
with keyword search (PAEKS) [3] has been widely studied. It
involves encrypting keywords while authenticating them using
a secret key of the data sender, enabling secure encrypted
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search and resisting IKGAs, thereby achieving the privacy-
preserving of cloud data.

Most PAEKS primitives are primarily designed for a single-
receiver model [3], [4], [5], [6], [7], [8], which involves
four key entities: the data sender, the data receiver, the
trusted authority, and the cloud server, as illustrated in Fig.
1. However, the expanding scale of cloud computing exposes
significant limitations for this model. In most cases, the same
data is distributed to multiple receivers simultaneously [9]. For
instance, in a healthcare cloud service, the encrypted medical
data owned by a specific patient is uploaded to the cloud,
and multiple healthcare professionals (e.g. doctors, nurses,
and pharmacists) need simultaneous access to collaborate
effectively. A straightforward approach to mitigating this issue
is to perform point-to-point encryption repeatedly. Nonethe-
less, the computational overhead grows significantly as the
number of receivers increases. A more efficient alternative
is broadcast authenticated encryption with keyword search
(BAEKS), which has been formalized in previous studies [10],
[11], [12]. BAEKS can broadcast a keyword ciphertext on a
public channel, allowing a set of receivers to search it without
incurring the additional computational overhead associated
with multiple point-to-point encryptions.

Unfortunately, existing BAEKS schemes still face two chal-
lenges. On the one hand, these schemes rely on classical hard-
ness assumptions (e.g. the discrete logarithm hardness), which
are vulnerable to quantum computing attacks. Lattice-based
cryptography, a quantum-resistant primitive widely adopted by
researchers for data privacy-preserving in cloud storage sys-
tems [5], [6], [7], [8], [13], [14], [15], [16], offers a promising
solution to this issue. On the other hand, in practical cloud
applications, a malicious adversary could calculate a trapdoor
corresponding to a specific keyword if it gains access to a data
receiver’s secret key. Then, the adversary sends it to the cloud
server, allowing it to match the keyword ciphertext and thereby
significantly compromise keyword security. To address this
concern, numerous researchers have introduced the concept of
forward security to several cryptographic systems [15], [17],
[7], [18], but there does not exist a forward secure BAEKS
scheme as so far.

Given this, IKGAs, quantum computing attacks, and key
leakage issues are three serious threats that need to be ad-
dressed urgently in cloud storage systems. This situation leads
us to the main questions addressed in this work:

Can we design an encrypted search scheme with ciphertext
broadcast to resist above-mentioned threats?

In this paper, we address the aforementioned question in
two milestones. Firstly, we propose BroSearch, a lattice-
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Fig. 1. A single-receiver encrypted search model for cloud storage.

based authentication encrypted search scheme with ciphertext
broadcast for cloud storage systems. BroSearch can broadcast
the keyword ciphertext to a set of receivers while preserving
the functionality of encrypted search. Additionally, it offers
enhanced data privacy-preserving in complex cloud storage
environments, as it is resistant to both IKGAs and quantum
computing attacks. To resist IKGAs, we embed a public matrix
U into the ciphertext and trapdoor, while invoking SampleLeft
algorithm to achieve keyword authentication. However, exist-
ing lattice-based PAEKS schemes [6], [19], [20] do not support
ciphertext broadcast capability. Addressing these issues is not
trivial. Unlike the above-mentioned schemes, we embed the
public keys of all receivers in a broadcast list L into the
ciphertext. Furthermore, during the trapdoor generation pro-
cess, we innovatively leverage the GenSamplePre algorithm,
allowing the calculation of a valid trapdoor by using the secret
key of any receiver in L. As a result, BroSearch successfully
facilitates both ciphertext broadcast and encrypted search for
cloud data.

Secondly, we extend BroSearch to develop the FS-
BroSearch scheme in response to the key leakage issue.
Inspired by Yu et al. [17], we introduce the binary tree
structure, the minimal cover set technique, and a lattice basis
extension algorithm to update the secret key. Thus, even if the
secret key of a specific receiver is compromised during a given
time period, an adversary is unable to generate a valid search
trapdoor for any previous time periods, thus FS-BroSearch can
mitigate the key leakage issue.

In a nutshell, our contributions are summarized as follows:

• We present BroSearch, a lattice-based authentication en-
crypted search scheme with ciphertext broadcast for cloud
storage. BroSearch enables the simultaneous broadcasting
of keyword ciphertext to a set of receivers, while pro-
viding resilience against IKGAs and quantum computing
attacks. Additionally, we propose an enhanced version
of BroSearch, named FS-BroSearch, which mitigates the
key leakage issue.

• We construct BroSearch by leveraging lattice algebraic
structures and lattice sampling algorithms. Specifically,
by invoking the GenSamplePre algorithm initially, each
receiver in the broadcast set can generate a valid search
trapdoor. Furthermore, in FS-BroSearch, we introduce a
binary tree structure, the minimal cover set technique, and

a lattice basis extension algorithm to enable time-period
representation and facilitate the secret key update for data
receivers.

• We provide the IND-CKA and IND-IKGA security mod-
els for both schemes, and show a rigorous security
analysis to demonstrate that their security can be reduced
to the Learning With Errors (LWE) hardness, thereby
ensuring their post-quantum security.

• We offer a detailed performance evaluation of BroSearch
and FS-BroSearch in terms of both computational and
communication overhead. In particular, the time cost of
Encrypt, trapdoor and Search algorithms in BroSearch
are at least 0.61×, 0.82×, and 0.83× compared to other
state-of-the-art schemes, which is more practical for cloud
storage systems.

The remainder of this paper is structured as follows. Section
2 presents numerous related works to showcase recent ad-
vancements. Following that, Section 3 provides an introduction
to the preliminary concepts. The system model, formal defi-
nitions, and security models for BroSearch and FS-BroSearch
are then depicted in Section 4. A detailed explanation and
its security analysis of BroSearch is demonstrated in Section
5, while Section 6 focuses on the FS-BroSearch scheme.
In Section 7, we delve into the performance evaluation and
comparison. Finally, we summarize this paper in Section 8.

II. RELATED WORKS

Huang et al. introduced a public-key authenticated encryp-
tion with keyword search (PAEKS) scheme to implement
keyword authentication through a data owner’s secret key [3].
To achieve scalability for healthcare cloud storage, Cheng et al.
presented a server-aided PAEKS scheme, ensuring the size of
the ciphertext and trapdoor constant [4]. Chen et al. proposed a
public-key authentication encryption with similar data search
for pay-per-query, namely PAESS, which can prevent cloud
servers and data users from colluding to deny chargebacks
[21]. Liu et al. put forward a generic construction for PAEKS
and an instantiation over lattice to achieve the anti-quantum
property [5], and enhanced its security [22]. Furthermore,
Cheng et al. pointed out some security issues [22], [12], and
constructed two PAEKS schemes over lattice [6]. Following
that, Liu et al. integrated attribute-based encryption [19] and
proxy re-encryption [20] into lattice-based PAEKS to enhance
the practicality for cloud storage systems.

Since encrypted messages can be decrypted by a specified
group of authorized users, broadcast encryption (BE), first
introduced by Fiat et al. [23], is often considered more prac-
tical in cloud storage systems. To enhance anonymity, Baee
et al. combined message authentication scheme with beacon
encryption, and then put forward an inter-vehicle broadcast
authentication with encryption scheme for vehicle-to-vehicle
(V2V) communication [24]. After that, Zhang et al. provided
an identity-based broadcast proxy re-encryption scheme for
fully anonymous data sharing [25]. Yin et al. constructed a
new dual-mode identity-based BE scheme, named DM-IBBE,
to protect sensitive data in smart contracts [26].

Ali et al. foresaw the combinability of BE and PEKS, and
constructed a broadcast SE scheme, which is a novel crypto-
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graphic primitive to search the keyword ciphertext encrypted
by the public key of a group of specified data users [27].
Enlightened by the concept of PAEKS, Liu et al. constructed
the BAEKS cryptographic primitive to resist IKGAs, and the
ciphertext and trapdoor security were proved under the DBDH
assumption [10]. Mukherjee introduced a stronger security
model, and ensured the ciphertext and trapdoor security in
the standard model [11]. Emura et al. put forward a generic
construction of fully anonymous BAEKS, which provides the
anonymity and consistency of keyword ciphertext and supports
multi-receiver model [12]. However, none of the aforemen-
tioned schemes can resist quantum computing attacks, and no
post-quantum encrypted search scheme supporting ciphertext
broadcast so far.

In 2019, a lattice-based forward secure public key with
keyword search (FS-PEKS) scheme is proposed by Zhang
et al., which utilized lattice basis delegation to update the
secret key [28]. After that, Yu et al. introduced the binary
tree structure, minimal cover set technique and lattice basis
extension to construct an efficient FS-PEKS scheme over
lattice [17]. For PAEKS primitive, Xu et al. constructed a
forward secure PAEKS over lattice, namely FS-PAEKS, to
achieve the IND-CKA and IND-IKGA secure [7].

To sum up, there exists a valuable requirement to construct
an encrypted search scheme with ciphertext broadcast and
extend it under the forward security property for resisting
IKGAs, quantum computing attacks, and key leakage issues.

III. PRELIMINARIES

Definition 1: Suppose a matrix M = (m1,m2, · · · ,mm) is
composed of m linearly independent vectors, the lattice Λ is
defined as: Λ = Λ(M) = {x1m1+x2m2+ · · ·+xmmm|xi ∈
Z, i ∈ [m]}, where M is a lattice basis of Λ.

Definition 2: Suppose three integers n, m, q, and a matrix
M ∈ Zn×m

q , a q-ary integer lattice is defined as:

Λq(M) := {v ∈ Zm|∃s ∈ Zn
q ,M

⊤s = v mod q}.

Λ⊥
q (M) := {v ∈ Zm|Mv = 0 mod q}.

Λu
q (M) := {v ∈ Zm|Mv = u mod q}.

Definition 3: Suppose a parameter σ ∈ R+, a center c ∈
Zm, and any vector v ∈ Zm, the discrete Gaussian distribution
over Λ is defined as: DΛ,σ,c(v) =

ρσ,c(v)
ρσ,c(Λ) , for ∀v ∈ Λ, where

ρσ,c(v) = exp(−π ∥v−c∥2

σ2 ) and ρσ,c(Λ) =
∑

v∈Λ ρσ,c(v).
Definition 4: Suppose m independent pairs (ai, bi) ∈ Zn

q ×
Zq , and each sample is governed by the following either one
to define the decisional LWEn,m,q,χ assumption:

1) Pseudo-random sample: (ai, bi) = (ai,a
⊤
i s+ei) ∈ Zn

q ×
Zq , where s is a randomly vector, ei is an error, and ai
is an uniform vector.

2) Random sample: Randomly samples from Zn
q × Zq .

Besides, the decisional LWEn,m,q,χ assumption is as hard
as the worst-case SIVP and GapSVP problem [29].

Lemma 1: [30] Suppose two positive integers n,m, a prime
q, where m = Θ(n log q), the TrapGen algorithm returns a
full-rank matrix A ∈ Zn×m

q and its basis TA ∈ Zm×m over

TABLE I
GLOSSARY

Acronym Definition

l the number of data receivers
τ the level number of binary tree
T the number of time period, where T = 2τ

L the broadcast list
ck the keyword owned by data sender
tk the keyword to be searched by data receiver
(pkS , skS) the public and secret keys of data sender
(pkR,i, skR,i) the public and secret keys of data receiver i,

where i ∈ L
CT(resp. CTt) the ciphertext (resp. with time period t)
TD(resp. TDt) the trapdoor (resp. with time period t)

Λ⊥
q (A), such that A is negl(n)-close to uniform and ∥T̃A∥ =

O(
√
n log q) with all but negligible probability in n.

Lemma 2: [31] Suppose four integers n,m,m1, q, and
two matrices A ∈ Zn×m

q ,M1 ∈ Zn×m1
q , TA ∈ Zm×m

q is
a basis of Λ⊥

q (A), u ∈ Zn
q is a vector, and σ > ∥T̃A∥ ·

ω(
√
log(m+m1)), the SampleLeft algorithm returns a vector

e ∈ Zm+m1
q , such that (A|M1)e = u mod q.

Lemma 3: [31] Suppose four integers n, k,m, q, and three
matrices A ∈ Zn×k

q ,B ∈ Zn×m
q ,R ∈ Zk×m, TB ∈ Zm×m

q

is a basis of Λ⊥(B), u ∈ Zn
q is a vector, and σ > ∥T̃B∥ ·

∥R∥ω(
√

log(m)), the SampleRight algorithm returns a vector
e ∈ Zm+k

q , such that (A|AR+B)e = u mod q.
Suppose four positive integers n, m, q, k, a matrix A =

(A1 | · · · | Ak) ∈ Zn×km
q , and a set M = {i1, i2, · · · , ij} ⊂

[k], we set AM := (Ai1 | Ai2 | · · · | Aij ) ∈ Zn×jm
q . Then,

we introduce the Lemma 4 as follows:
Lemma 4: [32] Suppose four positive integers n, m, q,

k, where q ≥ 2, and m ≥ 2n log q. After input a ma-
trix A ∈ Zn×km

q , a lattice basis TAM for Λ⊥
q (AM), a

set M ⊂ [k], a vector u ∈ Zn
q , and a Gaussian pa-

rameter σ ≥ ∥T̃AM∥ · ω(
√
log km), the PPT algorithm

GenSamplePre(A,TAM ,M,u, σ) will output a vector e ∈
Zkm statistically close in DΛu

q (A),σ , such that Ae = u mod q.
Lemma 5: [33] Suppose four positive integers n, m, m′,

q, two matrices A ∈ Zn×m, A′ ∈ Zn×m′
. After input

A′′ = (A | A′) ∈ Zn×(m+m′)
q , and a basis TA ∈ Zm×m

q

for Λ⊥
q (A), the deterministic polynomial time (DPT) algo-

rithm ExtBasis(A′′,S) will calculate a lattice basis TA′′ for
Λ⊥
q (A

′′) ⊆ Zm×m′′

q , where ∥T̃A∥ = ∥T̃A′′∥, m′′ = m+m′.
Lemma 6: [34] Suppose four positive integers

n,m,m, k, q, σ, two matrices A ∈ Zn×m
q ,U ∈ Zn×k

q , and a
matrix R ∈ Zm×k sampled from the distribution Dσ(Λ

u
q (A)

and a matrix S uniformly selected from {−1, 1}m×m, then
the followings hold: ∥R⊤∥2 ≤ σ

√
mk, ∥R∥2 ≤ σ

√
mk, and

∥S∥2 ≤ 20
√
m.

IV. FRAMEWORK DESCRIPTION

We provide the system model of our encrypted search
scheme for cloud storage, and describe the formal definitions
and security models of our BroSearch and FS-BroSearch
schemes. Table I clarifies the acronyms and descriptions.
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Fig. 2. An encrypted search model with ciphertext broadcast for cloud storage.

A. System Models

The system model in our paper is illustrated in Fig. 2,
which contains four participating entities: trusted authority,
data sender, data receivers, and cloud server.

1) Trusted authority (TA): TA is charged with initializing
the system to obtain the public parameters and calculate
the public and secret keys for data sender and receivers.
To facilitate trapdoor generation, the public keys of all
receivers in the broadcast list are packaged and sent to
each receiver. TA is a fully trusted entity in this system.

2) Data sender: As a fully trusted entity, data sender can
extract the keywords from data and calculate a valid
ciphertext to the cloud server with its secret key and
several public keys of the receivers in a broadcast list.

3) Data receivers: Since the data receiver’s secret key may
be stolen by a malicious adversary, it is considered semi-
honest. When a data receiver in the broadcast list has a
search requirement, it generates a trapdoor to the cloud
server by its secret key, and then receives a search result.

4) Cloud server (CS): CS is semi-honest, upon receiving
a keyword ciphertext from a data sender and search
trapdoor from a data receiver, CS executes the search
procedure to return a search result to the receiver.

B. Formal Definitions

Our BroSearch scheme is defined as ΠBroSearch =
(Setup,KeyGenS ,KeyGenR,Encrypt,Trapdoor,Search).

• pp← Setup(1λ): After inputting a security parameter λ,
this algorithm publishes a public parameter pp.

• (pkS , skS)← KeyGenS(pp): After inputting the public
parameter pp, this algorithm publishes the public and
secret keys (pkS , skS) of the data sender.

• (pkR,i, skR,i) ← KeyGenR(pp): For i ∈ L, after in-
putting the public parameter pp, this algorithm publishes
the public and secret keys (pkR,i, skR,i) of the data
receiver i.

• CT ← Encrypt(pp, ck,pkS , skS , {pkR,i}i∈L): After
inputting the public parameter pp, a keyword ck ∈ Zn

q ,

the public and secret keys of data sender (pkS , skS), the
public keys of data receiver in broadcast list {pkR,i}i∈L,
the data sender invokes this algorithm to get a ciphertext
CT.

• TD ← Trapdoor(pp, tk, {pkR,i}i∈L, skR,γ ,pkS): Af-
ter inputting the public parameter pp, a keyword tk ∈
Zn
q , the public keys of data receiver in broadcast list
{pkR,i}i∈L, a secret key skR,γ of data receiver γ, and
the public key of data sender pkS , the data receiver γ
invokes this algorithm to get the trapdoor TD.

• 1 or 0 ← Search(CT,TD): The server processes this
algorithm to test whether CT and TD correspond to the
same keyword. If yes, it outputs 1. Otherwise, outputs 0.

Further, our FS-BroSearch scheme is regarded as an en-
hanced version of BroSearch, it contains seven following
algorithms ΠFS-BroSearch = (Setup,KeyGenS ,KeyGenR,
KeyUpdateR,Encrypt,Trapdoor,Search), which is similar
as ΠBroSearch, except for the following algorithms.

• (pkR,i, skR,i,0) ← KeyGenR(pp): For i ∈ L, after in-
putting the public parameter pp, this algorithm publishes
the public and initial secret keys (pkR,i, skR,i,0) of the
data receiver i.

• skR,i,t+1 ← KeyUpdateR(pp,pkR,i, skR,i,t): For i ∈
L, after inputting a public parameter pp, the public and
secret keys (pkR,i, skR,i,t) of data receiver with time
period t, this algorithm publishes its secret key skR,i,t+1

with time period t+ 1.
• CTt ← Encrypt(pp, ck,pkS , skS , {pkR,i}i∈L, t): This

definition is the same as the Encrypt algorithm in
BroSearch, except for the introduction of time period t.

• TDt ← Trapdoor(pp, tk, {pkR,i}i∈L, skR,γ,t,pkS , t):
This definition is the same as the Trapdoor algorithm in
BroSearch, except for the introduction of time period t.

C. Security Models
We define two security models of our BroSearch scheme:

ciphertext indistinguishability against chosen keyword attacks
(IND-CKA) and ciphertext indistinguishability against insider
keyword guessing attacks (IND-IKGA).
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1) IND-CKA security: For the first part, we define the IND-
CKA model ExpIND-CKA

BroSearch,A(λ) as follows:
1) Setup: Given a challenge public key pk∗

S = AS of
data sender and several challenge secret key in broadcast
list {pk∗

R,i = AR,i}i∈L∗ , the challenger C calls the
Setup(1λ) algorithm to calculate a public parameter pp,
and sends it to the adversary A.

2) Phase 1: A can adaptively perform four oracles in PPT.
a) OH1

: A inputs a keyword ckj to issue H1 queries
at most qH1 for j ∈ [qH1 ], C calculates H1(ckj) and
sends it to A.

b) OH2
: A inputs a keyword ckj to issue H2 queries

at most qH2
for j ∈ [qH2

], C calculates H2(ckj) and
sends it to A.

c) OCT: Given a keyword ck and the receivers’ public
keys in broadcast list {pkR,i}i∈L from A from A,
C calls Encrypt(pp, ck,pk∗

S , sk
∗
S , {pkR,i}i∈L) algo-

rithm to generate a ciphertext CT, and sends it to A.
d) OTD: After obtained a keyword tk, the sender’s

public key pkS and a receiver γ ∈ L from A, C
calls Trapdoor(pp, tk, {pk∗

R,i}i∈L∗ , sk∗
R,γ ,pkS) al-

gorithm to generate a trapdoor TD for A.
3) Challenge: A chooses two challenge keywords ck∗

0, ck
∗
1

which have not been queried in Phase 1, and sends them
to C. After that, C selects a random bit ξ ∈ {0, 1}
and calls Encrypt(pp, ck∗

ξ ,pk
∗
S , sk

∗
S , {pk

∗
R,i}i∈L∗) al-

gorithm to obtain a challenge ciphertext CT∗
ξ . Finally,

C returns CT∗
ξ to A.

4) Phase 2: A executes these queries as above, neither ck∗
0

nor ck∗
1 can be queried.

5) Guess: A outputs a bit ξ′ ∈ {0, 1}. If ξ′ = ξ, we say that
A wins this game.

We define the advantage of A to win the above game
ExpIND-CKA

BroSearch,A(λ) as: AdvIND-CKA
BroSearch,A(λ) = |Pr[ξ′ = ξ]− 1

2 |.
Definition 5: Our BroSearch primitive satisfies IND-CKA

security, if any PPT malicious adversary wins the above game
ExpIND-CKA

BroSearch,A(λ) with a negligible advantage.
2) IND-IKGA security: For the second part, we define the

IND-IKGA security model ExpIND-IKGA
BroSearch,A(λ) as follows:

1) Setup: This procedure is the same as the corresponding
part in ExpIND-CKA

BroSearch,A(λ).
2) Phase 1: This procedure is the same as the corresponding

part in ExpIND-CKA
BroSearch,A(λ).

3) Challenge: A chooses two challenge keywords tk∗
0, tk

∗
1

which have not been queried in Phase 1, and sends them
to C. After that, C selects a random bit ξ ∈ {0, 1} and
calls Trapdoor(pp, tk∗

ξ , {pk
∗
R,i}i∈L, sk

∗
R,γ ,pk

∗
S) algo-

rithm to obtain a challenge trapdoor TD∗
ξ . Finally, C

returns TD∗
ξ to A.

4) Phase 2: A executes these queries as above, neither tk∗
0

nor tk∗
1 can be queried.

5) Guess: A outputs a bit ξ′ ∈ {0, 1}. If ξ′ = ξ, we say that
A wins this game.

We define the advantage of A to win the above game
ExpIND-IKGA

BroSearch,A(λ) as: AdvIND-IKGA
BroSearch,A(λ) = |Pr[ξ′ = ξ]− 1

2 |.
Definition 6: Our BroSearch primitive satisfies IND-

IKGA security, if any PPT adversary wins the above game

ExpIND-IKGA
BroSearch,A(λ) with a negligible advantage.

Correspondingly, our FS-BroSearch scheme also has two se-
curity models, ExpIND-CKA

FS-BroSearch,A(λ) and ExpIND-IKGA
FS-BroSearch,A(λ),

which are highly symmetric with respect to ExpIND-CKA
BroSearch,A(λ)

and ExpIND-IKGA
BroSearch,A(λ), except for the addition of the OKU

oracle and the introduction of time periods. OKU is defined
as follows:

• OKU: After obtaining a time period t for i ∈ L from A,
C calls KeyUpdateR(pp,pkR,i, skR,i,t−1) algorithm to
calculate the secret key skR,i,t with time period t, and
sends it to A.

Based on this, we define the IND-CKA and IND-IKGA
security of our FS-BroSearch scheme as follows:

Definition 7: Our FS-BroSearch primitive satisfies IND-
CKA security, if any PPT malicious adversary wins the above
game ExpIND-CKA

FS-BroSearch,A(λ) with a negligible advantage.
Definition 8: Our FS-BroSearch primitive satisfies IND-

IKGA security, if any PPT adversary wins the above game
ExpIND-IKGA

FS-BroSearch,A(λ) with a negligible advantage.

V. THE DESIGN OF BROSEARCH

A. Concrete Construction

The construction of our BroSearch scheme includes five
procedures: System Initialization, Key Generation, Ciphertext
Calculation, Trapdoor Generation, and Search.

1) System Initialization: TA initializes the entire system by
calling the Setup(1λ) algorithm through inputting a security
parameter 1λ. Firstly, it sets several system parameters n, m,
q, σ, l, a gadget matrix G ∈ Zn×m

q , and a broadcast list L =
{1, · · · , l}. Then, TA chooses two matrices A ∈ Zn×m

q and
U ∈ Zn×n

q uniformly. To ensure the security of our scheme
in the ROM, two hash functions are defined as H1 : Zn

q →
Zn×m
q , H2 : Zn

q → Zn×n
q . Finally, TA obtains the public

parameter and sends it to other entities. The public parameter
is defined as:

pp := (n,m, q, σ, l,G,L,A,U, H1, H2).

2) Key Generation: This procedure generates public and
secret keys for the data sender and receiver through
KeyGenS(pp) and KeyGenR(pp) algorithms, respectively.

For the data sender, TA invokes (AS ,TAS
) ←

TrapGen(n,m, q) to generate an uniformly matrix AS ∈
Zn×m
q and a basis TAS

∈ Zm×m of Λ⊥
q (AS). After that,

TA obtains the public and secret keys of the data sender:

pkS := AS , skS := TAS
.

Similarly, for the data receiver i ∈ L, TA calls
(AR,i,TAR,i

)← TrapGen(n,m, q) to generate an uniformly
matrix AR,i ∈ Zn×m

q and a basis TAR,i
∈ Zm×m of

Λ⊥
q (AR,i), and defines the public and secret keys of the data

receiver i:

pkR,i := AR,i, skR,i := TAR,i
.

At last, TA returns (pkS , skS) and {(pkR,i, skR,i)}i∈L to
a data sender and several data receivers in broadcast list L
over a secure channel.
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3) Ciphertext Calculation: To calculate the
keyword ciphertext, the data sender calls the
Encrypt(pp, ck,pkS , skS , {pkR,i}i∈L) algorithm. In
this procedure, the data sender inputs its secret key to
authenticate the keyword ck, which can resist IKGAs. On
the other hand, the public keys of all the data receivers in
the broadcast list L are embedded to enable the ciphertext
broadcast.

Specifically, the data sender chooses a vector s ∈ Zn
q and

several error vectors {eR,i}i∈L ∈ χm, eK ∈ χm, eU ∈ χn.
For i ∈ L, it calculates a vector cR,i = A⊤

R,is+eR,i ∈ Zm
q to

embed public keys of receivers in L. Subsequently, the data
sender calculate two vectors cK = H1(ck)

⊤s+eK ∈ Zm
q and

cU = U⊤s + eU ∈ Zn
q . To authenticate the keyword ck, it

invokes the following algorithm to sample a vector εC ∈ Z2m
q ,

where εC is statistically distributed in D2m
Λ

cU
q (AS |(A+H2(ck)G))

.

εC ← SampleLeft(AS ,A+H2(ck)G,TAS
, cU , σ),

such that (AS | (A+H2(ck)G))εC = cU mod q.
To sum up, the data sender outputs the following ciphertext

with the keyword ck, and uploads it to CS.

CT := ({cR,i}i∈L, cK , εC).

4) Trapdoor Generation: A data receiver γ ∈ L performs
the Trapdoor(pp, tk, {pkR,i}i∈L, skR,γ ,pkS) algorithm to
generate a trapdoor with an interested keyword tk. This
procedure is divided into two phases: the keyword embedding
and the receiver’s secret key processing.

For the keyword tk, the data receiver chooses a vector s′ ∈
Zn
q , several error vectors eS ∈ χm, e′U ∈ χn, and a matrix

R′
K ∈ {−1, 1}m×m. Next, it calculates three vectors tS =

A⊤
S s

′ + eS ∈ Zm
q , tK = (A+H2(tk)G)⊤s′ + (R′

K)⊤eS ∈
Zm
q and tU = Us′ + e′U ∈ Zn

q to embed this keyword.
Moreover, the data receiver generates a vector εT with its

secret key TAR,γ
through the following algorithm:

εT ← GenSamplePre(AR,1 | · · · | AR,l | H1(tk),TAR,γ
,

{γ}, tu, σ),
such that (AR,1 | · · · | AR,l | H1(ck))εT = tU mod q, where
εT is statistically distributed in D(l+1)m

Λ
tU
q (AR,1|···|AR,l|H1(ck))

.
Eventually, the data receiver sends the following trapdoor

to CS.
TD := (tS , tK , εT ).

If the data receiver is in the broadcast list, it can generate
the trapdoor used for the encrypted search by inputting its
secret key. Otherwise, the data receiver cannot search on it,
since the basis TAR,γ

does not match the matrix (AR,1 | · · · |
AR,l | H1(tk)) in GenSamplePre algorithm.

5) Search: After receiving the trapdoor TD, CS iter-
ates over the keywords CT uploaded on it, and calls the
Search(CT,TD) algorithm to obtain a search result.

In this procedure, CS parses CT = ({cR,i}i∈L, cK , εC) and
TD = (tS , tK , εT ), and calculates a number d = ε⊤C(t

⊤
S |

t⊤K)⊤ − (c⊤R,1 | · · · | c⊤R,l | c⊤K)εT ∈ Zq .
If |d| < ⌊ q4⌋, this procedure outputs 1 meaning that CT and

TD correspond to the same keyword, and returns the search
result to the data receiver. Otherwise, outputs 0.

B. Correctness Analysis

We analyze the correctness of our BroSearch. Given the
data sender’s public and secret keys pkS = AS , skS =
TAS

, a keyword ck ∈ Zn
q , and its ciphertext CT =

({cR,i}i∈L, cK , εC). Moreover, the data receiver γ owns its
public keys and secret keys pkR,γ := AR,γ , skR,γ := TAR,γ

,
and the searched keyword tk ∈ Zn

q , and corresponding search
trapdoor TD = (tS , tK , εT ). If ck = tk, we have:

d = ε⊤C(t
⊤
S | t⊤K)⊤ − (c⊤R,1 | · · · | c⊤R,l | c⊤K)εT

= ε⊤C((A
⊤
S s

′ + eS)
⊤ | ((A+H2(tk)G)⊤s′ +R′

KeS)
⊤)⊤

− ((A⊤
R,1s+ eR,1)

⊤ | · · · | (A⊤
R,ls+ eR,l)

⊤ |
(H1(ck)

⊤s+ eK)⊤)εT

= ε⊤C(AS | (A+H2(tk)G))⊤s′ + ε⊤C(e
⊤
S | e⊤SR′

K)

− s⊤(AR,1 | · · · | AR,l | H1(ck))εT − (e⊤R,1 | · · · | e⊤R,l | e⊤K)εT

= c⊤Us
′ − s⊤tU + ε⊤C(e

⊤
S | e⊤SR′

K)− (e⊤R,1 | · · · | e⊤R,l | e⊤K)εT

= s⊤Us′ + e⊤Us
′ − s⊤Us′ − s⊤e′U + ε⊤C(e

⊤
S | e⊤SR′

K)

− (e⊤R,1 | · · · | e⊤R,l | e⊤K)εT

= e⊤Us
′ − s⊤e′U + ε⊤C(e

⊤
S | e⊤SR′

K)− (e⊤R,1 | · · · | e⊤R,l | e⊤K)εT

= error,

where |error| ≤ |e⊤Us′|+|s⊤e′U |+|ε⊤C(e⊤S | e⊤SR′
K)|+|(e⊤R,1 |

· · · | e⊤R,l | e⊤K)εT | ≤ 2nχ2
m+40σm

3
2χm+(l+1)σmχm < q

5 .

C. Parameters Setting

In this section, we provide the parameter settings as:
• m ≥ ⌈2n log q⌉ for the TrapGen lemma.
• σ ≥ O(

√
n log q) ·ω(

√
log(l + 1)m) for SampleLeft and

GenSamplePre lemmas.
• χm ≥

√
n · ω(log n) for LWE hardness.

• 2nχ2
m + 40σm

3
2χm + (l + 1)σmχm < q

5 .

D. Security Analysis

We demonstrate that BroSearch scheme is secure in the
aforementioned security model, i.e. IND-CKA and IND-
IKGA.

Theorem 1: Assume that the LWEn,m,q,χ hardness holds,
our proposed lattice-based BroSearch scheme satisfies IND-
CKA security in the random oracle model. For any PPT
adversary A, if A can compromise our scheme with a non-
negligible advantage ϵ1, then we can construct a PPT chal-
lenger C to solve the LWEn,m,q,χ hardness with a non-
negligible probability.
Proof If a PPT adversary A can compromise the IND-CKA
security with a non-negligible advantage, we can construct a
challenger C who can solve the LWEn,m,q,χ hardness. The
following procedures show the interaction between A and C.

LWE Instances: C obtains several LWE instances
{AR,i,aR,i}i∈L, (AK ,aK), which are sampled from either
OS or O$. If we sample them from OS, they satisfy
{aR,i = A⊤

R,is+eR,i}i∈L ∈ Zm
q and aK = A⊤

Ks+eK ∈ Zm
q

for a secret vector s ∈ Zn
q and several error vectors

{eR,i}i∈L ∈ Zm
q and eK ∈ Zm

q . Otherwise, they are random
over Zn×m

q × Zm
q .
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Init: C selects a challenge public key pk∗
S = AS of

data sender and several challenge secret key in broadcast list
{pk∗

R,i = AR,i}i∈L∗ .
Setup: C obtains the public parameter pp through calling

Setup(1λ) algorithm, except that A = ASR
∗
K − h∗G ∈

Zn×m
q for a random value h∗ ∈ Zq and a matrix R∗

K ∈
{−1, 1}m×m, and then sends it to A.

Phase 1: A executes these following queries adaptively:

• OH1 : A inputs a keyword ckj to issue H1 queries at
most qH1 for j ∈ [qH1 ]. Initially, C creates a empty
list LH1

, and selects π∗
1 ∈ [qH1

] as a challenge query.
For the j-th query, if j = π∗

1 , C sets H1(ckj) =
AK , selects TH1(ckj) ∈ Zm×m randomly. Then, C
adds {ckj , H1(ckj),TH1(ckj)} to LH1

, and then returns
H1(ckj) to A. Otherwise, if ckj has been queried, C
returns H1(ckj) in LH1 to A. Otherwise, C invokes
TrapGen(n,m, q) to generate a matrix AH ∈ Zn×m

q and
a basis TAH

∈ Zm×m of Λ⊥
q (AH). Subsequently, C sets

H1(ckj) = AH and TH1(ckj) = TAH
, sends H1(ckj)

to A, and then adds {ckj , H1(ckj),TH1(ckj)} to LH1 .
• OH2 : In this phase, A issues H2 queries at most qH2 after

inputting a keyword ckj for j ∈ [qH2
]. C first creates a

empty list LH2
, and selects π∗

2 ∈ [qH2
] as a challenge

query. For the j-th query, if j = π∗
2 , C sets H2(ckj) =

h∗, adds {ckj , H2(ckj)} to LH2 , and returns h∗ to A.
Otherwise, if ckj has been queried, C returns H2(ckj) in
LH2

to A. Otherwise, C chooses a random value h ∈ Zq

as H2(ckj), sends it to A, and adds {ckj , H2(ckj)} to
LH2

.
• OCT: After obtaining a keyword ck and the receivers’

public keys in broadcast list {pkR,i}i∈L from A, C
calls Encrypt(pp, ck,pk∗

S , sk
∗
S , {pkR,i}i∈L) algorithm

to generate a ciphertext CT, and sends it to A.
• OTD: After obtaining a keyword tk, the sender’s pub-

lic key pkS and a receiver γ ∈ L from A, C ex-
ecutes the OH1 and OH2 oracle to query the hash
value of tk. If H1(tk) = AK or H2(tk) = h∗,
this procedure is aborted by C. Otherwise, C obtains
{tk, H1(tk),TH1(tk)} and {tk, H2(tk)} in LH1

and
LH2

. Then, C calculates tS , tK and tU as in Trapdoor
algorithm, and invokes εT ← GenSamplePre(AR,1 |
· · · | AR,l | H1(tk),TH1(tk), {l + 1}, tU , σ) such that
(AR,1 | · · · | AR,l | H1(tk))εT = tU mod q. Finally, C
returns TD = (tS , tK , εT ) to A.

Challenge: A transmits ck∗
0, ck

∗
1 ∈ Zn

q to C, which have not
been queried in Phase 1. Then, C chooses ξ ∈ {0, 1}, and cal-
culates a challenge ciphertext CT∗

ξ = ({c∗R,i}i∈L∗ , c∗K , ε∗C),
where c∗R,i = aR,i for i ∈ L∗, c∗K = aK and ε∗C ← Z2m

q .
After that, C returns CT∗

ξ to A.
Phase 2: A executes these queries as above, and promises

neither ck∗
0 nor ck∗

1 can be queried.
Guess: A outputs a random bit ξ′ ∈ {0, 1} after receiving

CT∗
ξ . If ξ

′
= ξ, A wins this game, and C outputs 1. Otherwise,

C outputs 0.
Analysis: We demonstrate two cases according to the sam-

pling way of LWE instances. If these instances are sampled

from the OS, we have:

c∗R,i = aR,i = A⊤
R,is+ eR,i,where i ∈ L∗,

c∗K = aK = A⊤
Ks+ eK = H1(ck

∗
ξ)

⊤s+ eK .

Thus, CT∗
ξ = ({c∗R,i}i∈L∗ , c∗K , ε∗C) is a valid ciphertext.

When A compromise our scheme with advantage ϵ1, Pr[ξ′ =
ξ|OLWE = OS] =

1
2 + ϵ1. Otherwise, CT∗

ξ is uniform over
Zlm
q × Zm

q × Z2m
q . In this case, Pr[ξ′ = ξ|OLWE = O$] =

1
2 .

Due to the probability of executing this procedure with proba-
bility qH1

+qH2
−1

qH1
qH2

, the advantage of C to solve the LWEn,m,q,χ

hardness is (qH1
+qH2

−1)ϵ1
2qH1

qH2
, which is also non-negligible. □

Theorem 2: Assume that the LWEn,m,q,χ hardness holds,
our proposed lattice-based BroSearch scheme satisfies IND-
IKGA security in the random oracle model. For any PPT
adversary A, if A can compromise our scheme with a non-
negligible advantage ϵ2, then we can construct a PPT chal-
lenger C to solve the LWEn,m,q,χ hardness with a non-
negligible probability.
Proof If a PPT adversary A can compromise the IND-IKGA
security with a non-negligible advantage, we can construct a
challenger C who can solve the LWEn,m,q,χ hardness. The
following procedures show the interaction between A and C.

LWE Instances: This procedure is the same as Theorem
1, except that (AS ,aS) and (AK ,aK) are sampled as LWE
instances in this phase.

Init: C selects a challenge public key pk∗
S = AS of data

sender and a challenge secret key pk∗
R,γ = AR,γ of data

receiver where γ ∈ L∗.
Setup: This procedure is the same as Theorem 1.
Phase 1: A executes these following queries adaptively:

• OH1 : This procedure is the same as Theorem 1.
• OH2 : This procedure is the same as Theorem 1.
• OCT: After obtaining a keyword ck and the receivers’

public keys {pkR,i}i∈L from A, C executes the OH1

and OH2
oracle to query the hash value of tk. If

H1(tk) = AK or H2(tk) = h∗, this procedure is aborted
by C. Otherwise, C obtains {tk, H1(tk),TH1(tk)}
and {tk, H2(tk)} in LH1 and LH2 . Then, C cal-
culates {cR,i}i∈L, cK and cU as in Encrypt algo-
rithm, and invokes εC ← SampleRight(AS , (H2(ck) −
h∗)G,R∗

K ,TG, cU , σ) such that (AS | (A +
H2(ck)G))εC = cU mod q. Finally, C returns CT =
({cR,i}i∈L, cK , εC) to A.

• OTD: After obtaining a keyword tk, the sender’s pub-
lic key pkS and a receiver γ ∈ L from A, C calls
Trapdoor(pp, tk, {pk∗

R,i}i∈L, sk
∗
R,γ ,pkS) algorithm to

generate a trapdoor TD, and sends it to A.

Challenge: A transmits tk∗
0, tk

∗
1 ∈ Zn

q to C, which have
not been queried in Phase 1. Then, C chooses ξ ∈ {0, 1}, and
calculates a challenge ciphertext TD∗

ξ = (t∗S , t
∗
K , ε∗T ), where

t∗S = aS , t∗K =

(
aS

(R∗
K)⊤aS

)
and ε∗T ← Z(l+1)m

q . After that,

C returns TD∗
ξ to A.

Phase 2: A executes these queries as above, and promises
neither tk∗

0 nor tk∗
1 can be queried.
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Guess: A outputs a random bit ξ′ ∈ {0, 1} after receiving
TD∗

ξ . If ξ
′
= ξ, A wins this game, and C outputs 1. Otherwise,

C outputs 0.
Analysis: We demonstrate two cases according to the sam-

pling way of LWE instances. If these instances are sampled
from the OS, we have:

t∗S = aS = A⊤
S s+ eS ,

t∗K =

(
aS

(R∗
K)⊤aS

)
=

(
A⊤

S s+ eS
(ASR

∗
K)⊤s+ (R∗

K)⊤eS

)
= (AS | A+H2(tk

∗
ξ)G)⊤s+ (e⊤S | e⊤SRK)⊤.

Thus, TD∗
ξ = (t∗S , t

∗
K , ε∗T ) is a valid trapdoor. Similar to

Theorem 1, the advantage of C to solve the LWEn,m,q,χ

hardness is (qH1
+qH2

−1)ϵ2
2qH1

qH2
, which is also non-negligible. □

VI. THE DESIGN OF FS-BROSEARCH: AN ENHANCED
VERSION

A. Concrete Construction

            

Root

1

2

3

4

Bin(t) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Level

Leaf 

Node

Root

Node

Fig. 3. The binary tree utilized to secret key update for data receivers, and
the number of levels τ = 4.

1) System Initialization: In this procedure, TA initializes
the entire system by calling the Setup(1λ) algorithm. It first
sets several system parameters n, m, q, σ, l, a gadget matrix
G ∈ Zn×m

q , and a broadcast list L = {1, · · · , l}. Secondly, TA
initializes all nodes in the binary tree, and sets τ as the depth
of the binary tree, where T = 2τ , as in Fig. 3 (A example
at τ = 4). Then, TA chooses several matrices A ∈ Zn×m

q ,
U ∈ Zn×n

q and {A(0)
j ,A

(1)
j }j∈[τ ] ∈ Zn×m

q uniformly. As
same as in BroSearch, two hash functions are defined as H1 :
Zn
q → Zn×m

q and H2 : Zn
q → Zn×n

q . Finally, TA obtains
the public parameter and sends it to other entities. The public
parameter is defined as:

pp := (n,m, q, σ, l, τ, T,G,L,A,U, {A(0)
j ,A

(1)
j }j∈[τ ], H1, H2)

2) Key Generation: This procedure generates public and
secret keys for the data sender and receiver through
KeyGenS(pp) and KeyGenR(pp) algorithms, respectively.

For the data sender, this procedure is identical to that of
BroSearch. TA sets the public and secret keys of the data
sender as:

pkS := AS , skS := TAS
.

For the data receiver i ∈ L, TA Invoke (AR,i,0,TAR,i,0
)←

TrapGen(n,m, q) to generate an uniformly matrix AR,i,0 ∈
Zn×m
q and a basis TAR,i,0

∈ Zm×m for Λ⊥
q (AR,i,0), and

defines the public and initial secret keys of the data receiver
i as:

pkR,i := AR,i,0, skR,i,0 := TAR,i,0

At last, TA sends (pkS , skS) and {(pkR,I,0, skR,I,0)}i∈L
to a data sender and several data receivers in broadcast list L
over a secure channel.

3) Key Update: We set bin(t) as the τ bits binary repre-
sentation of t, Node(bin(t)) as the minimal cover set of leaf
node bin(t), which denotes the smallest set that includes a
common ancestor node of each leaf node in {bin(t),bin(t+
1), · · · ,bin(T −1)}, and does not include any ancestor nodes
of each leaf node in {bin(0),bin(1), · · · ,bin(t − 1)}. For
example, in Fig. 3, Node(0010) = {001, 01, 1}. The secret
key of a data receiver i ∈ L with t is defined as the set of
bases corresponding to several nodes in Node(bin(t)).

To achieve forward security, a data receiver i ∈ L updates its
secret key through the KeyUpdateR(pp,pkR,i, skR,i,t) algo-
rithm when the secret key is compromised. In this procedure,
the data receiver inputs the secret key skR,i,t with time period
t and obtains skR,i,t+1 with t+1, where t ∈ {0, 1, · · · , T−2}.
and the specific procedure can be divided into two cases.

If the time period t = 0, the data receiver owns the
initial secret key skR,i,0 = TAR,i,0

with t = 0. Due
to Node(bin(1)) = Node(0001) = {0001, 001, 01, 1}, it
obtains skR,i,1 = {TAR,i,0001

,TAR,i,001
,TAR,i,01

,TAR,i,1
}

with t = 1 through calling

TAR,i,Θ
← ExtBasis(AR,i,Θ,TAR,i,0

),

where Θ ∈ {0001, 001, 01, 1}.
If the time period t ≥ 1, the data receiver parses bin(t) =

(t1, t2, · · · , tτ ) ∈ {0, 1}τ , and calculates the minimal cover
set with time period t + 1, denoted Node(bin(t + 1)). For
Θj = (θ1, · · · , θζ , · · · , θj) ∈ Node(bin(t+1)), if there exists
a basis TAR,i,Θj

in skR,i,t, the data receiver adds this basis
to skR,i,t+1. Otherwise, it sets a node Θζ = (θ1, · · · , θζ) ∈
{0, 1}ζ , which is an ancestor node of Θj in skR,i,t, and then
invoke the following algorithm to generate the aforementioned
basis TAR,i,Θj

.

TAR,i,Θj
← ExtBasis(AR,i,Θj

,TAR,i,Θζ
),

where AR,i,Θj = (AR,i,0|A(θ1)
1 | · · · |A(θj)

j ) ∈ Zn×(j+1)m
q .

Ultimately, the data receiver i obtains skR,i,t+1 :=
{TAR,i,Θj

}Θj∈Node(bin(t+1)) as the secret key with t+ 1.
4) Ciphertext Calculation: To calculate the keyword ci-

phertext with time period t, the data sender calls the
Encrypt(pp, ck,pkS , skS , {pkR,i}i∈L, t) algorithm.

The data sender parses bin(t) = (t1, t2, · · · , tτ ) ∈ {0, 1}τ ,
and chooses a vector s ∈ Zn

q , several error vectors {eR,i}i∈L ∈
χm, {eT,j}j∈[τ ] ∈ χm, eK ∈ χm, eU ∈ χn. For j ∈ [τ ],
it calculates several vectors cT,j = (A

(tj)
j )⊤s + eT,j ∈ Zm

q

to embed the time period into the ciphertext. As same as in
BroSearch, the data sender calculates several vectors cR,i =
A⊤

R,i,0s+eR,i ∈ Zm
q for i ∈ L, cK = H1(ck)

⊤s+eK ∈ Zm,
cU = U⊤s + eU ∈ Zn

q and εC ← SampleLeft(AS ,A +
H2(ck)G,TAS

, cU , σ) to achieve the ciphertext broadcast
and keyword authentication.
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To sum up, the data sender outputs the ciphertext corre-
sponding to the keyword ck with time period t as:

CTt := ({cR,i}i∈L, {cT,j}j∈[τ ], cK , εC).

5) Trapdoor Generation: With an interested keyword
tk ∈ Zn

q as input, a data receiver γ ∈ L executes
the Trapdoor(pp, tk, {pkR,i}i∈L, skR,γ,t,pkS , t) algorithm
to obtain a trapdoor with the keyword tk and time period t.

The date receiver first chooses a vector s′ ∈ Zn
q , several

error vectors eS ∈ χm, e′U ∈ χn, and a matrix R′
K ∈

{−1, 1}m×m. Afterward, it calculates three vectors tS =
A⊤

S s
′ + eS ∈ Zm

q , tK = (A+H2(tk)G)⊤s′ + (R′
K)⊤eS ∈

Zm
q and tU = Us′ + e′U ∈ Zn

q as the same as in BroSearch.
If skR,γ,t does not contain TAR,γ,bin(t)

, the data receiver
invokes the following algorithms to obtain a basis TAR,γ,bin(t)

in Z(τ+1)m×(τ+1)m for Λ⊥
q (AR,γ,0 | A(t1)

1 | · · · | A(tτ )
τ ).

TAR,γ,bin(t)
← ExtBasis(AR,γ,0 | A(t1)

1 | · · · | A(tτ )
τ ,TAR,γ,Θj

),

where Θj is an ancestor node of bin(t) and j < τ .
Following that, the data receiver gener-

ates a vector εT statistically distributed in
D(l+τ+1)m

Λ
tU
q (AR,1,0|···|AR,l,0|A

(t1)
1 |···|A(tτ )

τ |H1(tk))
through the

following algorithm:

εT ← GenSamplePre(AR,1,0 | · · · | AR,l,0 | A(t1)
1 | · · · | A(tτ )

τ

| H1(tk),TAR,γ,bin(t)
, {γ, l + 1, · · · , l + τ}, tU , σ),

such that (AR,1,0 | · · · | AR,l,0 | A(t1)
1 | · · · | A(tτ )

τ |
H1(tk))εT = tU mod q. Eventually, the data receiver sends
the trapdoor TDt := (tS , tK , εT ) to cloud server.

6) Search: As similar as in BroSearch, CS calculates a
number d = ε⊤C(t

⊤
S | t⊤K)⊤ − (c⊤R,1 | · · · | c⊤R,l | c⊤T,1 |

· · · | c⊤T,τ | c⊤K)εT ∈ Zq If |d| < ⌊ q4⌋, this procedure outputs
1 meaning that CT and TD correspond to the same keyword,
and returns the search result to the data receiver. Otherwise,
this procedure outputs 0.

B. Security Analysis

Theorem 3: Assume that the LWEn,m,q,χ hardness holds,
our proposed lattice-based FS-BroSearch primitive satisfies
IND-CKA security in the random oracle model. For any
PPT adversary A, if A can compromise our scheme with a
non-negligible advantage ϵ3, then we can construct a PPT
challenger C to solve the LWEn,m,q,χ hardness with a non-
negligible probability.
Proof We define an adversary A and a challenger C as in
the Theorem 1.

LWE Instances: This procedure is the same as Theorem 1,
except that {AR,i,aR,i}i∈L, (AK ,aK) and {AT,j ,aT,j}j∈[τ ]

are sampled as LWE instances in this phase.
Init: C selects a challenge time period t∗ where bin(t∗) =

(t∗1, · · · , t∗τ ) ∈ {0, 1}τ , a challenge public key pk∗
S = AS of

data sender and several challenge secret key in broadcast list
{pk∗

R,i = AR,i}i∈L∗ .
Setup: Base on Theorem 1, we add the generation procedure

of several matrices {A(0)
i ,A

(1)
i }i∈[τ ]. Specifically, C invokes

(A0,TA0
) → TrapGen(n,m, q) to generate an uniformly

matrix A0 ∈ Zn×m
q and a basis TA0 ∈ Zm×m of Λ⊥

q (A0).
For the node Tj = (t1, · · · , tj) and j = [τ ], if Tj =

(t∗1, · · · , t∗j ), C sets A
(tj)
j = AT,j . Otherwise, C invokes

(A
(tj)
j ,T

A
(tj)

j

)→ TrapGen(n,m, q) to generate an uniformly

matrix A
(tj)
j ∈ Zn×m

q and a basis T
A

(tj)

j

∈ Zm×m of

Λ⊥
q (A

(tj)
j ).

Phase 1: A executes these following queries adaptively:
• OH1 : This procedure is the same as Theorem 1.
• OH2

: This procedure is the same as Theorem 1.
• OKU: After obtaining a time period t for i ∈ L from
A, C calculates the secret key skR,i,t with time period
t. Specifically, if t ≥ t∗ where bin(t) = (t1, · · · , tτ ),
C invokes TTj

← ExtBasis(AR,i,0 | A
(t1)
1 | · · · |

A
(tj)
j ,T

A
(tj)

j

) to generate a basis TTj
for node Tj . After

that, C calculates skR,i,t which includes several bases in
Node(bin(t)) as the secret key with time period t, and
returns it to A.

• OCT: After obtaining a keyword ck, the
receivers’ public keys in broadcast list
{pkR,i}i∈L and a time period t from A, C calls
Encrypt(pp, ck,pk∗

S , sk
∗
S , {pkR,i}i∈L, t) algorithm to

generate a ciphertext CTt, and sends it to A.
• OTD: After obtaining a keyword tk, the sender’s pub-

lic key pkS and a time period t from A, C selects
a challenge receiver γ ∈ L∗, and executes the OH1

and OH2
oracle to query the hash value of tk. If

H1(tk) = AK or H2(tk) = h∗, this procedure is
aborted by C. Otherwise, C calculates tS , tK , tU and
TAR,γ,bin(t)

as in Trapdoor algorithm, and invokes
εT ← GenSamplePre(AR,1,0 | · · · | AR,l,0 | A(t1)

1 | · · · |
A

(tτ )
τ | H1(tk),TH1(tk), {γ, l+1, · · · , l+ τ +1}, tU , σ)

such that (AR,1,0 | · · · | AR,l,0 | A
(t1)
1 | · · · |

A
(tτ )
τ | H1(tk))εT = tU mod q. Finally, C returns

TDt = (tS , tK , εT ) to A.
Challenge: Base on Theorem 1, we add c∗T,j = aT,j for

j ∈ [τ ].
Phase 2: This procedure is the same as Theorem 1.
Guess: This procedure is the same as Theorem 1.
Analysis: Due to Theorem 1 and c∗T,j = aT,j = A⊤

T,js +
eT,j for j ∈ [τ ], CT∗

t,ξ = ({c∗R,i}i∈L∗ , {c∗T,j}j∈[τ ], c
∗
K , ε∗C)

is a valid ciphertext. Similar to Theorem 1, the advantage of
C to solve the LWEn,m,q,χ hardness is (qH1

+qH2
−1)ϵ3

2qH1
qH2

, which
is also non-negligible. □

Theorem 4: Assume that the LWEn,m,q,χ hardness holds,
our proposed lattice-based FS-BroSearch scheme satisfies
IND-IKGA security in the random oracle model. For any
PPT adversary A, if A can compromise our scheme with a
non-negligible advantage ϵ4, then we can construct a PPT
challenger C to solve the LWEn,m,q,χ hardness with a non-
negligible probability.
Proof We define an adversary A and a challenger C as in
the Theorem 2.

LWE Instances: This procedure is the same as Theorem 2.
Init: This procedure is the same as Theorem 2.
Setup: This procedure is the same as Theorem 2.
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TABLE II
THEORETICAL COMPUTATIONAL OVERHEAD COMPARISON

Schemes Encrypt Trapdoor Search
FS-PEKS [28] (nm2 + nmlt + nlt)TM + TI + TH TNBD + TSP + nm2TM + TI + TH mltTM

PAEKS [6] lsTSL + (n2m+ n2ls + 3m2ls +
4nmls)TM + TH

lrTSL + (n2m+ n2lr + 3m2lr +
4nmlr)TM + TH

8mlslrTM

ABAEKS [19] TSL + [(2|att|+ 3)nm+ n2 + (|att|+
1)m2]TM + TH

TSL+(n2+m2+2nm)TM+TEpk+TH 5mTM + TEct

Re-PAEKS [20] TSL + (n2 + 3m2 + 5nm)TM + TH TSL + (n2 + 3m2 + 5nm)TM + TH 8mTM

Our BroSearch TSL+[n2m+n2+(l+1)nm]TM +2TH TGSP + (n2m+ n2 +m2 +
2nm)TM + 2TH

(l + 3)mTM

Our FS-BroSearch TSL + [n2m+ n2 + (l + τ +
1)nm]TM + 2TH

TEB + TGSP + (n2m+ n2 +m2 +
2nm)TM + 2TH

(l + τ + 3)mTM

Note: lt: The security-level of testing; ls, lr : The execution number of SampleLeft for sender and receiver defined in [6]; |att|: The length of attributes; l:
The number of data receivers.

Phase 1: A executes these following queries adaptively:
• OH1

: This procedure is the same as Theorem 2.
• OH2

: This procedure is the same as Theorem 2.
• OKU: This procedure is the same as Theorem 2.
• OCT: This procedure is the same as Theorem 2, ex-

cept that a time period t is obtained and C calculates
{cR,i}i∈L, {cT,j}j∈[τ ], cK and cU as in Encrypt algo-
rithm.

• OTD: This procedure is the same as Theorem 2, ex-
cept that a time period t is obtained and C calls
Trapdoor(pp, tk, {pk∗

R,i}i∈L, sk
∗
R,γ ,pkS , t) algorithm

to generate a trapdoor TDt.
Challenge: This procedure is the same as Theorem 2, except

that C samples ε∗T ← Z(l+τ+1)m
q , and returns TD∗

t,ξ to A.
Phase 2: This procedure is the same as Theorem 2.
Guess: This procedure is the same as Theorem 2.
Analysis: Similar to Theorem 2, TD∗

t,ξ = (t∗S , t
∗
K , ε∗T ) is a

valid ciphertext. The advantage of C to solve the LWEn,m,q,χ

hardness is (qH1
+qH2

−1)ϵ4
2qH1

qH2
, which is also non-negligible. □

VII. PERFORMANCE EVALUATION AND COMPARISON

We evaluate the computational and communication over-
heads of our BroSearch and FS-BroSearch schemes. To ensure
fairness, we set the parameters q = 4097 and n = 64 and
compare with other lattice-based PEKS schemes [28], [6],
[19], [20]. All experiments were implemented in Python using
the NumPy library, which was conducted on a laptop with
a 12th Gen Intel(R) Core(TM) i7-12800HX CPU, 16 GB
of RAM, and running in Windows 10. Each experiment is
conducted independently in each round.

A. Computational Overhead

To conduct a theoretical comparison of the computational
overhead between our two designs and other state-of-the-art
approaches [28], [6], [19], [20], we focus solely on the follow-
ing operations: TH denotes the time cost of a hash function; TI

represents the time cost of matrix inversion; TM indicates the
time cost of multiplication; TNBD, TEB , TSP , TSL and TGSP

correspond to the time costs of the NewBasisDel, ExtBasis,
SamplePre, SampleLeft and GenSamplePre algorithms, re-
spectively; TEpk and TEct represent the time costs of the
Evalpk and Evalct algorithms, as defined in [19].

As shown in Table II, when encrypting a keyword, our
design avoids the time-consuming matrix inversion operations
and multiple invocations of the SampleLeft algorithm, real-
izing much more efficient than FS-PEKS and PAEKS, and
comparable to ABAEKS and Re-PAEKS. Furthermore, in a
multi-receiver scenario, our scheme enables direct broadcast-
ing of the ciphertext to the receivers, eliminating the need
for additional operations such as embedding receiver attribute
[19] or re-encryption [20], which is well-suited for cloud
storage applications. For the Trapdoor algorithm, similar to
the encryption process, our BroSearch scheme demonstrates
superior efficiency compared to FS-PEKS and PAEKS, while
remaining comparable to ABAEKS and Re-PAEKS. Further,
our FS-BroSearch scheme invokes the ExtBasis algorithm
to achieve forward security, whereas FS-PEKS employs the
NewBasisDel algorithm. As TNBD >> TEB , the efficiency
of FS-BroSearch represents a significant advantage over FS-
PEKS. While this additional operation introduces computa-
tional overhead compared to PAEKS, ABAEKS, and Re-
PAEKS, our FS-BroSearch scheme offers resilience against
key leakage issues. In the Search algorithm, as in FS-PEKS,
PAEKS, and Re-PAEKS, the time cost of our schemes is pri-
marily determined by a constant-level multiplication operation,
which is more efficient than ABAEKS.

Fig. 4 demonstrates the computational overhead of our
BroSearch and FS-BroSearch schemes compared to FS-PEKS
[28], PAEKS [6], ABAEKS [19] and RE-PAEKS [20] with the
number of receivers l. In Fig. 4(a), since our BroSearch and
FS-BroSearch schemes allow a ciphertext to be broadcast to
multiple receivers simultaneously, the time costs of Encrypt
algorithm in BroSearch and FS-BroSearch schemes are more
efficient than other four schemes. Fig. 4(b) illustrates the
computational overhead of the trapdoor generation procedure.
Due to the additional cost of invoking the ExtBasis algo-
rithm, the time cost of FS-BroSearch is higher compared to
BroSearch, PAEKS, ABAEKS, and Re-PAEKS, which is con-
sidered a trade-off between security and efficiency. Moreover,
BroSearch demonstrates superior efficiency relative to PAEKS,
ABAEKS, and Re-PAEKS. For example, when setting l = 1,
PAEKS takes 4.65s, ABAEKS takes 1.84s, and Re-PAEKS
takes 0.44s, while our BroSearch only takes 0.36s. In Fig.
4(c), the search cost of BroSearch and FS-BroSearch is much
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Fig. 4. Computational overhead comparison with the number of data receivers l.
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Fig. 5. Computational overhead comparison with the number of keywords k.

TABLE III
THE COMPUTATIONAL OVERHEAD COMPARISON WHEN k = 1

Schemes Encrypt Trapdoor Search

FS-PEKS [28] 4.52s 553.51s 0.09ms
PAEKS [6] 4.53s 4.65s 0.29ms

ABAEKS [19] 0.93s 1.84s 3.09ms
Re-PAEKS [20] 0.54s 0.44s 0.06ms

BroSearch 0.33s 0.36s 0.05ms
FS-BroSearch 0.37s 14.78s 0.10ms

more efficient than that of ABAEKS and is largely consistent
with FS-PEKS, PAEKS, and Re-PAEKS schemes, which is
practical in cloud storage systems.

As depicted in Fig. 5, we illustrate the computational over-
head with a different number of keywords k during ciphertext
generation, trapdoor generation, and search procedures for
these six schemes. In Fig. 5(a), the time cost of our BroSearch
and FS-BroSearch schemes is significantly lower than that of
FS-PEKS and PAEKS, which aligns with the theoretical values
presented in Tab. II. Moreover, since a lower-dimensional
matrix is used to invoke the SampleLeft algorithm, the actual
encryption overhead in our schemes is more efficient than that
of ABAEKS and Re-PAEKS, with this advantage increasing
as k grows. Fig. 5(b) and Fig. 5(c) show the computational
overhead of the Trapdoor and Search algorithms in these
six schemes, respectively. We observe that the time costs of
our schemes are proportional to the number of keywords k,
and these results are consistent with those shown in Fig. 4(b)
and Fig. 4(c). For example, when k = 1, the time costs of
these six schemes are shown in Table III. Specifically, the time
costs of the Encrypt, Trapdoor, and Search algorithms in our

TABLE IV
THEORETICAL COMMUNICATION OVERHEAD COMPARISON

Schemes Secret key Ciphertext Trapdoor

FS-PEKS [28] m2|Zq| lt(m + 1)|Zq| m|Zq|
PAEKS [6] m2|Zq| 8mls|Zq| 8mlr|Zq|

ABAEKS [19] 4m2|Zq| (|att| + 4)m|Zq| 5m|Zq|
Re-PAEKS [20] m2|Zq| 8m|Zq| 8m|Zq|

BroSearch m2|Zq| (l + 3)m|Zq| (l + 3)m|Zq|
FS-BroSearch m2|Zq| (l + τ + 3)m|Zq| (l + τ + 3)m|Zq|

BroSearch scheme are 0.33s, 0.36s, and 0.05ms, respectively,
which are at least 0.61×, 0.82×, and 0.83× compared to the
others [28], [6], [19], [20].

Notably, since the Setup, KeyGenS , and KeyGenR al-
gorithms are executed less frequently than the Encrypt,
Trapdoor, and Search algorithms in real-world applications,
which have minimal impact on execution efficiency in cloud
storage systems. Consequently, we focus only on the evalua-
tion and comparison of ciphertext generation, trapdoor gener-
ation, and search procedures.

B. Communication Overhead

The transmission of the secret key, ciphertext, and trap-
door among participating entities contributes to the overall
communication overhead. In this context, we provide a the-
oretical comparison of the communication overhead between
our BroSearch and FS-BroSearch schemes and other state-of-
the-art schemes [28], [6], [19], [20] in Table IV, where |Zq|
denotes the bit length of elements in Zq . For the data sender’s
secret key, the theoretical length across these six schemes
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Fig. 6. Communication overhead comparison.

is m2|Zq|, and thus it will not be repeated. As indicated
in Table IV, the secret key size for a data receiver in our
schemes is equivalent to that in FS-PEKS, PAEKS, and Re-
PAEKS, and outperforms ABAEKS due to the integration of
the access policy. During ciphertext and trapdoor generation,
the ciphertext size in our BroSearch (and FS-BroSearch) is
identical to the trapdoor size, which is influenced by the
number of receivers l (and for FS-BroSearch, also by the time
period τ ). While the communication overhead of our schemes
does not present a substantial advantage, our approach offers
significant benefits, including ciphertext broadcasting and for-
ward security, distinguishing it from other schemes.

Subsequently, we set the parameters as follows: q = 4097,
|Zq| = 13, n = 64, m = ⌈2n log q⌉ = 1537, lt = 10,
ls = lr = 4, |att| = 10, l = 1, and τ = 4. We then
evaluate the communication overhead of our BroSearch and
FS-BroSearch schemes. For example, the ciphertext size of
BroSearch and FS-BroSearch is given by (l + 3)m|Zq| =
(1 + 3) × 1537 × 13 ≈ 9.76KB and (l + τ + 3)m|Zq| =
(1 + 4 + 3) × 1537 × 13 ≈ 19.51KB, respectively. In Fig. 6,
we compare these evaluation results with those of prior works
[28], [6], [19], [20]. As shown, our schemes demonstrate
advantages over existing methods in terms of ciphertext size.

VIII. CONCLUSION

In this paper, we propose BroSearch, providing secure
and efficient encrypted search with ciphertext broadcast for
cloud storage systems. Furthermore, we propose a forward-
secure version, called FS-BroSearch, which successfully miti-
gates secret key leakage problems. Rigorous security analysis
demonstrates that both schemes achieve IND-CKA and IND-
IKGA security in the ROM. Comprehensive experimental
evaluations also indicate that our BroSearch offers significant
advantages in the computational efficiency. We acknowledge
that further work is required to enhance the security level from
the ROM to the standard model.
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