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Abstract. The parallel broadcast (PBC) problem generalizes the classic
Byzantine broadcast problem to the setting where all n nodes broadcast
a message and deliver O(n) messages. PBC arises naturally in many set-
tings including multi-party computation. The state-of-the-art PBC pro-
tocol,TrustedPBC, is due to Tsimos, Loss, and Papamanthou (CRYPTO
2022), which is secure under an adaptive adversary assuming f < (1−ϵ)n,
where f is the number of Byzantine failures and ϵ ∈ (0, 1). TrustedPBC
focuses on single-bit inputs and achieves Õ(n2κ4) communication and
O(κ logn) rounds.
In this work, we propose three PBC protocols for L-bit messages, for any
size L, that significantly improve TrustedPBC. First, we propose a new
extension protocol that uses a κ-bit PBC as a black box and achieves i)
communication complexity of O(Ln2 + n3κ + P(κ)), where P(κ) is the
communication complexity of the κ-bit PBC, and ii) round complexity
same as the κ-bit PBC. By comparison, the state-of-the-art extension
protocol for regular broadcast (Nayak et al., DISC 2020) incurs O(n)
additional rounds of communication. Next, we propose a protocol that
is secure against a static adversary, for κ-bit messages with O(n2κ1+K +
nκ3 + κ4) communication and O(κ) round complexity, where K is an
arbitrarily small constant such that 0 < K < 1. Finally, we propose
an adaptively-secure protocol for κ-bit messages with Õ(n2κ2 + nκ3)
communication overhead and O(κ logn) round complexity. Notably, our
latter two protocols are Õ(κ2−K) and O(κ2) times more communication-
efficient, respectively, than the state-of-the-art protocols while achieving
the same round complexity.

1 Introduction

Byzantine broadcast (BC) is a fundamental primitive for many cryptographic
protocols and distributed systems. The goal of BC is to allow a designated sender
to distribute its input value such that all honest nodes output the same value,



|m| Protocol Model Adv. f < Communication Rounds
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BulletinBC ‡ [43] bulletin static (1−ϵ)n Õ(n3κ2) (= Õ(C5)) O(n)

FloodBC‡ [10] trusted static (1−ϵ)n Õ(n2κ3) (= Õ(C5)) O(κ)

BulletinPBC [43] bulletin adaptive (1−ϵ)n Õ(n3κ2) (= Õ(C5)) O(n logn)

TrustedPBC [43] trusted adaptive (1−ϵ)n Õ(n2κ4) (= Õ(C6)) O(κ logn)

PBCstatic
1 (§4) trusted static (1−ϵ)n O(n2κ1+K + nκ3 + κ4) = O(C4)) O(κ)

PBCadaptive
1 (§5) trusted adaptive (1−ϵ)n Õ(n2κ2 + nκ3) = Õ(C4)) O(κ logn)

L

ANS [4] trusted adaptive n/2 O(n2L + n3κ) = O(C2L + C4)) O(1)

NRSVX [39] ⋆ ⋆ (1−ϵ)n
O(n2L + P(κ) + n3κ + n4)

(= O(C2L + P(C) + C4))
O(n)

TLP [43] trusted adaptive (1−ϵ)n Õ(n2κ4L)(= Õ(C6L)) O(κ logn)

AC [6] trusted static n/3
O(n2L + n3 log2 n)

(= O(C2L) + Õ(C3) )
O(1)

PBC*
L (§3) SRS+⋆ ⋆ (1−ϵ)n

O(n2L + n3κ + P(κ))

(= O(C2L + P(C) + C4))
O(T (κ))

PBCstatic
L

(§3 & §4)
trusted static (1−ϵ)n

O(n2L + n3κ + n2κ1+K + nκ3 + κ4)

(= O(C2L + C4))
O(κ)

PBCadaptive
L

(§3 & §5)
trusted adaptive (1−ϵ)n

O(n2L + n3κ) + Õ(n2κ2 + nκ3)

(= O(C2L) + Õ(C4))
O(κ logn)

Table 1: Comparison of the PBC protocols where honest nodes broadcast messages
length ≤ |m|. ‡PBC that runs n parallel instances. ⋆The assumptions (bulletin board
PKI, trusted PKI and/or structured reference string (SRS)) and the adversarial model
(static or adaptive) depend on the underlying κ-bit PBC oracle. P(x) is the commu-
nication complexity of x-bit PBC, and T (κ) is the round complexity of κ-bit PBC. K
is an arbitrarily small constant such that 0 < K < 1. Õ(f(n)) indicates that the com-
plexity of an algorithm is O(f(n) · poly(logn)) for some polynomial poly. C captures
practical settings where C = O(n) ≈ O(κ).

even if a fraction of Byzantine nodes (including, potentially, the sender) fail arbi-
trarily. In spite of a large body of work studying broadcast with a single sender,
in many applications such as multi-party computation (MPC) and verifiable se-
cret sharing (VSS) broadcast is most commonly required in parallel, i.e., with
every sender broadcasting simultaneously.

Motivated by this observation, Tsimos, Loss, and Papamanthou [43] gave
an efficient designated parallel broadcast (PBC) protocol under dishonest ma-
jority, TrustedPBC. Denoting n as the number of nodes and κ as the length
of a signature, TrustedPBC achieves Õ(n2κ4) communication against up to
f < (1 − ϵ)n adaptive and malicious corruptions (for some 0 < ϵ < 1) un-
der the assumption of a trusted PKI. Compared to naively running n parallel
BC instances, TrustedPBC improved substantially the communication with
respect to n. While TrustedPBC already achieves improved communication,
its communication is still high, especially when n and κ are close. Additionally,
TrustedPBC is limited to single-bit inputs.

Our contributions. In this work, we study PBC with L-bit inputs in the syn-
chronous setting assuming f < (1− ϵ)n where 0 < ϵ < 1. The single-bit variants
of our PBC protocols simply follow, which also enjoy improved communication.
We consider both the static and weakly adaptive adversarial models (adaptive
for short). As summarized in Table 1 and Figure 1, we provide three protocols
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PBCstatic
κ (§4)

C() (§4.2)

PBC*
L (§3)

ECP [5]

PBCadaptive
κ (§5)

Propagate (§5.2)

Fig. 1: Overview of our results.

with improved communication: a new extension protocol PBC*
L that achieves

both improved communication and round; a κ-bit PBC PBCstatic
κ in the static

adversary model that achieves improved communication and round; a κ-bit PBC
PBCadaptive

κ with improved communication in the adaptive adversary model. Our
solutions do not trade factors of κ for factors in n and solely decrease factors in
κ.

We begin with a new extension protocol for PBC, PBC*
L, that reduces the L-

bit PBC problem to a κ-bit PBC oracle. Compared to prior extension protocols,
e.g., running n BC instances of the protocol of Nayak, Ren, Shi, Vaidya, and
Xiang (NRSVX) [39], PBC*

L achieves both improved communication and round

complexity. The adversarial assumption of PBC*
L depends on the underlying κ-

bit PBC oracle. In particular, if the κ-bit PBC is adaptively secure, then so is
PBC*

L.
We then present PBCstatic

κ , a κ-bit PBC protocol in the static adversarial set-
ting. PBCstatic

κ can be generalized to L-bit PBC. However, using it as a κ-bit PBC
in our extension protocol results in a more communication-efficient PBC. Com-
pared to the state-of-the-art protocols BulletinBC [43] and FloodBC [10],
PBCstatic

κ enjoys substantially improved communication complexity and the same
or better round complexity. The core idea is to reduce the problem of PBC
among n nodes to L-bit PBC among a small committee of κ nodes. Based on
the most optimal constructions known so far for L-bit PBC, PBCstatic

κ achieves
O(n2κ1+K + nκ3 + κ4) communication and O(κ) rounds for κ-bit broadcast,
where K is an arbitrarily small constant such that 0 < K < 1.

Finally, we present PBCadaptive
κ , a κ-bit PBC protocol secure under an adaptive

adversary. Our starting point for building PBC under an adaptive adversary
is TrustedPBC of Tsimos et al. [43], the most efficient 1-bit PBC protocol
known so far that achieves Õ(n2κ4) communication. We first construct a κ-bit
PBC with O((n2κ2 + nκ3) · log2 n) communication, a O(κ3) improvement over
that of TrustedPBC for κ-sized messages. Similarly to PBCstatic

κ , we can use
PBCadaptive

κ as a κ-bit PBC oracle in our extension protocol to obtain a more
communication-efficient L-bit PBC.

1.1 Related Work

Round complexity of Byzantine broadcast. The celebrated work by Dolev
and Strong [21] showed that in a synchronous system with n nodes, there exists
an (f + 1)-round deterministic BC that tolerates up to f Byzantine nodes for
f < n. Additionally, f +1 rounds (i.e., O(n) rounds) is optimal for deterministic
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BC protocols. Many follow-up works focus on lowering the round complexity of
BC. Randomized protocols [7, 42] are found to be effective in overcoming the
lower bound. Feldman and Micali [24] showed a randomized BC protocol for
f < n/3 achieving O(1) round, assuming private channels only. In the authenti-
cated setting, subsequent works [25,33] showed that O(1) round can be achieved
for f < n/2. Garay, Katz, Koo, and Ostrovsky [28] showed that for the corrupt
majority setting, a randomized BC protocol achieves Θ(n/(n− f)) round com-
plexity. Fitzi and Nielsen [26] further improved the concrete number of rounds
in the same setting. Wan, Xiao, Shi, and Devadas (WXSD) [46] presented a
BC protocol that achieves O((n/(n− f))2) round complexity under the trusted
setup assumption and weakly adaptive adversary. In another work, Wan, Xiao,
Devadas, and Shi [45] presented a BC protocol that handles strongly adaptive
adversary in O(κ) rounds, where a strongly adaptive adversary can perform
after-the-fact-removal.

Byzantine agreement vs. Byzantine broadcast. Byzantine agreement (BA)
typically has two forms: Byzantine broadcast (BC) and Byzantine agreement
(also called Byzantine consensus). In BC, a designated broadcaster sends an
input value to the nodes and honest nodes output the same value. In Byzantine
agreement, every node holds an input and honest nodes output the same value.
BA with single-bit inputs is also called binary Byzantine agreement. In the
synchronous setting, BC can be solved for f < n and BA can be solved for
f < n/2. Similar to that for BC, deterministic BA requires O(n) rounds in
the worst case and several works meet the bound assuming f < n/3 [8, 23, 29].
Momose and Ren [37] recently showed that O(κn2) communication complexity
and f < n/2 are possible in authenticated setting. In addition, randomized BA
protocols can achieve sublinear or even constant rounds [3, 24, 33]. Recently,
Wang, You, and Duan [47] proposed a BA protocol for 1-bit/L-bit inputs under
the synchrony model with O(n) messages and O(1) expected time, assuming a
static adversary and f < n/3.

Interactive consistency. The parallel broadcast problem has been historically
referred to as the interactive consistency problem, and was first introduced in
[40]. The most efficient solution in communication in the less restrictive honest
majority setting is from Civit et al. [18], who achieve O(n2L + n(f + 1)κ) bit
complexity and O(n) round complexity, where f denotes the total number of
actual failures that that occur. With constant expected round complexity, the
protocol of Abraham et al. uses O(n2L+ κn3) bits [4].

Scalable BA and BC. Besides BC protocols we reviewed in the introduction, a
line of work studies BA assuming a large n in both synchronous setting [2,14,34]
and asynchronous setting [11]. For instance, King and Saia studied BA in the syn-
chronous setting and presented a BA protocol with O(n1.5) communication [34].
Abraham et al. [2] proposed recently binary BA with subquadratic commu-
nication complexity. In the asynchronous setting, Blum, Katz, Liu-Zhang and
Loss [11] present a BA protocol achieving subquadratic communication com-
plexity under an adaptive adversary assuming f < (1− ϵ)n/3.
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L-bit BA and BC. BA with long input messages is also called multivalued
Byzantine agreement (MBA). MBA can be reduced to binary agreement, both
in the synchronous model and asynchronous model [20, 38, 44]. PBC with long
input messages in the synchronous model is also known as interactive consis-
tency [40]. Additionally, a line of research studies extension protocols for BC
and BA to support L-bit inputs [9, 27, 36]. Most of these works focus on reduc-
ing the communication complexity compared to running L parallel BC or BA
instances. A typical approach is to use erasure codes [30, 41]. In this work, we
use the BC protocol by Nayak, Ren, Shi, Vaidya, and Xiang (NRSVX) [39] and
also propose a new extension protocol for PBC.

2 Preliminaries

Model. We consider a system with n nodes {P1, · · · , Pn}, running over authen-
ticated channels. Among the n nodes, f of them may become Byzantine and fail
arbitrarily. We assume f < (1− ϵ)n, where ϵ is a constant and 0 < ϵ < 1. Nodes
that are not Byzantine are called honest. We consider a synchronous network,
where there exists an upper bound on the network and message processing delay.

We consider both the static and the adaptive adversary models. In the static
model, the adversary corrupts nodes prior to the start of the protocol. In the
adaptive model, the adversary can choose the set of corrupted nodes at any
moment during the execution of the protocol based on its current state. In this
work, we focus on the weakly adaptive adversary model, where the adversary
cannot perform“after-the-fact-removal” and retroactively erase the messages the
node sent before they become corrupted. Additionally, we restrict the adversary
by assuming atomic sends [11] where an honest node Pi can send to multiple
nodes simultaneously, without the adversary being able to corrupt Pi in between
sending to two nodes.

We assume a trusted setup unless otherwise specified, where a trusted party
generates and distributes keys to the nodes prior to the protocol execution.

Normalizing security parameters. Let κ denote the cryptographic security
parameter, i.e., the length of hashes or digital signatures. In this work, we also
use λ as the statistical parameter. We may consider λ = O(κ), as typically λ < κ.
We can also say that the security parameter of the system is the maximum of
λ and the cryptographic security parameter (e.g., length of digital signatures).
When we discuss the concrete complexities in the main body of the paper, we
differentiate λ and κ. Also note that κ and λ are independent of n and we usually
assume n ≫ κ and n ≫ λ. In Table 1, we provide C assuming O(n) ≈ O(κ) ≈
O(λ) for the ease of understanding.

2.1 Definitions

Parallel broadcast (PBC). In a system with n nodes {P1, · · · , Pn}, PBC
executes n parallel BC, where each node Pi provides an input vi and outputs an
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n-value vector vi. Each slot s in vi is dedicated for the value broadcast by Ps,
the output of which is denoted as vi[s]. In this work, we study PBC with both
1-bit inputs and L-bit inputs where L > 1.

Definition 1 (f-Secure Parallel Broadcast). Let Π be a protocol executed by
nodes {P1, · · · , Pn}, where each node Pi holds an input vi and each node outputs
a n-size vector vi. Π should achieve the following properties with probability
1− negl(κ) whenever at most f nodes are corrupted.

− f-Validity: If Ps is honest, the output vi at any honest node Pi satisfies
vi[s] = vs.

− f-Consistency: All honest nodes output the same vector v′.

We will need an external validity property for some of our constructions
defined as follows. There exists a predicate Q() known by all nodes. Given a
value v, every node can query Q(v) to validate v. In the literature, the value
v can be validated by via some additional data such as digital signatures [15].
Alternatively, v can be validated according to the local state of some nodes [1,22].
In this case, we may call the predicate a locally validated predicate. We use the
state-based predicate in this paper.

− f-External validity: Given a predicate Q, any honest node Pi that termi-
nates outputs a value vi such that for each vi[s] ̸= ⊥, Q(vi[s]) holds by at
least one honest node.

Protocol naming convention PBCy
x. To differentiate the protocols we study

in this paper, we use the PBCy
x to denote a PBC protocol where each node pro-

vides an x-size input that is secure secure under y model. For example, PBCstatic
1

denotes a 1-bit PBC assuming a static adversary.

2.2 Building Blocks

We review the building blocks. Due to space limitations, we provide detailed
definitions and descriptions in Appendix A.

Aggregate signatures. An aggregate signature scheme (generalising a multi-
signature scheme) can aggregate S signatures into one signature., therefore re-
ducing the size of signatures. Given S signatures σi = sign(ski,m) on the
same message m with corresponding public keys pki for 1 ≤ i ≤ S, a multi-
signature scheme can combine the S signatures above into one signature Σ where
|Σ| = |σi|. The combined signature can be verified by anyone using a verification
function ver(PK,Σ,m,L), where L is the list of signers and PK is the union
of S public keys pki. Moreover, signatures that are themselves combined signa-
tures can be aggregated recursively/iteratively in the same fashion, which we
assume is possible even when the intersection of the set of signers is non-empty.
By leveraging the PKI and associating public keys with their indices, alongside
the arity of the signature, a signature signed by S nodes can be represented in
either O(κ + S log n) (i.e., using log n bits per node) or O(κ + n) bits (using
a bitmask), e.g., using BLS signatures based on pairings in the random oracle
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Initialization:
- Mining probability pmine .
- Let calli ← ⊥ for any i ∈ [n]

On input Fmine(type, val, i) from node Pi:
- If calli = ⊥, output b = 1 with probability pmine , or b = 0 with probability
1− pmine and set calli = b.

- Else output calli.
On input Fmine .verify(type, val, j) from node Pi:

- If callj = 1, output 1, otherwise output 0.

Fig. 2: Functionality Fmine . val can be ⊥ or consists of multiple values.

model [13] or a signature scheme and generic zero-knowledge proofs. We assume
they are unforgeable in an ideal sense in this work but in practice an appropriate
unforgeability notion suffices.

The Fmine oracle. We follow prior work [2, 17, 43] and define the Fmine ideal
functionality that we use for random committee selection. Fmine is parameterised
by the total number of nodes and a mining probability pmine . Fmine provides
two interfaces: Fmine and Fmine .verify(), as illustrated in Figure 2. For our static
PBC, this can be implemented by nodes multicasting O(κ)-sized proofs using an
SRS [2,31]. For our adaptive PBC, we assume generic zero-knowledge proofs for
composing signature aggregation and Fmine proofs (or for our protocols, proving
committee membership), which also can be instantiated using an SRS [31]; see
Appendix B for more details.

Erasure codes. An (m,n) erasure coding scheme over a data block M is spec-
ified by two algorithms (encode, decode). The encode algorithm takes as input
m data fragments of M , and outputs n > m coded fragments. The decode algo-
rithm takes as input any m-size subset coded fragments and outputs the original
data block containing m data fragments. Namely, if d ← encode(M) and d =
[d1, . . . , dn], then decode(di1 , . . . , dim) = M for any distinct i1, . . . , im ∈ [1..n].

Erasure coding proof (ECP) system. The idea of ECP [5] is to allow the
encoder to prove succinctly and non-interactively that an erasure-coded fragment
is consistent with a commitment to the original data block. Consider an (m,n)
erasure code that encodes a message M into a set of n fragments d1, d2, · · · , dn.
An ECP system is designed to allow for efficient dispersal of these fragments. A
proof contains two parts: a constant-sized commitment ϕ plus a per-node witness
πi that is around size O(|M |/m+ κ). Together, ϕ and πi convince node Pi that
di is the correct data fragment for the message committed to by ϕ.

An ECP system consists of three algorithms:

− setup. The setup algorithm receives a security parameter κ and sets up the
system parameters pp.

− provepp. The provepp algorithm takes as input a block of data M and out-
puts (ϕ,d,π) where |d| = |π| = n. Here, ϕ is a (computationally) binding
commitment to all erasure-coded fragments d ← encode(M), and each πi
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is intended to serve as a proof that the corresponding di is the i-th data
fragment with respect to the commitment ϕ.

− verifypp. The verifypp algorithm takes as input (ϕ, di, πi) and outputs a bit.
If verifypp(ϕ, di, πi) = 1, then we say di is a valid fragment w.r.t. ϕ.

A secure ECP system achieves EC-correctness and EC-consistency. We use
ECP-1 in this work, one of the two constructions provided in the paper. Under
the trusted setup assumption (relying on a trusted setup to generate a powers-
of-tau structured reference string [32] or SRS hereafter) and when the data block
is of at least length O(κ), the size of the witness has the same length as each
data fragment.

Forward-secure public-key encryption (FS-PKE). A forward-secure public-
key encryption scheme [16], or FS-PKE, is a probabilistic public-key cryptosys-
tem that additionally allows the secret key to be updated such that previous keys
and encrypted plaintexts cannot be derived from an updated key. It consists of
algorithms gen, enc, dec and upd, the first three as in standard PKE, and the
last updating the secret key into a new epoch. We require an appropriate IND-
CCA security notion where a challenge is made in epoch j, and the adversary has
access to the secret key in any epoch i > j. FS-PKE can be implemented using
pairings with O(κ logE)-sized keys and constant-sized ciphertexts to support E
epochs [16].

3 PBC*
L: An Extension Protocol for L-bit PBC

3.1 Technical Overview

We present a new extension protocol for L-bit PBC. PBC*
L reduces L-bit PBC

to a κ-bit PBC PBC*
κ and uses an ECP system. We only require that the κ-bit

PBC protocol is transformed into a validated PBC by adding a locally validated
predicate to PBC*

κ. We show that such a validated PBC can be easily achieved in
our protocol (cf. Lemma 1). As described above, ECP works like an accumulator
scheme for erasure coding and can be used to determine if a given fragment cor-
responds to the original data block. Our extension protocol achieves improved
communication compared to prior extension protocols. Additionally, the round
complexity remains essentially the same as the κ-bit PBC, incurring three extra
rounds of communication. In contrast, the most communication-efficient exten-
sion protocol known so far (for BC rather than PBC) [39] incurs O(n) rounds
on top of the underlying κ-bit BC oracle.

Our extension protocol is secure under an adaptive adversary, as long as
PBC*

κ is adaptively secure. The same paradigm can also be extended to obtain
a communication-efficient L-bit extension protocol for (non-parallel) BC.

3.2 The Extension Protocol

The pseudocode of our extension protocol is shown in Figure 3. There are
three phases: dissemination, agreement, and reconstruction. In the dissemina-
tion phase, each node Pi first sends its input Mi to all nodes. To do so, it queries
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Global Parameters:
- Mi is the input of Pi. ExtractedSeti ← [∅]n.

Phase 1:
Every node Pi performs the following:

- ExtractedSetii ←Mi. (ϕi,d
i,πi)← provepp(Mi).

- Send (Disseminate,Mi) to all nodes.
- Query PBC*

κ with predicate Q and use ϕi as input.
Phase 2:

- Upon output ϕj for slot j in PBC*
κ

- If Pi has previously received (Disseminate,Mj) from Pj

- (ϕ′,d,π)← provepp(Mj).
- If ϕ′ = ϕj ,

- For ℓ = 1, 2, · · · , n,
- Send (Send, dℓ, πℓ) to Pℓ.

- Upon receiving (Send, di, πi) from Pℓ,
- If verifypp(ϕj , di, πi) = 1, fix d∗i as di and send (Echo, d∗i , πi) to all nodes.

- Upon receiving (Echo, dℓ, πℓ) from Pℓ,
- If verifypp(ϕj , d

∗
ℓ , πℓ) = 1, Bj .add(d

∗
ℓ ).

- Upon |Bj | ≥ n− f , set Mj ← decode(Bj) and ExtractedSetji ←Mj

- Output ExtractedSeti

Fig. 3: The PBC*
L protocol. Q is the locally validated-predicate evaluated within

PBC*
κ defined as follows: Q(ϕi) is valid for a node Pj if, during execution, Pj

has previously received Mi from Pi such that for (ϕ,d,π)← prove(Mi) it holds
that ϕi = ϕ.

provepp(Mi) and then uses the commitment ϕi as the input to PBC*
κ. Pi then

enters the agreement phase. In the agreement phase, we query the PBC*
κ proto-

col to agree on the commitment. Here, we transform PBC*
κ into a validated PBC

and additionally require every node to check one locally validated predicate Q
for each input ϕi: Q(ϕi) holds if a node has received Mi from Pi. In this way,

we ensure that if PBC*
κ completes, at least one honest node holds Mi.

After the PBC*
κ outputs some value, the reconstruction phase involves two

communication rounds. Here we consider the output value ϕj for slot j and the
process for other slots is the same. In the first round, if Pi has previously received
the correct value Mj from Pj , it then queries ECP and obtains n fragments d
and witness π. Then for each Pℓ, Pi sends a (Send, dℓ, πℓ) message to it. In
the second round, every node Pi waits for a valid fragment di. If Pi receives
the fragment di such that verifypp(ϕj , di, πi) = 1, it fixes its d∗i as di and then
forwards to all nodes. Finally, after receiving n− f valid fragments, Pi decodes
the fragments into Mj and adds Mj to its output.

It is worth mentioning that in our construction, we view ECP as a tailored
and computation-efficient proof that proves the correctness of the encoding func-
tion of erasure coding. There exists more generic approach that achieves the
same communication complexity as our approach, e.g., using zero knowledge
proofs [19] to prove the correctness of the encoding function.
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Our protocol has the following properties.

Lemma 1. The PBC*
κ protocol with predicate Q satisfies f -external validity.

Proof. As we use PBC*
κ as a black box, we prove the lemma without looking

into the concrete construction. Namely, towards a contradiction, assume that an
honest node outputs vi such that Q(vi[s]) does not hold for any honest node
for some slot s. This only holds if none of honest replicas have accepted vi[s],
i.e., the values from corrupt replicas are sufficient to build a secure PBC. This
violates the validity property of PBC for the case where Ps is honest. 2

Theorem 1. Assuming an SRS, the PBC*
L protocol presented in Figure 3 sat-

isfies f -validity and f -consistency with probability 1− negl(λ).

Proof. f-Validity. Since Pi is honest, it invokes provepp(Mi) and outputs (ϕi,d,π).
Then every honest node Pj will receive Mi and the locally validated predicate Q

for PBC*
κ will be satisfied by every honest node. Additionally, it is not difficult

to see that every honest node outputs ϕi for the i-th slot for PBC*
κ as otherwise

the EC-correctness property of ECP is violated. According to the protocol, every
honest node sends a fragment to all nodes in the “send” round and eventually
receives n− f fragments. Then every honest node is able to reconstruct Mi, as
otherwise the EC-consistency property is violated.

f-Consistency: We assume that for a slot s ∈ [n], an honest node Pi outputs
M1 and another honest node Pj outputs M2 such that M1 ̸= M2 and prove the
correctness by contradiction. If Pi holds M1, it must have output ϕ1 for slot s in
PBC*

κ such that (ϕ1,d,π)← provepp(M1). In the following, we first show that if

PBC*
κ outputs a commitment ϕ1, then at least one honest node Pk has received

message M1 from Ps. Then we show that if another honest node Pj outputs M2,
M1 = M2.

We begin with the first statement. According Lemma 1, Q(ϕ1) holds for at
least one honest node. Therefore, the honest node has received M1.

We then show the second statement. Here, there are two cases: Pj receives
M2 from Ps; Pj does not receive any value from Ps and outputs M2 after it
receive n− f fragments. For the first case, if M2 ̸= M1, the commitment of M2

is ϕ2 ̸= ϕ1, so either the f -consistency property of PBC is violated or the EC-
correctness property of ECP is violated. For the second case, we already know
that an honest node Pk holds M1, so Pk will broadcast a fragment to each node.
According to the EC-correctness property of ECP, every honest node Pℓ is able
to fix its dℓ and then sends a message (Echo, dℓ, πℓ) to all nodes. Accordingly,
node Pj will receive n − f valid fragments and reconstruct the message M2. If
M2 ̸= M1, the EC-consistency property is violated. 2

Theorem 2. The PBC*
L protocol achieves O(n2L+n3κ+P(κ)) communication

and the round complexity is asymptotically the same as PBC*
κ, where P(κ) is the

communication complexity of PBC*
κ.
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Proof. In the dissemination phase, each node sends Mi to all nodes so the
communication complexity is thus O(n2L). In the reconstruction phase, each
node sends send or echo messages to each other, where each message con-
sists of a fragment and a witness. According to ECP, the length of fragment
and the witness is O(L/n+ κ). The communication complexity of PBC*

L is thus
O(n2L+ n3κ+ P(κ)).

As we only introduce three communication rounds on top of PBC*
κ, the round

complexity is the same as that for PBC*
κ. 2

4 PBCstatic
κ : Efficient PBC under a Static Adversary

4.1 Technical Overview

We present PBCstatic
κ , a two-layer protocol that reduces the PBC problem to best

effort broadcast and a C() protocol among λ committee members. Although
PBCstatic

κ itself can clearly be generalized to an L-bit PBC, we obtain a more
efficient L-bit PBC integrating PBCstatic

κ with our extension protocol.
Our motivation is a tempting solution for committee sampling based proto-

cols: the committee members can reach an agreement on some value and then
convey the results to all nodes. While this is feasible for a system in the honest
majority setting [2,33–35], there is no straightforward way to properly convey the
results under a corrupt majority, an observation also made in prior works [17,46].

Our PBCstatic
κ protocol makes the above tempting solution work under a cor-

rupt majority. We use a reduction from PBC to a so-called C() protocol, among
λ = O(κ) committee members. By carefully defining the security properties of
C() and building an efficient construction from L-bit PBC among λ commit-
tee members, we ensure that if an honest committee member sees some value
output by C() for the first time, so does any other honest committee member.
Accordingly, the maximum number of interactions between an honest node and
committee members is bounded by a constant. In particular, C() takes as input
a vector of sets of ‘valid’ (defined below) messages, and outputs a vector of sets
corresponding to the union of valid messages that were input.

Briefly speaking, our protocol roughly works as follows. Each node first dis-
seminates its input to all nodes. Then they proceed in a constant number of
rounds. In each round, every node first sends its current received values to the
committees. Then, the committees query the C() protocol. After C() terminates,
committee members create signatures for the values they have seen and send
them to all nodes. Finally, nodes merge the signatures they receive. At the end
of the protocols, for each Ps, every honest node Pi delivers some value from
Ps only after Pi has received a sufficiently large number of signatures from the
committee.

4.2 The C() Protocol

To achieve the goals mentioned above, the input of C() needs to be validated and
the output needs to be verifiable [15]. For the protocol to be validated, the input

11



Upon C(M)
- Filter any Mj such that Mj is not a valid tuple for round r.
- For each slot s ∈ [n]:

- Aggregatedsi ← ∪n
j=1M

s
j .

- Provide Aggregatedi as input to a L-bit PBC PBC*
L,c.

- Wait until PBC*
L,c terminates, let the output be m.

- For each slot s ∈ [n] and for each valid tuple mj for round r that mj ∈m:
- Mergedsi ← ∪jm

s
j .

Output conditions
- After PBC*

L,c terminates, return Mergedi.

Fig. 4: The C() protocol.

message M must satisfy a global predicate. In our case, for M to be validated,
it must consist of n vectors of valid (r − 1)-s batches, as defined below. For
the protocol to be verifiable, the output message, once sent to an honest node,
should also be a valid (r − 1)-s batches.

In our PBC protocol, each committee member Pi receives Mj from each
node Pj , where j ∈ [n] = {1, 2, · · · , n} and Mj is an n-value vector in the form
of [M1

j , · · · ,Mn
j ]. Each Mk

j is either ⊥ or consists of up to two valid (r − 1)-s
batches. To facilitate the exposition of our protocol, we provide some definitions.

Definition 2. (Valid r-s batch). A valid r-s batch on a message/slot pair
(u, s) for (some round) r ≥ 0 is in the form of u||s||SIGr, where u ∈ {0, 1}L,
s ∈ [n], and SIGr is a set of signatures that contains one signature from Ps and
3r(ϵ−µ)(1−ϵ)

µ2 log 1
δ signatures on [u, s] from members in the committee, where µ

is a small constant such that 0 < µ < ϵ and δ is the desired failure probability.

Definition 3 (Valid tuple for round r). A valid tuple Mi for round r ≥ 1 is
in the form of [M1

i , · · · ,Mn
i ] where each M j

i is either ⊥, or consists of at most
two valid (r − 1)-s batches, one for a pair (u, j) and one for a pair (u′, j).

Definition 4 (t-Secure C()). Let C() be a protocol executed by c nodes
{P1, · · · , Pc}, as specified above. C() should satisfy the following properties for
some round r with probability 1 − negl(κ) whenever at most t nodes are cor-
rupted.

− t-Validity: If an honest node Pi provides M as input, any valid tuple Mj ∈
M for some round r is part of Mergedk for any honest node Pk in this round.

− t-Consistency: For each slot s ∈ [n], if an honest node Pi outputs Mergedsi ,
another honest node Pj outputs Mergedsj , Mergedsi=Mergedsj .

Definition 5. (Part-of relationship). Given two valid tuples Mi and Mj, Mi

is part of Mj if the following conditions are satisfied: For any l ∈ [n], if rs ∈M l
i

where rs is a valid r-s batch on [u, l], then rs′ ∈ M l
j, where rs′ is a valid r-s

batch on [u, l]. In addition, any signature in rs is also included in rs′.

The part-of relationship is transitive: if Mi is part of Mj and Mj is part of
Mk, then Mi is part of Mk.

12



We now specify the input and output of the C() protocol as follows. The
protocol is executed among c nodes, among which at most t are corrupt. To
allow honest nodes to share the same view about the messages they receive, the
input of C() needs to be validated and the output needs to be verifiable [15].
In some round r, the input of each node Pi for the C() protocol is M which
consists of up to n vectors {M1, · · · ,Mn}. Any Mj ∈ M is sent by node Pj .
Each Mj is validated if it is a valid tuple for round r. After running the C()
protocol, each honest committee member Pi outputs an n-value vector Mergedi.
Mergedi is verified if it is a valid tuple for round r. We further consider that the
total number of messages provided by any node for each slot s is bounded by a
constant, i.e., | ∪nj=1 M

s
j | is a constant number. An interesting finding is that we

can build C() from a κ-bit PBC among λ committee members.

The workflow. As our goal is essentially for all honest committee members
to share the same view of the received valid (r − 1)-s batches, an interesting
observation is that the C() protocol can be reduced to a PBC protocol with L-

bit inputs among c committee members, denoted as PBC*
L,c. Namely, each node

aggregates its input into a valid tuple, and then broadcasts it via PBC*
L,c. After

completing PBC*
L,c, each node aggregates the outputs into a valid tuple.

We present a construction of C(M) in Figure 4. Upon C(M), each node Pi

first filters the vectors that can not be validated. Then Pi compiles a union of M
into a valid tuple Aggregatedi for r. Namely, for each slot s ∈ [n], if any node Pj

provides a valid tuple Mj for r, Pi compiles a union of Ms
j for any j ∈ [n] and

updates Aggregatedsi . After this procedure, Pi holds a valid tuple Aggregatedi
for r. Then, Pi provides Aggregatedi as input to PBC*

L,c.

Let m denote the set of outputs of PBC*
L,c. Node Pi compiles a union of all

valid tuples inm. Namely, for any valid tuplemj , Pi sets itsMergedsi as the union
of ms

j for s ∈ [n]. Finally, Pi outputs Mergedi and the C() protocol completes.

As we use PBC*
L,c as a sub-protocol for C(), we need a committee size that

meets the requirement for PBC*
L,c. As we assume f < (1−ϵ)n in our work and the

upper bound any PBC protocol can achieve is f < n (i.e., [21]), it is natural to
consider a committee size c such that the number of corrupt committee members
is bounded by t < (1−ϵ+µ)c, where µ is a small constant such that 0 < µ < ϵ. As

we show later in Lemma 2, the committee size can be set as 3(1−ϵ)
µ2 log 1

δ = O(κ)
to satisfy the requirement. The number of signatures required for a valid r-s
batch for each r is then provided.

Fact 1 (Chernoff Upper Tail Bound). Suppose {Xn} is the independent
{0, 1}-random variables, and X =

∑
i Xi. Then for any τ > 0:

Pr (X ≥ (1 + τ)E(X)) ≤ exp

(
−τ ·min{τ, 1} · E(X)

3

)
Lemma 2. Let α denote the fraction of Byzantine nodes in the entire system,
i.e. α = 1 − ϵ, where ϵ ∈ (0, 1). Then for any small constant µ such that 0 <
µ < ϵ, if the number of the nodes in the committee is greater than 3α

µ2 ln 1
δ , then
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the number of Byzantine nodes in the committee is less than (1 − ϵ + µ)c with
probability 1− negl(λ).

Proof. We model the committee election process as a c-times independent and
repeated experiments, where c is the size of the committee; in one-time experi-
ment, a determinate node is chosen randomly to be a committee member. This
is equivalent to the process that each node calls the committee election oracle
Fmine to check whether it is a member of the committee.

To analyze the number of Byzantine nodes in the committee, let Pi be the
node selected in the i-th experiment, and the random variable Xi = 1 if Pi is
Byzantine, and Xi = 0 otherwise.

For the determinate committee member chosen in the i-th experiment, it is
either honest or corrupt. Since n is a sufficiently large number, a Byzantine node
is chosen in a single experiment with a fixed probability α, since the fraction of
all Byzantine nodes in total n nodes is α. We thus have Pr (Xi = 1) = α, for each
i = 1, 2, · · · , c. Let Y = X1 + · · · + Xc. Y represents the number of Byzantine
nodes chosen in these experiments. Based on the above analysis and probability
theory, we have E(Y ) = αc.

According to Fact 1, we have:

Pr (Y ≥ (α+ µ)c) = Pr
(
Y ≥ (1 +

µ

α
)E(Y )

)
≤ e−

µ2E(Y )

3α2 = e−
cµ2

3α

If c > 3α
µ2 ln 1

δ ,

Pr (Y ≥ (α+ µ)c) ≤ e−
cµ2

3α ≤ δ.

We now discuss the value of δ. Typically, the failure probability of the proto-
col δ is a negligible function in some statistical security parameter. As a special
case, assuming that ϵ is any arbitrarily small positive constant, 0 < µ < 1−ϵ and
the mining difficulty parameter is pmine = 3α

µ2n ln 1
δ , then the failure probabil-

ity δ = e−ω(log λ) would be a negligible function, so with probability 1−negl(λ). 2

Corollary 1. If the number of the nodes in the committee is greater than 3α
µ2 ln 1

δ ,

the number of honest nodes in the committee is greater than (ϵ− µ)c with prob-
ability 1− negl(λ).

Example 1. Let µ = ϵ
2 , if the number of the nodes in the committee is greater

than 12α
ϵ2 ln 1

δ , the number of honest nodes in the committee is greater than
ϵc
2 = 6(1−ϵ)

ϵ log 1
δ with probability 1− negl(λ).

Lemma 3. Consider a committee with c nodes, among which fewer than t =
(1−ϵ+µ)c are faulty. An L-bit PBC protocol satisfies t-validity and t-consistency
properties of PBC.

Proof. In a synchronous system, the upper bound for t and c for L-bit BC is
t < c [21]. As t = (1− ϵ+µ)c < c, an L-bit PBC protocol satisfies t-validity and
t-consistency properties of PBC. 2
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Theorem 3. The C() protocol presented in Figure 4 satisfies t-validity and t-
consistency.

Proof. t-Validity. If an honest node Pi provides M as input to C(), Pi first
compiles a union for the valid tuples in M into Aggregatedi. We first show that
if any valid tuple Mj is part of M , Mj is part of Aggregatedi. Then we show
that Mj is part of Mergedk for every honest node Pk.

If any valid tuple Mj is part of M , Mj is part of Aggregatedi. Namely, we
consider that rs ∈ Mj where rs is a valid (r − 1)-s batch. We assume that
rs ̸∈ Aggregatedi (i.e., Mj is not part of Aggregatedi) and prove the correctness
by contradiction. When Pi compiles a union for M , there are two cases: 1) there
does not exists any Mk ∈ M such that a valid (r − 1)-s batch is included in
Mk, i.e., no node sends a valid (r − 1)-s batch to the committee members; 2)
there exists a Mk ∈ M such that rs′ ∈ Mk and rs′ is a valid (r − 1)-s batch,
i.e., node Pk sends a valid (r − 1)-s batch to the committee member. In case 1,
rs ∈ Aggregatedi, as Aggregatedi is a union of M . In case 2, when Pi compiles
the union of M into Aggregatedi, it takes a union of the signatures in both rs
and rs′ and include them in Aggregatedi.

Now we prove thatMj is part ofMergedk for any honest node Pk. We consider

that the input of PBC*
L,c for node Pi ismi = Aggregatedi. According to Lemma 3,

any honest node Pk outputsmk[i] = mi. As any honest node Pk further compiles
a union of any valid tuple mi into Mergedk, mi is part of Mergedk. As Mj is
part of mi, Mj is part of Mergedk, according to the transitivity of the part-of
relationship.

t-Consistency. According to the t-consistency property of PBC, if an honest
node Pi outputs mi[k] = mk, any honest node Pj also outputs mj [k] = mk.
Any honest node Pi first filters invalid tuples in mi and then compiles a union
of mi into Mergedi. Hence, for a slot s ∈ [n] such that Mergedsi ̸= Mergedsj , there
must exist some valid tuple mk such that ms

k ∈ Mergedsi but ms
k ̸∈ Mergedsj , i.e.,

mk is output by Pi but not Pj , violating the t-consistency property shown in
Lemma 3. 2

Theorem 4. Let the length of each Mi ∈M be L and c = λ, the communication
complexity and the round complexity of the C() protocol is the same as a L-bit

PBC among c committee members, i.e., PBC*
L,c.

Proof. As each node compiles a union of its input M into an n-value vector and
the total number of messages provided by any node for each slot s ∈ [n] is a

constant, the length of input for PBC*
L,c is L. The communication thus depends

on the PBC*
L,c oracle. The lemma thus holds. 2

To build the L-bit PBC, we can use the extension protocol by Nayak, Ren,
Shi, Vaidya, and Xiang (NRSVX) [39]. NRSVX reduces L-bit BC to κ-bit BC.
If we use Dolev-Strong as the κ-bit BC, the communication complexity of C() is
O(Lλ2 + κλ3 + λ4) and the round complexity is O(λ). If we use our extension
protocol mentioned in §3, the C() protocol achieves O(Lλκ+ κλ3 + λ4) commu-
nication and O(λ) rounds. This is because the κ-bit BC oracle is the bottleneck.
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Global Parameters:
- Let ui be the input of Pi. Set ExtractedSeti ← [∅]n and VotedSeti ← [∅]n.

Round 0:
- ExtractedSetii ← ui. Send (Sign, ui, σi) to all where σi is a signature on [ui, i].
- Upon receiving a (Sign, uj , σj) from Pj , add σj to Receivedji .
- Query b← Fmine(static, i), if b = 1, broadcast (Com, i) to all nodes.
- Upon receiving (Com, j) s.t. Fmine .verify(static, j)=1, add Pj to committee.

Round r = 1, · · · , R: each round has three mini-rounds.
1st mini-round: Every node Pi performs the following:
- Send (Echo,Receivedi) to all committee members
- Upon receiving (Echo,Receivedj) from Pj , M [j]← Receivedj .

2nd mini-round: Every committee member queries C(M) and obtains Mergedi.
3rd mini-round: Set Receivedi ← [⊥]n. For each s ∈ [n]:
Every committee member Pi performs the following:
- Send (Send,Mergedi) to all.
- If a valid (r − 1)-s batch on [us

i , s] is included in Mergedsi but us
i /∈ VotedSetsi :

- Set VotedSetsi ← VotedSetsi ∪ us
i , create a signature for [us

i , s] and send to all.
- If at least two valid (r − 1)-s batches on different pairs [us

i , s] and [vsi , s] are
included in Mergedsi and us

i , v
s
i /∈ VotedSetsi :

- Extract the first two of valid (r − 1)-s batches and send to all.
For every node Pi, upon receiving valid (Send,Mergedj)
- Merge the (r − 1)-s batches from the (Send) messages into an n-value vector
Receivedi s.t. each Receivedsi contains at most two valid r-s batches.

- If there exists us
j s.t. a valid r-s batch for [us

j , s] is included in Receivedsj and
us
j /∈ ExtractedSetsi and |ExtractedSetsi | < 2, ExtractedSetsi ← ExtractedSetsi ∪ us

j .

Output conditions. At the end of round R, for each slot s ∈ [n]:
(Event 1) If |ExtractedSetsi | = 1 and ExtractedSetsi = {u}, vi[s]← u.
(Event 2) If |ExtractedSetsi | = 0 or 2, vi[s]← ⊥.

- Output vi.

Fig. 5: The PBCstatic
κ protocol. R = ⌈ (1−ϵ+µ)c+1

(ϵ−µ)c ⌉.

4.3 The PBCstatic
κ Protocol

State. Each node Pi has a value ui as input to the protocol. Each node also main-
tains two global parameters: ExtractedSeti = [ExtractedSet1i , · · · ,ExtractedSet

n
i ]

and VotedSeti = [VotedSet1i , · · · ,VotedSet
n
i ], used to store the received and voted

values. ExtractedSetsi and VotedSetsi denote the values for slot s where s ∈ [n].
For each ExtractedSetsi and VotedSetsi , there can be at most two values: 0 and 1.
The two global maps are accumulative, i.e., they are not cleared throughout the
protocol. In each round r ≥ 1, every node also maintains Receivedi = [Received1i ,
· · · ,Receivedni ] and Mergedi = [Merged1i , · · · ,Mergedni ] to keep track of the re-
ceived valid (r− 1)-s batches. The Receivedi and Mergedi are not accumulative,
i.e., they are local parameters for each round.

The Workflow. We present the workflow of PBCstatic
κ in Figure 5. The protocol

is round-based, starting from round 0 to round R where R = ⌈ (1−ϵ+µ)c+1
(ϵ−µ)c ⌉ =

O( 1
ϵ−µ ), i.e., a constant number. From round r = 1 to r = R, each round
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consists of three mini-rounds, the first and the third using a constant number
of message delays, and the second being C() executed by the committee (O(λ)
round complexity).

In round 0, each node Pi puts its input ui in ExtractedSetii, creates a dig-
ital signature of σi for [ui, i], and sends a (Sign, ui, σi) message to all nodes.
Meanwhile, each node queries the Fmine(static, i) function to discover whether
it belongs to the committee. At the end of round 0, all honest nodes are aware
of the identities of all honest committee members.

From round r = 1 to r = R, in the first mini-round, each node Pi sends an
(Echo,Receivedi) message to all committee members. If r = 1, Receivedi is the
aggregated n-value vector obtained from the (Sign) messages. If r > 1, Receivedi
is the aggregated n-value vector obtained from the union of the (Send) message
and signatures signed by committee members in round r − 1.

The second mini-round is executed only by committee members. At the end
of the first mini-round, each committee member Pi receives M , which consists of
up to n Receivedj for j ∈ [n]. Then Pi executes the C(M) protocol and outputs
Mergedi, an n-value vector according to the specification in Figure 4. According
to the C() protocol discussed in §4.2, Mergedi is a valid tuple that consists of a
vector of valid (r − 1)-s batches received in the first mini-round.

In the third mini-round, each committee member Pi first sends a (Send,Mergedi)
message to all nodes. Meanwhile, Pi iterates the (r − 1)-s batches in Mergedi.
If there exists a valid (r − 1)-s batch on [us

i , s] in any Mergedsi and Pi has not
previously created a signature for [us

i , s] (i.e., u
s
i is not included in VotedSetsi ),

Pi creates a digital signature for [us
i , s] and sends to all nodes. Note that a

Byzantine node can send different values to different committee members in the
first mini-round. To ensure that the communication complexity of the committee
members does not grow in scenarios like this, we also require that each honest
committee member only sends at most two values for each slot. Two conflicting
signatures from the same sender Ps serves as an evidence that Ps equivocate.
Every honest node that receives the evidence will output ⊥ for slot s.

After receiving the (Send) messages and the digital signatures, each node Pi

first compiles the union of signatures from the (Send) messages. If Pi obtains
a valid r-s batch rs for any value, it adds rs to Receivedi. Additionally, Pi also
verifies whether it has collected any valid r-s batch on [us

j , s] and whether the
size of ExtractedSetsi is lower than two. If so, it adds us

j to ExtractedSetsi .

At the end of round R, each node Pi is ready to output. For each slot s ∈ [n], if
there is only one value in ExtractedSetsi , Pi sets vi[s] as ExtractedSet

s
i . Otherwise,

Pi sets vi[s] as a default symbol ⊥. Then Pi outputs the vector vi.

We optimize the 1st mini-round and reduce the communication from O(n2κλ)
to O(n2κλK), where 0 < K < 1 via a new sampling protocol. Additionally, using
ECP as a building block, we can reduce the communication of the 3rd mini-round
from O(n2κλ) to O(n2κ+ nκλ).

Optimizing the 1st Mini-round. We use sampling for each node to propa-
gate its Receivedi value to all committee members. Our optimization ensures that
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StaticPropagate(Mi)
Input: A set of messages Mi.
Output: A set of messages Oi.

For round r = 1, · · · , λK :
- For all x ∈Mi:

- For any node Pj in the committee
- Add x to list Lj with probability 1/λ.

- For any node Pj in the committee:
- Send Lj to Pj .

- For a committee member Pi, upon receiving a valid list Lj from Pj

- Oi ← Oi ∪ Lj

Output
- Return the set of received messages Oi.

Fig. 6: The static propagation process.

if an honest node holds a message M , at least one honest committee member
receives M at the end of the first mini-round.

To generalize the function, we use StaticPropagate(Mi) to denote the func-
tion, where Mi is a set of messages queried by Pi and |Mi| = n. The pseudocode
of StaticPropagate(M) is shown in Figure 6. The StaticPropagate(M) protocol
has λK rounds, where 0 < K < 1 is an arbitrarily small positive constant. In
each round, node Pi first samples n/λ messages from Mi and then sends the
messages to the committee members.

Lemma 4. If an honest node Pi provides Mi as input to StaticPropagate(), the
probability that none of honest committee members receive Mi is negl(λ).

Proof. If none of honest committee members received Mi at the end of
StaticPropagate(), there exists at least one message x ∈ Mi such that none
of honest committee members received x. According to Corollary 1, the number
of honest committee members in the committee d satisfies d ≥ (ϵ− µ)c. Let Xi

denote the event that the i-th honest committee member has not received x by
the end of round λK . The events X1, X2, · · · , Xd are independent since Pi adds
x to lists L1,L2, · · · ,Ld independently. Therefore, the probability that none of
the honest committee members received x is:

(1− λ

n
) · Pr

(
X1X2 · · ·Xd

)
≤ Pr

(
X1X2 · · ·Xd

)
= Pr

(
X1
)
· Pr

(
X2
)
· · ·Pr

(
Xd
)

≤ Pr
(
X1
)
· Pr

(
X2
)
· · ·Pr

(
X(ϵ−µ)c

)
=

((
1− 1

λ

)λK)(ϵ−µ)c

≤ e−(ϵ−µ)λK

= negl(λ).
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2

Lemma 5. Let |M | upper bound the length of the input message of each hon-
est node. The StaticPropagate() protocol achieves O(n|M |λK) communication,
where 0 < K < 1 is an arbitrarily small positive constant.

Proof. For round r = 1, 2, · · · , λK , each node Pi sends a list Lj to every commit-
tee member Pj . Since every message of Mi has been added to Lj with probability
1/λ, the size of Lj is |M |/λ. The communication complexity of StaticPropagate()
is thus O

(
(|M |/λ) · nλ · λK

)
= O(n|M |λK). 2

Optimizing the 3rd Mini-round. We optimize the communication of the
third mini-round using ECP. The subtle challenge we address here is that even
if we use ECP for the outputs of all committee members, we cannot lower the
communication compared to the existing protocol. To see why, let the length
of each committee member’s message be |M |. The communication of the third
mini-round is nλ|M |, as λ committee members send messages to n nodes. If we
use an (f +1, n) ECP scheme, each committee member can first disseminate the
data fragments and then all nodes exchange their data fragments. As the nodes
need to exchange the fragments for λ messages, the communication complexity
is O(nλ|M |+ n2λκ).

We provide a more communication-efficient version in Figure 7. The idea is
that since C() already makes honest committee members reach an agreement on
the output, we can also group the fragments so nodes do not have to exchange so
many fragments. As shown in Figure 7, we only need to modify the process for
the (Send) message with a two-round protocol. First, every committee member
Pi applies an (f + 1, n) ECP scheme on Receivedi and sends a data fragment to
each node. For every node Pi in the system, upon receiving c(ϵ − µ) matching
fragments, Pi forwards the fragments to all nodes. Finally, each node waits for
n − f valid fragments and then decodes the messages. Other procedures of the
third mini-round remain the same as those shown in Figure 5.

Lemma 6. Given the protocol in Figure 7, if all honest committee members
send a message M , the Receivedi value by any honest node Pi at the end of the
protocol satisfies M ⊆ Receivedi.

Proof. We first show that Pi will set its Receivedi as some value. As honest
committee members send M , it is not difficult to see that every honest node in
the system receives c(ϵ−µ) matching data fragments for M and then sends to all
nodes in the (Echo) round. Therefore, every node receives n− f data fragments
and decodes them into some value and updates Receivedi.

We now show that M ⊆ Receivedi. As honest committee members send the
fragments for M , any honest node is able to decode the fragments and include
them in Receivedi, as otherwise the EC-correctness property of ECP is violated.
2

Lemma 7. Given the protocol in Figure 7, if every committee members sends
a message M to all nodes, the protocol in Figure 7 achieves O(n|M | + λ|M | +
nλκ+ n2κ) communication.
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Replace the processing of (Send,Mergedi) in Figure 5 as follows:
- Every committee member Pi performs the following:

- (ϕi,d
i,πi)← provepp(Mergedi).

- For all j ∈ [n]:
- Send (Send, ϕi, dj , πj) to Pj

- For every node Pi, upon receiving c(ϵ− µ) matching (Send, ϕ, di, πi) messages
such that verifypp(ϕ, di, πi) = 1

- Send (Echo, ϕ, di, πi) to all nodes
- Upon receiving (Echo, ϕ, dj , πj) from Pj

- If verifypp(ϕ, dj , πj) = 1, Bϕ.add(dj).
- Upon |Bϕ| ≥ n− f :

- M ← decode(Bϕ)
- Receivedi ← Receivedi ∪M

Fig. 7: A communication-efficient instantiation for the third mini-round.

Proof. In the (Send) round, λ nodes send a message to all nodes. In the (Echo)
round, every node sends an (Echo) message upon receiving c(ϵ − µ) matching
messages. Therefore, every node sends at most c

c(ϵ−µ) (Echo) messages. The

communication of the protocol is thus O
(
λn( |M |

f+1 + κ) + 1
ϵ−µn

2( |M |
f+1 + κ)

)
=

O(n|M |+ λ|M |+ nλκ+ n2κ). 2

According to Lemma 4, if an honest node holds a message M , at least one
honest committee member receives M . Furthermore, according to Lemma 6, if
all committee members send the same message M , M is part of Receivedi by any
honest node Pi. We therefore prove that the protocol PBCstatic

κ shown in Figure 5
achieves f -validity and f -consistency.

f-Consistency. We assume that for some s ∈ [n], an honest node Pi outputs
vi[s], another honest node Pj outputs vj [s], and vi[s] ̸= vj [s], and we prove the
correctness by contradiction. In particular, if vi[s] ̸= vj [s], there are two cases:

• Case 1: Pi outputs vi[s] = us
i and Pj outputs vj [s] = ⊥.

• Case 2: Pi outputs vi[s] = us
i and Pj outputs vj [s] = us

j such that us
j ̸= us

i .

We prove that either of the above two cases happens with probability at most
negl(κ).

We focus on case 1 as case 2 can be proved similarly. If an honest node Pi

outputs a vi[s] = us
i , |ExtractedSet

s
i | = 1. There are two sub-cases for Pj :

• Sub-case 1: |ExtractedSetsj | = 0, i.e., ExtractedSetsj = ∅.
• Sub-case 2: |ExtractedSetsj | = 2, i.e., there exists two values u and u′ such
that u, u′ ∈ ExtractedSetsj .

In sub-case 1, us
i is added to ExtractedSetsi for Pi but not ExtractedSetsj for

Pj . In sub-case 2, at least one value (e.g., u′) is added to ExtractedSetsj but not
ExtractedSetsi . Without loss of generality, we consider that value u is added to
ExtractedSetsi of an honest node Pi but is not added to ExtractedSetsj of another
honest node Pj . In this way, both sub-cases are covered.
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We classify the following two types of scenarios and then show that for either
type of scenario, at the end of the protocol, it is impossible that an honest Pi

adds a value u to its ExtractedSetsi while another honest node Pj does not include
u in its ExtractedSetsj .

• Type 1: The value u is first added to ExtractedSetsi in round r = 0, 1, · · · , R−1
by Pi but is never added to ExtractedSetsj by Pj .

• Type 2: The value u is first added to ExtractedSetsi in round R by Pi but is
not added to ExtractedSetsj by Pj .

Lemma 8. In some round r, if an honest committee member Pi creates a signa-
ture for [u, s] and sends to all nodes, any other honest committee member Pj also
creates a signature for [u, s] and sends to all nodes with probability 1− negl(λ).

Proof. If Pi creates a signature for [u, s], a valid (r − 1)-s batch is included in
Mergedsi and u ̸∈ VotedSetsi . We assume that Pj does not create a signature for
[u, s] and prove the correctness by contradiction.

If Pj does not create a signature for [u, s], there are two cases: a valid (r − 1)-s
batch on [u, s] is not included in Mergedsj ; a valid (r − 1)-s batch on [u, s] is
included in Mergedsj but u ∈ VotedSetsj .

• Case 1: For slot s, a valid (r − 1)-s batch on [u, s] is included in Mergedsi but
not Mergedsj . In this case, the t-consistency property of the C() protocol is
violated.

• Case 2: An honest committee member Pj only adds u to its VotedSetsj in
round r after it sees a valid (r − 1)-s batch on [u, s] in Mergedsj . If Pj has
already added u to VotedSetsj , it must have seen a valid (r′ − 1)-s batch in
some round r′ such that r′ < r, i.e., a valid (r′ − 1)-s batch is included in
Mergedsj in r′ for Pi but not included in Mergedsi for Pi. This violates the
t-consistency property of the C() protocol.

2

Lemma 9. (Type 1). For any value u and any slot s ∈ [n], if the scenario
for type 1 happens, Pj adds u to ExtractedSetsj in round r + 1 with probability
1− negl(λ).

Proof. In type 1, an honest node Pi adds u to ExtractedSetsi in round r ≤ R− 1
but another honest node Pj has not added u to ExtractedSetsj . We show that Pj

will add u to ExtractedSetsj in round r + 1 with probability 1− negl(λ).
If Pi adds u to ExtractedSetsi in round r, Pi must have seen a valid r-s batch

rs on [u, s] for the first time. Moreover, all of the signatures consist in the valid
r-s batch rs must be signed by corrupt committee members. This is because if
an honest committee member Pk creates a signature on [u, s] and sends to all
nodes in round r, according to Lemma 8, any other honest committee members
also create a signature on [u, s] and send to all nodes with probability 1−negl(λ).
Additionally, Pk already holds a valid (r − 1)-s batch. Therefore, any honest node
Pj will receive the signatures created by all honest committee members and the
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valid (r − 1)-s batch, after which Pj will add u in ExtractedSetsj , a violation of
the scenario for type 1.

At the beginning of round r + 1, node Pi will send an (Echo,Receivedi)
message to all committee members where rs ∈ Receivedi. After each honest
committee member Pk receives the (Echo) message, it setsMi as Receivedi where
rs ∈Mi and Mi ∈M . Following the t-validity property of the C() protocol, any
honest committee member Pk outputs Mergedk such that Mi is part of Mergedk.
According to Definition 5 on the part-of relationship, rs ∈ Mergedsk for any
honest committee member Pk.

Additionally, the honest committee member Pk sees u for the first time (i.e.,
u ̸∈ VotedSetsk), Pk creates a signature for [u, s] and sends to all nodes. According
to Lemma 8, any other honest committee member also creates a signature for
[u, s] and sends to all nodes with probability 1− negl(λ). Thus, any honest node
Pj receives at least c(ϵ−µ) signatures for [u, s] and also a valid r-s batch. Accu-

mulatively, Pj receives c(ϵ−µ)+rc(ϵ−µ) = c(r+1)(ϵ−µ) = 3(r+1)(ϵ−µ)(1−ϵ)
µ2 log 1

δ

signatures. That is, Pj receives a valid (r + 1)-s batch in round r + 1 on [u, s]
and adds u to ExtractedSetsj .

As Pj adds u to ExtractedSetsj in round r + 1 with probability 1 − negl(λ).
The scenario for type 1 will not happen with probability 1− negl(λ). 2

Lemma 10. (Type 2). Let R = ⌈ (1−ϵ+µ)c+1
(ϵ−µ)c ⌉. For any value u and any slot

s ∈ [n], the scenario for type 2 will not happen with probability 1− negl(λ).

Proof. In type 2, an honest node Pi adds u to its ExtractedSetsi in round R for
the first time but another honest node Pj has not added u to its ExtractedSetsj .
We show that this scenario occurs with probability at most negl(λ).

If Pi adds u to ExtractedSetsi , it must have seen a valid R-s batch on [u, s].
According to Definition 2 on valid r-s batch, there are at least Rc(ϵ − µ) =
c(1− ϵ+ µ) + 1 signatures on [u, s] from committee members. As there are less
than c(1 − ϵ + µ) corrupt committee members according to Lemma 2, at least
one honest committee member Pk creates a signature on [u, s]. Let r ≤ R be
the round when the honest committee member Pk creates a signature on [u, s].
According to the protocol, Pk must have seen a valid (r − 1)-s batch on [u, s] at
the end of the second mini-round of round r, i.e., the valid (r − 1)-s batch on
[u, s] is included in Mergedsk. According to our protocol, Pk sends Mergedk to all
nodes in the system. Additionally, according to Lemma 8, any honest committee
member also creates a signature on [u, s] and sends to all honest nodes with
probability 1 − negl(λ). Thus, every honest node will receive a valid (r − 1)-s
batch and signatures on [u, s] from all committee members.

Accumulatively, Pj receives c(ϵ−µ)+c(r−1)(ϵ−µ) = rc(ϵ−µ) = 3r(ϵ−µ)(1−ϵ)
µ2 log 1

δ

signatures. That is, every honest node including Pj sees a valid r-s batch on [u, s]
and adds u to ExtractedSetsj with probability 1− negl(λ). Thus, the scenario for
type 2 will not happen with probability 1− negl(λ). 2

Theorem 5. PBCstatic
κ satisfies f-consistency with probability 1− negl(λ).

Proof. f -consistency follows from Lemma 9 and Lemma 10. 2
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f-Validity. We now show that f -validity holds for PBCstatic
κ .

Theorem 6. PBCstatic
κ satisfies f -validity with probability 1− negl(λ).

Proof. If node Ps is honest, in round 0, every honest node will receive a (Sign, us, σs)
message from node Ps, where σs is a signature on [us, s]. Accordingly, in round
1, each honest node Pj will send a message (Echo,Receivedj) to all committee
members where σs ∈ Receivedj . Hence, in the valid tuple Mj = Receivedj sent
by each honest node Pj , the signature σs on [us, s] is included in Ms

j and also
the input M for any honest committee member. According to the t-validity
property of the C() protocol, as an honest committee member provides Mj as
its input, Mj is part of Mergedi for any honest committee member Pi. In the
third mini-round, Pi will send Mergedi to all nodes. As the signature σs on [us, s]
from Ps is included in Mergedi, Pi also creates a signature for [us, s] and sends
to all nodes. According to Lemma 8, any honest committee member creates a
signature fore [us, s] with probability 1 − negl(λ). It is then straightforward to
see that every honest node sees a valid 1-s batch on [us, s] and then adds us to
ExtractedSetsi .

Additionally, according to the unforgeability of the digital signature scheme,
except with probability negl(λ), a signature on different value vs ̸= us such that
[vs, s] cannot be forged by an adversary. Therefore, none of the honest nodes will
receive a valid 0-s batch on [vs, s] in round 0. As a valid r-s batch must include a
digital signature from Ps, none of the honest nodes will see a valid r-s batch on
[vs, s] for any round r = 0, 1, · · · , R. At the end of round R, every honest node
Pi thus has |ExtractedSetsi | = 1 and outputs vi[s] = us. 2

Theorem 7. Assuming a trusted PKI and SRS, PBCstatic
κ is an f -Secure Parallel

Broadcast protocol with probability 1− negl(λ).

Proof. This theorem follows from Theorem 5 and Theorem 6. 2

We briefly discuss why the number of rounds R is a constant. Specifically,
all nodes send their received (r− 1)-s batches to the committee members in the
first mini-round. In the second mini-round, committee members exchange their
received values. The t-consistency property of C() protocol guarantees that all
honest committee members maintain the same Mergedi vector. Furthermore, the
t-validity property and Lemma 4 together guarantee that if one honest committee
member receives a valid (r − 1)-s batch on [b, s] rs from any node in the first
mini-round, all honest committee members include rs in their Mergedi at the
end of the second mini-round. Furthermore, by Lemma 6, if an honest committee
member Pi sees a valid (r − 1)-s batch rs for the first time in the third mini-
round, every honest committee member also sees rs for the first time. Recall
that the committee has c nodes, among which t are faulty. Therefore, in every
round, every node can expect to receive c − t ≥ (ϵ − µ)c matching signatures
instead of only one! As there are c committee members in total and ϵ and µ are
constants, the protocol can complete in R = O( 1

ϵ−µ ) = O(1) rounds.
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Theorem 8. Assuming a trusted PKI and SRS, the PBCstatic
κ protocol has O(λ)

round complexity and O(n2κλK + nκλ2 + κλ3 + λ4) communication complexity.

Proof. The round complexity of PBCstatic
κ depends on both R and the round

complexity of C(). The total round number is R = c(1−ϵ+µ)+1
c(ϵ−µ) = O( n

n−f ) ac-

cording to Lemma 10. Additionally, as discussed in §4.2 and §4.3, the round
complexity of the first mini-round and C() are O(λK) and O(λ) respectively,
where 0 < K < 1 is an arbitrarily small constant. Thus, the round complexity
of PBCstatic

κ is O( n
n−f ·max{λK , λ}) = O(λ).

We now discuss the communication complexity. In round 0, every node sends
its input (length L) and a signature to every other node so the communication
is O(n2L+ n2λ). In round r = 1, · · · , R, each round has three mini-rounds and
the communication complexity of each mini-round is shown below.

• First mini-round: Every node sends an n-value vector to every committee
member and each component has up to two valid (r − 1)-s batch. Each valid
(r − 1)-s batch consists of one value and up to c(r− 1)(ϵ− µ) = O(λ) digital
signatures. Accordingly, the length of the n-value vector is nκ+nκλ(r−1)(ϵ−
µ) = O(nκ + nκλ). According to Lemma 5, the communication complexity
of this mini-round is O(n2κλ1+K).

• Second mini-round: The length of input of each node is O(nκ + nκλ). Ac-
cording to §4.2, the communication complexity is O(nκλ3 + λ4).

• Third mini-round: Every committee member sends an n-value vector to every
node, i.e., with length O(nκ + nκλ). According to Lemma 7, the communi-
cation complexity is O(n2κλ+ nκλ2).

As R is a constant, PBCstatic
κ achieves O(n2κλ1+K + nκλ3 + λ4) communica-

tion. If we use an aggregate signature scheme, the length of the n-value vector
is nκ + nκ(r − 1)(ϵ − µ) = O(nκ) instead of O(nκλ), so the communication
complexity of PBCstatic

κ is O(n2κλK + nκλ2 + κλ3 + λ4). 2

5 PBCadaptive
κ : Efficient PBC under an Adaptive Adversary

We present our adaptively-secure PBC protocol that, for κ-sized messages, has
a communication complexity of Õ(n2κ2 + nκ3) given κ = O(λ), or in general
Õ(n2κλ+ n2λ2 + nκλ2 + nλ3). By direct application of our adaptive extension

protocol PBC*
L from §3, we obtain an L-bit protocol with a communication

complexity of O(n2L+ n3κ) + Õ(n2κ2 + nκ3) bits.

5.1 Review of TrustedPBC

We briefly review TrustedPBC [43], our starting point of PBCadaptive
κ . Every

node Pi holds a bit bi as input and outputs a vector of values vi. For each bit
bj and slot j, r signatures on [bj , j] (including one from Pj) from the committee
members are collectively called a valid r-batch on [bj , j]. The protocol is round-
based and proceeds as follows.
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− In round r = 1, every node Pi creates a signature for [bi, i] and sends to all
nodes. Each node now holds a vector of valid 1-batches, denoted as Mi, which
continues to be updated throughout the protocol.

− In rounds r = 2, · · · , 2κ/ϵ, there are two mini-rounds in each round.

− In the first mini-round, each node Pi executes aM-DistinctConverge pro-
tocol, the idea being for honest nodes to disseminate their received valid
r-batches to all other nodes. Their implementation ofM-DistinctConverge
uses Õ(n2κ3) total communication and ⌈log(ϵ ·n)⌉ rounds. It is an iterative
gossiping protocol, where each step a node sends each message it propa-
gates to O(κ) other nodes, where the number of nodes that has seen a given
message doubles each round (thus converging in a logarithmic number of
rounds).

− In the second mini-round, whenever an honest committee member Pi ob-
serves a valid r-batch in Mi for the first time for slot j, it creates a digital
signature for [bj , j], appends the signature to the valid r-batch, and sends
to all nodes. Upon receiving a valid (r + 1)-batch on [bj , j], each node Pi

updates its Mi and adds bj to ExtractedSetsi .

− At the end of the protocol, for each slot j, if there is only one value bj in

ExtractedSetji , Pi sets vi[j] as bj . Otherwise, Pi sets vi[j] as a canonical bit
⊥. Finally, Pi outputs the vector vi.

5.2 An Improved M-DistinctConverge Protocol

Towards describing our protocol, we first formally define the aforementioned
M-DistinctConverge problem below.

Definition 6 (distinctk function). For any set M , distinctk(M) is a sub-
set of M that contains all messages in M with distinct k-bit prefixes.1

Definition 7 (t-secure M-DistinctConverge protocol). Let M ⊆ {0, 1}∗
be an efficiently recognizable set. A protocol Π executed by n nodes, where every
honest node Pi initially holds input set Mi ⊆ M and constraint set Ci ⊆ M,
is a t-secure M-DistinctConverge protocol if all remaining honest nodes upon
termination, with probability 1− negl(κ), output a set

Si ⊇ distinctk

( ⋃
Pi∈H

Mi −
⋃

Pi∈H
Ci

)
,

when at most t nodes are corrupted and where H is the set of honest nodes at
the beginning of the protocol.

1 For example, for M = {01001, 01111, 11000, 10000} we have that distinct2(M) =
{01001, 11000, 10000}. Note that distinctk is an one-to-many function, e.g.,
distinct2(M) is also {01111, 11000, 10000}.
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We build a newM-DistinctConverge protocol (that improves the same func-
tion in TrustedPBC) to reduce the overall communication from Õ(n2κ4) to
Õ(n2κ3). The novelty is to provide a new way for nodes to disseminate the mes-
sages in each round via a more efficient sampling approach. We first present a
Propagate sub-protocol, and define its ideal functionality in Figure 8. We show
the pseudocode of our Propagate protocol in Figure 9. In Propagate, nodes send
in a given round a set of messages to O(λ) nodes. Like [43], to achieve adaptive
security, message lists are encrypted and padded to the same size, preventing
the adversary from learning who sent what and, e.g., blocking a single message
from being propagated. [43] implement Propagate in two rounds, where in the
first round nodes sample fresh public keys that are then used in the second
round. To improve concrete efficiency, our protocol reduces this to one round
using forward-secure public-key encryption [16], since the public key is fixed at
initialisation and only secret keys are evolved in a one-way fashion each time
Propagate is called, which suffices for security.

Propagate protocol. The aim of Propagate is to capture one step of all-to-
all gossip. The protocol needs to protect against an adaptive adversary who
tries to e.g., prevent one message from being received by any honest node by
observing all sent messages. Tsimos et al. solve this in their TrustedPBC
protocol. Namely, for a set of messages Mi, they create lists of messages for
each node and include each message from Mi in O(λ) lists, ensuring that at
least one honest node receives each message except with negligible probability.
Recall that in the Propagate protocol of TrustedPBC, all lists are padded
to size Λp = ⌈2m|Mi|/n⌉ for input set Mi (where |Mi| denotes the cardinality
of Mi). This ensures that, except with negligible probability, all lists will be
the same size. which results in an overall communication complexity in [43] of
O(m ·max{n, |Mi|} · s) since Λp is at least of size O(λ) independent of the size
of Mi.

We provide a Propagate protocol with improved communication. Our im-
proved protocol achieves O(m · |Mi| · s) communication complexity. To do so,
we instead set Λp = 2m|Mi|/n. In doing this, we can no longer rely on the lists
being bounded in size by Λp. Therefore, we make some changes to the protocol
(and provide new analysis) to accommodate for it, as shown in Figure 9.

– For a sufficiently small set of messages (|Mi| ≤ log n), the caller Pi will
simply multicast their set of messages to all nodes.

– Otherwise (|Mi| > log n) the caller will sample lists of the form Lj , one for
each node Pj .
• For log n < |Mi| ≤ (n log n)/λ, if |Lj | > Λp, resample Lj . We prove this

happens a polynomial amount of times except with negligible probability.
• For larger |Mi|, we show except with negligible probability padding to
2m|Mi|/n is sufficient for all lists.

Finally, note that Propagate is a one-round protocol, which is a reduction in
half from the protocol of Tsimos et al. [43]. We achieve this by using forward-
secure public-key encryption (FS-PKE) instead of regular PKE to encrypt mes-
sages. Namely, instead of sampling a new public/secret key pair at the beginning
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of each invocation of Propagate, nodes simply (non-interactively) update their
FS-PKE secret key at the end of each Propagate call.

Let n be the number of nodes and m = 10/ϵ+κ. For every node i ∈ [n], Fprop keeps
a set Oi which is initialized to ∅. Let Mi be node i’s input messages’ set.
− On input (SendRandom,Mi) by honest node i:

− If |Mi| < logn, then for all j ∈ [n] set Oj = Mi.
− Else, for all x ∈Mi and for all j ∈ [n] add (i, x) to Oj with probability m/n;
− return Mi to adversary A;
− return Oi to node i.

− On input (SendDirect,x, J) by adversary A (for a corrupted node i):
– Add (i, x[j]) to Oj for all j ∈ J ;
– return Oi to adversary A.

Fig. 8: Functionality Fprop.

The challenge is then to ensure that honest nodes receive all messages with
overwhelming probability while reducing communication. We use a resampling
technique to address the issue. In particular, if any list exceeds a predetermined
size (which is approximately κ×|size of the set of messages to be propagated|/n),
then the node resamples the list until it does not exceed that size. In our case,
we allow nodes to resample their lists O(n) times in the worst case to keep
the padding size to a minimum. By contrast, [43] pads lists to a predetermined
maximum size in all cases, thereby incurring O(λ) more communication than us.

Lemma 11. If M is the input set of node P in Propagate, the size of each list
Lj is: {

O(log n), if |M | < log n

≤ 2m|M |/n, else,

with probability 1− negl(λ) if m = Θ(λ).

Proof. The first case is trivial; if |M | < log n, then Lj = M . For the second case,
we distinguish two subcases depending on whether log n ≤ |M | < n log n/λ or
|M | ≥ n log n/λ. For the first subcase, P randomly samples each lists Lj until
each is of size at most 2m|M |/n. We claim that with probability 1 − negl(λ),
this will occur after polynomially many resamplings of each list. Fix a node who
samples lists and fix a target node. Then, let Xi, i ∈ [|M |] be i.i.d. Bernoulli r.v.s
denoting whether the i-th value of set M is added in the recipient’s list. Clearly,

Pr[Xi = 1] = m/n. Let X =
∑|M |

i=1 Xi. Then, E [X] = m|M |/n. The probability
that a list requires resampling is Pr[X > 2m|M |/n] = Pr[X > 2E [X]]. By
Chernoff (Fact 1), we can bound this probability as follows:

Pr[X > 2E [X]] = Pr[X > (1 + 1)E [X]] < e−
12

2+1E[X] = e−
m|M|
3n .

Assume that each list is resampled S = 3n/ log n times. Let Yj,r, j ∈ [n], r ∈ [S],
be i.i.d Bernoulli r.v.s denoting whether the r-th list sampled for Pj is of size
at most 2m|M |/n. Then, the probability that after at most S many samples of
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Input: A set of messages Mi.
Output: A set of messages Oi.
Global Parameters:
- PK is a set of FS-PKE public keys inherited from the higher-level protocol.
- ski is a FS-PKE secret key inherited by the higher-level protocol.

Upon Propagate(Mi)
- If |Mi| ≤ logn:
- For ℓ ∈ [n]: Send (Noenc,Mi) to Pℓ.

- Else: // {let Λp = 2m|Mi|/n}
- For j ∈ [n]:
- For x ∈Mi:
- Add x to list Lj with probability m/n.

- If |Mp| ≤ n logn/λ and |Lj | > Λp, set Lj ← ⊥ and j ← j − 1 // {resample}
- For j ∈ [n]:
- Pad Lj to size Λp.
- If (pk, j) ∈ PK: ctj ← enc(pk, e,Lj).
- Erase Lj from memory.
- If (pk, j) ∈ PK: Send ctj to Pj .

Upon ∆ time after invoking Propagate(Mi):
- For all ctj received from Pj :
- Lj ← dec(pk, e, ske, ct).
- If Lj ̸= ⊥: Add Lj to Oi.

- ske+1 ← upd(pki, e+ 1, ske). and erase ske from memory.
- For all (Noenc,Mj) received from Pj s.t. ctj was not received from Pj :
- Add Mj to Oi.

- Output Oi.

Fig. 9: Our new Propagate protocol, an instantiation of the propagation process.

each of the n lists, there was some list that still required resampling, is bounded
via a union bound as follows:

Pr[∪j∈n

S∑
r=1

Yj,r = 0] ≤ n · Pr[
S∑

r=1

Yj,r = 0] = n · Pr[∩Sr=1Yj,r = 0]

= n · Pr[Yj,r = 0]S < n · (e−
m|M|
3n )S = n · e−m.

In case where m = Θ(λ) and since n = poly(λ), then n ·e−m = poly(λ) ·negl(λ) =
negl(λ).

For the second subcase (|M | ≥ n log n/λ), fix a recipient Pj . As previously,
let Xi, i ∈ [|M |] be i.i.d. Bernoulli r.v.s denoting whether the i-th value of
set M is added in the recipient’s list. Clearly, Pr[Xi = 1] = m/n. Let X =∑|M |

i=1 Xi. Then, E [X] = m|M |/n. The probability that a list is larger than
Λ = 2m|M |/n is Pr[X > 2m|M |/n] = Pr[X > 2E [X]]. By Chernoff, we can
bound this probability as follows:

Pr[X > 2E [X]] = Pr[X > (1 + 1)E [X]] < e−
12

2+1E[X] = e−
m|M|
3n .
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Input: Sets of messages Mi ⊆M and Ci \M, and integer k.
Output: A set of messages Si.

Round r = 1, · · · , ⌈log(ϵn)⌉:
- Oi ← Fprop(SendRandom, distinctk(Mi − Ci)).
- For ℓ ∈ [n]: Send (Noenc,Mi) to Pℓ.
- Locali ← Locali ∪Oi.
- Ci ← Ci ∪Mi.
- Mi ← Locali ∩M.

Output Mp.

Fig. 10:M-DistinctCV protocol [43, Fig. 7] implementingM-DistinctConverge.

Since |M | ≥ n log n/λ, then Pr[X > Λ] < e−
m log n

3 = negl(λ), if m = Θ(λ). 2

Lemma 12. Let s be the length in bits of each message in M for node P . Then,
the communication complexity of P during Propagate is with prob. 1− negl(λ):{

O(n log n · s), if |M | < log n

O(m · |M | · s), else.

Proof. For the first case, it suffices to observe that M is of size O(log n) and,
since P sends M to all, the communication is O(n · |M | · s = O(ns log n).
Similarly, for the second case we observe from Lemma 12 that with probability
1−negl(λ) each list Lj , j ∈ [n] is of size ≤ 2m|M |/n. P sends a list to every node,
so the communication for P is O(n · |Lj | ·s) = O(n(2m|M |/n)s) = O(m · |M | ·s).
2

Lemma 13. Assuming a FS-PKE scheme (per Definition 11), Propagate is a
secure instantiation of the Fprop functionality.

Proof. The proof follows closely to proof of Lemma 8 from [43]. The sole two
differences are the list construction, and the FS-PKE scheme instead of CPA-
secure PKE scheme. As in the cited proof, for the list construction, we denote
that Propagate still follows the same distribution of propagation of messages as
in Fprop, while it also still satisfies the property of each node sending lists of
the same size to all parties, thus hiding the communication pattern. Therefore,
the proof is straightforward to construct via a similar hybrid argument as in the
proof of Lemma 8 from [43]. We note for completeness that composability should
be preserved even under a weakly adaptive adversary as we consider here. 2

Implementing M-DistinctConverge. We use theM-DistinctCV [43, Fig. 7]
protocol in our work, besides that we now use our new Propagate protocol, which
we provide pseudocode for in Figure 10. Here, nodes input a set of messages Mi

and a constraint set Ci. Running for O(log n) rounds, in each round, nodes first
call Propagate with Mi \ Ci as input, which outputs a set Oi. The output is
appended to a set Locali. Mi is then added to the constraint set, since there is
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{M, k}-DistinctCV(Mi, Ci)
Input: Sets of messages Mi, Ci and a parameter k > 0.
Output: A set of messages Oi.
Global Parameters:

- Locali is a set inherited by the caller protocol.

For round r = 1, · · · , ⌈log ϵn⌉:
- Oi ← Propagate(distinctk(Mi \ Ci))
- Locali ← Locali ∪Oi.
- Ci ← Ci ∪Mi.
- Mi ← Locali ∩M.

Output
- Return Mi.

Fig. 11: The DistinctCV protocol, an implementation ofM-DistinctConverge.

no need for the caller to propagate them again, and then the set of messages Mi

is set to Locali ∩M. Ultimately, set Mi is returned.

Lemma 14. DistinctCV is an adaptively f -secureM-DistinctConverge protocol,
for f < (1− ϵ)n. The number of bits sent over all nodes is

O(

log ϵn∑
l=1

·
∑
i∈[n]

CC(Propagate(M l
i \ Cl

i))),

where CC(Propagate(M l
i \Cl

i)) denotes the communication cost of node Pi calling
Propagate((M l

i \ Cl
i). Moreover, DistinctCV has O(log n) round complexity.

Proof. The security can be proven similarly as in Theorem 1 of [43]. The only
difference in Fprop is only that nodes might add the entire list, if the list is small
enough, which can only help with the propagation of messages. The communi-
cation follows from the protocol. The number of bits sent by one node in round
of DistinctCV is the number of bits sent by the call to propagate. Thus, overall
the communication over all nodes is:

O(

log ϵn∑
l=1

·
∑
i∈[n]

CC(Propagate(M l
i \ Cl

i))).

2

5.3 The PBCadaptive
κ Protocol

We are finally ready to present our PBCadaptive
κ protocol. Note that we have

previously defined the notion of a valid r-s batch for our static PBC protocol in
§4. We need an appropriate notion of a valid r-batch as defined below.
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Input: Each node Pi inputs κ-bit value ui.
Output: Each node Pi outputs an n-valued vector outi.
Global Parameters:
- ExtractedSeti ← [∅]n, VotedSeti ← [∅]n, Locali ← ∅.
- PK← ∅, a set of FS-PKE public keys. ske ← ⊥, Pi’s FS-PKE secret key.

Round 0:
- (pki, ske)← gen (e = 0).
- Send (Sign, ui, σi) and (Key, pki) to all nodes (σi is a signature on [ui, i]).
- Upon receiving (Sign, uj , σj) from Pj , add σj to Receivedji .
- Upon receiving (Key, pkj , σj) from Pj , add (pkj , j) to PK.

Round r = 1, · · · , R+ 1:
Distribute:
- Add all received valid messages into Locali.
- Find all uj ̸∈ ExtractedSetji in Locali with valid r-batches.
- If |ExtractedSetji | ≤ 1, add uj in ExtractedSetji , else disregard.
- Find all uj ̸∈ ExtractedSetji in Locali with valid r-batches.
- If r ≤ R, then let Ci contain all messages that Pi has propagated exactly

twice through DistinctCVi. If for some j, |ExtractedSetji | > 1, then Ci implicitly
contains all messages of the form [uj , j].

- Locali ←ML
r -DistinctCVi(Locali, Ci, k

∗).
Vote:
If r ≤ R:
- Find all uj ̸∈ ExtractedSetji in Locali with valid r-batches.
- For each such uj s.t. Fmine(adaptive, uj , i) = 1 (and |ExtractedSetji | ≤ 1) :
- Add uj to VotedSetji and ExtractedSetji
- Extend the r-batch to include the new signature.
- Send the message with the updated batch to all nodes.

Output conditions
- At the end of round R, return for each j for which a message is received

uj ∈ ExtractedSetji if |ExtractedSetji | = 1, or ⊥ else.

Fig. 12: The PBCadaptive
κ protocol.

Definition 8 ((u, j)-committee). For each message/slot pair (u, j), the (u, j)-
committee is a subset of nodes such that for each node Pi in the (u, j)-committee,
whenever Fmine is queried on input Fmine .verify(adaptive,u,j), Fmine outputs 1.

Definition 9. LetMr denote the set of all possible valid r-batches for all m ∈
{0, 1}κ and for all s ∈ [n].

Lemma 15. Let k∗ be the number of bits required to describe s||m, where s ∈ [n]
and m ∈ {0, 1}κ−1 is such that distinguishes between exactly 2 messages inMr)
and where distinctk∗ is defined in Definition 6. Then |distinctk∗(Mr)| = 2·n.

Proof. Follows from the fact thatMr contains 2 · n elements with unique s||m
prefixes (s ∈ [n]) and m leads to outputting any but exactly 2 messages inMr.
2

31



Definition 10 (Valid r-batch). A valid r-batch on pair (u, j) is the element
u||j||SIGr,

where SIGr is a set of at least r signatures (or aggregate signature) on [u, j]
consisting of one signature from node Pj and at least r−1 signatures from nodes
in the (u, j)-committee (resp. or an aggregate signature with the contributions of
Pj and at least r − 1 other nodes in the (u, j)-committee).

Our protocol (Figure 12) follows the template of TrustedPBC of [43], which
itself follows the template of the broadcast protocol of Chan et al. [17], save for
the following notable changes.

First, TrustedPBC is defined only for single-bit PBC. Therefore, we gen-
eralize it for multiple nodes, the main difference coming from our use of Fmine .
Abstractly, there are an exponential number of possible committees, one per
message/slot pair (this number is quadratic in n for TrustedPBC), but since
Fmine can be evaluated on-demand for a given input, this is not an issue for
complexity. Also, in our protocol, we guarantee that each node will forward at
most two messages from the same sender, since they are sufficient to show that
the sender is dishonest. Therefore, the size of the message space does not affect
the total communication, except for the message length.

Note that at the beginning of protocol execution, nodes send to all nodes
their input value ui and a signature σi. Recall in Propagate that we use FS-PKE
instead of regular public-key encryption. To bootstrap keys, each node therefore
sample a FS-PKE key pair and send to all nodes their public key. Recall that
we use the DistinctConverge protocol in a single round so that each honest
node Pi dissembles its message and all honest nodes receive it at the end of this
round; TrustedPBC does not use constraint sets to this end.

Then, as shown in Figure 12, each round r is divided into two phases. In
the distribution phase, nodes propagate r-batches of messages associated with a
given node Pj that they have not previously propagated (using DistinctCon-
verge), and for any such r-batches, they add the corresponding message to a
set ExtractedSetji . In the voting phase, nodes check, for each r-batch that they
have received in the distribution phase, whether they are in the committee or
not for the corresponding message/slot pair using Fmine . If so, and they have
not previously added their signature to the r-batch, they do so. Finally, at the
end of R = O(λ) rounds, nodes output a vector of values for each node Pj , which

is ⊥ if |ExtractedSetji | ≠ 1 and the message in ExtractedSetji otherwise.

Theorem 9. Assuming a trusted PKI and SRS, protocol PBCadaptive
κ satisfies

f -consistency with probability 1− negl(κ)− negl(λ).

Proof. The proof follows similarly from [43, Lemma 14]. Suppose that for some
slot s, an honest node Pj adds message b to ExtractedSetsj at some round r.
We prove that by the end of the protocol all honest nodes Pi add b to their
ExtractedSetsi sets with probability at least 1 − negl(κ). We distinguish cases
depending on the step of the protocol during which Pj added message b to
ExtractedSetsj :
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1. r ≤ R and Pj adds b to ExtractedSetsj during the Vote stage. Then
Pj sends a valid-(r + 1) batch v′i for (b, s) to all parties during the Vote
stage, and therefore all parties Pi add b to their ExtractedSetsi sets during
the Distribute stage of round r + 1.

2. r ≤ R and Pj adds b to ExtractedSetsj during the Distribute stage.
Then, Pj has received, during the Distribute stage of round r, a valid r-
batch v for (b, s). Valid r-batch v belongs to the set V provided as input to
DistinctCV. From Lemma 14, all honest parties output a set that contains
v after Pj calls DistinctCVwith v as part of its input. By Lemma 2, there
is at least one honest voter Pℓ in the (b, s)-committee. We distinguish two
cases.
(a) Pℓ has not voted before for (b, s). Then, Pℓ will send a valid-(r+1) batch

v′i for (b, s) to all parties during Vote. Therefore all honest parties Pi add
b to their ExtractedSetsi sets during the Distribute phase of (r + 1);

(b) Pℓ voted before for (b, s). Then let r′ < r be the round in which Pℓ

voted for (b, s). Then, Pℓ forwarded a valid-(r′ + 1) batch v′i for (b, s)
to all parties during Vote of r′. Therefore all parties Pi added b to their
ExtractedSetsi sets during Distribute of (r′ + 1).

3. Pj adds b to ExtractedSetsj during Distribute of round (R+ 1): In this
case, Pj observes a valid (R + 1)-batch for (b, s). By Lemma 2, at least one
of the voters, say voter Pℓ, is honest. Let r

′ < R + 1 be the round when Pℓ

voted for (b, s). This means that Pℓ sent a valid-(r′+1) batch v′i for (b, s) to
all parties during Vote of (r′) and therefore all honest parties Pi added b to
their ExtractedSetsi sets during Distribute of (r′ + 1).

2

Theorem 10. Assuming a trusted PKI and SRS, protocol PBCadaptive
κ satisfies

f -validity with probability 1− negl(κ).

Proof. Assume that Pj is honest and inputs ui. Then, Pj will send a valid 1-
batch (ui, σ) to all nodes alongside its public key pki All nodes will then add
(ui, σ) to ExtractedSetji , and, by the security of the signature scheme, no other

signature for slot j can exist (thus for all Pi, |ExtractedSetji | ≤ 1). The argument
then follows from our argument for consistency. 2

Theorem 11. Protocol PBCadaptive
κ has O(κ log n) round complexity and a com-

munication complexity of O(log ϵn(n2λκ+ nλ2κ+ nλ3 log n+ n2λ2 log n)).

Proof. To calculate the communication complexity of PBCadaptive
κ , we must first

consider how aggregate signatures and Fmine may be efficiently instantiated.
Note Fmine can be implemented by checking a O(κ)-sized digest, as is the case
in [2] where Fmine was instantiated from non-interactive zero-knowledge proofs
(NIZKs). Recall that Fmine is also used in PBCstatic

κ . In PBCstatic
κ , Fmine is only

invoked in round 0, and in particular several proofs need not be combined or sent
together at any point. By contrast, our notion of r-batches depends on Fmine ,
and when using aggregate signatures, an r-batch can be the result of iterative
signature aggregation.
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Recall from Section 2 that an aggregate signature signed by r nodes (commit-
tee members here) is of size min{O(κ+r log n), O(κ+n)}. Note that an r-batch,
with our sketched instantiation of Fmine , must in general contain r proofs, which
naively uses O(rκ) space. However, if we assume the existence of NIZKs that
can be recursively combined, we assume that even if the proofs contain informa-
tion about how the proofs were combined together (e.g., encoding the indices of
the nodes that ‘combined’ the proofs in-order), that this information should not
require more than O(κ+ r log n) bits to encode.

We now analyze each step of communication of the protocol of Figure 12. At
the first step, each node sends its input value, signature and FS-PKE public key
to all nodes. Using [12] and [16] to instantiate the FS-PKE scheme, each public
key is of size O(κ log κ). Thus, this incurs O(n · κ log κ) communication. So the
first round incurs O(n2 · κ log κ) communication over all nodes.

Then, there are O(λ) rounds r of the protocol, where each node either calls
DistinctCV, or votes. For the latter case first, each node will vote only for
messages where it is in the corresponding committee, and for each committee it
will vote only once. For each such committee c, let Ic be an indicator variable that
is 1 if and only if the node is in the corresponding committee. Then, each node
will send O(

∑2n
c=1 Ic ·n · (κ+λ log n)). Overall, for all nodes, the communication

will be

O(

n∑
i=1

2n∑
c=1

Ic,i ·n ·(κ+λ log n)) = O(n ·λ ·n ·(κ+λ log n)) = O(n2λκ+n2λ2 log n),

since
∑n

i=1

∑2n
c=1 Ic,i = O(n · λ). Now, when a node calls DistinctCV, from

Lemma 14 it incurs O(
∑log ϵn

l=1 ·
∑

i∈[n] CC(Propagate(M l
i \Cl

i))) communication.

Each node calls DistinctCV once per each of the O(λ) rounds of the proto-
col. Each node will forward for each sender s at most two messages, and also
each node will forward each message at most twice. Therefore, over all calls of

Propagate we have that
∑O(λ)

r=1

∑log ϵn
l=1 |Mr,l

i \C
r,l
i | ≤ 2·n. Therefore, there can be

at most According to Lemma 12, we bound the total amount of communication
complexity from all calls to Propagate for the separate cases:

1. |Mr,l
i \ C

r,l
i | < log n. There can be at most min{O(λ) log n,O(n/ log n)} =

O(λ) log n many such rounds for each party, therefore for this case the total
communication is

∑
i∈[n]

O(λ)∑
r=1

log ϵn∑
l=1

CC(Propagate(Mr,l
i \ C

r,l
i ))) ≤ n ·O(λ log n)·

= n ·O(λ) log n ·O(n log n · (κ+ λ log n)) = O(n2λ log2 n(κ+ λ log n)),

where the communication of one such step of Propagate is bounded from the
first case of Lemma 12.

34



2. log n ≤ |Mr,l
i \C

r,l
i |. In that case, we have from the second case of Lemma 12:

∑
i∈[n]

O(λ)∑
r=1

log ϵn∑
l=1

CC(Propagate(Mr,l
i \ C

r,l
i )))

=
∑
i∈[n]

O(λ)∑
r=1

log ϵn∑
l=1

O(λ · |Mr,l
i \ C

r,l
i | · (κ+ λ log n))

≤ O(nλ · (κ+ λ log n) ·
O(λ)∑
r=1

log ϵn∑
l=1

|Mr,l
i \ C

r,l
i |) ≤ O(n2λ · (κ+ λ log n),

where in the last inequality we used the inequality that we derived before,

i.e.
∑O(λ)

r=1

∑log ϵn
l=1 |Mr,l

i \ C
r,l
i | ≤ 2 · n.

If we add all the computed communications, we derive the upper bound of
the theorem statement.
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Appendices

A Deferred Preliminaries

Fmine additional description. In our work, we use three different types of
committees: a committee in the static adversary model, a signing committee, and
a forwarding committee. To differentiate the mining attempt and verification of
them, we define the input to Fmine and Fmine .verify() in the form of (type, val, i)
where val might consist of multiple values and i is the identity of the node that
queries the function. We present in Figure 2 the functionality of Fmine . Fmine

can be implemented with (concretely efficient) non-interactive zero-knowledge
proofs of size O(κ) as shown in [2]. The use of Fmine will not incur any additional
asymptotic communication overhead for our protocols.

Forward-secure public-key encryption (FS-PKE). For simplicity, we con-
sider unbounded FS-PKE, where an arbitrary number of secret key update op-
erations, each forming a different epoch, are supported (we nonetheless only
require bounded FS-PKE where the number of updates is a priori bounded).
Note that the public key is fixed at key generation time. A FS-PKE consists of
four algorithms.

− gen. The gen key generation algorithm takes as input a security parameter
κ and outputs a public/secret key pair (pk, sk0), where sk0 is associated with
epoch 0.

− enc. The enc encryption algorithm takes as input (pk, i,m), a public key,
epoch i ≥ 0 (associated with secret key ski) and message m, and outputs a
ciphertext ct.

− dec. The dec decryption algorithm takes as input (pk, i, ski, ct), a public key
pk, epoch i associated with secret key ski and a ciphertext ct, and outputs a
message m (or m = ⊥ if decryption fails).

− upd. The upd secret key update algorithm takes as input (pk, i, skj), a public
key pk, an epoch i and a secret key skj associated with epoch j < i, and
outputs an epoch i secret key ski.

Definition 11 (Secure FS-PKE). A FS-PKE as specified above is secure if
it satisfies the following properties with probability 1− negl(κ).

− FS-PKE-Correctness: For any (pk, sk0)← gen, any well-formed ski (i.e.,
output by iterative calls to upd starting with sk0) for epoch i and any message
m, we have m = dec(pk, i, ski, enc(pk, i,m)).

− FS-PKE-IND-CCA: Given a challenge oracle chal(j,m0,m1) that encrypts
mb for bit b under epoch j given |m0| = |m1|, the ability to expose secret keys
for epoch i > j and a decryption oracle for all ciphertexts but the challenge,
an adversary cannot distinguish between the case of b = 0 and b = 1.

An appropriate formally-specified IND-CCA security notion can be found in [16].
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We assume FS-PKE has constant-sized ciphertexts (in the security parameter),
which can be achieved by using the hierarchical identity-based encryption scheme
of [12] as a binary-tree encryption scheme in the construction of [16].

Definition 12 (Secure ECP System). An ECP system as specified above is
secure if it satisfies the following properties with probability 1− negl(κ).

− EC-Correctness: If an honest encoder runs provepp(M, pp) and obtains
(ϕ,d,π) and an honest decoder reconstructs M ′ from a set of m valid frag-
ments (di, πi) with respect to ϕ, then M = M ′.

− EC-Consistency: If an honest decoder reconstructs M1 from a set of m
valid fragments with respect to ϕ and another honest decoder reconstructs M2

from a set of m valid fragments with respect to ϕ, then M1 = M2.

B Instantiation of Communication-Efficient Committee
Description

Note that we can efficiently describe an r-batch of signatures from committee
members by using aggregate signatures and recursive snark proofs to prove com-
mittee membership. In this section we describe the exact details. The goal is to
lower the communication size of an r-batch from Θ(r · κ) to Θ(κ + r log n),
while allowing for the batch to be updateable to an (r + 1)-batch from a new
committee member. Aggregate signatures directly allow for the signature part
of the batch to be described with that communication size. The remaining part
describes such batches and their proof update.

We first provide the definition of Non-Interactive Zero Knowledge proofs
(NIZKs).

Definition 13 (NIZKs). Let an NP relation R. Let statement x and wit-
ness w s.t. (x,w) ∈ R. Let L denote the language that consists of statements
in R. A non-interactive zero-knowledge proof is a triple of PPT algorithms
(Gen,Prove,Verify) such that:

– Gen: given the security parameter κ (in unary) outputs public parameter pp;
pp← Gen(1κ).

– Prove: given pp, a statement x and a witness w, outputs proof π; π ←
Prove(pp, x, w).

– Verify: given pp, statement x and proof π, outputs a bit b; b← Verify(pp, x, π).

The specific properties we require from the NIZK system we use are inher-
ited by the construction of the committee-membership NIZK proofs that are
extensively described in [2, 17]. Namely we require perfect completeness, on-
erasure computational zero-knowledge and perfect knowledge extraction, as de-
fined in [17].

39



So far, in committee based approaches [17, 43], a valid r-batch is structured
as a tuple (

σs(v),
{
(σi(v), π

com
v,i )

}
i∈Cr

v

)
2

where σs(v) denotes the signature of the designated sender Ps on value v, Cr
v is

a bitmap representation of a set of indices corresponding to some parties in the
v committee and πcom

v,i corresponds to a proof – a NIZK hereafter – that party
Pi indeed belongs to the v committee. For the exact description of such a NIZK,
see [17], but for the rest of our description we refer to that NIZK as nizk1. Such
a batch is considered r-valid if all signatures are valid, the number of signatures
(including the sender’s) is at least r and each signature is accompanied by a
valid proof that the party is elected in the v committee. If a party Pt wants
to update the batch with its own signature, it simply has to append a tuple
(σt(v), π

com
v,t ), such that i) σt(v) does not appear already in the batch and ii)

πcom
v,t is also a valid proof that Pt is in the v committee. The updated batch will

then be considered as a valid (r + 1)- by any honest party receiving it. Notice
that the communication complexity of an r-batch is O(r · κ).

In our work, we propose two structural changes that allow for r-batches to
be represented in a more communication-efficient way. As a first approach we
propose that parties, instead of sending their respective signature, they can in-
stead construct a multisignature σCr

v
(v) combining all respective signatures from

parties in the set Cr
v . Any party knowing the set Cr

v can efficiently verify that
the multisignature is a representation of all signatures {σi(v)}i∈Cr

v
, by running

Ver(PK, σCr
v
(v), v, Cr

v), where PK corresponds to the list of all n public keys
(see Aggregate signatures (Section 2.2)). An efficient representation of Cr

v can
be given by a mapping of indices {i1, i2, . . . , ir−1} with O(r · log n) bits. Each
index represents the binary description of value ij , which takes logn bits. This
set can be easily updated by simply including the new party’s index. Still, this
approach clearly does not tackle the issue of the independent proofs of committee
membership that need to also be propagated in the r-batch.

Therefore, the last issue to tackle is how to more efficiently represent the set
of all proofs of committee membership, that must accompany the signatures. For
this, we also employ NIZKs.

Let nizk2 denote the following relation:

– nizk2: statements of the form x := (s, v, σs(v), C
r
v) and witnesses of the form

w := (t, πr
v, σt(v), π

com
v,t ), such that:

1. Cr
v ⊂ [n] and t ∈ Cr

v ;
2. σs(v) is a valid signature from Ps on v;
3. either Cr

v = {s} and t = s, or else πr
v is a valid nizk2 proof w.r.t.

s, v, σs(v), C
r
v − {t};

4. σt(v) is a valid signature from Pt on v;

2 Notice that the same structure is true for the Dolev-Strong protocol [21]; however,
the committee membership proofs are not required since every party is an effective
member of the n committee in that protocol.
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5. Either t = s and Cr
v = {s}, or else πcom

v,t is a nizk1 proof that party Pt is
in the v committee (as defined in [17]).

Notice that condition 3. does not lead to a circular argument, rather a re-
cursive definition. The recursion has an initial condition, for the case where
Cr

v = ∅ and is thus valid. Also notice that the time it takes for any such check
is polynomial and the relation is thus an NP relation.

A valid r-batch with our renewed approach is of the form

(σs(v), C
r
v , π

r
v)

where Cr
v is still a bitmap representation of r− 1 parties and πr

v is a nizk2 proof.
The updated construction has the following actions.

Setup. The trusted party additionally with all other actions, also runs the CRS
generation algorithms of the NIZK scheme to obtain crs2, which is added to the
public parameters, say pp.

Designated Sender. In order to forward its input value v to all parties in the
initial round of the protocol, the designated sender Ps calls

nizk2.Prove(pp, x := (s, v, σs(v), {}), w := (s,⊥, σs(v),⊥))

to obtain a valid initial nizk2 proof π1
v . Then Ps will send

(
σs(v), {s}, π1

v

)
to

all parties as a valid 1-batch. Notice that if the designated sender is honest, no
dishonest party can forge a 1-batch for a different value v′, since it can not even
compute σs(v

′) (and does not have access to sks.)

Honest parties. A party Pt observing a batch (σs(v), C
r
v , π

r
v) accompanying value

v in round r, considers the batch as r-valid if 1. |Cr
v | ≥ r, 2. the corresponding

designated sender matches Ps, and 3. nizk2.Verify((s, v, σs(v), C
r
v), π

r
v) = 1.

If the party Pt is also in the corresponding committee and has to update the
received batch with its own signature, it calls

πr+1
v ← nizk2.Prove(pp, x := (s, v, σs(v), C

r
v ∪ {t}), w := (t, πr

v, σt(v), π
com
v,t )).

Pt can then send
(
σs(v), C

r
v ∪ {t}, πr+1

v

)
as a valid (r+1)-batch to any party

in the protocol.
It is straightforward that any such NIZK proof for a set C requires for all

honest parties in C to have already constructed one step of the recursive NIZK
proof or to have propagated their own signature on the value; otherwise, an
adversary who can simulate all the steps to construct a valid nizk2 proof for a set
C that includes honest parties, must be able to break the security of the signature
scheme. Finally, notice that the bit size of the proposed r-batches isO(r log n+κ),
where the r log n factor comes from the size of the bitmap representation of set Cr

v

and the κ factor is the size of the signature σs(v) and the single NIZK proof πr
v.

We also observe that in this construction we do not require aggregate signatures,
since the existence of the signatures of the respective parties is proven via our
proposed NIZK proof.
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