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Abstract

This paper presents a framework for evaluating the differential cryptanalysis
resistance of a Feistel cipher that uses Ajtai SIS hash function as its S-box. We
derive an upper bound on the maximum differential probability and analyze the
S-box output bias using a generalized extreme value (GEV) model. Simulation
results indicate that practical security is achieved with 16 rounds for a 32-bit
block and six for a 128-bit block.
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1 Introduction

Cryptographic schemes based on lattice problems have attracted considerable research
interest, with the Ajtai SIS hash function (hereafter, the Ajtai hash) recognized as a
hash function that exhibits theoretically intriguing properties and collision resistance.
Ajtai’s pioneering work [1] demonstrated that leveraging the worst-case hardness of
lattice problems enables the construction of one-way functions that are also hard on
average. Building on this, Micciancio expanded the Short Integer Solution (SIS) frame-
work to develop a collision-resistant hash function [2]. Despite these advancements
in establishing the Ajtai hash as a theoretically strong hash function, little atten-
tion has been paid to its security when employed as a component in symmetric-key
cryptographic constructions.
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Feistel ciphers, a type of block cipher widely used in symmetric-key cryptography,
are popular because they efficiently process fixed-size data blocks and do not require
the design of an inverse function. Their security is evaluated primarily in terms of
resistance to differential and linear cryptanalysis. Differential cryptanalysis, a chosen-
plaintext attack that tracks how input differences propagate through each round, is
particularly practical against ciphers with relatively small block sizes. In contrast, lin-
ear cryptanalysis requires identifying effective linear approximations inside the cipher,
which becomes more complicated for high-dimensional constructions such as the Ajtai
hash. Therefore, this study focuses on differential cryptanalysis to evaluate the security
provided when Ajtai hash is introduced as an S-box.

In the design of the Feistel ciphers, the pseudorandom function (PRF) plays a
central role. Well-known PRF constructions include the Goldreich–Goldwasser–Micali
(GGM) approach [3] and the synthesizer technique [4], and more recent work has
proposed extensions incorporating lattice-based primitives [5]. Learning with Errors
(LWE) and SIS are representative examples of lattice-based cryptographic methods
with duality relationship [6]. Recent results based on Learning with Rounding (LWR)
[7] further highlight both the theoretical potential and the practical challenges of
lattice-based symmetric-key ciphers. For instance, challenges such as synchronization
in parallel execution and increased communication overhead have become problematic
[8].

While significant progress has been achieved in symmetric-key schemes based on
LWE, SIS-based approaches have received limited attention, despite offering advan-
tages such as not requiring a particular error distribution specification and involving
a more straightforward design. Although SIS is not primarily oriented toward prac-
tical implementations, its theoretical results, reminiscent of Nyberg’s concept of the
perfect nonlinear S-box[9], are not immediately applicable to cipher design. However,
these insights still offer a useful theoretical basis that provides valuable guidance for
secure cipher development.

In this work, we investigate whether the use of the Ajtai hash in a Feistel cipher
ensures security against differential cryptanalysis. Our contributions are twofold. First,
we derive an upper bound on the maximum differential probability for a Feistel cipher
employing an Ajtai hash as its S-box, thereby assessing its resistance to differential
cryptanalysis. Second, we introduce a Generalized Extreme Value (GEV)- based sta-
tistical framework to estimate the number of rounds needed to be “practically secure”.
Simulation results demonstrate that practical security is achieved with 16 rounds for
a block size of 32 and six rounds for a block size of 128. To the best of our knowledge,
our approach represents a unique method for evaluating secure round counts in Feistel
cipher constructions.

The rest of the paper is organized as follows. Section 2 reviews the necessary prelim-
inaries: lattice problems, the SIS problem, collision-resistant hash functions, and the
Feistel cipher. Section 3 describes the construction of the proposed Feistel cipher and
the role of the SIS-based hash as its S-box. Section 4 presents differential cryptanal-
ysis of the cipher, deriving an upper bound on the maximum differential probability.
Section 5 offers a statistical analysis using the GEV distribution to estimate secure
round counts. Finally, Section 6 concludes with a discussion of results and future
research directions.
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2 Preliminaries

2.1 Lattice problems

A lattice is a set of all integer linear combinations of n linearly independent column
vectors b1, b2, · · · , bn. The lattice L(B) generated by these vectors can be represented
as L(B) = {Bx | x ∈ Zn} by matrix B =

(
b1 b2 · · · bn

)
, where x denotes a column

vector. In the following, vectors are assumed to be column vectors, and Zq = Z/qZ
denotes the integers modulo q. The successive minima of the lattice are defined as
follows.

Definition 1 (Successive Minima) The successive minima λ1, . . . , λn of the rank n lattice
L are defined as follows: The i-th minimum λi(L) is

λi(L) = inf{r | dim(span(L ∩B(r))) ≥ i}. (1)

Here, we denote the closed ball of centered at the origin and radius r as B(r).

Lattice problems can be used in cryptography to discuss computational hardness
and security. For example, the CVP, which finds a vector in L(B) closest to a given
target vector t ̸∈ L(B), and the Shortest Vector Problem (SVP), which finds the
shortest nonzero vector in L(B). The Shortest Independent Vectors Problem (SIVP)
is another example of a lattice problem, with its computational hardness stemming
from the difficulty of identifying a set of linearly independent vectors.

The lattice problems serve as the foundation for constructing strong ciphers. By
using the technique of reducing worst case to average case hardness, we can build a
cipher that exhibits strong resistance to attacks on average. SIS and LWE are exem-
plary problems that demonstrate such average resilience. The following provides a
formal description of lattice problems relevant to this paper.

Definition 2 (SIS) Given a uniformly random matrix A ∈ Zn×m
q and a real number β ≥ 1,

find a nonzero integer vector x ∈ Zm such that Ax = 0 ∈ Zn
q and ∥x∥ ≤ β.

Definition 3 (SVP) Given a lattice L(A), find the shortest nonzero vector v in L(A). The
parameter γ in the “γ-approximate SVP”(SVPγ for short) refers to the approximation factor,
where the algorithm finds a vector v such that ∥v∥ ≤ γλ1, where λ1 is the norm of the
shortest nonzero vector in L(A).

γ in SVPγ is a function of rank n of the lattice matrix. γ =
√
n is called the Minkowski’s

bound, and SVP is known to have a nonzero solution. The LLL lattice reduction
algorithm[10] can solve SVPγ where γ = 2(n−1)/4 in polynomial time. If there is no
algorithm to solve the SVP in probabilistic polynomial time, the SIS cannot be solved
in probabilistic polynomial time either[1].

Definition 4 (SIVPγ) Given a lattice L of rank n, find n linearly independent vectors
v1, . . . , vn such that maxi ∥vi∥ ≤ γλn(L).
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2.2 Collision-resistant hash function family

Ajtai proposed a hash function family based on a computationally hard problem on a
random lattice.

Definition 5 (Ajitai’s hash function family[1]) For m > n log2 q, Ajtai hash function family
f is defined as

f(x) = Ax mod q, (2)

where A ∈ Zn×m
q is uniformly selected at random and x ∈ {0, 1}m.

This function has the parameters n,m, q ∈ Z+, where m and q are defined as
functions of n. By considering the appropriate parameters and lattice problems, we
can evaluate the computational hardness of this hash function. Ajtai demonstrated
that this function can be a one-way hash function. These results indicate that the
various computational hardness aspects of this function can be reduced to the average
computational hardness of SIS. The average case hardness in lattice problems refers
to the difficulty in solving these problems when the input is randomly sampled. The
worst case hardness addresses the difficulty of solving the most challenging instances
of lattice problems. There are many results regarding the selection of parameters
and problems. The worst case hardness can be reduced within factor O(β

√
n) to the

average hardness of the SIS with β for q ≤ βω(
√
n log n)[11, 12], where h(n) = ω(g(n))

implies that for any constant c > 0, h(n) will eventually exceed c · g(n) as n increases.
Micciancio demonstrated that taking advantage of the computational hardness of

SIS makes it possible to construct a family of collision-resistant hash functions.

Theorem 1 (Collision-resistant hash function family[2]) For any sufficiently large polyno-
mial q, if there exists no polynomial time algorithm for solving SIVPγ with γ = O(n), which
is almost linear in the rank of the lattice, then the hash function family defined in (2) is
collision-resistant.

Here, a large polynomial can be, for instance, chosen as n3 or 2n. For a more detailed
discussion, please refer to Ref. [13].

The worst case computational hardness of SIVPγ with γ = O(n) is reduced to
SIS average computational hardness with q = Ω(n2), β = O(

√
m), m ≈ n log q where

h(n) = Ω(g(n)) if there are constants c > 0 and n0 such that 0 ≤ c · g(n) ≤ h(n) for
all n ≥ n0. This indicates that g(n) is a lower bound on h(n).

The fact that f(x) is a collision-resistant hash function implies that the probability
p(m) for finding a pair x,x′(x ̸= x′) such that Ax = Ax′ can be proven to be
negligible with respect to m using a probabilistic polynomial time algorithm. In this
context, negligible implies that p(m) is satisfied p(m) ≤ 1/poly(m) for sufficiently
large m and any positive polynomial poly(·). To construct a concrete hash function,
it is necessary to specify q, m, and n, and following reference [2], we choose q = 2n

and m = 2n2 as reasonable values.
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2.3 Feistel cipher

A Feistel cipher is a global structure for building block ciphers, like DES[14], and is
based on a Feistel network. First, the input data is divided into halves L0 and R0,
and L0 is scrambled by F , which is a nonlinear function of the input half data and
round key K1 and EXORed with R0. The ciphertext is generated by executing the
same round operation N times with round keys K1,K2, · · · ,KN .

The F -function determines the strength of the cipher. Using the Feistel construc-
tion with a PRF family, a class of block ciphers secure against chosen plaintext
attacks can be constructed using PRFs. It is known that a family of PRFs can be
constructed using a hash function with a one-way property[15]. One-wayness and
collision-resistance are different concepts in computational complexity theory. How-
ever, the requirements for relaxed collision-resistance are known to be harder than
the one-wayness[16]. Therefore, a secure Feistel cipher can be constructed using a
collision-resistant hash function.

2.4 Differential cryptanalysis

Differential cryptanalysis is a chosen plaintext attack, a practical attack method
against block ciphers[17]. Differential cryptanalysis uses the input plaintext pairX,X ′

and their difference ∆X = X ⊕X ′ ̸= 0. When the attacker can control the pairs, the
round key is extracted by observing the bias of the difference ∆Y = Y ⊕ Y ′ of the
output pair Y ,Y ′.

The number of plaintext and ciphertext pairs required for a successful differential
cryptanalysis attack is proportional to the reciprocal probability of ∆Y for the input
difference ∆X. Therefore, the higher the probability of ∆Y is, the easier the attack
will be successful, and the more uniformly distributed the probability of ∆Y , the
more difficult the attack will be. In other words, the security of a block cipher against
differential cryptanalysis is evaluated by the maximum value of the probability of ∆Y ,
and the plaintext input difference ∆X in N rounds. The maximum value PN of the
probability of the ciphertext output difference ∆Y is defined by

PN = max
∆X ̸=0,∆Y

P (∆Y |∆X), (3)

where P (∆Y |∆X) denotes the conditional probability of event ∆Y occurring for a
given ∆X. (3) is called the maximum differential probability.

2.5 Extreme value distributions

Extreme value distributions describe the limiting distributions for the minimum or
maximum independent random variables from the same distribution. X1, . . . , Xn, . . .
be a sequence of independent and identically distributed random variables with a
cumulative distribution function F (x) and let Mn = max{X1, . . . , Xn} denote the
maximum. The distribution of the maximum is given by P (Mn ≤ x) = P (X1 ≤
x) · · ·P (Xn ≤ x) = F (x)n. We do not see the distribution of Mn for an unknown F ,
but as n → ∞, we can find its limit distribution. The limit cumulative distribution
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Fig. 1 Round function of ABF

function G(x) of the extreme distribution is described by the generalized extreme value
(GEV) distribution[18]:

G(x) = exp

{
−
[
1 + ξ

(
x− µ

σ

)]− 1
ξ

}
, (4)

defined on {x : 1 + ξ(x − µ)/σ > 0}, where µ ∈ R, σ > 0 and ξ ∈ R. This dis-
tribution has three parameters: µ represents location, σ scale, and ξ shape. Among
these, depending on the value of shape parameter ξ, it can be divided into the three
distributions corresponding to Gumbel at ξ = 0, Fréchet at ξ > 0, and Weibull at
ξ < 0.

Theorem 2 (The extreme value trinity theorem) There exist sequences of constants an > 0
and bn ∈ R such that for M∗

n = (Mn − bn)/an, P (M∗
n ≤ x) → G(x) as n → ∞.

We will represent the distribution of the maximum differential probability of the
output of S-boxes in GEV.

3 Ajtai hash-based Feistel Cipher

In block cipher design, the Feistel construction is recognized as an effective approach
owing to its symmetric structure, which permits the same algorithm for encryption and
decryption. Since the Feistel cipher can always decrypt any F -function, it is possible
to construct a block cipher using a family of hash functions that are as good as the F -
function. This study presents the construction of the Ajtai hash-based Feistel cipher
(ABF) using a family of hash functions as the F -function. Fig. 1 shows the structure
of the ABF round function. After m-bits input, the plaintext X is divided into m/2-
bits L0 and R0 and input to the first-round function. This process repeats N rounds
to generate the ciphertext Y .

The F -function in the round function consists of an expansion permutation E,
EXOR with the round key Ki, and the S-box. The extended permutation E concate-
nates the bit strings represented by ||, corresponding to the expansion permutation in
DES[17]. Here, E has a simple structure, and while it may appear overly simplistic
compared to DES, there is no need to complicate E because A is random in ABF.
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Fig. 2 S-box and binary encoding of ABF

The hash function family f(x) composed of (2), is used for the S-box (Fig. 2). For
the input x ∈ {0, 1}m to the S-box, the output ỹ ∈ Zn

q of f(x), and by encoding
ỹi ∈ Zq of ỹ into a binary expression for each of i = 1, 2, . . . , n and concatenating it,
the S-box output y ∈ {0, 1}m

2 is obtained. The selection of round keys is arbitrary as
long as the period is long enough to assume that they are uniformly distributed.

While PRFs can be constructed from one-way functions, collision-resistant func-
tions are employed in the ABF. This is due to the fact that even one-way functions
might lead to the leakage of round key information if a collision occurs. Consider when
a pair of inputs to an S-box, x and x′ (where x ̸= x′), results in Ax = Ax′. Let
the input to the round function be L = Lj ||Lj and let the input pair of L be L′.
In this case, for the i-th bit of the vectors z and w, the EXOR operation satisfies
zi ⊕wi = zi +wi − ziwi. Here, we obtain the followings for the input pair x = K ⊕L
and x′ = K ⊕L′, therefore A(x− x′) = 0.

Thus, for the i-th bit of x− x′, we derive

xi − x′
i = ki ⊕ Li − ki ⊕ L′

i (5)

= (Li − L′
i)(1− ki) = 0. (6)

If Li − L′
i ̸= 0, we can determine ki = 1. Therefore, a secure Feistel cipher can be

constructed by using a collision-resistant hash function.
When the hash function family used in the S-box is collision-resistant, the proba-

bility of finding a pair of inputs such that Ax = Ax′ is negligible. There are various
ways to determine A; here, we consider a family where A is chosen randomly for each
encryption but remains fixed across rounds. With the ABF constructed in this manner,
the hash function that is difficult to invert is used as a large S-box, making differential
cryptanalysis challenging. Moreover, this design allows flexible construction of ciphers
with different block sizes in a single structure.

4 Differential Cryptanalysis of ABF

In this section, we evaluate ABF’s security against differential cryptanalysis. The
maximum differential probability in Feistel ciphers determines the system’s security,
even with two or more rounds. While brute-force search can find this probability for
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small block sizes or few rounds, it is impractical for large block sizes and many rounds
in real systems. Therefore, theoretical analysis is needed, and the following Theorem
3 from [19] provides the basis for estimating differential probabilities.

Theorem 3 In Feistel cipher, when the round keys are uniformly and independently selected,
an upper bound of the maximum differential probability PN when N ≥ 4 is given by the
following using the maximum differential probability Pmax of one round:

PN ≤ 2P 2
max. (7)

(7) means that the security against differential cryptanalysis can be evaluated using
the maximum differential probability of the round function, a result based on the
property that the key selection is uniform and independent.

Below, we evaluate the maximum differential probability Pmax of the round func-
tion of the ABF. Regarding the input X ∈ {0, 1}m and output Y ∈ {0, 1}m of a
round function, if X = XL||XR and Y = YL||YR are blocks divided into m/2-bits,
the following holds between the input difference ∆X and the output difference ∆Y
of the round function:

∆Y = ∆YL||∆YR = ∆y ⊕∆XR||∆XL, (8)

where ∆y ∈ {0, 1}m
2 is the output difference of the S-box (see Fig.2). Since ∆YR =

∆XL and the attacker can control the input difference, maximizing the probability
of ∆YL maximizes the probability of ∆Y . Note that since the maximum probability
of ∆YL is independent of ∆XR, the maximum probability of ∆YL is determined by
∆y. If the round key Ki ∈ {0, 1}m can be regarded as a uniform random, the S-box
input x can also be regarded as a uniform one. Therefore, the maximum probability
of ∆YL is determined by the input difference ∆x of the S-box and output difference
∆y of the S-box. Furthermore, if the binary encoding of the S-box output ỹ is a
bijection, that is, the parameter is chosen such that m = 2n log2 q holds, then y and
ỹ correspond one-to-one. In this case, Pmax can be represented using the maximum
differential probability of the S-box as follows:

Pmax = max
∆x ̸=0,∆y

P (∆y|∆x,A), (9)

where P (∆y|∆x,A) denotes the conditional probability of event ∆y occurring for
given ∆x and A.

In the following, the maximum differential probability of the S-box output of
the ABF is theoretically derived. It is well known that the sum of uniformly dis-
tributed variables tends to a normal distribution. However, an exact distribution of
the sum of discrete uniform distributions, when folded by modulo-q, cannot be directly
derived. First, we present the following lemma for the uniform random variable used
to construct the hash function to derive the S-box output difference distribution.

8



Lemma 4 Let ai for i = 1, 2, . . . , n be independent and identically distributed random vari-
ables that obey a discrete uniform distribution over Zq. Then, the value of sq, as defined by
the following, obeys a discrete uniform distribution over Zq.

sq =

n∑
i=1

ai mod q. (10)

Proof Consider n-tuple a = (a1, a2, · · · , an) of independent uniform random variables ai ∈
Zq(i = 1, 2, · · · , n). Since a is uniformly distributed over Zn

q , to find P (sq = k), it is sufficient
to find the number of a such that

s :=

n∑
i=1

ai = l + iq, (11)

where l = 0, 1, · · · , ⌊n(q−1)−k
q ⌋. Therefore we have

n−1∑
i=1

ai = k + lq − an. (12)

The left-hand side of (12) takes the value of {0, 1, · · · , (n− 1)(q− 1)}, and the value of an is
uniquely determined for (n− 1)-tuple (a1, a2, · · · , an−1), which (12) holds.

Subsequently, a for which (12) holds exists as qn−1 for given k, q, so that P (sq = k) =
qn−1/qn = 1/q. □

Lemma 4 leads to the following theorem regarding the distribution of the S-box
output pairs.

Theorem 5 For a given ∆x ∈ {0, 1}m, let the input pairs be x, x′ ∈ {0, 1}m, and let the
output pairs of the S-box be, y, y′ ∈ {0, 1}

m
2 . If A obeys a discrete uniform distribution over

Zn×m
q and m is equal to 2n log2 q, then the probability that the output pair y, y′ is obtained

from a given ∆x obeys a uniform distribution over {0, 1}
m
2 × {0, 1}

m
2 .

Proof For a given input pair (x,x′) ∈ {0, 1}m ×{0, 1}m, let ∆x = x⊕x′ ∈ {0, 1}m. Letting
the i-th row of the row vector a1,a2, · · · ,an of A be ai =

(
ai1 ai2 · · · aim

)
, the output

pair (ỹi, ỹ
′
i) ∈ Zq × Zq of f(x) corresponding to ai can be represented as follows:

ỹi = aix mod q (13)

ỹ′i = ai(x⊕∆x) mod q. (14)

Here, the k-th bit of ∆x is represented as ∆xk and the set of indices where the bit is 0 or 1
is defined as follows:

∆I0 = {k | ∆xk = 0 (k = 1, 2, · · · ,m)} (15)

∆I1 = {k | ∆xk = 1 (k = 1, 2, · · · ,m)}. (16)

Using the set of indices ∆I0, ∆I1 and the k-th bit xk of x, ỹi and ỹ′i can be represented as
follows:

ỹi =
∑

k∈∆I0

aikxk +
∑

k∈∆I1

aikxk mod q (17)
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ỹ′i =
∑

k∈∆I0

aikxk +
∑

k∈∆I1

aik(xk ⊕ 1) mod q. (18)

Since the elements of ai are random variables that obey the uniform distribution over Zq,
the first terms of (17) and (18) can be represented as random variables u that obey a discrete
uniform distribution over Zq from Lemma 4. Also, the second term in (17) is the sum of aik
for k such that xk = 1, and the second term of (18) is the sum of aik for k such that xk = 0,
and since aik in (1) and (2) do not overlap, their sums are mutually independent.

From Lemma 4, each sum is an independent random variable v, w that obey uniform
distribution over Zq. ỹi, ỹ

′
i can be represented in the following form using independent random

variables u, v, and w that obey discrete uniform distribution over Zq as follows:

ỹi = u+ v mod q (19)

ỹ′i = u+ w mod q. (20)

Since v, w, and u are independent, ỹi, ỹ
′
i are independent and uniformly distributed random

variables over Zq.
As each row of the matrix A is independent, each row of the outputs ỹ and ỹ′ of the S-

box are also independent. Therefore, the random variables (ỹ, ỹ′) obey uniform distribution
over Zn

q × Zn
q . Considering that the binary encoding Zn

q × Zn
q → {0, 1}

m
2 × {0, 1}

m
2 is a

bijection for m = 2n log2 q, the S-box output pair (ỹ, ỹ′) is also a random variable that obeys
a uniform distribution over {0, 1}

m
2 × {0, 1}

m
2 . □

Therefore, if the binary encoding of the ABF is a bijection, the difference of output
∆y = y ⊕ y′ obeys the uniform distribution over {0, 1}m

2 , then Pmax = 1/2
m
2 .

This result and Theorem 5 lead to the estimate of N round maximum differential
probability PN given by

PN ≤ 2P 2
max =

1

2m−1
. (21)

5 Statistical Analysis of Differential Cryptanalysis on
ABF Instances

In the evaluating cryptography, it is important to analyze a family of functions, but it
is also necessary to examine specific instances for practical applications. In this study,
we evaluate the typical security of ABF instances against differential cryptanalysis,
where typical security refers to the security expected on average when focusing on
individual instances in the family. We examine the specific instances and analyze the
average properties within the ABF family. In addition, we use extreme value theory by
GEV for the approximate model of the S-box to theoretically estimate the maximum
differential characteristic probability and the practically secure number of rounds.

5.1 Differential cryptanalysis works well against ABF with
small block sizes

We conducted simulations to examine whether ABF is vulnerable to attacks by differ-
ential cryptanalysis, focusing on cases with short block sizes. First, to eliminate the
uncertainty caused by the random selection and examine the characteristics, we per-
form a computer simulation of differential cryptanalysis for the block size for which
the candidate keys can be brute-force searched. When differential cryptanalysis is
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Table 1 Statistical Results of the number of key candidates per
number of difference used

# of difference Minimum Maximum Mean Median
1 587880 8388608 1203716.30 1051008
2 126 4132 397.61 274
3 1 5 1.33 1

attempted on a Feistel cipher, the input difference ∆X of the plaintexts is controlled,
and the round key is estimated based on the output difference ∆Y of the cipher-
texts. For example, if the number of rounds is N = 1, the key can be obtained by the
following procedure[20].

1. For the selected ∆X, select a pair of plaintext input pairs X,X ′ = X ⊕∆X and
find ∆Y .

2. Select a pair of input pairs x,x′ to the S-box such that the input difference of the
the plaintext is ∆X, and determine ∆Y .

3. For the pairs X,X ′,∆Y obtained in 1) and the pairs x,x′,∆Y obtained in 2),
where ∆Y is identical, the candidate key K̂1 is derived from the relations x =
L0 ∥ L0 ⊕K1 and X = L0 ∥ R0, and add it to the list of candidate keys.

The above procedure is repeated for multiple ∆X to narrow down the keys. If the
candidate keys can be searched for every Xand x, the candidate keys can be narrowed
down by taking the intersection of the candidate keys for each ∆X. If the number
of rounds is N = 3, the candidate keys can be estimated using the same procedure
by modifying the relation between the input and output differences to be used. If the
input block sizem is large, searching for all the candidates becomes difficult. Therefore,
it is necessary to modify the candidate keys to estimate them from several randomly
selected input pairs.

In the simulation, one instance on Zn×m
q that is a full rank matrix is chosen at

random as A of the S-box, and a round key is searched for an instance of ABF for
the selected A according to the differential cryptanalysis procedure described above.
For the ABF with parameters (n,m, q) = (2, 8, 4) and (4, 32, 16), we searched for
candidate keys by differential cryptanalysis. We found that the correct round key can
be identified in a few hours in both cases where the number of rounds N = 1 and 3.

Table 1 shows the results of how the number of key candidates decreases for each
instance of randomly generated A with m = 32 and N = 3 as the number of input
differences increases from 1 to 3. The table shows the minimum, maximum, mean,
and median number of key candidates for 100 instances. With only one difference,
approximately one million possible keys can be found. However, with two differences,
the number of possible keys decreases significantly to around a few hundred. With
three differences, most instances are able to identify the correct key.

The results show that a linear regression was performed with the equation y =
c+ dx, where y is the base-2 logarithm of the number of key candidates, and x is the
number of input differences. The estimated intercept, c, is 29.35747 (standard error:
0.16927, t-value: 173.4, Pr(> |t|) : <2e-16), and the slope, d, is -9.89946 (standard
error: 0.07836, t-value: -126.3, Pr(> |t|) : < 2e-16). The R2 is 0.9817, indicating a
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good fit of the regression equation to the results. With each additional difference, the
number of candidates decreases to approximately 1/2d ≈ 1/1000, corresponding to
9.9-bits.

These results show that when the block size m and the number of rounds N are
small, the round key of the ABF can be identified using only a few input and output
difference pairs by using differential analysis. As observed here, differential crypt-
analysis is practical when the block size and number of rounds are small. Therefore,
it is necessary to determine block sizes and the number of rounds that differential
cryptanalysis cannot solve.

5.2 Number of secure rounds

It is crucial to select a sufficiently large block size and number of rounds when designing
block ciphers to ensure the required level of security. In this study, we analyze differ-
ential characteristics for randomly selected instances of A and statistically evaluate
the number of secure rounds.

In Feistel ciphers, differential cryptanalysis becomes harder with more rounds, but
processing time also increases, making it important to study the security-performance
trade-off. While tracking active S-boxes enables efficient attacks on Feistel ciphers with
many small S-boxes, this method does not apply to ABF due to its single S-box.

Another approach to the security evaluation of block ciphers with many rounds is
differential characteristic probability, which estimates the differential probability of N
rounds using the product of the differential probabilities for each round[17].

Definition 6 Let ∆Xj−1 and ∆Xj be the input and output differences in the j-th round,
respectively, and P (∆Xj |∆Xj−1) be the conditional probability of the output difference
given the input difference. The differential characteristic probability Pc,N for N rounds is
defined as

Pc,N =

N∏
j=1

P (∆Xj |∆Xj−1), (22)

with ∆X0 = ∆X ̸= 0 at the start.

For each round, the combination of realized values of the input difference ∆Xj−1 is
called a path, and the differential characteristic probability is obtained by searching
for the path that maximizes Pc,N .

When the differential characteristic probability satisfies Pc,N ≤ 2−m, the cipher is
considered to be “practically secure” against differential cryptanalysis[21]. The small-
est suchN is the number of rounds the cipher secures against differential cryptanalysis.
For block ciphers satisfying Pc,N ≤ 2−m, an attacker needs plaintext greater than or
equal to all possible plaintext patterns to decrypt the cipher with differential crypt-
analysis. It is important to note that in this context, “practically secure” denotes a
theoretical security criterion rather than implying that the cipher is necessarily efficient
or deployable in real-world applications.

The practically secure lower bound of N(A) = min{N | Pc,N ≤ 2−m} is deter-
mined only by A. We find the distribution of N(A) by computing the differential

12



Fig. 3 Number of rounds to achieve Pc,N ≤ 2−m

characteristic probability for uniformly random A. For an ABF with the parameter
(n,m, q) = (2, 8, 4) and fixed round keys, we generate 1000 instances of A of full rank
and determine N(A). For small n, like n = 2, certain output differences can appear
frequently and even become fixed; however, as n increases, such cases become rare,
and in our simulations, no such instances occurred for n ≥ 4, with their frequency
expected to decrease further with larger n. Thus, these rare cases are unlikely to affect
the overall analysis when n is sufficiently large.

Fig. 3 depicts the distribution of N(A) obtained by the Monte Carlo simulation.
The minimum value of N(A) is eight, the maximum value is 46, and the average is
17.08. The results confirm that the number of secure rounds varies, corresponding to
each instance.

5.3 Average properties on S-box output differential

Based on the previous discussion, this section studies the average characteristics of
ABF instances. In an ideal S-box, the distribution of the output pairs obeys a uniform
distribution. An ideal maximum difference characteristic is that the maximum output
difference is small, and the probability of the output difference asymptotically obeys
a uniform distribution.

It is difficult to demonstrate directly that the distribution of the maximum dif-
ferential probability of the ABF approaches a uniform distribution. Using a method
based on the generalized extreme value distribution, we propose that the distribution
of maximum differential probability of the ABF asymptotically approaches that of an
ideal distribution.

We approximate the distribution of the output pairs of the ABF S-box by a folded
two-dimensional normal distribution and show that the average output characteristics
of the ABF approach the ideal uniform distribution using a generalized extreme value
distribution. When selecting an instance of A, each row ai ∈ Zm

q (i = 1, 2, · · · , n) is
independent, so the distribution of S-box output differences is a joint distribution of
the distributions for each row.

First, for the S-box input pair x, x′ and Jm,q = {0, 1, · · · ,m(q − 1)}, define the
S-box output pair (ŷi, ŷi

′) = (aix,aix
′) ∈ Jm,q × Jm,q.

Fig. 4 shows the empirical distribution of output pairs (ŷi, ŷ
′
i) for randomly

generated instances of ai by the Monte Carlo simulation. Note that the empirical dis-
tribution depends on the input difference. However, since the components of ai are
selected independently, we only need to consider the Hamming weight hw of the input
difference to obtain the empirical distribution. In Fig. 4, the top, middle, and bottom
rows correspond to n = 2, 4, and 8, respectively. From left to right across the columns,
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Fig. 4 Empirical distribution of (ŷi, ŷ
′
i)

the figures correspond to the Hamming weights hw = 1, m/2, and m (where m is the
block size).

For the cases where n = 2, 4, and 8, the empirical distribution was obtained
for 100000 instances under each condition, and the frequency was averaged for each
instance. In this simulation, the empirical distribution of input x was created using
all inputs for n = 2. In the case n = 4 and 8, the empirical distribution was obtained
using 1000000 inputs selected uniformly at random with a fixed input difference ∆x
and a pair of inputs x′ = x⊕∆x.

Since components of ai are independent and obey a discrete uniform distribution,
the output, which is the sum of them, is close to a normal distribution. As n increases
from 2 to 8, the distribution is close to the two-dimensional normal distribution,
especially when hw = m/2. Moreover, as the parameter n increases, the number of
random variables that obey the uniform distribution increases, so we expect that the
distribution is approximately close to the normal distribution.

As n increases, the range of values for (ŷi, ŷi
′) grows exponentially, while the con-

centration ellipse decreases in size, and regions far from the ellipse become rare events.
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Consequently, the data becomes zero-inflated categorical data. Such data can destabi-
lize the χ2 value in chi-square tests, making the uniformity test difficult[22]. Therefore,
in the following, the joint distribution of the output pairs (ŷi, ŷ

′
i) is approximated

by a two-dimensional normal distribution. This method is a standard approach for
representing bivariate distributions with correlations. Using a folded two-dimensional
normal distribution by modulo-q and the GEV, we demonstrate that the maximum
differential probability asymptotically approaches an ideal S-box.

First, the distribution of the vector ŷ = (ŷi, ŷ
′
i) representing the output pair is

modeled as a two-dimensional normal distribution as follows:

p(ŷ) =
1

√
2π

2√|Σ|
exp

(
−1

2
(ŷ − µ)⊤Σ−1(ŷ − µ)

)
(23)

µ =
(
m
4 (q − 1), m

4 (q − 1)
)

(24)

Σ =

(
σ2 σ2 −∆

σ2 −∆ σ2

)
(25)

σ2 =
m(q − 1)

4

(
2q − 1

3
+

m2(q − 1)(m− 1)

16

)
(26)

∆ =
1

12
(2q − 1)(q − 1)hw(∆x), (27)

where µ is the mean vector, Σ is the covariance matrix, and hw(∆x) is the Hamming
weight of the input difference. The derivation is obtained directly.

Next, we obtain the distribution folded by modulo-q, which models the distribution
of S-box output pairs. By evaluating the maximum probability of this distribution, that
is, the frequency of the mode, we can estimate the bias in the differential probability.
When a one-dimensional normal distribution is folded by modulo-q, it asymptotically
becomes a uniform distribution with a sufficiently small partition width[23]. This result
can be applied to a multivariate normal distribution if each dimension is independent.
However, it is not easy to extend this result directly because the variables in our
approximate model are correlated.

In the following, we use Monte Carlo simulation to obtain the empirical distribution
of the random variables (ỹi, ỹ

′
i), which are the output pairs (ŷi, ŷ

′
i) folded by modulo-

q. Observing the frequency of the mode of this empirical distribution, we determine
the empirical frequency distribution of the mode. By fitting the GEV to the empirical
frequency distribution of the mode, we can estimate the maximum density of the S-box
output pair.

Ns random output pairs that obey (23) are generated in the simulation. These
random variable values are folded by modulo-q to obtain the empirical distribution of
(ỹi, ỹ

′
i), and its frequency of the mode. This process is repeated Nm times to obtain

the empirical frequency distribution. The parameters of the GEV were obtained by
maximum likelihood estimation. We employed the ismev package of R to estimate the
parameters[24]. Additionally, since the ideal S-box output pairs (ỹi, ỹ

′
i) obey a uniform

distribution over Zq × Zq, we compare its distribution with that of the output given
by (23) using Monte Carlo simulation.
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Fig. 5 Estimated frequency distribution of mode

In Fig. 5, the top, middle, and bottom rows correspond to n = 2, 4, and 8,
respectively. The sample size of the output pair is Ns = 1000000, the sample size of
the frequency is Nm = 100000, and the Hamming weights of input differences are
hw = 1,m/2, and m. Fig. 5 shows the probability density function of the GEV with
the estimated parameters, and Table 2–4 shows the estimated parameters. From the
results, for n = 2, only the distribution for hw = 1 (dash-dotted line) deviates from
the others (hw = 4, 8) and the uniform case. For n = 4, the distribution for hw = 1
is slightly offset from the others. For n = 8, all the distributions are almost identi-
cal, confirming that the deviation decreases as n increases. We also confirmed that
the distribution of n = 2 and hw = 1 differs from other distributions. However, this
discrepancy becomes smaller for larger n = 4, 8, and the larger n, the closer the distri-
bution estimated by the normal distribution approximation becomes to that estimated
by the uniform distribution.

Tables 2–4 show the estimated GEV parameters, location µ, scale σ, shape ξ, and
their standard errors (SEµ, SEσ, SEξ) obtained by the maximum likelihood estima-
tion. These estimated parameters show that the larger n is, the more asymptotic the
normal distribution approximation result is to the uniform distribution characteristic,
which is an ideal S-box. Considering the obtained standard error, if one examines the
one-sided 95% confidence interval, the shape parameter is sufficiently less than zero,
suggesting that the distribution of the output pair (ỹi, ỹ

′
i) of the S-box modeled by

the normal distribution approximation obeys the Weibull distribution.
From the mode of the probability distribution of the S-box output pairs (ỹi, ỹ

′
i)

obtained in this way, we can estimate the maximum differential probability of the
ABF in the N round. Let c(ỹ, ỹ′) be the number of occurrences of the output pair
(ỹ, ỹ′) ∈ Zn

q × Zn
q of the S-box. The maximum differential probability Pmax of the

S-box is as follows:
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Table 2 Estimated parameter (n = 2)

Uniform
Normal

(hw = m)
Normal

(hw = m/2)
Normal
(hw = 1)

µ 62889.9804 62891.2570 62891.1632 64044.1023
SEµ 0.366293 0.368066 0.371648 0.518169
σ 104.3645 105.4014 106.7196 155.1743
SEσ 0.258920 0.263640 0.270961 0.353453
ξ -0.086671 -0.092448 -0.094775 -0.167586
SEξ 0.002037 0.002018 0.002064 0.000806

Table 3 Estimated parameter (n = 4)

Uniform
Normal
(hw = 1)

Normal
(hw = m/2)

Normal
(hw = m)

µ 4073.5561 4073.4771 4073.4372 4077.5444
SEµ 0.073623 0.073703 0.073359 0.075155
σ 21.039072 21.061516 20.952711 21.469652
SEσ 0.052006 0.051980 0.051752 0.053072
ξ -0.077223 -0.078088 -0.078389 -0.078177
SEξ 0.001978 0.001971 0.001984 0.001981

Table 4 Estimated parameter (n = 8)

Uniform
Normal
(hw = 1)

Normal
(hw = m/2)

Normal
(hw = m)

µ 34.0361 34.0343 34.0496 34.0439
SEµ 0.004282 0.004259 0.004283 0.004301
σ 1.222491 1.214973 1.220174 1.226664
SEσ 0.003036 0.003020 0.003043 0.003054
ξ -0.049566 -0.051149 -0.047329 -0.046985
SEξ 0.001993 0.002010 0.002040 0.002016

Pmax = max
∆ỹ

P (∆ỹ) = max
∆ỹ

∑

(ỹ,ỹ′)s.t.ỹ⊕ỹ′=∆ỹ

c(ỹ, ỹ′)
2m

,

where ∆ỹ is a formal notation representing the EXOR of ỹ and ỹ′ after binary encod-
ing, which represented as ∆ỹ = ỹ⊕ ỹ′. From the independence of each row in A, this
can be rewritten in the following form:

Pmax =


max

∆ỹi

∑

(ỹi,ỹ′
i)s.t.ỹi⊕ỹ′

i=∆ỹi

c(ỹi, ỹ
′
i)

q2




n

, (28)

where c(ỹi, ỹ
′
i) is the number of occurrences of the output pair (ỹi, ỹ

′
i), and ỹi⊕ỹ′i =

∆ỹi represents the EXOR after binary encoding. Then, there are q output pairs (ỹi, ỹ
′
i)

whose output differences are ∆ỹi, and it is found that the upper bound of (28) can be
evaluated using the frequency of the mode Ng for the number of occurrences c(ỹi, ỹ

′
i)
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and Ns:

Pmax =


max

∆ỹi

∑

(ỹi,ỹ′
i)s.t.ỹi⊕ỹ′

i=∆ỹi

c(ỹi, ỹ
′
i)

q2




n

≤
(
q
Ng

Ns

)n

.

The upper bound of the maximum differential characteristic probability of N rounds
can be obtained as the power of N , and the number of rounds N satisfying the prac-
tically secure criterion can be estimated by determining the smallest N satisfying the
following: (

qNg

Ns

)nN

≤ 2−m. (29)

For Ns > qNg, the following can be derived

N ≥ m

log2
Ns

qNg

. (30)

According to the estimation of the number of rounds by (30), N required is maxi-
mized by the largest Ng. Since (−∞, µ− σ

ξ ] is supported on the negative axis for the
GEV shape parameter ξ < 0, we consider Ng = µ − σ

ξ , which has the largest mode,
to estimate the upper bound on the number of rounds required. For n = 2, a large
value of Ng results in Ns < qNg, making it impossible to evaluate the number of
rounds. However, for n = 4, N = 16, and for n = 8, N = 6, the upper bound of the
required number of rounds can be estimated. To the best of the authors’ knowledge,
no examples of theoretical evaluation of secure rounds focusing on their probability
distribution have been found. As a result, the fact that this approach yields a specific
number of secure rounds is particularly noteworthy.

6 Conclusion

This paper evaluates the security of the Feistel cipher when a hash function based
on the computational hardness of the Ajtai hash is used as its S-box. We derived an
upper bound on the maximum differential probability to assess resistance to differential
cryptanalysis and identified the required secure rounds for each block size m. Using
the GEV distribution, our statistical analysis of S-box output bias shows that secure
rounds for block sizes 32 and 128 are 16 and six, respectively, demonstrating ABF’s
robustness against differential cryptanalysis.

Since our method involves simulations to obtain empirical distributions, apply-
ing it to scenarios where n exceeds 8 is difficult. This is mainly due to the need
for increased samples, which require significant computational resources. Additional
research is needed to develop alternative approaches that do not rely on simulations.
In addition to considering the resistance of differential cryptanalysis, the application
of linear cryptanalysis to ABF requires further study.
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