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Abstract—Indistinguishability is a fundamental principle of
cryptographic security, crucial for securing data transmitted
between Internet of Things (IoT) devices. This principle ensures
that an attacker cannot distinguish between the encrypted data,
also known as ciphertext, and random data or the ciphertexts
of the two messages encrypted with the same key. This research
investigates the ability of machine learning (ML) in assessing
indistinguishability property in encryption systems, with a focus
on lightweight ciphers. As our first case study, we consider
the SPECK32/64 and SIMON32/64 lightweight block ciphers,
designed for IoT devices operating under significant energy
constraints.

In this research, we introduce MIND-Crypt1, a novel ML-
based framework designed to assess the cryptographic in-
distinguishability of lightweight block ciphers, specifically the
SPECK32/64 and SIMON32/64 encryption algorithm in CBC
mode (Cipher Block Chaining), under Known Plaintext Attacks
(KPA). Our approach involves training ML models using ci-
phertexts from two plaintext messages encrypted with same key
to determine whether ML algorithms can identify meaningful
cryptographic patterns or leakage. Our experiments show that
modern ML techniques consistently achieve accuracy equivalent
to random guessing, indicating that no statistically exploitable
patterns exists in the ciphertexts generated by considered
lightweight block ciphers. Furthermore, we demonstrate that
in ML algorithms with all the possible combinations of the
ciphertexts for given plaintext messages reflects memorization
rather than generalization to unseen ciphertexts.

Collectively, these findings suggest that existing block ciphers
have secure cryptographic designs against ML-based indistin-
guishability assessments, reinforcing their security even under
round-reduced conditions.

Index Terms—Lightweight Block Ciphers, Cryptanalysis, Deep
Learning

I. INTRODUCTION

Indistinguishability is the basis for building secure encryp-
tion systems. Concretely, indistinguishability means that the
adversary can not tell the difference between the ciphertexts
corresponding to two plaintexts with a probability significantly
better than 0.50. It is an important notion underlying encryp-
tion security since it implies that the adversaries are unable to
decipher any useful information about the plaintext given the
ciphertext. Moreover, a broken indistinguishability property

1We refer to our attack framework as MIND-Crypt which stands for
“Machine learning based framework for assessing INDistinguishability of
Cryptographic Algorithms.”

exposes deterministic or predictable patterns in the encryption
process, making the system susceptible to more effective
attacks, such as ciphertext-only attacks where the plaintext
is deciphered without the key. This not only undermines the
trust and reliability of the cryptographic system but also paves
the way for practical decryption techniques that could exploit
this predictability. Therefore, preserving indistinguishability
is essential to maintain the overall integrity and security of
encryption schemes.
Lightweight Block Ciphers. The Internet of Things (IoT)
exemplifies a domain where cryptography’s vital role is par-
ticularly pronounced, due to its explosive growth and the
evolving capabilities of connected devices. With projections
estimating about 40 billion devices connected by 2030 [1]–
[4], the diversity of applications—from smart home devices
enhancing residential convenience and security, to advanced
systems in healthcare monitoring and industrial IoT (IIoT)—is
transforming traditional industries. However, many IoT de-
vices operate under constraints of processing power and
memory, necessitating cryptographic solutions that optimize
security without imposing significant computational burdens.
Among lightweight block ciphers, the SPECK32/64 and SI-
MON32/64 ciphers, designed by the National Security Agency,
stands out for its operational efficiency and simplicity, tailored
specifically to meet the needs of these resource-constrained
environments [5]–[7].
Cryptanalysis and Machine Learning. As cryptographic
systems evolve in complexity and sophistication, so too does
cryptanalysis – the study and practice of deciphering codes,
ciphers, and encrypted messages without the use of actual
key. This discipline has seen significant advancements through
a variety of techniques, reflecting the ongoing arms race
between cryptography and cryptanalysis. Traditional methods
such as side-channel attacks [8]–[11], fault injection attacks
[12]–[15], mathematical analysis [16]–[18], and brute-force
attacks [19]–[22] have continually been refined in tandem
with advancements in cryptographic techniques. However, as
cryptographic algorithms become more complex, the effective-
ness of these traditional approaches is increasingly challenged,
necessitating newer methodologies. This evolving landscape
has sparked considerable interest in integrating machine learn-
ing with cryptanalysis, offering novel approaches to breaking



cryptographic systems and presenting new challenges to their
robustness.

In 2019, Gohr [23] proposed a differential attack on round-
reduced SPECK32/64, focusing on the development of neural
distinguishers that could effectively distinguish ciphertexts
differing by a specific difference delta from random text.
This approach leveraged DL, specifically deep residual neural
networks, which demonstrated superior performance compared
to traditional cryptographic distinguishers. Further enhancing
the practicality of his method, Gohr integrated a novel key
search policy based on Bayesian optimization, significantly
improving the efficiency of key recovery processes. Following
Gohr’s work, Benamira et al. [24] conducted detailed analysis
and showed neural distinguisher developed by Gohr generally
relies on the differential distribution on the ciphertext pairs,
but also on the differential distribution in penultimate and
antepenultimate rounds. This approach not only showcased
DL’s potential in enhancing traditional cryptanalysis but also
emphasizes the need to probe deeper into the cipher’s behavior
by exploring the notion of indistinguishability. Unlike prior
research focused primarily on differential cryptanalysis, our
approach uniquely targets indistinguishability—an essential
property underpinning robust encryption—and systematically
assess it against advanced machine learning methods.

Our research investigates the potential of ML tech-
niques to assess the indistinguishability of lightweight
block ciphers, specifically SPECK32/64 and SI-
MON32/64. Compromising indistinguishability ren-
ders the cipher fundamentally insecure. This process
involves training a deep learning model on ciphertexts
from two distinct messages, P1 and P2, and aims to
determine if a challenge ciphertext belongs to message
P1 or P2.

Focus of Our Research. In contrast to Gohr [23], our research
shifts the focus from differential attack strategies to the broader
concept of indistinguishability within lightweight block ci-
phers (e.g., SPECK32/64, and SIMON32/64). Unlike Gohr’s
approach, which targets specific, known differential paths for
key recovery, our study employs ML to assess whether a model
can distinguish between ciphertexts of two plaintext messages
encrypted using the same key. Our analysis demonstrates
that achieving a generalized ML-based indistinguishability is
fundamentally more challenging than exploiting predefined
differential characteristics. Consequently, our results highlight
that existing lightweight block ciphers remain robust, as cur-
rent ML methods fail to compromise their indistinguishability.

To illustrate the practical implications of our research,
consider a scenario involving a smart home security sys-
tem that utilizes the SPECK32/64 or SIMON32/64 cipher
to encrypt data from sensors such as motion detectors and
window sensors. If indistinguishability were compromised,
an adversary might differentiate encrypted sensor signals,
distinguishing, for instance, whether ciphertext originates from

motion sensors detecting indoor movement or window sensors
detecting window openings. Such an ability would pose severe
privacy risks, enabling unauthorized parties to infer sensitive
patterns (e.g., movements), without explicitly decrypting the
messages.

Formally, in our study, we address the following research
question: Can ML techniques compromise the indistinguisha-
bility property of lightweight block ciphers? Our findings
provide strong evidence that current lightweight block cipher
implementations are secure against ML-based indistinguisha-
bility assessments.

When designing MIND-Crypt, we considered assumptions
typical of the Known Plaintext Attack (KPA) scenario, where
the attacker has access to both plaintexts and their corre-
sponding ciphertexts encrypted under the same key. Here, the
primary focus of an attacker is to identify if the challenge
ciphertext belongs to message P1 or P2, thus testing the
fundamental indistinguishability of the considered encryption
schemes. Our objective is not to demonstrate vulnerability
but to investigate whether subtle leakages might be exploited
by ML. We study both its standard configuration and round-
reduced versions to understand if these variations affect resis-
tance to ML.
Our Methodology & Experiments. We approach this chal-
lenge by framing the task as a binary classification problem,
where the ML classifier is trained on previously-known ci-
phertexts C1 and C2 corresponding to two fixed plaintexts P1

and P2, respectively, and using the trained model to predict
whether any new challenge ciphertexts correspond to P1 or
P2. To train the model, the attacker generates ciphertexts of
these messages by encrypting them under the same key.

Our experiments show that the performance of the ML
models remains consistently around random guessing levels
(≈50%). These findings suggests that ML models are unable
to extract meaningful patterns from ciphertexts produced by
lightweight encryption schemes. Consequently, our results
emphasize that ML-techniques, despite their advanced ca-
pabilities, cannot challenge the indistinguishability property
cryptographic algorithms.
Our Contributions and Summary of Results: The main
contributions and findings are summarized as follows:

1) A Novel Machine Learning Framework: We designed
MIND-Crypt, a novel machine learning-based framework
that utilized ML techniques to investigate the indistin-
guishability of lightweight block ciphers. More specifically,
we leverage DL to implement MIND-Crypt.

2) Comprehensive Evaluation of Cryptographic Indistin-
guishability: We evaluate cryptographic indistinguishabil-
ity of popular lightweight block ciphers by leveraging mul-
tiple state-of-the-art deep learning architectures, including
ResNet, CNN, LSTM, and BiLSTM. Our experiments
demonstrate that all evaluated ML models consistently
achieve accuracies equivalent to random guessing (≈50%),
clearly indicating their inability to detect meaningful cryp-
tographic leakage or statistical patterns.
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3) Analysis of Memorization vs. Generalization: We provide
a detailed analysis distinguishing memorization from gen-
eralization in DL model predictions, leveraging reduced-
entropy datasets specifically designed to study memoriza-
tion effects.

4) Security Assurance for IoT Devices: Our results provides
practical assurance, demonstrating that lightweight block
ciphers such as SPECK32/64 and SIMON32/64 are secure
against ML-based indistinguishability attacks in realistic,
resource-constrained IoT environments.

Reproducibility. we will make code and datasets publicly
available upon the publication of this research.

II. BACKGROUND & PRELIMINARIES

A. Lightweight Block Ciphers

1) SPECK32/64 Block Cipher: SPECK is a family of
lightweight block ciphers, denoted as SPECKM/N where
M, N are block size and key size respectively in bits, de-
veloped by Beaulieu, Treatman-Clark, Shors, Weeks, Smith
and Wingers [25] for NSA. It is an add-rotate-xor (ARX)
cipher with operations like modular addition (mod 2k) ⊞,
bitwise addition ⊕, and bitwise rotation (left ≪ and right
≫) applied on k-bit words, aimed to build efficient cipher
for software implementations in IoT devices [7]. The round
function of SPECK F : F2k

2 × F2k
2 → F2k

2 , computes the next
round state (Li+1, Ri+1) using a k-bit subkey K and current
round state (Li, Ri) as, Li+1 = ((Li ≫ α) ⊞ Ri) ⊕ K, and
Ri+1 = (Ri ≪ β)⊕ Li+1.

Here, α, β are rotation constants (α = 7, β = 2 for
SPECK32/64 and α = 8, β = 3 for remaining). The cipher-
text is produced from the input plaintext by employing this
round function for a fixed number of times (22 rounds for
SPECK32/64). Further, the design of SPECK32/64 balances
security with minimal computation overhead making it an
ideal candidate for studying indistinguishability in resource
constrained IoT devices [6], [7].

2) SIMON32/64 Block Cipher: SIMON is a family of
lightweight block ciphers, denoted as SIMONM/N , where
M represents the block size in bits, and N denotes the key
size in bits. SIMON was designed by Beaulieu, Shors, Smith,
Treatman-Clark, Weeks, and Wingers for the NSA [25], specif-
ically optimized for efficient implementation in hardware-
constrained environments, such as embedded systems [7].
SIMON employs a balanced Feistel network structure, par-
ticularly suited for hardware efficiency due to its simplicity,
minimal gate count, and compact area utilization.

For SIMON32/64, the cipher employs a word size of 16 bits
(thus a 32-bit block size) and a 64-bit key. The SIMON32/64
variant uses 32 rounds of encryption, providing adequate
security for resource-constrained devices. The minimalistic
and serialized design makes it highly suitable for hardware im-
plementations where area minimization and power efficiency
are critical, such as embedded IoT platforms [6], [7].

III. THREAT MODEL & ASSUMPTIONS

Our study investigates the security of the SPECK32/64 and
SIMON32/64 lightweight block ciphers in CBC mode (Cipher
Block Chaining) against Known Plaintext Attacks (KPA). We
primarily focus on an attacker’s ability to distinguish between
the ciphertexts of two different messages encrypted using the
same key. This is particularly relevant for IoT devices that op-
erate under significant energy constraints and require efficient
and lightweight cryptographic solutions like the SPECK32/64
or SIMON32/64 cipher.

In our attack model, we consider a passive attack scenario
where the attacker gains excess ciphertexts, all encrypted
with the same key, without performing active attacks such as
Chosen-Ciphertext Attacks (CCA). To illustrate the practical
implications of violating indistinguishability (briefly noted in
Section I) in cryptographic systems, consider a smart home
security system that uses the SPECK32/64 or SIMON32/64
lightweight block cipher to encrypt data from various con-
strained IoT sensors around the house. These sensors – includ-
ing motion detectors, cameras, and window sensors – regularly
send encrypted data to a central monitoring system. Adopting
a passive attack scenario enhances the practical relevance of
our assessment, as it represents a realistic threat where attack-
ers merely observe ciphertexts without active manipulations,
commonly encountered in practical IoT security environments.

Mathematically, we denote the plaintext by P , the ciphertext
by C, and the secret key by K. The encryption function EK
uses the key K to transform plaintext into ciphertext. A cipher
maintains indistinguishability if no polynomial-time adver-
sary can distinguish between the ciphertexts of two different
plaintexts encrypted with the same key with a probability
significantly better than 0.5.

The attacker selects two different fixed plaintexts, P1 and P2

(e.g., “heat” or “cool” commands that adjusts the temperature
using thermostat), which are encrypted using the same secret
key K, resulting in ciphertexts C1 and C2. Subsequently,
the attacker employs a deep learning model, trained with
multiple instances of ciphertexts C1 and C2. This model is
then utilized to classify new challenge ciphertexts, determining
whether they correspond to P1 or P2, potentially breaching the
indistinguishability property of the encryption scheme.

Our model extends these concepts by allowing the attacker
to simulate data generation without direct access, avoiding
the active manipulation typical of CCA. The attacker aims to
identify patterns, anomalies, or relationships in the ciphertexts
that differentiate those corresponding to two distinct, same-
byte-length plaintexts. Successfully differentiating ciphertexts
beyond chance agreement signifies vulnerabilities in the block
cipher, whereas failure to do so would validate the cipher’s
robustness under passive attack settings.

IV. MIND-CRYPT: DESIGN & METHODOLOGY

In this section, we introduce MIND-Crypt, a machine
learning-based assessment framework designed to evaluate the
cryptographic indistinguishability of lightweight block ciphers,
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specifically SPECK32/64 and SIMON32/64, operating in Ci-
pher Block Chaining (CBC) mode.

A. Framework Design

Our primary objective is to investigate whether machine
learning (ML) algorithms can identify statistically meaningful
patterns or cryptographic leakage in ciphertexts generated by
these lightweight block ciphers. Deep learning models have
demonstrated significant promise for solving complex classi-
fication problems in cybersecurity, such as malware detection,
intrusion detection, and traffic classification. In this study,
we utilized multiple DL architectures, namely, Convolution
Neural Networks [26] (CNNs), Long-Short Term Memory
(LSTM) [27] networks, Bidirectional LSTM (BiLSTM) [28]
networks, and Residual Neural Networks (ResNets) [23] to
comprehensively evaluate cryptographic indistinguishability of
lightweight block ciphers. The details of these DL architec-
tures is as follows:

1) Convolutional Neural Networks (CNNs): CNNs, intro-
duced by LeCun et al. [26] can effectively extract hierarchical
spatial features from input data via convolutional layers. CNNs
leverage multiple convolutional layers to automatically iden-
tify hierarchical patterns within the input data, which reduces
the reliance on manual feature extraction. Although CNNs
have historically been applied extensively in image recognition
tasks, their capability to capture subtle local statistical de-
pendencies also makes them well-suited for security research.
CNNs are highly effective for classification tasks involving
structures, grid-like data. These models have successfully
improved classification accuracy for security problems such as
network intrusion detection [29] and malware analysis [30].

2) Long-Short Term Memory (LSTM): LSTMs were in-
troduced by Hochreiter and Schmidhuber [31] are a type of
recurrent neural network capable of learning sequential depen-
dencies and long-term temporal patterns. LSTM architectures
employ specialized gating mechanisms that include input,
output and forget gates to effectively preserve long-range
dependencies within sequential data, addressing the vanishing
gradient problem common to traditional RNNs. For ciphertext
indistinguishability assessment, the sequential characteristics
of ciphertext bits are critically important. The intrinsic ability
of LSTM networks to capture long-range sequential patterns
makes them particularly suitable for analyzing cryptographic
ciphertexts generated through block ciphers.

3) Bidirectional Long-Short Term Memory (BiLSTM): BiL-
STM network architecture proposed by Graves and Schmid-
huber [28] enhancs traditional LSTM architectures by si-
multaneously processing input sequences in both forward
and backward directions. This bidirectional processing allows
BiLSTM networks to leverage past and future context at
each point in a given sequence, significantly improving their
ability to capture complex dependencies. In cryptographic
indistinguishability analysis, the direction-agnostic nature of
BiLSTMs may offer additional sensitivity in detecting subtle
statistical differences across ciphertext sequences, thereby pro-

viding a comprehensive evaluation capability for the presence
or absence of cryptographic leakage or patterns.

4) Residual Neural Networks (ResNets): He et al. [32]
introduced ResNets to address the vanishing gradients problem
in deep neural network (DNN) training by utilizing residual
blocks. These blocks, featuring stacked convolutional layers
with skip connections, allow the network to learn residual
functions, focusing on differences rather than complete trans-
formations. ResNets have been successfully applied in various
security applications [33]–[36].

In cryptanalysis, ResNet models are effective at identifying
complex patterns, which helps with tasks such as automated
cipher breaking and differential cryptanalysis. Their archi-
tecture allows for more accurate and efficient prediction of
differential characteristics, enhancing encryption analysis and
vulnerability insights. A prominent example is the work of
Gohr et al. [23], who leveraged deep residual neural networks
to identify differential characteristics in round-reduced ver-
sions of lightweight block ciphers such as SPECK32/64. Their
findings highlighted that ResNets could surpass traditional
cryptanalytic methods in specific scenarios involving reduced
cipher complexity. Adrien et al. [24] discuss how machine
learning, including ResNets, advances cryptanalytic and cyber
defense techniques.

B. Framework Implementation

Figure 1 illustrates our assessment framework, detailing the
entire process from message selection and ciphertext genera-
tion to ML-based assessment. Initially, two plaintext messages
P1 and P2, each having byte-length and differing by exactly
one bit, are encrypted multiple times using either SPECK32/64
or SIMON32/64 ciphers under a fixed encryption key k
with CBC mode. Our DL models are trained for binary
classification task of separating ciphertexts into two classes:
ξ1 and ξ2. To explain, ξ1 includes the ciphertexts of P1,
labeled as C1i (C1i = Enck(P1)), where i ∈ {1, 2, . . . , n}.
Similarly, ξ2 includes the ciphertexts of P2, labeled as C2i
(C2i = Enck(P2)) for i ∈ {1, 2, . . . , n}. It should be noted
that the Initialization Vectors (IVs) are used only as a part
of encryption process, and not included in the training data
for the DL model. This design choice ensures that the model
learns to identify any intrinsic properties or subtle differences
in the ciphertext generated from P1 and P2, without relying
on external factor of the IVs.

Following ciphertext generation, we convert the ciphertexts
into binary format, adhering to the data preparation methods
described by Gohr et al. [23] for examining differential at-
tacks on SPECK32/64. Utilizing this methodology, we feed
these binary ciphertexts into a DL model. While Gohr et
al. [23] demonstrated the effectiveness of ResNet models
in identifying differential characteristics within ciphertexts,
their approach primarily leveraged spatial hierarchical fea-
tures through convolutional residual blocks. To thoroughly
assess cryptographic indistinguishability, we employ diverse
DL architectures capable of capturing different types of pat-
terns or subtle biases within ciphertext data. Specifically,
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32-bit plaintext messages
P1: 0000 0000 … 0000 
P2: 0000 0000 … 0001

SPECK32/64 or SIMON32/64 
to encryption P1 & P2 key Ki

Encryption using 
Lightweight Block Ciphers

Dataset Generation
Training, Validation, and 
Testing datasets; Reduced 
(16-bits) and Full Entropy 
(32-bits)

C11 = 101011001...
C12 =  011111011…
C21 = 000110011…
C22 = 001100101…

Ciphertext class 
ξ1

Ciphertext class 
ξ2

Tuning & Training Deep 
Learning Models

e.g., CNN, LSTM, Bi-
LSTM, and ResNet

Performance Evaluation
Accuracy, TPR, and TNR 
evaluation of trained DL 
models on Challenge 
Ciphertext.

Fig. 1. The MIND-Crypt assessment framework - Investigating the indistinguishability of SPECK32/64 and SIMON32/64 lightweight block ciphers. Two
plaintext messages encrypted with the same key, represented in binary format, form the basis for training a DL model.

we selected CNN architectures for their proven efficiency in
extracting spatial and local feature patterns. Additionally, we
included LSTM and BiLSTM networks due to their capability
to detect sequential dependencies and temporal correlations
that might remain undetected by purely convolution-based
architectures. The combination of spatial (CNN), sequential
(LSTM/BiLSTM), and hierarchical (ResNet) learning mecha-
nisms ensures a robust, multi-dimensional analysis, providing
comprehensive insights into security of lightweight block ci-
phers against varied ML-based cryptanalytic approaches. Each
DL model in our framework is trained for binary classification
to distinguish ciphertexts derived from plaintexts P1 and P2.

Finally, the trained ML models are evaluated on unseen
challenge ciphertext samples. By analyzing model predic-
tions and systematically comparing their performance against
a random guessing baseline (≈50% accuracy), we provide
empirical insights into whether state-of-the-art ML techniques
can uncover meaningful cryptographic vulnerabilities. Rather
than demonstrating exploitable weakness, our comprehensive
assessment highlight the robustness of lightweight block cipher
designs against ML-based indistinguishability attacks.

V. ASSESSING LIGHTWEIGHT BLOCK CIPHERS USING
MIND-CRYPT

In this section, we describe how our proposed MIND-Crypt
framework can be utilized for assessing lightweight block
ciphers. We describe the datasets, experiment settings, and
evaluation metric considered for assessing our framework.

A. Description of the Dataset

In our study, we evaluated the effectiveness of the MIND-
Crypt by utilizing a publicly available implementation of
SPECK32/64 provided by Gohr [23], and SIMON32/64 imple-
mentation [37]. Our objective was to investigate the principle
of indistinguishability, which required control over the inputs
provided for encryption. In our experimental setup, we aimed
to align closely with the methodologies previously established

by Gohr, particularly regarding the generation of cryptographic
components.

Additionally, to distinguish between memorization and gen-
eralization behaviors exhibited by ML models, we conducted
a proof-of-concept evaluation using a simplified cryptographic
setup. Specifically, we intentionally reduced the entropy in
the SPECK32/64 encryption algorithm from the standard 32
bits to 16 bits. This reduction created an artificially weakened
cryptographic scenario, significantly decreasing the complex-
ity and thereby increasing the potential for identifiable statis-
tical patterns. We emphasize that this simplified experiment
was conducted solely for analyzing ML model behaviors
regarding memorization versus genuine generalization, and
was not intended as a realistic assessment of the cipher’s actual
indistinguishability or security under standard cryptographic
conditions.

To this end, we made several modifications to the original
SPECK32/64 implementation provided in [23]:

1) Encryption Mode: We shifted from the Electronic Code
Book (ECB) mode used in Gohr’s original code to CBC
mode. This change involved encrypting the messages using
CBC with randomly generated initialization vectors (IVs)
and applying an XOR operation to the messages before
encryption.

2) Key Usage: Unlike the original implementation that used
varying keys, we utilized a single, fixed key securely
generated using Gohr’s methodology. This consistency was
vital for comparing the indistinguishability of outputs. This
approach allowed us to isolate the impact of message
variation on ciphertext indistinguishability without key
variability influencing the results.

3) Generating IVs: We employed the frombuffer mod-
ule in NumPy library in conjunction with Python’s
os.urandom to generate cryptographically secure IVs,
mirroring Gohr’s method.

4) Correctness: To ensure the correctness of our modifica-
tions, we decrypted the ciphertexts to verify that they
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reverted accurately to the original plaintexts, labeled ‘0’
and ‘1’.

5) Message Selection: We chose two specific messages of
identical 32-bit length, differing by only a single bit at
the binary level, labeled ‘0’ and ‘1’. This allowed us to
directly assess the effect of minimal input variation on the
encryption output.

For exploring indistinguishability using DL, we collected
107 training samples, 106 samples each for validation and
testing across ‘R’ rounds of encryption schemes. Each dataset
segment maintained an equal number of samples from two
classes, representing ciphertexts of two distinct plaintext mes-
sages encrypted with the same key. The training data was used
to train a DL model, while the testing data was utilized to
evaluate the performance of the trained model on an unseen
dataset. This allowed the DL model to detect subtle differences
in ciphertexts of the selected messages. To facilitate the
learning process, the ciphertexts were represented as 32-bit
binary vectors, providing a consistent input format for the DL.

B. Experiment Settings

The implementation of the MIND-Crypt was conducted
using the Python programming language, leveraging the open-
source library TensorFlow [38] for the development, training,
and evaluation of the deep learning model. To optimize the
neural network’s hyperparameters, we employed Optuna [39],
a software framework designed for efficient and automatic
hyperparameter optimization. Specifically, we utilized Op-
tuna’s TPESampler, which implements the Tree-structured
Parzen Estimator (TPE) algorithm—a Bayesian optimization
approach that models the objective function using two separate
densities to efficiently navigate the hyperparameter search
space [40]. The hyperparameter search process was configured
to execute up to 100 trials or terminate if the search duration
exceeded 200 hours. The search space for the hyperparameters
is detailed in Table I and II.
DL Model Training for Indistinguishability Assessment. To
study cryptographic indistinguishability of ciphertexts, we im-
plemented and trained four distinct DL architectures: ResNets
[23], CNN, LSTM, and BiLSTM networks. The ResNet ar-
chitecture developed by Gohr was specifically selected due
to its success in identifying differential characteristics in
reduced-round versions of SPECK32/64 cipher. We adapted
Gohr’s ResNet model for our binary classification task. This
adaptation aimed to assess whether machine learning could
effectively distinguish ciphertexts generated from two distinct
plaintexts, P1 and P2 encrypted using same key.

We extended the assessment to include CNN, LSTM, and
BiLSTM architectures, commonly employed in image and
sequence processing. These models were adapted to pro-
cess ciphertext data by converting inputs into binary vector
representations, facilitating sequential (LSTM/BiLSTM) or
spatial (CNN) feature extraction. This methodology ensured
a comparative analysis of DL architectures in the context of
ciphertext indistinguishability. Detailed architectural specifi-
cations and hyperparameter settings for the ResNet model are

available in Gohr [23]. This work examines the potential of
DL techniques to serve as distinguishers, contributing to the
broader understanding of cryptographic security in the using
machine learning.

C. Evaluation Metrics

To evaluate the efficacy of the MIND-Crypt across different
settings, we performed a comprehensive assessment using a
DL model to classify ciphertexts into two distinct classes, ξ1
and ξ2. This evaluation employs three key metrics: Accuracy,
True Positive Rate (TPR), and True Negative Rate (TNR),
similar to the metrics considered in studies by [23], [24]
that explore differential attacks in the SPECK32/64 encryp-
tion scheme. Furthermore, accuracy, TPR, and TNR were
specifically chosen because they collectively provide clear
insights into model biases, detection capabilities, and overall
effectiveness in distinguishing ciphertext classes.

Accuracy gauges the model’s overall effectiveness at cor-
rectly classifying ciphertexts belonging to class ξ1 or ξ2.
We calculate accuracy as the proportion of correct classifica-
tion—both true positives and true negatives—out of the total
ciphertexts examined. A higher accuracy value reflects supe-
rior model performance in discriminating accurately between
ciphertexts associated with classes ξ1 and ξ2.

True Positive Rate (TPR), or sensitivity, specifically mea-
sures the model’s precision in identifying ciphertexts that
genuinely belong to class ξ1. This metric is crucial for
cryptographic applications as it reflects the model’s ability
to capture the unique characteristics expected from ξ1 under
particular encryption conditions. High TPR is vital, especially
in situations where failing to correctly identify a ciphertext
from ξ1 could pose significant security threats.

True Negative Rate (TNR), or specificity, evaluates the
model’s accuracy in classifying ciphertexts into class ξ2 when
they do not belong to class ξ1. This measure is essential for
ensuring the model effectively identifies ciphertexts that do
not adhere to the characteristics of class ξ1, thus preventing
false positives. A high TNR underscores the model’s reliability
in excluding non-conforming encryption outputs, pivotal for
upholding robust cryptographic defenses.

In addition to these key metrics, we also provided detailed
analysis using Precision, Recall, F1-Score, Receiver Operat-
ing Characteristic Area Under the Curve (ROC-AUC), False
Negative Rate (FNR), and False Positive Rate (FPR).

VI. RESULTS

In our experiment, we evaluated the cryptographic indis-
tinguishability of two lightweight block ciphers, SPECK32/64
and SIMON32/64 using four DL architecture: ResNet, CNN,
LSTM, and BiLSTM. We conducted assessments under both
round-reduced and standard (full-round) configurations. The
classification performance for each configuration is summa-
rized in Table III.

In the round-reduced configuration, both ciphers demon-
strate strong indistinguishability. For SPECK32/64, models
such as ResNet, LSTM, and BiLSTM achieved near-random
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TABLE I
MODEL-SPECIFIC HYPERPARAMETER SEARCH SPACE

Hyperparameter LSTM-based Models (LSTM, BiLSTM) CNN-based Model (1D CNN)

No. of LSTM Layers {2, 3, 4, 5, 6, 7, 8, 9} –
LSTM Cells in Each Layer {200, 300, 400, 500} –
No. of Convolution Layers – {2, 3, 4, 5, 6, 7, 8, 9}
No. of Filters – {2, 4, 8, 16, 32, 64, 128, 256}
Kernel Size – {2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 21}
Convolution Stride Size – {2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 21}
Pool Size – {1, 2, 3, 4}
Pool Stride Size – {2, 3, 4}

TABLE II
COMMON HYPERPARAMETER SEARCH SPACE ACROSS ALL MODELS

Hyperparameter Search Space

decay {0.05, 0.1, 0.2, 0.3}
Dropout Rate {0.05, 0.1, 0.2, 0.3, 0.4}
Activation Function {Softsign, ELU, Selu,

ReLU, Tanh}
No. of Dense Layers {1, 2, 3, 4, 5, 6, 7, 8, 9}
No. of Neurons in FC Layer {256, 512, 1024, 2048,

4096}
Activation Function in FC Layer {Softsign, ELU, Selu,

ReLU, Tanh}
Dropout Rate FC {0.05, 0.1, 0.2, 0.3, 0.4}
optimizer {RMSprop, Adagrad,

Adam, Adamax,
Nadam, SGD}

Epochs {100, 200, 300}
Batch Size {256, 512, 1024}
Learning Rate [0.00001, 0.01] (log

scale)

performance (accuracy ≈50%, ROC-AUC ≈50%), with zero
precision and recall, indicating an inability to differentiate
ciphertexts of P1 or P2. The CNN model showed marginal
improvement (recall = 0.0356) but remained ineffective, as
evidenced by its low F1-score (0.0665). Similarly, for SI-
MON32/64, ResNet and CNN models exhibited balanced but
random-like accuracy (≈50%), with CNN marginally better at
detecting ciphertexts of P2 (recall = 0.2235) but compromised
by high false positives (FPR = 0.3086). LSTM and BiLSTM
models entirely failed, reinforcing security of the lightweight
block ciphers.

In the standard configuration, the results highlight sys-
temic biases rather than meaningful discrimination. For
SPECK32/64, ResNet achieved perfect recall (1.0) but trivial
precision (0.5), reflecting prediction of all samples as cipher-
text belonging to ξ1 (or P1), which renders it uninformative.
The CNN model exhibited high recall (0.9489) but suffered
from severe false positives (FPR = 0.9494), undermining its
reliability. For SIMON32/64, ResNet mirrored this behavior,
while BiLSTM showed extreme bias (TPR = 0.9996, TNR =
0.0004). Across both ciphers, models like LSTM and BiLSTM
consistently failed to generalize, with near-zero recall and
precision.

The overarching pattern across configurations is the inability
of DL models to surpass random guessing (accuracy and
ROC-AUC ≈50%) underscores the cryptographic strength of

SPECK32/64 and SIMON32/64 against the considered DL
models. While certain models (e.g., CNN for SPECK32/64 in
standard configuration) showed skewed metrics, these reflect
algorithmic biases rather than true discriminative capability.
The findings confirm that these ciphers maintain strong secu-
rity evaluated settings.

VII. DISCUSSIONS

Our experimental results consistently show that ML models
fail to surpass random guessing when distinguishing cipher-
texts produced by lightweight block ciphers. To better under-
stand these results, we conducted detailed analysis exploring
whether models genuinely learns cryptographic patterns or
merely memorize overlapping ciphertext samples.
Analysis of Memorization vs. Generalization: Why ML
models Fail to Identify Patterns. Lightweight block ciphers
such as SPECK32/64 and SIMON32/64 generate 32-bit cipher-
texts, producing approximately 232 (over 4 billion) possible
ciphertext outputs for a given plaintext message under full
entropy conditions. Exhaustively analyzing such an enormous
dataset to detect cryptographic leakage or statistical patterns
in computationally prohibitive and practically infeasible due
to extensive resources required. Therefore, to conduct compu-
tationally manageable evaluation, we intentionally restricted
randomness of the initialization vectors (IVs) to 16 bits. Since
ciphertext variability directly depends on IV randomness, this
restriction reduced the ciphertext space to approximately 216

(65,536) unique ciphertexts, creating a controlled yet mean-
ingful experimental scenario to test if ML models genuinely
learn or merely memorize ciphertext patterns.

In our primary experiments with SPECK32/64, we observed
that when ML models were trained on datasets containing
extensive oversampling – intentional duplication of ciphertext
samples to explicitly test memorization capabilities of ML
models – the models achieved nearly 99% accuracy. This
accuracy reflects memorization of duplicate ciphertext entries
rather than genuine generalization. Conversely, when models
were trained with only a limited number of unique ciphertext
pairs without extensive duplication, accuracy dropped sharply
to approximately random guessing (≈50%) when evaluated
on unseen ciphertext pairs. However, these models could still
correctly classify ciphertext pairs exactly matching those in the
training set, further underscoring the effect of memorization.

To systematically investigation memorization versus gen-
uine generalization in DL models, we performed a detailed
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TABLE III
INDISTINGUISHABILITY ASSESSMENT FOR SPECK32/64 AND SIMON32/64 IN ROUND-REDUCED STANDARD CONFIGURATION USING MIND-CRYPT

Round Reduced
Cipher DL Model Accuracy Precision Recall F1-Score ROC-AUC TPR TNR FPR FNR

SPECK32/64

ResNet 0.5000 0.0000 0.0000 0.0000 0.5008 0.0000 1.0000 0.0000 1.0000
CNN 0.5003 0.5043 0.0356 0.0665 0.5005 0.0355 0.9650 0.0350 0.9644

LSTM 0.5000 0.0000 0.0000 0.0000 0.5014 0.0000 1.0000 0.0000 1.0000
BiLSTM 0.5000 0.0000 0.0000 0.0000 0.5000 0.0000 1.0000 0.0000 1.0000

SIMON32/64

ResNet 0.5002 0.5002 0.4947 0.4974 0.5003 0.4947 0.5057 0.4943 0.5053
CNN 0.4993 0.4985 0.2235 0.3086 0.4992 0.2235 0.7750 0.3086 0.4992

LSTM 0.5000 0.5053 0.0009 0.0017 0.4996 0.0008 0.9991 0.0017 0.4996
BiLSTM 0.5000 0.0000 0.0000 0.0000 0.4991 0.0000 1.0000 0.0000 0.4991

Standard Configuration

SPECK32/64

ResNet 0.5000 0.5000 1.0000 0.6667 0.5001 1.0000 0.0000 1.0000 0.0000
CNN 0.4997 0.4999 0.9489 0.6548 0.4996 0.9489 0.0505 0.9494 0.0511

LSTM 0.5000 0.0000 0.0000 0.0000 0.5001 0.0000 1.0000 0.0000 1.0000
BiLSTM 0.4999 0.0000 0.0000 0.0000 0.5003 0.0000 0.9999 0.0000 1.0000

SIMON32/64

ResNet 0.5000 0.5000 1.0000 0.6667 0.5000 1.0000 0.0000 1.0000 0.0000
CNN 0.4999 0.4998 0.0721 0.1260 0.5000 0.0720 0.9278 0.1260 0.5000

LSTM 0.5000 0.6667 0.0000 0.0000 0.5004 0.4999 0.5000 0.0000 1.0000
BiLSTM 0.5000 0.5295 0.0005 0.0010 0.5003 0.9996 0.0004 0.0010 0.5003

analysis on datasets generated with 16-bit IV randomness.
Our training dataset comprises of 800,000 ciphertext samples,
with an equal split (400,000 each) between ciphertexts of
P1 and P2. Within these samples, P1 has 65,395 unique
ciphertexts, while P2 has 65,375 unique ciphertexts. The
testing dataset contains a total of 100,000 ciphertexts samples,
equally distributed between P1 and P2. Specifically, cipher-
texts corresponding to P1 include 34,974 unique samples, and
those corresponding to P2 include 35,049 unique samples,
resulting in combined total of 70,023 unique ciphertexts in
the test set.

In our controlled experiment with reduced entropy (16-
bits instead of 32-bits), we selected subsets containing 5,000
ciphertext samples per class (10,000 samples in total) from
the training dataset. Within this subset, P1 had 4,819 unique
ciphertexts, and P2 had 4,815 unique ciphertexts, with 366
redundant samples. Upon examining overlaps between training
subset and the complete testing dataset, we identified 5,307
overlapping ciphertext samples. Specifically, 2,659 samples
of P1 and 2,684 samples of P2 appeared in both training
and testing datasets, constituting approximately 5% overlap.
Such overlaps are crucial, as they directly enable memoriza-
tion effects by allowing the model to recognize previously
encountered samples.

Evaluating the DL model trained on these subsets, we
obtained an overall accuracy of about 53.72%. The cross-
validation accuracy was around 52.6%, slightly above random
guessing (50%), indicating a minimal memorization effect.
To further clarify whether the model’s performance resulted
from genuine generalization or memorization, we conducted
detailed sample-by-sample analysis. Among the 70,023 unique
ciphertexts samples in the testing dataset, the model correctly
classified 53.58% of them. However, when isolating samples
unique only to the testing dataset (thus excluding overlapping
training samples), the accuracy sharply dropped to 49.90%,
equivalent to random guessing.

This analysis conclusively demonstrates that ML models fail
to identify meaningful cryptographic patterns or statistically
exploitable leakage under artificially simplified cryptographic
conditions. The observed marginal improvements in accuracy
above random chance are entirely due to memorization of
overlapping ciphertext samples, rather than genuine general-
ization by the ML algorithm.

Overall, the inability of state-of-the-art ML models to
surpass random guessing underscores not a deficiency of
ML techniques, but rather highlights the inherent robust-
ness and strength of cryptographic indistinguishability within
lightweight block cipher designs.

VIII. RELATED WORK

Linear & Differential Cryptanalysis. Albrecht et al. [41]
introduced a unified framework that synergistically incorpo-
rates various differential cryptanalysis techniques, including
standard, truncated, and impossible differentials. These meth-
ods are particularly effective in extending the capabilities
of known attacks against lightweight block ciphers such as
KATAN-32. Following a similar thematic exploration, Dinur
et al. [42] and Blondeau et al. [43] refined differential crypt-
analysis techniques specifically for a round-reduced version
of SPECK, highlighting potential weaknesses of these ci-
phers under constrained operational conditions. In parallel,
Ashur et al. [44] examined the SPECK cipher using linear
cryptanalysis, revealing vulnerabilities across various block
sizes and demonstrating that linear approximations could be
exploited to undermine the cipher’s integrity. Complementing
these analyses, Biryukov et al. [45] developed a branch-and-
bound method that identifies linear and differential trails in
ARX-based ciphers. They specifically applied this approach to
enhance cryptanalytic attacks against SPECK. Further studies
on the operational constraints of these ciphers also support
these findings [46], [47].
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ML for Cryptanalysis. Classical cryptanalysis methods,
deeply rooted in the mathematical underpinnings of crypto-
graphic algorithms and ciphertexts, Sabaawi et al. [16] ex-
tended these traditional techniques by surveying cryptanalysis
implementation on ciphers like Caesar, transposition, and
Hill. Simultaneously, Khoirom et al. [48] proposed an image
encryption scheme based on elliptic curve cryptography and
chaotic maps. Their work identified vulnerabilities in the
original scheme, leading to an improved version resilient to
chosen-plaintext attacks, differential attacks, and statistical
attacks, thereby enhancing security and performance in image
encryption. This comprehensive exploration spans classical
and contemporary approaches, highlighting the evolving land-
scape of cryptographic techniques for heightened security
across diverse applications.

Sikdar et al. [20] conducted a survey on recent cryptanalysis
techniques, including brute-force attacks, exploring the grow-
ing influence of machine learning in cryptographic methods
and suggesting future research directions. Verma et al. [21]
delved into the historical significance of brute-force attacks in
cybersecurity, emphasizing their enduring relevance for unau-
thorized data access. Additionally, Mok et al. [22] proposed an
intelligent brute-force attack targeting the RSA cryptosystem,
simulating and evaluating the effectiveness of their approach
in terms of time required for RSA key recovery. Collectively,
these works contribute to the understanding and evolution
of brute-force cryptanalysis, addressing its challenges and
exploring avenues for improved security measures.

While considering side-channel cryptanalysis methods,
which focus on the physical characteristics and behaviors of
cryptographic devices or implementations, Zhou et al. [8] pro-
vided a comprehensive survey covering methods, techniques,
and countermeasures in side-channel attacks, evaluating their
feasibility and applicability. In a complementary study, Ran-
dolph et al. [9] present an in-depth tutorial on power side-
channel analysis, spanning the past two decades. The study
elucidates fundamental concepts and practical applications of
various attacks, such as Simple Power Analysis (SPA), Dif-
ferential Power Analysis (DPA), Template Attacks (TA), Cor-
relation Power Analysis (CPA), Mutual Information Analysis
(MIA), and Test Vector Leakage Assessment (TVLA), along
with the underlying theories. Additionally, the introduction of
test statistics as a measure of confidence in detecting side-
channel leakage adds depth to these analyses.

Mehmood et al. [49] conducted a comprehensive evaluation
of distinguishability on the ciphertexts of AES-128 cipher in
CBC and ECB modes. Their methodology involved employing
Support Vector Machine, k-Nearest Neighbours, and Random
Forest Classifiers trained on the frequency distribution of
characters in the ciphertexts. The results underscored the sus-
ceptibility of the ECB mode, thereby emphasizing the need for
robust encryption techniques. Building upon this foundation,
Hu et al. [50] explored by applying Random Forest classifiers
to diverse block ciphers, reinforcing the vulnerability of the
ECB mode. These studies not only showcase the evolving
landscape of machine learning-based cryptanalysis but also

highlight its role in ensuring the resilience of cryptographic
algorithms.

Xiao et al. [18] significantly contributed to the field of
neural network (NN) based cryptanalysis by introducing a
novel approach that not only focuses on the development of
neural distinguishers but also emphasizes metrics for efficacy
assessment. Their framework, applied to Cyber-Physical Sys-
tems (CPS) ciphers, adds depth to the understanding of NN-
based cryptanalysis.

In summary, while the reviewed literature presents a com-
prehensive understanding of various cryptanalysis methods, it
is noteworthy that the majority of the approaches explores
differential attacks, statistical attacks, chosen-plaintext attacks,
etc. In contrast to prior research, our work addresses a critical
gap in the literature and providing a more comprehensive
evaluation of cryptographic indistinguishability of lightweight
block ciphers.

IX. CONCLUSION

In this research, we introduced a machine learning-based
framework, MIND-Crypt, designed specifically to assess the
cryptographic indistinguishability of SPECK32/64 and SI-
MON32/64 lightweight block ciphers. Our investigation uti-
lized various state-of-the-art deep learning architectures to
assess these ciphers using machine learning.

Our results show that deep learning models fail to surpass
random guessing accuracy (≈50%) in distinguishing cipher-
texts of two plaintext messages P1, and P2 encrypted using
same key. Our analysis for memorization versus generalization
evaluations, further revealed that ML models were memorizing
ciphertext samples rather than genuinely learning crypto-
graphic patterns. Even in artificially simplified cryptographic
environments with deliberately reduced entropy, ML algo-
rithms exhibited no ability to generalize beyond memorized
ciphertexts.

These results provide strong empirical evidence that current
ML algorithms, despite their advanced pattern-recognition
capabilities, remain ineffective in compromising the indistin-
guishability property of even lightweight cryptographic algo-
rithms. Future research directions could focus on exploring
emerging cryptographic algorithms, advanced ML architec-
tures, or quantum-inspired ML methods, to monitor and vali-
date cryptographic resilience.
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