
REACTIVE: Rethinking Effective Approaches
Concerning Trustees in Verifiable Elections

Josh Benaloh1, Michael Naehrig1, and Olivier Pereira1,2

1 Microsoft Research, Redmond, WA, USA
2 UCLouvain, B-1348 Louvain-la-Neuve, Belgium

Abstract. For more than forty years, two principal questions have been
asked when designing verifiable election systems: how will the integrity
of the results be demonstrated and how will the privacy of votes be pre-
served? Many approaches have been taken towards answering the first
question such as use of mixnets and homomorphic tallying. But, in the
case of large-scale elections, the second question has always been an-
swered in the same way: decryption capabilities are divided amongst
multiple independent “trustees” so that a collusion is required to com-
promise privacy.
In practice, however, this approach can be fairly challenging to deploy.
Even if multiple human trustees are chosen, they typically use software
and often also hardware provided by a single voting system supplier, with
little options to verify its quality when they have the technical expertise
to do so. As a result, we observe that trustees are rarely in a position to
exercise independent judgment to maintain privacy.
This paper looks at several aspects of the trustee experience. It begins
by surveying and discussing various cryptographic protocols that have
been used for key generation in elections, explores their impact on the
role of trustees, and notes that even the theory of proper use of trustees
is more challenging than it might seem. This is illustrated by showing
that one of the only references defining a full threshold distributed key
generation (DKG) for elections defines an insecure protocol. Belenios, a
broadly used open-source voting system, claims to rely on that reference
for its DKG and security proof. Fortunately, it does not inherit the same
vulnerability, and we offer a security proof for the Belenios DKG.
The paper then discusses various practical contexts, in terms of humans,
software, and hardware, and their impact on the practical deployment of
a trustee-based privacy model.

Keywords: Verifiable elections, trustees, distributed key generation, se-
cure hardware.

1 Introduction

The academic approach to preserving privacy in large scale verifiable election
protocols is to rely on independent trustees who are each responsible for produc-
tion, maintenance, use, and ultimately destruction of their own cryptographic
keys [8,17,2,12,5,11,16,35,30].

Decades of literature, beginning with Benaloh and Yung [8], offer creative
cryptographic protocols with excellent properties to achieve precisely this kind
of separation during key generation [29,21,15,26]. Such distributed key genera-
tion mechanisms are key to enable threshold encryption [19], a well-established
technique that provides robustness by allowing a pre-determined number of key-
holders to perform the necessary decryptions to complete an election while pre-
venting any set of insufficient size from gaining any information at all.

In practice, the trustees follow specified protocols for distributed key gen-
eration before the election, and must validate that the key they generated is
actually used in the election. When encrypted tallies need to be decrypted af-
ter the voting period, they must validate a set of ciphertexts to be decrypted
and follow protocols for threshold decryption. And, during the whole process,
the trustees need to make sure that they remain in control of their secret key
material, in order to prevent any abuse. This high level blueprint is common to
virtually every verifiable voting system that has been deployed at scale, includ-
ing Helios [2], Scantegrity II [12], vVote [11], the Verificatum mixnet[35] (used
in Estonia for instance), or the Swiss Internet voting system [30] for instance.

Human trustees are aided by trustee hardware, computing devices that run
software for carrying out the necessary cryptographic operations and securely
communicate with the other trustee devices. These protocols are often facilitated
by a central authority such as an election administrator that routes the trustees
inputs and outputs.

However, ideally, to guarantee independence, trustees should be able to in-
dependently evaluate and possibly choose the hardware and software they use:
corrupted hardware and software might display everything that a human trustee
expects to see while leaking every secret to interested parties. Trusted computing
techniques may offer some help but, if they are used to assist trustees, they only
help as far as trustees are able to verify that the trusted execution technology
is actually in use and is used with the expected code, which may be a challenge
of its own.

We observe in this paper that the reality is often quite different. In practice,
some or all the trustees are often chosen from local communities as representa-
tives of the public, and the key management happens during well orchestrated
public ceremonies, using software and hardware provided by authorities. In such
a context, trustees do not have the opportunity or the tools to perform any
thorough verification steps, when they happen to have the technical expertise to
fulfill such tasks. They are instead required to press the buttons they are told
to press on the devices provided to them, which contain pre-loaded software.
As a result, there is no real independence and no substantive protection from
curious election administrators who want to view election data that is supposed
to remain confidential.

Even when trustees are chosen for their expertise, they are usually required
to utilize software and hardware provided to them by an external provider who
they may not trust. Furthermore, selecting trustees only from amongst “elites”
may restrict their independence and create suspicion from the public.

2

As a result, the ideal situation of trustees selected as well-trained representa-
tives of the public who utilize hardware and software that they have the means
to evaluate as trustworthy seems quite distant from the current practices, and
seems to be unlikely to become the rule rather than the exception in the fore-
seeable future.

While the integrity of the results can potentially be verified over and over by
independent parties without access to privileged information and at any chosen
time, privacy currently depends on a closed set of trustees being able to complete
their tasks diligently. Therefore, without this true independent trustee expertise
and hardware and software independent evaluation, there is very limited basis
for confidence in the privacy of the votes.

This paper starts by reviewing protocols for trustees, focusing on distributed
key generation (DKG) protocols used in real-world verifiable elections. We dis-
cuss the properties of these protocols and the practical demands that they place
on the trustees. On our way, we explore technical difficulties in some DKGs and
propose a fresh security analysis of the DKG protocol of the Belenios Internet
voting system.

We then turn to a discussion of the potential benefits and trade-offs that the
reliance on secure hardware can bring. In particular, attestation mechanisms
can shift the trust that currently needs to be placed in humans, with limited
assessment and verification options, to verifiable attestations produced by hard-
ware that can be independently reviewed and challenged by arbitrary auditors
rather than by selected trustees. In such a setting, privacy may become a uni-
versally verifiable property rather than a property that depends on a specific set
of trustees.

2 Key Generation Protocols

In order to understand the tasks that trustees need to accomplish, we start by
describing the most common cryptographic protocols that are used in existing
verifiable voting systems.

We focus on distributed key generation (DKG) protocols as a central ingre-
dient of the kind of tasks that trustees are expected to perform. There is of
course more in the role of trustees than running a DKG, but the cryptographic
operations associated to decryption bring essentially the same requirements as
those for key generation, and are described elsewhere, so we do not systemati-
cally elaborate on them here. We will also elaborate on post-election operations
below.

2.1 Single key

ElGamal encryption [20] is by far the most common algorithm for encrypting
votes in verifiable voting systems: it is for instance used in all voting systems
mentioned in the introduction above [2,12,11,35,30]. In the simplest form of key
generation, the key pair used to encrypt ballots can be generated by one single

3

entity. This approach has been used in Helios 1.0 [1] and, for a long time, in the
Estonian Internet voting system, in which all ballots are decrypted using a single
key held in an HSM [14]. This solution relies entirely on the security of the HSM
device: if the key is somehow extracted from the device, or if someone manages
to make that device decrypt non-anonymized encrypted votes, then ballots are
not secret anymore. If the HSM device fails and (access to) the decryption key is
lost, the election tally cannot be computed. This second concern can be mitigated
easily with secret key backups. However, the existence of such backups creates
new opportunities for stealing the secret key, increasing the risk of violating vote
secrecy.

From a technical point of view, and in the context of ElGamal encryption, the
generation process of a single key is extremely simple. A group G of prime order
q is chosen (typically as a public parameter of the election system), together with
a generator g of that group. The key generation consists in selecting a secret key
s ← Zq uniformly at random, and publishing K = gs as the encryption public
key.

2.2 One-round DKG

To limit the risks of having the single decryption key stolen and potentially
used to break the secrecy of all the votes, various voting systems turn to a very
simple extension of the above key generation mechanism: n trustees T1, . . . , Tn

independently run the single key generation and publish their public keys. These
are then (publicly) combined into a single encryption public key. Here, all n secret
keys are needed for decryption.

Concretely, each Ti selects a secret key si ← Zq as before and publishes the
corresponding Ki = gsi together with a Schnorr proof of knowledge of si in
order to prevent so-called rogue key attacks [27]. The encryption public key is
computed as K =

∏n
i=1 Ki, with a corresponding secret key s =

∑n
i=1 si that is

never explicitly computed.
This approach is used in various systems, including Helios [2] (since version

2.0), Belenios [16], and the Swiss Internet voting system [30]. Its use in the
context of elections was analyzed by Bernhard et al. [9].

This protocol offers two important benefits. First, it addresses the privacy
risk when relying only on a single decryption key: now, in order to break privacy,
all n private keys are needed. Second, it keeps most of the simplicity of the single-
key protocol. In particular, key generation can still be implemented in a dozen
lines of Python code, which can be reviewed easily by a knowledgable trustee,
even during a key generation ceremony.

On the flip side, this protocol is even more fragile than the single-key protocol:
losing any one of the n secret keys is sufficient to prevent tallying the election.
This can of course again be addressed with backups, which may be less sensitive
than in the single-key case since, again, a copy of every secret key is needed
to perform decryption operations. Concretely, various solutions have been used:
trustees can be paired, and each pair of trustees generates a single secret key
of which two copies are kept [10]. In some cases, more elegant solutions can be

4

proposed: for instance, in a setting with 3 trustees sitting around a table, each
trustee can give a copy of its secret key to the trustee sitting to its left. This, in
effect, offers a two-out-of-three threshold key generation process.

2.3 Threshold DKG

A more general approach to handle the risks of some trustees (or secret keys)
being unavailable, is to rely on a threshold distributed key generation protocol,
in which only k out of n trustees are needed to perform a decryption operation.
As far as we know, the protocols that have been deployed for elections all follow
a structure proposed by Pedersen: the n trustees start by generating their key
pair as in the one-round DKG protocol outlined above, then run a verifiable
secret sharing (VSS) protocol to share their secret key si with the n − 1 other
trustees, using a threshold of k [29] (each trustee keeps one share of its own key,
so this is k-out-of-n secret sharing). The trustees can combine the shares they
received into shares of the secret key s that is the sum of the si. The encryption
public key K is computed exactly as in the one-round DKG above.

Variations of this protocol are used in various election protocols and have
been implemented in software packages, including Verificatum [35], which relies
on a protocol proposed by Gennaro et al. [21], Belenios [16], which relies on a
protocol by Cortier et al. [15] and ElectionGuard [6], whose DKG protocol is
analyzed by Benaloh et al. [7].

The obvious benefit of these protocols is their flexibility for choosing the level
of robustness: the original protocol by Pedersen and the one by Gennaro et al.
make it possible to choose any k < n/2, while the two other protocols aim at
supporting any choice of k ≤ n.

However, they are less convenient. First, they require to exchange encrypted
shares between trustees, who are required to all be present at the same time, or
to be present multiple times in order to complete the multiple rounds of the pro-
tocol. Second, the secret and authentic exchange of shares requires the exchange
and authentication of keys for direct communication between the trustees, which
may not be trivial to perform: PKIs are usually not structurally available and
may need to be built as part of the DKG. Eventually, the extra protocol complex-
ity also results in extra code complexity: even an expert may be uncomfortable
to review the code of a full threshold DKG during a key generation ceremony (of
course, the review may happen in advance and code hashes can be compared,
but this again brings additional complexity).

The additional complexity of a threshold DKG may also impact the elec-
tion verifier: a verifier for Verificatum and Belenios needs to compute Lagrange
coefficients and adjust for the set of trustees present for decryption, which is
much less straightforward than in the one-round DKG protocol. ElectionGuard,
though, administratively combines all the decryption proofs so that the verifica-
tion of a decryption operation is as simple as in the single-key case. The focus
on simplifying the process of election verification is explicit there.

5

Eventually, the additional complexity in the key generation also leads to a
more complicated security analysis, which we now illustrate in the context of
the Belenios DKG.

2.4 The Belenios DKG

Belenios offers two DKG protocols: one that is essentially the single-round proto-
col above, and a threshold protocol that, on page 2 of the Belenios specification
(v. 2.5) [22], is claimed to be “described in [Cortier et al.] [15] and proved in [the
works of Cortier et al. and Bernhard et al.] [15,9]”.

As mentioned before, the threshold DKG protocol follows the Pedersen de-
sign, which we outline here, given a set of trustees T1, . . . , Tn, a chosen threshold
k, and assuming the availability of a public bulletin board that behaves as a
broadcast channel.

1. Each trustee Ti chooses a random polynomial Pi(x) = ai,0 + ai,1x + · · · +
ai,k−1x

k−1 of degree k − 1 with coefficients in Zq and posts Ki,j = gai,j for
j ∈ [0, k − 1] on the bulletin board.

2. Each trustee Ti sends si,j = Pi(j) to every other trustee Tj on a secret and
authentic channel.

3. Each trustee Tj verifies the shares it received by checking that gsi,j =∏k−1
ℓ=0 (Ki,ℓ)

(jℓ) for every value of i. If any check fails, a recovery phase starts,
which we do not discuss here.

4. The public key is defined as K =
∏n

i=1 Ki,0 and each trustee Ti computes
its decryption key share zi =

∑n
j=1 sj,i.

Pedersen proposed this protocol for an honest majority, that is, n ≥ 2k − 1,
and this is the model adopted by Verificatum [35]. However, Cortier et al. offer a
proof that, when the protocol is used in combination with ElGamal encryption,
it offers IND-CPA security under the DDH assumption for arbitrary threshold
choices, that is, for any k ≤ n [15]. (The other reference [9] mentioned in the
Belenios specification [22] focuses on the one-round non-threshold protocol.)

Pedersen’s DKG is insecure in the case of a dishonest majority. As
discussed above, a central aspect of the security of a DKG is to make sure that
no subset of less than k trustees can “force” the public key to take a value of
their choice, of which they would know the corresponding discrete logarithm. For
the single-round protocol (and of the ElectionGuard protocol), this is achieved
by forcing every trustee to offer a Schnorr proof that it knows the si value
corresponding to its public key Ki. For the Pedersen protocol, this is achieved
by having at least k trustees verify the correctness of the shares they received at
Step 3 of the protocol: if k trustees hold correct shares of ai,0, then it must be the
case that Ti knows ai,0. The assumption of an honest majority guarantees that
at least k trustees will perform the expected verification steps. However, when
there is a dishonest majority, this is not the case anymore (this is overlooked

6

in [15]), and a dishonest trustee might be able to simulate the VSS steps for
the honest trustees, while ignoring its secret key share si, opening the way for
arbitrarily choosing the final public key K.

Similar attacks have been known for a long time (see Langford [27] for in-
stance). Common mitigations include an initial round during which every trustee
commits to its Ki,j values before opening them and resuming the protocol, or
requiring every trustee to provide a Schnorr proof that it knows the discrete
logarithms of its Ki,j values w.r.t. g. The second option is the one adopted in
ElectionGuard [6].

The DKG in Belenios. Fortunately, Belenios does not exactly follow Cortier
et al. [15] but does something slightly different: it requires each trustee Tj to
offer a proof of knowledge of zj defined as the logarithm in base g of gzj =∏n

i=1 g
si,j =

∏n
i=1

∏k−1
ℓ=0 (Ki,ℓ)

jℓ . To the best of our knowledge, this option is
original and has never been publicly analyzed.

We take here the opportunity to offer the first proof of the security of the the
Belenios DKG protocol, proof that is now the basis of the DKG discussed in ver-
sion 3.0 of the Belenios specification [23]. We use the name ElGamal encryption
to designate the traditional ElGamal encryption scheme with single-party key
generation, and use Belenios ElGamal encryption for the threshold encryption
scheme that uses the Pedersen DKG augmented with a Schnorr proof of knowl-
edge of zj provided by each trustee as its key generation protocol and encrypts
with ElGamal encryption. Following other works in the the DKG literature [21],
we assume here that there are secret and authentic communication channels
available between all pairs of trustees for communicating the shares and that
trustees verify that they have a common view of the protocol public elements.

Theorem 1. Belenios ElGamal encryption is IND-CPA secure under static cor-
ruption of up to k−1 trustees (1 ≤ k ≤ n) if ElGamal encryption (with standard
single-party key generation) is IND-CPA secure with the same public parameters.

In other words, any PPT adversary that can break the IND-CPA security Be-
lenios ElGamal encryption while controlling up to k−1 trustees can be efficiently
transformed into an IND-CPA adversary against ElGamal encryption.

We observe that this statement makes no assumption regarding the Schnorr
protocol that is part of Belenios ElGamal: indeed, this one can be proven to
be secure (in the random oracle model) in front of a computationally bounded
adversary, independently of any computational assumption.

Proof. Let k and n be fixed and define C = {1, . . . , k − 1} and H = {k, . . . , n}.
Assume, w.l.o.g., that the trustees in the set {Ti}i∈C are corrupted, while the
others are honest. We design an adversary B against ElGamal encryption that
wins the IND-CPA game with a probability equal, up to a negligible difference,
to the probability that an adversary A controlling the corrupted trustees breaks
the IND-CPA security of Belenios ElGamal encryption.

7

Given A, we design B as follows: when B receives the ElGamal public pa-
rameters (G, q, g) and the public key K∗ from the standard ElGamal challenger,
it forwards the public parameters to A. B honestly plays the role of the honest
trustees, except for Tn. For emulating Tn, it simulates the sharing of the dis-
crete logarithm of Kn,0 = K∗ by picking sn,i as a random element of Zq for

every i ∈ C. It then derives {Kn,i}i∈C so that gsn,i =
∏k−1

j=0 (Kn,j)
ij for ev-

ery i ∈ C, by Lagrange interpolation “in the exponent” – this works because
|C| < k. The view of A is distributed in a way that is identical to what it
would be in a normal execution of the Belenios ElGamal key generation, and
A completes the protocol on behalf of the corrupted trustees. When B received
all its shares from the corrupted trustees, it can program the random oracle in
order to produce simulated Schnorr proofs of knowledge of zi as the logarithm of∏n

j=1 g
sj,i =

∏n
j=1

∏k−1
ℓ=0 (Kj,ℓ)

iℓ in base g for every i ∈ H. B checks the resulting
transcripts and fails if anything is wrong.

If all the verification steps succeed, B can now extract the zi =
∑n

j=1 sj,i
values for i ∈ C from the Schnorr proofs provided by A – extraction from the
multiple proofs can be performed because all the proofs are available at the
same time. Subtracting the shares that it sent on behalf of the honest trustees,
B can also compute zC,i =

∑
j∈C sj,i for i ∈ C. When i ∈ H, the values

zC,i =
∑

j∈C sj,i can also be computed, since the sj,i values are shares that have
been sent by A. As a result, B has all n shares of sC =

∑
j∈C sj,0, and can

reconstruct that value.
Eventually, when A asks for the encryption of a pair of messages (m0,m1),

B forwards it to the ElGamal challenger, who returns a ciphertext (c0, c1) =

(gr,mb(K
∗)r). B then submits to A the ciphertext (c0, c1(c0)

sC+
∑n−1

i=k si) =
(gr,mbK

r). When A outputs a guess b′ on b, B forwards that guess to the
ElGamal challenger. The probability that b = b′ is exactly the one that A makes
a correct guess in the Belenios ElGamal IND-CPA security game. The only
possible discrepancy comes from the potential failures to simulate or extract a
Schnorr proof, which can be made negligible. ⊓⊔

We summarize the properties of the key generation processes used in the
systems we discussed in Table 1.

Table 1. Overview of key generation in various deployed verifiable voting systems.

k-out-of-n DKG k-out-of-n DKG
Single trustee n-out-of-n DKG (honest maj.) (dishonest maj.)

Helios 1.0 [1] ✓
Estonia [14,36] ✓
Helios 2.0 [2] ✓
Belenios [16] ✓ ✓

Swiss e-Voting [30] ✓
Verificatum [35] ✓
ElectionGuard [6] ✓

8

3 Protocol setups

The above protocols may be cryptographically correct, but could be useless
if their setup assumptions are not satisfied when they are deployed, or if a
malicious election administrator gets the possibility to completely circumvent
these protocols. For instance, after completing a session of a DKG protocol,
trustees need a mechanism to verify that the key used in the election is really the
one they generated and has not been replaced with a key that is fully controlled
by another entity.

Elections, whether they are electronic or not, cannot exist in isolation: voters
need a way to access authentic blank ballots, they need to know where and when
to cast their votes, and where to read the election results. This is often achieved
by relying on some form of a public bulletin board, and we will assume that
such a public bulletin board is available—how to build bulletin boards has been
largely discussed in other places [18,25].

The single-key and one-round DKG protocols can directly be implemented
when a bulletin board is available: trustees must verify that the public key
they produced has been posted on the bulletin board, and that it has not been
replaced by the bulletin board manager for instance. Election verifiers can check
that all ballots are encrypted and then tallied w.r.t. the correct public keys.

The threshold DKG protocol, however, additionally requires secret and au-
thentic communication channels between trustees to exchange key shares. The
assumption that such channels exist is standard and appears virtually every-
where in the DKG literature [29,21].

In many cases, such channels are easy to implement using encryption and
signature mechanisms (e.g., via TLS) assuming a trusted public-key infrastruc-
ture (PKI). However, in the context of elections, it is much more challenging
to depend on a setting in which a trusted PKI exists and certified keys are in
the hands of trustees. Trustees will rarely have a certified signature key and,
depending on the context, the distributed trust provided by a threshold DKG
might be undermined by relying on certificates signed by a single centralized
authority, which in turn may be external to the election process and be driven
by different incentives.

In practice, this is addressed in various ways. We describe a few examples
from systems that use a threshold DKG. These explorations show that this secure
point-to-point communication layer, which is just assumed to be available in the
DKG literature, is actually far from being obvious to organize in practice.

1. In Verificatum, each trustee generates signing keys and gives the correspond-
ing verification keys to the other trustees. The Verificatum manual suggests
on page 2 that, “in practice, the operators could organize a physical meeting
to which they bring their laptops and execute the above steps” and “for con-
venience, hexadecimal encoded hash digests of files can be computed using
vmni to allow all parties to check that they hold identical protocol info files
at the end” [33].

9

2. The Belenios specification (v.2.5) indicates that each trustee generates sign-
ing and encryption keys, which are shared with the other trustees via the vot-
ing server. At the opening of the election, each trustee “checks that [its own
certificate] appears in the set of verification keys PK of the election” [22].

3. In ElectionGuard, trustees do not generate signing keys. Instead, the Elec-
tionGuard specification (v.2.1) indicates on page 27 that, at the conclusion of
the DKG, a preliminary record that contains all public information from the
DKG execution is published on the bulletin board. It includes all encryption
keys used to exchange shares, the Ki,j values, and matching Schnorr proofs.
Trustees must hash this information and compare it to a hash computed
from their own view of the DKG execution [6].

Verificatum and Belenios create authentic channels using signing keys. Veri-
ficatum suggests direct contact between the trustees, allowing direct comparison
and confirmation of all the keys that they are going to use. Of course, it re-
mains important for the trustees to verify that the correct key material is also
published as part of the official election record on the bulletin board.

In a different approach, Belenios focuses on the direct verification of the elec-
tion record and requires that trustees confirm the presence of their own signing
(and encryption) keys. We pointed out that trustees should agree on all the keys
that have been used in order to ensure that key shares are not compromised –
this verification step was absent from Version 2.5 of the specification and, follow-
ing our comment, a more thorough verification mechanism has been introduced
since Version 2.5.1 in order to avoid potential attacks.

ElectionGuard adopts a completely different approach and authenticates the
view of the protocol execution rather than using signing keys to sign that view.
This has essentially the same effect when verification is successful. Of course,
signing keys may additionally provide a non-repudiation property, which could
be used for accountability should problems occur. However, when signing key
generation is part of the protocol, a malicious trustee might as well complain that
the signature verification key published on its behalf is incorrect. Here, the in-
person protocol suggested in Verificatum may be advantagous when trustees are
required to agree on their keys in person, that is, in a setting where authenticity
cannot be questioned. It is also the most demanding option for human trustees.

4 Trustees, their hardware, and their software

To the best of our knowledge, the protocols described in Section 2 guarantee
the expected cryptographic security properties. However, as we have seen in
Section 3, the associated setup assumption and the context of usage make that
this security properties cannot be granted by machines only : when relying on
a designated set of human trustees, these trustees must confirm authenticity of
the key material used in the election.

The challenges associated to these trustees become particularly pronounced
when organizing an election. We elaborate on these issues in this section, again

10

by reviewing different approaches adopted in practice. As before, we focus on
the key generation deployment, focusing on the choice of trustees, software, and
hardware that were made. The level of detail that we can provide varies a lot,
as the public information that is available is often scarce.

4.1 Key generation ceremonies in practice

Estonia. At least in the early versions of their Internet voting system (pre-
IVXV), Estonia used an HSM to generate a single key and decrypt all ballots
after a threshold of election officials inserted their “cryptosticks” [14].

We do not know what is offered for verification here, but we assume that the
HSM can produce an attestation that it generated the election key and that the
key was never released, as well as a list of all the ciphertexts that were decrypted
using that key over its life time.

The task of trustees is highly limited here: vote secrecy essentially depends on
proper anonymization of the encrypted votes before they are decrypted (which
may not be an obvious operation in the absence of the verifiable mixnet that was
introduced in a later version of the system), and on verifying that the HSM has
not been abused to perform unauthorized decryption or key export operations.

UCLouvain. Since version 2.0, Helios uses the one-round distributed key gen-
eration described above. To the best of our knowledge, Helios has not been
deployed in government elections, but we have a description of at least one de-
ployment for a university election at UCLouvain [2].

In that election, trustees were selected from various voter groups and worked
with the help of external experts. An in-person meeting was organized for the key
generation. Trustees were provided with laptops from which hard-disk drives and
network interfaces had been removed. The laptops were booted on Linux using
live-CDs, and minimal Python code was provided to generate the election keys,
under control of the external experts. Public and secret keys were generated and
saved on multiple USB sticks (including copies of the secret keys as backup).
The laptops were then turned off and the CDs destroyed. Copies of the public
keys were uploaded in the system, and trustees were asked to compare the public
keys published on their behalf with their own copies.

So, efforts were made to restrict the ways in which secret keys could be exfil-
trated from the hardware, but such measures obviously require expert control.

The software used by the trustees apparently was provided by the same
source, but it seems that this code was simple enough to be reviewed during the
key generation process—again, this requires expert control. Throughout, trustees
remained in control of their secret keys. The potential loss of any one of these
keys could have prevented the election organizers from tallying the election—
hence the existence of backup copies.

We can see that there are tensions between different incentives here. On the
one hand, the cryptographic protocol is designed to put the trustees in control
of their keys. On the other hand, should a trustee be missing or lose a key,

11

the tallying process might fail. In such circumstances, the blame is likely to be
put more strongly on the election organizer and technology supplier than on
the citizen who volunteered to help as a trustee. This actually places a strong
incentive on the organizer and technology provider to “tweak” key generation in
a way that allows them to obtain copies of all the keys, not to break the privacy
of the votes, but to recover from a human failure by a trustee that would badly
reflect on them. If the experts are chosen by the organizers, this may undermine
the trust that can be granted in the key generation process.

Switzerland. The hardware and roles for key management in the Swiss Post
voting system used for Swiss government elections is publicly available [31].

Its DKG is a variation of the one-pass protocol above, with some keys gener-
ated by Swiss Post and other keys generated by the cantons organizing elections.

Swiss Post holds four keys, generated on four control components, running
four different hardened operating systems in order to mitigate the risks of OS-
level exploits (Debian, RedHat, Ubuntu, and Windows are listed). The cantons
use multiple laptops deployed in a secure offline environment: they receive the
election data through USB sticks.

At the Swiss Post level, the operations are under control of multiple expert
teams, even though all of them seem to work under the authority of Swiss Post.
The security operations and human resources at the canton level are less docu-
mented, and we can guess that they vary among cantons.

At least at Swiss Post, the trustee tasks are performed by experts who would
be able to verify the software that they are running, but this comes at the cost
of a more limited independence. The generation of other keys at the Canton
level may offer an important level of human independence though. However, the
level of independence regarding the software and hardware is not clear: if the
voting software, OS, and hardware are provided by Swiss Post, then the effective
independence may be reduced. Again, we do not know how this is handled at
the canton level.

Franklin County, Idaho. The hardware and key management in a deploy-
ment of the ElectionGuard SDK during the 2022 General Election in Franklin
County, Idaho is documented [28]. This case is interesting in its own right be-
cause ElectionGuard uses a threshold DGK protocol, i.e., trustee devices had to
communicate with each other during key generation.

Trustee devices were connected to an administrator device on a local network.
Trustees were ordinary citizens who operated devices that they were given, run-
ning pre-installed software. At the end of key generation, the trustee devices
storing their private keys were kept in safes controlled by the election adminis-
trator. The devices themselves required the trustee fingerprint to be activated.
However, in order to recover from device failures (and despite the use of a thresh-
old DKG), keys were also exported on thumb drives and stored in the same safe.

The real impact the trustees had here seems minimal. Trustees had no control
of the software and hardware, and even the keys were kept in the custody of

12

the election administrator. However, one should not expect that the expertise
that can be deployed to run a national voting system in Switzerland can also be
deployed in much smaller elections such as those in Franklin County: the election
records show that 113 ballots were cast and 2 were spoiled in that election. In
that specific deployment, no linkage between the individual paper ballots and
the voters who cast them was maintained; so encrypted ballots have a much
weaker link to the voter identity than in the Internet voting systems described
above, in which a voting server controls the identity of the voter and receives its
encrypted ballot. So, even though the security of the keys seems to have been
lower in this case, the reliance on the keys for secret ballots seems lower as well.

Summing up. It is clear that, in all these cases, keys that safeguard vote
privacy hardly are in the sole control of trustees that are representatives of the
general population concerned by the election.

In all cases, the systems rely on authorities to provide the trustees with ex-
perts and trustworthy hardware and software. Even though the entire purpose
of splitting keys amongst independent entities is to prevent a curious central
authority from simply reading votes, in practice, there is little to stop a curious
authority providing software that reveals keys or performs additional decryp-
tions. And, even if the software is correct, it is unlikely that anyone will notice
if a curious authority simply asks for additional decryptions.

Trustees charged with generating and managing keys should be well-trained
and thoroughly understand their role. They should bring software and devices
obtained from sources they choose to trust. They should inspect the data they
are asked to decrypt and ensure that it contains only the values necessary and
appropriate to complete the election process. While such assumptions are com-
monplace and may seem reasonable in theory, practical deployments show that
the reality makes this challenging.

5 The Hardware Alternative

The publication of audit data can guarantee the integrity of election results
without any requirement to trust designated parties (trustees, election adminis-
tration, etc.). However, the solutions described above, even if deployed perfectly,
require trusting that a subset of a fixed group of trustees are behaving correctly.
This behavior includes correct human behavior (humans do not distribute copies
or misuse their keys) but also correct behavior of software and hardware (the
software and the hardware do not leak or misuse secret key material).

Hardware-based security technologies have existed for a long time and have
advanced tremendously during the last few years. The capabilities of hardware
security modules (HSMs) dramatically expanded, and trusted execution environ-
ments (TEEs, including Intel SGX and AMD SEV-SNP) are now readily avail-
able. These technologies open the opportunity to replace vague and difficult to
verify assumptions on human processes with clear, specific, and independently-
verifiable assumptions on hardware.

13

HSMs and TEEs can generate keys, log when and how they are used, delete
keys when they are not needed anymore, and publish signed attestations of all
of these steps. Independent observers can verify the attestations made by these
devices and the certificate chain to the device manufacturers. Of course, it is
possible that a device does not perform as advertised [4,32] or that the certificate
chain to a manufacturer is compromised. But similar assumptions seem to be
necessary when trustees need to use authentic software on a secure platform,
and these may come on top of human assumptions.

5.1 Secure hardware technologies

Hardware Security Modules. Hardware security modules (HSMs) have been
used for decades to provide physical protection for high-value keys that do not
need to be used often. They offer tamper-resistance and a variety of means for
an authorized set of users to request actions be taken such as generating a key
pair, exporting a public key, and using a protected private key to sign or decrypt
given data. While these actions are often limited by default to a specific set of
cryptographic algorithms that may not be compatible with the type of DKG
protocols described above, custom firmware can often be loaded, and high-end
HSMs even offer enclaves that support arbitrary code execution.

These features nicely match the requirements of an election. A key may be
generated a month or more before any decryptions are required, and decryptions
can be done together in batch in a single session. The principal drawback of
HSMs is their operational complexity and high cost, especially if they need to
offer the flexibility and performance needed to execute DKG protocols.

Secure Enclaves. Secure enclaves are a newer technology offered, for example,
by Intel’s SGX and AMD’s SEV-SNP technologies. They are capable of executing
arbitrary code and providing attestations about the code they ran and the results
produced, while offering strong isolation and encrypting all their communication
with memory external to the CPU.

Although they are more flexible and far less expensive than HSMs, secure
enclaves offer less robust physical protections, as evidenced by an already long
history of side-channel vulnerabilities [32]. Another disadvantage of secure en-
claves is that they only live as long as their host devices are powered and running.
There are some means for preserving and reconstituting state. However, enabling
such mechanisms could ruin the security of logging mechanisms that could be
used to keep track of every key usage: so-called rollback attacks could be used to
perform decryption tasks while escaping logging mechanisms. Generic solutions
aiming at detecting rollbacks are being explored [3], but we will discuss more
direct options below.

Trusted Platform Modules. Trusted platform modules (TPMs) are secu-
rity components available in most commercial PCs. Their principal utility is to
provide externally-verifiable attestation of the software running on a PC, and

14

they have been successfully deployed to secure open source voting machines [34].
The principal difference between the secure enclave approach and TPMs is that
TPMs offer no protection of the data being computed while secure enclaves offer
protections to make it more difficult to access data externally. This makes TPM
technology less attractive for handling the role of a trustee.

5.2 Resilient Usage of Secure Hardware

What could secure hardware offer? We now outline how secure trusted
hardware instances, either permanently instantiated on an HSM, or volatilely in
a TEE, can be leveraged to offer an alternative to human trustees. The approach
that we outline here is radically different from the ones discussed above: there
can be a single human trustee, and we will take advantage of the secure hardware
instances to make the behavior of the human verifiable by any auditor. So, the
trust that is traditionally required to be placed in humans and the software
and hardware they use could now be replaced with trust in hardware only: the
rest becomes verifiable by any independent auditor, offering a form of privacy
verifiability.

Overview. The starting point is to deploy threshold encryption and decryption
protocols on a set of secure hardware instances running on multiple devices.
Each instance runs open-source trustee code, and offers an attestation that the
expected code is running. The attestation can be tied from the specific hardware
component to its manufacturer.

The instances are coordinated by an election administrator. The adminis-
trator submits inputs to them and collects their outputs. Crucially, the admin-
istrator is required to publish attestations of all operations performed by each
instance. A trustee protocol will be defined as secure if the publication of valid
attestations produced by the hardware component guarantees the expected se-
curity properties, that is, the only decryption operations that will ever be per-
formed w.r.t. the election public key are those attested to by the secure hardware
instance.

Intuitively, if the hardware is trusted, a single secure instance would be
enough. However, we are concerned that this single device might fail, and the
primary reason for using multiple instances is now to offer resilience to hardware
failures. This is very different from the primary goal in the context of human
trustees, namely to guarantee that a single trustee cannot silently decrypt bal-
lots. Of course, running instances on a heterogeneous set of devices from a variety
of vendors also offers additional privacy assurances, should a specific device fail
to guarantee the isolation and attestation properties expected.

Setup phase. To prepare for an election, a setup round generates signature
keys that are used to establish secure communication channels between secure
instances: each instance generates a signature key pair and submits the signature
verification key to the administrator, who returns an election identifier eid and

15

the signature verification keys provided by the other instances. Each instance
attests to the list of signature verification keys that it will use in the context of
election eid. This concludes the setup part of the protocol.

The DKG. From this moment on, we can rely on a set of existing protocols as
described by Chen and Lindell for instance, who also prove their security [13].

1. Distributed key generation. This protocol runs a threshold DKG with a quo-
rum of k hardware instances within a set of n, based on n parallel executions
of Feldman’s VSS protocol.

2. Refresh. This protocol refreshes existing shares of a given secret, essentially
by adding to the existing shares a set of freshly generated shares of 0.

3. Removing a device. This protocol makes it possible to invalidate the share
held by a specific instance, essentially by running a refresh of the shares
while excluding that instance from the refresh. At the end of this protocol,
the quorum of k is maintained, but only n− 1 instances hold shares.

4. Adding a device. This protocol makes it possible to add a new device, re-
suming the level of robustness from a set of n − 1 instances to n instances
(without any change in the quorum k).

These protocols can be used as follows. The election administrator starts by
triggering the execution of the DKG protocol. At the end of this protocol, each
hardware instance attests to its public view of the execution and to the resulting
public key in particular. Furthermore, each instance also attests to the secure
deletion of all the key shares it saw, except for the single one that needs to be
kept for future decryption operations.

On a regular basis, the election administrator starts a refresh protocol. This
provides proactive security [24] and protects against an adversary who would
manage to extract key shares from an increasing number of devices (e.g., by
successfully running side-channel attacks). Each refresh resets all the shares and
renders the extracted shares useless. This does not need to reflect on decryption
proofs, which can be made share independent [6].

At any point in time, an instance might be identified by the administrator
as failing – be it rightly so, as a result of a power failure for example, or in
order to maliciously exclude the instance. The purpose of such an exclusion
might be to elude the requirement for the instance to attest the destruction of
its stored key shares, hence weakening the privacy of the votes. However, any
such failure statement is required to be followed by an execution of the device
removal protocol by the other instances, which will effectively render the share
of the excluded device useless.

Of course, such an exclusion reduces the resilience of the system to the failure
of other devices: one may progressively reach a state in which more than n− k
instances have been removed, preventing any further operation. In order to avoid
this situation, a new secure hardware instance must be started, its signature
verification key distributed, and the device addition protocol must be executed.

16

Decryption operations. Whenever tallying operations start, the election ad-
ministrator submits the required decryption requests to the instances, who sim-
ply decrypt whatever they are asked to decrypt without any specific verification—
which they could not perform anyway without any visibility of the ballots sub-
mitted in the election. However, each decryption operation is securely logged by
each device.

When the election is complete, the election administrator requires each device
to erase its secret key share. Each device eventually provides an attestation of
all the decryption operations that have been performed until its final key shares
have been erased, and the final erasure is confirmed. All attestations produced
by the devices are finally published for auditing.

The core benefit of this approach is that, if the audit succeeds, and under the
assumption that a quorum of the devices on which the instances are running offer
the advertised security guarantees, then we obtain guarantees on the secrecy of
the votes. In effect, we introduce privacy verifiability in elections. Furthermore,
should privacy verification steps fail, the election administrator can be identified
as the faulty party, hence offering a form of accountability that may be harder to
achieve using traditional approaches, when the origin of an incorrectly decrypted
ballot may be harder to identify.

We hope that the expected benefits of the approach we just outlined will
motivate further research.

Acknowledgments

This paper benefited from many valuable discussions, and we are happy to thank
Melissa Chase, Véronique Cortier, Paul England, Pierrick Gaudry, Esha Ghosh,
Kim Laine, Jack Richins, Douglas Wikström and Hervey Wilson for their very
helpful comments and inputs.

References

1. Ben Adida. Helios: Web-based open-audit voting. In Proceedings of the 17th
USENIX Security Symposium, pages 335–348. USENIX Association, 2008.

2. Ben Adida, Olivier de Marneffe, Olivier Pereira, and Jean-Jacques Quisquater.
Electing a university president using open-audit voting: Analysis of real-world use
of Helios. In 2009 Electronic Voting Technology Workshop / Workshop on Trust-
worthy Elections, EVT/WOTE ’09. USENIX Association, 2009.

3. Sebastian Angel, Aditya Basu, Weidong Cui, Trent Jaeger, Stella Lau, Srinath
T. V. Setty, and Sudheesh Singanamalla. Nimble: Rollback protection for confi-
dential cloud services. In 17th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2023, pages 193–208. USENIX, 2023.

4. Jean-Baptiste Bedrune and Gabriel Campana. Everybody be cool, this is a robbery!
In IACR Real World Crypto, 2020.

5. Josh Benaloh, Michael D. Byrne, Bryce Eakin, Philip T. Kortum, Neal McBurnett,
Olivier Pereira, Philip B. Stark, Dan S. Wallach, Gail Fisher, Julian Montoya,
Michelle Parker, and Michael Winn. STAR-Vote: A secure, transparent, auditable,

17

and reliable voting system. In 2013 Electronic Voting Technology Workshop /
Workshop on Trustworthy Elections, EVT/WOTE ’13. USENIX Association, 2013.

6. Josh Benaloh, Michael Naehrig, and Olivier Pereira. ElectionGuard design speci-
fication version 2.1.0. https://www.electionguard.vote/spec/, August 2024.

7. Josh Benaloh, Michael Naehrig, Olivier Pereira, and Dan S. Wallach. Elec-
tionGuard: a cryptographic toolkit to enable verifiable elections. In 33rd USENIX
Security Symposium, USENIX Security 2024. USENIX Association, 2024.

8. Josh Cohen Benaloh and Moti Yung. Distributing the power of a government
to enhance the privacy of voters (extended abstract). In Proceedings of the Fifth
Annual ACM Symposium on Principles of Distributed Computing, pages 52–62.
ACM, 1986.

9. David Bernhard, Olivier Pereira, and BogdanWarinschi. How not to prove yourself:
Pitfalls of the Fiat-Shamir heuristic and applications to Helios. In Advances in
Cryptology - ASIACRYPT 2012, volume 7658 of LNCS, pages 626–643. Springer,
2012.

10. Philippe Bulens, Damien Giry, and Olivier Pereira. Running mixnet-based elec-
tions with helios. In 2011 Electronic Voting Technology Workshop / Workshop on
Trustworthy Elections, EVT/WOTE ’11. USENIX Association, 2011.

11. Craig Burton, Chris Culnane, and Steve A. Schneider. vVote: Verifiable electronic
voting in practice. IEEE Secur. Priv., 14(4):64–73, 2016.

12. Richard Carback, David Chaum, Jeremy Clark, John Conway, Aleksander Essex,
Paul S. Herrnson, Travis Mayberry, Stefan Popoveniuc, Ronald L. Rivest, Emily
Shen, Alan T. Sherman, and Poorvi L. Vora. Scantegrity II municipal election at
takoma park: The first E2E binding governmental election with ballot privacy. In
19th USENIX Security Symposium, pages 291–306. USENIX Association, 2010.

13. Yi-Hsiu Chen and Yehuda Lindell. Feldman’s verifiable secret sharing for a dis-
honest majority. Cryptology ePrint Archive, Paper 2024/031, 2024. https:

//eprint.iacr.org/2024/031.
14. Dylan Clarke and Tarvi Martens. Real-world Electronic Voting: Design, Analysis

and Deployment, chapter E-Voting in Estonia, pages 129–141. CRC Press, 2017.
15. Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachène. Dis-

tributed ElGamal à la Pedersen: Application to Helios. In Proceedings of the 12th
annual ACM Workshop on Privacy in the Electronic Society, WPES 2013, pages
131–142. ACM, 2013.

16. Véronique Cortier, Pierrick Gaudry, and Stéphane Glondu. Belenios: A simple pri-
vate and verifiable electronic voting system. In Foundations of Security, Protocols,
and Equational Reasoning - Essays Dedicated to Catherine A. Meadows, volume
11565 of LNCS, pages 214–238. Springer, 2019.

17. Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and opti-
mally efficient multi-authority election scheme. In Advances in Cryptology - EU-
ROCRYPT 1997, volume 1233 of LNCS, pages 103–118. Springer, 1997.

18. Chris Culnane and Steve A. Schneider. A peered bulletin board for robust use in
verifiable voting systems. In IEEE 27th Computer Security Foundations Sympo-
sium, CSF 2014, pages 169–183. IEEE Computer Society, 2014.

19. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Advances in Cryp-
tology - CRYPTO ’89, volume 435 of LNCS, pages 307–315. Springer, 1989.

20. Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. Inf. Theory, 31(4):469–472, 1985.

21. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure dis-
tributed key generation for discrete-log based cryptosystems. J. Cryptol., 20(1):51–
83, 2007.

18

https://www.electionguard.vote/spec/
https://eprint.iacr.org/2024/031
https://eprint.iacr.org/2024/031

22. Stéphane Glondu. Belenios specification. https://github.com/glondu/belenios/
blob/2.5/doc/specification.tex. Version 2.5.

23. Stéphane Glondu. Belenios specification. https://github.com/glondu/belenios/
blob/3.0/doc/specification.tex. Version 3.0.

24. Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive
secret sharing or: How to cope with perpetual leakage. In Advances in Cryptology
- CRYPTO ’95, volume 963 of LNCS, pages 339–352. Springer, 1995.

25. Lucca Hirschi, Lara Schmid, and David A. Basin. Fixing the achilles heel of e-
voting: The bulletin board. In 34th IEEE Computer Security Foundations Sympo-
sium, CSF 2021, pages 1–17. IEEE, 2021.

26. Chelsea Komlo and Ian Goldberg. FROST: flexible round-optimized Schnorr
threshold signatures. In Selected Areas in Cryptography - SAC 2020, volume 12804
of LNCS, pages 34–65. Springer, 2020.

27. Susan K. Langford. Weakness in some threshold cryptosystems. In Advances in
Cryptology - CRYPTO ’96, volume 1109 of LNCS, pages 74–82. Springer, 1996.

28. Microsoft. End-to-end verifiability in real-world elections. https://www.

electionguard.vote/images/EAC%20Report%20Final.pdf, January 2023.
29. Torben P. Pedersen. A threshold cryptosystem without a trusted party (extended

abstract). In Advances in Cryptology - EUROCRYPT 1991, volume 547 of LNCS,
pages 522–526. Springer, 1991.

30. Swiss Post. Cryptographic primitives of the swiss post voting system. https:

//gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives,
February 2024.

31. Swiss Post. E-voting architecturedocument. https://gitlab.com/

swisspost-evoting/e-voting/e-voting-documentation/-/raw/master/

System/SwissPost_Voting_System_architecture_document.pdf, February 2024.
32. Stephan van Schaik, Alex Seto, Thomas Yurek, Adam Batori, Bader AlBassam,

Christina Garman, Daniel Genkin, Andrew Miller, Eyal Ronen, and Yuval Yarom.
SoK: SGX.Fail: How stuff get eXposed. In IEEE S&P Symposium, 2024.

33. Verificatum. User manual for the verificatum mix-net. https://www.verificatum.
org/files/vmnum-3.1.0.pdf, September 2022.

34. VotingWorks. Install.md. https://github.com/votingworks/

vxsuite-complete-system/blob/main/INSTALL.md, November 2022.
35. D. Wikström. Verificatum. https://www.verificatum.org/, May 2022.
36. Jan Willemson. Creating a decryption proof verifier for the estonian internet

voting system. In Proceedings of the 18th International Conference on Availability,
Reliability and Security, ARES 2023, pages 58:1–58:7. ACM, 2023.

19

https://github.com/glondu/belenios/blob/2.5/doc/specification.tex
https://github.com/glondu/belenios/blob/2.5/doc/specification.tex
https://github.com/glondu/belenios/blob/3.0/doc/specification.tex
https://github.com/glondu/belenios/blob/3.0/doc/specification.tex
https://www.electionguard.vote/images/EAC%20Report%20Final.pdf
https://www.electionguard.vote/images/EAC%20Report%20Final.pdf
https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives
https://gitlab.com/swisspost-evoting/crypto-primitives/crypto-primitives
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/raw/master/System/SwissPost_Voting_System_architecture_document.pdf
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/raw/master/System/SwissPost_Voting_System_architecture_document.pdf
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation/-/raw/master/System/SwissPost_Voting_System_architecture_document.pdf
https://www.verificatum.org/files/vmnum-3.1.0.pdf
https://www.verificatum.org/files/vmnum-3.1.0.pdf
https://github.com/votingworks/vxsuite-complete-system/blob/main/INSTALL.md
https://github.com/votingworks/vxsuite-complete-system/blob/main/INSTALL.md
https://www.verificatum.org/

	REACTIVE: Rethinking Effective Approaches Concerning Trustees in Verifiable Elections

