
Spec-o-Scope: Cache Probing at Cache Speed
Gal Horowitz

Tel-Aviv University

Tel-Aviv, Israel

galhorowitz1@mail.tau.ac.il

Eyal Ronen

Tel-Aviv University

Tel-Aviv, Israel

eyalronen@tauex.tau.ac.il

Yuval Yarom

Ruhr University Bochum

Bochum, Germany

yuval.yarom@rub.de

Abstract
Over the last two decades, microarchitectural side channels have

been the focus of a large body of research on the development of

new attack techniques, exploiting them to attack various classes

of targets and designing mitigations. One line of work focuses

on increasing the speed of the attacks, achieving higher levels of

temporal resolution that can allow attackers to learn finer-grained

information. The most recent addition to this line of work is Prime+

Scope [CCS ’21], which only requires a single access to the L1

cache to confirm the absence of victim activity in a cache set. While

significantly faster than prior attacks, Prime+Scope is still an order

of magnitude slower than cache access. In this work, we set out to

close this gap.

We draw on techniques from research into microarchitectural

weird gates, software constructs that exploit transient execution to

perform arbitrary computation on cache state. We design the Spec-

o-Scope gate, a new weird gate that performs 10 cache probes in

quick succession, and forms the basis for our eponymous attack. Our

Spec-o-Scope attack achieves an order of magnitude improvement

in temporal resolution compared to the previous state-of-the-art of

Prime+Scope, reducing the measurement time from ≈ 70 cycles to

only 5 — only one cycle more than an L1 cache access. We experi-

mentally verify that our attack can detect timing differences in a 5

cycle resolution. Finally, using our Spec-o-Scope attack, we show

the first microarchitectural side-channel attack on an unmodified

AES S-box-based implementation, which uses generic CPU fea-

tures and does not require manipulation of the operating system’s

scheduler.

CCS Concepts
• Security and privacy → Side-channel analysis and counter-
measures.

Keywords
Weird machines, Microarchitectural attacks, Cache attacks

1 Introduction
Sharing computer hardware between multiple workloads is a para-

digm deployed over a wide range of computing devices, from per-

sonal devices, such as mobile phones, to cloud servers. Workload

isolation, enforced by the operating system in collaboration with

the underlying hardware platform, is a key enabler of the paradigm.

It enables processing secret or sensitive information on a device

that also executes untrusted workloads that may be malicious.

Since their introduction over 20 years ago [39, 40], cache timing

attacks, which exploit the timing difference between cache hits

and misses, are a prominent threat to isolation. Cache attacks can

bypass many security boundaries, including between processes [32,

33], containers [48], virtual machines [17, 46, 47], browser ses-

sions [31, 38], and trusted execution environments [4, 29]. They

can be deployed remotely [22], in a cloud [15, 28], or from the

browser [23, 24, 38] and leak encryption keys [27, 32, 33, 39, 46],

user interface actions [13, 24, 25], and more [4, 37, 44].

Much research has focused on cache attack resolution, i.e., the

frequency at which the cache can be probed. Cache timing attacks

typically execute code that measures the time it takes to execute

a code sequence and infer the cache state from this timing. The

length of time it takes to execute the code limits the speed at which

the attack can repeat. Moreover, the accuracy of some attacks dete-

riorates significantly when the attack is repeated too frequently [2].

Low attack resolution prevents the attacker from distinguishing

events that occur within a short time interval and from determining

the exact time at which victim events occur. To improve attacks,

some works slow the victim down, through competition on mi-

croarchitectural resources [1, 2], operating system scheduling [14],

or by exploiting operating system control [29, 41]. Finally, some

attacks focus on improving the attack resolution by devising faster

attacks [4, 12, 35].

To the best of our knowledge, the fastest cache probing attack

is Prime+Scope [35]. The attack relies on the interaction between

cache levels, where eviction from the last level cache (LLC) or

the cache directory [21, 45] causes eviction from the L1 cache.

By carefully arranging data in the caches, Prime+Scope ensures

that a victim access to a location that fits in a monitored LLC set

would result in an eviction of a specific cache line from the L1 of

the attacker. Thus, probing the cache in the Prime+Scope attacks

boils down to scoping, or repeatedly measuring the access time

to a memory location that is cached in the L1 cache, achieving a

reported probing rate of once per approximately 70 cycles.

While the probing speed of Prime+Scope attack is impressive,

we note that it is more than an order of magnitude slower than

the 4 or 5 cycles reported for accessing cached data [9]. Thus, in

this paper, we ask the following question: Can we perform a cache
probing attack at a rate commensurate with cache speed?

Our Contribution
We answer the question in the affirmative. We present the Spec-

o-Scope attack, which builds on Prime+Scope but achieves a rate

of one probe per five cycles for a small number of probes, and an

average sustained speed of 10 cycles for longer sequences.

To achieve this rate, we use weird gates [8, 19] as a cache probing

mechanism. Weird gates use a race condition between speculatively

executed instructions to perform logical operations on cache state,

i.e., whether specific memory locations are cached or not. Katzman

et al. [19] show how using weird gates to transfer cache state be-

tween locations can decouple the cache probing from measuring

the cache state. Following their approach, we split the Prime+Scope

https://orcid.org/0009-0006-5983-1652
https://orcid.org/0000-0002-6013-7426
https://orcid.org/0000-0003-0401-4197

Gal Horowitz, Eyal Ronen, and Yuval Yarom

attack into two phases. The first phase uses repeated activations of

a weird gate to scope the monitored location and store the results

as the cache state of other memory locations. The second phase

uses time measurements to observe the stored state. We experiment

with multiple mechanisms to cause speculative execution in the

weird gate, and demonstrate that by using the gate construction of

Kaplan [18], we can reduce the probing rate at the scoping phase

to once per 54 cycles.

We then turn our attention to fundamental aspects of weird gates.

We observe that the operation of weird gates can be represented in

terms of instruction chains – subsequences of the instruction stream

whose last instruction has a data dependency on all preceding

instructions. We propose a new type of instruction chains and a

new way of composing chains, allowing us to construct a gate that

computes multiple functions of its inputs in a single invocation.

Finally, we build the Spec-o-Scope gate, which, instead of comput-

ing a function of different inputs, computes a function of repeated

probes of the same input. Specifically, our Spec-o-Scope gate con-

struction can perform up to 10 repeated probes of an input location.

The gate produces 10 outputs that identify a probe that resulted in a

cache miss, if such a cache miss happens during the gate execution.

The total latency of the gate is about 100 cycles. Thus, repeated

invocation of the gate achieve an average probe speed of 10 cycles.

Moreover, the core of the gate is a sequence of 10 probe operations

that happen within five cycles of each other.

To demonstrate the utility of our Spec-o-Scope gates, we use

them against two implementations of AES. Similar to Prime+Scope,

we show an efficient attack against a T-tables-based implementa-

tion, requiring ≈ 7000 traces for a full-key recovery, which can be

collected in less than one second. More significantly, we present an

efficient full-key recovery attack on an S-box implementation of

AES, which is considered much more resilient to cache attacks [3].

Our attack is based on the one presented by Cheng et al. [7] but

without their requirement for modifying the AES code by adding

arguably artificial attack gadgets. We also do not require interrupt-

ing the run of the encryption code by exploiting non-trivial control

of the operating system as in other previous attacks [3, 29] or the

availability of the now deprecated Intel TSX [5]. Our attack requires

≈ 10 000 traces, which can be collected in less than three seconds.

In summary, in this work we make the following contributions:

• We analyze the Prime+Scope attack and identify that measuring

the time limits the attack rate (Section 3).

• We show that a naive use of weird gates can improve the scope

rate of Prime+Scope, albeit not by a large margin (Section 4).

• We investigate the construction of weird gates, defining abstrac-

tions to represent gate structures, and identifying new construc-

tions (Section 5).

• Building on our new gate constructions, we design the Spec-o-

Scope gate, which achieves an order of magnitude improvement

over Prime+Scope (Section 6).

• We demonstrate the utility of Spec-o-Scope by attacking both T-

Table and S-Box-based implementations of AES (Sections 7 and 8).

To the best of our knowledge, our attack is the first successful

Prime+Probe-based attack on the S-box implementation that does

not require non-trivial control of the operating system [3, 5, 29]

or modification of the original code [7].

• We open-sourced the code of our experiments and attacks.
1

Ethical Disclosure
We have disclosed this new attack technique to Intel. As we do

not identify new leakage sources, and current published counter-

measures and best practices are still effective against the attack, no

restrictions on public disclosure are required.

2 Background and Related Work
2.1 Cache Attacks
Memory caches. To bridge the gap between slower memory and

faster CPUs, modern processors employ caches — small banks of

fast memory that store recently and frequently used memory lines.

When the processor needs to access memory, it first checks in the

cache. In the case of a cache hit, data is served from the cache,

reducing the access time. In the case of a cache miss, the CPU needs

to wait for the data. Data brought in a cache miss is typically stored

in the cache. Due to the limited capacity of the cache, storing new

data may necessitate evicting old data from it. Caches typically

use a variant of the least recently used (LRU) policy for deciding

which memory location to evict. To facilitate management, caches

are typically set-associative. That is, the cache and the memory

are partitioned into sets, such that a memory location can only be

cached in its corresponding set. Moreover, to achieve a balance

between size and speed, modern processors employ a hierarchy of

caches, ranging from the fast but small L1 cache to the larger but

slower last level cache (LLC).

Cache attacks. When the cache is shared between multiple work-

loads, the state of the cache depends on prior execution of all work-

loads. Cache attacks measure access time to memory to distinguish

cache hits from misses, observing the cache state to leak informa-

tion on prior execution of co-resident workloads. For example, the

Prime+Probe attack [27, 32, 33] first fills a cache set with attacker’s

data and then accesses the data, measuring access time. A slow ac-

cess time indicates that the accessed data is no longer in the cache,

presumably evicted due to a victim’s access to a memory address

in the same set.

Prime+Scope. Prime+Scope [35] is a variant of Prime+Probe

that achieves a high probing rate by combining three observations.

First, Prime+Scope observes that instead of checking all of the data

inserted by the attacker into the cache set, the attacker only needs

to monitor the eviction candidate, i.e., the memory location that

will be evicted next from the cache. Second, Prime+Scope relies on

access to some inclusive cache structure (usually, the LLC), i.e., a

structure which ensures that its content is a superset of the content

of the L1. Thus, evicting a memory location from the LLC also evicts

it from the L1. (For non-inclusive caches, Prime+Scope relies on the

inclusive nature of the cache directory [45].) Finally, Prime+Scope

uses the observation that cache hits in the L1 cache do not affect

the replacement policy in the LLC. Exploiting these observations,

Prime+Scope first performs a sequence of accesses to memory that

ensures that the LLC eviction candidate of a monitored set is cached

in the L1. It then repeatedlymeasures the access time to this eviction

candidate, which we denote as scope address. A victim access to

1
https://github.com/eyalr0/Spec-o-Scope [36]

https://github.com/eyalr0/Spec-o-Scope

Spec-o-Scope: Cache Probing at Cache Speed

a memory location in the monitored set will result in evicting the

eviction candidate from the LLC, and consequently also from the L1,

allowing the attacker to detect the event. However, as long as the

victim does not cause an eviction in the monitored set, the attacker

only needs to measure the access time to a memory location that is

cached in the L1 cache. Thus, Prime+Scope reduces the time it takes

to monitor an LLC cache set from a few thousand cycles [16, 27] to

about 70 cycles.

2.2 Weird Gates
To improve resource utilization, modern processors do not neces-

sarily execute instructions in the order they are specified in the

program. Instead, the processor keeps track of the data dependen-

cies between instructions and executes instructions as soon as their

inputs are ready. Because in many cases the processor cannot de-

termine the program order before executing previous instructions,

processors often speculate on the outcome of instructions. One

prominent cause of speculation is the prediction of branch instruc-

tion outcomes. However, speculation is not limited to control flow,

and can be the result of the assumption that instructions will not

cause faults. To handle possible misprediction, the processor retires

instructions in order, committing their outcome to the architectural

state. This allows the processor to verify that it catches mispredic-

tions before it commits to the outcome of instructions that were

speculatively executed. While transient instructions, that execute

speculatively as a result of a misprediction, do not change the archi-

tectural state of the processor, their execution can leave traces in the

microarchitecture. This behavior has been exploited for mounting

multiple transient-execution attacks [20, 26].

Recent work on transient execution has demonstrated that it can

be used for performing computation on cache state [8, 18, 19, 42, 43].

In a nutshell, these works treat the cache state, i.e., whether a

memory location is cached or not, as a Boolean variable. They then

implement logical gates, called weird gates [8], that operate on this

cache state.

Listing 1 shows an example of a weird NOT gate, which uses mis-

prediction of a return instruction to force transient execution [18].

The gate consists of a call to a helper function (Line 3), followed by

code that eventually accesses the output address (Lines 4–5) before

returning. The helper function changes its return address to skip

the code that follows the call. The calculation of the return address

uses the value of *in, which is known to be zero.

Figure 1 shows the operation of the gate. If *in is not cached, as

in the right-hand side of the figure, computing the return address

takes a long time, and *out is accessed speculatively. Conversely,

if *in is cached (left-hand side of Figure 1), the return address

is computed quickly, and speculative execution terminates before

executing the access to *out. Thus, after executing the gate, the

cache state of *out will be the logical inverse of the state that *in
had before the gate.

This construction of weird gates can be based on other specu-

lation mechanisms. Previously demonstrated gates exploit branch

misprediction [8, 19, 42] and return misprediction [18]. Wang et

al. [42] also show how to build weird gates based on assuming that

instructions do not fail. Last, Evtyushkin et al. [8] demonstrate that

intentionally aborting optimistic transactions in Intel Transactional

1 void NOT_gate(int *out, int *in) {
2 tin = *in;
3 mispredict_ret(&&real_return + tin);
4 tout = fixed_delay(); // returns 0
5 tout = *(out + tout);
6 lfence();
7 real_return:
8 return;
9 }
10

11 void mispredict_ret(ret) {
12 set_return_address(ret);
13 return;
14 }

Listing 1: Return-based NOT gate.

Start

Access

in

Set

return

address

Misprediction

detected

Delay

Access

out

Start

Access

in

Set

return

address

Misprediction

detected

Delay

Access

out

Figure 1: Operation of the NOT gate. Left when *in is cached,
right when it is not. Shaded instructions are never executed.
(Not even transiently.)

Synchronization Extension (TSX) can also be used for constructing

weird gates.

2.3 Cache Attacks on AES
The AES block cipher has been extensively used to demonstrate

cache attacks [14, 16, 17, 30, 32, 33] and as such has become a

ubiquitous target for cache attacks.

Traditionally, a T-Tables based implementation of AES is at-

tacked. Although specified using a 256-byte S-Box table, AES is in-

stead commonly implemented using four 1024-byte T-Tables which

significantly accelerate the encryption by combining multiple op-

erations into a table lookup. Although slower, S-box-based im-

plementations of AES are generally considered less vulnerable to

side-channel attacks [3].

Previous works targeted AES S-box-based implementations, but

they all require a relatively strong threat model. Some attacks are

based on the ability of the adversary to frequently interrupt code

execution at the target [3], the availability of special hardware fea-

tures [5] (the now deprecated Intel TSX instruction set extension),

or a combination of both [29] (targeting code running inside Intel

Gal Horowitz, Eyal Ronen, and Yuval Yarom

SGX). The recent Evict+Spec+Time attack by Cheng et al. [7] targets

amodified version of AES code, to which they added a non-standard
secret-independent memory access attack gadget.

2.4 Threat Model
Ourwork follows the threat model and assumptions made by Purnal

et al. [35], Kaplan [18], and Katzman et al. [19]. We assume that an

adversary can run unprivileged code concurrently with the target

code on the same physical processor (not necessarily on the same

core). We assume the processor has a shared leveled cache structure,

and that it supports out-of-order (OoO) and speculative execution.

For our attacks on AES, we assume a multi-core system with at

least three cores, so that our two attack threads and our target code

can each run on a separate core without interrupting each other

(note that we do not require hyperthreading). Following Purnal

et al. [34], we also require an inclusive LLC or cache directory for

our Prime+Scope-based attack.

3 Spec-o-Scope Overview
In this paper, we investigate the temporal resolution of cache at-

tacks. Our starting point is the current state-of-the-art Prime+Scope

attack [35]. We observe that it has a temporal resolution of approx-

imately 70 cycles [35]. However, the cache-sampling step of the

attack consists of a single access to a memory line that is cached

in the L1 cache, whose typical latency is only 4 cycles [10]. Thus,

the attack incurs an order of magnitude overhead over the core

operation.

1 uint32_t scope(char *address) {
2 uint32_t start = rdtscp();
3 char t = *address;
4 uint32_t end = rdtscp();
5 return end - start;
6 }

Listing 2: Scope code from the Prime+Scope attack.

To understand the source of this overhead, we look at a typical

implementation of the scope step of the Prime+Scope attack, in

Listing 2. The code is pretty straightforward. To measure the access

time to the scope address address, it queries the time stamp counter

before the memory access (Line 2) and after it (Line 4). Subtracting

the time stamp values yields the access time.

By timing a sequence of 10 000 calls to the rdtscp instruction

and repeating this experiment 50 000 times, we find that, on aver-

age, rdtscp takes 32.12 cycles. As each call to scope requires two
executions of rdtscp, we observe that measuring the execution

time of the memory access makes the bulk of the overhead.

In this work, we aim to reduce the time measurement overhead.

Considering the weight of the time measurement in the overhead,

the intuitive approach is to replace the use of rdtscp for time

measurement. For that, we first adapt the technique of Katzman

et al. [19] to decouple the sampling of the cache state from the time

measurement. They use “weird” gates that operate directly on the

logical state of the cache, i.e., whether a memory address is cached

or not, to divide each iteration of a cache attack into two steps.

In the sampling step, the attacker uses a NAND gate to probe the

target cache set, and store the result of the probe as the logical cache

state of another memory location. In the lifting step, the attacker

measures the time it takes to access the location used for the result

of sampling, to identify whether it is cached or not. Separating the

attack into two steps allows Katzman et al. [19] to overcome the

limitation of a slow timer.

We can use a similar approach with the Prime+Scope attack.

In each iteration of the sampling step, we copy the cache state

from the cache line we access (which we denote the scope address)

and store it in a dedicated set of cache lines (which we denote the

store addresses). After the sampling iterations are done, we start

the lifting step. We iterate over the store addresses and measure

the access time to each address, thus learning the original cache

states of the scope address in the different scope iterations. The

downside of this approach is that, as in the Prime+Scope attack,

once the victim has accessed the monitored set, the attacker needs

to reset the state of the cache to capture further accesses. Thus,

when decoupling the attack from the observation, the attacker can

only learn the timing of the first victim access, but nothing about

subsequent victim accesses.

We discuss the implementation of this approach in Section 4.

However, while it can significantly improve the temporal resolu-

tion in the case of slow timers, in our case, a large overhead still

remains. This is due to the relatively large overhead incurred by

the squashing of the speculative window. To bridge the gap, in Sec-

tion 6, we develop new techniques (based on the insights described

in Section 5) that allow us to perform multiple measurements in a

single speculative window, achieving a temporal resolution com-

mensurate with one L1 cache hit.

4 Speculative Time Measurement
In this section, we explore and evaluate multiple options for adapt-

ing the techniques of Katzman et al. [19] for use with the Prime+

Scope attack.

4.1 Weird Gate for Speculative Measurement
Katzman et al. [19] use a weird NAND gate as part of their im-

plementation of the Prime+Probe attack. Unlike Prime+Probe, the

Prime+Scope attack, which we adapt, only accesses a single mem-

ory location, the scope address, when monitoring the cache state.

Hence, we only need a gate with a single input, i.e., a NOT or a

BUFFER gate, for implementing the attack.

The choice of the gate type has a significant impact on our attack.

Recall that our goal is to detect with high temporal resolution the

first access to the target address. Until this first access, the scope

address will be cached at L1. If we use a BUFFER gate, in each scope

operation, we will copy the cached state of the scope address to a

new store address, i.e., we will access the store address and fetch it

into memory. As we will show, our scope operation is much faster

than an access to the external memory. This means that the memory

fetching request will start to lag after the scope operation. However,

the line fill buffer (LFB) that handles such memory requests has only

a limited-size queue, andwhen filled, it would block furthermemory

Spec-o-Scope: Cache Probing at Cache Speed

P+S P+S no fences BT gate CBT gate RET gate
0

50

100

150

cy
cle

s

Figure 2: Distribution of execution time for a single execution
of a single scope invocation for the original Prime+Scope
attack and variants based on the different weird gates types.

requests. This means that asymptotically, our scope operations rate

will be bounded by the latency of external memory.

Based on this observation, we use a NOT gate to achieve a high

temporal resolution. While the scope is cached, a NOT gate does

not perform any memory accesses. This allows us to run the scope

operations at maximal frequency. After the target address is ac-

cessed, the scope address will be evicted, and the NOT gate will

start accessing external memory. This first access will be detected

at a high temporal resolution. Further accesses might fill the LFB’s

queue and limit the rate, but at this point, we cannot learn new

information, so it will not have any effect on the accuracy of the

attack.

4.2 Experimental Evaluation
Past works identified three main approaches for generic imple-

mentations of a NOT gate, with branch training, without branch

training, and return-based. In particular, the no-branch-training

variant of Katzman et al. [19] obviate the need for costly training

by using an indirect branch with a jump table, instantiated using

a switch statement, such that at each invocation a different case

is taken. This always results in a misprediction, as the processor

predicts a repeat of the previous case. We implemented all three

approaches as well as two versions of the Prime+Scope attack. The

first implementation of Prime+Scope uses the code from the public

repository of the attack.
2
It consists of two rdtscp instructions for

measuring the access time to the scope address, with the addition of

the mfence and lfence instructions for synchronizing the instruc-

tion stream. The second implementation, presented in Listing 2,

is the same Prime+Scope code, but without the synchronization

instructions (which can be omitted).

Wemeasured the execution time of all five variants with a cached

input (the high resolution case) on an Intel Core i5-8250U. For each

variant, we ran 100 000 experiments, each executing 1260 consecu-

tive scope invocations. As the resulting box-plot in Figure 2 demon-

strates, the public version of the Prime+Scope attack is the slowest,

taking on average about 150 cycles per scope invocation. The ver-

sion without fences is significantly faster requiring only 70 cycles,

matching the report of Purnal et al. [35]. The speculative versions

of the attack also vary significantly. The branch training version is

the slowest, requiring over 130 cycles per invocation. Conversely,

2
https://github.com/KULeuven-COSIC/PRIME-SCOPE

the return-based implementation is the fastest, requiring only 54

cycles for each invocation.

4.3 Scope Overhead
The 54 cycles invocation time of the return-based scope variant is

still much higher than the L1 cache typical latency of 4 cycles [10].

We now attempt to explain the cause of this high overhead. Observ-

ing the code of the NOT gate (Listing 1), we see that the critical

path through the code consists of two function calls, one memory

dereference (*in), one addition and one memory write, which is

likely forwarded to the RET instruction.

Table 1: Latency of operations in return-based NOT gate.

Instruction Count Latency (cycles)

CALL 2 3

RET 2 2

Read from cache 1 4

ADD 1 1

LEA 1 1

Store forwarding 1 5

Total 21

In Table 1, we summarize the latency of these operations based

on Fog’s optimization guides [9, 10]. The table does not include the

cost of recovery from misprediction and the overheads due to the C

calling conventions and the loop that executes the gate. We could

not find references for the cost of return misprediction. However,

Fog [10] estimates branch misprediction costs at 15–20 cycles, and

Bryant and O’Hallaron [6] estimates it at 19 cycles. Assuming 19

cycles for the misprediction, and an additional 8 cycles for invoking

the gate, we reach a total of 48 cycles, which accounts for the

majority of the overhead of the NOT gate.

While it may be possible to remove some of the overhead, it

appears that a significant part of it is caused by performing the gate

operation. Thus, it would appear that the overhead is essential, and

cannot be removed. We therefore require a novel approach.

5 Instruction Chains
To further reduce the overhead, we require a novel type of weird

gates. To explain our solution, we use new terminology for de-

scribing weird gates, which we present in this section. The core

concept we use is an instruction chain, which is a subsequence of

the instruction stream that the processor executes, such that the

last instruction in the chain has a data dependency on all of the

instructions in the chain. For our purposes, an instruction has a di-

rect data dependency on a prior instruction if it uses data produced

by the prior instruction. Data dependency between instructions

is defined as the transitive closure of direct data dependency, i.e.,

the data an instruction uses depends on the data produced by the

other instruction. We note that in some cases, the data dependency

can be implied. For example, ret instructions implicitly depend on

the most recent store to the location at the top of the stack, which

https://github.com/KULeuven-COSIC/PRIME-SCOPE

Gal Horowitz, Eyal Ronen, and Yuval Yarom

contains the return address. Similarly, conditional moves and con-

ditional jumps implicitly depend on the most recent instruction

that updates the condition flag.

We first classify the chains that exist in the literature based on

their function in the gate and their temporal behavior. We then

proceed to introduce two new types of chains, which we use later.

Chains in weird gates. Using our definition of chains, we can

now see that a typical weird gate builds on a race condition between

two types of chains, defined by the purpose of the last instruction

of the chain. In signal chains, the last instruction, if executed, leaves
observable changes in the micro-architectural state of the processor.

In all of the examples in this paper, signal chains introduce a mem-

ory access to an output address, which depends on the result of the

preceding chain. One such example is Line 5 in Listing 1, which uses

an access to the address pointed by out, with a dependency on the

result of the preceding delay. Conversely, a control chain typically

ends with an instruction whose outcome is mispredicted, resulting

in transient execution of (parts of) a signal chain. In all of the code

examples in this paper, we use the return misprediction [18], which

we abstract as a call to the function mispredict_ret().
When the gate executes, the race between a control and a sig-

nal chain determines the gate’s output. When the processor en-

counters the last instruction of the control chain, it mispredicts its

outcome and proceeds to transiently execute instructions of the

signal chain. At some stage, when the last instruction of the control

chain executes, the misprediction is detected. If at this stage the

last instruction of the signal chain has already been executed, i.e.,

the signal chain wins the race, the state of the micro-architecture

will be changed. Conversely, if the control chain wins the race, the

signal chain is squashed before the last instruction executes, and

the state is not changed.

As a concrete example, the chains of a NOT gate are depicted in

Figure 1. In each of the parts of the figure, the control chain consists

of the operations in the left column of the figure, i.e., accessing

in and setting the return address. The signal chain, consisting of

a delay and an access to out, is on the right column of the gate

operation diagram.

1 delay_chain1(tmp) { delay_chain2(tmp) {
2 tmp += tmp; tmp = sqrt(tmp);
3
4 tmp += tmp; tmp = sqrt(tmp);
5 return tmp; return tmp;
6 } }

Listing 3: Examples of delay chains.

Delay chains. Chains can also be classified based on their timing

behavior. Delay chains are designed to take a fixed number of cycles

before falling through to the instructions that control their purpose.

In these chains, each instruction typically depends on its predeces-

sor in the chain. The delay chain is designed to produce a known

output, which is then used as part of the signal or control operation

of the chain. In all of the chains that we use, the inputs and output

are always zero. Listing 3 shows two examples of delay chains,

one using additions and the other using square root operations.

The number of repetitions of the operations controls the length of

the delay. While we present C-like code, in practice we implement

the delay chain in assembly. This allows us better control of the

generated code and, in particular, facilitates interleaving multiple

chains.

Probe chains. In contrast with delay chains, probe chains are de-

pendent on variable time operation. They can be used to “measure”

the time an operation takes, typically compared to a delay chain. In

all of the probe chains we use, the chain depends on one or more

memory accesses, such that the chain takes a long time if any of

the accessed locations is not in the cache.

Combining chains. Different gates are constructed using different
combination of chains. As we described, a NOT gate consists of a

fixed delay signal chain and a probe chain for the control. A NAND

gate has a similar construction, with the probe chain depending

on multiple inputs, rather than just one. Conversely, BUFFER and

AND gates have fixed delay chains at their control arm and probe

chains at the signal arm.

Some gates include multiple chains of each type. These can be

used for creating multiple copies of the same result [18, 19] or to

computemultiple functions [43]. Similarly, the NOR andMAJORITY

gates of Katzman et al. [19], which consist of multiple control chains,

all of which are probe chains, and a single, fixed delay, signal chain.

The OR gate of Wang et al. [42], uses multiple signal chains, each

probing a different input, but all using the same output. Last, Wang

et al. [43] extends their earlier work [42] to use multiple chains

having multiple outputs.

NewChain types. Utilizing of the flexibility of the terminology, we

now introduce two types of chains, which have not been used in the

literature so far. These new chains present alternative approaches

for implementing prior gates and support new functionality. They

also form the basis for our main contribution, the Spec-o-Scope

attack.

Multi-probe Chains. Multi-probe chains are chains that probe a

sequence of multiple input addresses. Unlike past chains that access

multiple addresses in parallel, e.g., the control chain of NAND

gates, the accesses to inputs in a multi-probe chain are serialized by

introducing dependencies between consecutive chains. Thus, the

delay of a multi-probe chain correlates with the sum of the delays

of the probes, whereas in prior multiple-input chains it correlates

with the maximum probe delay.

Listing 4 shows an example of a multi-probe chain with three

inputs on the left side. Note that when loading successive inputs,

the accessed address depends not only on the input, but also on the

value read from the previous input. Similar to past works, the code

assumes that the content read from memory is always zero; hence,

adding it to the address creates a dependency without changing

the address. In comparison, in the multi-input chain on the right

side, the three input loads are independent and will be executed in

parallel.

A potential use of multi-probe chains, which is orthogonal to

this work, is to implement a majority gate [19]. As an example, a

majority-out-of-5 gate uses a multi-probe chain which accesses all

five inputs as a signal chain, and a fixed-delay chain with a delay

slightly larger than two cache misses as the control chain. The

Spec-o-Scope: Cache Probing at Cache Speed

1 m_probe(in1, in2, in3) { m_input(in1, in2, in3) {
2 t1 = *in1; t1 = *in1;
3 t2 = *(in2 + t1); t2 = *in2;
4 t3 = *(in3 + t2); t3 = *in3;
5 return t3; return t1 + t2 + t3;
6 } }

Listing 4: Example of a multi-probe chain with three inputs
(left), contrasted with a multiple-input chain (right). The
code assumes that the memory contents is always zero. Note
that in the multiple-input chain, the memory accesses do not
depend on each other and can execute in parallel.

control chain then wins the race if three or more of the inputs are

not cached, but loses if at most two inputs are not cached.

1 tapped_gate(out1, out2, out3, in1, in2, in3) {
2 t1 = *in1;
3 t2 = *(in2 + t1);
4 t3 = *(in3 + t2);
5 mispredict_ret(real_return + t3);
6 tout1 = *(out1 + delay1());
7 tout2 = *(out2 + dependent_delay2(t1));
8 tout3 = *(out3 + dependent_delay3(t2));
9 real_return:
10 return;
11 }

Listing 5: An example of a gate using a tapped multi-probe
chain. Each of the three outputs is the result of a race against
a different suffix of the control chain in Lines 2–4.

Tapped Multi-Probe Chains. When a multi-probe chain is used

as the control arm of a weird gate, it is possible to attach multiple

signal chains, each at a different location in the multi-probe chain.

This creates multiple race conditions between different suffixes of

the multi-probe chain and the corresponding signal chains.

An example of a gate that uses a tapped multi-probe chain is

shown in Listing 5. The same gate is depicted in Figure 3. The

gate includes a multi-probe chain that leads to the control action

(Lines 2–4 in Listing 5, left column of Figure 3). Additionally, the

gate includes three delay chains, each leading to a separate signal

(Lines 6–8, right three columns). Delay chain 1 does not depend on

any of the control chain’s accesses and therefore races the whole

control chain. That is, after executing the gate, *out1 is accessed
and cached if delay chain 1 is faster than the total accesses in the

control chain. The second delay chain (Line 7) depends on t1, the
output of the first access in the multi-probe chain. Consequently,

delay2() only begins executing after t1 is available, and thus races
only the memory accesses to *in2 and *in3. Finally, delay chain 3

races only the last memory access of the multi-probe chain.

6 Multiple Probes Per Window
As we show in Section 4, using speculative gates can indeed reduce

the time it takes to perform the Prime+Scope attack. However, the

Start

Access

*in1

Access

*in2

Access

*in3

Mispredict

return

Misprediction

detected

Delay

chain 1

Delay

chain 2

Delay

chain 3

Access

*out3
Access

*out2
Access

*out1

Figure 3: A diagram of a gate which uses a tappedmulti-probe
chain. Delay chain 1 races against the full multi-probe chain.
Delay chain 2 races against the accesses to *in2 and *in3 in
the multi-probe chain, and Delay chain 3 races only against
the final access in the multi-probe chain.

reduction is only from 70 to 54 cycles, and most of the gap between

scope time and cache access time still remains. As we cannot remove

essential operations, our core strategy for improving the temporal

resolution of the attack is to perform multiple scope steps within a

single speculative window. In this section, we outline the design of

our Spec-o-Scope gates that perform multiple probes of the same

memory location.

6.1 Spec-o-Scope Gate Design
The core observation behind the Spec-o-Scope gate is that due to the

dependency between successive memory accesses in multi-probe

chains, the chains can be used to perform multiple accesses to the

same memory address. Thus, to realize a Spec-o-Scope gate, we

use a tapped multi-probe chain, where all inputs point to the scope

address. We then set the signal chains such that they will lose the

race if the scope address remains cached throughout the execution

of the control chain, but win the race if any of the memory accesses

that the signal chain races against misses in the cache.

The resulting timing diagram is shown in Figure 4. In the left-

hand side of the figure, we see the case that no victim access is

detected, i.e., the scope address remains cached. In such a case, the

control arm of the gate executes before any of the signals, and none

of the outputs are cached. Conversely, when the victim accesses

the target cache set, it causes eviction of the scope address from

the cache, forcing a cache miss in the control chain. This cache

miss delays the execution of the control chain, allowing some of
the signal chains to complete (speculatively). Specifically, control

chains that are tapped before the access that misses in the cache, i.e.,

before the victim access, will win the race and access their outputs.

Conversely, control chains that tap after the victim access will only

start after the miss is handled and will therefore lose the race. This

scenario is demonstrated in the right-hand side of Figure 4, where

Gal Horowitz, Eyal Ronen, and Yuval Yarom

Start

Scope 1

Scope 2

Scope 3

Set return

address

Misprediction

detected

Delay

chain 1

Delay

chain 2

Delay

chain 3

Access

store 3

Access

store 2

Access

store 1

Misprediction

detected

Start

Scope 1

Scope 2

Scope 3

Set return

address

Delay

chain 1

Delay

chain 2

Delay

chain 3

Access

store 3

Access

store 2

Access

store 1

Figure 4: Timing diagram for multiple scopes. Left, without victim access; Right with victim access before the second scope.

victim access caused the second scope to miss. Consequently, both

the first and second delay chains win the race and access their

respective outputs. Conversely, the third delay chain, which does

not race against the second scope, loses the race and its output is

not accessed.

After the gate executes, we can check the outputs to determine

whether a victim access has occurred, and if so, when. Specifically,

we test whether the output addresses are cached or not. If the first

output address is not cached, we know that the victim has not

accessed the monitored set during the execution of the Spec-o-

Scope gate. Conversely, if the first output address is cached, we

need to search for the first non-cached output address in order to

determine which of the scope accesses missed. We further recall

that the attacker does not need to test the outputs after each gate

invocation, but can wait until the attack is completed.

Implementing the gates, particularly when the number of chains

grows, requires some tuning. In particular, we want to reduce the

size of the code that executes speculatively to fit within the reorder

buffer (ROB). Additionally, we would like to avoid contention on

CPU resources, including reservation stations, execution units, and

line fill buffers. For that, we select specific instructions to be used in

delay chains. To reduce contention, some chains use floating-point

instructions (in particular, sqrtsd) and some use arithmetic in-

structions (in particular, popcnt). The popcnt instruction is chosen

because it takes up two cycles, accepts any register, and is made

up of a single micro-op [9]. For concrete implementations of the

Spec-o-Scope gates of different sizes, see the artifacts [36].

6.2 Spec-o-Scope Gates Evaluation
We now evaluate the temporal resolution that our Spec-o-Scope

gates achieve. We first analyze the gates’ structure to assess the

number of cycles between each scope operation. We then measure

the gates’ execution time to assess if it matches the analysis re-

sults. Last, we complement the measurements by evaluating the

sensitivity of gates to event timing.

Gate analysis. The control chain of a gate consists of a sequence

of memory accesses. Assuming all hit the cache, as is typical for

the Prime+Scope attack, the latency of each such access is 5 cy-

cles [9]. Additionally, the gate includes some overhead, in the form

of argument passing, computation, and memory accesses that cause

mispredictions, as well as call and ret instructions. In Section 4.2

we measured the timing of the NOT gate, which is very similar to

our single-scope gate, as about 54 cycles. Consequently, we can

extrapolate that an 𝑛-scope Spec-o-Scope gate will take 49 + 5𝑛

cycles when no cache misses are executed.

1 2 3 4 5 6 7 8 9 10
Number of scope operations in gate

0

25

50

75

100

Cy
cle

s

y = 5.35x + 46.29

Figure 5: Median execution time of Spec-o-Scope gates.

Spec-o-Scope: Cache Probing at Cache Speed

Gate execution time. To validate the analysis results, we im-

plement ten Spec-o-Scope gates, each with a different number of

scope operations and corresponding signal chains. We measure the

execution time of 1 000 000 invocations of each gate on an Intel Core

i5-8250U, and report the median execution time. Figure 5 shows the

results. As we can see, the execution time increases linearly with

the number of scope operations. The figure also includes a trend

line, showing a slope of 5.35 cycles per scope operation, closely

matching the results of our analysis.

0 2 4 6 8 10
Sample detection index

0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48

W
ai

t d
ur

at
io

n
in

 c
yc

le
s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 6: Distribution of the indices of scope operations in
which the access is detected for different wait durations (1000
experiments per wait duration).

Gate sensitivity. To test the gate sensitivity, we use it to perform

the Prime+Scope attack against an artificial victim. For the test, the

victim and attacker run in two synchronized threads. The victim

waits for a small number of cycles (0–50), before accessing a victim

address. Concurrently with the victim, the attacker thread executes

the Spec-o-Scope gate, noting the index of the scope operation in

which the attacker identifies the victim’s access. We repeat the

experiment 1000 times for each waiting duration and draw the

results in Figure 6. For each wait duration, the figure shows the

distribution of the indices of scope operation in which the access is

detected. That is, the probabilities in each row add up to 1.0.

As the figure shows, the longer the wait time is, the later in the

gate the access is detected, advancing roughly one index every 5

cycles. We thus conclude that our Spec-o-Scope gate is sensitive

enough to achieve a 5-cycle resolution for the duration of executing

the control chain.

6.3 Continuous Attacks
So far we discussed the operation of a single Spec-o-Scope gate.

The gate achieves a fine temporal resolution, of a scope operation

every 5 cycles. However, it is very limited and can only perform a

handful of accesses before the gate terminates. For a continuous

attack, the attacker must repeat invoking the gate multiple times.

A 10-scope gate has a latency of about 100 cycles. Thus, on aver-

age, we achieve a cache probing resolution of 10 cycles. However,

unlike, e.g., Prime+Scope, our scope intervals are not regular. In-

stead, we perform 10 scope operations at an interval of 5 cycles,

followed by a gap of about 50 cycles without scopes.

When a victim’s access falls inside this measurement gap, it

causes a cache miss in the first attacker scope of the following gate

invocation. Consequently, the attacker can detect such accesses. As

we will see in Section 8, when the 5 cycles resolution is required,

this detection can be used for rejecting traces where the desired

resolution cannot be guaranteed.

7 Attacking T-Tables based AES
We now show how to use our new Spec-o-Scope attack on AES

T-Tables Implementation. T-Tables-based implementations are one

of the main targets for micro-architectural attacks since the seminal

attack on AES by Osvik et al. [32]. Purnal et al. [35] show that tem-

poral information about T-Table accesses can significantly improve

the number of required traces when compared to the traditional

attack on the upper nibbles of a 128-bit key. Indeed, because the

attack targets first-round accesses to the T-tables, in traditional

attacks, information is gained only whenever a cache line is not

accessed in the entire decryption process (implying that it is not

accessed in the first round). However, as a specific cache line is not

accessed during the entire decryption process with a probability of

only (15
16
)40 ≈ 7%, this requires a large number of traces before such

an event occurs. In contrast, an attack that can detect the specific

round in which an access happened can utilize every trace. As an

example use-case for our high temporal resolution attack, we use it

to target a 128-bit T-Table-based AES implementation and recover

the full key.

7.1 First-Round Attack
We use our Spec-o-Scope attack to measure the time difference

between the access to the first cache line of the AES code and the

access to the first cache line of each T-Table. We run two threads,

synced by a shared memory flag, each monitoring one of the lines,

while we decrypt random ciphertexts. To recover the upper nibble

of each key byte, we try guessing the correct value by enumerating

over each of the 16 options. For each such guess, we can predict

whether or not an access to the first line of the table will occur in

the first round of decryption for each ciphertext. For each guess,

we compute the Pearson correlation between the measured time

differences and the predictions over all ciphertexts. We expect the

correct nibble to have the highest correlation. Note that each nibble

determines only one of four accesses to the table in the first round,

and as such, the prediction might be incorrect even with the correct

key nibble guess. However, this is expected to occur only on (1 −
(15
16
)3) · 15

16
≈ 17% of the traces for the correct guess, and we still

expect to see a positive correlation between the measured times

and the prediction.

Experimental Results. We ran our attack on the same CPU

configuration used in the previous experiments targeting a T-Table-

based implementation extracted from OpenSSL 1.1.1i.
3
Figure 7

shows the results of an attack aimed at distinguishing between

accesses to the first cache line of table T1 that occur on the first

round, accesses that occur on the second round (required for the

3
Experiment code is available at https://github.com/eyalr0/Spec-o-Scope [36]

https://github.com/eyalr0/Spec-o-Scope

Gal Horowitz, Eyal Ronen, and Yuval Yarom

second round attack), and accesses that occur at some later round.

Note that the X-axis is the difference between the scope index when

access was detected in the first attack thread (targeting the T-Table)

and the scope index when access was detected by the second attack

thread (targeting the first AES code line).

The difference we show is slightly skewed, as it does not take the

measurement gap (that occurs every 10 samples) into account. How-

ever, this does not seem to affect our correlation attack. Moreover, if

either of the two accesses happens during its attacker thread’s mea-

surement gap, it will be detected only in the first scope operation of

the next speculation window. This can cause a measurement noise

equivalent to up to 10 scope operations. Although we can detect

and ignore such measurements, we experimentally discovered that

they still have correlative information and are used in our analysis.

In contrast, samples with measured differences below a threshold

of 20 do not add any information, and we filter them out.

20 10 0 10 20 30 40 50 60
Attacker difference

0.0

0.1

0.2

0.3

De
ns

ity

First Round
Second Round
Later Rounds

Figure 7: Timing difference distribution measured for cipher-
texts accessing the targeted cache line in the first round, the
second round, and later rounds. Taken over 1000 randomkeys
with 4000 random ciphertexts for each key.

We ran our attack on 1000 different random keys and checked

our success rate for different numbers of traces. Figure 8 shows the

success rate of correctly recovering the top four most significant

bits (MSBs) of the four key bytes that access table T1 in the first

round as a function of the number of traces used in the attack.

Using 1000 traces, the attack can recover the four nibbles with a

probability of 98.5%.

0 200 400 600 800 1000
Number of traces

0%

25%

50%

75%

100%

Su
cc

es
s r

at
e

Figure 8: The success rate of recovering four upper key nib-
bles as a function of the number of traces used.

7.2 Second-Round Attack
The second-round attack follows a similar methodology to the first-

round. Using our new-gained knowledge of the upper nibbles of the

key bytes, we can sample random ciphertexts that do not access the

targeted cache line during the first round of decryption. This allows

us to focus on distinguishing between second-round accesses and

accesses at later rounds.

To recover the remaining 64 bits of the key, we once again com-

pute the Pearson correlation between the measured timing dif-

ferences and access predictions in the second-round. To predict

whether an access in the second round falls within the targeted

cache line requires knowledge of four first-round key bytes, and

a single upper nibble in the second round. In total this requires

enumerating 20 unknown bits.

We ran our attack on 1000 different keys and checked our success

rate for different numbers of traces. Figure 9 shows the success rate

of correctly recovering the bottom four least significant bits (LSBs)

of four key bytes as a function of the number of traces used in the

attack. Using 3000 traces, the attack recovers the four nibbles with

a probability of 97.6%.

0 500 1000 1500 2000 2500 3000 3500 4000
Number of traces

0%

25%

50%

75%

100%
Su

cc
es

s r
at

e

Figure 9: The success rate of recovering four lower key nib-
bles as a function of the number of traces used.

7.3 Number of Required Traces for Full Attack
Full key recovery requires running both the first-round attack and

the second-round attack. We experimentally find that 1000 decryp-

tion traces are sufficient to recover the 16 upper bits of the key

with probability 0.985, so in total, we need 1000 · 4 = 4000 traces to

recover all 64 upper bits with a probability of 0.9854 ≈ 94.1%. We

further find that the second round attack can recover the remaining

lower 64 bits using 3000 traces with a probability of 0.9764 ≈ 90.7%.

In total, we expect the attack to require 7000 traces to recover the

full key and succeed with a probability of 0.941 · 0.907 ≈ 85.4%.

8 Attacking S-Box based AES
AES S-box-based implementations are generally considered less

vulnerable to side-channel attacks [3] compared to T-table-based

implementations. This is because the S-box table is much smaller.

(One S-box table is comprised of 256 bytes or 4 cache lines, compared

to four T-Tables, each comprised of 1024 bytes or 16 cache lines).

Moreover, it is accessed at a much higher rate, 16 accesses per

round compared to only 4. Consequently, the probability that a

given cache line in the S-box table is not accessed in a given round

is only (3
4
)16 ≈ 1%, compared to (15

16
)4 ≈ 77% for T-tables.

Spec-o-Scope: Cache Probing at Cache Speed

To witness an event where a given cache line is not accessed on

the first round of decryption, we will need 1/(3
4
)16 ≈ 100 traces of

decryption on average. However, an event where the cache line is

not accessed in the first two rounds of decryption occurs with a

probability of ≈ 0.01% and will require ≈ 10 000 traces on average.

This means that for a practical attack on S-box-based implementa-

tions, an attacker should be able to distinguish if an S-box cache line

was accessed or not in a specific AES round, e.g., the first round. In
other words, we require an oracle O that can reveal the exact round

in which a specific part of the S-Box table was first accessed. This

requires a side-channel attack with a very high temporal resolution.

As each full round of AES takes ≈ 70 cycles, an oracle that can

distinguish between two consecutive rounds requires us to sample

at a rate faster than 35 cycles.

Our Spec-o-Scope is the first micro-architectural side-channel

attack that is able to sample with such high-temporal-resolution.

We note that previous attacks on S-box-based implementations

overcome this limitation by either interrupting the run of the en-

cryption code by exploiting non-trivial control of the operating

system [3, 29], utilize the now deprecated Intel TSX [5], or by mod-

ifying the original code [7].

We follow the theoretical attack presented by Cheng et al. [7],

where we realize the required oracles with our Spec-o-Scope attack.

The theoretical attack uses abstracted oracles and is made up of

two main steps:

(1) Assume access to an oracle O1 that can determine whether the

first cache line of the S-box (cache line 0) is accessed in the first

round of decryption or not. O1 is then used to find “witness”

ciphertexts, i.e., ciphertexts that do not access cache line 0 in

the first round. Based on these “witness” ciphertexts, we can

recover the top two most significant bits (MSBs) of each byte

of the first decryption round key (𝑘0).

(2) Using our knowledge of the two MSBs of each key byte, we can

efficiently generate ciphertexts that are assured not to access

cache line 0 in the first round. Assume access to an oracle

O2 that can determine whether, for a given ciphertext, the

first cache line of the S-box is accessed in the first two rounds

of decryption. Based on the resulting second round “witness”

ciphertexts we find, we can recover the remaining six least

significant bits (LSBs) of each byte of 𝑘0 and conclude our

attack.

We now recall the theoretical attack of [7], and then show how

we realize the oracles O1 and O2 using our attack and describe the

experimental results.

8.1 Theoretical Attack on S-Box AES
We attack an AES decryption algorithm 𝐷𝑘 (𝑐), where 𝑘 is a 16-byte

key. We assume access to two oracles, O1 (𝑐), which returns true if
cache line 0 of the S-box is not accessed by 𝐷𝑘 (𝑐) in the first round,

and O2 (𝑐), which returns true if cache line 0 of the S-box is not

accessed by 𝐷𝑘 (𝑐) during the first two rounds. Recall that a cache

line consists of 64 bytes, and thus the first 64 entries of the S-Box

fall within cache line 0. Equivalently, because the S-Box is 256 bytes

long, an index 𝑖 will fall within cache line 0 if its two MSBs are 0x0.

The attack, which recovers the first-round key 𝑘 , consists of two

steps; We first recover the two MSBs of each key byte using O1,

and then recover the remaining six LSBs of each key byte using O2.

First-Round Attack. Recall that the first round of AES decryption
accesses the S-Box once for each state byte, where the state is 𝑐 ⊕ 𝑘 .

Therefore, if O1 (𝑐) is true, we can conclude that for all 0 ≤ 𝑖 < 16,

the two MSBs of 𝑐 [𝑖] ⊕ 𝑘 [𝑖] are not 0x0, or equivalently, the two
MSBs of 𝑘 [𝑖] differ from the two MSBs of 𝑐 [𝑖]. By sampling enough

random ciphertexts, we can rule out all but the correct value of the

two MSBs. Note that once we know the true values of these MSBs,

we can sample random ciphertexts that do not access cache line 0

in the first round.

Second-RoundAttack. For the second-round attack, we first search
for a ciphertext 𝑐 for which O2 (𝑐) is true. We do so by sampling

random ciphertexts for which O1 (𝑐) is true and querying O2. We

recover each byte of 𝑘 separately. The following is a description

for 𝑘 [0]. The process for the rest of the bytes is similar. To recover

the six LSBs of 𝑘 [0], we query O2 with the 64 ciphertexts 𝑐 𝑗 for

0 ≤ 𝑗 < 64, which are the same as 𝑐 for all bits except for the six

LSBs of 𝑐 [0]. Specifically, 𝑐 𝑗 [0] = 𝑐 [0] ⊕ 𝑗 and 𝑐 𝑗 [𝑖] = 𝑐 [𝑖] for 𝑖 ≠ 0.

Let 𝑠 𝑗 be the decryption state just before S-Box substitution, e.g.,

𝑠 𝑗 [𝑖] are the indices used to access the S-Box. Based on the choice

of 𝑐 𝑗 , it can be shown that 𝑠 𝑗 [𝑖] = 𝑠0 [𝑖] for all 𝑖 > 3, and thus these

do not access cache line 0. Therefore, O2 (𝑐 𝑗) is determined by the

two MSBs of 𝑠 𝑗 [0], 𝑠 𝑗 [1], 𝑠 𝑗 [2], and 𝑠 𝑗 [3]. It can be shown that for

some 𝑠′
0
, 𝑠′

1
, 𝑠′

2
, and 𝑠′

3
it holds that

𝑠 𝑗 [𝑖] = 𝑠′𝑖 ⊕ 𝐶𝑖 · 𝑆𝐵−1 (𝑐 𝑗 [0] ⊕ 𝑘 [0])
where 𝐶𝑖 is the corresponding InvMixColumns matrix entry and

𝑆𝐵−1
is the decryption S-Box. In particular, 𝑠′

𝑖
is independent of 𝑗 .

Therefore, to know if O2 (𝑐 𝑗) is true it is sufficient to know the two

MSBs of 𝑠′
0
, 𝑠′

1
, 𝑠′

2
, and 𝑠′

3
and the six LSBs of 𝑘 [0], 14 bits in total.

We can enumerate all options and compare the 64 predicted oracle

queries against the ground truth and recover the six LSBs of 𝑘 [0].

8.2 First-Round Attack
To realize our O1 oracle, we require a very high accuracy measure-

ment of the time difference between the start of the AES decryption

and the first access to a given S-box cache line. However, we only

assume coarse-grain synchronization between our attack code and

the decryption process, which is not precise enough for our needs.

To overcome this limitation, we employ two attack threads. The

naive solution is to target the S-box’s cache line with one thread

and target some code line at the beginning of the AES decryption

code with the second thread. Although this can work, we have

experimentally found that this provides relatively noisy results.

Instead, we use a different approach that results in a cleaner

signal and also reduces the number of required measurements.

We use our Spec-o-Scope attack to measure the timing difference

between accesses to two different cache lines in the S-box. We run

two threads synced using a flag in shared memory, where each

thread runs our Spec-o-Scope attack with 10 probes per speculation

window. The first thread targets the first 64 bytes of the S-box

(cache line 0), and the second one targets the last 64 bytes (cache

line 3). Shortly after launching our attack threads, we run the AES

decryption code.

Gal Horowitz, Eyal Ronen, and Yuval Yarom

0x0
60

40

20

0

20

40

60

Di
ffe

re
nc

e
Be

tw
ee

n
At

ta
ck

er
s

0x1 0x2 0x3

Non-Witness
Line 0 Witness
Line 3 Witness
False Positive

Corresponding Ciphertext Byte Value

Figure 10: The distribution of the difference measured between attack threads for witness and non-witness ciphertexts as a
function of the MSBs’ value of byte 0, measured for 10 000 randomly generated ciphertexts.

Measuring the time difference between accesses to two different

lines of the S-box results in two oracles in a single measurement.

If the timing difference is very small, we assume both cache lines

were accessed in the first round. If cache line 0 was accessed before

cache line 3, we assume cache line 3 was not accessed in the first

round, and vice versa.

We note that the timing difference when both the first and last

cache lines are not accessed in the first round of decryption, and

when both of them are accessed in the first round is similar, and

our oracle will return an erroneous result. However, the probability

that these two S-box cache lines are not accessed on the first round

of decryption is (2
4
)16 ≈ 0.0015%. As our attack is designed to work

with noisy oracles, this negligible addition to the error rate does

not affect our attack, and getting two queries per measurement and

a much cleaner signal significantly reduces the overall complexity.

75 50 25 0 25 50 75
Attacker difference

0.0

0.2

0.4

De
ns

ity

Non-Witness
Cache Line 0 Witness
Cache Line 3 Witness

Figure 11: Distribution of timing difference measured by our
O1 oracle attack for witnesses for cache line 0, cache line 3,
and when both cache lines were accessed on the first round.
Taken over 1000 random keys with 10 000 random ciphertexts
for each key.

Experimental Results. We test our attack on the same CPU

configuration used in the previous experiments, targeting a stan-

dard S-Box-based implementation extracted from OpenSSL 1.1.1i.
4

Similar to Cheng et al. [7] we do not prefetch the S-Box to the cache.

Figure 11 shows the distribution of the measured timing difference

for “witness” ciphertexts, i.e., that does not access cache line 0 or

4
Experiment code is available at https://github.com/eyalr0/Spec-o-Scope [36]

cache line 3 in the first round, and “non-witness” ciphertexts that

access both cache lines in the first round. Note that the X-axis is the

difference between the scope indices at which the attack threads

detect accesses to the cache lines they monitor. (Cache line 0 and

cache line 3.) The difference we show is slightly skewed, because it

ignores the measurement gap that occurs every 10 samples. How-

ever, this does not seem to affect this part of the attack. Using a

threshold of ±20, we get an O1 oracle, which returns true for a

witness ciphertext, i.e., one where cache line 0 (cache line 3) is not

accessed in the first round. The realized oracle has a false positive

rate of only 0.01%, and a false negative rate of 21.75%.

Following Cheng et al. [7], we can use the realized O1 oracle to

test guesses for the two MSBs of each first round key byte. Recall

that we get two O1 oracles in each measurement, one for cache

line 0 and one for cache line 3. Figure 10 shows the results of

targeting key byte 0whose two MSBs are 0x3. We use our O1 oracle

on 10 000 random ciphertexts, clustered by their first byte’s MSBs’

value. For each ciphertext where the MSBs of byte 0 are also 0x3
cache line 0 will be accessed in the first round (the XOR of the

MSBs of ciphertext and key at byte 0 is 0x0). In that case, as can be

seen in Figure 10, we don’t observe any witnesses for cache line 0.

Similarly, if the first byte’s MSBs’ are 0x0, cache line 3 is accessed,
and we don’t observe any witnesses for it.

In our attack, we recover the values of the MSBs of the key

byte by choosing the value that corresponds to the lowest number

of witnesses. Although we get some false negatives (witnesses

that were not detected), the very low false positive probability still

allows us to recover the correct key bytesMSBswith a relatively low

number of traces. Moreover, we can reuse the same measurements

to find the MSBs of all key bytes.

We run our attack on 1000 different keys, testing the success rate

of our attack for different numbers of traces. Figure 12 shows the

success probability of recovering all 16·2MSBs of the first round key

as a function of the number of ciphertext traces. 1000 ciphertexts

are enough for a 81.5% success rate, while 2000 ciphertexts achieve

a 99.5% success rate. We note that measuring 2000 ciphertexts takes,

on average, only 0.56 seconds.

https://github.com/eyalr0/Spec-o-Scope

Spec-o-Scope: Cache Probing at Cache Speed

0 250 500 750 1000 1250 1500 1750 2000
Number of traces

0%

25%

50%

75%

100%

Su
cc

es
s r

at
e

Figure 12: The success rate for full 16 · 2MSBs recovery as a
function of the number of traces used.

8.3 Second-Round Attack
We now explain the attack on the second round that allows us to

recover the rest of the key bits. Recall that the two MSBs of the

key bytes, which the first-round attack recovers, determine which

S-Box cache lines are accessed in the first round. This means that

we can use the recovered key bits to generate a set of ciphertexts

that are all first-round witnesses, i.e., they do not access cache line 0

during the first round. we now search this set for second-round

witnesses. Our second-round attack has two main parts:

(1) We start by searching the set of first-round witnesses for a

second-round witness ciphertext, i.e., a ciphertext that does not

access the first cache line of the S-Box in the first two rounds.

(2) Next, for each byte of the second-round witness ciphertext we

find, we iterate over all possible other 63 values for the six

LSBs and test if the resulting ciphertext is also a second-round

witness or not. We then use this information to recover the

remaining six LSBs of the key byte.

Assuming the ciphertext chosen in the first part is indeed a

second-round witness, for each byte index we get 2
6 = 64 cipher-

texts, where ≈ 34% of them are also second-round witnesses. We

enumerate all possible values for the 6 LSBs of the 𝑖’th key byte and

8 bits that are a function of first-round state bytes and affect the 𝑖’th

byte of the second-round state (see Section 8.1 for details). In total,

we need to guess 14 bits. For each guess, we can calculate which

of the 64 ciphertexts should be second-round witnesses, and we

correlate this guess with the results of our O2 oracle. To improve

the quality of the oracle, we use rejection sampling to discard traces

with measurements that might have fallen inside the measurement

gap of the gate, i.e., detected by the first scope of a speculative

window. In the initial part of the second-round attack, where we

find a second round witness, we additionally use majority voting,

as detailed below, however, for this step of the attack, we do not

need to perform majority voting as the correlation-based approach

can handle errors.

Rejection Sampling and Majority Voting. For the first part

of the attack, we require a high-accuracy witness O2 oracle for

a single ciphertext. We improve our accuracy by using rejection

sampling to discard traces that we deem to have a high likelihood

of being erroneous. Specifically, we discard any trace with a mea-

surement where the first scope in a gate indicates access, as these

may be caused by accesses in the measurement gap between traces.

Additionally, we discard measurements whose time difference is

smaller than required for a second-round access. Figure 13 shows

50 25 0 25 50 75 100 125 150
Attacker difference [Adjusted]

0.00

0.05

0.10

De
ns

ity

Second Round
Later Rounds

Figure 13: Timing difference distribution measured by our
attackers for ciphertexts that access cache line 0 on the sec-
ond round and ciphertexts that access it on later rounds (i.e.,
second round witnesses). Taken over 100 random keys with
5120 random first-round witness ciphertexts for each key.

the distribution of the measured timing difference, after rejection

sampling, for ciphertexts that access cache line 0 during the second

round and for ciphertexts that only access cache line 0 in later

rounds. (Typically the third round.) As before, the timing difference

is measured at the difference between the index of the scope opera-

tion where access was detected on the two attack threads. However,

for this step, we adjusted the difference to take the measurement

gap into account, i.e., we increase the index number by 10 after

each speculative window.

We tested our O2 oracle on 100 different keys. For each key,

we tested 5120 ciphertexts randomly selected from the set of first-

round witnesses. Our resulting O2 oracle is noisier than O1, with

a false positive rate of 10.79%, and a false negative rate of 16.76%.

The higher error rate is caused by added noise due to the longer

time differences measured. Moreover, because the probability of not

accessing a a cache line in a round is≈ 1%, the number of ciphertexts

that access cache line 0 on the second round is ≈ 100 times larger

than the number of ciphertexts that do not. Consequently, even

a relatively low false-positive rate can cause the attack to fail. To

prevent false positives, whenever a trace shows a ciphertext is a

second-round witness, we repeat the measurement 9 times and

accept the witness only if a majority of the 9 measurements agree

that the ciphertext is indeed a witness. Using this combination of

strategies, this step of our attack returns a second-round witness

with a high probability of ≈ 94%.

8.4 Recovering the LSBs of the Key Bytes
After finding a second-round witness, we proceed the final step

of our attack. For each byte 𝑖 of the ciphertext, we enumerate and

measure all possible values of the lowest six LSBs.

Recall (Section 8.1) that for the second-round attack, we need

to guess the six LSBs of the key byte, as well as two MSBs of one

byte of each of the four 𝑠′
𝑗
, to a total of 14 bits. For each guess,

we compute the Pearson correlation between the expected access,

based on the key, and the result of the attack. Figure 14 shows the

Pearson correlations for all possible guesses for the attack on key

byte 0. The figure highlights the guesses that contain the correct

key, and marks the correlation for the correct guess of the 14 bits.

As can be seen, this guess shows a correlation significantly higher

than other guesses, allowing us to identify the correct guess.

Gal Horowitz, Eyal Ronen, and Yuval Yarom

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

6 LSBs of the key byte

0.0

0.2

0.4

0.6

0.8
Pe

ar
so

n
Co

rre
la

tio
n

Figure 14: Correlation for each guess of the 14 bits in a single attack on key byte 0. The guesses are clustered by the key byte’s 6
LSBs value. The guesses for the correct key bits are highlighted, and the correct guess on all 14 bits is marked.

0 2500 5000 7500 10000 12500 15000 17500
Number of traces

0.00

0.02

0.04

0.06

0.08

Pr
ob

ab
ilit

y

Selecting witness
Measuring 1024 for witness
Total

Figure 15: Histogram of the required number of traces to
complete the attack. Measured over 1000 random keys and
repeated 5 times for each key.

We run the full second round attack on 1000 different keys, re-

peating five times for each key. Of the total 5000 attacks, 48.36%

recovered all 128 key bits correctly. Figure 15 shows a histogram

of the required number of traces for each step of the second round

attack and the total number of traces. The main variance is in the

step where we select the witness ciphertext. The number of cipher-

texts we sample before finding a witness is a geometric distribution

with probability 𝑝 = 0.01. The actual number of traces is larger due

to rejection sampling and majority voting. The second step requires

a total of 64 · 16 = 1024 traces to recover all key bytes; again, the

actual number is larger due to rejection sampling.

Improving Accuracy with Post-processing. While achieving a

50% success rate is arguably sufficient, because we can just repeat

the attack on failure, we can significantly improve our success rate

with simple post-processing. We observe that the success rate for

individual bytes is 88%, significantly higher than that of the full

key. This means that in a large number of attack attempts, only a

few bytes are guessed incorrectly. If we can identify the incorrect

guesses, we can simply brute force them to find the correct values.

In the naive attack, we simply choose the key guess with the

highest correlation. Instead, we can consider guesses where the

maximal correlation is below a threshold (0.6) to be incorrect. Now,

for all attempts where at most 4 byte guesses are assumed to be

incorrect, we brute force the unknown 24 key bits. Using this ap-

proach, we increase our success rate to 73.92% while reusing the

same traces as before.

8.5 Number of Required Traces for Full Attack
Full key recovery requires running both the first-round attack, and

the second-round attack. We experimentally find in Section 8.2 that

2000 decryption traces are sufficient to recover the 32 MSBs of the

key bytes with a probability 99.5%. We further find in Section 8.4

that the second-round attack, which on average requires 7830 traces,

succeeds with a probability of 73.92%. In total, we expect the attack

to require 9830 traces on average to recover the full key, and succeed

with a probability of 0.995 · 0.7392 ≈ 73.55%.

9 Conclusions and Open Problems
This paper presents the Spec-o-Scope attack, a micro-architectural

cache contention attack that achieves an order of magnitude im-

provement over the current state-of-the-art Prime+Scope attack.

We evaluate our attack experimentally, showing that it can discern

events with five cycles of precision. We also show how to use it to

efficiently recover the key from T-Table AES. Finally, we demon-

strate the first attack on unmodified S-Box AES that does not rely

on strong assumptions such as the ability to interrupt the victim

frequently or the availability of the now-deprecated Intel TSX.

Open problems Spec-o-Scope requires a machine that supports

our weird gates and is vulnerable to Prime+Scope. For the former,

Katzman et al. [19] perform an extensive analysis. For the latter,

Purnal et al. [35] demonstrate the technique on Intel architecture

only. AMD processors remain an open problem for Prime+Scope be-

cause cache-directory attacks do not carry over from non-inclusive

Intel processors to AMD processors [45]. On Arm machines that

feature AutoLock [11], our attack is unlikely. Other Arm processors

may be vulnerable, but we are not aware of a demonstration of

Prime+Scope on these.

Our Spec-o-Scope attack is based on advanced transient “weird

gates” that exploit complex interactions between different micro-

architectural components. We develop new general terminology

to describe these interactions and facilitate designing novel weird

gates that are based on them. We believe there is further potential

for enhancing attacks using such interactions and that future work

should investigate the usage of other micro-architectural compo-

nents and the best way to exploit them.

Spec-o-Scope: Cache Probing at Cache Speed

Acknowledgments
We thank Antoon Purnal for the advice and assistance in reproduc-

ing the Prime+Scope attack.

This research has been supported by: an ARC Discovery Project

number DP210102670; the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) under Germany’s Excellence Strat-

egy - EXC 2092 CASA - 390781972; an ISF grant no. 1807/23; the

Blavatnik ICRC; the Len Blavatnik and the Blavatnik Family Foun-

dation; and Robert Bosch Technologies Israel Ltd.

References
[1] Alejandro Cabrera Aldaya and Billy Bob Brumley. 2022. HyperDegrade: From

GHz to MHz Effective CPU Frequencies. In USENIX Security. https://www.

usenix.org/conference/usenixsecurity22/presentation/aldaya

[2] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop van de Pol, and Yuval

Yarom. 2016. Amplifying side channels through performance degradation. In

ACSAC (ACSAC ’16).
[3] C Ashokkumar, Bholanath Roy, M Bhargav Sri Venkatesh, and Bernard L.

Menezes. 2020. “S-Box” Implementation of AES Is Not Side Channel Resistant.

HASS 4 (2020).
[4] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan

Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache

Attacks Are Practical. In WOOT. USENIX Association. https://www.usenix.org/

conference/woot17/workshop-program/presentation/brasser

[5] Samira Briongos, Ida Bruhns, Pedro Malagón, Thomas Eisenbarth, and

José Manuel Moya. 2021. Aim, Wait, Shoot: How the CacheSniper Technique

Improves Unprivileged Cache Attacks. In EuroS&P.
[6] Randal E. Bryant and David R. O’Hallaron. 2016. Computer Systems: A Program-

mer’s Perspection. Pearson.
[7] Shing Hing William Cheng, Chitchanok Chuengsatiansup, Daniel Genkin, Dallas

McNeil, Toby Murray, Yuval Yarom, and Zhiyuan Zhang. 2024. Evict+Spec+Time:

Exploiting Out-of-Order Execution to Improve Cache-Timing Attacks. TCHES 3,
2024 (2024). https://eprint.iacr.org/2024/149

[8] Dmitry Evtyushkin, Thomas Benjamin, Jesse Elwell, Jeffrey A. Eitel, Angelo

Sapello, and Abhrajit Ghosh. 2021. Computing with Time: Microarchitectural

Weird Machines. In ASPLOS.
[9] Agner Fog. 2022. Instruction Tables: Lists of instruction latencies, throughputs

and micro-operation breakdowns for Intel, AMD, and VIA CPUs. https://www.

agner.org/optimize/instruction_tables.pdf.

[10] Agner Fog. 2023. The microarchitecture of Intel, AMD, and VIA CPUs. https:

//www.agner.org/optimize/microarchitecture.pdf.

[11] Marc Green, Leandro Rodrigues-Lima, Andreas Zankl, Gorka Irazoqui, Johann

Heyszl, and Thomas Eisenbarth. 2017. AutoLock: Why Cache Attacks on ARM

Are Harder Than You Think. In USENIX Security.
[12] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.

Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA.
[13] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template

Attacks: Automating Attacks on Inclusive Last-Level Caches. In USENIX Secu-
rity. https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-

paper-gruss.pdf

[14] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache Games –

BringingAccess-Based CacheAttacks onAES to Practice. In 2011 IEEE Symposium
on Security and Privacy.

[15] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui, Thomas Eisenbarth, and

Berk Sunar. 2016. Cache Attacks Enable Bulk Key Recovery on the Cloud. In

CHES.
[16] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. S$A: A Shared Cache

Attack ThatWorks across Cores and Defies VM Sandboxing – and Its Application

to AES. In IEEE SP. https://doi.org/10.1109/sp.2015.42

[17] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. 2014.

Wait a Minute! A fast, Cross-VM Attack on AES. In RAID. https://doi.org/10.

1007/978-3-319-11379-1_15

[18] David A. Kaplan. 2023. Optimization and Amplification of Cache Side Channel

Signals. arXiv/2303.00122.
[19] Daniel Katzman, William Kosasih, Chitchanok Chuengsatiansup, Eyal Ronen,

and Yuval Yarom. 2023. The Gates of Time: Improving Cache Attacks with

Transient Execution. In USENIX Security. https://www.usenix.org/system/files/

usenixsecurity23-katzman.pdf

[20] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,Werner Haas,

MikeHamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,

and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In

IEEE SP.
[21] Zili Kou, Sharad Sinha, Wenjian He, and Wei Zhang. 2022. Attack Directories on

ARM big.LITTLE Processors. In ICCAD.

[22] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida, Herbert Bos,

and Kaveh Razavi. 2020. NetCat: Practical Cache Attacks from the Network. In

IEEE SP.
[23] Andrew Kwong, Walter Wang, Jason Kim, Jonathan Berger, Daniel Genkin, Eyal

Ronen, Hovav Shacham, Riad S. Wahby, and Yuval Yarom. 2023. Checking

Passwords on Leaky Computers: A Side Channel Analysis of Chrome’s Password

Leak Detect Protocol. In USENIX Security. https://www.usenix.org/system/files/

usenixsecurity23-kwong.pdf

[24] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clémentine Maurice,

and Stefan Mangard. 2017. Practical Keystroke Timing Attacks in Sandboxed

JavaScript. In ESORICS.
[25] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan

Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In USENIX
Security. https://www.usenix.org/system/files/conference/usenixsecurity16/

sec16_paper_lipp.pdf

[26] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yu-

val Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory

from User Space. In USENIX Security. https://www.usenix.org/conference/

usenixsecurity18/presentation/lipp

[27] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-

Level Cache Side-Channel Attacks are Practical. In IEEE SP.
[28] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner, Daniel

Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Römer. 2017. Hello

from the Other Side: SSH over Robust Cache Covert Channels in the Cloud.

In NDSS. https://www.ndss-symposium.org/wp-content/uploads/2017/09/

ndss2017_06A-1_Maurice_paper.pdf

[29] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. CacheZoom:

How SGX Amplifies the Power of Cache Attacks. In CHES.
[30] Michael Neve and Jean-Pierre Seifert. 2006. Advances on Access-Driven Cache

Attacks on AES. In SAC. https://doi.org/10.1007/978-3-540-74462-7_11

[31] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.

Keromytis. 2015. The Spy in the Sandbox: Practical Cache Attacks in JavaScript

and their Implications. In CCS.
[32] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-

termeasures: The Case of AES. In CT-RSA.
[33] Colin Percival. 2005. Cache Missing for Fun and Profit. https://www.

daemonology.net/papers/htt.pdf

[34] Antoon Purnal, Marton Bognar, Frank Piessens, and Ingrid Verbauwhede. 2023.

ShowTime: Amplifying Arbitrary CPU Timing Side Channels. In AsiaCCS.
[35] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. 2021. Prime+Scope:

Overcoming the Observer Effect for High-Precision Cache Contention Attacks.

In CCS. 2906–2920.
[36] Eyal Ronen. 2024. eyalr0/Spec-o-Scope: V1.0.0.
[37] Aria Shahverdi, Mahammad Shirinov, and Dana Dachman-Soled. 2021. Database

Reconstruction from Noisy Volumes: A Cache Side-Channel Attack on SQLite.

In USENIX Security. https://www.usenix.org/system/files/sec21-shahverdi.pdf

[38] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal,

Yossi Oren, and Yuval Yarom. 2019. Robust Website Fingerprinting Through

the Cache Occupancy Channel. In USENIX Security. https://www.usenix.org/

system/files/sec19-shusterman.pdf

[39] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi

Miyauchi. 2003. Cryptanalysis of DES Implemented on Computers with Cache.

In CHES.
[40] Yukiyasu Tsunoo, Etsuko Tsujihara, Kazuhiko Minematsu, and Hiroshi Miyauchi.

2002. Cryptanalysis of Block Ciphers Implemented on Computers with Cache.

In ISITIA.
[41] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step: A Practical

Attack Framework for Precise Enclave Execution Control. In SysTeX.
[42] Ping-Lun Wang, Fraser Brown, and Riad S. Wahby. 2023. The ghost is the

machine: Weird machines in transient execution. In WOOT.
[43] Ping-Lun Wang, Riccardo Paccagnella, Riad S. Wahby, and Fraser Brown. 2024.

Bending microarchitectural weird machines towards practicality. In USENIX
Security.

[44] Mengjia Yan, ChristopherW. Fletcher, and Josep Torrellas. 2020. Cache Telepathy:

Leveraging Shared Resource Attacks to Learn DNN Architectures. In USENIX
Security. https://www.usenix.org/system/files/sec20-yan.pdf

[45] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher W. Fletcher,

Roy H. Campbell, and Josep Torrellas. 2019. Attack Directories, Not Caches: Side

Channel Attacks in a Non-Inclusive World. In IEEE SP.
[46] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: A High Resolution, Low

Noise, L3 Cache Side-Channel Attack. In USENIX Security. https://www.usenix.

org/system/files/conference/usenixsecurity14/sec14-paper-yarom.pdf

[47] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-

VM side channels and their use to extract private keys. In CCS.
[48] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2014. Cross-

Tenant Side-Channel Attacks in PaaS Clouds. In CCS.

https://www.usenix.org/conference/usenixsecurity22/presentation/aldaya
https://www.usenix.org/conference/usenixsecurity22/presentation/aldaya
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://eprint.iacr.org/2024/149
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-gruss.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-gruss.pdf
https://doi.org/10.1109/sp.2015.42
https://doi.org/10.1007/978-3-319-11379-1_15
https://doi.org/10.1007/978-3-319-11379-1_15
https://arxiv.org/pdf/2303.00122.pdf
https://www.usenix.org/system/files/usenixsecurity23-katzman.pdf
https://www.usenix.org/system/files/usenixsecurity23-katzman.pdf
https://www.usenix.org/system/files/usenixsecurity23-kwong.pdf
https://www.usenix.org/system/files/usenixsecurity23-kwong.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_lipp.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_lipp.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_06A-1_Maurice_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_06A-1_Maurice_paper.pdf
https://doi.org/10.1007/978-3-540-74462-7_11
https://www.daemonology.net/papers/htt.pdf
https://www.daemonology.net/papers/htt.pdf
https://www.usenix.org/system/files/sec21-shahverdi.pdf
https://www.usenix.org/system/files/sec19-shusterman.pdf
https://www.usenix.org/system/files/sec19-shusterman.pdf
https://www.usenix.org/system/files/sec20-yan.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-yarom.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-yarom.pdf

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Cache Attacks
	2.2 Weird Gates
	2.3 Cache Attacks on AES
	2.4 Threat Model

	3 Spec-o-Scope Overview
	4 Speculative Time Measurement
	4.1 Weird Gate for Speculative Measurement
	4.2 Experimental Evaluation
	4.3 Scope Overhead

	5 Instruction Chains
	6 Multiple Probes Per Window
	6.1 Spec-o-Scope Gate Design
	6.2 Spec-o-Scope Gates Evaluation
	6.3 Continuous Attacks

	7 Attacking T-Tables based AES
	7.1 First-Round Attack
	7.2 Second-Round Attack
	7.3 Number of Required Traces for Full Attack

	8 Attacking S-Box based AES
	8.1 Theoretical Attack on S-Box AES
	8.2 First-Round Attack
	8.3 Second-Round Attack
	8.4 Recovering the LSBs of the Key Bytes
	8.5 Number of Required Traces for Full Attack

	9 Conclusions and Open Problems
	References

