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Abstract. We consider constructions that combine outputs of a single
permutation π : {0, 1}n → {0, 1}n using a public function. These are
popular constructions for achieving security beyond the birthday bound
when implementing a pseudorandom function using a block cipher (i.e., a
pseudorandom permutation). One of the best-known constructions (de-
noted SXoP[2, n]) XORs the outputs of 2 domain-separated calls to π.
Modeling π as a uniformly chosen permutation, several previous works
proved a tight information-theoretic indistinguishability bound for SXoP[2, n]
of about q/2n, where q is the number of queries. However, tight bounds
are unknown for the generalized variant (denoted SXoP[r, n]) which XORs
the outputs of r ≥ 2 domain-separated calls to a uniform permutation.
In this paper, we obtain two results. Our first result improves the known
bounds for SXoP[r, n] for all (constant) r ≥ 3 (assuming q ≤ O(2n/r) is
not too large) in both the single-user and multi-user settings. In particu-
lar, for r = 3, our bound is about

√
uqmax/2

2.5n (where u is the number
of users and qmax is the maximal number of queries per user), improving
the best-known previous result by a factor of at least 2n.
For odd r, our bounds are tight for q > 2n/2, as they match known
attacks. For even r, we prove that our single-user bounds are tight by
providing matching attacks.
Our second and main result is divided into two parts. First, we devise
a family of constructions that output n bits by efficiently combining
outputs of 2 calls to a permutation on {0, 1}n, and achieve multi-user se-
curity of about

√
uqmax/2

1.5n. Then, inspired by the CENC construction
of Iwata [FSE’06], we further extend this family to output 2n bits by
efficiently combining outputs of 3 calls to a permutation on {0, 1}n. The
extended construction has similar multi-user security of

√
uqmax/2

1.5n.
The new single-user (u = 1) bounds of q/21.5n for both families should
be contrasted with the previously best-known bounds of q/2n, obtained
by the comparable constructions of SXoP[2, n] and CENC.
All of our bounds are proved by Fourier analysis, extending the provable
security toolkit in this domain in multiple ways.

1 Introduction

Many efficient implementations of pseudorandom functions today use block ci-
phers, which are pseudorandom permutations that only achieve security up to



the birthday bound of q = 2n/2 queries (where n is the block length). Since the
security of many cryptosystems (such as encryption modes, MAC algorithms
and authenticated encryption schemes) is based on pseudorandom functions,
beyond-birthday bound security has become a popular research area, initiated
in papers by Bellare, Krovetz, and Rogaway [2], and by Hall, Wagner, Kelsey,
and Schneier [18].

1.1 XORing Permutation Outputs

One of the best-known constructions for achieving security beyond the birthday
bound XORs the outputs of 2 permutations calls. This constructions has two
main variants. The first variant, denoted XoP[2, n] (XOR of Permutations), uses
two permutations π1, π2 : {0, 1}n 7→ {0, 1}n to define XoP[2, n]π1,π2

: {0, 1}n 7→
{0, 1}n by XoP[2, n]π1,π2

(i) = π1(i) ⊕ π2(i). In practice, π1 and π2 are imple-
mented using a block cipher, instantiated with independent keys. The second
variant, denoted SXoP[2, n], uses 2 domain-separated calls to a single permu-
tation π : {0, 1}n 7→ {0, 1}n to define SXoP[2, n]π : {0, 1}n−1 7→ {0, 1}n by
SXoP[2, n]π(i) = π(0∥i) ⊕ π(1∥i) (where ∥ denotes concatenation). As in the
first variant, π is implemented using a block cipher. However, in information-
theoretic security proofs, the block ciphers in both variants are replaced by
idealized random permutations.

The second variant is more efficient in the sense that it only requires a single
key. Yet, the advantage of the first variant is that it achieves better concrete
security in idealized models.

Generalizations. Natural generalizations of the above variants XOR the out-
puts r ≥ 2 permutations calls. The aim of these generalizations is to obtain even
better security bounds.

In this paper, we are mainly interested in a generalization of the second
variant, denoted SXoP[r, n]. It uses r ≥ 2 domain-separated calls to a single
permutation π : {0, 1}n 7→ {0, 1}n to define SXoP[r, n]π : {0, 1}n−⌈log r⌉ 7→
{0, 1}n by SXoP[r, n]π(i) = π(0∥i)⊕ π(1∥i)⊕ . . .⊕ π(r − 1∥i).

Previous results. Both variants have been analyzed in the idealized model
by numerous papers in both the single-user and multi-user settings. The first
variant (XoP) that uses independent permutations (and its generalized version)
was analyzed in [7,8,9,10,11,13,22,23,25,26]. A tight security bound for XoP and
its generalization was derived in [12] (also see [14] for XoP[2, n]), and further
extended to the multi-user setting.

Works that analyzed the second variant SXoP (and its generalization) include
[1,3,5,9,11,13,19,25,26]. In particular, for SXoP[2, n] a security bound of about
q
2n was proved in [9,11,13]. This bound is tight as it is matched by a simple
attack that checks whether the element 0 is output. The bound was extended to
give a tight bound in the multi-user setting in [3,19].

2



For the more general scheme SXoP[r, n] with r ≥ 3, tight bounds are un-
known. The particular case of r = 3 was analyzed by Bhattacharya and Nandi

in [5], deriving a bound of about
√
uqmax

2n in the multi-user setting (where u is
the number of users and qmax is the maximal number of queries per user).

Remark 1. In practice, each permutation is instantiated with a keyed block ci-
pher. In such computational settings, one needs to add an additional term (or
terms) to the bounds derived above which take into account the optimal ad-
vantage in distinguishing the underlying block cipher (or block ciphers) from a
uniformly chosen permutation (or permutations).

Remark 2. The restriction that the PRF should not be called with more than
qmax queries implies that the key should be rotated every qmax invocations in
practice. For the schemes we consider, there is a trivial attack on a single user
that achieves constant advantage by querying the PRF on the entire domain.
Thus, such a restriction is necessary if one desires security beyond 2n queries
(per all users) in the multi-user setting.

1.2 Iwata’s PRF construction

At FSE 2006 [20], Iwata introduced CENC, which is a beyond-birthday bound
secure mode of operation. Since its introduction, CENC has been very influen-
tial and it is currently considered for practical use as part of the DNDK-GCM
mode [17]. CENC is built from a PRF, F[w, n] : {0, 1}n−⌈log(w+1)⌉ 7→ {0, 1}wn

using an underlying permutation π : {0, 1}n 7→ {0, 1}n and defined as

F[w, n]π(i) = (π(0∥i)⊕ π(1∥i))∥(π(0∥i)⊕ π(2∥i))∥ . . . ∥(π(0∥i)⊕ π(w∥i)).

Thus, in order to generate wn bits of output, F only makes w + 1 calls to π,
whereas SXoP[2, n] makes 2w calls.

When modeling π as an ideal permutation, [4,9,21] proved that F[w,n] has

an indistinguishability advantage upper bound of about w2q
2n .

1.3 Our Results

In this paper, we obtain two results.

Result 1 - analysis of SXoP[r, n]. We improve known bounds for SXoP[r, n]
for all (constant) r ≥ 3 (assuming q ≤ O(2n/r) is not too large).

For odd r, we derive a bound of about q
2n(r−0.5) is the single-user setting and

√
uqmax

2n(r−0.5) in the multi-user setting. In particular, for q = 3, our bound
√
uqmax

22.5n

improves the best-known previous one of
√
uqmax

2n obtained in [5] by a factor of at

least 2n. Our bounds for odd r are tight up to a constant factor (for q ≥ 2n/2),
as they match attacks published by Patarin [27]. This includes the multi-user
setting, where our bounds are matched by the simple generalization of the attacks
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of Patarin, which applies the single-user attack independently to each user and
outputs a majority vote over the answers.

For even r, we prove a bound of about q
2nr/2 in the single-user setting and an

additional (slightly more complicated) bound of about min
( √

uqmax

2n(r/2−1/2) ,
uqmax

2nr/2

)
in the multi-user setting. Furthermore, we prove that our single-user bounds are
tight by providing matching attacks, which improve the ones of [27]. The bound
for even r in multi-user setting is obtained by combining two different bounds,
and we conjecture that it is not tight in all settings. We leave the problem of
improving this bound (or devising a matching attack) to future work.

Interestingly, our results show (for example) that SXoP[3, n] (with a tight
bound of q

22.5n ) is provably more secure than SXoP[4, n] (with a tight bound of
q

22n ). More generally, for odd r ≥ 3, SXoP[r, n] (with a bound of q
2n(r−0.5) ) is

provably more secure than SXoP[2r−2, n] (with a bound of q
2n(r−1) ). Intuitively,

the reason for this gap is that for odd r every element in {0, 1}n output by
SXoP[r, n] is marginally uniformly distributed, while for even r it is not.

Result 2 - definition and analysis of LXoP[L, n] and LXoP[L, 2, n].

LXoP[L,n]. We propose a family of constructions that output n bits by publicly
combining outputs of 2 calls to a single permutation on {0, 1}n, and achieve

multi-user security of about
√
uqmax

21.5n (as long as qmax ≤ O(2n) is not too large).
Hence, these constructions are provably secure up to u = o(2n) users for qmax ≥
Ω(2n). Our (single-user) bound of q

21.5n improves upon the best previous bound
of q

2n for a construction with similar parameters (obtained for SXoP[2, n]).
Our construction family is parameterized by a public linear orthomorphism

L : {0, 1}n → {0, 1}n, which is an invertible linear transformation such that
L′(x) = x⊕L(x) is itself a permutation. The construction is denoted LXoP[L, n]
and defined as LXoP[L, n]π(i) = π(0∥i)⊕ L(π(1∥i)), where i ∈ {0, 1}n−1.

It is easy to show that our bound
√
uqmax

21.5n is tight assuming q ≥ 2n/2 by
similar attacks to the ones of [27]. Note that the bound we obtain is of the same
order as the tight bound for XoP[2, n], obtained in [12,14].

Importantly, there are many linear orthomorphisms L : {0, 1}n → {0, 1}n
with the desired properties which are very simple and easy to implement in
practice. One example is L(x(1), x(2)) = (x(2), x(1) ⊕ x(2)), where x(1), x(2) ∈
{0, 1}n/2. Another example that may be more efficient to implement in hardware
is L(x) = (x ≫ 1) ⊕ (x1, 0, . . . , 0), i.e., cyclically rotate x by 1 bit to the right
and XOR the first bit of x (denoted x1) to the first bit of the result. Yet another
example is doubling in the field F2n . More details about linear orthomorphisms
over Fn

2 can be found in [16].
Intuitively, the main reason that such constructions have a high security level

is that (unlike SXoP[2, n]), every element generated by LXoP[L, n] is marginally
uniform in {0, 1}n. Indeed, let x ∈ {0, 1}n be such an element and write it as
x = y ⊕ L(z), where y, z ∈ {0, 1}n are drawn uniformly without replacement.
Then, fixing any a ∈ {0, 1}n, the equality x = a is equivalent to y⊕L(z) = a. If

4



y, z ∈ {0, 1}n were drawn uniformly and independently, then since L is invertible,
the equation y ⊕ L(z) = a would have exactly 2n solutions. However, since y, z
are drawn uniformly without replacement, we subtract the solutions that satisfy
y = z, and as L is an orthomorphism, the equation y ⊕ L(y) = a has exactly
one solution. Consequently, for any a ∈ {0, 1}n, the equation y ⊕ L(z) = a has
exactly 2n − 1 solutions, namely, x = y ⊕ L(z) is uniformly distributed.

We remark that the use of linear orthomorphisms in cryptography (partic-
ularly in design of block ciphers) is not new. See [6] and references therein for
examples. Hence, the main novelty of this work with respect to the LXoP[L, n]
family (and its generalization below) is in the security proof, rather than the
actual design.

LXoP[L,2,n]. After analyzing LXoP[L, n], we extend the construction to obtain
better efficiency by outputting 2n bits via 3 calls to the underlying permutation.
Specifically, we define LXoP[L, 2, n] : {0, 1}n−2 7→ {0, 1}2n as

LXoP[L, 2, n]π(i) = (π(0∥i)⊕ L(π(1∥i))) ∥ (π(1∥i)⊕ L(π(2∥i))) .

We prove that LXoP[L, 2, n] offers similar security to LXoP[L, n] in both the
single-user and multi-user settings, given that L is a linear orthomorphism. Com-
pared to Iwata’s PRF [20], F[2, n], the indistinguishability bound is improved
from about q

2n to q
23n/2 (in the single-user setting), while having comparable

parameters.

LXoP[L,w, n]. One can further extend LXoP to output wn bits via w + 1 per-
mutation calls, similarly to Iwata’s PRF. Specifically, define

LXoP[L,w, n]π(i) = (π(0∥i)⊕ L(π(1∥i))) ∥ . . . ∥ (π(w − 1∥i)⊕ L(π(w∥i))) ,

where i ∈ {0, 1}n−⌈log(w+1)⌉. To achieve high security, we require that the iter-
ated invertible linear function Lj has no short cycles of length up to w, namely
for every x ∈ {0, 1}n such that x ̸= 0 and 1 ≤ j ≤ w, x ⊕ Lj(x) ̸= 0. Such
efficient functions L are easy to build (e.g., from linear-feedback shift registers).

While it is not difficult (albeit somewhat technical) to extend our security
analysis of LXoP[L, 2, n] to LXoP[L,w, n] for very small values of w > 2, the
analysis for general w is more involved and we leave it to future work.

We remark that a different variant of LXoP[L,w, n]π(i) defines the j’th out-
put block (for j = 1, . . . , w) as Lj(π(0∥i))⊕ π(j∥i). However, this variant seems
to be inferior to the one above in terms of both security (for large w) and ef-
ficiency, since the computations of Lj(π(0∥i)) for different values of j are more
difficult to parallelize.

Implications of our results. Since tight bounds are known for SXoP[r, n] with
r = 2, we focus on r ≥ 3, aiming for a very high security level at the expense of
more permutation calls. Our analysis is therefore mostly of theoretical interest,
although it could be practically meaningful when using a block cipher with a
short block length n for which the security of SXoP[2, n] is insufficient.
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On the other hand, the LXoP[L, n] and LXoP[L, 2, n] constructions combine
the efficiency of SXoP[2, n] and CENC (respectively) with the very high security
level of XoP[2, n]. In our context, efficiency is mainly measured by (1) the number
of random permutations (block cipher keys), (2) the number of permutation calls
per one PRF call, and 3) the number of bits output in one PRF call. We further
argue above that the PRFs can be implemented in practice with little overhead.
Consequently, we believe that these PRF constructions are of practical interest.

1.4 Technical Overview

Similarly to the previous works [12,14,15], we prove our results by Fourier anal-
ysis. We start by elaborating on the techniques of [12,14] that are relevant to
this paper.

Previous techniques [12,14]. First, the distinguishing advantage of the ad-
versary is bounded by the statistical distance between the distribution generated
by the analyzed construction and the uniform distribution. Consider a sample
from a distribution generated by the analyzed construction, which is over Fq×n

2

(i.e., composed of q elements in {0, 1}n). The statistical distance of this distri-
bution from the uniform distribution can be bounded in the “Fourier domain”
by bounding the bias (i.e., Fourier coefficient) of each of the 2qn possible masks
(i.e., linear equations over F2) applied to the bits of the sample.

In [12,14], the task of bounding the Fourier coefficients for the distribution
function generated by the XoP construction was reduced to the task of bounding
the Fourier coefficients for the distribution generated by the underlying primi-
tive, namely, a random permutation. This reduction was based on the fact that
XORing together samples generated by independent random permutations cor-
responds to a convolution operation, which is simple multiplication in the Fourier
domain.

Considering k elements (for any 1 ≤ k ≤ q) drawn uniformly without re-
placement, the proof of [12] used bounds on two quantities of Fourier coefficients
on masks that involve all of these k elements (called level-k coefficients).

1. The maximal level-k Fourier coefficient in absolute value.
2. The level-k Fourier weight, which is equal to the sum of squares of all level-k

Fourier coefficients.

Our techniques. We would like to use a similar approach to bound the distin-
guishing advantage of the adversary against the SXoP and LXoP constructions.
However, unlike the XoP construction, these do not involve XORing together in-
dependent permutations. Therefore, the step that reduces the analysis to bound-
ing the Fourier coefficients of a random permutation via convolution is no longer
applicable.

Nevertheless, we prove that the Fourier coefficients of the distribution gen-
erated by the SXoP and LXoP constructions are, in fact, structured subsets of
the Fourier coefficients of a random permutation.
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For example, denote by x ∈ {0, 1}n a single element of a sample generated
by SXoP[2, n]. Consider a mask involving a single element α ∈ {0, 1}n ̸= 0 (i.e.,
a mask of level 1), and assume we wish to analyze the bias of the linear equation
α1x1 ⊕ . . .⊕ αnxn. Since x is generated by SXoP[2, n], we can write x = y ⊕ z,
where y, z ∈ {0, 1}n are generated by a random permutation. The above linear
equation can therefore be written as α1(y1 ⊕ z1)⊕ . . .⊕ αn(yn ⊕ zn) = (α1y1 ⊕
. . . ⊕ αnyn) ⊕ (α1z1 ⊕ . . . ⊕ αnzn), whose bias is exactly the Fourier coefficient
of a random permutation on the level-2 symmetric mask (α, α) ∈ {0, 1}2n.

In general, level-k Fourier coefficients of the distribution generated by SXoP[r, n]
correspond to symmetric level-(rk) Fourier coefficients of a random permutation.
One can similarly prove that level-k Fourier coefficients of the distribution gen-
erated by LXoP[L, n] correspond to level-2k Fourier coefficients of a random
permutation (with a certain structure that depends on L). A similar property
also holds for LXoP[L, 2, n]. Therefore, we can use the two bounds above on
the Fourier coefficients of a random permutation to analyze the distributions
generated by the SXoP and LXoP constructions.

Framework for bounding Fourier weight of sampling without replacement on
structured subsets of masks. Unfortunately, using the general level-k bounds
naively is not sufficient to obtain tight indistinguishability bounds for the con-
structions we analyze, particularly for LXoP. Essentially, the general level-k
bound on the weight (i.e., the second bound) is tight for dense subsets of masks
that contain (a large fraction of) all level-k masks. However, the subsets we need
to analyze are structured and very sparse.

As a result, in this paper we develop a framework that allows to bound the
Fourier weight of the sampling without replacement density function (normalized
distribution function) on structured subsets of masks. The framework takes into
account the particular structure of the subset and significantly improves the
naive bounds for the constructions we analyze.

Technically, the framework uses a (known) recursive formula for calculating
the Fourier coefficient on any single mask α as a sum of Fourier coefficients on
lower-level masks, derived from α. We show how to manipulate the formula to
collectively analyze the Fourier weight of a subset of masks that have a common
structure, determined by the construction we analyze. Specifically, each recursive
call bounds the weight of an increasingly denser subset of masks (of a lower
level), and we apply the general bounds only at the leaves of the recursion tree,
where they are closer to being tight. The power and generality of this framework
is demonstrated by applying it to obtain tight indistinguishability bounds for
all constructions we analyze in this paper. A notable exception to the above is
the SXoP[r, n] construction with even r, whose analysis requires an additional
central technical contribution, summarized below.

Mixed L1 and L2 bounds. For the SXoP[r, n] construction with even r the above
strategy is not sufficient to obtain tight indistinguishability bounds. Essentially,
this is because of a quadratic loss of the standard Cauchy-Schwarz inequality
that bounds the statistical distance (L1 distance) of the analyzed distribution
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to the uniform distribution using the L2 distance. In order to overcome this loss,
we bound the statistical distance by a mixture of L1 and L2 bounds using the
Fourier decomposition of the distribution (density) function. While such mixed
bounds have been used before in a hybrid argument (e.g., in [11]), we stress that
our mixed bounds are purely analytical in the sense that the “hybrids” that we
use do not necessarily correspond to actual distributions, but rather to a Fourier
decomposition of the density function.

An additional advantage of this technique is that it allows to lower bound the
statistical distance (i.e. analyze the optimal attack) in the Fourier domain using
the reverse triangle inequality. Indeed, the optimal attack on SXoP[r, n] reveals
itself during the analysis of level-1 Fourier coefficients. This attack simply checks
whether there is a 0 element of {0, 1}n in the sample. We note that combinatorial
analysis of the attack for arbitrary even r ≥ 4 is less straightforward.

1.5 Paper Structure

The rest of this paper is organized as follows. Next, in Section 2, we describe
preliminaries. In Section 3 we develop our framework for bounding the Fourier
weight of sampling without replacement on structured subsets of masks. In Sec-
tion 4 we prove our results regarding the SXoP construction, while in Section 5
and Section 6 we analyze the LXoP construction and its variants.

2 Preliminaries

In this section we describe preliminaries. Unless stated otherwise, missing proofs
are found in Appendix A.

For a positive integer m (i.e., m ∈ Z≥1), denote [m] = {1, 2, . . . ,m}. For
m1,m2 ∈ Z such that m1 ≤ m2, denote [m1,m2] = {m1,m1 + 1, . . . ,m2}. For a
set A, denote its size by |A|. For any integer k > 0 and a real number t, define
the falling factorial as (t)k = t(t− 1) . . . (t− (k − 1)). Further define (t)0 = 1.

Let n,m ∈ Z≥1 such that n ≥ m. Then, ( n
m )m ≤

(
n
m

)
≤ ( e·nm )m.

Let x be an element (from an arbitrary domain) and let m ∈ Z≥1. De-
fine x◦m = (x, . . . , x)︸ ︷︷ ︸

m times

to be the sequence of m repetitions of x. For a sequence

(x1, . . . , xk), define (x1, . . . , xk)
⊙m = ((x1)

◦m, . . . , (xk)
◦m).

Let m ∈ Z≥1. We denote the sequence of elements (x1, . . . , xm) by x1..m.
Similarly, the sequence of elements (x(1), . . . , x(m)) is denoted by x1..m. Further-
more, for m1,m2 ∈ Z≥1, denote the sequence of m1m2 elements

(x
(1)
1 , . . . , x

(m2)
1 , . . . , x

(1)
m1 , . . . , x

(m2)
m1 ) by x1..m2

1..m1
.

Let F be a field and v ∈ Fk1×k2 a matrix of elements in F. We index the
elements of v in a natural way, namely, for i ∈ [k1], vi ∈ Fk2 is the i’th row of v
and for j ∈ [k2], vi,j ∈ F is its j’th entry.

For two (row) vectors v, u ∈ Fk, we denote by ⟨u, v⟩F = u · vT =
∑

i∈[k] uivi

their inner product (where vT is the transpose of v and addition and multi-
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plication are over F). Similarly, for matrices v, u ∈ Fk1×k2 , define ⟨u, v⟩F =∑
i∈[k1]

ui · (vi)T =
∑

(i,j)∈[k1]×[k2]
ui,jvi,j .

In this paper, we typically deal with matrices x ∈ Fk×n
2 , where n is considered

a parameter and k may vary. We denote N = 2n.
Let L ∈ Fn×n

2 . Denote by LT the transpose of L. Further, let x ∈ Fk×n
2 . We

define L(x) ∈ Fk×n
2 by L(x)i = xi · L for i ∈ [k] (where we view xi as a row

vector in Fn
2 , multiplied with L).

Define 1 as the 0\1 indicator function that takes as input a predicate.

Asymptotic notation. While all of our results are fully explicit, we some-
times use standard asymptotic notation to give intuition about the bounds we
obtain. In particular, we use the notation Or(·) and Ωr(·) that suppress arbitrary
functions of r (for SXoP[r, n] we think of it as a small constant).

2.1 Probability

Definition 1 (Density function). A (probability) density function on Fq×n
2

is a nonnegative function φ : Fq×n
2 7→ R≥0 satisfying Ex∈Fq×n

2
[φ(x)] = 1, where

x ∈ Fq×n
2 is uniformly chosen.

We write x ∼ φ to denote that x is a sample drawn from the associated

probability distribution, defined by Prx∼φ[x = y] = φ(y)
2qn for every y ∈ Fq×n

2 .

Specifically, the uniform probability density function over Fq×n
2 is the constant

function 1, denoted by 1qn.
Let A ⊆ Fq×n

2 . We write x ∼ A to denote that x is selected uniformly at
random from A.

Proposition 1 ([24], Fact 1.21). If φ : Fq×n
2 7→ R≥0 is a density function

and f : Fq×n
2 7→ R, then Ex∼φ[f(x)] = Ex∼Fq×n

2
[φ(x)f(x)].

Definition 2 (Statistical distance). The statistical distance between two den-
sity functions φ,ψ : Fq×n

2 7→ R≥0 is SD(φ,ψ) = 1
2 Ex∼Fq×n

2
|φ(x)− ψ(x)|.

2.2 Fourier Analysis

We define the Fourier-Walsh expansion of functions on the Boolean cube, adapted
to our setting, and state the basic results that we will use. These results are
mostly taken from [24].

Definition 3 (Fourier expansion). Given α ∈ Fq×n
2 , define χα : Fq×n

2 7→
{−1, 1} by

χα(x) = (−1)⟨α,x⟩F2 =
∏
i∈[q]

(−1)⟨αi,xi⟩F2 =
∏

i∈[q],j∈[n]

(−1)αi,j ·xi,j .
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The set {χα}α∈Fq×n
2

is an orthonormal basis for the set of functions {f | f : Fq×n
2 7→

R}, with respect to the normalized inner product 1

|Fq×n
2 |
⟨f, g⟩R = Ex∼Fq×n

2
[f(x)g(x)].

Hence, each {f | f : Fq×n
2 7→ R} can be decomposed to f =

∑
α∈Fq×n

2
f̂(α)χα,

where f̂(α) = E[χαf ], and in particular f̂(0) = E[f ].
Each element in {χα}α∈Fq×n

2
is called a character. We refer to α as amask, and

to f̂(α) as the Fourier coefficient of f on α. To distinguish the domain of charac-

ters from the input domain, we write it as F̂q×n
2 , hence f(x) =

∑
α∈F̂q×n

2
f̂(α)χα(x).

For a mask α ∈ F̂q×n
2 , define

NZα = {i : αi ̸= 0} and #α = |NZα|.

We call #α the level of α, and f̂(α) is a Fourier coefficient of level #α.
For integer parameters n ≥ 1 and 0 ≤ k0 ≤ k1, we define the sets of masks

Mn
=k0,k1

= {α ∈ F̂k1×n
2 : #α = k0}, andMn

≥k0,k1
= {α ∈ F̂k1×n

2 : #α ≥ k0}.
Definition 4 (Fourier weight and maximal magnitude). For a function
f : Fq×n

2 7→ R, we define the Fourier weight of f at level k to be

W=k[f ] =
∑

α∈F̂q×n
2

#α=k

f̂(α)2 =
∑

α∈Mn
=k,q

f̂(α)2.

The maximal magnitude of a level-k Fourier coefficient of f is

M=k[f ] = max
α∈F̂q×n

2
#α=k

{|f̂(α)|} = max
α∈Mn

=k,q

{|f̂(α)|}.

Proposition 2 ([24], Proposition 1.13 – variance). The variance of f :

Fq×n
2 7→ R is Var[f ] = E[f2]− E[f ]2 =

∑
α∈F̂q×n

2
α̸=0

f̂(α)2 =
∑q

k=1 W
=k[f ].

Proposition 3 (Bidirectional bounds on statistical distance from uni-
form by L1 and L2 distances). Let φ : Fq×n

2 7→ R≥0 be a density function.

Let S ⊂ F̂q×n
2 be any set of masks, which does not contain the zero mask. Let

S = F̂q×n
2 \{S ∪ {0}} be the complementary set of masks (not including the zero

mask). Then

−
√∑

α∈S

φ̂(α)2 ≤ 2 SD(φ,1qn)− E
x∼Fq×n

2

|
∑
α∈S

φ̂(α)χα(x)| ≤
√∑

α∈S

φ̂(α)2.

In particular, for S = ∅, we obtain SD(φ,1qn) ≤ 1
2

√
Var[φ]

We state an additional basic result regarding variance.

Proposition 4 ([12], Proposition 6 – Variance of independent sam-
ples). Let φ : Fq×n

2 7→ R≥0 be a density function. Let u ≥ 1 be an integer

and let φ×u : F(qu)×n
2 7→ R≥0 be the density function obtained by concatenating

u independent samples drawn from φ. Then,

Var[φ×u] ≤ 2uVar[φ], assuming uVar[φ] ≤ 1
2 .
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2.3 Cryptographic Preliminaries

Standard definitions of adversary’s advantage and the optimal advantage against
a PRF (in the single-user and multi-user settings) are given in Appendix A.

Bounding the optimal advantage using Fourier analysis. In this paper
we will consider keyed families of functions of the form H : K×{0, 1}m 7→ {0, 1}n
with the property that the output distribution is independent of the queries of the
adversary over {0, 1}m. Thus, we ignore these queries and focus on analyzing the
output distribution (density function) generated by H. Given that the adversary
makes q queries to H, we may denote the density function generated by H as
φn,q
H : Fq×n

2 → R≥0.

By well-known properties of the statistical distance, the advantage of the
optimal distinguisher against H is equal to the statistical distance of φH from
uniform, namely,

OptprfH (q) = SD(φn,q
H ,1qn). (1)

In the multi-user setting, an adversary againstH obtains a sample of (φn,qmax

H )×u :

F(qmaxu)×n
2 7→ R≥0, where (φn,qmax

H )×u is the density function obtained by con-
catenating u independent samples drawn from φn,qmax

H . Here, qmax is the (max-
imal) number of queries per user. Similarly to the single-user setting, in the
multi-user setting we have

Optmu-prf
H,u (qmax) = SD((φn,qmax

H )×u,1uqmaxn). (2)

In this paper, we mostly bound the optimal advantage by bounding Var[φn,q
H ]

using the following basic result.

Proposition 5 (Bounds on advantage using variance). Assume that the
output distribution generated by H : K × {0, 1}m 7→ {0, 1}n is independent of
the queries of the adversary. Denote by φn,q

H : Fq×n
2 → R≥0 the density function

generated by H. Then,

OptprfH (q) ≤ 1

2

√
Var[φn,q

H ], and Optmu-prf
H,u (qmax) ≤

1√
2

√
uVar[φn,qmax

H ],

assuming uVar[φn,qmax

H ] ≤ 1
2 , or equivalently, 1√

2

√
uVar[φn,qmax

H ] ≤ 1
2 .

Symmetric properties. In addition to the output distribution being indepen-
dent of the queries of the adversary, all the functions H : K×{0, 1}m 7→ {0, 1}n
we analyze in this paper are symmetric in the following sense: if x ∼ φn,q

H , then
for every set of k distinct indices {i1, i2, . . . , ik} ⊆ [q], (xi1 , . . . , xik) are k el-

ements that are marginally sampled from φn,k
H , namely, (xi1 , . . . , xik) ∼ φn,k

H .

11



Therefore, for 1 ≤ k ≤ q, we have M=k[φn,q
H ] = M=k[φn,k

H ] and

W=k[φn,q
H ] =

∑
α∈Mn

=k,q

φ̂n,q
H (α)2 =

∑
{i1,...,ik}⊆[q] distinct

∑
β∈F̂k×n

2

NZβ={i1,...,ik}

φ̂n,k
H (β)2

=
∑

{i1,...,ik}⊆[q] distinct

W=k[φn,k
H ] =

(
q
k

)
W=k[φn,k

H ].

These symmetric properties are repeatedly used throughout the paper (often
without explicitly referring to them). Another result on symmetric functions
(which we do not explicitly use) is given in Appendix B.

Sampling without replacement. We define the density function of sampling
without replacement.

Definition 5 (Density function of sampling without replacement). For
positive integers n, q such that 1 ≤ q ≤ 2n, let µn,q : Fq×n

2 7→ R≥0 be the density
function associated with the process of uniformly sampling q elements from Fn

2

without replacement. Specifically, for x ∈ Fq×n
2 ,

µn,q(x) =

{
Nq

(N)q
if xi ̸= xj for all i, j ∈ [q] (i ̸= j),

0 otherwise.

Furthermore, define µn,0 to be the constant 1.

The SXoP[r, n] construction. Let Perm(n) be the set of all permutations
on {0, 1}n (i.e., the set of all π : {0, 1}n 7→ {0, 1}n). For positive integers
r, n such that r ≥ 2, define the family of functions SXoP[r, n] : (Perm(n)) ×
{0, 1}n−⌈log r⌉ 7→ {0, 1}n by SXoP[r, n]π(i) = π(0∥i)⊕ π(1∥i)⊕ . . .⊕ π(r − 1∥i),
where in π(j∥i), j ∈ {0, 1}⌈log r⌉ is encoded in binary for j = 0, . . . , r − 1, and

∥ denotes concatenation. We will be interested in bounding OptprfSXoP[r,n](q) as

a function of the parameters r, n, q (and deriving similar bounds in the multi-
user setting). By symmetry of the randomly chosen permutation π, an adversary
against SXoP[r, n] obtains the XOR of r samples, each containing q elements of
{0, 1}n, where all rq elements are chosen uniformly without replacement (re-
gardless of the actual queries).

Let ν
(r)
n,q : Fq×n

2 7→ R≥0 denote the density function of a sample generated by
the SXoP[r, n] construction.

The LXoP[L, n] and LXoP[L, 2, n] constructions. Let L ∈ Fn×n
2 be an

invertible matrix. Define the family of functions LXoP[L, n] : (Perm(n)) ×
{0, 1}n−1 7→ {0, 1}n by LXoP[L, n]π(i) = π(0∥i)⊕ L(π(1∥i)).

Moreover, define the family of functions LXoP[L, 2, n] : (Perm(n))×{0, 1}n−2 7→
{0, 1}2n by LXoP[L, 2, n]π(i) = (π(0∥i)⊕ L(π(1∥i))) ∥ (π(1∥i)⊕ L(π(2∥i))) .
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We will be interested in bounding OptprfLXoP[L,n](q) and OptprfLXoP[L,2,n](q) as

a function of the parameters n, q (and deriving similar bounds in the multi-user
setting). As in the case of SXoP[r, n], the distributions generated by LXoP[L, n]

and LXoP[L, 2, n] are independent of the queries of the adversary. Let ξ
(L)
n,q :

Fq×n
2 7→ R≥0 and ξ

(L)
n,2,q : Fq×2n

2 7→ R≥0 denote the density functions of samples
generated by the LXoP[L, n] and LXoP[L, 2, n] constructions, respectively.

2.4 Fourier Properties of µn,k

We list several results about Fourier properties of µn,k, mostly taken from [12,14].

Proposition 6 ([12], Proposition 12 – Permuting elements preserves

Fourier coefficients). Let α ∈ F̂k×n
2 . Let π : [k] 7→ [k] be a permutation and

define απ ∈ F̂k×n
2 by (απ)i = απ(i) for i ∈ [k]. Then, µ̂n,k(α

π) = µ̂n,k(α).

Proposition 6 is repeatedly (and implicitly) used throughout the paper.

Proposition 7. For any α ∈ F̂k×n
2 such that ⊕i∈[k]αi ̸= 0 we have µ̂n,k(α) = 0.

The following is a recursive formula for µ̂n,k(α) (proved in Appendix A).

Proposition 8 ([14], Section 4 – recursive formula for µ̂n,k(α)). For

parameters k1 ≥ k0 ≥ 2, let α ∈ F̂k1×n
2 have #α = |NZα| = k0. Then for any

j ∈ NZα = {i ∈ [k1] : αi ̸= 0},

µ̂n,k1
(α) = − 1

N − k0 + 1

∑
i∈NZα\{j}

µ̂n,k1
(α⊕(j,i)),

where α⊕(j,i) ∈ F̂k1×n
2 (for i ̸= j) is defined as (α⊕(j,i))ℓ =


0 if ℓ = j,

αi ⊕ αj if ℓ = i,

αℓ if ℓ /∈ {i, j}.

Note that #α⊕(j,i) = k0 − 1 if αi ⊕αj ̸= 0 and #α⊕(j,i) = k0 − 2 if αi ⊕αj = 0.

Proposition 9 (Recursive bound for µ̂n,k(α)
2). For parameters k1 ≥ k0 ≥

2, let α ∈ F̂k1×n
2 have #α = |NZα| = k0. Then for any j ∈ NZα = {i ∈

[k1] : αi ̸= 0},

µ̂n,k1
(α)2 ≤ k0 − 1

(N − k0 + 1)2

∑
i∈NZα\{j}

µ̂n,k1
(α⊕(j,i))2.

Proof. By Proposition 8 and the Cauchy–Schwarz inequality,

µ̂n,k1(α)
2 = (− 1

N−k0+1

∑
i∈NZα\{j}

µ̂n,k1(α
⊕(j,i)))2 ≤ k0−1

(N−k0+1)2

∑
i∈NZα\{j}

µ̂n,k1(α
⊕(j,i))2.

■
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Lemma 1 ([14], Lemma 4.1 – Bound on magnitude of level-k Fourier
coefficients). Let k1 ≥ k0 and 0 ≤ k0 ≤ N/2. Then, M=k0 [µn,k1

] ≤ 1√
(N
k0
)
.

A slightly stronger bound than above was also proved in Lemma 1 of [12], but
we give the simpler proof of [14] in Appendix A.

Lemma 2 ([12], Lemma 2 – Bound on level-k Fourier weight). For 1 ≤

k ≤ N/2, W=k[µn,k] ≤
(

k
N−k

)k/2

.

Proposition 10. Let k1 ≥ k0 and 2 ≤ k0 < N/2 for k0 even. Let α ∈ F̂k1×n
2

have #α = k0. Assume that αi = αj for all i, j ∈ [k1] such that αi, αj ̸= 0
(i.e., i, j ∈ NZα). Then, µ̂n,k1(α) = (−1)k0/2 k0−1

N−1
k0−3
N−3 . . .

1
N−(k0−1) . Moreover,

1√
k0(N

k0
)
≤ |µ̂n,k1(α)| ≤ 1√

(N
k0
)
.

3 Framework for Bounding the Weight of µn,k on
Structured Subsets

In this section we describe our framework. Unless stated otherwise, missing
proofs are found in Appendix C. We begin with a motivating example.

Let r ≥ 2 and k ≥ 1 be parameters where rk ≤ O(N). Suppose we want
to upper bound the expression

∑
α∈F̂k×n

2
#α=k

µ̂n,rk(α
⊙r)2 =

∑
α∈Mn

=k,k
µ̂n,rk(α

⊙r)2,

where α⊙r = (α◦r
1 , . . . , α

◦r
k ). As #α⊙r = r#α = rk, apply Lemma 1 and obtain∑

α∈Mn
=k,k

µ̂n,rk(α
⊙r)2 ≤ Nk(M=rk[µn,rk])

2 ≤ Nk 1(
N
rk

) .
(3)

Another option to bound the expression is to use Lemma 2 and deduce∑
α∈Mn

=k,k

µ̂n,rk(α
⊙r)2 ≤

∑
β∈Mn

=rk,rk

µ̂n,rk(β)
2 =W=rk[µn,rk] ≤ ( rk

N−rk )
rk/2.

(4)

The above bounds are generally far from tight, as they make little use of the
structure of masks we sum over. To improve the bounds, for every α ∈ Mn

=k,k

apply Proposition 9 to α⊙r (with k1 = k0 = rk and j = rk), obtaining

∑
α∈Mn

=k,k

µ̂n,rk(α
⊙r)2 ≤ rk−1

(N−rk+1)2

∑
α∈Mn

=k,k

rk−1∑
i=1

µ̂n,rk((α
⊙r)⊕(rk,i))2

= rk−1
(N−rk+1)2

rk−1∑
i=1

∑
α∈Mn

=k,k

µ̂n,rk((α
⊙r)⊕(rk,i))2.

(5)

Fix i ∈ [rk − 1]. We analyze the term
∑

α∈Mn
=k,k

µ̂n,rk((α
⊙r)⊕(rk,i))2, assuming

r ≥ 3. As (α⊙r)⊕(rk,i) changes only entries rk and i of α⊙r, then given i ∈ [rk−1],

14



(α⊙r)⊕(rk,i) fully determines α (and α⊙r). Indeed, for every ℓ ∈ [k], αℓ still
appears in at least one entry of (α⊙r)⊕(rk,i). This property does not hold for
r = 2, since for i = 2k − 1, (α⊙2)⊕(2k,2k−1) is independent of αk.

In other words, given i ∈ [rk− 1] the i’th operation in Proposition 9 applied
to α⊙r (whose outcome is (α⊙r)⊕(rk,i)) is invertible for r ≥ 3. Partition all
α ∈ Mn

=k,k into two sets according to the non-zero index set of (α⊙r)⊕(rk,i) by
defining Si,0 = {α ∈ Mn

=k,k : NZ(α⊙r)⊕(rk,i) = [rk]\{rk, i}} and Si,1 = {α ∈
Mn

=k,k : NZ(α⊙r)⊕(rk,i) = [rk]\{rk}}. As #(α⊙r)⊕(rk,i) ∈ {rk − 1, rk − 2},∑
α∈Mn

=k,k

µ̂n,rk((α
⊙r)⊕(rk,i))2

=
∑

α∈Si,0

µ̂n,rk((α
⊙r)⊕(rk,i))2 +

∑
α∈Si,1

µ̂n,rk((α
⊙r)⊕(rk,i))2

≤
∑

β∈Mn
=rk−2,rk−2

µ̂n,rk−2(β)
2 +

∑
β∈Mn

=rk−1,rk−1

µ̂n,rk−1(β)
2

=W=rk−2[µn,rk−2] +W=rk−1[µn,rk−1].

The above inequality crucially uses two properties: (1) for each i ∈ [rk−1], in the
(multi) set {(α⊙r)⊕(rk,i) : α ∈ Mn

=k,k} each mask appears only once due to the

invertibility of (α⊙r)⊕(rk,i), and (2) all masks in each of {(α⊙r)⊕(rk,i) : α ∈ Si,0}
and {(α⊙r)⊕(rk,i) : α ∈ Si,1} have the same set of zero indices (which is trimmed).
Thus, the right-hand side sums over the squared Fourier coefficients of a superset
of the trimmed left-hand side masks. Combining with (5),

∑
α∈Mn

=k,k

µ̂n,rk(α
⊙r)2 ≤ rk−1

(N−rk+1)2

rk−1∑
i=1

(W=rk−2[µn,rk−2] +W=rk−1[µn,rk−1])

= ( rk−1
N−rk+1 )

2(W=rk−2[µn,rk−2] +W=rk−1[µn,rk−1])

≤ ( rk−1
N−rk+1 )

2(( rk−2
N−rk+2 )

(rk−2)/2 + ( rk−1
N−rk+1 )

(rk−1)/2) ≤ 2( rk−1
N−rk+1 )

(rk/2)+1,

where the penultimate inequality is by Lemma 2. Comparing this bound to (4),
we get a significant improvement by a factor of about 2( rk

N−rk ). More generally,
when the masks initially have level k0, then the improvement over the straight-
forward application of Lemma 2 is by a factor of about 2( k0

N−k0
).

Recursion. We can obtain improved bounds by applying Proposition 9 recur-
sively to each of the 2(rk − 1) sets {(α⊙r)⊕(rk,i) : α ∈ Si,j}i∈[rk−1],j∈{0,1}. The
outcome is a recursion tree and we apply Lemma 2 only at the leaves. Next, we
generalize the above analysis.

General Framework

We consider the following initial setting.
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Setting 1 Let k′ > 0 be an integer parameter. Let S be a set of strings. Let

T : S → F̂k′×n
2 be a mapping such that the following two restrictions hold:

(a1) T is injective, i.e., for any α, β ∈ S such that α ̸= β, T (α) ̸= T (β), and
(a2) there is a common non-zero index subset N ⊆ [k′] such that for every
α ∈ S, NZT (α) = N , i.e., for any ℓ ∈ [k′], T (α)ℓ ̸= 0 if and only if ℓ ∈ N .

The restrictions correspond to the two crucial properties that allow to apply
Lemma 2. Specifically, restriction (a2) implies that all α ∈ S have #T (α) = |N |.

Our goal is to bound
∑

α∈S µ̂n,k′(T (α))2.1 We start from the initial mask set
{T (α) : α ∈ S}, and invoke recursive calls of Proposition 9, where Lemma 2 is
applied at the leaves of the recursion tree.

Let β ∈ F̂k′×n
2 be a mask. Consider the operation β⊕(j,i) for j ∈ NZβ and

i ∈ NZβ\{j}. The formula of Proposition 9 applied to β includes |NZβ | − 1
such operations, where j is fixed and i ranges over all NZβ\{j}. Thus, we call
index j the primary index, while we call each i ∈ NZβ\{j} a secondary index.

Each recursive node v at depth d ≥ 0 is labeled by a recursion stack which
consists of the sequence of d secondary indices i1, . . . , id ∈ [k′] for the recursive
calls up to this node, and a sequence of bits b1, . . . , bd ∈ {0, 1}. For d′ ∈ [d], bit
bd′ specifies whether the outcome of the XOR operation at index id′ was zero or
not. These bits keep track of the set N that evolves during the recursion.

We will assume that there is a primary index selector, or PIS, which is an
application-dependent procedure that selects the next primary index (denoted
jd+1) for the invocation of Proposition 9. The input to the PIS includes the
recursion stack v = (i1, . . . , id, b1, . . . , bd). Initially, the recursion stack is empty,
and thus the first primary index is fixed by the PIS implementation.2 We remark
that the PIS also depends on the initial parameters of Setting 1, (S, T ). However,
(S, T ) are assumed to be fixed and hardcoded inside the PIS.

Fixing a PIS implementation pis, we define a recursive procedure up to depth
dmax (called calcWpis,dmax

) for upper bounding the weight
∑

α∈S µ̂n,k′(T (α))2.

Definition of calcW. The procedure calcWpis,dmax
obtains 5 parameters:

(1) (current) recursion depth d,
(2) stack trace v = (i1, . . . , id, b1, . . . , bd),
(3) set Sv,
(4) mapping Tv : Sv → F̂k′×n

2 , and
(5) set Nv ⊂ [k′] such that for all α ∈ Sv, NZTv(α) = Nv (Tv(α)i ̸= 0⇔ i ∈ Nv).

Initially, S, T are defined by Setting 1, and thus d = 0, v = NULL, Sv = S,
Tv = T and Nv = N . In most (but not all) of our applications, Nv = [k′], as the
level of all masks T (α) for α ∈ S will be k′.

1 Note that
∑

α∈Mn
=k,k

µ̂n,rk(α
⊙r)2 analyzed in the motivating example is a special

case with k′ = rk, S = Mn
=k,k and T (α) = Tr,k(α) = α⊙r (here N = [rk]). Since

(a1), (a2) hold we could apply Lemma 2 to derive (4).
2 For example, for T (α) = α⊙r analyzed above we initially set j1 = rk.
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calcWpis,dmax
(d, v = (i1, . . . , id, b1, . . . , bd),Sv, Tv,Nv)

1. k′v ← |Nv|.
2. If d = dmax, return (

k′
v

N−k′
v
)k

′
v/2.

3. j ← pis(v).
4. W ← 0.
5. For all i ∈ Nv\{j}:

(a) vi,0 ← (i1, . . . , id, i, b1, . . . , bd, 0), vi,1 ← (i1, . . . , id, i, b1, . . . , bd, 1).
(b) Define Tvi(α) = Tv(α)

⊕(j,i) for every α ∈ Sv.
(c) Tvi,0 ← Tvi , Tvi,1 ← Tvi .
(d) Svi,0 ← {α ∈ Sv : Tvi(α)i = 0}, Svi,1 ← {α ∈ Sv : Tvi(α)i ̸= 0}.
(e) Nvi,0 ← Nv\{i, j}, Nvi,1 ← Nv\{j}.
(f) W ←W + calcWpis,dmax(d+ 1, vi,0,Svi,0 , Tvi,0 ,Nvi,0),

W ←W + calcWpis,dmax
(d+ 1, vi,1,Svi,1 , Tvi,1 ,Nvi,1).

6. Return
k′
v−1

(N−k′
v+1)2W .

Thus, calcW implements the recursive invocation of Proposition 9, where Lemma 2
is applied at the leaves in the second step. As in the motivating example, for
each i ∈ Nv\{j} we need two recursive calls, since the non-zero index set of each
mask Tv(α)

⊕(j,i) can be either Nv\{j} or Nv\{i, j} (and this index set must be
consistent in each call to calcW).

Remark 3. Assume that S, T and pis are fixed. Since the output of pis only de-
pends on the recursion stack (but not on specific masks), the primary indices are
uniquely defined by the recursion stack v, even though v does not include them
explicitly. More generally, the 4 parameters d,Sv, Tv,Nv of calcW are uniquely
determined by v. The only reason we explicitly include them as parameters of
calcW is to simplify its description.

Applicability of calcW. The correctness of calcW will rely on the assumption
that the two restrictions of Setting 1 hold at all internal nodes, as they will be
crucial for applying Lemma 2 at the leaves. Since for b ∈ {0, 1} each set Svi,b
is defined in correspondence with the non-zero index set Nvi,b , restriction (a2)
indeed holds at all internal nodes. However, restriction (a1) may not hold recur-
sively, and it requires special treatment depending on the specific application.
We formalize the corresponding conditions in the following definition.

Definition 6 (Applicability of calcW). calcW is applicable up to depth dmax

with parameters (S, T ) and a PIS pis, if the following conditions hold:
(b1) the pair (S, T ) satisfies the restrictions of Setting 1 with 2dmax < |N | (N
is defined in Setting 1), and
(b2) considering the recursion tree with root calcWpis,dmax

(0, (NULL),S, T,N ):
for every node v at depth at most dmax − 1 such that j = pis(v), for all i ∈
Nv\{j} and α ∈ Sv, Tv(α) can be (uniquely) recovered from Tvi(α) = Tv(α)

⊕(j,i).
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Restriction (b2) needs to holds only up to depth dmax − 1 as Proposition 9 is
not used at the leaves. Before formally analyzing calcW, we simplify the second
condition of Definition 6. This simplification will be useful in applications.

Proposition 11 (Sufficient condition for applicability of calcW). Given
(S, T ) and a PIS pis, assume that
(c1) the pair (S, T ) satisfies the restrictions of Setting 1 with 2dmax < |N | (N
is defined in Setting 1), and
(c2) considering the recursion tree with root calcWpis,dmax

(0, (NULL),S, T,N ):
for every node v at depth at most dmax−1 such that j = pis(v), for all i ∈ Nv\{j}
and α ∈ Sv, Tv(α)j can be recovered from Tvi(α).
Then, calcWdmax

is applicable up to depth dmax with S, T and pis.

Proof. Condition (b1) of Definition 6 holds by assumption. We prove con-
dition (b2). Fix a node v of depth at most dmax − 1 and let α ∈ Sv. Ac-
cording to Definition 6, we need to prove that Tv(α) can be recovered from
Tvi(α) = Tv(α)

⊕(j,i) (for all i ∈ Nv\{j}). Since only entries j and i are mod-
ified in Tv(α) by the mapping Tvi , it is sufficient to prove that both Tv(α)j
and Tv(α)i can be computed from Tvi(α). By assumption, Tv(α)j can be recov-
ered from Tvi(α). Moreover, since Tvi(α)i = (Tv(α)

⊕(j,i))i = Tv(α)i ⊕ Tv(α)j ,
then Tv(α)i = Tvi(α)i ⊕ Tv(α)j can also be recovered from Tvi(α). Hence both
conditions of Definition 6 hold. ■

The following definition will be useful in applications.

Definition 7 (Unaltered index). An index ℓ′ ∈ [k′] is called unaltered at a
node v = (i1, . . . , id, b1, . . . , bd) if ℓ

′ has not been selected as primary or secondary
index. Namely, ℓ′ ̸= jd′ and ℓ′ ̸= id′ for all d′ ∈ [d].

The definition is motivated by the simple property that if ℓ′ is unaltered at node
v, then for any α ∈ Sv, Tv(α)ℓ′ = T (α)ℓ′ (where T is the initial mapping at the
root). This property holds since the mappings Tvi at any node v only modify
the entries of the primary index j and secondary index i.

Denote by Uv the set of all unaltered indices at node v. At the root node v,
Uv = [k′]. Since every child of any node v has one primary and one secondary
index, a node at depth d has |Uv| ≥ k′ − 2d.

Analysis of calcW. The main result regarding calcW is given below.

Lemma 3. Assume that calcW is applicable up to depth d = dmax ≥ 0 with

parameters (S, T ) (where T : S → F̂k′×n
2 ) and a PIS, pis. Assume further that

initially #T (α) = k0 ≤ k′ satisfies 2d < k0 ≤ N/8 for all α ∈ S. Then,∑
α∈S

µ̂n,k′(T (α))2 ≤ 2d
(k0)

2d(k0 − 2d)k0/2−d

(N − k0)k0/2+d
≤ 2d

(
k0

N − k0

)k0/2+d

.

The proof of Lemma 3 is given in Appendix C. Note that the improvement
over the naive application of Lemma 2 is by a factor of about 2d( k0

N−k0
)d. This

emphasizes the importance of defining a PIS that allows applying calcW up to
a large depth d. Appendix C also describes possible variants of calcW.
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4 Indistinguishability Upper and Lower Bounds for
SXoP[r, n]

In this section, we analyze the SXoP[r, n] construction, proving the main theorem
below. Unless stated otherwise, missing proofs are found in Appendix D.

Theorem 1. Assume that rq ≤ N/8 and N ≥ 213r. The following bounds (de-
pending on r) hold.

Odd r ≥ 3. OptprfSXoP[r,n](q) ≤ 2r−1rr
q

Nr−0.5
≤ Or

( q

Nr−0.5

)
, and

Optmu-prf
SXoP[r,n],u(qmax) ≤ 2r−0.5rr

√
uqmax

Nr−0.5
≤ Or

(√
uqmax

Nr−0.5

)
,

(6)

where the second inequality also requires 2r−0.5rr
√
uqmax

Nr−0.5 ≤ 1
2 .

r = 2. OptprfSXoP[2,n](q) ≤
5q

N
≤ O

( q
N

)
. (7)

Even r ≥ 4. OptprfSXoP[r,n](q) ≤ 2rr/2
q

Nr/2
≤ Or

( q

Nr/2

)
, and

Optmu-prf
SXoP[r,n],u(qmax) ≤ min

(
rr/2

√
uqmax

Nr/2−1/2
, 2rr/2

uqmax

Nr/2

)
≤ min

(
Or

( √
uqmax

Nr/2−1/2

)
, Or

(uqmax

Nr/2

))
,

(8)

where the first bound on Optmu-prf
SXoP[r,n],u(qmax) also requires rr/2

√
uqmax

Nr/2−1/2 ≤ 1
2 .

Lower bound for even r ≥ 4. OptprfSXoP[r,n](q) ≥ 2−1e−r/2r(r−1)/2 q

Nr/2
≥ Ωr

( q

Nr/2

)
.

(9)

Note that for r ≥ 4, the theorem proves matching upper and lower single-user
bounds of Θr

(
q

Nr/2

)
. The bound for r = 2 and both bounds for odd r ≥ 3 are

tight, as they are matched by attacks described in previous works.
The proof relies on the following three lemmas (proved in the remainder of

this section) regarding the density function ν
(r)
n,k, generated by SXoP[r, n].

Lemma 4 (L1 bidirectional bounds on ν̂
(r)
n,k for even r). Assuming k ≤

N/4 and r is even, 3k

2
√

r(Nr )
≤ Ex∼Fk×n

2
|
∑

α∈Mn
=1,k

ν̂
(r)
n,k(α)χα(x)| ≤ 2k√

(Nr )
.

Lemma 5 (Variance and weight bounds for ν
(2)
n,q). Assume that N ≥ 100

and q ≤ N/16. Then,
∑q

k=2 W
=k[ν

(2)
n,q] ≤ 18q2

N2 , and Var[ν
(2)
n,q] ≤ 4q

N .

Lemma 6 (Variance and weight bounds for ν
(r)
n,q with r ≥ 3). Assume

that N ≥ 213r, rq ≤ N/8. Then, for odd r ≥ 3, Var[ν
(r)
n,q] ≤ 22rr2r q2

N2r−1 . For

even r ≥ 4,
∑q

k=2 W
=k[ν

(r)
n,q] ≤ 22r+1r2r q2

N2r−2 , and Var[ν
(r)
n,q] ≤ 2rr q

Nr−1 .
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Proof overview of Theorem 1. The proof of Theorem 1 is in Appendix D.
Most upper bounds follow directly from the variance bounds of Lemma 5 and
Lemma 6, combined with Proposition 5. The more interesting proofs for even r
use Lemma 4 with Proposition 3, as summarized below for r ≥ 4.

We use Proposition 3 with S = Mn
=1,q = {α ∈ F̂q×n

2 : #α = 1}. Thus,
combining (1) in Section 2 and Proposition 3 we obtain

2OptprfSXoP[r,n](q) ≤ Ex∼Fq×n
2
|
∑

α∈Mn
=1,q

ν̂
(r)
n,q(α)χα(x)| +

√∑
α∈Mn

≥2,q
ν̂
(r)
n,q(α)2.

By Lemma 4, the first term is bounded by 2q√(
N
r

) ≤ Or(
q

Nr/2 ). By Lemma 6 the

second term is bounded by

√
22r+1r2r q2

N2r−2 ≤ Or(
q

Nr−1 ). Summing up the terms

(noting that r/2 < r − 1 as r ≥ 4), we conclude OptprfSXoP[r,n](q) ≤ Or(
q

Nr/2 ),

asymptotically proving the first inequality of (8).

For the other direction, by (1) and Proposition 3,

2OptprfSXoP[r,n](q) ≥ Ex∼Fq×n
2
|
∑

α∈Mn
=1,q

ν̂
(r)
n,q(α)χα(x)| −

√∑
α∈Mn

≥2,q
ν̂
(r)
n,q(α)2.

By Lemma 4, the first term is lower bounded as 3q

2

√
r
(
N
r

) ≥ Ωr(
q

Nr/2 ). We have

already upper bounded the second term above by Or(
q

Nr−1 ), and thus the first

term dominates the second. This implies OptprfSXoP[r,n](q) ≥ Ωr(
q

Nr/2 ), asymptot-

ically proving (9).

4.1 Relation Between ν̂
(r)
n,k and µ̂n,rk

We first establish the connection between ν̂
(r)
n,k and µ̂n,rk.

Proposition 12 (Relation between ν̂
(r)
n,k and µ̂n,rk). For any α ∈ F̂k×n

2 ,

ν̂
(r)
n,k(α) = µ̂n,rk(α

◦r) = µ̂n,rk(α
⊙r), where µ̂n,rk(α

⊙r) = µ̂n,rk(α
◦r
1 , . . . , α

◦r
k ).

Proof. By definition of SXoP[r, n] and Proposition 1, for any α ∈ F̂k×n
2

ν̂
(r)
n,k(α) = E

x∼ν
(r)
n,k

[χα(x)] = E
y1..r
1..k∼µn,rk

[χα(
r
⊕
ℓ=1

y
(ℓ)
1 , . . . ,

r
⊕
ℓ=1

y
(ℓ)
k )]

= E
y1..r
1..k∼µn,rk

[
∏
i∈[k]
ℓ∈[r]

χαi(y
(ℓ)
i )] = E

y1..r
1..k∼µn,rk

[
∏
ℓ∈[r]

χα(y
(ℓ)
1..k)]

= E
y1..r
1..k∼µn,rk

[χα◦r (y
(1)
1..k, . . . , y

(r)
1..k)] = µ̂n,rk(α

◦r).

Finally, µ̂n,rk(α
◦r) = µ̂n,rk(α

⊙r) holds by Proposition 6. ■
Lemma 5 is proved in Appendix D. It is based on bounds similar to (3)

and (4), proved in the motivating example of Section 3.
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4.2 Proof of Lemma 4 and Optimal Adversary

Proof (of Lemma 4). Let β ∈ F̂k×n
2 be any fixed mask with #β = 1. Also,

let α ∈ F̂k×n
2 be a mask with #α = 1. Observe that α◦r has #(α◦r) = r

and all its r non-zero elements are equal. Since r is even, by Proposition 10,
µ̂n,rk(α

◦r) = µ̂n,rk(β
◦r) is independent of the actual non-zero element. Fixing

x ∈ Fk×n
2 , and applying Proposition 12 and Proposition 10,∑

α∈Mn
=1,k

ν̂
(r)
n,k(α)χα(x) =

∑
α∈Mn

=1,k

µ̂n,rk(α
◦r)χα(x) = µ̂n,rk(β

◦r)
∑

α∈Mn
=1,k

χα(x).

(10)

For α ∈ F̂k×n
2 with #α = 1, let in(α) be the unique index with αin(α) ̸= 0. Then,

∑
α∈Mn

=1,k

χα(x) =
∑

α∈Mn
=1,k

∏
i∈[k]

χαi
(xi) =

∑
α∈Mn

=1,k

χαin(α)
(xin(α)) =

k∑
i=1

∑
γ∈F̂n

2
γ ̸=0

χγ(xi)

=

k∑
i=1

(
∑
γ∈F̂n

2

χγ(xi)− χ0(xi)) = N

k∑
i=1

( E
γ∼F̂n

2

[χγ(xi)])− k = N

k∑
i=1

(1(xi = 0))− k

=N |{i ∈ [k] : xi = 0}| − k = N · Zx − k,

where the sixth equality is by orthogonality of the characters (as χγ(xi) =
χxi(γ) = χxi(γ)χ0(γ)), and Zx = |{i ∈ [k] : xi = 0}|. For x ∼ Fk×n

2 , the random
variable Zx is binomially distributed with number of experiments k and success
probability 1

N , and thus satisfies E[Zx] =
k
N . Hence, N ·Zx−k = N(Zx−E[Zx]).

Combining with (10),∑
α∈Mn

=1,k

ν̂
(r)
n,k(α)χα(x) = N · µ̂n,rk(β

◦r)(Zx − E[Zx]). (11)

Hence, the expression we wish to bound satisfies

E
x∼Fk×n

2

|
∑

α∈Mn
=1,k

ν̂
(r)
n,k(α)χα(x)| = N · |µ̂n,rk(β

◦r)| E
x∼Fk×n

2

|Zx − E[Zx]|.

By Proposition 10, 1√
r
(
N
r

) ≤ |µ̂n,rk(β
◦r)| ≤ 1√(

N
r

) . It remains to prove that

3k
2N ≤ Ex |Zx − E[Zx]| ≤ 2k

N . Since E[Zx] =
k
N satisfies 0 < E[Zx] < 1,

E
x
|Zx − E[Zx]| = E

x
[(E[Zx]− Zx)(1(E[Zx] > Zx)− 1(Zx > E[Zx]))]

= E
x
[(E[Zx]− Zx)(1(Zx = 0)− 1(Zx > 0))]

= E
x
[(E[Zx]− Zx)(2 · 1(Zx = 0)− (1(Zx = 0) + 1(Zx > 0)))]

= 2E
x
[(E[Zx]− Zx)1(Zx = 0)]− E

x
[E[Zx]− Zx] = 2 k

N Pr[Zx = 0].

(12)

Finally, Pr[Zx = 0] = (1− 1
N )k ≤ 1, and as k ≤ N

4 , (1−
1
N )k ≥ (1− 1

N )N/4 ≥ 3
4 .

■
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Optimal adversary for SXoP[r, n] with even r ≥ 4. For x ∈ Fq×n
2 , let

Zx = |{i ∈ [q] : xi = 0}|. Define the adversary A(x) = 1(Zx = 0). We argue that
A is optimal. Similarly to the proof of (9) in Theorem 1, its advantage is

|E
x
[(ν(r)n,q(x)− 1)1(Zx = 0)]| = |E

x
[(
∑
α̸=0

ν̂(r)n,q(α)χα(x))1(Zx = 0)]|

≥ |E
x
[(
∑

α∈Mn
=1,q

ν̂(r)n,q(α)χα(x))1(Zx = 0)]| −
√∑

α∈Mn
≥2,q

ν̂
(r)
n,q(α)2.

By (11) in the proof of Lemma 4, there is some C independent of x such that∑
α∈Mn

=1,q
ν̂
(r)
n,q(α)χα(x) = C(Zx − E[Zx]), and the first term is

|C·E
x
[(Zx−E[Zx])1(Zx = 0)]| = 1

2 Ex
|C(Zx−E[Zx])| = 1

2 Ex
|
∑

α∈Mn
=1,q

ν̂(r)n,q(α)χα(x)|,

where the two equalities are by (12) and the definition of C above. Thus, ignoring

the second term, the advantage ofA is lower bounded by 1
2 Ex |

∑
α∈Mn

=1,q
ν̂
(r)
n,q(α)χα(x)|,

which dominates the optimal advantage by the proof of Theorem 1 (the second
term is negligible). Hence, A is optimal up to a negligible factor.

4.3 Application of Main Framework and Proof of Lemma 6

We apply our main framework and use it to prove Lemma 6.

Proposition 13. Assume that rk ≤ N/8. Define crk = 0 if rk is even and
crk = 1

2 if rk is odd (i.e., crk = rk mod 2
2 ). Then, for any r ≥ 3

W=k[ν(r)n,q] ≤
(
q

k

)
2(r−2)k/2+crk

(
rk

N − rk

)(r−1)k+crk

.

Proof. Applying Proposition 12,

W=k[ν(r)n,q] =
(
q
k

)
W=k[ν

(r)
n,k] =

(
q
k

) ∑
α∈Mn

=k,k

ν̂
(r)
n,k(α)

2 =
(
q
k

) ∑
α∈Mn

=k,k

µ̂n,rk(α
⊙r)2.

(13)

We would like to bound
∑

α∈Mn
=k,k

µ̂n,rk(α
⊙r)2 using Lemma 3. We start by

introducing several definitions referring to Setting 1 and then define the PIS,
pis. First, define S = Mn

=k,k = {α ∈ F̂k×n
2 : #α = k}, and T (α) = Tr,k(α) =

α⊙r = ((α1)
◦r, . . . , (αk)

◦r) (using notation of Lemma 3, here k0 = k′ = rk).
Given an index ℓ ∈ [k], for all ℓ′ ∈ [(ℓ − 1)r + 1, ℓr], T (α)ℓ′ = (α⊙r)ℓ′ = αℓ.

Thus, for a recursion node v, if ℓ′ ∈ [(ℓ−1)r+1, ℓr] is unaltered by Definition 7,
then Tv(α)ℓ′ = T (α)ℓ′ = αℓ for every α ∈ Sv. We call an index ℓ ∈ [k] redundant
(for a node v) if at least 3 of the r indices in [(ℓ− 1)r + 1, ℓr] are unaltered.

Given a recursion node v, let ℓ ∈ [k] be the largest redundant index. The PIS
pis selects as primary index the largest unaltered index j ∈ [(ℓ− 1)r + 1, ℓr].
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Let d = dmax = ⌈ (r−2)k
2 ⌉. We first prove that there is always a redundant

index for nodes up to depth d− 1 = ⌈ (r−2)k
2 ⌉ − 1.

Every recursive call can remove at most 2 unaltered indices. Thus, the number
of unaltered indices of each node at depth d − 1 is at least k′ − 2(d − 1) =

rk−2⌈ (r−2)k
2 ⌉+2 ≥ rk− ((r−2)k+1)+2 = 2k+1. By an averaging argument,

there exists ℓ ∈ [k] such that [(ℓ − 1)r + 1, ℓr] contains at least ⌈ 2k+1
k ⌉ = 3

unaltered indices. Namely, ℓ is redundant. This proves that pis is well-defined

up to depth d− 1 = ⌈ (r−2)k
2 ⌉− 1 (at the leaves of depth d we do not invoke pis).

In order to apply Lemma 3, it is sufficient to prove that the two conditions of
Proposition 11 hold. Clearly, the pair (S, T ) satisfies the restrictions of Setting 1,

and condition (c1) holds (note that 2d = 2⌈ (r−2)k
2 ⌉ ≤ (r − 2)k + 1 < rk = k0).

We now prove condition (c2). Specifically, we prove that for a node v such
that j = pis(v) and α ∈ Sv, Tv(α)j can be computed from Tvi(α) = Tv(α)

⊕(j,i)

(where i is a secondary index).
For a node v we select a primary index j ∈ [rk] such that Tv(α)j = αℓ and

since ℓ is redundant, Tv(α)ℓ′ = αℓ for at least 3 indices ℓ′ ∈ [(ℓ − 1)r + 1, ℓr].
As Tvi(α) = Tv(α)

⊕(j,i), and Tv(α)
⊕(j,i) modifies 2 entries of Tv(α), then αℓ =

Tv(α)j still appears at least 3−2 = 1 time in Tvi(α). This proves condition (c2)
as required.

Applying our framework of Lemma 3 (with d = ⌈ (r−2)k
2 ⌉ = (r−2)k

2 + crk,
k0 = k′ = rk), we obtain∑

α∈Mn
=k,k

µ̂n,rk(α
⊙r)2 ≤ 2d( k′

N−k′ )
k′/2+d = 2(r−2)k/2+crk( rk

N−rk )
(r−1)k+crk .

Combining with (13) completes the proof. ■

The proof of Lemma 6 (given in Appendix D) uses the bounds onW=k[ν
(r)
n,q] of

Proposition 13 and additional simple bounds to analyze several sums of weights.
It essentially shows that in all cases the lowest-level weight bound dominates the

sum (except for r odd, as for k = 1, W=1[ν
(r)
n,q] = 0).

5 Indistinguishability Bounds for LXoP[L, n]

In this section, we state and prove our main theorem regarding LXoP[L, n].
Missing proofs are given in Appendix E.

Theorem 2. Assume that the function L′(x) = x ⊕ L(x) is a permutation on

Fn
2 . Given that N ≥ 210 and q ≤ N/16, OptprfLXoP[L,n](q) ≤

4q
N1.5 .

Moreover, assuming 6
√
uqmax

N1.5 ≤ 1
2 , Optmu-prf

LXoP[L,n],u(qmax) ≤ 6
√
uqmax

N1.5 .

The proof uses the following lemma, proved in the remainder of this section.

Lemma 7. Assume that the function L′(x) = x⊕L(x) is a permutation on Fn
2 .

Given that N ≥ 210 and q ≤ N/16, Var[ξ(L)
n,q ] ≤ 64q2

N3 .

Proof (of Theorem 2). Immediate from Lemma 7 and Proposition 5. ■
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5.1 Elementary Results

We establish the connection between the Fourier coefficients of ξ
(L)
n,k and µn,2k.

Proposition 14 (Relation between ξ̂
(L)
n,k and µ̂n,2k). For any α ∈ F̂k×n

2 ,

ξ̂
(L)
n,k(α) = µ̂n,2k(α,L

T(α)) = µ̂n,2k(α1, L
T(α1), . . . , αk, L

T(αk)).

Proof. By definition of LXoP[L, n] and Proposition 1, for any α ∈ F̂k×n
2

ξ̂
(L)
n,k(α) = E

x∼ξ
(L)
n,k

[χα(x)] = E
y1,2
1..k∼µn,2k

[χα(y
(1)
1 ⊕ L(y

(2)
1 ), . . . , y

(1)
k ⊕ L(y

(2)
k ))]

= E
y1,2
1..k∼µn,2k

[χα,α(y
(1)
1..k, L(y

(2)
1..k))] = E

y1,2
1..k∼µn,2k

[χα,LT(α)(y
(1)
1..k, y

(2)
1..k)] = µ̂n,2k(α,L

T(α)).

■

Proposition 15. Assuming that L′(x) = x⊕L(x) is a permutation on Fn
2 , then

W=1[ξ
(L)
n,q ] = 0.

Proof. By Proposition 14,

W=1[ξ(L)
n,q ] =

(
q
1

)∑
α∈Mn

=1,1

ξ̂
(L)
n,1 (α)

2 = q
∑

α∈Mn
=1,1

µ̂n,2(α,L
T(α))2.

For α ∈ F̂n
2 ̸= 0 we have α⊕ LT(α) = (L′)T(α). Since L′ is a permutation, so is

(L′)T. Since (L′)T(0) = 0, this implies that (L′)T(α) ̸= 0, hence α⊕LT(α) ̸= 0.

By proposition 7, we deduce µ̂n,2(α,L
T(α)) = 0, implying W=1[ξ

(L)
n,q ] = 0. ■

5.2 Application of Main Framework and Proof of Lemma 7

We use our main framework to prove Lemma 7.

Proposition 16. Assume that the function L′(x) = x⊕ L(x) is a permutation
on Fn

2 , and assume that 2 ≤ k ≤ N/16. Define ck = 0 if k is even and ck = 1
2

otherwise (i.e. ck = k mod 2
2 ). Then,

W=k[ξ(L)
n,q ] ≤

(
q

k

)
23k/2+3ck

kk+2ck(k − 2ck)
k/2−ck

(N − 2k)3k/2+ck
.

Proof. Based on Proposition 14,

W=k[ξ(L)
n,q ] =

(
q
k

) ∑
α∈Mn

=k,k

ξ̂
(L)
n,k(α)

2 =
(
q
k

) ∑
α∈Mn

=k,k

µ̂n,2k(α,L
T(α))2. (14)

We now use Lemma 3 to upper bound
∑

α∈Mn
=k,k

µ̂n,2k(α,L
T(α))2 =∑

α∈Mn
=k,k

µ̂n,2k(α1, L
T(α1), . . . , αk, L

T(αk))
2.
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We start by introducing some definitions referring to Setting 1 and then define
the PIS pis. Define S =Mn

=k,k = {α ∈ F̂k×n
2 : #α = k}, and T (α) = Tk(α) =

(α1, L
T(α1), . . . , αk, L

T(αk)) (using notation of Lemma 3, k0 = k′ = 2k).
Given a node v, we say that an index ℓ ∈ [k] is redundant if both 2ℓ − 1

and 2ℓ are unaltered by Definition 7. Note that if ℓ is redundant, then for every
α ∈ Sv, Tv(α)2ℓ−1 = αℓ and Tv(α)2ℓ = LT(αℓ).

At a given recursion node v, the PIS pis will select as primary index the
largest index 2ℓ− 1 such that ℓ ∈ [k] is redundant.

Let d = dmax = ⌈k/2⌉. We first prove that there is always a redundant
index for nodes up to depth d− 1 = ⌈k/2⌉ − 1. Indeed, every recursive call can
remove at most 2 redundant indices, and thus at depth d − 1, we have at least
k − 2(d − 1) = k − 2⌈k/2⌉ + 2 ≥ 1 redundant indices. This proves that pis is
well-defined up to depth d = ⌈k/2⌉ (at leaves of depth d we do not invoke pis).

In order to apply Lemma 3, we prove that the two conditions of Proposi-
tion 11 hold. First, the pair (S, T ) satisfies the restrictions of Setting 1, and
condition (c1) holds (note that 2d = 2⌈k/2⌉ ≤ k + 1 < 2k, as k ≥ 2).

We now prove condition (c2). Namely, for a node v such that j = pis(v) and
α ∈ Sv, we prove that Tv(α)j can be computed from Tvi(α) = Tv(α)

⊕(j,i) (where
i is a secondary index).

For a node v we select as primary index j = 2ℓ−1 for ℓ ∈ [k] redundant, and
we have Tv(α)j = Tv(α)2ℓ−1 = αℓ and Tv(α)2ℓ = LT(αℓ).

If i ̸= 2ℓ, then

Tvi(α)2ℓ = (Tv(α)
⊕(2ℓ−1,i))2ℓ = Tv(α)2ℓ = LT(αℓ),

and we can compute L−T(Tvi(α)2ℓ) = αℓ = Tv(α)j . Otherwise, i = 2ℓ, and

Tvi(α)2ℓ = (Tv(α)
⊕(2ℓ−1,2ℓ))2ℓ = Tv(α)2ℓ−1⊕Tv(α)2ℓ = αℓ⊕LT(αℓ) = (L′)T(αℓ).

Since (L′)T is an invertible linear transformation, we can compute (L′)−T(Tvi(α)2ℓ) =
αℓ = Tv(α)j . This proves condition (c2).

Applying our framework of Lemma 3 (with d = ⌈k/2⌉ = k/2 + ck, k0 = k′ =
2k), we obtain∑

α∈Mn
=k,k

µ̂n,2k(α1, L
T(α1), . . . , αk, L

T(αk))
2 ≤ 2d (k′)2d(k′−2d)k

′/2−d

(N−k′)k′/2+d

=2k/2+ck (2k)k+2ck (k−2ck)
k/2−ck

(N−2k)3k/2+ck
= 23k/2+3ck kk+2ck (k−2ck)

k/2−ck

(N−2k)3k/2+ck
.

Combining with (14) completes the proof. ■
The proof of Lemma 7 (given in Appendix E) uses Proposition 16 and shows

that the bound on W=2[ξ
(L)
n,q ] dominates Var[ξ

(L)
n,q ].

6 Indistinguishability Bounds for LXoP[L, 2, n]

In this section, we state and prove our main theorem regarding LXoP[L, 2, n].
Missing proofs are given in Appendix F.

Throughout this section, we assume that L′(x) = x⊕ L(x) is invertible.
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Theorem 3. Given that N ≥ 210 and q ≤ N/32, OptprfLXoP[L,2,n](q) ≤
23q
N1.5 .

Moreover, assuming 32
√
uqmax

N1.5 ≤ 1
2 , Optmu-prf

LXoP[L,2,n],u(qmax) ≤ 32
√
uqmax

N1.5 .

The proof is based on the following two lemmas, proved below.

Lemma 8. W=1[ξ
(L)
n,2,q] =

4q
(N−1)(N−2)2 .

Lemma 9. Given that N ≥ 210 and q ≤ N/32,
∑q

k=2 W
=k[ξ

(L)
n,2,q] ≤

210.5q2

N3 .

Proof (of Theorem 3). By Lemma 8 and Lemma 9, Var[ξ
(L)
n,2,q] =∑q

k=1 W
=k[ξ

(L)
n,2,q] ≤

4q
(N−1)(N−2)2 +

210.5q2

N3 ≤ 211q2

N3 , asN ≥ 210. The result follows

from Proposition 5. ■

6.1 Relation Between ξ̂
(L)
n,2,k and µ̂n,3k and Proof of Lemma 8

We first establish a connection between the Fourier coefficients of ξ
(L)
n,2,k and

those of µn,3k. For α = (α1, . . . , αk) = (α
(1)
1 , α

(2)
1 , . . . α

(1)
k , α

(2)
k ) ∈ F̂k×2n

2 , denote

t(α) = (α
(1)
1 , LT(α

(2)
1 ), α

(2)
1 ⊕LT(α

(1)
1 ) . . . , α

(1)
k , LT(α

(2)
k ), α

(2)
k ⊕L

T(α
(1)
k )) ∈ F̂3k×n

2 .

Thus t(αi) = (α
(1)
i , LT(α

(2)
i ), α

(2)
i ⊕ LT(α

(1)
i )).

Proposition 17 (Relation between ξ̂
(L)
n,2,k and µ̂n,3k). For any α ∈ F̂k×2n

2 ,

ξ̂
(L)
n,2,k(α) = µ̂n,3k(t(α)).

Proof. By definition of LXoP[L, 2, n] and Proposition 1, for any α ∈ F̂k×2n
2

ξ̂
(L)
n,2,k(α) = E

x∼ξ
(L)
n,2,k

[χα(x)]

= E
y1,2,3
1..k ∼µn,3k

[χα1,2
1..k

(y
(1)
1 ⊕ L(y

(2)
1 ), y

(2)
1 ⊕ L(y

(3)
1 ), . . . , y

(1)
k ⊕ L(y

(2)
k ), y

(2)
k ⊕ L(y

(3)
k ))]

= E
y1,2,3
1..k ∼µn,3k

[χ
α

(1)
1..k

(y
(1)
1..k)χLT(α

(1)
1..k)⊕α

(2)
1..k

(y
(2)
1..k)χLT(α

(2)
1..k)

(y
(3)
1..k)]

= µ̂n,3k(α
(1)
1..k, L

T(α
(1)
1..k)⊕ α

(2)
1..k, L

T(α
(2)
1..k)) = µ̂n,3k(t(α)).

The proof of Lemma 8 is given in Appendix F. It uses Proposition 17 and
simple calculation. ■

6.2 Basic Properties of t(α)

We prove basic properties of t(α). For α ∈ F̂k×2n
2 , recall that #α = |{i ∈

[k] : αi ̸= 0}| is the size of the support of α (over elements of F̂2n
2 ). On the other

hand, for t(α) ∈ F̂3k×n
2 , #t(α) = |{i ∈ [3k] : t(α)i ̸= 0}|. In addition, note that

for i ∈ [k], #t(αi) ∈ {0, 1, 2, 3}. In fact, as proved below, #t(αi) ∈ {0, 2, 3}.
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Proposition 18 (Basic properties of t(α)). For α = (α(1), α(2)) ∈ F̂2n
2 with

#α = 1 (i.e., α ̸= 0), let t(α) = (α(1), LT(α(2)), α(2) ⊕ LT(α(1))).
Then, #t(α) ∈ {2, 3}. Moreover, if #t(α) = 2, denoting (L2)T(α(1)) =

LT(LT(α(1))),

t(α) ∈ {(0, LT(α(2)), α(2)), (α(1), 0, LT(α(1))), (α(1), (L2)T(α(1)), 0)}.

Proof. We iterate over the 3 possibilities for a zero entry in t(α).
If α(1) = 0, then α(2) ̸= 0.We have t(α) = (0, LT(α(2)), α(2)), where LT(α(2)) ̸=

0, as LT(0) = 0, α(2) ̸= 0 and LT is a permutation. Hence, #t(α) = 2.
Similarly, if LT(α(2)) = 0, then α(2) = 0 and hence α(1) ̸= 0. Therefore,

#t(α) = #(α(1), 0, LT(α(1))) = 2.
Finally, if α(2)⊕LT(α(1)) = 0 then α(2) = LT(α(1)), hence α(1) ̸= 0. We have

#t(α) = #(α(1), LT(LT(α(1))), 0) = #(α(1), (L2)T(α(1)), 0) = 2, as α(1) ̸= 0,
(L2)T(0) = 0 and (L2)T is a permutation. ■

We conclude that if #α = k (for α ∈ F̂k×2n
2 ), then #t(α) ∈ [2k, 3k]. Denote

#2α = |{i ∈ [k] : #t(αi) = 2}| and #3α = #α−#2α = |{i ∈ [k] : #t(αi) = 3}|.
Therefore, if #α = k and #3α = m then #t(α) = 2(k −m) + 3m = 2k +m.

6.3 Application of Main Framework and Proof of Lemma 9

We apply our main framework and use it to prove Lemma 9.

Proposition 19. Let 2 ≤ k ≤ q ≤ N/32, and define ck = 0 if k is even and ck =
1
2 otherwise (i.e. ck = k mod 2

2 ). Then W=k[ξ
(L)
n,2,q] ≤

(
q
k

)
27k/2+3ck( k

N−2k )
3k/2+ck .

Overview of the proofs of Proposition 19 and Lemma 9. The proof of
Proposition 19 is given in Appendix F. It is a generalization of the analogous
proof of Proposition 16 for LXoP[L, n], but is more technical, as it takes into
account the different mask structures according to Proposition 18.

We begin by applying Proposition 17 and Proposition 18 and deducing

W=k[ξ
(L)
n,2,q] =

(
q
k

)
W=k[ξ

(L)
n,2,k] =

(
q
k

) ∑
α∈M2n

=k,k

ξ̂
(L)
n,2,k(α)

2 =
(
q
k

) ∑
α∈M2n

=k,k

µ̂n,3k(t(α))
2

=
(
q
k

) k∑
m=0

∑
α∈M2n

=k,k,#3α=m

µ̂n,3k(t(α))
2 =

(
q
k

) k∑
m=0

∑
α∈S(k,m)

µ̂n,3k(t(α))
2,

(15)

where S(k,m) = {α ∈ M2n
=k,k : #3α = m}. Fix a pair (k,m). We upper bound∑

α∈S(k,m) µ̂n,3k(t(α))
2 using Lemma 3. According to restriction (a2) of Set-

ting 1, we first need to partition the set S(k,m) into subsets such that the (trans-

formed) masks in each subset, t(α), share the same non-zero entries (over F̂n
2 ).

For every α ∈ S(k,m), there are m indices i with #t(αi) = 3 and k−m indices
i with #t(αi) = 2 (thus #t(α) = 3m + 2(k − m) = 2k + m for α ∈ S(k,m)).
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By Proposition 18, every i ∈ [k] with #t(αi) = 2 has 3 possible structures that

determine which 2 of its 3 entries are non-zero over F̂n
2 (while every i ∈ [k] with

#t(αi) = 3 always has 3 non-zero entries). Therefore, t(α) for α ∈ S(k,m) has(
k
m

)
3k−m possible non-zero index sets (with non-zero values over F̂n

2 ).

We thus partition the set S(k,m) into
(
k
m

)
3k−m subsets, each with a common

non-zero index set for t(α). We then apply Lemma 3 to bound the contribution
of each subset of S(k,m) to the total weight very similarly to Proposition 16.
The Lemma 3 parameters we use are d = k/2 + ck (as in Proposition 16) and
k0 = #t(α) = 2k + m (instead of k0 = 2k in Proposition 16). Ignoring terms
of order 2O(k), Lemma 3 bounds the weight for each of the

(
k
m

)
3k−m subsets of

S(k,m) by
2O(k)( k0

N−k0
)k0/2+d ≤ 2O(k)( 2k+m

N−2k−m )3k/2+m/2+ck .

Since
(
k
m

)
3k−m ≤ 4k ≤ 2O(k), then∑

α∈S(k,m)

µ̂n,3k(t(α))
2

≤
(
k
m

)
3k−m2O(k)( 2k+m

N−2k−m )3k/2+m/2+ck ≤ 2O(k)( 2k+m
N−2k−m )3k/2+m/2+ck .

Combining with (15), the total weight is bounded as

W=k[ξ
(L)
n,2,q] ≤

(
q
k

) k∑
m=0

∑
α∈S(k,m)

µ̂n,3k(t(α))
2 ≤

(
q
k

) k∑
m=0

2O(k)( 2k+m
N−k−m )3k/2+m/2+ck .

Observing that the term with m = 0 dominates the sum (as k ≤ q is bounded),
we deduce

W=k[ξ
(L)
n,2,q] ≤

(
q
k

)
2O(k)( 2k

N−2k )
3k/2+ck ≤

(
q
k

)
2O(k)( k

N−2k )
3k/2+ck ,

as claimed in Proposition 19 (up to the constant factor hidden in 2O(k)).
Finally, the proof of Lemma 9 (given in Appendix F) uses Proposition 19

and shows that the bound on W=2[ξ
(L)
n,2,q] dominates the sum

∑q
k=2 W

=k[ξ
(L)
n,2,q].

Acknowledgements. The author was supported by the Israel Science Foun-
dation through grant no. 1903/20 and by a gift to Georgetown University.

References

1. Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analyses of pseu-
dorandom function based constructions, with applications to PRP to PRF conver-
sion. IACR Cryptol. ePrint Arch. (1999), http://eprint.iacr.org/1999/024

2. Bellare, M., Krovetz, T., Rogaway, P.: Luby-Rackoff Backwards: Increasing Secu-
rity by Making Block Ciphers Non-invertible. In: Nyberg, K. (ed.) EUROCRYPT
1998. Lecture Notes in Computer Science, vol. 1403, pp. 266–280. Springer (1998).
https://doi.org/10.1007/BFb0054132

28

http://eprint.iacr.org/1999/024
https://doi.org/10.1007/BFb0054132
https://doi.org/10.1007/BFb0054132


3. Beyne, T., Chen, Y.L.: Information-Theoretic Security with Asymmetries. In:
Reyzin, L., Stebila, D. (eds.) CRYPTO 2024. Lecture Notes in Computer Science,
vol. 14923, pp. 463–494. Springer (2024)

4. Bhattacharya, S., Nandi, M.: Revisiting Variable Output Length XOR Pseudo-
random Function. IACR Trans. Symmetric Cryptol. 2018(1), 314–335 (2018).
https://doi.org/10.13154/tosc.v2018.i1.314-335

5. Bhattacharya, S., Nandi, M.: Luby-Rackoff Backwards with More Users and More
Security. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. Lecture Notes in
Computer Science, vol. 13092, pp. 345–375. Springer (2021). https://doi.org/
10.1007/978-3-030-92078-4_12

6. Chen, S., Lampe, R., Lee, J., Seurin, Y., Steinberger, J.P.: Minimizing the Two-
Round Even-Mansour Cipher. J. Cryptol. 31(4), 1064–1119 (2018). https://doi.
org/10.1007/s00145-018-9295-y

7. Chen, Y.L., Choi, W., Lee, C.: Improved Multi-user Security Using the Squared-
Ratio Method. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. Lecture
Notes in Computer Science, vol. 14082, pp. 694–724. Springer (2023). https://
doi.org/10.1007/978-3-031-38545-2_23

8. Choi, W., Kim, H., Lee, J., Lee, Y.: Multi-user Security of the Sum of Truncated
Random Permutations. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. Lecture
Notes in Computer Science, vol. 13792, pp. 682–710. Springer (2022). https://
doi.org/10.1007/978-3-031-22966-4_23

9. Cogliati, B., Dutta, A., Nandi, M., Patarin, J., Saha, A.: Proof of Mirror Theory
for a Wide Range of $\xi {\max }$. In: Hazay, C., Stam, M. (eds.) EUROCRYPT
2023. Lecture Notes in Computer Science, vol. 14007, pp. 470–501. Springer (2023).
https://doi.org/10.1007/978-3-031-30634-1_16

10. Cogliati, B., Lampe, R., Patarin, J.: The indistinguishability of the XOR of k
permutations. In: Cid, C., Rechberger, C. (eds.) FSE 2014. Lecture Notes in Com-
puter Science, vol. 8540, pp. 285–302. Springer (2014). https://doi.org/10.1007/
978-3-662-46706-0_15

11. Dai, W., Hoang, V.T., Tessaro, S.: Information-Theoretic Indistinguishability via
the Chi-Squared Method. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. Lecture
Notes in Computer Science, vol. 10403, pp. 497–523. Springer (2017). https://
doi.org/10.1007/978-3-319-63697-9_17

12. Dinur, I.: Tight indistinguishability bounds for the XOR of independent random
permutations by fourier analysis. In: Joye, M., Leander, G. (eds.) EUROCRYPT
2024. Lecture Notes in Computer Science, vol. 14651, pp. 33–62. Springer (2024)

13. Dutta, A., Nandi, M., Saha, A.: Proof of Mirror Theory for $\xi {\max }$ =
2. IEEE Trans. Inf. Theory 68(9), 6218–6232 (2022). https://doi.org/10.1109/
TIT.2022.3171178

14. Eberhard, S.: More on additive triples of bijections (2017), https://arxiv.org/
abs/1704.02407
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A Missing Proofs and Details from Section 2

Proposition 20. Let a, b, c, d, k ∈ R≥0. Define the functions B(k) = (ak +
b)ck+d and C(k) = 1

(b−ak)ck+d . Then

B(k + 1)

B(k)
≤ (a(k+ 1)+ b)ce

a(ck+d)
ak+b , and

C(k + 1)

C(k)
≤ 1

(b− a(k + 1))c
e

a(ck+d)
b−a(k+1) ,

where the last inequality assumes b > a(k + 1).

Proof (of Proposition 20). We have

B(k+1)
B(k) = (a(k+1)+b)c(k+1)+d

(ak+b)ck+d = (a(k+1)+b)c(k+1)+d

(a(k+1)+b)ck+d

(a(k+1)+b)ck+d

(ak+b)ck+d

=(a(k + 1) + b)c(1 + a
ak+b )

ck+d ≤ (a(k + 1) + b)ce
a(ck+d)
ak+b .

and

C(k+1)
C(k) = (b−a(k+1))−c(k+1)−d

(b−ak)−ck−d = (b−a(k+1))−c(k+1)−d

(b−a(k+1))−ck−d

(b−a(k+1))−ck−d

(b−ak)−ck−d

= 1
(b−a(k+1))c (1 +

a
b−a(k+1) )

ck+d ≤ 1
(b−a(k+1))c e

a(ck+d)
b−a(k+1) .

■
Proof (of Proposition 3). We have

2 SD(φ,1qn) = E
x∼Fq×n

2

|φ(x)− 1| = E
x∼Fq×n

2

|
∑

α∈F̂q×n
2

α̸=0

φ̂(α)χα(x)|

= E
x∼Fq×n

2

|
∑
α∈S

φ̂(α)χα(x) +
∑
α∈S

φ̂(α)χα(x)|

≤ E
x∼Fq×n

2

|
∑
α∈S

φ̂(α)χα(x)|+ E
x∼Fq×n

2

|
∑
α∈S

φ̂(α)χα(x)|

For the upper bound, it remains to prove that Ex∼Fq×n
2
|
∑

α∈S φ̂(α)χα(x)| ≤√∑
α∈S φ̂(α)

2. Applying the Cauchy-Schwarz inequality,

E
x∼Fq×n

2

|
∑
α∈S

φ̂(α)χα(x)| ≤
√

E
x∼Fq×n

2

[
∑
α∈S

φ̂(α)χα(x)]2

=

√ ∑
(α,β)∈S×S

φ̂(α)φ̂(β) E
x∼Fq×n

2

[χα(x)χβ(x)] =

√∑
α∈S

φ̂(α)2,

where the final equality is by orthogonality of the characters.
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For the lower bound, observe similarly that

2 SD(φ,1qn) = E
x∼Fq×n

2

|
∑
α∈S

φ̂(α)χα(x) +
∑
α∈S

φ̂(α)χα(x)|

≥ E
x∼Fq×n

2

|
∑
α∈S

φ̂(α)χα(x)| − E
x∼Fq×n

2

|
∑
α∈S

φ̂(α)χα(x)|

≥ E
x∼Fq×n

2

|
∑
α∈S

φ̂(α)χα(x)| −
√∑

α∈S

φ̂(α)2.

■

Proof (of Proposition 5). First, by (1) and Proposition 3,

OptprfH (q) = SD(φn,q
H ,1qn) ≤ 1

2

√
Var[φn,q

H ].

Second, by (2), Proposition 3 and Proposition 4,

Optmu-prf
H,u (qmax) = SD((φn,qmax

H )×u,1uqmaxn)

≤ 1
2

√
Var[φn,qmax

H )×u] ≤ 1√
2

√
uVar[φn,qmax

H ].

■

Proof (of Proposition 7). Let y ∈ Fn
2 be arbitrary. Observe that for x ∈ Fk×n

2 ,
µn,k(x) = µn,k(x1 ⊕ y, . . . , xk ⊕ y). Therefore,

µ̂n,k(α) = E
x∼Fk×n

2

[µn,k(x)χα(x)] = E
x∼Fk×n

2

[µn,k(x1 ⊕ y, . . . , xk ⊕ y)χα(x1, . . . , xk)]

= E
x∼Fk×n

2

[µn,k(x1 ⊕ y, . . . , xk ⊕ y)χα(x1 ⊕ y, . . . , xk ⊕ y)]χ(⊕i∈[k]αi)(y)

= E
x∼Fk×n

2

[µn,k(x)χα(x)]χ(⊕i∈[k]αi)(y) = µ̂n,k(α)χ(⊕i∈[k]αi)(y).

If µ̂n,k(α) ̸= 0, we divide both sides by µ̂n,k(α). We deduce that for every y ∈ Fn
2 ,

χ(⊕i∈[k]αi)(y) = 1, implying that ⊕i∈[k]αi = 0. ■

Proof (of Proposition 8). Denote k0 = k. We assume that NZα = [k0] = [k],
which is possible without loss of generality by Proposition 6.

We further assume that k1 = k, as adding or removing zero elements from α
does not change µ̂n,k(α). Finally, using Proposition 6 we assume without loss of
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generality that j = k. By Proposition 1,

µ̂n,k(α) = E
x∼µn,k

[χα(x)] = E
x∼µn,k−1

[ E
xk∼Fn

2 \{x1,...,xk−1}
[χα(x1..k−1, xk)]]

= N
N−k+1 E

x∼µn,k−1

[ E
xk∼Fn

2

[χα(x1..k−1, xk)]]

− k−1
N−k+1 E

x∼µn,k−1

[ E
xk∼{x1,...,xk−1}

[χα(x1..k−1, xk)]]

= N
N−k+1 E

x∼µn,k−1

[χα1..k−1
(x1..k−1)] E

xk∼Fn
2

[χαk
(xk)]

− 1
N−k+1

k−1∑
i=1

E
x∼µn,k−1

[χα(x1..k−1, xi)]

= 0− 1
N−k+1

k−1∑
i=1

E
x∼µn,k−1

[χ(α1..,i−1,αi⊕αk,αi+1..,k−1)(x1..k−1)]

= − 1
N−k+1

k−1∑
i=1

µ̂n,k−1(α
⊕(k,i)) = − 1

N−k+1

k−1∑
i=1

µ̂n,k(α
⊕(k,i)),

where in the fifth equality we used Exk∼Fn
2
[χαk

(xk)] = E[χαk
χ0] = 0, which

holds by orthogonality of characters since αk ̸= 0. ■
Proof (of Lemma 1). We may assume that k0 = k1 = k, as adding and
removing 0 elements from α does not change µ̂n,k(α). The proof is by induction
on k.

For k = 0, we have M=0[µn,k] = 1 = 1√(
N
0

) .
Next, let α ∈ F̂k×n

2 have #α = k. For k = 1, by Proposition 7, |µ̂n,k(α)| =
0 < 1√(

N
1

) . For k ≥ 2, by Proposition 8 and the triangle inequality,

|µ̂n,k(α)| =

∣∣∣∣∣− 1
N−k+1

k−1∑
i=1

µ̂n,k(α
⊕(k,i))

∣∣∣∣∣ ≤ 1
N−k+1

k−1∑
i=1

|µ̂n,k(α
⊕(k,i))|.

We have #α⊕(k,i) ∈ {k − 1, k − 2}. Assume that for m values of i ∈ [k − 1],
#α⊕(k,i) = k− 2 holds. Then, by the induction hypothesis (assuming k ≤ N/2),

|µ̂n,k(α)| ≤ m
N−k+1M

=k−2[µn,k] +
k−1−m
N−k+1M

=k−1[µn,k]

≤ m
N−k+1

1√(
N

k−2

) + k−1−m
N−k+1

1√(
N

k−1

) ≤ k−1
N−k+1

1√(
N

k−2

)
= k−1

N−k+1

√
k−2
N

k−3
N−1 . . .

1
N−(k−3)

≤
√

k
N−k+2

k−1
N−k+1

√
k−2
N

k−3
N−1 . . .

1
N−(k−3) =

1√(
N
k

) .
■
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Proof (of Proposition 10). We assume without loss of generality that k0 =
k1 = k. The proof is by induction on k. By Proposition 8,

µ̂n,k(α) = − 1
N−k+1

k−1∑
i=1

µ̂n,k(α
⊕(k,i)).

For k = 2, this gives − 1
N−1 µ̂n,2(α

⊕(2,1)) = − 1
N−1 , as #(α⊕(2,1)) = 0 and hence

µ̂n,2(α
⊕(2,1)) = 1.

For k > 2, for all i ∈ [k−1], α⊕(k,i) is equal to α⊕(k,1) (up to a permutation of
the elements). Therefore, µ̂n,k(α) = − k−1

N−k+1 µ̂n,k(α
⊕(k,1)). Since #(α⊕(k,1)) =

k−2, and α⊕(k,1) has all non-zero elements equal (as α), we apply the induction
hypothesis to α⊕(k,1) and deduce

µ̂n,k(α) = − k−1
N−k+1 (−1)

k/2−1 k−3
N−1 . . .

1
N−(k−3) = (−1)k/2 k−1

N−1
k−3
N−3 . . .

1
N−(k−1) .

Next, note that |µ̂n,k(α)| ≤ 1√(
N
k

) holds by Lemma 1. It remains to prove

that 1√
k
(
N
k

) ≤ |µ̂n,k(α)|. Indeed,

√
k|µ̂n,k(α)| =

√
k k−1
N−1

k−3
N−3 . . .

1
N−(k−1) ≥

√
k

N−(k−1)

√
k−1
N−1

k−2
N−2 . . .

1
N−(k−1)

≥
√

k
N

√
k−1
N−1

k−2
N−2 . . .

1
N−(k−1) =

1√(
N
k

) .
■

Cryptographic Preliminaries

We use the standard notion of PRF security, as defined below. Let H : K ×
{0, 1}m1 7→ {0, 1}m2 be a family of functions and Func(m1,m2) be the set of all
functions g : {0, 1}m1 7→ {0, 1}m2 . Let A be an algorithm with oracle access to
a function f : {0, 1}m1 7→ {0, 1}m2 . The PRF advantage of A against H is

AdvprfH (A) =

∣∣∣∣ Pr
K∼K

[AHK(·) ⇒ 1]− Pr
f∼Func(m1,m2)

[Af(·) ⇒ 1]

∣∣∣∣ .
We further define the optimal advantage

OptprfH (q) = max{AdvprfH (A) : A makes q queries}.

In the multi-user setting we have u users, each with an independent instantiation
of the cryptosystem. The adversary can issue (up to) qmax queries to each user
with the goal of distinguishing the u instantiations of the cryptosystem from u
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instantiations of a random function. We define the PRF advantage of A against
H in the multi-user setting as

Advmu-prf
H,u (A) =

∣∣ Pr
K1,...,Ku∼K

[AHK1
(·),...,HKu (·) ⇒ 1]

− Pr
f1,...,fu∼Func(m1,m2)

[Af1(·),...,fu(·) ⇒ 1]
∣∣

We further define the optimal advantage

Optmu-prf
H,u (qmax) = max{Advmu-prf

H,u (A) : A makes qmax queries to each user}.

B Bounds on Advantage for Symmetric Functions

Proposition 21 (Bounds on advantage for symmetric functions). As-
sume that the output distribution generated by H : K × {0, 1}m 7→ {0, 1}n is
independent of the queries of the adversary. Denote by φn,q

H : Fq×n
2 → R≥0 the

density function generated by H. Moreover, assume that φn,q
H is symmetric in the

sense that every element of the sample is marginally distributed as φn,1
H . Then,

OptprfH (q) ≤ q SD(φn,1
H ,1n) +

1

2

√√√√ q∑
k=2

W=k[φn,q
H ].

Proof. Let S =Mn
=1,q = {α ∈ F̂q×n

2 : #α = 1}. By (1) and the upper bound of
Proposition 3,

2OptprfH (q) = 2 SD(φn,q
H ,1qn)

≤ E
x∼Fq×n

2

|
∑

α∈Mn
=1,q

φ̂n,q
H (α)χα(x)|+

√√√√ q∑
k=2

W=k[φn,q
H ].

It remain to prove that

E
x∼Fq×n

2

|
∑

α∈Mn
=1,q

φ̂n,q
H (α)χα(x)| ≤ 2q SD(φn,1

H ,1n).
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For α ∈ F̂q×n
2 with #α = 1, define in(α) to be the unique index i with αi ̸= 0.

By symmetry of φn,q
H , we have φ̂n,q

H (α) = φ̂n,1
H (αin(α)). Therefore,

E
x∼Fq×n

2

|
∑

α∈Mn
=1,q

φ̂n,q
H (α)χα(x)| = E

x∼Fq×n
2

|
∑

α∈Mn
=1,q

φ̂n,1
H (αin(α))

∏
i∈[q]

χαi(xi)|

= E
x∼Fq×n

2

|
∑

α∈Mn
=1,q

φ̂n,1
H (αin(α))χαin(α)

(xin(α))|

= E
x∼Fq×n

2

|
q∑

i=1

∑
β∈F̂n

2
β ̸=0

φ̂n,1
H (β)χβ(xi)| = E

x∼Fq×n
2

|
q∑

i=1

(φn,1
H (xi)− φ̂n,1

H (0)χ0(xi))|

≤
q∑

i=1

E
x∼Fq×n

2

|(φn,1
H (xi)− 1)| = q E

y∼Fn
2

|φn,1
H (y)− 1| = 2q SD(φn,1

H ,1n).

■

C Missing Proofs and Additional Details from Section 3

Lemma 3 is proved using three additional propositions which we state and prove
below.

Proposition 22 (Recursive validity of Setting 1). Assume that calcW is
applicable up to depth dmax with parameters S, T and a PIS, pis. Then, for each
node v at depth at most dmax, (d1) Tv is injective on the elements of Sv, (d2)
for every α ∈ Sv and every ℓ ∈ [k′], Tv(α)ℓ ̸= 0 if and only if ℓ ∈ Nv.

Proof. The proof is by induction on the depth d ≤ dmax of v. The two restrictions
hold at the root (d = 0) by assumption. Assume correctness up to depth d ≤
dmax−1 and let v be a node of depth d. Consider a child node vi,b for i ∈ Nv\{j}
and b ∈ {0, 1}. Recall that Tvi,b(α) = Tvi(α) = Tv(α)

⊕(j,i) only changes entries
i, j of Tv(α).

We prove (d1). Consider α, β ∈ Svi,b such that Tvi,b(α) = Tvi,b(β). We show
that α = β. Since calcW is applicable up to depth dmax, condition (b2) of
Definition 6 implies that Tv(α) = Tv(β). Indeed, if Tv(α) ̸= Tv(β) but Tvi,b(α) =
Tvi,b

(β) then Tv(α) cannot be uniquely recovered from Tvi,b(α) = Tvi(α).
Since Tv(α) = Tv(β), the induction hypothesis implies that α = β (as Svi,b ⊆

Sv and Tv is injective of Sv). This proves (d1).
We prove (d2). Consider α ∈ Svi,b

and let ℓ ∈ [k′]. If ℓ = j, then Tvi,b(α)ℓ = 0
and ℓ /∈ Nvi,b by definition of calcW.

Next, consider ℓ = i. Then Tv(α)ℓ ̸= 0 and ℓ ∈ Nv by the hypothesis.
Therefore, if Tvi,b(α)ℓ ̸= 0, then b = 1 and also i ∈ Nvi,1 , while if Tvi,b(α)ℓ = 0,
then b = 0 and also i /∈ Nvi,0 (by definition of calcW).

Otherwise ℓ /∈ {i, j}. Then Tvi,b(α)ℓ = Tv(α)ℓ, so Tvi,b(α)ℓ ̸= 0 if and only if
Tv(α)ℓ ̸= 0. By the induction hypothesis, this holds if and only if ℓ ∈ Nv, which
holds if and only if ℓ ∈ Nvi,b (by definition of calcW). This completes the proof.
■
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Proposition 23. Assume that calcW is applicable up to depth dmax ≥ 0 with
parameters (S, T ) and a PIS, pis. Then, for every node v with depth d ≤ dmax

such that |Nv| ≤ N
2 ,∑

α∈Sv

µ̂n,k′(Tv(α))
2 ≤ calcWpis,dmax(d, v,Sv, Tv,Nv).

Proof (of Proposition 23). We prove the result by induction on d ≤ dmax

(starting with d = dmax, down to d = 0). Let k′v = |Nv|. For d = dmax,∑
α∈Sv

µ̂n,k′(Tv(α))
2 ≤

∑
β∈F̂k′

v
2

µ̂n,k′
v
(β)2 = W=k′

v [µn,k′
v
] ≤ (

k′
v

N−k′
v
)k

′
v/2

=calcWpis,dmax(d, v,Sv, Tv,Nv),

where the first inequality relies on (d2) in Proposition 22, as we trim the k′−|Nv|
zero entries that are common to all Tv(α) for α ∈ Sv. It further relies on (d1)

in Proposition 22, as each α ∈ Sv is mapped to a single β ∈ F̂k′
v

2 after removing
the common zero entries. The second inequality is by Lemma 2. We remark that
the assumption that calcW is applicable up to depth dmax implies 2dmax < |N |
and hence k′v = |Nv| ≥ |N | − 2dmax > 0, so Lemma 2 can indeed be applied.

For d < dmax, by reordering elements, we assume without loss of generality
that Nv = [k′v] and pis(v) = k′v. Then, by Proposition 9,

∑
α∈Sv

µ̂n,k′(Tv(α))
2 ≤ k′

v−1
(N−k′

v+1)2

∑
α∈Sv

k′
v−1∑
i=1

µ̂n,k′(Tv(α)
⊕(k′

v,i))2

=
k′
v−1

(N−k′
v+1)2

k′
v−1∑
i=1

(
∑

α∈Svi,0

µ̂n,k′(Tv(α)
⊕(k′

v,i))2 +
∑

α∈Svi,1

µ̂n,k′(Tv(α)
⊕(k′

v,i))2),

(16)

where we use the fact that Svi,0 ∪ Svi,1 = Sv for every i ∈ [k′v − 1]. Also,
k′v = |Nv| ≥ |N | − 2(dmax − 1) > 2, so Proposition 9 can indeed be applied.

We have∑
α∈Svi,0

µ̂n,k′(Tv(α)
⊕(k′

v,i))2 =
∑

α∈Svi,0

µ̂n,k′(Tvi,0(α))
2

≤ calcWpis,dmax
(d+ 1, vi,0,Svi,0 , Tvi,0 ,Nvi,0),

where the inequality is by the induction hypothesis (relying on applicability up
to depth dmax).

Moreover, a similar inequality holds for the sum over Svi,1 . Plugging these
inequalities into (16), and comparing with the return value of calcW, we deduce∑

α∈Sv
µ̂n,k′(Tv(α))

2 ≤ calcWpis,dmax
(d, v,Sv, Tv,Nv), concluding the proof.

■
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Proposition 24. Let v be a node of depth d such that d ≤ dmax and k′v =
|Nv| ≤ N/8. Denote d′ = dmax − d. Then,

calcWpis,dmax
(d, v,Sv, Tv,Nv) ≤ 2d

′ (k′v)
2d′

(k′v − 2d′)k
′
v/2−d′

(N − k′v)k
′
v/2+d′ .

Proof. To simplify notation, denote k = k′v. The recursion tree starting from v
is of depth d′ = dmax − d. Each leaf u contributes to the output at most

( k
(N−k)2 )

d′
(

k′
u

N−k′
u
)k

′
u/2, (17)

where we used the fact that for each internal node w, k′w ≤ k and thus
k′
w−1

(N−k′
w+1)2 ≤

k−1
(N−k+1)2 ≤

k
(N−k)2 .

Initially, |Nv| = k′v = k. For each internal node w, for each i ∈ Nw\{j},
|Nwi,0

| = |Nw| − 2 (there are k′w < k such children wi,0) and |Nwi,1
| = |Nw| − 1

(there are k′w < k such children wi,1).
Therefore, for every leaf u, k′u ∈ [k − d′, k − 2d′]. More specifically for c ∈

{0, 1, . . . , d′}, the number of leaf nodes u with k′u = k−2d′+c is at most kd
′(d′

c

)
.

Hence, using (17), we bound

calcWpis,dmax
(d, v,Sv, Tv,Nv) ≤ ( k

(N−k)2 )
d′ ∑

u leaf

(
k′
u

N−k′
u
)k

′
u/2

≤ ( k
(N−k)2 )

d′
kd

′
d′∑
c=0

(
d′

c

)
( k−2d′+c
N−k+2d′−c )

(k−2d′+c)/2

≤ ( k
N−k )

2d′
2d

′
max

c∈{0,...,d′}
{( k−2d′+c

N−k+2d′−c )
(k−2d′+c)/2}.

(18)

Denote B(c) = ( k−2d′+c
N−k+2d′−c )

(k−2d′+c)/2. For c+ 1 ≤ d′, by Proposition 20,

B(c+1)
B(c) ≤ e

(k−2d′+c)/2
k−2d′+c +

(k−2d′+c)/2
N−k+2d′−c−1 ( k−2d′+c+1

N−k+2d′−c−1 )
1/2

≤ e
1
2+

k/2
N−k ( k

N−k )
1/2 ≤ e4/7( 17 )

1/2 ≤ 1,

where we have used the assumption that k ≤ N/8. Thus,

max
c∈{0,...,d′}

{( k−2d′+c
N−k+2d′−c )

(k−2d′+c)/2} = max
c∈{0,...,d′}

{B(c)} = B(0)

= ( k−2d′

N−k+2d′ )
(k−2d′)/2 ≤ (k−2d′

N−k )(k−2d′)/2.

Finally, plugging this back into (18) we deduce

calcWpis,dmax
(d, v,Sv, Tv,Nv) ≤ ( k

N−k )
2d′

2d
′

max
c∈{0,...,d′}

{B(c)}

≤ 2d
′
( k
N−k )

2d′
(k−2d′

N−k )(k−2d′)/2 = 2d
′ k2d′ (k−2d′)(k−2d′)/2

(N−k)k/2+d′ .
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■
Proof (of Lemma 3). Let N be the set defined in Setting 1. By Proposition 23
(with d = 0, v = (NULL), k′v = k0) and Proposition 24,∑

α∈S
µ̂n,k′(T (α))2 ≤ calcWpis,d(0, (NULL),S, T,N ) ≤ 2d (k0)

2d(k0−2d)k0/2−d

(N−k0)k0/2+d .

■

Possible Variants of calcW

There are many possible variants of calcW that may give better bounds in dif-
ferent settings, but are not used in this paper. We summarize a few below.

1. Instead of fixing the maximal depth dmax in advance, we can continue recur-
sive calls from a node v as long as condition (c2) of Proposition 11 holds.

2. The purpose of condition (b2) of Definition 6 (or condition (c2) of Propo-
sition 11) is to assure that Tv remains injective on the elements of Sv at all
nodes v. This can be assured without this condition if we partition Sv into
more subsets that result in more recursive calls (with additional information
about the masks added to the recursion stack v to assure injectivity).

3. Instead of using the bound derived from Lemma 2, (
k′
v

N−k′
v
)k

′
v/2, at the leaves

with d = dmax, we can use a bound derived from Lemma 1 (or a minimum
of these bounds).

D Missing Proofs from Section 4

D.1 Proof of Theorem 1

Proof (of Theorem 1). We prove the inequalities of the theorem.

Proof of (6). For r odd, by Lemma 6, Var[ν
(r)
n,q] ≤ 22rr2r q2

N2r−1 . Both inequalities
then follow by Proposition 5.

Proof of inequalities for even r. For even r ≥ 4, we have Var[ν
(r)
n,q] ≤ 2rr q

Nr−1

by Lemma 6. Combined with Proposition 5, this proves the first multi-user in-
equality of (8).

This variance bound gives a bound ofOr

( √
q

N(r−1)/2

)
on the statistical distance

from uniform for r ≥ 4, and a similar bound for r = 2 is obtained by Lemma 5.
However, these bounds are not tight. For example, for r = 2, we obtain O

(√
q
N

)
,

where the tight bound is known to be O
(

q
N

)
.

In order to improve the bound we use Proposition 3 with

S =Mn
=1,q = {α ∈ F̂q×n

2 : #α = 1}.
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Thus, combining (1) in Section 2 and Proposition 3 we obtain

2OptprfSXoP[r,n](q) ≤ 2 SD(ν(r)n,q,1qn)

≤ E
x∼Fq×n

2

|
∑

α∈Mn
=1,q

ν̂(r)n,q(α)χα(x)|+
√ ∑

α∈Mn
≥2,q

ν̂
(r)
n,q(α)2.

(19)

By Lemma 4, the first term in (19) is bounded by

E
x∼Fq×n

2

|
∑

α∈Mn
=1,q

ν̂(r)n,q(α)χα(x)| ≤ 2q√(
N
r

) ≤ 2rr/2 q
Nr/2 . (20)

Proof of (7). For r = 2, by Lemma 5, the second term in (19) is bounded by√ ∑
α∈Mn

≥2,q

ν̂
(2)
n,q(α)2 ≤

√
18q2

N2 =
√
18q
N .

Therefore, using (19) with (20) and the bound on the second term above,

OptprfSXoP[2,n](q) ≤
2q
N +

√
4.5q
N ≤ 5q

N .

Proof of (8). The first multi-user inequality of (8) was proved above. It remains
to prove the single-user and second multi-user inequalities.

For r ≥ 4, we apply Lemma 6 to bound the second term in (19) by√ ∑
α∈Mn

≥2,q

ν̂
(r)
n,q(α)2 ≤

√
22r+1r2r q2

N2r−2 = 2r+1/2rr q
Nr−1 = 2r+1/2rr 1

Nr/2−1

q
Nr/2

≤ 2r+1/2rr 1
(213r)r/2−1

q
Nr/2 = 2−5.5r+13.5rr/2+1 q

Nr/2 .

(21)

where we have used the fact that N ≥ 213r.
Therefore, using (19) with (20) and the bound on the second term above,

OptprfSXoP[r,n](q) ≤ r
r/2 q

Nr/2 + 2−5.5r+12.5rr/2+1 q
Nr/2

= rr/2 q
Nr/2 (1 + 2−5.5r+12.5r) ≤ 2rr/2 q

Nr/2 ,

where we have used the fact that for r ≥ 4, 2−5.5r+12.5r ≤ 1. The second part
of the multi-user bound of (8) (the second term inside min) follows from the
single-user bound above by a straightforward triangle inequality.

Proof of (9). For the other direction, by Proposition 3,

2OptprfSXoP[r,n](q) ≥ |
∑

α∈Mn
=1,q

ν̂(r)n,q(α)χα(x)| −
√ ∑

α∈Mn
≥2,q

ν̂
(r)
n,q(α)2.
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By Lemma 4, the first term is lower bounded as

|
∑

α∈Mn
=1,q

ν̂(r)n,q(α)χα(x)| ≥ 3q

2

√
r
(
N
r

) ≥ 3
2e

−r/2r(r−1)/2 q
Nr/2 .

Combining with the upper bound on the second term (21) we obtain

2OptprfSXoP[r,n](q) ≥
3
2e

−r/2r(r−1)/2 q
Nr/2 − 2−5.5r+13.5rr/2+1 q

Nr/2

≥ 3
2e

−r/2r(r−1)/2 q
Nr/2 (1− 2−5.5r+13.5er/2r3/2)

≥ 3
2e

−r/2r(r−1)/2 q
Nr/2 (1− 1

3 ) = e−r/2r(r−1)/2 q
Nr/2 ,

where the second inequality is based on the assumption r ≥ 4.
■

D.2 Proof of Lemma 5

We prove simple bounds that are similar to (3) and (4), proved in the motivating
example of Section 3. We then use these results to prove Lemma 5.

Proposition 25 (Bound 1 on level-k Fourier weight of ν
(r)
n,q). Assume

that rq ≤ N/2. Then, for even r

W=k[ν(r)n,q] ≤
(
q

k

)
Nk 1(

N
rk

) ≤ (
q

k

)
(rk)k

(
rk

N

)(r−1)k

.

For odd r, W=1[ν
(r)
n,q] = 0 and

W=k[ν(r)n,q] ≤
(
q

k

)
Nk−1 1(

N
rk

) ≤ (
q

k

)
(rk)k−1

(
rk

N

)(r−1)k+1

.

Proposition 26 (Bound 2 on level-k Fourier weight of ν
(r)
n,q). Assume

that rq ≤ N/2. Then,

W=k[ν(r)n,q] ≤
(
q

k

)(
rk

N − rk

)rk/2

≤
(
q

k

)(
2rk

N

)rk/2

.

We remark that Proposition 25 gives a better bound than Proposition 26 for
small values of k, while Proposition 26 is better for large values of k. However,
both are very far from being tight in general.
Proof (of Proposition 25). Applying Proposition 12 and then Lemma 1,

W=k[ν(r)n,q] =
(
q
k

)
W=k[ν

(r)
n,k] =

(
q
k

) ∑
α∈Mn

=k,k

ν̂
(r)
n,k(α)

2

=
(
q
k

) ∑
α∈Mn

=k,k

µ̂n,rk(α
⊙r)2 ≤

(
q
k

)
Nk(M=rk[µn,rk])

2 ≤
(
q
k

)
Nk 1(

N
rk

) .
(22)
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When r is odd, then by Proposition 7, µ̂n,rk(α
⊙r) ̸= 0 only if 0 = ⊕i∈[rk](α

⊙r)i =

⊕i∈[k]αi, which holds only for at most Nk−1 of the masks in Mn
=k,k ⊂ F̂k×n

2 .
Hence for odd r the bound is improved by a factor of N .

For the particular case of k = 1, we have ⊕i∈[k]αi ̸= 0 when #α = 1, and

hence W=1[ν
(r)
n,q] = 0. ■

Proof (of Proposition 26). Applying Proposition 12 (similarly to (22) above)
and then Lemma 2,

W=k[ν(r)n,q] =
(
q
k

) ∑
α∈Mn

=k,k

µ̂n,rk(α
⊙r)2 ≤

(
q
k

) ∑
β∈Mn

=rk,rk

µ̂n,rk(β)
2

=
(
q
k

)
W=rk[µn,rk] ≤

(
q
k

)
( rk
N−rk )

rk/2.

■
Proof (of Lemma 5). By Proposition 26, for r = 2,

q∑
k=2

W=k[ν(2)n,q] ≤
q∑

k=2

(
q
k

)
( 2k
N−2k )

k =

q∑
k=2

(
q
k

)
2k( k

N−2k )
k.

Denote B(k) =
(
q
k

)
2k( k

N−2k )
k. Assuming k + 1 ≤ q, by Proposition 20,

B(k+1)
B(k) ≤ 2 q

k+1
k+1

N−2k−2e
k
k+

2k
N−2k−2 ≤ 2q

N−2q e
1+

2q
N−2q ≤ 1

7e
8/7 ≤ 1

2 ,

as q ≤ N/16. Therefore,
q∑

k=2

W=k[ν(r)n,q] ≤
q∑

k=2

B(k) ≤ 2B(2) = 2
(
q
2

)
22 22

(N−4)2 ≤ 18( q
N )2,

as N ≥ 100. Combining with Proposition 25 that asserts W=1[ν
(2)
n,q] ≤ qN 1(

N
2

) =

2 q
N−1 , we deduce

Var[ν(2)n,q] =

q∑
k=1

W=k[ν(2)n,q] ≤ 2 q
N−1 + 18 q2

N2 ≤ 2 q
N−1 + 18

16
q
N ≤

4q
N ,

as q
N ≤

1
16 and N ≥ 100. ■

D.3 Proof of Lemma 6

Proof (of Lemma 6). Consider any r ≥ 3. By Proposition 13,

W=k[ν(r)n,q] ≤
(
q
k

)
2(r−2)k/2+crk( rk

N−rk )
(r−1)k+crk .

Write N =Mr and define

Br(k) =
(
q
k

)
2(r−2)k/2+crk( rk

N−rk )
(r−1)k+crk =

(
q
k

)
2(r−2)k/2+crk( k

M−k )
(r−1)k+crk .
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Then, for 2 ≤ k ≤ q − 2 (noting that crk = cr(k+2)), by Proposition 20,

Br(k+2)
Br(k)

≤ q2

(k+1)(k+2)2
r−2e

2((r−1)k+crk)
k +

2((r−1)k+crk)
M−k−2 ( k+2

M−k−2 )
2(r−1)

≤ 2r−2e
2(r−1)+

1
k+

2(r−1)q
M−q k+2

k+1
q2

(k+2)2 (
k+2
M−q )

2(r−1)

≤ 2r−2 k+2
k+1e

16(r−1)
7 +

1
k ( q

7q )
2(r−1) ≤ 4

3 (
2e16/7

49 )r−1 1
2e

1
2 ≤ ( 12 )

2 2
3e

1
2 ≤ 1

2 ,

where we have used the facts k ≥ 2, M = N
r ≥ 8q and r ≥ 3.

Therefore, using the fact that N ≥ 213r,

q∑
k=3

W=k[ν(r)n,q] ≤
q∑

k=3

Br(k) ≤ 2Br(3) + 2Br(4)

= 2
(
q
3

)
23(r−2)/2+c3r ( 3r

N−3r )
3(r−1)+c3r + 2

(
q
4

)
22(r−2)( 4r

N−4r )
4(r−1)

≤ 23r/2−4+c3rq3( 4rN )3(r−1)+c3r + 22r−7q4( 8rN )4(r−1)

=27.5r−10+3c3rr3r−3+c3r q3

N3r−3+c3r
+ 214r−19r4r−4 q4

N4r−4

=27.5r−10+3c3rr3r−3+c3r q3

N3r−3+c3r
(1 + 26.5r−9−3c3rrr−1−c3r q

Nr−1−c3r
).

We have

26.5r−9−3c3rrr−1−c3r q
Nr−1−c3r

= 26.5r−9−3c3r ( r
N )r−2−c3r rq

N

≤ 26.5r−9−3c3r2−13(r−2−c3r) 1
8 = 2−6.5r−9+26−3+10cr

≤ 2−6.5r+14+10cr ≤ 2−6.5r+19 ≤ 1,

where we have used the assumptions r ≥ 3, rq ≤ N/8 and N ≥ 213r. Plugging
this into the previous inequality, we deduce

q∑
k=3

W=k[ν(r)n,q] ≤ 27.5r−9+3c3rr3r−3+c3r q3

N3r−3+c3r
. (23)

Assume that r is odd. Then, by Proposition 25, W=1[ν
(r)
n,q] = 0. Moreover, by

Proposition 25 (which gives a better bound on W=2[ν
(r)
n,q] than Proposition 13)

W=2[ν(r)n,q] ≤
(
q
2

)
(2r)

(
2r
N

)2r−1 ≤ 22r−1r2r q2

N2r−1 .

Hence by the above results and (23) (noting that c3r = 1
2 and recalling that

rq ≤ N/8),

Var[ν(r)n,q] =

q∑
k=2

W=k[ν(r)n,q] ≤ 22r−1r2r q2

N2r−1 + 27.5r−9+1.5r3r−3+0.5 q3

N3r−3+0.5

=22r−1r2r q2

N2r−1 (1 + 25.5r−6.5rr−2.5 q
Nr−1.5 ).
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We have

25.5r−6.5rr−2.5 q
Nr−1.5 = 25.5r−6.5( r

N )r−2.5 q
N ≤ 25.5r−6.52−13(r−2.5) 1

8·3

≤ 2−7.5r−6.5+32.5−4 = 2−7.5r+22 ≤ 1,

where we have used the assumptions r ≥ 3, rq ≤ N/8 and N ≥ 213r. Plugging
this into the previous inequality, we deduce the claimed inequality

Var[ν(r)n,q] ≤ 22rr2r q2

N2r−1 .

For even r ≥ 4, by Proposition 25, W=2[ν
(r)
n,q] ≤

(
q
2

)
(2r)2

(
2r
N

)2r−2
= 22rr2r q2

N2r−2 .
Therefore, by the above inequality and (23) (with crk = 0),

q∑
k=2

W=k[ν(r)n,q] ≤ 22rr2r q2

N2r−2 + 27.5r−9r3r−3 q3

N3r−3

=22rr2r q2

N2r−2 (1 + 25.5r−9rr−3 q
Nr−1 ) = 22rr2r q2

N2r−2 (1 + 25.5r−9( r
N )r−3 q

N
1
N )

≤ 22rr2r q2

N2r−2 (1 + 25.5r−92−13(r−3) 1
8·42

−13) ≤ 22rr2r q2

N2r−2 (1 + 2−7.5r−9+39−5−13)

= 22rr2r q2

N2r−2 (1 + 2−7.5r+12) ≤ 22r+1r2r q2

N2r−2 ,

where we have used the assumptions r ≥ 4, rq ≤ N/8 and N ≥ 213r.
Finally, by Proposition 25 and the above inequality (again using the assump-

tions r ≥ 4, rq ≤ N/8 and N ≥ 213r),

Var[ν(r)n,q] =

q∑
k=1

W=k[ν(r)n,q] ≤ qrr 1
Nr−1 + 22r+1r2r q2

N2r−2

= rr q
Nr−1 (1 + 22r+1rr q

Nr−1 ) ≤ rr q
Nr−1 (1 + 22r+1r rqN ( r

N )r−2)

≤ rr q
Nr−1 (1 + 22r+1r 182

−13(r−2)) = rr q
Nr−1 (1 + 2−11r+1−3+26r)

= rr q
Nr−1 (1 + 2−11r+24r) ≤ 2rr q

Nr−1 .

■

E Missing Proofs from Section 5

Proof (of Lemma 7). By Proposition 15, W=1[ξ
(L)
n,q ] = 0. Hence, by Proposi-

tion 16,

Var[ξ(L)
n,q ] =

q∑
k=1

W=k[ξ(L)
n,q ] =

q∑
k=2

W=k[ξ(L)
n,q ] ≤

q∑
k=2

(
q
k

)
23k/2+3ck kk+2ck (k−2ck)

k/2−ck

(N−2k)3k/2+ck
.

Denote B(k) =
(
q
k

)
23k/2+3ck kk+2ck (k−2ck)

k/2−ck

(N−2k)3k/2+ck
. Noting that ck = ck+2 and as-

suming 2 ≤ k ≤ q − 2, by Proposition 20,

B(k+2)
B(k) ≤

q2

(k+1)(k+2)2
3e

2(k+2ck)
k +

2(k/2−ck)
k−2ck

+
22(3k/2+ck)
N−2k−4 (k+2)2(k+2−2ck)

(N−2k−4)3

≤ 8q2e
2+

4ck
k +1+

6k+2
N−2k−4 k+2

k+1
k+2−2ck

(N−2k−4)3 ≤ 8 4
3e

3+
2
3+

6q
14q q2 q

(14q)3 ≤ 8 4
3e

4.114−3 ≤ 1
3 ,
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where we have used the facts k ≥ 2, 4ck
k ≤

2
3 and q ≤ N/16. Therefore,

q∑
k=2

W=k[ξ(L)
n,q ] ≤ 1

1− 1
3

(B(2) +B(3)) ≤ 3
2

(
q
2

)
23 23

(N−4)3 + 3
2

(
q
3

)
26 34·2

(N−6)5

≤ 48q2

(N−4)3 + 2534q3

(N−6)5 ≤ 60 q2

N3 + 2634 q
N

1
N

q2

N3 ≤ 60 q2

N3 + q2

N3 ≤ 26 q2

N3 ,

where we have used the assumptions that q ≤ N/16 and N ≥ 210. ■

F Missing Proofs from Section F

Proof (of Lemma 8). By Proposition 17,

W=1[ξ
(L)
n,2,q] =

(
q
1

)
W=1[ξ

(L)
n,2,1] = q

∑
α∈F̂2n

2
#α=1

ξ̂
(L)
n,2,1(α)

2 = q
∑

α∈F̂2n
2

#α=1

µ̂n,3(t(α))
2.

Let α = (α(1), α(2)) ∈ F̂2n
2 , hence t(α) = (α(1), LT(α(2)), α(2) ⊕ LT(α(1))). By

Proposition 7, we have µ̂n,3(t(α)) ̸= 0 only if α(1)⊕LT(α(2))⊕α(2)⊕LT(α(1)) = 0.
In this case, α1⊕LT(α(1)) = α(2)⊕LT(α(2)) and thus (L′)T(α(1)) = (L′)T(α(2)).
Hence, by invertibility of (L′)T, α(1) = α(2), which implies that
t(α) = (α(1), LT(α(1)), α(1) ⊕ LT(α(1))). In particular, since LT and (L′)T are
invertible then #t(α) = 3.

By Proposition 8, for every α(1) ̸= 0, exact computation gives |µ̂n,3(α
(1), LT(α(1)), α(1)⊕

LT(α(1)))| = 2
N−2

1
N−1 . Since α

(1) ∈ F̂n
2 can attain N − 1 non-zero values, we

conclude that

W=1[ξ
(L)
n,2,q] = q

∑
α∈F̂2n

2
#α=1

µ̂n,3(t(α))
2 = q(N − 1) 4

(N−1)2(N−2)2 = 4q
(N−1)(N−2)2 .

■
Proof (of Proposition 19). By Proposition 17 and Proposition 18,

W=k[ξ
(L)
n,2,q] =

(
q
k

)
W=k[ξ

(L)
n,2,k] =

(
q
k

) ∑
α∈M2n

=k,k

ξ̂
(L)
n,2,k(α)

2 =
(
q
k

) ∑
α∈M2n

=k,k

µ̂n,3k(t(α))
2

=
(
q
k

) k∑
m=0

∑
α∈M2n

=k,k

#3α=m

µ̂n,3k(t(α))
2.

For m ∈ {0, . . . , k}, denote S(k,m) = {α ∈ F̂k×2n
2 : #α = k ∧ #3α = m}. We

have shown that

W=k[ξ
(L)
n,2,q] =

(
q
k

) k∑
m=0

∑
α∈S(k,m)

µ̂n,3k(t(α))
2. (24)
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Fix a pair (k,m). We would like to upper bound
∑

α∈S(k,m) µ̂n,3k(t(α))
2 using

Lemma 3. For this purpose, according to restriction (a2) of Setting 1, we first
need to partition the set S(k,m) into subsets such that the (transformed) masks

in each subset, t(α), share the same non-zero entries (over F̂n
2 ).

We now analyze this partition of S(k,m). By proposition 18, every i ∈ [k]
with #t(αi) = 2 has 3 possible structures that determine which 2 of its 3 entries

are non-zero over F̂n
2 . For every α ∈ S(k,m), there are k − m such indices i

with #t(αi) = 2. Therefore, there are
(
k
m

)
3k−m possible non-zero index sets

(with non-zero values over F̂n
2 ). Note that every such index set has size equal to

#t(α) = 2k +m for α ∈ S(k,m).
Denote by Λk,m the collection of these

(
k
m

)
3k−m non-zero index sets, where

every λ ⊆ [k] × [3] is of size 2k + m. We thus partition S(k,m) into
(
k
m

)
3k−m

subsets, denoted {S(k,m)
λ }λ∈Λk,m

, each with common non-zero entries of t(α)

over F̂n
2 . Concretely, α ∈ S(k,m) satisfies α ∈ S(k,m)

λ if for every (i, j) ∈ [k]× [3],
t(αi)j ̸= 0 if and only if (i, j) ∈ λ. We have∑

α∈S(k,m)

µ̂n,3k(t(α))
2 =

∑
λ∈Λk,m

∑
α∈S(k,m)

λ

µ̂n,3k(t(α))
2. (25)

Applying Lemma 3. Fix any λ ∈ Λk,m. We now use Lemma 3 to bound∑
α∈S(k,m)

λ

µ̂n,3k(t(α))
2. For this purpose, let S = S(k,m)

λ and define T (α) =

Tk(α) = t(α) for every α ∈ S(k,m)
λ . In this case, k′ = 3k and k0 = 2k +m.

The PIS pis resembles the one defined in the proof of Proposition 16. Given
a node v, we say that an index ℓ ∈ [k] is redundant if all 3 indices 3ℓ− 2, 3ℓ− 1
and 3ℓ are unaltered by Definition 7.

At a given node v, let ℓ ∈ [k] be the largest redundant index. The PIS pis
will select as primary index the smallest index in the triplet {3ℓ− 2, 3ℓ− 1, 3ℓ}
that is in Nv.

The recursion is executed up to depth d = ⌈k/2⌉. As in the proof of Proposi-
tion 16, a redundant index is guaranteed to exist up to depth d− 1 = ⌈k/2⌉ − 1
and pis is well-defined.

In order to invoke Lemma 3, we prove that the two conditions of Propo-

sition 11 hold. First, by our definition of S = S(k,m)
λ , the pair (S, T ) defined

above satisfies the restrictions of Setting 1, and condition (c1) holds (note that
2d = 2⌈k/2⌉ ≤ k + 1 < 2k, as k ≥ 2).

It remains to prove condition (c2). Specifically, for a node v such that
j = pis(v) and α ∈ Sv, we prove that Tv(α)j can be computed from Tvi(α) =
Tv(α)

⊕(j,i) (where i is a secondary index).
Note that if ℓ is redundant, then for every α ∈ Sv, the elements Tv(α)3ℓ−2, Tv(α)3ℓ−1, Tv(α)3ℓ

are equal to those of T (αℓ) = t(αℓ). Thus, depending on v, according to Proposi-
tion 18 we have 4 possibilities for the zero entries of Tv(α)3ℓ−2, Tv(α)3ℓ−1, Tv(α)3ℓ.

First, assume that #t(αℓ) = 3, namely t(αℓ) = (α
(1)
ℓ , LT(α

(2)
ℓ ), α

(2)
ℓ ⊕LT(α

(1)
ℓ ))

with all 3 entries non-zero. Then the first index with value α
(1)
ℓ is selected as
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primary index (j = 3ℓ−2). We need to verify that Tv(α)j = α
(1)
ℓ can be uniquely

recovered from Tv(α)
⊕(j,i) regardless of the secondary index i, namely that it

can be recovered from the values of either

(1)LT(α
(2)
ℓ ), α

(2)
ℓ ⊕ L

T(α
(1)
ℓ ), in case i /∈ {3ℓ− 1, 3ℓ},

(2)LT(α
(2)
ℓ )⊕ α(1)

ℓ , α
(2)
ℓ ⊕ L

T(α
(1)
ℓ ), in case i = 3ℓ− 1, or

(3)LT(α
(2)
ℓ ), α

(2)
ℓ ⊕ L

T(α
(1)
ℓ )⊕ α(1)

ℓ , in case i = 3ℓ.

In case (1), α
(1)
ℓ can be recovered after computing α

(2)
ℓ due to the invertibility of

LT. In case (2), we apply LT to the second value and XOR to the first to obtain
the value of

(L2)T(α
(1)
ℓ )⊕ α(1)

ℓ =(L2)T(α
(1)
ℓ )⊕ LT(α

(1)
ℓ )⊕ LT(α

(1)
ℓ )⊕ α(1)

ℓ

=LT((L′)T(α
(1)
ℓ ))⊕ (L′)T(α

(1)
ℓ ) = ((L′)2)T(α

(1)
ℓ ).

Since ((L′)2)T is invertible, α
(1)
ℓ can be uniquely recovered. In case (3), we deduce

α
(2)
ℓ and then LT(α

(1)
ℓ ) ⊕ α(1)

ℓ = (L′)T(α
(1)
ℓ ), from which we recover α

(1)
ℓ since

(L′)T is invertible.
Second, if #t(αℓ) = 2, then according to Proposition 18,

t(αℓ) ∈ {(0, LT(α
(2)
ℓ ), α

(2)
ℓ ), (α

(1)
ℓ , 0, LT(α

(1)
ℓ )), (α

(1)
ℓ , (L2)T(α

(1)
ℓ ), 0)}.

By similar calculation to the case #t(αℓ) = 3, one can verify that in each of the
3 cases above the first non-zero entry (the value of the primary index) can be
recovered from Tv(α)

⊕(j,i) regardless of the secondary index.
We conclude that the two conditions of Proposition 11 hold. Applying our

framework of Lemma 3 (with d = ⌈k/2⌉ = k/2 + ck, k0 = 2k +m), we obtain∑
α∈S(k,m)

λ

µ̂n,3k(t(α))
2 ≤ 2d (k0)

2d(k0−2d)k0/2−d

(N−k0)k0/2+d = 2k/2+ck (2k+m)k+2ck (k+m−2ck)
k/2+m/2−ck

(N−2k−m)3k/2+m/2+ck
.

We recall that |Λk,m| =
(
k
m

)
3k−m and

∑k
m=0

(
k
m

)
3k−m = 4k. Using (24), (25)

and the inequality above we deduce

W=k[ξ
(L)
n,2,q] =

(
q
k

) k∑
m=0

∑
α∈S(k,m)

µ̂n,3k(t(α))
2 =

(
q
k

) k∑
m=0

∑
λ∈Λk,m

∑
α∈S(k,m)

λ

µ̂n,3k(t(α))
2

≤
(
q
k

) k∑
m=0

|Λk,m|2k/2+ck (2k+m)k+2ck (k+m−2ck)
k/2+m/2−ck

(N−2k−m)3k/2+m/2+ck

≤
(
q
k

)
4k max

m∈{0,1,...,k}
{2k/2+ck (2k+m)k+2ck (k+m)k/2+m/2−ck

(N−2k−m)3k/2+m/2+ck
}

=
(
q
k

)
25k/2+ck max

m∈{0,1,...,k}
{ (2k+m)k+2ck (k+m)k/2+m/2−ck

(N−2k−m)3k/2+m/2+ck
}.
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Denote B(m) = (2k+m)k+2ck (k+m)k/2+m/2−ck

(N−2k−m)3k/2+m/2+ck
. Then, assuming m + 1 ≤ k ≤ q ≤

N/32, by Proposition 20,

B(m+1)
B(m) ≤ e

k+2ck
2k+m+

k/2+m/2−ck
k+m +

3k/2+m/2+ck
N−2k−m−1 ( k+m+1

N−2k−m−1 )
1/2

≤ e1+ck(
2

2k+m− 1
k+m )+

2q
N−3q ( 2q

N−3q )
1/2 ≤ e1+

ck
k +

2
29 ( 2

29 )
1/2 ≤ e

7
6+

2
29 ( 2

29 )
1/2 ≤ 1,

where we also used the facts that k ≥ 2 and c2 = 0, hence ck
k ≤

1
6 . Therefore,

W=k[ξ
(L)
n,2,q] ≤

(
q
k

)
25k/2+ck max

m∈{0,1,...,k}
B(m) ≤

(
q
k

)
25k/2+ckB(0)

=
(
q
k

)
25k/2+ck (2k)k+2ck (k)k/2−ck

(N−2k)3k/2+ck
=

(
q
k

)
27k/2+3ck( k

N−2k )
3k/2+ck .

■
Proof (of Lemma 9). Applying Proposition 19,

q∑
k=2

W=k[ξ
(L)
n,2,q] ≤

q∑
k=2

(
q
k

)
27k/2+3+3ck( k

N−2k )
3k/2+ck .

Denote B(k) =
(
q
k

)
27k/2+3ck( k

N−2k )
3k/2+ck and note that ck+2 = ck. Then, as-

suming k + 2 ≤ q ≤ N/32, and recalling that k ≥ 2 (and c2 = 0), by Proposi-
tion 20,

B(k+2)
B(k) ≤

q2

(k+1)(k+2)2
7e

3k+2ck
k +

2(3k+2ck)
N−2k−4 ( k+2

N−2k−4 )
3 ≤ 27e

3+
1
3+

6q
N−2q k+2

k+1
q2(k+2)
(N−2q)3

≤ 27 4
3e

3+
1
3+

6
30 q3

(30q)3 ≤ 27 4
3e

4(30)−3 ≤ 1
2 .

Therefore, using the facts that N ≥ 210 and q ≤ N/32,

q∑
k=2

W=k[ξ
(L)
n,2,q] ≤

q∑
k=2

B(k) ≤ 2B(2) + 2B(3) ≤ 2
(
q
2

)
27( 2

N−4 )
3 + 2

(
q
3

)
212( 3

N−6 )
5

≤ 210q2

(N−4)3 + 21234q3

(N−6)5 ≤
210.3q2

N3 + 220q2

N3
q
N

1
N ≤

210.3q2

N3 + 220q2

N3
1
32

1
210 ≤

210.5q2

N3 .

■
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