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Abstract. Key blinding produces pseudonymous digital identities by
rerandomizing public keys of a digital signature scheme. It provides pri-
vacy in decentralized networks. Current key blinding schemes are based
on the discrete log assumption. Eaton, Stebila and Stracovsky (LAT-
INCRYPT 2021) proposed the first post-quantum key blinding schemes
from lattice assumptions. However, the large public keys and lack of
QROM security means they are not ready to replace existing solutions.

We present a general framework to build post-quantum signature schemes
with key blinding based on the MPC-in-the-Head paradigm. This results
in schemes that rely on well-studied symmetric cryptographic primitives
and admit short public keys. We prove generic security results in the
quantum random oracle model (QROM).

We instantiate our framework with the recent AES-based Helium sig-
nature scheme (Kales and Zaverucha, 2022) to obtain an efficient post-
quantum key blinding scheme with small keys. Both Helium and the
aforementioned lattice-based key blinding schemes were only proven se-
cure in the ROM. This makes our results the first QROM proof of Helium
and the first fully quantum-safe public key blinding scheme.
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1 Introduction

Decentralized services such as Tor’s hidden services [24] or the GNU Name Sys-
tem [25] use a concept known as public key blinding3 to provide privacy against
the intermediate nodes that take part in the name resolution when a client at-
tempts to connect to a service. This mechanism protects the anonymity of the
server and circumvents censorship. In a digital signature scheme with public key
blinding, the public key pk can be rerandomized using a seed τ into a blinded
key bpk, such that knowledge of τ and bpk does not allow one to compute pk;
and such that only the secret key holder can produce valid signature for bpk.

3 Not to be confused with blind signatures, which allows signing a message while being
oblivious to its content.



Existing key blinding schemes are based on elliptic curve cryptography. Post-
quantum schemes have been proposed [17] from lattice-based assumptions. The
challenge in introducing new key blinding schemes is that their security does
not directly reduce to the unforgeability of the underlying signature scheme and
needs to be proven from scratch. In the case of post-quantum security, schemes
that employ the random oracle methodology should be proven secure in the
quantum random oracle model (QROM). Another challenge is that lattice-based
post-quantum signatures schemes typically have large public keys, on the order of
kilobytes for the Dilithium scheme selected for standardization by NIST. In the
context of Tor’s rendezvous spec, this is problematic since public keys represent
identities that have to be handled manually by users.

Our work addresses all of these issues and more. We propose a general frame-
work for constructing post-quantum key blinding schemes based on symmetric-
key assumptions, with provably secure in the QROM and extremely short public
keys.

1.1 Our Results

Our starting point is the idea of adding key blinding to the Picnic signature
scheme which was sketched in [17]. We generalize it to any scheme where sig-
natures consist of a message-dependent non-interactive zero-knowledge proof of
knowledge (NIZKPoK) of the preimage of a one-way function constructed via
Fiat-Shamir heuristic and the MPC-in-the-Head (MPCitH) paradigm4. We de-
scribe which properties those schemes and the underlying pseudorandom func-
tion must satisfy in order to yield an unforgeable and unlinkable key blinding
scheme. The advantage of our modular approach is that signature with key
blinding schemes can benefit from future improvements for signature schemes
based on NIZKPoK5. Our proofs are in the quantum-accessible random oracle
model (QROM) where the adversary may evaluate the random oracle on an
arbitrary quantum superposition of inputs. Since previous works only proved
security against classical random oracle queries, this makes our construction the
first fully quantum-safe signature scheme with key blinding.

We use the Helium scheme of [21] to demonstrate our techniques. Helium offers
several efficiency improvements over previous MPCitH-based schemes and it is an
appealing candidate since it is solely based on well-studied symmetric primitives
such as the AES block cipher and the SHAKE extendable output function and
boasts small proof sizes for the AES circuit. We apply our framework to the
Helium signature scheme to get a signature scheme with key blinding we call
blHelium. To prove that our scheme is secure in the QROM, we show that the
proof system underlying Helium is a post-quantum proof of knowledge in the

4 Although the MPCitH paradigm can be used to prove any NP statement, throughout
this paper, we use the term to refer to proofs of statements about symmetric key
primitives.

5 For example, our techniques could apply to the recent VOLE-in-the-Head
paradigm [1] which offers significant improvement in proof size over MPCitH.
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QROM. A direct corollary is that Helium is secure in the QROM, a question
that was left open in [21].

The blinded public keys for our blHelium scheme are only 64 bytes for the
version based on AES256, which makes it an ideal candidate for a post-quantum
transition from ECDSA for the Tor and GNU networks and for other key blinding
scheme that benefit from small keys.

We have implemented the AES128 version of our blHelium scheme as a fork of
the Helium code. Even though this parameter choice is not post-quantum secure,
it allows for a direct comparison with Helium to observe the overhead induced
by key blinding. We observe that the blinded version is 2× to 3× slower and
produces 2× to 3× larger signatures, which is to be expected based on the larger
circuit size of the underlying one-way function.

1.2 Related Work

Public key blinding was first introduced as an anonymity protection feature
of Tor’s Rendezvous protocol [24]. Tor’s key blinding scheme is based on dis-
crete logarithm assumptions. Besides Tor, key blinding also has applications to
the GNU Name System [25], private airdrop and rate-limited privacy pass [16].
Key blinding is just one of many public key rerandomization techniques. For
an overview and comparison of signature schemes with key rerandomization, we
refer the reader to [6].

The first post-quantum key blinding schemes were proposed in [17]. Their
constructions are built from lattice-based post-quantum signature schemes and
are only proven secure in the (classical) random oracle model. Their schemes also
suffer from fairly long public keys (on the order of kilobytes). The general con-
struction of key blinding for MPCitH schemes that we present was first sketched
in the appendix of [17] for the Picnic signature scheme [7]. They briefly sketch
a proof of unlinkability in the classical ROM, but provide no argument towards
unforgeability.

Efforts have been made towards standardizing key blinding in an IETF tech-
nical specification draft [10]. The companion paper [16] provides security proofs
for the scheme from the draft.

Multiparty computation in the head (MPCitH) is a technique for proving NP
statements about arbitrary Boolean circuits introduced by [20]. This technique
was refined by ZKBoo [18] and further improved in the paper that introduced
Picnic [7], the first signature scheme built from the MPCitH framework to prove
knowledge of a preimage of a one-way function. There have since been several
improvements. Katz, Kolesnikov, and Wang [22] added a preprocessing phase to
the MPC computation used in [7]. BBQ [8] is the first MPCitH signature scheme
that instantiates the one-way function with the well studied AES block cipher.
It mitigates the larger circuit size by avoiding private keys that lead to circuits
which have the 0 byte as input to an s-box, allowing for an efficient computation
of the nonlinear operation. Baum and Nof [3] introduces sacrificial multiplication
triples (or beaver triples) to replace cut-and-choose checks, which leads to better
soundness and less repetitions of the MPC protocol. The Banquet [2] signature
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scheme achieves 50% smaller signatures by running an MPC protocol that verifies
the correctness of the circuit computation, instead of computing the result itself.
Dobraunig, Kales, Rechberger, Schofnegger, and Zaverucha [11] offer additional
improvements to AES-based MPCitH signature schemes and proposes a scheme
based on the Rain cipher optimized for MPCitH. Helium [21] lifts multiple small
fields F elements into a larger field K, such that multiplying the F elements
component-wise can be realised by a single operation on K, a technique that
was also used in Limbo [9].

2 Preliminaries

We let λ ∈ N be our security parameter throughout the paper. For two functions
f, g let f ◦ g denote the function x 7→ f(g(x)). Basic security notions of sets of
functions are defined in Appendix A.1.

2.1 Digital Signature Schemes with Public Key Blinding

The definitions of this section are reproduced from previous work on signature
schemes with key blinding [17,16].

Definition 1 (Digital Signature with Key Blinding). A digital signature
scheme with key blinding scheme is a tuple of algorithms:

– KGen(1λ): returns a private key sk and an identity public key pk
– BlindPK(pk, τ): takes as input the identity public key pk and a blinding pa-

rameter τ and produces a blinded public key bpkτ .
– Sign(sk, τ,m): produces a signature σ for m that is valid for the blinded key

bpkτ .
– Verify(bpk,m, σ): returns 1 if σ is a valid signature of m for blinded key bpk

and 0 otherwise.

The scheme is (perfectly) correct if for (sk, pk)← KGen(1λ), then for all m and
τ :

Verify(BlindPK(pk, τ),m, Sign(sk, τ,m)) = 1 .

The unforgeability of signature schemes with key blinding is similar to that
of regular unforgeability with the difference that we give the adversary control
over which blinded key it targets for its forgery. The adversary is also allowed
access to a signature oracle6 for an arbitrary (polynomial) number of blinded
keys.

Definition 2 (Unforgeability – Chosen Message and Blinding Attack).
Let (KGen,BlindPK,Sign,Verify) be a key blinding signature scheme. The chosen
message and blinding attack experiment euf-cmba is defined as the following
game between a challenger and an adversary A:
6 In [16], the adversary can request signatures with respect to the original (non-
blinded) signature scheme. In the context of our framework, this is not possible
since signatures for blinded keys are incompatible with the original scheme.
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– The challenger samples (pk, sk)←$ KGen(1λ) and sends pk to A.
– A can query a signing oracle Sig on message m and blinding parameter τ to

receive σ = Sign(m, sk, τ).

– A sends its output (m∗, σ∗, τ∗) to the challenger who computes bpk∗ =
BlindPK(pk, τ∗) and outputs 1 if Verify(bpk∗,m∗, σ∗) = 1 and if (m∗, τ∗)
was not previously queried to the signing oracle. Otherwise it outputs 0.

The advantage of an adversary A for the euf-cmba game is defined as the
probability Adveuf-cmbaA that the challenger outputs 1.

The notion of privacy provided by key blinding is that of unlinkability. A
scheme is unlinkable if an adversary cannot tell if two blinded keys originate
from the same identity public key or from different keys. In the unlinkability
experiment, we also allow the adversary to request new blinded keys at will and
to request signatures of arbitrary messages with respect to the blinded keys.

Definition 3 (Unlinkability – Chosen Message and Blinding Attack).
Let (KGen,BlindPK,Sign,Verify) be a key blinding signature scheme. The unlink-
ability under chosen message and blinding attack ul-cmba experiment is defined
as the following game:

– The challenger samples (pk0, sk0)←$ KGen(1λ).

– A can query a blinding oracle bl, which on input τ returns bpk← BlindPK(pk0, τ).

– A can query a signing oracle Sig, which on a message m and a blinding
parameter τ returns σ = Sign(m, sk0, τ).

– A sends a blinding parameter τ∗ to the challenger. The challenger aborts the
experiment if τ∗ was previously queried to the blinding oracle.

– The challenger picks a new key pair (pk1, sk1) ← KGen(1λ), samples a bit
b←$ {0, 1} and sends bpk∗b ← BlindPK(pkb, τ

∗) to A.
– A again has access to the blinding and signing oracle, but now the oracles

use the key pair (skb, pkb) if τ = τ∗ and use the pair (sk0, pk0) if τ ̸= τ∗.

– A outputs a guess b′ and wins if b′ = b.

The advantage of an adversary A for the experiment is defined as the probability
Advul-cmbaA =

∣∣Pr[b = b′]− 1
2

∣∣.
2.2 Quantum Random Oracle Model

In the quantum random oracle model (QROM), the adversary has quantum or-
acle access to a unitary OH : |c⟩|x⟩|y⟩ 7→ |c⟩|x⟩|y ⊕ c ·H(x)⟩ that computes a
random function H in superposition. While the QROM does not permit observ-
ing and reprogramming random oracle queries as easily as in the classical ROM,
there are now powerful tools for proving security in the QROM, which we present
in the appendix (Section A.2).
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2.3 Non-Interactive Proof Systems in the QROM

Let R ⊆ X × W be a relation. A non-interactive proof system for R in the
quantum random oracle model is a pair of oracle-aided algorithmsΣ = (PH ,VH).
The proof system is correct (or complete) if there is a negligible function κ(·)
such that for every (x,w) ∈ R,

Pr
H
[VH(x, π) | π ← PH(x,w)] ≥ 1− κ(λ) . (1)

Definition 4 (Post-Quantum Zero-Knowledge). A non-interactive proof
Σ = (PH ,VH) is post-quantum zero-knowledge (pqNIZK) if there is a simulator
Sim and a function εzk such that for every QPT adversary ṼH that makes at
most qH queries to H,∣∣∣Pr
H
[ṼH(x, π) = 1 | π ← PH(x,w)]− Pr

H
[ṼHΘ (x, π) = 1 | (π,Θ)← SH(x)]

∣∣∣ ≤ εzk(λ, qH)

(2)
where Θ = {(x1, y1), . . . , (xt, yt)} is a list of assignments and HΘ satisfies
HΘ(xi) = yi for every (xi, yi) ∈ Θ and is equal to H otherwise, and where
εzk(λ, qH) is negligible in λ if qH is polynomial in λ.

The soundness notion we will use is the definition of online extractability
from [14]. We first present some notation. Let P̃ be a dishonest prover that
outputs an instance x, a proof π and some auxiliary (potentially quantum) in-
formation Z. Let VH ↔ P̃H(1λ) denote an execution of the proof, which we
define as (x, π, Z) ← P̃H(1λ) followed by v ← VH(x, π). The malicious prover
may receive an additional input (e.g. a public key in the unforgeability game).
For an interactive algorithm E (that we call the online extractor) which controls
the interface to the random oracle, we let VE ↔ P̃E(1λ) denote the execution
with the calls to H simulated by E and where E additionally outputs w ∈ W.
Let [(x, π, v, Z)]VO↔P̃O(1λ) denote the distribution of the outputs of the execution

with oracle O ∈ {H, E} and let δ be the statistical distance.

Definition 5. A non-interactive proof in the quantum random oracle model for
a relation R is a online extractable against adaptive adversaries if there exists
an online extractor E, and functions εsim (the simulation error) and εex (the
extraction error), with the following properties. For any λ ∈ N and for any
q–query dishonest prover P̃,

δ
(
[(x, π, v, Z)]VH↔P̃H(1λ), [(x, π, v, Z)]VE↔P̃E(1λ)

)
≤ εsim(λ, q)

and

Pr
[
v = 1 ∧ (x,w) ̸∈ R : (x, π, v, Z,w)← VE ↔ P̃E(1λ)

]
≤ εex(λ, q) .

Furthermore, the runtime of E is polynomial in λ+q, and εsim(λ, q) and εex(λ, q)
are negligible in λ whenever q is polynomial in λ.
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Consider an execution of the proof system with honest verifier and a prover
that has oracle access to the zero-knowledge simulator Sim. In this execution,
verification is done with respect to the final state of the random oracle Ĥ has

been reprogrammed at certain points fromH by Sim. We let (x, π, v, Z)← V Ĥ ↔
P̃H,Sim(1λ) denote the outcome of this execution where (x, π, Z) ← P̃H,Sim and

v = VĤ(x, π)∧ x /∈ QSim where QSim is the list of queries made to the simulator.

Definition 6. A non-interactive proof system in the QROM Π = (PH ,VH) is
conditionally simulation-sound with respect to a simulator Sim if for all QPT
provers P̃H,Sim with oracle access to H and Sim, there is a function εss and an
oracle algorithm BH such that

δ
(
[x, π, v, Z]V Ĥ↔P̃H,Sim(1λ), [x, π, v, Z]V H↔BH(1λ)

)
≤ εss(λ, qH , qS , n) (3)

where εss(λ, qH , qS , n) is negligible in λ whenever qH , qS and n are polynomial
in λ.

Definition 6 does not by itself imply any soundness notion. However, if a proof
system is sound and satisfies Definition 6, then it is simulation-sound; similarly
if it is (online) extractable, then it is simulation-sound (online) extractable.

On the Satisfiability of this Section’s Definitions. The definitions from this sec-
tion are somewhat strong, i.e. that extractability is online and simulation-sound.
We have chosen to go with these stronger requirements because 1- they give tight
bounds for reductions and 2- they are achievable using standard constructions.
More precisely, the Fiat-Shamir transform applied to special-sound commit-and-
open interactive proofs is online extractable [15,14]. Simulation-soundness and
simulation-sound (extractability) of the Fiat-Shamir transform was shown by
Unruh [27]; and it was observed in [12] that the argument also applies FS of
multi-round proof systems.

3 Key Blinding for MPC-in-the-Head Signature Schemes

3.1 Blinding MPCitH Public Keys

Let F = {fk : {0, 1}λ → {0, 1}λ}k∈{0,1}λ be a family of pseudorandom functions.

For x ∈ {0, 1}λ, we let Fx : k 7→ fk(x). We consider signature schemes that
are constructed as follows. Let Π = (PH ,VH) be a NIZKPoK for the relation
R = {(y, k)) | y = Fx(k)}. It can be turned into a signature scheme as follows.

– Key generation: sample x ∈ {0, 1}λ and k ∈ {0, 1}λ. Output sk := k and
pk := (x, fk(x)).

– Signature: to sign a message m, use P on input (pk, sk) to produce a non-
interactive zero-knowledge proof of knowledge of k such that pk = (x, fk(x))
that depends7 on m.

7 For example, if the proof system uses the Fiat-Shamir heuristic, m can be included
in the random oracle queries that compute the verifier’s challenge.
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– Verification: run the verification protocol V on input pk.

For such protocols, we consider a generic blinding procedure which was first
informally proposed in [17]. To blind a public key pk = (x, fk(x)) using a seed
τ , one encrypts x a second time using a new key derived from pk and τ , for
example using a cryptographic hash function G modelled as a random oracle.
The new blinded public key is bpkτ = (x, fG(τ,pk)(pk)). Observe however that we
want the same verification procedure for every blinded key (verification should
depend only on the blinded public key and should not require knowledge of τ),
so the value x cannot be itself encrypted. Moreover, unlinkability requires that
we use the same input x for every public key, otherwise it becomes trivial to link
blinded keys to the original key. Based on these observations, we conclude that
each public key must use the same input x. It was shown in the full version of [7]
that k 7→ fk(x) is one-way for any input x if fk is pseudorandom.

We now present our general framework for instantiating post-quantum digital
signatures with key blinding from MPCitH. We assume for simplicity that the
messages are of a fixed size n(λ) determined by the security parameter.

Construction 1. Assume the following prerequisites:

– A security parameter λ ∈ N
– A family of pseudorandom permutations F = {fk : {0, 1}2λ → {0, 1}2λ}k∈{0,1}λ ,

– A fixed input inp ∈ {0, 1}2λ.
– F : {0, 1}2λ → {0, 1}2λ defined as F (k, k′) := fk′ ◦ fk(inp).
– Cryptographic hash functions H,G : {0, 1}∗ → {0, 1}λ (modelled as random

oracles).
– A NIZKPoK Π = (PH ,VH) for the relation RF : {0, 1}2λ·n(λ) × {0, 1}2λ

defined as RF = {(y∥m, (k, k′)) | y = F (k, k′), |m| = n(λ)}.

We define blSig = (KGen,BlindPK, Sign,Verify) as the following signature scheme
with key blinding:

– KGen(1λ) returns sk←$ {0, 1}λ and pk = fsk(inp)
– BlindPK(pk, τ) returns bpk = fG(τ,pk)(pk)
– Sign(m, sk, τ) computes pk = fsk(inp) and bpk = BlindPK(pk, τ) and returns

PH(bpk∥m, sk, G(τ, pk))
– Verify(bpk,m, σ) returns VH(bpk∥m,σ)

In the remainder of this section, we show the security of our construction
assuming certain properties of F and Π.

3.2 Security of (Blinded) Key Generation

Forging signatures for a scheme built from Construction 1 is at most as hard
as finding preimages of F . The hardness of inverting F relies on the fact that
if {fk}k is a family of pseudorandom permutations, then for any x, fk(x) is
one-way with respect to k, i.e. {Fx : k 7→ fk(x)}x is a one-way function family.
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Lemma 1 ([7]). Let {fk : {0, 1}λ → {0, 1}λ}k∈{0,1}λ be a family of pseu-
dorandom permutations, then Fx(k) := fk(x) is a one-way function for any
x ∈ {0, 1}λ.

The proof of Lemma 1 is found in the full version of [7]. It relies on the fact that
the message space (or block size) of f is equal to its key space (or key size). Since
the function F applies f twice with two different keys, the block size should be
twice the key size.

Since F is actually built from the function family {fk′ ◦ fk}(k,k′). It remains
to show that this is a family of pseudorandom functions if fk are pseudorandom.

Lemma 2. If {fk}k is a family of pseudorandom permutations, then {fk′ ◦
fk}(k,k′) is also a family of pseudorandom permutations.

Proof. Suppose there is a distinguisherA against the pseudorandomness game: it
is given oracle access to either fk′ ◦ fk for random k, k′ or to a random function
R, and tries to distinguish between both cases. We construct an adversary B
against the pseudorandomness of fk as follows: given an oracle O which is either
fk or a random function, sample a key k′ and run A with oracle fk′ ◦ O.

Since fk′ is a permutation, for a random R the function fk′ ◦R is also random.
Therefore, if O = fk, A has an oracle for fk′ ◦ fk and if O = R, A has an oracle
for the random function R′ = fk′ ◦R. We conclude that B distinguishes fk from
a random function with the same advantage as A distinguishes fk′ ◦ fk from
random. ⊓⊔

3.3 Unforgeability of Construction 1

We now want to show that forging valid signatures for blinded keys is at least
as hard (asymptotically) as inverting the one-way function F . Recall that for
breaking the unforgeability game, the adversary on input pkmust produce τ∗,m∗

and a valid proof of knowledge σ∗ of (k, k′) such that BlindPK(pk, τ∗) = F (k, k′).
The typical strategy of using the knowledge extractor of the NIZKPoK on σ∗

does not directly work here. In particular the adversary could produce a proof for
(k, k′) ̸= (sk, G(τ∗, pk)), such that the knowledge extractor would not necessarily
allow us recover the secret sk. Furthermore, the adversary has some control over
the target blinded public key bpk for its forgery, however this control is limited
to the choice τ which rerandomizes pk through the random oracle.

To precisely capture the problem the adversary needs to solve for forging
signatures, we define the following NP relation.

Definition 7. Let G : {0, 1}∗ → {0, 1}λ be a quantumly accessible random or-
acle, let {fk : {0, 1}2λ → {0, 1}2λ}k∈{0,1}λ be a family of pseudorandom per-

mutations and let inp ∈ {0, 1}2λ. We define RG,f as the NP relation where the
instances are of the form y ∈ {0, 1}2λ and witnesses are tuples (k, k′, τ) such
that

(y, (k, k′, τ)) ∈ RG,f ⇐⇒ fG(τ,y)(y) = fk′(fk(inp)) . (4)
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Using the fact that G is a random oracle, we can show that this relation is as
hard as inverting F by reprogramming the oracle at a certain point. Let AG

be an adversary that on input y outputs a witness for RG,f after q queries to
G with some probability p. We can invert F on a specific point z by sampling
a key s, setting y = f−1

s (z), running AG on input y, and reprogramming one
of its oracle queries to output s. With probability p, AG outputs (τ, k, k′) such
that fG(τ,y)(y) = fk′(fk(inp)). With probability 1

q , (τ, y) is the point that was

programmed as G(τ, y) = s, such that z = fs(y) = fk′(fk(inp)). Thus (k, k′) is
a preimage of z for F as required. We formalize this argument in the QROM
using the measure-and-reprogram approach [12,13] with Lemma 3 whose proof
is in Appendix B.

Lemma 3. Let {fk}k∈{0,1}λ be a family of pseudorandom permutations. Let G
be a quantum-accessible random oracle. If F : (k, k′) 7→ fk′(fk(inp)) is a one-way
function, then the relation RG,f is hard with advantage

AdvRG,f (λ) ≤ (2qG + 1)2 · Advowf
F (λ) (5)

where qG is the number of queries to G.

Before going into the proof of unforgeability, we observe that unlike the un-
forgeability for regular digital signatures, in the euf-cmba game, the adversary
can output a message m∗ that was queried to the signature oracle, as long as
τ∗ differs. The proof thus requires bounding the probability of reusing a sig-
nature that was issued for m∗ with a different τ . Only then can we move to
standard techniques to bound the probability of producing a forgery. To this
end, we make some assumptions about the functions fk. We require that it is
hard to find τ ̸= τ ′ such that fG(pk,τ)(pk) = fG(pk,τ ′)(pk). This is the case if we
assume that G is collision resistant and that the fk are key-collision-resistant8

(Definition 11).

Theorem 1. Let blSig be the signature scheme with key blinding form Construc-
tion 1. Assume that F = {fk}k is a family of key-collision-resistant pseudoran-
dom permutations. Then blSig is euf-cmba in the QROM with advantage at
most

Adveuf-cmba(λ) ≤ AdvRG,f (λ) +O(q3G · 2−λ) + Advkcr(λ)

+ qs · εzk(λ, qH) + εss(λ, qH , qS)

+ εsim(λ, qH) + εex(λ, qH) .

where qH , qG and qS are respectively the number of queries to H,G and Sig made
by the adversary; where εzk, εsim, εss and εex are defined in Section 2.3; and where
Advkcr(λ) is the advantage in the key-collision-resistance game (Definition 11).

8 Since keys are derived from the random function G, key-collision-resistance could
potentially be replaced with a weaker assumption.
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Proof. Let AG,H,Sig be an adversary against the euf-cmba experiment with
Construction 1 that has access to a signature oracle Sig, to the QRO H for the
proof system Π and to the QRO G used to blind public keys.

There are two scenarios for a forgery produced by AG,H,Sig: either m∗ was
not queried to the signing oracle, or m∗ was queried to Sig, but with a τ ̸= τ∗.
The first case requires the adversary to produce a new valid proof of knowledge
and will be handled using standard techniques. The second case occurs if τ and
τ∗ lead to the same blinded public key. We handle the second and simpler case
first.

The proof proceeds in a sequence of hybrid games, bounding the difference
in the probability of winning between each hybrid. We start with the original
euf-cmba game (Definition 2). Let wini denote the event that the challenger
outputs 1 in game i and let QSig be the list of pairs (m, τ) queried to the signing
oracle.
Game 0 (EUF-CMBA). (pk, sk)← KGen(1λ) and (m∗, σ∗, τ∗)← AG,H,Sig(pk)

win0 = Verify(BlindPK(pk, τ∗),m∗, σ∗) ∧ (m∗, τ∗) /∈ QSig (6)

We modify this game by adding the condition that the challenger outputs 0
if there exist τ ̸= τ∗ such that (m∗, τ) ∈ QSig and G(pk, τ) = G(pk, τ∗)
Game 1. (pk, sk)← KGen(1λ) and (m∗, σ∗, τ∗)← AG,H,Sig(pk)

win1 = win0 ∧ ∀τ ̸= τ∗, (m∗, τ) ∈ QSig =⇒ G(pk, τ) ̸= G(pk, τ∗) (7)

Let coll be the event ∃τ ̸= τ∗ : (m∗, τ) ∈ QSig ∧ G(pk, τ) = G(pk, τ∗). We have
win1 = win0 ∧ ¬coll. The difference between games 0 and 1 is thus

|Pr[win0]− Pr[win1]| = |Pr[win0 ∧ coll] + Pr[win0 ∧ ¬coll]− Pr[win1]|
≤ Pr[coll]

≤ O(q3G2
−λ)

where the above bound comes from the bound on quantum collision finding
(Lemma 6) for the quantum random oracle G.

Next, we get the challenger to abort whenever there is a τ in the list of queries
that lead to the same blinded key as τ∗.
Game 2. (pk, sk)← KGen(1λ) and (m∗, σ∗, τ∗)← AG,H,Sig(pk)

win2 = win1 ∧ ∀τ ̸= τ∗ : (m∗, τ) ∈ QSig =⇒ fG(pk,τ)(pk) ̸= fG(pk,τ∗)(pk) (8)

We introduce the event keycoll defined as ∃τ ̸= τ∗ : (m∗, τ) ∈ QSig ∧
fG(pk,τ)(pk) = fG(pk,τ∗)(pk). Then, win2 is the event win0∧¬coll∧¬keycoll
and

|Pr[win1]− Pr[win2]| ≤ Pr[¬coll ∧ keycoll] ≤ AdvkcrA (λ)

since, conditioned on ¬coll, if event keycoll occurs we can find a key collision
by looking through the signature queries to find τ and τ∗ such that G(pk, τ) ̸=
G(pk, τ∗) is a key collision for f .
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In the next game, the oracle Sig(m, τ) = Sign(m, τ, sk) is replaced with the
oracle Sig′(m, τ) := Sim(BlindPK(pk, τ)∥m) where Sim is the zero-knowledge
simulator of the NIZKPoK Π.
Game 3. (pk, sk) ← KGen(1λ), (m∗, σ∗, τ∗) ← AG,H,Sig′(pk), Sig′(m, τ) :=
Sim(BlindPK(pk, τ)∥m)

win3 = win2

Since the scheme is zero-knowledge (Definition 4) and by a union bound over
the number of signature queries qS , we have

|Pr[win3]− Pr[win2]| ≤ qS · εzk(λ, qH) (9)

Recall that in Game 3, the adversary can only win if

∀τ ̸= τ∗, (m∗, τ) ∈ QSig =⇒ BlindPK(pk, τ) ̸= BlindPK(pk, τ∗) (10)

Furthermore, since the signature oracle Sig′ now calls the zero-knowledge simula-
tor, if we let bpk∗ = BlindPK(pk, τ∗), condition (10) implies that bpk∗∥m∗ /∈ QSim

where QSim is the list of queries to the zero-knowledge simulator. Thus, we can
rewrite event win3 as

win3 = Verify(bpk∗,m∗, σ∗) ∧ bpk∗∥m∗ /∈ QSim

= VHθ (bpk∗∥m∗, σ∗) ∧ bpk∗∥m∗ /∈ QSim

where verification of the NIZKPoK is performed with respect to the repro-
grammed oracle Hθ.

Given an efficient adversary AG,H,Sig′ against Game 3, we construct an ad-
versarial prover9 PH,Sim against Π that takes input pk and runs AG,H,Sig′ :

– Whenever AG,H,Sig′ makes a query to Sig′ on input (m, τ), PH,Sim queries
Sim on input BlindPK(pk, τ)∥m.

– When AG,H,Sig′ outputs (m∗, τ∗, σ∗), PH,Sim outputs the instance/proof pair
(x, π) = (BlindPK(pk, τ∗)∥m∗, σ∗) along with auxiliary output Z = τ∗.

To ensure that x has the correct form throughout the following games, we intro-
duce the parameterized set Xpk,τ∗ := {BlindPK(pk, τ∗)∥m}m∈{0,1}n(λ) .

Game 4. (pk, sk)← KGen(1λ), (x, π, τ∗)← PH,Sim(pk),

win4 = x ∈ Xpk,τ∗ ∧ VHθ (x, π) ∧ x /∈ QSim

We have that by definition of PH,Sim,

Pr[win4] = Pr[win3] .

Let BH be the malicious prover without access to Sim that emulates PH,Sim

from Definition 6 (simulation-soundness). In the next game, we let (x, π, τ∗) be

9 P also has oracle access to G, but from this point on, we drop the superscript to
lighten notation.
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generated by BH instead of PH,Sim and make verification with respect to the
unprogrammed oracle H.
Game 5. (pk, sk)← KGen(1λ), (x, π, τ∗)← BH(pk)

win5 = x ∈ Xpk,τ∗ ∧ VH(x, π)

By Definition 6, we have

Pr[win5] = Pr[win4] ≤ εss(λ, qH , qS)

for εss negligible in λ when qH and qS are polynomial in λ.
We now invoke the online knowledge extractor for BH from Definition 5. In

a first step, the random oracle is emulated by the extractor.
Game 6. (pk, sk)← KGen(1λ), (x, π, (k, k′), τ∗)← BE(pk)

win6 = x ∈ Xpk,τ∗ ∧ VE(x, π)

By Definition 5, we have

|Pr[win6]− Pr[win5]| ≤ εsim(λ, qH)

Next, we change the winning condition to also check that the witness pro-
duced by the knowledge extractor is a valid preimage for F .
Game 7. (pk, sk)← KGen(1λ), (x, π, (k, k′), τ∗)← BE(pk)

win7 = x ∈ Xpk,τ∗ ∧ VE(x, π) ∧ F (k, k′) = BlindPK(pk, τ∗)

Recall the relation RF = {(x, (k, k′)) | ∃m : x = y∥m ∧ y = F (k, k′)} which is
proven by the NIZKPoKΠ. The condition x ∈ Xpk,τ∗∧F (k, k′) = BlindPK(pk, τ∗)
implies that (x, (k, k′)) ∈ RF . By Definition 5, we thus have

|Pr[win7]− Pr[win6]| ≤ Pr[VE(x, π) ∧ (x, (k, k′)) /∈ RF ] ≤ εex(λ, qH)

We now defineM, an algorithm for the relation RG,f that, on input y = pk,
runs the online knowledge extractor on input pk to get k, k′ and τ∗.
Game 7. (pk, sk)← KGen(1λ), (k, k′, τ∗)←M(pk)

win8 = (pk, (k, k′, τ∗)) ∈ RG,f

We have
Pr[win8] ≥ Pr[win7]

Since Game 0 is the euf-cmba game and Game 8 is finding a witness for
the relation RG,f , the statement follows by accounting for the errors across all
games:

Pr[win0] ≤ Pr[win8] +O(q3G · 2−λ) + Advkcr(λ)

+ qs · εzk(λ, qH) + εss(λ, qH , qS)

+ εsim(λ, qH) + εex(λ, qH) .

⊓⊔
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3.4 Unlinkability of Construction 1

We show unlinkability of Construction 1 in the QROM using a similar strategy as
[17]. That is, we first use the zero-knowledge simulator to remove the signature
oracle. Next, we remove the dependence on the identity public key pk of the
blinded keys by first replacing G(τ, pk) with random values and then changing
the blinding oracle so that it returns encryptions of independently generated
public keys. This reduces the unlinkability game to the task of distinguishing
many encryptions of the same plaintext from many encryptions of independent
plaintexts. This corresponds to the notion of chosen plaintext indistinguishability
security in a multi-user setting, defined in Section A.1.

Theorem 2. Let blSig = (KGen,BlindPK,Sign,Verify) be the blinded signature
scheme of Construction 1 built from proof system Π = (PH ,VH) and he family
of PRP F = {fk}k. If Π is zero-knowledge (Definition 4) in the QROM and if F
satisfies multi-user ciphertext indistinguishability (Definition 12) with advantage
Advmu-ind(n) then blSig is unlinkable under chosen message and blinding attack
(Definition 3) in the QROM with advantage

Advul-cmba(λ) ≤ 1

2
+ Advmu-ind(λ) + 2qH

√
Advmu-ind(λ) + qS · εzk(λ, qH) (11)

where qG, qH , qS and qB are respectively the number of queries to the random
oracles G and H, to the signing oracle and to the blinding oracle.

Proof. We proceed by a game-hopping argument to reduce the unlinkability
game to the multi-user indistinguishability of fk. In each new game, we remove
some part of the game that depends on the identity public key pk. We assume
w.l.o.g. that the adversary never sends τ∗ that was previously queried to the
signature oracle since this would make the challenger abort. Let AG,H,bl,Sig

1 and

AG,H,bl,Sig
2 denotes the two phases of the adversary (before and after the challenge

blinded key).
Game 0 (UL-CMBA).

(ski, pki)← KGen(1λ), i ∈ {0, 1}

τ∗ ← AG,H,bl,Sig
1 (1λ)

b←$ {0, 1}
bpk∗ ← BlindPK(pkb, τ

∗)

b′ ← AG,H,bl,Sig
2 (bpk∗)

bl(τ) :=

{
BlindPK(pkb, τ) if τ = τ∗

BlindPK(pk0, τ) if τ ̸= τ∗

Sig(m, τ) :=

{
Sign(m, skb, τ) if τ = τ∗

Sign(m, sk0, τ) if τ ̸= τ∗

Game 0 is the ul-cmba experiment.

Pr[b′ = b | Game 0] = Advul-cmbaA (λ) (12)

By construction, the signature algorithm is

Sign(m, sk, τ) = PH(BlindPK(pk, τ)∥m, sk, G(τ, pk)).
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In the next hybrid, we remove dependence of the signature algorithm on sk and
G(τ, pk) by using the HVZK simulator for Π which depends only on the first
argument.
Game 1.

(ski, pki)← KGen(1λ), i ∈ {0, 1}

τ∗ ← AG,HΘ,bl,Sig
1 (1λ)

b←$ {0, 1}
bpk∗ ← BlindPK(pkb, τ

∗)

b′ ← AG,HΘ,bl,Sig
2 (bpk∗)

bl(τ) :=

{
BlindPK(pkb, τ) if τ = τ∗

BlindPK(pk0, τ) if τ ̸= τ∗

Sig(m, τ) :=

{
Sim(BlindPK(pkb, τ)∥m) if τ = τ∗

Sim(BlindPK(pk0, τ)∥m) if τ ̸= τ∗

Two changes are introduced in the above game: all calls to Sign are changed
to corresponding calls to Sim, and the adversary’s oracle H is replaced with a
reprogrammed oracle HΘ. By invoking the zero-knowledge property of Π (Defi-
nition 4) for the qS simulated proofs, we have

|Pr[b′ = b | Game 1]− Pr[b′ = b | Game 1]| ≤ qS · εzk(λ, qH) (13)

Next, we show how to remove dependence on pk from the symmetric key used
to blind the public key. In game 2, whenever BlindPK is called, it returns fk′(pk)
for a random k′ ∈ {0, 1}λ instead of fG(τ,pk)(pk). We denote this as f$(pk) below.
Game 2.

(ski, pki)← KGen(1λ), i ∈ {0, 1}

τ∗ ← AG,HΘ,bl,Sig
1 (1λ)

b←$ {0, 1}
bpk∗ ← f$(pkb)

b′ ← AG,HΘ,bl,Sig
2 (bpk∗)

bl(τ) :=

{
f$(pkb) if τ = τ∗

f$(pk0) if τ ̸= τ∗

Sig(m, τ) :=

{
Sim(f$(pkb)∥m) if τ = τ∗

Sim(f$(pk0)∥m) if τ ̸= τ∗

Since BlindPK is deterministic, we may assume without loss of generality that
the adversary queries the bl oracle at most once per input τ to avoid the need
for the oracles to record the keys.

Intuitively, the only way the adversary can detect this change in the behavior
of the blinding oracle is if it has queried G on an input containing pk. We use
the one-way to hiding technique of [26] (Lemma 5) to make this formal in the
context of quantum access to G.

The one-way to hiding lemma allows us to relate the difference in winning
probability between games 1 and 2 with the probability of extracting pk from the
adversary’s random oracle queries. To this end, define EG to be an algorithm that
simulates the interaction of AG,HΘ,bl,Sig with the challenger, and that picks one
of the quantum queries of A to G at random, measures this query and outputs
the result. Then, invoking Lemma 5 qB times (once for each blinding query in
which G(τ, pk) is replaced with a random value) implies that

|Pr[b = b′ | Game 2]− Pr[b = b′ | Game 1]| ≤ 2qBqG

√
Pr[pk← EG] (14)
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The probability that E outputs pk is at most the probability that an adversary
recovers the plaintext pk from many encryptions of pk under f using different
keys. It is trivially upper-bounded by

Pr[pk← EG] ≤ Advmu-indE (λ)

since one could turn its advantage into one for the MU-IND (Definition 12) game
by sampling pk0, pk1, requesting ciphertexts ci = Encki

(pkb), sending c1, . . . , cn
to the adversary which returns pk′, and testing for pk′ = pk0.

We now change the blinding oracle again by replacing the real public key
pk with a freshly sampled independent public key pk′. In game 3, when the
adversary requests the blinding of the key with a seed τ , the challenger samples
k′ ←$ {0, 1}λ and pk′ ← KGen(1λ) and returns fk′(pk′). We denote this as f$($)
in the game below (though pk is not necessarily uniformly distributed).
Game 3.

(ski, pki)← KGen(1λ), i ∈ {0, 1}

τ∗ ← AG,HΘ,bl,Sig
1 (1λ)

b←$ {0, 1}
bpk∗ ← f$($)

b′ ← AG,HΘ,bl,Sig
2 (bpk∗)

bl(τ) := f$($)

Sig(m, τ) := Sim(f$($)∥m)

We can relate the probability of success in this game with the multi-user
indistinguishability of fk. In game 3, the blinded keys that the adversary receives
are encryptions of pk′ under a secret key k′ where both pk′ and k′ are unrelated to
pk (and sk). If the adversary’s behaviour changes in an observable way between
games 2 and 3, then we can turn this into a distinguisher for the MU-IND
property of fk in the following way.

Let D be the following adversary against the MU-IND game:

– Let qB be an upper-bound on the number of blinding queries made by A.
Sample qB + 1 public keys pk0, . . . , pkn and query the MU-IND challenger
on (i, pk0, pki)i∈[qB ] to get the resulting ciphertexts c1, . . . , cqB (which are
either an encryption of pk0 or pki with a key ki).

– D now runs A by acting as the challenger in game 3 and by simulating its
blinding oracle as follows: on A’s ith query to bl, reply with ci.

– Output whatever A outputs.

If b = 0 in the MU-IND game, then every ci is an encryption of pk0 and thus A
is playing game 2. If b = 1, then each ci is the encryption of a new public key
pki, so A is playing game 3. By the MU-IND property of fk, we have that

|Pr[b = b′ | Game 3]− Pr[b = b′ | Game 2]| ≤ Advmu-indD (λ)

In game 3, bpk∗ and the two oracles bl and Sig are independent of b. Therefore

Pr[b = b′ | Game 3] =
1

2
.
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Summing up all the errors, we have

Advul-cmbaA (λ) ≤ 1

2
+Advmu-indD (λ)+2qBqH

√
Advmu-indE (λ)+qS ·εzk(λ, qH) . (15)

⊓⊔

4 The blHelium Signature Scheme with Key Blinding

We now present our blHelium protocol, which follows Construction 1 instantiated
with the AES block cipher and the Helium proof system [21]. We begin by
giving a brief overview of the Helium signature scheme before describing the
changes we make to equip it with key blinding, along with parameter choices.
The detailed Helium proof system can be found in [21]. We prove its QROM
security in Appendix C.

4.1 Overview of Helium

The scheme takes place over seven phases, representing the different message
flows in the identification scheme prior to being converted to a signature scheme
via the Fiat-Shamir transform (i.e., Phase 1 represents the first prover message,
Phase 2 the first challenge, etc.). A high-level description of the proof system is
as follows:

– Committing to MPC Party Seeds. Each MPC party’s randomness is
derived from a single seed which is committed to. The protocol runs through
a distributed computation of AES, with each party holding a share of the
secret key.

– Checking of the MPC Computation. Proving that the AES circuit was
evaluated correctly means verifying correctness of the shares at each step
of the MPC protocol. Every linear operation in the AES circuit can be
evaluated locally. The non-linear S-box (a field inverse operation) is done
efficiently by injecting shares of s and t such that s · t = 1.

– Challenging the Checking Protocol. The injected shares of (si, ti) must
be checked for consistency. This is done efficiently by using polynomials S
and T interpolated such that S(i) = si and T (i) = ti. The prover distributes
shares of P = S · T to the parties. To verify correctness of the polynomials,
a test P (r) = S(r) · T (r) is performed for a random r.

Verification consists of reconstructing the view of each MPC party whose seed
was opened, testing for consistency. For a more thorough description of the
protocol, we refer the reader to [21].

4.2 The blHelium Signature Scheme

At a high level, the blHelium signature scheme with key blinding follows Con-
struction 1. We add a procedure to blind public keys and modify the signature
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and verification protocols of Helium to accommodate signing and verification
according to blinded keys.

We describe a 128-bit version of blHelium to provide a direct comparison
with Helium (which is implemented for 128-bit AES). However, this parameter
set is not secure enough for most scenarios. We elaborate on this below before
describing the 256-bit version, which is similar, but uses 256-bit AES and 4
blocks of 16 bytes instead of 2. The 128-bit blHelium consists of the following
algorithms:

– KGen: The secret key sk is selected at random from the set of keys such that
the circuits for aessk(0) and aessk(1) have no s-boxes which receives the 0
byte input10. The public key consists of pk = (aessk(0),aessk(1)).

– BlindPK(pk, τ): computes bk← G(τ, pk, t) and increments t until the circuits
for aesbk(pk0) and aesbk(pk1) have no s-boxes which receives the 0 byte
input. The blinded public key is bpk = (aesbk(pk0),aesbk(pk1)).

– Sign(sk, τ,m): computes the blinding keys (bk, bpk) as in BlindPK and runs
the Helium NIZKPoK to prove knowledge of sk and bk such that
bpk = (aesbk(aessk(0)),aesbk(aessk(1))).

– Verify(bpk,m, σ): runs the verification protocol for the NIZKPoK.

4.3 blHelium Parameters & Performance

We consider two parameter sets for the blHelium scheme. The first uses the 128
bit AES block cipher as in Helium, but it suffers from some vulnerabilities. The
256 bits variants of AES offers a secure instantiation of blHelium.

128-bit blHelium. In the context of quantum adversaries 128-bit AES is not
enough given that the Grover’s unstructured search algorithm halves the security
parameter asymptotically. More concretely, recent estimates of the resources
required to break AES128 using Grover’s algorithm have come up with a circuit
depth in the order of 280 [19].

However, even in the classical setting there are issues with instantiating Con-
struction 1 with an 128-bit key cipher. An attacker only needs to find τ ̸= τ ′ that
lead to the same blinded key to cheat the euf-cmba game. For Construction 1,
this is at most as hard as finding a collision to a 128-bit hash function, which by
the birthday bound is of complexity 264 against classical attacks and even lower
against quantum attacks. Note that strictly speaking this is a break of Defini-
tion 2, but the resulting forgery is valid for a message and blinded public key
pair that was already produced by the signing oracle. All that the adversary has
achieved is to find another blinding parameter which leads to the same blinded
public key. Depending on the context, this might not be considered a security
break, or it might be infeasible to carry out such an attack if, for example, the
space of admissible τ is small.

We describe here our scheme based on 128-bit AES. We have implemented
this version to provide a direct comparison with Helium (which is only available

10 This step is necessary for the optimisation that computes the s-box as a field inverse.
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for 128-bit AES). We encrypt two different plaintexts, first with sk, and then
with bk. The choice of plaintext is arbitrary but must be fixed for all users
– for simplicity we have chosen the all 0 and all 1 plaintext. This requires a
total of two AES128 key schedules (which takes 2 × 40 = 80 s-boxes) and four
AES128 encryptions (which takes 4 × 160 = 640 s-boxes) for a total of 720 s-
boxes. Recall that s-box computation in the MPC protocol are checked using
polynomial interpolation. Since the degree of each polynomial is limited by the
field of size 128, we split these into 6 sets of polynomials (Si, Ti, Pi)i∈[6], each
being used to prove correctness of 720/6 = 120 s-box computations. In contrast,
Helium requires two sets of polynomials.

Helium and blHelium only use a subset of possible keys, since we restrict to
AES circuits which have no substitution box that receives the 0 byte as input.
Using the methodology of [8] which assumes the input to each s-box to be a
uniformly random element of F28 , we can estimate the fraction of keys for which
the AES circuit has no 0-input s-box as 0.457 ≈ (1 − 1

256 )
200. Therefore, the

number of admissible keys is approximately 2127 (i.e. the key space is reduced
roughly by half). Note also that for this reason, the BlindPK of blHelium presented
in Section 4.2 differs slightly from Construction 1. It includes an additional
parameter t that is incremented until G(τ, pk, t) yields an admissible key.

We have implemented our 128-bit blHelium protocol as a fork of the Helium
source code and have compared its per performance with Helium. Our focus in
benchmarking is on signing and verification: key generation and blinding consist
of only a handful AES operations and thus do not represent a significant burden.
The sizes of signatures and the CPU time for signing and verification are reported
in Figure 1 and compared to Helium. We observe that signature and verification
are 2× to 3× slower than Helium and signature size are 2× to 3× larger. This is
to be expected from the fact that the circuit form our blHelium scheme evaluates
720 s-boxes instead of 200 for Helium (a factor of 3.6×).

Helium+AES128 blHelium+AES128

(N,M) Sign Verify Size Sign Verify Size

(17, 31) 8.169 7.605 17 580 16.816 14.086 52 424
(19, 30) 8.088 7.507 17 016 17.704 15.690 50 736
(31, 26) 8.342 7.810 14 760 20.095 17.569 43 984
(57, 22) 9.918 9.370 12 856 26.391 24.118 37 584
(107, 19) 12.513 12.448 11 420 38.459 35.607 32 776
(139, 18) 14.267 14.196 11 112 44.906 43.037 31 344
(185, 17) 17.881 17.900 10 500 55.109 52.827 29 608
(255, 16) 21.636 21.593 9 888 67.647 67.490 27 872
(371, 15) 28.132 28.698 9 516 90.303 88.953 26 376

Fig. 1. Benchmarking (signature sizes in bytes and signing and verification times in
milliseconds) information for our implementation of blinded Helium and comparison
with Helium for different parametersN andM representing the number of MPC parties
and the number of repetitions, respectively. Timing is averaged over 100 iterations.
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256-bit blHelium. The 256-bit version of blHelium is very similar to the 128-
bit one, so we focus on the distinctions. It uses AES256, in which keys are
composed of 32 bytes and the cipher operates on blocks of 16 bytes. Since we are
encrypting twice for blinded public keys, the total key space is composed of 64
bytes. As explained in Section 3.2, we want the plaintext size to match the key
size, therefore the AES256 version of blHelium uses 4 blocks of 16 bytes. This
means the signature algorithm runs a total of 2 key schedules and 8 encryptions
as part of the MPCitH computation. Encryption in AES256 consists of 14 rounds
where each round performs an s-box on each of the 16 byte of the state for a total
of 224 s-boxes per encryption circuit. Each key schedule consists of 56 s-boxes.
Hence, a grand total of 2×56+8×224 = 1904 s-boxes are involved in the circuit
we need to run as part of the MPCitH proof. To prove knowledge of preimages for
such a circuit using the Helium proof system, one would require ⌈1904/127⌉ = 15
polynomials to check the multiplication triples. To prevent division by 0, we can
again use rejection sampling on the keys and estimate using the methods of [8]
that roughly 1

3 of keys are valid for the encryption circuit (that is, the circuit
contains no 0-input s-box) for a loss of roughly 1.4 bits of security.

5 Conclusion & Open Questions

Our generic construction provides key blinding to any MPCitH signature schemes
based on symmetric cryptography. They only rely on well-studied primitives
and produce short public and blinded keys, which can be used as identifiers in
anonymity networks. We have provided an implementation based on the Helium
signature scheme that is ready to be experimented with.

A way to avoid introducing the relation RG,f in the proof of unforgeability
would be to set the parameters such that key generation has a lossy mode, for
example by having the block size larger than the key size. Would this lossy
generator preserve the key-one-wayness of the encryption scheme? Is the tighter
security reduction worth the increased overhead of running more encryption
circuits?

We have not considered strong unforgeability for our construction, but we
conjecture that it is implied by the concept of computationally unique responses
for interactive proofs, which is known to imply strong unforgeability for Fiat-
Shamir-based signatures [23,12,27].
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A Additional Preliminaries

A.1 Security Definitions for Symmetric Primitives

Definition 8 (One-Way Function). A function F : X → Y is one-way
(OWF) if for all QPT adversary A,

Pr[F (x) = y | y ∈R Y, x← A(y)] ≤ negl(λ) . (16)

Definition 9 (Pseudorandom Function). A family of function {fk : X →
Y}k∈{0,1}λ is a pseudorandom function family (PRF) if for all QPT oracle ad-

versary AO(·),∣∣∣Pr[Afk(·)(1λ) = 1 | k ∈R {0, 1}λ]− Pr[AF (·)(1λ) = 1]
∣∣∣ ≤ negl(λ) (17)

where F is a uniformly random function.

Definition 10 (Key-One-Way Function). A family of function {fk : X →
Y}k∈{0,1}λ is key-one-way (KOW) if for all QPT adversary A,

Pr[fk′(x) = fk(x) | k ∈R {0, 1}λ, x ∈R X , k′ ← A(x, fk(x))] ≤ negl(λ) (18)

Definition 11 (Key Collision Resistant Function). A family of function
{fk : X → Y}k∈{0,1}λ is key-collision-resistant (KCR) if for all QPT adversary
A,

Pr[fk′(x) = fk(x) ∧ k′ ̸= k | x ∈R X , (k, k′)← A(x)] ≤ negl(λ) (19)

The following lemma establishes a relation between key-collision-resistance
and key-one-wayness.

Lemma 4 ([5]). Let F = {fk : {0, 1}n → {0, 1}n}k∈{0,1}n be a family of func-
tions. Assuming there exist key collisions for F and that F is key-collision-
resistant, then F is key-one-way.

Definition 12. Let {fk : X → Y}k be a family of permutations. The multi-user
indistinguishability (MU-IND) experiment of parameter n is defined as follows:

– The challenger samples n keys r1, . . . , rn ←$ {0, 1}λ and a bit b←$ {0, 1}.
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– The adversary may send queries of the form (i,m0,m1) ∈ [n] × X × X to
which the challenger responds to with fri(mb).

– The adversary outputs a bit b′.

The advantage of an adversary A in the MU-IND game is Advmu-indA (λ) =∣∣Pr[b = b′]− 1
2

∣∣.
Multi-user security was studied in the context of public-key encryption in [4]
where the authors found that it is implied by IND-CPA up to some loss in
security. Their results also apply to the private-key setting, thus if we assume that
aes, our chosen cipher for blHelium, satisfies chosen plaintext indistinguishability,
then it is secure according to Definition 12.

A.2 Quantum Random Oracle Model

Theorem 3 (Measure-and-reprogram [12,13]). Let X and Y be finite non-
empty sets. There exists a black-box two-stage quantum algorithm S with the
following property. Let A be an arbitrary oracle quantum algorithm that makes
q queries to a uniformly random H : X → Y and that outputs some x ∈ X
and a (possibly quantum) output z. Then, the two-stage algorithm SA outputs
some x ∈ X in the first stage and, upon a random Θ ∈ Y as input to the second
stage, a (possibly quantum) output z, so that for any x◦ ∈ X and any (possibly
quantum) predicate V :

Pr
Θ

[
x=x◦ ∧ V (x,Θ, z) : (x, z)← ⟨SA, Θ⟩

]
≥ 1

(2q + 1)2
Pr
H

[
x=x◦ ∧ V (x,H(x), z) : (x, z)← AH

]
.

Furthermore, S runs in time polynomial in q, log |X | and log |Y|.

Lemma 5 (One-Way to Hiding [26]). Let H : X → Y be a quantumly
accessible random oracle and let AH be an adversary that makes at most q queries
to H. Let EH be an algorithm that picks i ∈ [q] and y ∈ Y at random, runs
AH(x, y) until it’s ith query, measures the input of the query in the computational
basis and outputs the measurement outcome.

∣∣Pr[1← AH(x,H(x))]− Pr[1← AH(x, y)]
∣∣ ≤ 2q ·

√
Pr[x← EH(x)] . (20)

Lemma 6 (Quantum Collision Finding [28]). Let H : {0, 1}∗ → {0, 1}λ be
a random oracle and let AH be a QPT adversary that makes at most q queries
to H. Then

Pr[H(x) = H(x′) ∧ x ̸= x′ | (x, x′)← AH(1λ)] ≤ O(q32−λ) (21)
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B Additional Proofs

B.1 Proof of Lemma 3

We proceed as with the argument presented in Section 3.3, but use the measure-
and-reprogram technique (Theorem 3) to insert s into a random oracle query.
Let AG be an adversary against RG,f . Since Theorem 3 asks the adversary to

output the point x which is reprogrammed, we define ÂG that on input y, runs

(τ, k, k′) ← AG(y) and outputs x = (τ, y) along with (τ, k, k′). Let SÂ be the
quantum algorithm from Theorem 3 for ÂG. The reduction R for inverting F
proceeds as follows:

1. On input z ∈ ImF , sample s uniformly at random and set y = f−1
s (z).

2. Run the first stage of SÂ on input y to get a point x.

3. Run the second stage of SÂ with input s.

4. When SÂ produces an output (x, τ, k, k′), output (k, k′).

We now show that this reduction inverts F with probability polynomially related
to the probability that AG breaks relation RG,f . Let Vy(s, k, k

′) be the predi-
cate that returns 1 if and only if fs(y) = fk′(fk(inp)) such that (y, (τ, k, k′)) ∈
RG,f ⇐⇒ Vy(G(τ, y), k, k′) = 1. Then by Theorem 3,

Pr[z = fk′(fk(inp)) | (k, k′)← R(z)]

= Pr[x = (τ, y) ∧ fs(y) = fk′(fk(inp)) | (x, τ, k, k′)← ⟨SÂ(y), s⟩]

= Pr[x = (τ, y) ∧ Vy(s, k, k
′) = 1 | (x, τ, k, k′)← ⟨SÂ(y), s⟩]

≥ 1

(2qG + 1)2
Pr[x = (τ, y) ∧ Vy(G(x), k, k′) = 1 | (x, τ, k, k′)← ÂG(y)]

where qG is the number of queries to G made by ÂG. Ignoring the inverse
polynomial factor, the above probability corresponds to

Pr[Vy(G(τ, y), k, k′) = 1 | (τ, k, k′)← AG(y)]

= Pr[fG(τ,y)(y) = fk′(fk(inp)) | (τ, k, k′)← AG(y)]

= Pr[(y, (τ, k, k′)) ∈ RG,f | (τ, k, k′)← AG(y)]

which is the advantage of AG for finding a witness for relation RG,f . ⊓⊔

C QROM Security of blHelium

In the following, we refer to the “Helium proof system” as the 7–message inter-
active proof from which the Helium signature scheme [21] is obtained through
the Fiat-Shamir transform. The verifier checks the validity of the commitments,
recreates the views of the MPC parties using the seeds, and verifies that they
are consistent with the MPC protocol. We refer to [21] for the full details of the
verifier.
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C.1 Online Extractability

Our proof relies on online extractability in the QROM. The following Theorem
is the online extractability with early extraction result (Corollary 4 in [15] with
the simplified bound from Theorem 3).

Theorem 4 (Online Extractability with Early Extraction [15]). Let H :
{0, 1}∗ → {0, 1}n be a random function. There exists an extractable RO-simulator
S, with interfaces S.RO and S.E, that satisfies the following properties. Let A
be a two-round polynomial-time oracle adversary that outputs t1, . . . , tℓ in the
first round and x1, . . . , xℓ ∈ X and W after the second round, resulting in a
transcript [t,x, H(x),W ]AH . Let [t,x,h,W ]GA

S
be the transcript where, when A

outputs ti, S.E is queried on ti to obtain x̂i ∈ X ∪{⊥} and when A halts, S.RO
is queried on A’s outputs xi to generate hi. There are negligible functions δ1 and
δ2 such that

Pr
GA

S

[∃i : xi ̸= x̂i ∧ hi = ti] ≤ δ1 (22)

and
δ([t,x, H(x),W ]AH , [t,x,h,W ]GA

S
) ≤ δ2 (23)

for δ1 + δ2 ≤ 34ℓq/
√
2n + 2365q3/2n where q is the number of oracle queries.

Note that [14] contains generic results about the online extractability of non-
interactive proofs in the QROM. These results are framed in the context of
three-message protocols. It is directly clear if they generalize to more rounds, so
we present here a direct proof that Helium is online-extractable.

Theorem 5. Assuming commit is a random oracle, then the Helium proof sys-
tem instantiated with a post-quantum one-way function F is an online extractable
proof system (Definition 5) for the relation RF = {(x,w) : x = F (w)} with ex-
traction error εex and simulation error εsim satisfying

εsim(n, q) + εex(n, q) ≤ 34M ·N · q/
√
2n + 2365q3/2n (24)

+ max
M1,M2,M3

(
2L− 2

|K|

)M1

·
(

1

28

)M2

·
(

1

N

)M3

against quantum polynomial-time adversaries making q queries to commit where
n is the bit size of commitments and where M1 +M2 +M3 = M is the number
of parallel repetitions.

Proof. A quantum adversary A against Helium has quantum superposition ac-
cess to the commitment oracle Hc = commit. We need to construct a knowledge
extractor E whose success probability in producing a witness is related to A’s
probability of cheating the protocol. The extractor will simulate the random
oracle Hc with the online extractable oracle S of [15] specified in Theorem 4.
The extractor will run A by replacing Hc with the oracle interface S.RO. After
the prover’s first message σ1, E will use the extraction interface S.E on ev-

ery commitment com
(i)
e for e ∈ [M ] and i ∈ [N ] to get either an oracle input
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(salt, e, i, seed(i)e ) or a symbol ⊥ which means that A did not query Hc on this
input. Then, E proceeds in a similar fashion as the extractor of [21, Appendix
A] in their proof of unforgeability of BN++ to compute the inputs and shares
of the MPC parties.

In more details, when A produces its first message σ1, E does the following:

– parse σ1 as (salt, ((com
(i)
e , ct

(i)
e )i∈[N ], . . . ),

– for i ∈ [N ] and e ∈ [M ], use the S.E interface on input com
(i)
e to get either

ŝ
(i)
e or ⊥.

– For each i ∈ [N ] and e ∈ [M ] such that seed(i)e is successfully extracted,

compute the input shares sk(i)e of party i for repetition e using the seed

contained in ŝ
(i)
e .

– If there is an e ∈ [M ] for which ske =
∑

i sk
(i)
e is a preimage for pk, output

ske. Otherwise, output ⊥.

We now show that the probability that E outputs a preimage sk is non-negligible
if A produces a forgery with non-negligible probability.

We let V (σ,h) denote the probabilistic event that V accepts the transcript
(σ,h). We denote by sh3

the set of seeds announced when the challenge is

h3 = (̄ie)e∈[M ], i.e. sh3 = {(salt, e, i, seed(i)e ) | e ∈ [M ], i ̸= īe}. Similarly, let yh3

denote the commitments to the revealed seeds; i.e. yh3
= Hc(sh3

).
We first bound the difference in probability between an execution with Hc

and an execution with S.RO.

Pr[V (σ,h)] = Pr[V (σ,h) ∧Hc(sh3) = yh3 ]

≤ Pr[V (σ,h) ∧ S.RO(sh3) = yh3 ]

+ Pr[Hc(sh3) = yh3 ∧Hc(sh3) ̸= S.RO(sh3)]

≤ Pr[V (σ,h) ∧ S.RO(sh3) = yh3 ] + δ1

where δ1 is the negligible error term of (22).

Next, we bound the probability that the values ŝ
(i)
e obtained through the

S.E interface differ from the committed values.

Pr[V (σ,h) ∧ S.RO(sh3) = yh3 ]

≤ Pr[V (σ,h) ∧ S.RO(sh3) = yh3 ∧ S.E(yh3) = sh3 ]

+ Pr[S.RO(sh3) = yh3 ∧ S.E(yh3) ̸= sh3 ]

≤ Pr[V (σ,h) ∧ S.RO(sh3) = yh3 ∧ S.E(yh3) = sh3 ] + δ2

= Pr[V (σ,h) ∧ ŝh3 = sh3 ] + δ2

where ŝh3
= S.E(yh3

). We again take note of δ2 and add it at the end.
The expression Pr[V (σ,h) ∧ ŝh3

= sh3
] corresponds to the probability that

V accepts when the committed seeds are the values ŝ
(i)
e extracted by E through

S.E. Note that the prover sends N ·M commitments y
(i)
e , so the values ŝ

(i)
e are

well defined for each (i, e) ∈ [N ] × [M ]. We let sk ← E denote the event that
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the seeds ŝ
(i)
e allow E to compute the shares of the witness sk and ⊥ ← E its

complement (when E outputs ⊥). We have

Pr[V (σ,h) ∧ ŝh3
= sh3

] ≤
Pr[sk← E ] + Pr[V (σ,h) ∧ ŝh3

= sh3
| ⊥ ← E ] .

We now look at this last probability that the verifier accepts when the extractor
is unable to reconstruct a witness from the MPC shares.

Recall that the verifier recomputes the view of each party in the MPC proto-
col to the exception of the excluded party ī. Since ŝh3

= sh3
, it computes those

views using the extracted seeds ŝ
(i)
e . If E outputs ⊥, then for every e it holds

that the key ŝke =
∑

i ŝk
(i)

e expanded from the seed ŝ
(i)
e is not a valid preimage.

This means that at least one of the views computed by the verifier is inconsistent
(i.e. that party cheated). In this case the verifier accepts if one of three things
happen:

1. the prover injects invalid polynomials S, T and P (such that S · T ̸= P ); or
2. the prover injects invalid multiplication triples; or
3. the view of the inconsistent party is not opened.

There areM parallel repetitions which must pass verification and the prover may
try to cheat in a different round in each repetition. We analyze the probability
of each event below. The probability that the prover cheats in all M repetitions
corresponds to the trivial cheating probability in the proof of [15]. At this point,
the rest of the analysis is entirely classical and is very similar to the proof of [21]
and to other proofs of soundness for multi-round interactive proofs. We bound
the probability that the verifier accepts when the MPC shares are computed

using the extracted seeds ŝ
(i)
e , conditioned on the extraction failing.

Cheating the first challenge. The first challenge h1 is used to test the check-
ing polynomials. In Helium, there are two checking polynomials P1 and P2 since
there are not enough field elements in F28 to interpolate a single polynomial
with the desired degree. For other one-way functions, there might be more poly-
nomials, for example in blHelium, we use a total of 6 checking polynomials since
we are effectively applying 4 AES circuits (see Section 4.3 for details). Let np

denote the number of checking polynomials and C the total count of field in-
verse in the circuit such that the degree of each polynomial is L = ⌈C/np⌉. By
the Schwartz–Zippel Lemma, the probability that a random point Re satisfies
Se(Re) · Te(Re) − Pe(Re) = 0 is at most 2L−2

|K| where K is the extension field

of F28 . The challenge h1 is parsed as (Re)e∈[M ] where for each e, Re is used to
check that S · T = P by checking that S(Re) · T (Re) = P (Re). If we let M1

denote the number of parallel repetitions e for which the prover cheats in round
1, the probability that the adversary isn’t caught is at most(

2L− 2

|K|

)M1

. (25)
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Cheating the second challenge. The second challenge h2 is used to challenge
the multiplication triples used to check Se(Re) · Te(Re) = Pe(Re). The Helium
protocol uses a dot-product checking protocol, which has soundness 1/|F28 |. If
we let M2 denote the number of repetitions where the adversary cheats in the
second round, its probability of passing verification is at most(

1

28

)M2

.

Cheating the third challenge. The third challenge is used to challenge the views of
the MPC protocol. If the prover did not cheat in any of the previous two rounds,
then there is at least one party whose view is inconsistent with that of the others.
The prover can cheat in this round if the inconsistent view is not challenged by
the verifier. This occurs with probability 1

N . There are M3 = M −M1 −M2

repetitions where the adversary attempts to cheat in the last round. So the
probability of success in this round is(

1

N

)M3

(26)

To complete the proof, we add all the error terms and obtain the bound

Pr[V (σ,h) = 1] ≤ Pr[sk← E ] + δ1 + δ2

+ max
M1,M2,M3

(
2L− 2

|K|

)M1

·
(

1

|F28 |

)M2

·
(

1

N

)M3

where the bound δ1 + δ2 ≤ 34ℓq/
√
2n + 2365q3/2n is given by Theorem 4. Since

our extractor extracts ℓ = M ·N points, the Theorem statement follows. ⊓⊔

C.2 Simulation Soundness

The Helium signature scheme is obtained by applying the Fiat-Shamir transform
on the Helium proof system. Simulation-soundness of the Fiat-Shamir transform
in the QROM was first shown by Unruh [27, Theorems 22 and 24 of the full
version]. More precisely, Unruh showed that if a 3-message public-coin proof sys-
tem is sound (respectively extractable), then the non-interactive proof system
obtained by applying the Fiat-Shamir transform is simulation-sound (respec-
tively simulation-sound extractable). It was observed in [12] that Unruh’s result
extends to Fiat-Shamir applied to multi-round interactive proofs.
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