
Leveled Homomorphic Encryption Schemes
for Homomorphic Encryption Standard

Shuhong Gao1 and Kyle Yates1

1School of Mathematical and Statistical Sciences, Clemson University
sgao@clemson.edu, kjyates@clemson.edu

Abstract

Homomorphic encryption allows for computations on encrypted data with-
out exposing the underlying plaintext, enabling secure and private data process-
ing in various applications such as cloud computing and machine learning. This
paper presents a comprehensive mathematical foundation for three prominent
homomorphic encryption schemes: Brakerski-Gentry-Vaikuntanathan (BGV),
Brakerski-Fan-Vercauteren (BFV), and Cheon-Kim-Kim-Song (CKKS), all based
on the Ring Learning with Errors (RLWE) problem. We align our discussion
with the functionalities proposed in the recent homomorphic encryption stan-
dard, providing detailed algorithms and correctness proofs for each scheme.
Additionally, we propose improvements to the current schemes focusing on
noise management and optimization of public key encryption and leveled ho-
momorphic computation. Our modifications ensure that the noise bound re-
mains within a fixed function for all levels of computation, guaranteeing correct
decryption and maintaining efficiency comparable to existing methods. The
proposed enhancements reduce ciphertext expansion and storage requirements,
making these schemes more practical for real-world applications.

Keywords. Homomorphic Encryption, Learning with Errors, Ring Learn-
ing with Errors, Noise Bounds, Lattice Attacks.

1 Introduction

Homomorphic encryption describes encryption schemes that allow for addition and
multiplication operations to be performed on ciphertexts without needing or leaking
any information about the secret key or user messages. Furthermore, the operations
in the ciphertext space correspond to performing the same operations on the original
messages, which can be performed by any third party with knowledge of only the
public information. Homomorphic encryption has several modern applications, such
as secure cloud computing and private machine learning. With Craig Gentry’s work in
2009 [1], provably secure homomorphic encryption became viable using ideal lattices.
This construction closely relates to the commonly used learning with errors (LWE)
problem, with the hardness of LWE being a result proved by Regev in 2005 [2].

1

Three of the most common modern homomorphic encryption schemes are based on
a ring version of LWE problems, known as the ring learning with errors (RLWE) prob-
lems [3]. These schemes are the Brakerski-Gentry-Vaikuntanathan (BGV) scheme
[4, 5], the Brakerski-Fan-Vercauteren (BFV) scheme [6], and the Cheon-Kim-Kim-
Song (CKKS) scheme [7]. BGV and BFV both allow for homomorphic computation
for exact arithmetic, while CKKS provides homomorphic computation for numerical
computation with certain accuracy. With recent efforts to standardize homomorphic
encryption schemes and security [8, 9], it is desirable to have concrete and mathemat-
ically solid discussions on encryption schemes and homomorphic computing protocols
that match the functionalities proposed in the standard, including parameter specifi-
cations for efficiency and security.

We should mention that Chillotti et al. [10, 11] present a fully homomorphic
encryption scheme that can perform one bit operation in less than 0.1 second, while
Gao [12] and Case et al. [13] present a fully homomorphic encryption scheme with
similar running time but a much smaller ciphertext expansion (< 20). However,
each operation in these schemes is prohibitively expensive at the moment. Leveled
schemes have a much larger ciphertext expansion, but each operation is much cheaper.
A leveled scheme allows for some predetermined number of operations [5, 14, 15],
which is the style we opt for in this paper. Several works study noise bounds for
homomorphic encryption [14, 16, 17, 18, 19, 20] in both the canonical embedding and
infinity norms. These analyses include both theory and implementations. Speedups
can be implemented via the residue number system (RNS) [21, 22], which uses the
Chinese remainder theorem to break down computations into smaller rings. The
schemes we present in this paper can all be implemented using RNS representation.

Our Contributions. This paper has two main goals. The first goal is to present
detailed algorithms for the functionalities proposed in the homomorphic encryption
standard [8, 9] for each of the BFV, BGV, and CKKS schemes, and present a de-
tailed correctness proof for all the functionalities. This lays a rigorous mathematical
foundation for homomorphic encryption schemes. The second goal is to improve the
current schemes for BFV, BGV, and CKKS. We present modified schemes for each
of the three schemes, especially in public key encryption and leveled homomorphic
computing, and focus on noise control and the worst-case noise bounds, thereby re-
ducing ciphertext expansion and storage expenses. In particular, under the modified
schemes, the noise bound for ciphertexts from public key encryption and from ho-
momorphic computing at each level is always bounded by a fixed function ρ, which
depends on the underlying ring. The worst-case bound guarantees that ciphertexts
can always be decrypted correctly, with no probability of decryption error, which
is preferred for many applications. Furthermore, parameter sizes resulting from our
worst-case bounds are comparable to parameter sizes from average-case bounds in
the literature, thus not degrading the efficiency of the schemes.

Organization of This Paper. In Section 2 we describe notations and necessary
background. We then introduce LWE and RLWE problems. We present and prove

2

two variations of modulus reduction, which is later applied to RLWE-based encryp-
tion schemes. In Section 3 we outline three RLWE-based homomorphic encryption
schemes: BFV, BGV, and CKKS. For these three schemes, we provide modified en-
cryption to better control noise and conduct a thorough worst case theoretical noise
analysis. In Section 4 we discuss leveled schemes and present techniques in choosing
parameters to guarantee homomorphic operations. We also outline operations in RNS
here. In Section 5 we give a brief discussion of attack techniques for LWE problems.
In Section 6 we provide concluding remarks and further potential research topics.
Appendix A contains the proofs of the lemmas on correctness of functionalities for
all the algorithms.

2 Notations and Preliminaries

2.1 Notations

For a positive integer q, define Zq := Z ∩ (−q/2, q/2] to be the ring of centered
representatives modulo q. For an element v ∈ Z, we denote [v]q to be the modular
reduction of v into the interval Zq such that q divides v− [v]q. When v is a vector or a
polynomial, [v]q means reducing each entry or coefficient of v modulo q, respectively.
Denote Rn as the ring

Rn = Z[x]/(ϕ(x))
where ϕ(x) is a polynomial of degree n and (ϕ(x)) is the ideal generated by ϕ(x).
Often, we will choose ϕ(x) to be a power of two cyclotomic polynomial. That is, a
polynomial of the form ϕ(x) = xn + 1, where n is a power of two. For an integer q,
we define Rn,q as

Rn,q = Zq[x]/(ϕ(x)) ∼= Z[x]/(ϕ(x), q)
where (ϕ(x), q) is the ideal generated by ϕ(x) and q. When v is a polynomial, [v]ϕ(x)
denotes modular reduction of the polynomial into Rn. Similarly, when v is a polyno-
mial with integer coefficients, [v]ϕ(x),q denotes modular reduction of the polynomial
into Rn,q, where all the coefficients are in (−q/2, q/2].

For a vector or polynomial v, the infinity norm of v, denoted ∥v∥∞, is the maximum
entry or coefficient in absolute value of v. Equivalently, if v = (a0, . . . , an−1) or
v =

∑n−1
i=0 aix

i, then

∥v∥∞ = max{|ai| : i = 0, . . . , n− 1}.
∥·∥2 denotes the standard 2-norm. The symbols ⌊·⌋ and ⌈·⌉ will denote floor and
ceiling respectively, whereas ⌊·⌉ will denote rounding to the nearest integer, rounding
down in the case of a tie. When applying ⌊·⌋, ⌈·⌉, or ⌊·⌉ to a polynomial or vector,
we mean the rounding of each entry or coefficient. Define the expansion factor δR of
Rn as

δR = max

{
∥uv∥∞
∥u∥∞ ∥v∥∞

: u, v ∈ Rn

}
,

3

where uv must be reduced modulo ϕ(x) before applying the norm. When ϕ(x) = xn+1
where n is a power of two, it is well known that δR = n.

2.2 Noise Distributions and Learning With Errors Problems

For a set S, we denote χ(S) as an arbitrary probability distribution χ on S. We
denote U as the uniform distribution. Let ρ > 0 be any integer. We denote χρ as
any probability distribution on Rn, where each coefficient is random in [−ρ, ρ] and
independent. We call χρ an error distribution or noise distribution. We allow for flex-
ibility in the exact choice of χρ, but most commonly, χρ is chosen as uniform random
on [−ρ, ρ], or a truncated discrete Gaussian in order to maintain security [23, 24].
Over Z, the discrete Gaussian distribution DZ,αq assigns a probability proportional
to exp(−πx2/(αq)2) for each x ∈ Z with standard deviation σ = αq/

√
2π [6]. For the

cyclotomic polynomial ϕ(x) = xn + 1, an n-dimensional extension of DZ,αq to Rn can
be constructed by process of sampling each coefficient from DZ,αq. More details on
the impact of the error distribution on security can be found in Section 5.

LWE Problems. For any secret s ∈ Zn
q , we sample e← χ(Z) from some desired

distribution χ such that ∥e∥∞ ≤ ρ, where ρ is a desired parameter, we sample a
uniform random a ← U(Zn

q), and calculate b via b := [−⟨a, s⟩ + e]q. The ordered
pair (a, b) ∈ Zn

q ×Zq is called an LWE sample. The Search-LWE problem is to find s
given many LWE samples. The Decision-LWE problem is given many samples that
are either LWE samples or sampled at uniform random from Zn

q × Zq, decide which
distributions the samples are drawn from [25].

When drawing elements from distributions on Rn and Rn,q, we can similarly define
the RLWE problems. For a secret s ∈ Rn,q, sample a polynomial e ← χρ, sample
a ← U(Rn,q), and compute b ∈ Rn,q via b := [−as + e]ϕ(x),q. The ordered pair
(a, b) ∈ R2

n,q is called an RLWE sample. The RLWE problems can be defined in an
analogous way to the LWE problems. Throughout this paper, when given an RLWE
sample or similarly structured ordered pair, we will commonly refer to the polynomial
e as the noise term and ∥e∥∞ as the noise size.

Most leveled homomorphic encryption schemes use RLWE as opposed to LWE.
The ciphertexts of homomorphic encryption schemes discussed will all essentially take
the form of a modified RLWE sample. Regev originally showed the hardness of the
LWE problem in [2], which serves as foundation for the security of homomorphic
encryption schemes. We discuss more specifics on security in Section 5.

We remark that, in our schemes, we use noise size ρ = n, and the noise distribution
can be uniform on integers bounded by ρ, or a discrete Gaussian distribution but
truncated at ρ. When using a bounded uniform distribution, our choice of noise
has standard deviation σ of about n/

√
3. In comparison, most implementations in

practice (including the homomorphic encryption standard) use a discrete Gaussian
distribution with σ ≈ 3.2 [8, 9, 26, 19]. Our larger noise bound increases the security,
which will be discussed later.

4

2.3 Modulus Reductions

Let Q and q be any positive integers. Given an RLWE sample (a0, b0) ∈ R2
n,Q, where

b0 ≡ −a0s+ e0 mod (ϕ(x), Q), we can compute a new RLWE sample (a′0, b
′
0) ∈ R2

n,q

satisfying b′0 ≡ −a′0s + e′0 mod (ϕ(x), q) for some new noise term e′0. Although this
is a new RLWE sample with a new integer modulus q, the key observation is that the
polynomial s remains the same. Furthermore, if given an initial bound on e0, we can
guarantee a bound on e′0 dependent on Q and q. Algorithm 1 gives the procedure for
modulus reduction, while Lemma 2.1 shows correctness and the resulting bound on
e′0. Though Q and q are any positive integers, we typically choose Q > q and refer to
this procedure as a modulus reduction rather than a modulus switch as many other
papers do. Note here that we use a subscript of 0 in our RLWE sample, as it will
provide more consistency with our later applications of this algorithm to ciphertexts.
For this reason, we also label (a0, b0) as ct0 in Algorithm 1.

BFV.Modreduce(ct0, Q, q)

Input: Q ∈ N an integer,

q ∈ N an integer,

ct0 = (a0, b0) ∈ R2
n,Q.

Output: ct′0 = (a′0, b
′
0) ∈ R2

n,q.

Step 1. Compute a′0 := ⌊
qa0
Q
⌉ and b′0 := ⌊

qb0
Q
⌉.

Step 2. Return ct′0 = (a′0, b
′
0) ∈ R2

n,q.

Algorithm 1: BFV Modulus Reduction

Lemma 2.1 Suppose the input ct0 of Algorithm 1 is an RLWE sample such that
∥e0∥∞ ≤ E. Let ct′0 be the output of Algorithm 1. Then,

b′0 ≡ −a′0s+ e′0 mod (ϕ(x), q)

and
∥∥e′0∥∥∞ ≤ q

Q
E +

δR∥s∥∞+1

2
. Furthermore, if Q/q > 2E

δR∥s∥∞−1
, then

∥∥e′0∥∥∞ <

δR ∥s∥∞.

What will be more useful than a modulus reduction for a generic RLWE sample
will be a modulus reduction for a “modified” RLWE sample that takes the form of
a standard BFV ciphertext, hence the algorithm name BFV.Modreduce. By a BFV
ciphertext, we mean that our input for Algorithm 1 ct0 = (a0, b0) ∈ R2

n,Q satisfies

b0 + a0s ≡ DQm0 + e0 mod (ϕ(x), Q)

for some noise term e0 ∈ Rn, where m0 ∈ Rn,t and DQ is a positive integer. This
format is further clarified in Section 3.1. Classic BFV [6] uses DQ = ⌊Q/t⌋. In this

5

paper we will always assume t|(Q− 1) for any given ciphertext modulus Q, meaning
that DQ = (Q − 1)/t when using the same floor definition as in classic BFV. The
resulting output ct′0 = (a′0, b

′
0) ∈ R2

n,q of Algorithm 1 satisfies b′0 + a′0s ≡ Dqm0 + e′0
mod (ϕ(x), q) for some e′0, where Dq = (q− 1)/t when t|(q− 1). Algorithm 1 and the
proof of Lemma 2.2 have a similar style to the proof of Lemma 2.3 in [12].

Lemma 2.2 Suppose the input of Algorithm 1 is a BFV ciphertext such that ∥e0∥∞ ≤
E. Let ct′0 be the output of Algorithm 1. If t|(Q− 1) and t|(q − 1), then

b′0 + a′0s ≡ Dqm0 + e′0 mod (ϕ(x), q)

and
∥∥e′0∥∥∞ ≤ q

Q
E + 1 +

δR∥s∥∞
2

. Furthermore, if Q/q > 2E
δR∥s∥∞−2

, then
∥∥e′0∥∥∞ <

δR ∥s∥∞.

The final reformulation essentially states that if Q/q meets a specific bound de-
pending on E, modulus reduction always produces a new noise term e′0 bounded by
δR ∥s∥∞. A similar algorithm and lemma can also be constructed for a standard BGV
ciphertext [4, 5], which is an ordered pair ct0 = (a0, b0) ∈ R2

n,Q satisfying

b0 + a0s ≡ m0 + te0 mod (ϕ(x), Q)

for some noise term e0 and given message m0 ∈ Rn,t, which is the message space for
some integer t > 1. The procedure for computing the new ciphertext differs from
the previous two modulus reduction algorithms. In particular, we use the procedure
outlined in Lemma 4.3.1 of [25], which is given here as Algorithm 2.

BGV.Modreduce(ct0, Q, q)

Input: Q ∈ N, an integer,

q ∈ N, an integer,

ct0 = (a0, b0) ∈ R2
n,Q, BGV ciphertext.

Output: ct′0 = (a′0, b
′
0) ∈ R2

n,q, BGV ciphertext.

Step 1. Compute

ωa := [−a0qt−1]Q and ωb := [−b0qt−1]Q.

Step 2. Compute

a′0 :=
[
q a0+t ωa

Q

]
q

and b′0 :=
[
q b0+t ωb

Q

]
q
.

Step 3. Return ct′0 = (a′0, b
′
0) ∈ R2

n,q

Algorithm 2: BGV Modulus Reduction

6

Lemma 2.3 Suppose the input of Algorithm 2 is a BGV ciphertext such that ∥e0∥∞ ≤
E. Let ct′0 be the output of Algorithm 2. If t|(Q− 1) and t|(q − 1), then

b′0 + a′0s ≡ m0 + te′0 mod (ϕ(x), q)

and
∥∥e′0∥∥∞ ≤ q

Q
E + 1 +

δR∥s∥∞
2

. Furthermore, if Q/q > 2E
δR∥s∥∞−2

, then
∥∥e′0∥∥∞ <

δR ∥s∥∞.

3 Homomorphic Encryption Schemes and Noise Bounds

Most homomorphic encryption schemes in the literatue use a modified version of
RLWE to hide messages. In this section, we’ll cover three main schemes: BFV [6],
BGV [4, 5], and CKKS [7]. For these three schemes, we present modified versions
where the noise sizes are improved and always controlled by a fixed bound, namely
ρ = δR ∥s∥∞.

Overview of Specifications. Before outlining our specific algorithms, we first
provide an overview of specifications for parameters and spaces. Although there are
variations between the schemes, the parameter choices outlined below work for all
of BFV, BGV, and CKKS (when applicable). These parameter conditions ensure
proper functionality regarding homomorphic computation for each scheme. Further
caution must be taken when choosing parameters in practice to ensure security, which
is discussed in Section 5.

Specifications for Homomorphic Encryption Schemes

Public Parameters: q ∈ N
p0 ∈ N with p0 ≥ 5δR + 3

p1 ∈ N with p1 ≥ 6q

t ∈ N with t|(q − 1), t|(p0 − 1), and t|(p1 − 1)

Plaintext: m ∈ Rn,t for BFV and BGV

m ∈ Cn/2 for CKKS

Secret Key: sk ∈ Rn,3

Public Key: pk ∈ R2
n,p0q

Evaluation Key: ek ∈ R2
n,p1q

Ciphertext: ct ∈ R2
n,q

Noise Bound: ρ = δR ∥s∥∞
Noise Distribution: χρ, a probabilistic distribution on Rn

with each coefficient random in [−ρ, ρ]

7

We want to emphasize that each coefficient of the distribution χρ can be uniform
random on [−ρ, ρ], or any subgaussian truncated by the bound ρ, or any other distri-
bution that is bounded by ρ. All the noise bounds in this paper will be valid, since
they depend only on the worst-case bound ρ. We will simply say “Sample e ← χρ”
in all the algorithms for this generic distribution.

The bound ρ appears prominently in our algorithms. It is not just a bound on
the noise distribution, but also a worst-case bound for both fresh ciphertexts from
public key encryption and new ciphertexts after modulus reduction when going from
one level to the next level, as indicated by the lemmas in the previous section. In
practical implementations, we often choose n to be a power of 2 and ϕ(x) = xn + 1,
hence δR = n. When ∥s∥∞ = 1, we have ρ = δR ∥s∥∞ = n.

Remark on message encoding and choice of t. In the BFV scheme, we
choose to encode a message polynomial m as Dqm where Dq = (q − 1)/t, which
requires that q − 1 is divisible by t. The paper [16] proposes to encode m as ⌊qm/t⌉,
which works for any t and q, hence no restriction that t|(q − 1). An extra small
amount of noise is introduced from their encryption style, but has minimal impact
and gives about the same bounds in our lemmas in the case of t dividing q − 1
that we consider. This alternate encryption style is slightly more expensive from
a computation standpoint, as additional rounding operations must be performed as
opposed to just integer multiplication. We refer the reader to [16] for more details on
plaintext modulus choice and SIMD.

3.1 Modified BFV Scheme

BFV Key Generation. The key generation process we use is slightly different from
the standard BFV scheme [6] in that the public key and evaluation key are generated
in a larger modulus [6, 14, 16, 19], which will be useful for reducing the noise size in
ciphertexts. Algorithm 3 gives the key generation for the BFV keys needed, which
is the secret key sk, the public key pk, and the evaluation key ek. Here, sk is kept
secret, while pk and ek are published. The public key pk = (k0, k1) ∈ R2

n,p0q
satisfies

k1 + k0s ≡ e mod (ϕ(x), p0q)

for noise term e← χρ. The evaluation key ek = (k′0, k
′
1) ∈ R2

n,p1q
satisfies

k′0 + k′1s ≡ p1s
2 + e′1 mod (ϕ(x), p1q)

for noise term e′1 ← χρ. We remark that in Algorithm 3 we choose s randomly rather
than specifying the sampling distribution. This is intentional, as s may be desired
to be chosen to satisfy certain properties in practice. For instance, s is often chosen
randomly with a predetermined Hamming weight in practice.

BFV Encryption and Decryption. We encrypt a message m0 ∈ Rn,t using a
modified version of the standard public key procedure for BFV. Note that we choose
the plaintext modulus t so that t divides p0 − 1 and q − 1, and therefore divides

8

BFV.Keygen(q, p0, p1)

Input: q ∈ N,
p0 ∈ N with p0 ≥ 5δR + 3,

p1 ∈ N with p1 ≥ 6q.

Output: sk = s ∈ Rn,3 secret key,

pk = (k0, k1) ∈ R2
n,p0q

public key,

ek = (k′0, k
′
1) ∈ R2

n,p1q
evaluation key.

Step 1. Choose randomly s ∈ Rn,3.

Step 2. Sample k0 ← U(Rn,p0q) and e← χρ.

Compute k1 := [−(k0s+ e)]ϕ(x),p0q.

Step 3. Sample k′1 ← U(Rn,p1q) and e′1 ← χρ.

Compute k′0 := [−k′1s+ p1s
2 + e′1]ϕ(x),p1q.

Step 4. Return sk = s, pk = (k0, k1), and ek = (k′0, k
′
1).

Algorithm 3: BFV Key Generation

p0q − 1. We immediately reduce the ciphertext modulus from p0q to q before adding
the message bits, then return the ciphertext. The purpose of this is to ensure the
noise term on the returned ciphertext ct′0 is within the constant bound of ρ. Given
our description of the secret key selection, it is obvious that ∥s∥∞ = 1. Most results
we provide can be easily modified for the case of general ∥s∥∞ however, allowing
for some flexibility in key generation if desired. The exact choices of p0 and q will
of course depend on several factors, such as the desired number of homomorphic
computations. We will further discuss the choices of these in Section 4. Assuming
these parameters, Algorithm 4 describes the encryption procedure for BFV. In many
algorithms, we’ll refer to inputs as “BFV ciphertexts”. By this, we mean some ordered
pair ct = (a, b) ∈ R2

n,q satisfying

b+ as ≡ Dqm+ e mod (ϕ(x), q)

for some message m ∈ Rn,t, some noise term e ∈ Rn, ciphertext modulus q, and
constant Dq = ⌊q/t⌋ = (q − 1)/t. This encryption style is the classic form of BFV
encryption [6]. If ∥e∥∞ ≤ E, we will say ct = (a, b) is a BFV ciphertext with noise
bounded by E.

Lemma 3.1 provides correctness and the corresponding noise bound resulting from
encryption. The bounds in Lemma 3.1 are assuming that ∥s∥∞ = ∥u∥∞ = 1. How-
ever, the bounds can be discussed in terms of more generic u and s, in which case

the bound condition on p0 is p0 >
2δ2R(∥u∥∞+∥s∥∞)+2δR

δR∥s∥∞−1
. In this case, the resulting noise

term from encryption still satisfies
∥∥e′0∥∥∞ < ρ.

9

BFV.Encrypt(m0, Dq, pk)

Input: m0 ∈ Rn,t message,

Dq ∈ N constant,

pk = (k0, k1) ∈ R2
n,p0q

public key.

Output: ct′0 = (a′0, b
′
0) ∈ R2

n,q BFV ciphertext.

Step 1. Sample u← U(Rn,3) and sample e1, e2 ← χρ.

Step 2. Compute (a0, b0) ∈ R2
n,p0q

where

a0 := [k0u+ e1]ϕ(x),p0q,

b0 := [k1u+ e2]ϕ(x),p0q.

Step 3. Compute

(a′0, b
∗
0) := BFV.Modreduce((a0, b0), p0q, q),

b′0 := [b∗0 +Dqm0]q.

Step 4. Return ct′0 = (a′0, b
′
0) ∈ R2

n,q.

Algorithm 4: Modified BFV Encryption

Lemma 3.1 Let ct′0 be the output of Algorithm 4. Suppose that ∥s∥∞ = 1, t|(p0−1),

t|(q − 1), and p0 >
4δ2R+2δR
δR−1

. Then ct′0 is a BFV ciphertext with noise bounded by ρ.

We argue that when δR ≥ 16, the condition on p0 in Lemma 3.1 is satisfied when
p0 is chosen so that p0 ≥ 5δR + 3 as per our parameter specifications, since

5δR + 3 >
32

7
δR +

16

7
=

16

7
(2δR + 1) =

2δR(2δR + 1)
7
8
δR

≥ 4δ2R + 2δR
δR − 1

.

This technique of encryption with a built-in modulus reduction in Step 3 was first
mentioned in [19], but is overall not especially well outlined in the literature. Imple-
mentations do often reduce the modulus immediately after encryption to reduce noise.
For instance, Microsoft SEAL [27] chooses p0 as a “special prime”, then generates all
keys with an integer modulus of p0q (for q a product of some primes) before reducing
down to integer modulus q to house any ciphertext data. SEAL documentation rec-
ommends choosing this special prime p0 to be at least as big as any prime divisor of q,
though it is not a strict requirement. In our modification, we propose computing the
modulus reduction locally during encryption, and doing so before adding the message
bits. The advantage to this approach is we can choose p0 to be much smaller.

Algorithm 5 provides for the decryption of a BFV ciphertext, which is the standard
BFV decryption.

Lemma 3.2 If the input ct0 of Algorithm 5 is a BFV ciphertext with noise bounded
by (Dq − 1)/2 and t|(q − 1), then the decryption in Algorithm 5 is correct.

10

BFV.Decrypt(ct0, sk)

Input: ct0 = (a0, b0) ∈ R2
n,q BFV ciphertext,

sk = s ∈ Rn,3 secret key.

Output: m0 ∈ Rn,t message.

Step 1. Compute c := [b0 + a0s]ϕ(x),q.

Step 2. Compute m0 :=
[⌊

tc
q

⌉]
t
.

Step 3. Return m0.

Algorithm 5: BFV Decryption

BFV Additions and Linear Combinations. We allow for linear combinations
of ciphertexts with scalars from Z. Based on the sum of absolute values of these
scalars, we can guarantee a bound on the resulting ciphertext noise. In particular,
we discuss the case of linear combinations with scalars α0, . . . , αk−1 ∈ Z such that∑k−1

i=0 |αi| ≤ M . Assuming each input ciphertext has noise bounded by E, a linear
combination of k ciphertexts using these scalars results in noise bounded byM(E+1).
Algorithm 6 gives the algorithm for linear combinations, while Lemma 3.3 gives the
resulting noise bound for BFV ciphertexts.

Linearcombo(ct0, . . . , ctk−1, α0, . . . , αk−1)

Input: ct0, . . . , ctk−1 ∈ R2
n,q (or ct0, . . . , ctk−1 ∈ R3

n,q),

α0, . . . , αk−1 ∈ Z scalars.

Output: ct′0 ∈ R2
n,q (or ct

′
0 ∈ R3

n,q).

Step 1. Set ct′0 := [0, 0] (or [0, 0, 0]).

For i from 0 to k − 1 do

ct′0 := [ct′0 + αicti]q.

Step 2. Return ct′0.

Algorithm 6: Linear Combinations

Lemma 3.3 Suppose the inputs of Algorithm 6 are BFV ciphertexts each with noise
bounded by E and suppose

∑k−1
i=0 |αi| ≤ M . Let ct′0 be the output of Algorithm 6. If

t|(q − 1), then ct′0 is a BFV ciphertext with noise bounded by M(E + 1).

We remark that we allow for inputs of Algorithm 6 to also be in R3
n,q. For the

input of Algorithm 6, when using elements of the form (c0, c1, c2) ∈ R3
n,q satisfying

c0 + c1s+ c2s
2 ≡ Dqm+ e mod (ϕ(x), q)

11

for some m ∈ Rn,t and e ∈ Rn, we still refer to e as a noise term (and refer to a bound
on ∥e∥∞ as a noise bound). If each input has noise bounded by E, we can slightly
adjust the proof of Lemma 3.3 to obtain an element in R3

n,q with noise bounded by
M(E + 1) from the output of Algorithm 6. This alternate choice of inputs will be
utilized when discussing budgeted operations in Section 4.1.

BFV Multiplication. As expected, multiplication incurs much bigger increase
in ciphertext noise and more tedious noise analysis. The procedure is again standard
for the BFV scheme as in [6]. The proof is similar to [6], but we give a simpler worst
case noise bound with Lemma 3.4.

BFV.Multiply(ct0, ct1)

Input: ct0 = (a0, b0), ct1 = (a1, b1) ∈ R2
n,q BFV ciphertexts.

Output: (c′0, c
′
1, c

′
2) ∈ R3

n,q.

Step 1. Compute

c0 := [b0b1]ϕ(x), c1 := [b1a0+b0a1]ϕ(x), c2 := [a0a1]ϕ(x).

Step 2. Compute

c′0 := ⌊tc0/q⌉, c′1 := ⌊tc1/q⌉, c′2 := ⌊tc2/q⌉.
Step 3. Return (c′0, c

′
1, c

′
2).

Algorithm 7: BFV Multiplication

Lemma 3.4 Suppose the inputs of Algorithm 7 are BFV ciphertexts for messages
m0 and m1 respectively, both with noise bounded by E. Let (c′0, c

′
1, c

′
2) be the output

of Algorithm 7. If t|(q − 1) and δR ≥ 16, then

c′0 + c′1s+ c′2s
2 ≡ Dq[m0m1]ϕ(x),t + e′ mod (ϕ(x), q) (1)

with
∥∥e′∥∥∞ ≤ 3.5Etρ2.

The simple bound provided in Lemma 3.4 will allow us to easier choose param-
eters and stack moduli as we do in Section 4, while having minimal influence on
functionality.

Comparison to current bounds. From the above, we can see that our bound
is on the order of Etδ2R when choosing ∥s∥∞=1, where E is the bound on the noise
term of each ciphertext before multiplication. Comparing to more current works,
[16] achieves a similar multiplication noise bound. Rather than restricting choices of
t and q, [16] achieves this bound by an alternative encryption method, namely by
computing b0 + a0s ≡ ⌊qm/t⌉ + e mod (ϕ(x), q) rather than standard BFV, which
computes b0+a0s ≡ ⌊q/t⌋m+e mod (ϕ(x), q). Below we provide a short comparison

12

of multiplication noise bounds, with e′ being the noise term resulting from multipli-
cation. Most notably, we assume two ciphertext noise terms are bounded both by
E rather than having separate input bounds. Note this comparison does not include
relinearization noise. We discuss the additional relinearization noise accumulated for
our modified BFV scheme in Lemma 3.5.

Classic BFV [6]:∥∥e′∥∥∞ ≤ 2δRtE(1 + δR ∥s∥∞) + 2δ2Rt
2(∥s∥∞ + 1)2

Improved BFV [16]:

∥∥e′∥∥∞ ≤ δRt

2

(
2E

q
+ (4 + δR ∥s∥∞)2E

)
+

1 + δR ∥s∥∞ + δ2R ∥s∥
2
∞

2

Our BFV Variant: ∥∥e′∥∥∞ ≤ 3.5Etδ2R ∥s∥
2
∞

In [16], the dominant noise term is δRt
2
(δR ∥s∥∞)2E = Etδ2R ∥s∥∞. We note that,

by going through their proof for the worst case bound, the factor δR/2 in their
bound should be δR ∥s∥∞, which is what we used in our proof. Hence the domi-
nant term should be 2Etδ2R ∥s∥∞. In comparison, our bound for all the noise terms
is 3.5Etδ2R ∥s∥

2
∞, which is slightly bigger than their bound. Our goal was to provide

a simple bound that is easier to use in practice. We’ll expand upon how we use this
simple bound further in Section 4.

BFV Relinearization. In order to convert a returned ciphertext from Algorithm
7 back to the proper form of a BFV ciphertext, we can employ a relinearization (or
keyswitch) algorithm [6]. The algorithm converts a linear form in s and s2 to a linear
form in only s, while introducing a small additional noise term. Note that in order to
accomplish this, we must use the published evaluation key, from Algorithm 3, denoted
ek. Algorithm 8 gives the relinearization algorithm for BFV. Lemma 3.5 provides for
the resulting noise bound.

Lemma 3.5 Let (c0, c1) be the output of Algorithm 8 and suppose the input (c′0, c
′
1, c

′
2)

satisfies (1) in Lemma 3.4. If p1 ≥ 6q and δR ≥ 16, then (c0, c1) is a BFV ciphertext
with noise bounded by 3.6Etρ2.

Alternate Relinearization Technique. Algorithm 8 is not the only option for
relinearizing a ciphertext. Another technique [6, 14, 25, 28] involves generating the
evaluation key differently, by expanding c′2 with respect to some integer base. In this
relinearization process, the evaluation key is a vector pair ek = (u,v) ∈ (Rγ

n,q)
2 where

each entry of u is sampled from U(Rn,q), and γ and v are computed in the following

13

BFV.Relinearize((c′0, c
′
1, c

′
2), ek)

Input: (c′0, c
′
1, c

′
2) ∈ R3

n,q polynomial ordered triple,

ek = (k′0, k
′
1) ∈ R2

n,p1q
evaluation key.

Output: (c0, c1) ∈ R2
n,q.

Step 1. Compute β0 := [c′2k
′
0]ϕ(x),p1q and β1 := [c′2k

′
1]ϕ(x),p1q.

Step 2. Compute d′0 :=
⌊
β0

p1

⌉
and d′1 :=

⌊
β1

p1

⌉
.

Step 3. Compute c0 := [c′0 + d′0]q and c1 := [c′1 + d′1]q.

Step 4. Return (c0, c1).

Algorithm 8: BFV Relinearization

way. For chosen public base B ∈ N, find the smallest γ ∈ N such that Bγ > q and
define g ∈ Rγ

n,q as

gT =
(
1, B,B2, . . . , Bγ−1

)
.

Let w ∈ Rγ
n,q a vector with each entry sampled from χρ. Compute v as

v := s2g− us+w (mod ϕ(x), q).

To obtain a new relinearized ciphertext from (c′0, c
′
1, c

′
2), one can first write

c′2 =

γ−1∑
j=0

hjB
j

where hj ∈ Rn,q such that
∥∥hj

∥∥
∞ ≤ B/2 and define hT ∈ Rγ

n,q as h =
(
h0, h1, . . . , hγ−1

)
.

Then

c′2s
2 = (hg)s2 =

γ−1∑
j=0

hjB
j

 s2.

Using ek = (u,v), the new ciphertext can be computed as ([c′1 + hu]ϕ(x),q, [c
′
0 +

hv]ϕ(x),q) since c′2s
2 + hw ≡ hv + hus mod (ϕ(x), q). Here, hw is the noise in-

troduced during relinearization and satisfies ∥hw∥∞ ≤ (γBδ2R ∥s∥∞)/2. However,
this technique is less used since the evaluation key (u,v) ∈ (Rγ

n,q)
2 is much larger

than the evaluation key generated in Algorithm 3. Specifically, ek = (u,v) is of size
2γ log2 q. The noise incurred by relinearization grows linearly with B, hence B must
be relatively small, which means γ will likely be much bigger than 4. On the other
hand, ek = (k′0, k

′
1) from Algorithm 3 is of size 4 log2 q. Although Algorithm 3 gives a

smaller key size, a larger ring dimension n must be used to maintain security. We re-
fer the reader to the references above for details. Some implementations of BFV such
as Microsoft SEAL [27] do not realinearize their ciphertexts after each multiplication
and allow the degree of the linear form s to grow larger than 2 [29].

14

3.2 Modified BGV Scheme

BGV Key Generation. As we did with BFV, we use a slightly different key
generation process from the standard BGV scheme [4, 5] by generating the public key
and evaluation key in a larger modulus to reduce noise sizes in ciphertexts. Algorithm
9 gives the key generation for the BGV keys. Just like BFV, sk is kept secret, while
pk and ek are published.

BGV.Keygen(q, p0, p1)

Input: q ∈ N,
p0 ∈ N with p0 ≥ 5δR + 3,

p1 ∈ N with p1 ≥ 6q.

Output: sk = s ∈ Rn,3 secret key,

pk = (k0, k1) ∈ R2
n,p0q

public key,

ek = (k′0, k
′
1) ∈ R2

n,p1q
evaluation key.

Step 1. Choose randomly s ∈ Rn,3.

Step 2. Sample k0 ← U(Rn,p0q) and e← χρ.

Compute k1 := [−(k0s+ te)]ϕ(x),p0q.

Step 3. Sample k′1 ← U(Rn,p1q) and e′1 ← χρ.

Compute k′0 := [−k′1s+ p1s
2 + te′1]ϕ(x),p1q.

Step 4. Return sk = s, pk = (k0, k1), and ek = (k′0, k
′
1).

Algorithm 9: BGV Key Generation

BGV Encryption and Decryption. We define the BGV public key encryption
in Algorithm 10. Decryption of a BGV ciphertext is given in Algorithm 11. When
we refer to a “BGV ciphertext” in these algorithms and lemmas, we mean an ordered
pair ct = (a, b) ∈ R2

n,q satisfying

b+ as ≡ m+ te mod (ϕ(x), q)

for some noise term e ∈ Rn and given message m ∈ Rn,t. Lemma 3.6 provides
provides for proof of correctness, as well as the corresponding noise bound resulting
from encryption.

Lemma 3.6 Let ct′0 be the output of Algorithm 10. Suppose that ∥s∥∞ = 1, t|(p0−1),
t|(q − 1), and p0 >

4δ2R+2δR
δR−2

. Then ct′0 is a BGV ciphertext with noise bounded by ρ.

Just as with BFV, the condition on p0 can be discussed in the more general case

for any choice of u and s, in which the condition on p0 is p0 >
2δ2R(∥u∥∞+∥s∥∞)+2δR

δR∥s∥∞−2
and

15

BGV.Encrypt(m0, pk)

Input: m0 ∈ Rn,t message,

pk = (k0, k1) ∈ R2
n,p0q

public key,

Output: ct′0 = (a′0, b
′
0) ∈ R2

n,q BGV ciphertext.

Step 1. Sample u← U(Rn,3), and sample e1, e2 ← χρ.

Step 2. Compute (a0, b0) ∈ R2
n,p0q

where

a0 := [k0u+ te1]ϕ(x),p0q,

b0 := [k1u+ te2]ϕ(x),p0q.

Step 3. Compute

(a′0, b
∗
0) := BGV.Modreduce((a0, b0), p0q, q),

b′0 := [b∗0 +m0]q.

Step 4. Return ct′0 = (a′0, b
′
0) ∈ R2

n,q.

Algorithm 10: Modified BGV Encryption

BGV.Decrypt(ct0, sk)

Input: ct0 = (a0, b0) ∈ R2
n,q BGV ciphertext,

sk = s ∈ Rn,3 secret key.

Output: m0 ∈ Rn,t message.

Step 1. Compute c := [b0 + a0s]ϕ(x),q.

Step 2. Compute m0 := [c]t.

Step 3. Return m0.

Algorithm 11: BGV Decryption

the resulting noise term e′0 satisfies
∥∥e′0∥∥ < ρ. Similar to BFV as well, we argue that

when δR ≥ 16, the condition on p0 in Lemma 3.6 is satisfied when p0 is chosen so that
p0 ≥ 5δR + 3 as per our parameter specifications, since

5δR + 3 >
32

7
δR +

16

7
=

16

7
(2δR + 1) =

2δR(2δR + 1)
7
8
δR

≥ 4δ2R + 2δR
δR − 2

.

Regarding decryption, the proof of correctness for Algorithm 11 is straightforward.
Simply observe that [[b0 + a0s]ϕ(x),q]t = [m0 + te0]t = m0. The key observation here is
that in order for correctness to hold, it is required that ∥m0 + te0∥∞ < q/2. That is,
fully reducing b0 + a0s modulo q will actually yield the correct polynomial m0 + te0.
The worst case bound on ∥m0 + te0∥∞ is t/2 + tE if ∥e0∥∞ ≤ E. Hence, it suffices

16

to require E < q
2t
− 1

2
. This is very similar to the condition given earlier needed for

correct BFV decryption.
BGV Additions and Linear Combinations. Additions and linear combina-

tions for BGV can be done using Algorithm 6. The argument is similar to Lemma 3.3
for BFV ciphertexts, and results in the same noise bound of M(E + 1). It is worth
noting that divisibility of q − 1 by t yields no noise improvement for BGV addition,
and the noise bound of M(E + 1) holds for any t and q.

BGV Multiplication. Again, multiplication incurs large noise increase during
homomorphic computation. Unlike BFV, there is no requirement that t divide q− 1,
and he noise analysis for BGV multiplication is simpler than BFV, as no scaling by
t/q is required after computing the necessary components given from ct0 and ct1.
Algorithm 12 outlines the procedure for BGV multiplication. Lemma 12 provides for
proof of correctness and the corresponding noise bound.

BGV.Multiply(ct0, ct1)

Input: ct0 = (a0, b0), ct1 = (a1, b1) ∈ R2
n,q ciphertexts.

Output: (c′0, c
′
1, c

′
2) ∈ R3

n,q.

Step 1. Compute

c′0 := [b0b1]ϕ(x),q,

c′1 := [b1a0 + b0a1]ϕ(x),q,

c′2 := [a0a1]ϕ(x),q.

Step 2. Return (c′0, c
′
1, c

′
2).

Algorithm 12: BGV Multiplication

Lemma 3.7 Suppose the inputs of Algorithm 12 are BGV ciphertexts for messages
m0 and m1 respectively, both with noise bounded by E. Let (c′0, c

′
1, c

′
2) be the output

of Algorithm 12. Then

c′0 + c′1s+ c′2s
2 ≡ [m0m1]ϕ(x),t + te′ mod (ϕ(x), q) (2)

with
∥∥e′∥∥∞ ≤ 2δRt(E

2 + 1).

BGV Relinearization. We can relinearize a BGV ciphertext to rewrite the left
hand side of equation 2 as a linear form in only s rather than s and s2. For BGV, a
slightly modified evaluation key must be generated, as well as a slightly modified re-
linearization algorithm. Algorithms 9 and 13 give the BGV evaluation key generation
and relinearization respectively, which we’ve based on the algorithms in [16]. Lemma
3.8 provides proof of correctness of Algorithm 13 and the corresponding noise bound.
Algorithm 13 and the result of Lemma 3.8 can be combined with Algorithm 12 and
the result of Lemma 12, respectively, to obtain a full BGV multiplication operation.

17

BGV.Relinearize((c′0, c
′
1, c

′
2), ek)

Input: (c′0, c
′
1, c

′
2) ∈ R3

n,q,

ek = (k′0, k
′
1) ∈ R2

n,p1q
evaluation key.

Output: (c0, c1) ∈ R2
n,q.

Step 1. Compute β0 := [c′2k
′
0]ϕ(x),p1q and β1 := [c′2k

′
1]ϕ(x),p1q.

Step 2. Compute ω0 := [−t−1β0]p1 and ω1 := [−t−1β1]p1 .

Step 3. Compute d′0 :=
β0+tω0

p1
and d′1 :=

β1+tω1

p1
.

Step 4. Compute c0 := [c′0 + d′0]q and c1 := [c′1 + d′1]q.

Step 5. Return (c0, c1).

Algorithm 13: BGV Relinearization

Lemma 3.8 Let (c0, c1) be the output of Algorithm 13 and suppose the input (c′0, c
′
1, c

′
2)

satisfies (2) in Lemma 3.7. If p1 ≥ 6q and δR ≥ 16, then (c0, c1) is a BGV ciphertext
with noise bounded by 2δRt(E

2 + 1) + 1
8
δ2R ∥s∥∞.

3.3 Modified CKKS Scheme

In this section, we’ll discuss the CKKS scheme [7]. CKKS allows for homomorphic
encryption for arithmetic of approximate numbers rather than arithmetic exactly as
BFV and BGV do. This is done by first taking in data as some vector over C, mapping
the components into Rn, and then performing the homomorphic computation before
mapping back to a vector over C. This process of mapping to and from the C-vector
space is known as the encoding and decoding procedures, respectively. Throughout
Section 3.3 and whenever referring to CKKS, we will always assume ϕ(x) = xn + 1
where n is a power of two. Thus, δR = n.

Message Encoding and Decoding. Recall that Rn = Z[x]/(ϕ(x)) and Rn,q =
Zq[x]/(ϕ(x)). Let H = {z ∈ Cn : zj = zn−j}. Define two mappings:

π : H→ Cn/2,

σ : C[x]/(ϕ(x))→ Cn

as follows. Here, π is the projection of H onto Cn/2, by keeping only the first half of the
entries for each vector in H, and σ is the canonical embedding map defined as follows.
Note that the polynomial ϕ(x) = xn+1 has n complex roots, say ζ1, ζ2, . . . , ζn in any
fixed order, which are all primitive roots of unity of order 2n. Given a polynomial
h ∈ C[x]/(ϕ(x)), σ is defined via

σ(h) = (h(ζ1), h(ζ2), . . . , h(ζn)) ∈ Cn.

18

That is, σ evaluates h at all the roots of ϕ(x) and stores the evaluations as a vector.
Note that π and σ both serve as isomorphisms of vector spaces over C, so π−1 and
σ−1 exist. In practice, σ is computed via a fast Fourier transform (FFT), and σ−1 by
an inverse fast Fourier transform (FFT−1).

The purpose of these mappings is that given a message vector z ∈ Cn/2, we want
to convert it into a polynomial in Rn whose values at ζi correspond to z, hence
polynomial multiplication corresponds to component-wise multiplication for message
vectors. Given z ∈ Cn/2, computing π−1(z) is easy. We now must map π−1(z) into
Rn. Given ζ1, ζ2, . . . , ζn in a fixed order such that (ζ1, ζ2, . . . , ζn) ∈ H, σ then serves
as an isomorphism between R[x]/(ϕ(x)) and H. So, for w ∈ H, we can compute
σ−1(w) ∈ R[x]/(ϕ(x)), and then round each coefficient to obtain an element in Rn.

It is worth noting that most texts use a technique called coordinate-wise random
rounding instead of rounding to the nearest integer [24]. However, we will use the
closest integer rounding in this paper. As we’ll see, this step of rounding causes
accuracy loss in the message. To avoid this, we scale by some positive integer ∆
in order to preserve some desired precision of our message in the end result. The
message encoding function is defined as

Ecd(z,∆) = ⌊σ−1(∆π−1(z))⌉ ∈ Rn,

for any message z ∈ Cn/2, and the message decoding function is defined as

Dcd(m,∆) = π(σ(∆−1m)),

for any polynomial m ∈ Rn.
The encryption and decryption procedures for CKKS then map between Rn and

Rn,q. A high level overview of the mappings in CKKS is shown below. Note that q′ is
used for the integer modulus of the ciphertext space after homomorphic computation,
as we may have a different integer modulus if we perform any modulus reduction.

Overview of CKKS Mappings

Cn/2∆π−1
// H σ−1

// R[x]/(ϕ(x)) ⌊·⌉
// Rn

encrypt
// R2

n,q

computation

��

Cn/2 H
∆−1π
oo Rnσ

oo R2
n,q′decrypt

oo

Note the scaling factor ∆ affects the ending precision and is usually chosen pro-
portionally to the moduli gaps, which is discussed later in this section. It is also
worth mentioning that although Ecd is defined for all messages z ∈ Cn/2, in practice
z is taken in the space of fixed precision numbers of some length, which is a subset
of Cn/2.

The remainder of Section 3.3 is devoted to the homomorphic computation in R2
n,q

for the CKKS scheme. A significant observation for CKKS is how the homomorphic

19

computation relates to the computation in Cn/2. In particular, for vectors z, z′ ∈ Cn/2,
we denote z ◦ z′ as the Hadamard product of z and z′ (i.e., the vector obtained from
component-wise multiplication between z and z′). Homomorphic multiplication in
R2

n,q of two ciphertexts corresponds with the Hadamard product of the respective

vectors in Cn/2, whereas homomorphic addition corresponds with standard vector
addition of the respective message vectors.

CKKS Rescaling. Regarding modulus reduction in CKKS, a similar proce-
dure known as rescaling occurs. The rescaling procedure is identical to the modulus
reduction for BFV outlined in Algorithm 1. That is,

CKKS.Modreduce = BFV.Modreduce.

The main difference is the purpose of the procedure. Rather than using modulus
reduction as a form of noise control, it is used here to control precision. For two
message encodings m0,m1 ∈ Rn, ciphertext multiplication yields an encryption of
the product m0m1, which takes up some less significant bits (LSBs). We rescale the
corresponding ciphertext of m0m1 to get rid of the lower significant digits in order
to perform further computation where we want to keep only fixed number of digits.
While the rescaling serves a different purpose than modulus reduction, we can still
discuss bounds on the corresponding error term achieved. Lemma 3.9 outlines our
worst case noise bound. When we refer to a “CKKS ciphertext” in these algorithms
and lemmas, we mean an ordered pair ct = (a, b) ∈ R2

n,q satisfying

b+ as ≡ m+ e mod (ϕ(x), q)

for some noise term e ∈ R[x]/(ϕ(x), q) and m = Ecd(z,∆) ∈ R[x]/(ϕ(x), q) for some
z ∈ Cn/2.

Lemma 3.9 Suppose the input of Algorithm 1 is a CKKS ciphertext with noise
bounded by E. Let ct′0 be the output of Algorithm 1. Then,

b′0 + a′0s ≡
q

Q
m0 + e′0 mod (ϕ(x), q)

and
∥∥e′0∥∥∞ ≤ q

Q
E +

1+δR∥s∥∞
2

. Furthermore, if Q/q > 2E
δR∥s∥∞−1

, then
∥∥e′0∥∥∞ < ρ.

A notable difference in CKKS rescaling is that the algorithm returns an encryption
of q

Q
m0 rather than the original m0 encoding. As mentioned, this is intentional, as we

wish to reduce the size of m0 since bit usage becomes an issue. The reason we use a
modulus reduction algorithm rather than simply trying to scale down the ciphertext
is because we are taking entries modulo Q. For a ciphertext (a0, b0) ∈ R2

n,Q, if we
computed a scaled ciphertext (⌊a0/∆⌉, ⌊b0/∆⌉) for some scaling factor ∆, we would
first need to write b0 + a0s ≡ m0 + e0 + Qr for a polynomial r ∈ Rn. This would
result in a term approximately equal to Qr/∆ after dividing through by ∆, which is

20

no longer equivalent to 0 mod Q and would result in a huge noise term. However, it
is still important to choose Q/q to be approximately ∆, or whatever desired scaling
factor is needed. Accuracy of the approximation relies on this size of Q/q. When
not concerned with RNS representation, we can simply choose ∆ = Q/q exactly. In
the RNS variant of CKKS [21], a bound is placed on the gap between Q/q and ∆ to
ensure some precision, while still allowing for coprime moduli Q and q.

CKKS Key Generation. For CKKS, the keys used are generated in the same
way that the BFV keys are generated. In this case, we refer the reader back to
Algorithm 3 for generation of the CKKS keys, which again includes the secret key
sk, the public key pk, and the evaluation key ek.

CKKS Encryption and Decryption. The encryption algorithm is given by
Algorithm 14, and decryption by Algorithm 15. Note that CKKS encryption in Al-
gorithm 14 uses Algorithm 1 as a subroutine, which is the rescaling. From step 2 of
Algorithm 15, we obtain m′

0. However, recall that b0 + a0s ≡ m0 + e0 mod (ϕ(x), q),
so in this case we really have that m′

0 = m0 + e0. In other words, m′
0 is a close

approximation of m0 so long as ∥e0∥∞ is small. We do not include proofs that de-
cryption works, as it is directly apparent from the algorithm that it decrypts to an
approximation of the desired message. We also note that many texts, such as the
original CKKS paper in [7], have separate steps for encoding/decoding and encryp-
tion/decryption. We however, include the encoding or decoding in the encryption
or decryption algorithms respectively. Aside from the encoding step, the encryption
algorithm for CKKS is actually identical to a BFV encryption with Dq = 1. Lemma
3.10 provides for the corresponding noise bound after encryption. As with the other
schemes, choosing p0 ≥ 5δR+3 ensures the condition for p0 in Lemma 3.10 holds. The

condition on p0 can also be generalized to p0 >
2δ2R(∥u∥∞+∥s∥∞)+2δR

δR∥s∥∞−1
with the resulting

noise still satisfying
∥∥e′0∥∥ < ρ.

CKKS.Encrypt(z,∆, pk)

Input: z ∈ Cn/2 message,

∆ ∈ N scaling factor,

pk = (k0, k1) ∈ R2
n,p0q

public key.

Output: ct = (a, b) ∈ R2
n,q CKKS ciphertext.

Step 1. Encode z by computing m := Ecd(z,∆).

Step 2. Compute ct := BFV.Encrypt(m, 1, pk).

Step 3. Return ct = (a, b) ∈ R2
n,q.

Algorithm 14: Modified CKKS Encryption

21

CKKS.Decrypt(ct, sk)

Input: ct = (a, b) ∈ R2
n,q CKKS ciphertext,

sk = s ∈ Rn,3 secret key.

Output: z ∈ Cn/2 message.

Step 1. Compute m := [b+ as]ϕ(x),q.

Step 2. Decode m by computing z := Dcd(m,∆).

Step 3. Return z.

Algorithm 15: CKKS Decryption

Lemma 3.10 Let ct be the output of Algorithm 14. Suppose ∥s∥∞ = 1 and p0 >
4δ2R+2δR
δR−1

. Then ct is a CKKS ciphertext with noise bounded by ρ.

CKKS Additions and Linear Combinations. We can perform additions
and linear combinations with CKKS ciphertexts using Algorithm 6. The resulting
ciphertext obtained from Algorithm 6 has a slightly different noise bound than BFV
and BGV. The reason for this is that the encoded messages which the ciphertexts
represent are in Rn instead of Rn,t, so reduction modulo t is not necessary with CKKS.
The result is summarized in Lemma 3.11.

Lemma 3.11 Suppose the inputs of Algorithm 6 are CKKS ciphertexts each with
noise bounded by E and suppose

∑k−1
i=0 |αi| ≤ M . Let ct′0 be the output of Algorithm

6. Then, ct′0 is a CKKS ciphertext with noise bounded by ME.

CKKS Multiplication. Multiplication in CKKS follows the same process as
BGV, which is given in Algorithm 12. Thus,

CKKS.Multiply = BGV.Multiply.

The difference is only a slightly different noise bound, due to the plaintexts not being
in Rn,t and thus not needing reduction modulo t. Lemma 3.12 outlines the result and
proof of the corresponding noise bound.

Lemma 3.12 Suppose the inputs of Algorithm 12 are CKKS ciphertexts for messages
m0 and m1, respectively, both with noise bounded by E. Suppose that ∥m0∥∞ ≤ t/2
and ∥m1∥∞ ≤ t/2. Let (c′0, c

′
1, c

′
2) be the output of Algorithm 12. Then

c′0 + c′1s+ c′2s
2 ≡ m0m1 + e′ mod (ϕ(x), q) (3)

with
∥∥e′∥∥∞ ≤ EtδR + E2δR.

22

CKKS Relinearization. As with the other schemes, full multiplication can then
be achieved by including the relinearization process discussed in Algorithm 8, so

CKKS.Relinearize = BFV.Relinearize.

The proof is almost identical to the proof in Lemma 3.5. The result for CKKS is
given below in Lemma 3.13.

Lemma 3.13 Let (c0, c1) be the output of Algorithm 8 and suppose the input (c′0, c
′
1, c

′
2)

satisfies (3) in Lemma 3.12, with ∥m0∥∞ ≤ t/2 and ∥m1∥∞ ≤ t/2. If p1 ≥ 6q and
δR ≥ 16, then (c0, c1) is a CKKS ciphertext with noise bounded by EtδR + E2δR +
1
8
δ2R ∥s∥∞.

Note on BFV versus CKKS. Initially, the formatting of ciphertexts in BFV
and CKKS seem very similar. For a message m0 ∈ Rn,t, a BFV ciphertext ct0 =
(a0, b0) satisfies b0+a0s ≡ Dqm0+e0 mod (ϕ(x), q). In CKKS, the encoding step for
a message z0 ∈ Cn/2 scales our message by a factor of ∆. That is, our CKKS ciphertext
ct0 = (a0, b0) satisfies b0 + a0s ≡ m0 + e0 mod (ϕ(x), q), where m0 = Ecd(z0,∆). In
both equations for BFV and CKKS, we have a scaling factor attached to our message.
In BFV, the message m0 is directly multiplied by Dq, while in CKKS ∆ multiplies the
original message z0 and is implicitly hiding in m0. Nonetheless, both have a scaling
factor. In multiplication of both schemes, this scaling factor initially compounds in the
first step. The two schemes handle this issue differently however, with BFV rescaling
the individual degree 2 ciphertext components in step 2 of Algorithm 2, before taking
the computed polynomials modulo q. CKKS on the other hand computes the initial
polynomials in multiplication and immediately reduces them modulo q, relinearizes
the ciphertext, and then rescales the hidden ∆2 back to ∆ using modulus reduction
in Algorithm 1. Part of the reason these schemes differ in where they rescale is due
to the fact that Dq ≫ ∆. Since Dq = ⌊q/t⌋ and t < q/2, D2

q > q and rescaling must
occur before taking components modulo q. On the other hand, ∆ in CKKS has more
freedom in choice, as it is a parameter chosen by the user that can influence accuracy
in the approximation of end result of computation.

3.4 Comparison to Other Noise Bound Analyses

Our noise analysis differs from previous works [6, 7, 16, 17] in that we derive worst-case
bounds based on worst-case bound assumptions on the error distribution. As a result,
our correctness guarantees are deterministic—there is no probability of decryption
error. Additionally, we simplify the derived bounds into clean, closed-form expressions
that will be useful for subsequent sections. This simplification comes at the cost
of slightly looser bounds overall, with the effect being most pronounced in BFV
multiplication. A detailed comparison of BFV multiplication appears near the end of
Section 3.1.

23

For most operations, our bounds are very close to the worst-case results in [16],
though with a few important distinctions. First, in all of our modulus reduction
lemmas, we explicitly bound the ratio Q/q to ensure that the noise remains below a
fixed threshold, which supports more precise composability in computations. Second,
our modified encryption procedure enables much smaller choices of p0 by performing
modulus reduction before message embedding. This results in fresh ciphertexts with
noise bounded by a constant, while preserving correctness. The same structure can
be extended to CKKS rescaling during encryption. Since the message bits are not
yet introduced at that stage, rescaling does not degrade precision.

In addition, under basic assumptions on δR, we are able to significantly simplify
the relinearization noise bounds. This is especially helpful in regimes with small
plaintext modulus t, where relinearization noise can be more significant.

For concrete estimates, many works adopt δR = 2
√
n as an expansion factor

that holds with high probability. In contrast, we use the exact value δR = n in
later derivations. In the case of CKKS [7, 17], the most significant differences in noise
growth appear in fresh encryptions, relinearization (i.e., key switching), and rescaling.
Across these operations, our analysis yields a dominant noise term of approximately n,
compared to

√
n in the aforementioned works. This is primarily due to our adoption of

a strict worst-case model and the associated choice of expansion factor. For average-
case analyses such as those in [17], direct comparison is more nuanced, as noise growth
depends on the variance of sampled noise terms.

4 Leveled Schemes and RNS Variants

For practical computation, we employ a leveled homomorphic encryption scheme
rather than a fully homomorphic one. Unlike fully homomorphic schemes—which sup-
port an unlimited number of operations via costly bootstrapping—a leveled scheme
supports a predetermined number of homomorphic operations, making it more effi-
cient for realistic workloads. In this section, we outline leveled versions of the BFV,
BGV, and CKKS schemes. The core idea is to carry out computations at decreasing
modulus levels: perform a fixed number of operations at a given modulus, then reduce
both the modulus and the noise to enable further computation.

Let qℓ > qℓ−1 > · · · > q0 > 1 be distinct primes, and define

Qi =
i∏

j=0

qj, 0 ≤ i ≤ ℓ.

We refer to Qi as the modulus at level i or simply the level-i modulus. In Section 4.1,
we describe how to select each qi so that a budgeted operation, called a depth-1
multiplication, can be performed at level Qi. Specifically, if the input ciphertexts at
level Qi have noise bounded by ρ, then the resulting ciphertext—after multiplication
and modulus switching to Qi−1—continues to maintain the same noise bound ρ.

24

Section 4.2 details how ciphertext operations are performed in the residue number
system (RNS). By the Chinese Remainder Theorem, any polynomial a ∈ Rn,Qℓ

can
be represented as

[a]B = (a(0), a(1), . . . , a(ℓ)),

where a(i) := a mod qi, and B = (q0, q1, . . . , qℓ) is called the modulus basis (or simply
the basis). This representation is referred to as the RNS form of a.

All ciphertexts, public keys, and evaluation keys are stored in RNS form with
respect to appropriate modulus bases. A key advantage of RNS is that addition and
multiplication of polynomials can be performed component-wise, independently across
the qi. However, operations such as modulus reduction and relinearization are more
involved. In Section 4.2, we describe how these operations are implemented in RNS
for the BFV, BGV, and CKKS schemes, and we present the associated noise bounds.

4.1 Budgeted Operations at Each Level

For a collection of ciphertexts, we want to know how much homomorphic compu-
tation we can perform before ciphertext noise becomes too big so that no further
computation can be performed. To do this, we introduce the concept of a depth-1
multiplication computation.

Definition 4.1 (Depth-1 Multiplication) Suppose we have a collection of mes-
sages. For fixed k1 and k2, we say that we can perform a depth-1 multiplication if we
can perform 2k2 groups of k1−1 additions, followed by one round of k2 multiplications,
followed by k2 − 1 additions.

m1,1 . . . m1,k1 m2,1 . . . m2,k1 . . . m2k2−1,1 . . . m2k2−1,k1 m2k2,1 . . . m2k2,k1

+ + + +

× ×

+

. . .

. . .

. . .

Figure 16: Plaintext Depth-1 Multiplication

Figure 16 shows an arbitrary depth-1 multiplication with 2k2k1 plaintexts, where
mj,k is a plaintext for each j = 1, . . . , 2k2, k = 1, . . . , k1. Our goal to derive a bound
on qi so that one can compute depth-1 multiplication homomorphically at each level
i. To perform a depth-1 multiplication homomorphically for BFV, BGV, and CKKS,
we introduce Algorithm 17.

In Algorithm 17, we remark that Multiply, Relinearize, and Modreduce call
the respective algorithms for the inputted ciphertext type. For example, if each

25

Depth1(ctj,k, eki, Qi, Qi−1)

Input: ctj,k ∈ R2
n,Qi

, j = 1, . . . , 2k2, k = 1, . . . , k1 ciphertexts,

eki ∈ R2
n,Qi

evaluation key at level i,

Qi ∈ N integer modulus,

Qi−1 ∈ N integer modulus with Qi = qiQi−1.

Output: ct ∈ R2
n,Qi−1

.

Step 1. For j from 1 to 2k2 do

ctj := Linearcombo(ctj,1, . . . , ctj,k1 , 1, . . . , 1).

Step 2. Initialize ct := (0, 0, 0).

For j from 1 to k2 do

ct := ct+ Multiply(ct2j−1, ct2j).

Step 3. Compute ct := Relinearize(ct, eki).

Step 4. Compute ct := Modreduce(Qi, Qi−1, ct).

Step 5. Return ct.

Algorithm 17: Depth-1 Multiplication

ctj,k is a BFV ciphertext, Algorithm 17 will use BFV.Multiply, BFV.Relinearize,
and BFV.Modreduce, while Linearcombo is identical for all three ciphertext types.
Note that eki ∈ R2

n,p1Qi
is assumed to match the ciphertext type of the ctj,k’s. Our

relinearization takes place after summing together our ctj’s obtained from step 2,
which are each a polynomial triple. This slightly improves our bounds, and is better
from a computational perspective since we are only running Relinearize once in
Algorithm 17.

To guarantee the amount of computation we can perform, we want to choose qi so
that the output of Algorithm 17 is always a ciphertext with noise bounded by ρ when
all the ctj,k inputs have noise bounded by ρ. The precise bound on qi is presented in
Lemmas 4.1 and 4.2 for BFV and BGV, respectively.

Lemma 4.1 For any 1 ≤ i ≤ ℓ, suppose qi > 9k1k2tn
2 and δR ≥ 16. Then, for

a collection of BFV ciphertexts at level i all with noise bounded by ρ, the output of
Algorithm 17 is a BFV ciphertext at level i− 1 with noise bounded by ρ.

Lemma 4.2 For any 1 ≤ i ≤ ℓ, suppose qi > 4k2
1k2tn

2 and δR ≥ 16. Then, for
a collection of BGV ciphertexts at level i all with noise bounded by ρ, the output of
Algorithm 17 is a BGV ciphertext at level i− 1 with noise bounded by ρ.

For a similar depth-1 result in CKKS, we must use caution when finding conditions
for qi. The reason for this is that in CKKS, we do not have much flexibility to choose

26

qi. For the standard scheme, it is always assumed that qi = ∆ for each i ̸= 0. Thus,
the best that we can do is to bound the error in general after computing the depth-1
algorithm. We can not force the error down within a constant after rescaling without
the assumption that qi ≫ ∆, which clearly contradicts the size of ∆ needed in CKKS.
We give the result on bounding CKKS noise below in Lemma 4.3.

Lemma 4.3 Let i be such that 1 ≤ i ≤ ℓ, and suppose that n2 ≤ ∆ and qi = ∆.
Suppose we have a collection of CKKS ciphertexts at level i all with noise bounded
by E. Furthermore, suppose that the corresponding messages zj ∈ Cn/2 each satisfy∥∥zj∥∥∞ ≤ Z. Then Algorithm 17 results in a CKKS ciphertext at level i−1 with noise

bounded by 2k1k2nEZ + k1k2En
∆

+
k21k2E

2n

∆
+ 1

8
.

One special case of depth 1 multiplication is the inner product of vectors. That
is, given vectors of messages m = (m1, . . . ,mk) ∈ Rk

n,t and m′ = (m′
1, . . . ,m

′
k) ∈ Rk

n,t,
we want to compute ⟨m,m′⟩ ∈ Rn,t homomorphically. This can be thought of as
one round of k products between the corresponding ciphertexts of m1, . . . ,mk and
m′

1, . . . ,m
′
k, followed by k−1 additions to sum them together. This is simply a depth-

1 multiplication with k1 = 1 and k2 = k. Alternatively, a depth-1 multiplication with
k1 = k and k2 = 1 allows for k ciphertexts to be added together for two separate
groups, followed by a single multiplication between the two sums. We argue that our
proposed model allows for some more flexibility from a theoretical perspective, as we
provide for additions both before and after multiplication at each modulus level.

Remark. Algorithm 17 also works for groups of ciphertext inputs of size less
than k1 with arbitrary linear combinations in step 1. That is, we can compute

ctj := Linearcombo(ctj,1, . . . , ctj,k′j , αj,1, . . . , αj,k′j
)

so long as k′
j ≤ k1 for each j. Furthermore, if for each j we have

k′j∑
ω=1

|αj,ω| ≤ k1,

then Lemmas 4.1, 4.2, and 4.3 still apply.

4.2 Operations in the Residue Number System

Implementations of homomorphic encryption [27, 30, 31, 32] take advantage of the
RNS variants of schemes [19, 21, 33, 34]. In our modified leveled homomorphic
schemes, we would require that each qi be chosen coprime to one another in order
to use the Chinese remainder theorem. Additions and multiplications are computed
componentwise (except for BFV multiplication), which provides the major computa-
tional advantage over computation modulo large integers. However, algorithms for

27

modulus reductions and relinearization need to be modified in order to avoid opera-
tions in large integers.

Basis Conversion in RNS. Suppose q = q0 · · · qk−1 and p = qk · · · qk+ℓ−1 where
q0, . . . , qk−1, qk . . . , qk+ℓ−1 are distinct primes. Denote

B = (q0, . . . , qk−1), C = (qk, . . . , qk+ℓ−1)

as two arbitrary ordered sets which we call bases. For an element a ∈ Rn,q, we denote

[a]B ∈
∏k−1

j=0 Rn,qj as the vector of CRT components of a in basis B. That is,

[a]B = (a(0), a(1), . . . , a(k−1)) = (a(j))0≤j≤k−1

where a(j) := a mod qj for 0 ≤ j < k. We need to compute a mod p, that is, [a]C.
To do this, let q̂j = q/qj ∈ Z and rj = q̂−1

j a(j) mod qj for 0 ≤ j ≤ k − 1, where
∥rj∥∞ ≤ qj/2. Let

ã =
k−1∑
j=0

q̂jrj.

One can check that ã ≡ aj (mod qj) for 0 ≤ j ≤ k − 1, hence ã ≡ a (mod q). Then
one can compute ã mod qj for k ≤ j ≤ k + ℓ − 1 to get [ã]C. This yields Algorithm
18 below from [21] and [34].

Conv([a]B,B, C)
Input: B = (q0, . . . , qk−1) with q = q0 · · · qk−1,

C = (qk, . . . , qk+ℓ−1) with p = qk · · · qk+ℓ−1,

[a]B = (a(0), . . . , a(k−1)), RNS representation of a ∈ Rn,q in basis B.
Output: [ã]C = (ã(0), . . . , ã(ℓ−1)), RNS representation of ã ∈ Rn,p in basis C.
Step 1. For 0 ≤ i ≤ k − 1, compute ri := [a(i) · q̂−1

i]qi .

Step 2. For 0 ≤ i ≤ ℓ− 1, compute

ã(i) :=
[∑k−1

j=0 q̂j · rj
]
qk+i

.

Step 3. Return [ã]C = (ã(0), . . . , ã(ℓ−1)).

Algorithm 18: Fast Basis Conversion

Lemma 4.4 ([21]) Suppose the input of Algorithm 18 is the RNS representation in
basis B of an element a ∈ Rn,q. Then, the output [ã]C is the RNS representation in
basis C of an element ã ∈ Rn,p satisfying

ã = a+ q · e

for some e ∈ Rn satisfying |a+ q · e| ≤ q · k/2 and |e| ≤ k/2.

28

We note that the bound on e follows from the fact that ∥ã∥∞ ≤ qk/2. This
means that ã is only an approximation of a. There are other fast basis conversions
in the literature which give an exact switch (e.g., see [33]). For our purposes in the
analysis of relinearization error however, the approximate switching in Algorithm 18
will suffice.

Modulus Reduction in RNS. Let p be a factor of Q, say Q = qp. For any
polynomial a ∈ Rn,Q, we need to compute the rounding:⌊

q · a
Q

⌉
=

⌊
a

p

⌉
∈ Rn,q.

Suppose q = q0 · · · qk−1 and p = qk · · · qk+ℓ−1 where q0, . . . , qk, . . . , qk+ℓ−1 are distinct
primes. In RNS, a is represented as (a(0), . . . , a(k+ℓ−1)) where

a ≡ a(i) (mod qi), 0 ≤ i ≤ k + ℓ− 1. (4)

By the Chinese remainder theorem, the solution a to equation (4) is unique modulo
Q. Note that, for any two polynomials a and b with a ≡ b (mod Q), we have⌊

q · a
Q

⌉
≡
⌊
q · b
Q

⌉
(mod q).

This is true even if q is not a factor of Q. Hence, we can use any solution a to (4) in
the rounding.

Define Q̂i = Q/qi and

ri := Q̂−1
i a(i) mod qi, 0 ≤ i ≤ k + ℓ− 1,

where the coefficients of ri are bounded by qi/2. Then a solution of (4) is

a =
k+ℓ−1∑
i=0

Q̂i ri = p
k−1∑
i=0

q

qi
ri + q

ℓ−1∑
i=k

p

qi
ri.

Note that
a

p
=

k−1∑
i=0

q

qi
ri +

ℓ−1∑
i=k

q

qi
ri.

The first sum has integer coefficients, and we only need to round the second sum. Let

w =

 ℓ−1∑
i=k

q

qi
ri

 .

Then
a

p
=

k−1∑
i=0

q

qi
ri + w + e (5)

29

where e ∈ R[x]/(ϕ(x)) with ∥e∥∞ ≤ 1/2. Also, note that, for 0 ≤ j ≤ k − 1,

k−1∑
i=0

q

qi
ri ≡ p−1a(j) mod qj.

This gives us the algorithm 19 below that matches Algorithm 1.

RNS.BFV.ModReduce([a]D,D,B)
Input: D = (q0, · · · , qk+ℓ−1),

B = (q0, . . . , qk−1) with q = q0 · · · qk−1 and p = qk · · · qk+ℓ−1,

[a]D = (a(0), . . . , a(k+ℓ−1)), representation of a ∈ Rn,Q in basis D.
Output: [b]B = (b(0), . . . , b(k−1)), RNS representation of b ∈ Rn,q in basis B.
Step 1. For k ≤ i ≤ k + ℓ− 1 and p̂i = p/qi, compute

ri := [p̂−1
i · a(i)]qi .

Step 2. Compute

w :=
⌊∑k+ℓ−1

i=k
q
qi
· ri
⌉
in Rn.

Step 3. For 0 ≤ j ≤ k − 1, compute

b(j) := [p−1a(j) + w]qj .

Step 4. Return [b]B = (b(0), . . . , b(k−1)) ∈
∏k−1

i=0 Rn,qi .

Algorithm 19: RNS BFV Modulus Reduction (v1)

The w above gives a rounding error at most 1/2, however, it might be too expensive
to compute, as its coefficients are too large. Next, we derive a faster rounding method,
with a slightly larger rounding error. Let p̂i = p/qi and vi := p̂−1

i a(i) mod qi with
∥vi∥∞ ≤ p/2 for k ≤ i ≤ k + ℓ− 1. Then

v =
k+ℓ−1∑
i=k

p̂ivi

satisfies v ≡ a (mod p) and ∥v∥∞ ≤ (pℓ)/2. Let u = a−v
p
, which has integer coeffi-

cients. Then
a

p
= u+ e (6)

where e = v/p ∈ R[x]/(ϕ(x)) with ∥e∥∞ ≤ ℓ/2. In RNS, u mod q can be obtained by
first computing v mod qj, 0 ≤ j ≤ k− 1, via basis conversion from p to q. Algorithm
20 describes the procedure, while Lemma 4.5 shows the noise bound. We exclude the
proof of Lemma 4.5 from our appendix, as it is clear from the previous discussion.

30

RNS.BFV.ModReduce([a]D,D,B)
Input: D = (q0, · · · , qk+ℓ−1),

B = (q0, . . . , qk−1) with q = q0 · · · qk−1 and p = qk · · · qk+ℓ−1,

[a]D = (a(0), . . . , a(k+ℓ−1)), representation of a ∈ Rn,Q in basis D.
Output: [b]B = (b(0), . . . , b(k−1)), RNS representation of b ∈ Rn,q in basis B.
Step 1. Let C = D \ B = (qk, . . . , qk+ℓ−1). Compute

(v(0), . . . , v(k−1)) := Conv((a(k), . . . , a(k+ℓ−1)), C,B).
Step 2. For 0 ≤ j ≤ k − 1, compute

b(j) := p−1 · (a(j) − v(j)) mod qj.

Step 3. Return [b]B = (b(0), . . . , b(k−1)) ∈
∏k−1

i=0 Rn,qi .

Algorithm 20: RNS BFV Modulus Reduction (v2)

Lemma 4.5 Let the RNS representation of a ∈ Rn,Q be the input of Algorithm 20
and the RNS representation of b ∈ Rn,q the output. Then,

a

p
= b+ e

for some e ∈ R[x]/(ϕ(x)) with ∥e∥∞ ≤ ℓ/2.

Next, we show a BGV modulus reduction in RNS that matches Algorithm 2.
When q is a factor of Q, say Q = qp, note that (−a0qt−1) mod Q is the same as
q(−a0t−1 mod p). Hence, Algorithm 2 can be simplified as follows:

ωa := [−a0t−1]p and ωb := [−b0t−1]p

a′0 :=

[
a0 + t ωa

p

]
q

and b′0 :=

[
b0 + t ωb

p

]
q

.

Algorithm 21 describes the above procedure for reduction of one polynomial, while
Lemma 4.6 shows the noise bound. We exclude the proof of Lemma 4.6, since it is
clear from the discussion and the proof of Lemma 2.3.

Lemma 4.6 Let the RNS representation of a ∈ Rn,Q be the input of Algorithm 21
and the RNS representation of b ∈ Rn,q the output. Then,

a

p
= b+ t · e

for some e ∈ R[x]/(ϕ(x)) with ∥e∥∞ ≤ ℓ/2.

31

RNS.BGV.ModReduce([a]D,D,B)
Input: D = (q0, q1, · · · , qk+ℓ−1),

B = (q0, . . . , qk−1) and p = qk · · · qk+ℓ−1,

[a]D = (a(0), . . . , a(k+ℓ−1)), representation of a ∈ Rn,Q in basis D.
Output: [b]B = (b(0), . . . , b(k−1)), representation of b ∈ Rn,q in basis B.
Step 1. For k ≤ i ≤ k + ℓ− 1, compute

w(i) := [−t−1a(i)]qi .

Step 2. Let C = D \ B = (qk, . . . , qk+ℓ−1). Compute

(u(0), . . . , u(k−1)) := Conv((w(k), . . . , w(k+ℓ−1)), C,B).
Step 3. For 0 ≤ i ≤ k − 1, compute

bi := [p−1(a(i) + tu(i))]qi .

Step 4. Return (b(0), . . . , b(k−1)) ∈
∏k−1

i=0 Rn,qi .

Algorithm 21: RNS BGV Modulus Reduction

For the CKKS rescaling procedure in RNS, we can again use the same procedure
as the fast BFV modulus reduction in Algorithm 20. Said otherwise,

RNS.CKKS.ModReduce = RNS.BFV.ModReduce.

Note here that we specifically use (v2) of the RNS BFV Modulus reduction for RNS
CKKS. Likewise, we can also use 4.5 for RNS CKKS when discussing the noise bound
after performing RNS.CKKS.Modreduce.

Relinearization in RNS. For the rest of this section, fix Qℓ = q0 · · · qℓ and
P = p0 · · · pk−1 with q0 · · · qℓ, p0 · · · pk−1 all coprime. For 0 ≤ i ≤ ℓ, let Qi = q0 · · · qi
and fix the ordered bases

B = (q0, . . . , qi),

C = (p0, . . . , pk−1),

D = B ∪ C = (q0, . . . , qi, p0, . . . , pk−1).

The goal of our relinearization algorithms in RNS will again be to closely match the
previously outlined relinearizations for the classic variants in Algorithms 8 and 13.
We first introduce the evaluation key generations for the three schemes, followed by
their relinearization procedures. We should note that we only discuss the evaluation
key generation here. For a full discussion on all key generations (e.g., secret and
public keys) in RNS, see [19, 21, 33, 34].

We begin with RNS BFV. The procedure for evaluation key generation is given
in Algorithm 22. Observe that this evaluation key generation is the same as the
evaluation key generation in Algorithm 3, only computed in RNS.

32

RNS.BFV.ek.Keygen(sk, (q0, . . . , qℓ, p0, . . . , pk−1))

Input: sk = s ∈ Rn,3 secret key,

(q0, . . . , qℓ, p0, . . . , pk−1) full RNS basis.

Output: ek = (k̃
(j)
0 , k̃

(j)
1)0≤j≤k+ℓ ∈

∏ℓ
j=0R

2
n,qj
×
∏k−1

j=0 R
2
n,pj

evalua-
tion key.

Step 1. Sample (k̃
(0)
0 , . . . , k̃

(k+ℓ)
0)← U(

∏ℓ
j=0R

2
n,qj
×
∏k−1

j=0 R
2
n,pj

) and
ẽ← χρ.

Step 2. For 0 ≤ j ≤ ℓ compute

k̃
(j)
1 := [−k̃(j)0 s+ [P]qjs

2 + ẽ]ϕ(x),qj .

Step 3. For 0 ≤ j ≤ k − 1 compute

k̃
(ℓ+1+j)
1 := [−k̃(ℓ+1+j)

0 s+ ẽ]ϕ(x),pj .

Step 4. Return ek = (k̃
(j)
0 , k̃

(j)
1)0≤j≤k+ℓ.

Algorithm 22: RNS BFV Evaluation Key Generation

For the RNS BGV scheme, the evaluation key generation is again a similar ap-
proach to the original evaluation key generation from Algorithm 9. Algorithm 23
gives the procedure for RNS BGV.

RNS.BFV.ek.Keygen(sk, (q0, . . . , qℓ, p0, . . . , pk−1))

Input: sk = s ∈ Rn,3 secret key,

(q0, . . . , qℓ, p0, . . . , pk−1) full RNS basis.

Output: ek = (k̃
(j)
0 , k̃

(j)
1)0≤j≤k+ℓ ∈

∏ℓ
j=0R

2
n,qj
×
∏k−1

j=0 R
2
n,pj

evalua-
tion key.

Step 1. Sample (k̃
(0)
0 , . . . , k̃

(k+ℓ)
0)← U(

∏ℓ
j=0R

2
n,qj
×
∏k−1

j=0 R
2
n,pj

) and
ẽ← χρ.

Step 2. For 0 ≤ j ≤ ℓ compute

k̃
(j)
1 := [−k̃(j)0 s+ [P]qjs

2 + tẽ]ϕ(x),qj .

Step 3. For 0 ≤ j ≤ k − 1 compute

k̃
(ℓ+1+j)
1 := [−k̃(ℓ+1+j)

0 s+ tẽ]ϕ(x),pj .

Step 4. Return ek = (k̃
(j)
0 , k̃

(j)
1)0≤j≤k+ℓ.

Algorithm 23: RNS BGV Evaluation Key Generation

For the RNS CKKS scheme, the evaluation key generation is exactly the same as

33

the evaluation key generation for RNS BFV:

RNS.CKKS.ek.Keygen = RNS.BFV.ek.Keygen.

We are now ready to discuss the full RNS realinearization procedures. In these al-
gorithms, we assume that we have obtained a vector of components (c

(j)
0 , c

(j)
1 , c

(j)
2)0≤j≤i ∈∏i

j=0R
3
n,qj

which are the RNS representation of some (c0, c1, c2) ∈ R3
n,Qi

that is ob-
tained after initial RNS multiplication for BFV, BGV, or CKKS. The initial RNS
multiplication operations for BGV and CKKS are simply computed componentwise
modulo the qj’s. The procedure for BFV is more complicated. We refer the reader
to [33, 34] for details for the details on the initial RNS BFV multiplication.

For all three schemes, the RNS linearization procedure is given in Algorithm
24. Here, RNS.Modreduce is the RNS modulus reduction procedure for the chosen
scheme, and txek is the corresponding evaluation key for that scheme. For instance,
if we choose to run RNS relinearization for BGV, we use RNS.BGV.ModReduce in Step
4 with the corresponding evaluation key ek for BGV. We introduce Lemmas 4.7, 4.8
and 4.9 to prove correctness of the algorithm and our noise bound for RNS variant
of BFV, BGV and CKKS, respectively.

Lemma 4.7 Let ct be the output of Algorithm 24 and suppose the input (c
(j)
0 , c

(j)
1 , c

(j)
2)0≤j≤i

is the RNS representation of some (c0, c1, c2) ∈ R3
n,Qi

satisfying

c0 + c1s+ c2s
2 ≡ DQi

[m0m1]ϕ(x),t + e′ mod (ϕ(x), Qi)

for
∥∥e′∥∥∞ ≤ E. If P ≥ 6Qi, δR ≥ 16, and k > i, then ct is the RNS representation

of a BFV ciphertext with noise bounded by E + 1
8
δ2Rk.

Lemma 4.8 Let ct be the output of Algorithm 24 and suppose the input (c
(j)
0 , c

(j)
1 , c

(j)
2)0≤j≤i

is the RNS representation of some (c0, c1, c2) ∈ R3
n,Qi

satisfying

c0 + c1s+ c2s
2 ≡ [m0m1]ϕ(x),t + te′ mod (ϕ(x), Qi)

for
∥∥e′∥∥∞ ≤ E. If P ≥ 6Qi, δR ≥ 16, and k > i, then ct is the RNS representation

of a BGV ciphertext with noise bounded by E + 1
8
δ2Rk.

Lemma 4.9 Let ct be the output of Algorithm 24 and suppose the input (c
(j)
0 , c

(j)
1 , c

(j)
2)0≤j≤i

is the RNS representation of some (c0, c1, c2) ∈ R3
n,Qi

satisfying

c0 + c1s+ c2s
2 ≡ m0m1 + e′ mod (ϕ(x), Qi)

for
∥∥e′∥∥∞ ≤ E. If P ≥ 6Qi, δR ≥ 16, and k > i, then ct is the RNS representation

of a CKKS ciphertext with noise bounded by E + 1
8
δ2Rk.

34

RNS.Relinearize([(c0, c1, c2)]B, [ek]D)

Input: B = (q0, . . . , qi) and D = (q0, . . . , qi, p0, . . . , pk−1) bases,

[(c0, c1, c2)]B = (c
(j)
0 , c

(j)
1 , c

(j)
2)0≤j≤i ∈

∏i
j=0R

3
n,qj

,

[ek]D = (k̃
(j)
0 , k̃

(j)
1)0≤j≤i+k ∈

∏i
j=0 R

2
n,qj
×
∏k−1

j=0 R
2
n,pj

evaluation key.

Output: [ct]B = (a(j), b(j))0≤j≤i RNS ciphertext.

Step 1. Compute (c̃
(0)
2 , . . . , c̃

(k−1)
2) := Conv((c

(0)
2 , . . . , c

(i)
2),B, C).

Step 2. For 0 ≤ j ≤ i compute

â(j) := [c
(j)
2 k̃

(j)
0]ϕ(x),qj ,

b̂(j) := [c
(j)
2 k̃

(j)
1]ϕ(x),qj .

Step 3. For 0 ≤ j ≤ k − 1 compute

â(i+1+j) := [c̃
(j)
2 k̃

(i+1+j)
0]ϕ(x),pj ,

b̂(i+1+j) := [c̃
(j)
2 k̃

(i+1+j)
1]ϕ(x),pj .

Step 4. Compute

(ĉ
(0)
1 , . . . , ĉ

(i)
1) := RNS.Modreduce((â

(0)
0 , . . . , â

(i+k)
0),D,B),

(ĉ
(0)
0 , . . . , ĉ

(i)
0) := RNS.Modreduce((b̂

(0)
0 , . . . , b̂

(i+k)
0),D,B).

Step 5. For 0 ≤ j ≤ i compute

a(j) := [c
(j)
1 + ĉ

(j)
1]qj ,

b(j) := [c
(j)
0 + ĉ

(j)
0]qj .

Step 6. Return ct = (a(j), b(j))0≤j≤i.

Algorithm 24: RNS Relinearization

In addition to the relinearization technique we opt for, we should also mention
that there exists versions of the alternate relinearization technique from section 3.1
in RNS [33, 34]. In the RNS version, the element c2 is essentially expanded into a bit
decomposition twice: an expansion in the qj’s first, and then another expansion in
a fixed base B for each component corresponding to each qj. Though this technique
is certainly viable, we opt for the outlined technique due to the smaller size of ek.
In practice, both relinearization techniques are used together in a method known as
hybrid key switching [35]. In practice, the noise bound for hybrid key switching is
quite similar to what we’ve outlined in Lemmas 4.7, 4.8, and 4.9. The bound for
hybrid key switching ranges from about E + 3

8
δ2Rk to E + 10

8
δ2Rk with our approach,

using the noise bound from [16] and practical estimates of dnum from [9]. We refer
the reader to [16, 35] for more details on hybrid key switching.

35

5 Lattices, Security, and Attacks

The security of homomorphic encryption schemes is based on the LWE problem over
finite fields, which can be reduced to lattice problems. In this section, we’ll give an
overview of these lattice problems as well as various attacks on LWE. As this paper is
more focused on noise reduction in homomorphic encryption schemes, we only provide
a brief overview of security and attacks. For a more in-depth discussion on security,
we refer the reader to various sources such as [23, 36, 29]. Decision-RLWE can be
shown to be as hard as many worst case lattice problems [37]. There is also a brief
mention of security reductions from RLWE to LWE in [29]. We’ll discuss attacks on
classic LWE rather than RLWE, since RLWE problems can be easily converted into
LWE problems. Furthermore, all the best attack algorithms are for LWE instead of
RLWE.

5.1 Lattices and Lattice Problems

Let V be an R-vector space with dim(V) = m. Λ is called a lattice if Λ is a discrete
additive subgroup of V and each point of Λ is isolated (that is, no points in Λ are
arbitrarily close to each other). In general, a lattice can be generated in the following
way: given a matrix B = (b1, . . . , bn) ∈ Rm×n with independent columns, a lattice
can be defined via

Λ = {y ∈ Rm : y = Bx, x ∈ Zn}.

Here, Λ ⊆ Rm is an n-dimensional lattice. We call B a lattice basis. For a lattice Λ
defined by lattice basis B, the volume vol(Λ) is defined as

vol(Λ) =
√

det(BTB)

which can be proved to be independent of the choice of basis. Let

λ(Λ) = min{∥x∥2 : x ∈ Λ, x ̸= 0}.

Definitions 5.1, 5.2, and 5.3 describe a few instances of well studied lattice problems
for a lattice Λ [29].

Definition 5.1 (SVP) The shortest vector problem (SVP) is as follows: Given a
basis B of Λ, find a vector v ∈ Λ such that ∥v∥2 = λ(Λ).

Definition 5.2 (γ-SVP) The γ-approximate shortest vector problem (γ-SVP) is as
follows: Given a basis B of Λ, find a nonzero vector v ∈ Λ such that ∥v∥2 ≤ γ · λ(Λ).

Definition 5.3 (γ-GapSVP) The γ-gap shortest vector problem (γ-GapSVP) is as
follows: Given a basis B of Λ and a real number r > 0, output “yes” if λ(Λ) ≤ r and
output “no” if λ(Λ) > γ · r.

36

These lattice problems are examples of NP-hard problems in the worst case. Regev
[23] provides a reduction from an instance of γ−GapSVP to Decision-LWE [36], mean-
ing that LWE is at least as hard as γ-GapSVP. For potential attacks on LWE based
schemes, we’ll discuss attack strategies outlined in [23, 29].

q-ary Lattices. In lattice-based cryptography, a class of lattices that is partic-
ularly important is q-ary lattices. We say Λ is a q-ary lattice if Λ is a lattice such
that qZm ⊆ Λ ⊆ Zm. In particular, given a matrix A ∈ Zm×n, the following are q-ary
lattices

Λq(A) = {x ∈ Zm : x ≡ Ay mod q with y ∈ Zn},
Λ′

q(A) = {x ∈ Zm : xTA ≡ 0 mod q}.

It is also worth mentioning that although the matrix A defines both of these
lattices, A is not necessarily a lattice basis for these lattices. To find a lattice basis
of Λq(A), we can perform column operations on A modulo q, permuting the rows if
necessary, to obtain a matrix (

In
A1

)
∈ Zm×n

q

where In is an n× n identity matrix and A1 ∈ Z(m−n)×n
q with high probability. Let

B =

(
In 0
A1 qIm−n

)
∈ Zm×m. (7)

Then B has rank m and is a lattice basis for Λq(A). Since Λq(A) is a full rank lattice,
vol(Λq(A)) = | det(B)| = qm−n.

To get a lattice basis for Λ′
q(A), let A1 be as above. Note that the solution space

for xTA = 0 mod q is spanned by the columns of the matrix(
−AT

1

Im−n

)
∈ Zm×(m−n).

Then, a basis for Λ′
q(A) is

B′ =

(
−AT

1 qIn
Im−n 0

)
∈ Zm×m.

The volume of this lattice is vol(Λ′
q(A)) = qn.

Gaussian Heuristic. By the Gaussian Heuristic, for a lattice Λ of rank m, we
expect its shortest vector to be of length√

m

2π · exp(1)
vol(Λ)1/m

37

on average [23, 38], where exp(1) = 2.7182 . . . is the exponential function evaluated

at 1. As the lattice Λq(A) has volume qm−n and A1 is uniform random in Z(m−n)×n
q ,

we can use the Gaussian Heuristic and expect the shortest vector in Λq(A) to be of
length √

m

2π · exp(1)
q1−n/m (8)

on average. Similarly for Λ′
q(A), we expect its shortest vector to be of length√

m

2π · exp(1)
qn/m

on average.

5.2 LWE Attack Strategies

First, recall the LWE problems outlined in Section 2.2. Fix s ∈ Zn
q which is secret.

We sample ei ← χ(Z) from some desired distribution χ such that ∥ei∥∞ ≤ ρ, where ρ
is a desired parameter. Then, we sample a uniform random ai ∈ Zn

q and calculate bi
via bi = [−⟨ai, s⟩+ ei]q. The ordered pair (ai, bi) ∈ Zn

q ×Zq is called an LWE sample.
The Search-LWE problem is to find s given many LWE samples. The Decision-LWE
problem is given many samples that are either LWE samples or sampled uniform
randomly, decide which distributions the samples are drawn from [25]. If we sample
m times, we can instead think of the LWE samples as the matrix equation

b ≡ As+ e mod q (9)

where b ∈ Zm
q is the vector of bi’s, A ∈ Zm×n

q is the matrix of ai’s, and e ∈ Zm
q is the

vector of ei’s.
Dual Attacks via SVP. To solve Decision-LWE, we employ a dual attack. Let

A be the matrix defined in equation 9. In dual attacks, we wish to find a short vector
v ∈ Λ′

q(A) since ⟨v, b⟩ = ⟨v, As + e⟩ = ⟨v, e⟩ mod q. Since e is short, ⟨v, b⟩ is small.
If an adversary can find a short vector v ∈ Λ′

q(A), then the adversary can solve the
Decision-LWE problem with a fair amount of confidence, since ⟨v, b⟩ would likely not
be small for true random b. Thus, the attacker can distinguish LWE samples from
true random samples with advantage. We refer the reader to [8, 23, 39, 40] for more
details on dual attacks and the exact advantages based on sizes of e and v.

Primal Attacks via SVP. A common attack strategy for Search-LWE is with
SVP. Let A be the matrix defined in equation 9 and B be computed from A as in
equation 7. Let

B̃ =

(
B b
0 1

)
∈ Z(m+1)×(m+1)

and let Λ̃ be the lattice defined by B̃, which has volume vol(Λ̃) = qm−n. Then
equation 9 means that the vector

(
e
1

)
is in Λ̃. By the Gaussian Heuristic in equation

38

8, we expect the shortest vector in the lattice generated by B to be of length about√
m

2π · exp(1)
q1−n/m

since the entries of A1 are uniform random in Zq. In general, ∥e∥2 is smaller than
this. Thus, the shortest vector in Λ̃ is likely to be

(
e
1

)
with a significant probability.

Thus, when e is small, we can solve SVP for the lattice Λ̃ to find e, and in turn solve
LWE. The error distribution χ is crucial in determining the expected size of e, which
we discuss thoroughly in the next subsection. We refer the reader to [40, 41, 29] for
more details on primal attacks.

Lattice Basis Reduction Algorithms. Several algorithms employ these strate-
gies, as well as others, in order to solve LWE. Algorithms in practice for solving lattice
problems include algorithms such as LLL [42], BKW [43], and BKZ [44], which are
discussed thoroughly in [8] and [23]. We’ll primarily discuss BKZ, as it seems to
currently be the best algorithm for lattice reduction. The basic idea behind BKZ is
to solve SVP for sublattices of dimension k, which is known as the block size in BKZ.

Let B = (b0, . . . , bm−1) be a lattice basis for Λ, ordered so that b0 is the shortest
vector in B. Then, there is a constant γ0 so that

∥b0∥2 = γm
0 vol(Λ)1/m.

We call γm
0 the Hermite factor and γ0 the root-Hermite factor of the lattice basis B.

The Hermite factor is crucial in determining cost and runtime of lattice reduction
algorithms, especially BKZ. For a block size k in BKZ, Chen [45] shows that it is
expected that the algorithm output a lattice basis B with γ0 satisfying

lim
m→∞

γ0 ≈
(

k

2π · exp
(πk)

1
k

) 1
2(k−1)

. (10)

In practice, the limiting factor from equation 10 is used to estimate γ0 for a finite
dimensional lattice [23]. One can compute a lattice basis B with root-Hermite factor
γ0 with the estimate in equation 10. For ease of analysis, γ0 is approximated by either
γ0 = k

1
2k or γ0 = 2

1
k . Albrecht et al. [23] show that for block sizes 50 ≤ k ≤ 250, 2

1
k

actually approximates the estimate of γ0 from equation 10 better than k
1
2k .

To determine γ0, we look at three different cases dependent on the error distribu-
tion χ. If χ = DZ,αq in our LWE instance, we expect ∥e∥2 ≈ αq

√
m [2, 46]. To prove

many theoretical security results, α and q are chosen so that αq =
√
n [23], meaning

we can expect
∥∥∥(e1)∥∥∥

2
≈
√
nm. Then, we can solve for γ0 via

√
nm = γm+1

0 q
m−n
m+1 ,

or equivalently,

log(γ0) =
log(
√
nm)− log(q

m−n
m+1)

m+ 1

39

as the lattice generated by B̃ is an (m + 1)-dimensional lattice with volume qm−n.
Depending on the value of m, we can choose q so that

(
e
1

)
is likely to be the shortest

vector in Λ̃ based on the estimate from the Gaussian Heuristic in equation 8. For
instance, if m = 3n/2, we could choose q > n4.5 since√

m

2π · exp(1)
q1−n/m =

√
m

2π · exp(1)
q1/3 =

√
m

2π · exp(1)
n
√
n≫

√
nm ≈ ∥e∥2 .

For practical purposes, the homomorphic encryption standard [8] and several im-
plementations [9, 26] use χ = DZ,αq with αq = 8, resulting in a standard deviation of

σ ≈ 3.2. This means we can expect
∥∥∥(e1)∥∥∥

2
≈ 8
√
m, which we can again use to solve

for the root-Hermite factor γ0 with

log(γ0) =
log(
√
64nm)− log(q

m−n
m+1)

m+ 1
.

For m = 3n/2, choosing q > n3 suffices since for large n, as√
m

2π · exp(1)
q1−n/m =

√
m

2π · exp(1)
n≫ 8

√
m ≈ ∥e∥2 .

In our proposed schemes, χ is a discrete uniform distribution in [−n, n] with
standard deviation

σ =

√
(2n+ 1)2 − 1

12
=

√
4n2 + 4n

12
≈ n√

3
.

We can then expect
∥∥∥(e1)∥∥∥

2
≈
√

n2m/3 as a rough estimate, allowing us to choose γ0

accordingly by solving

log(γ0) =
log(

√
n2m/3)− log(q

m−n
m+1)

m+ 1
.

If m = 3n/2, a modulus size of q > n6 is sufficient to ensure
(
e
1

)
is the shortest vector

of Λ̃ in our case of a discrete uniform error distribution for χ.
After decided on the block size k, one can estimate the cost of BKZ as follows. For

algorithms to solve SVP for lattices of rank k, the fastest known classical algorithm
(using sieving) [47] runs in time 20.292k+o(k). The fastest known quantum algorithm
[48] runs in time 20.265k+o(k). With BKZ, we can have up to 8m calls to an oracle
solving SVP using a sieving algorithm, meaning that the total costs for BKZ we can
expect are 8m · 20.292k+o(k) classically and 8m · 20.265k+o(k) quantumly [8].

In summary, to estimate the total cost of attack, we first determine the expected
size of e based on the error distribution χ. After finding this expected size of e, we

40

can calculate the root-Hermite factor γ0, which then allows us to determine the block
size k and the total cost of BKZ. Though a thorough security analysis is still to be
conducted on our strategy for picking leveled homomorphic encryption parameters,
extensive research and estimates have been performed on the best known algorithms
for solving LWE as briefly shown above. We point the reader to [8, 9, 23, 49] for a
more complete discussion and further references on security.

6 Conclusions

In this paper, we have presented a detailed mathematical foundation for the BGV,
BFV, and CKKS homomorphic encryption schemes, aligning our work with the func-
tionalities proposed in recent homomorphic encryption standards. By providing pro-
tocol algorithms and correctness proofs, we have ensured that these schemes are
not only theoretically sound but also practical for implementation. Our proposed
improvements, particularly in noise management and leveled homomorphic computa-
tion, enhance the efficiency and applicability of these schemes by reducing ciphertext
expansion and storage requirements. In future works, we plan to extend these the-
oretical results to RNS variants of schemes, as well as analyze implications of noise
bounds and control of accuracy precision for homomorphic computation in CKKS.

41

References

[1] Gentry C. A fully homomorphic encryption scheme (PhD thesis); 2009. Stan-
ford University. Available from: https://crypto.stanford.edu/craig/

craig-thesis.pdf.

[2] Regev O. On lattices, learning with errors, random linear codes, and cryptog-
raphy. J ACM. 2009 sep;56(6). Available from: https://doi.org/10.1145/

1568318.1568324.

[3] Lyubashevsky V, Peikert C, Regev O. On ideal lattices and learning with errors
over rings. In: Gilbert H, editor. Advances in Cryptology – EUROCRYPT 2010.
Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 1-23.

[4] Brakerski Z, Gentry C, Vaikuntanathan V. Fully homomorphic encryption with-
out bootstrapping; 2011. Cryptology ePrint Archive, Report 2011/277. Available
from: https://ia.cr/2011/277.

[5] Brakerski Z, Gentry C, Vaikuntanathan V. (Leveled) fully homomorphic en-
cryption without bootstrapping. ACM Trans Comput Theory. 2014 jul;6(3).
Available from: https://doi.org/10.1145/2633600.

[6] Fan J, Vercauteren F. Somewhat practical fully homomorphic encryption; 2012.
https://ia.cr/2012/144. Cryptology ePrint Archive, Report 2012/144.

[7] Cheon JH, Kim A, Kim M, Song Y. Homomorphic encryption for arithmetic of
approximate numbers. In: Takagi T, Peyrin T, editors. Advances in Cryptology
– ASIACRYPT 2017. Cham: Springer International Publishing; 2017. p. 409-37.

[8] Albrecht M, Chase M, Chen H, Ding J, Goldwasser S, Gorbunov S, et al.. Homo-
morphic encryption standard; 2019. Cryptology ePrint Archive, Paper 2019/939
(preprint). Available from: https://eprint.iacr.org/2019/939.

[9] Bossuat JP, Cammarota R, Cheon JH, Chillotti I, Curtis BR, Dai W, et al..
Security guidelines for implementing homomorphic encryption; 2024. Cryptology
ePrint Archive, Paper 2024/463 (preprint). Available from: https://eprint.

iacr.org/2024/463.

[10] Chillotti I, Gama N, Georgieva M, Izabachène M. Faster Fully Homomorphic
Encryption: Bootstrapping in Less Than 0.1 Seconds. In: Cheon JH, Takagi
T, editors. Advances in Cryptology – ASIACRYPT 2016. Berlin, Heidelberg:
Springer Berlin Heidelberg; 2016. p. 3-33.

[11] Chillotti I, Gama N, Georgieva M, Izabachène M. Faster Packed Homomorphic
Operations and Efficient Circuit Bootstrapping for TFHE. In: Takagi T, Peyrin

42

https://crypto.stanford.edu/craig/craig-thesis.pdf
https://crypto.stanford.edu/craig/craig-thesis.pdf
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://ia.cr/2011/277
https://doi.org/10.1145/2633600
https://ia.cr/2012/144
https://eprint.iacr.org/2019/939
https://eprint.iacr.org/2024/463
https://eprint.iacr.org/2024/463

T, editors. Advances in Cryptology – ASIACRYPT 2017. Cham: Springer Inter-
national Publishing; 2017. p. 377-408.

[12] Gao S. Efficient fully homomorphic encryption scheme; 2018. Cryptology ePrint
Archive, Paper 2018/637 (preprint). Available from: https://eprint.iacr.

org/2018/637.

[13] Case BM, Gao S, Hu G, Xu Q. Fully homomorphic encryption with k-bit arith-
metic operations; 2019. Cryptology ePrint Archive, Paper 2019/521 (preprint).
Available from: https://eprint.iacr.org/2019/521.

[14] Costache A, Smart NP. Which ring based somewhat homomorphic encryption
scheme is best? In: Proceedings of the RSA Conference on Topics in Cryptology
- CT-RSA 2016 - Volume 9610. Berlin, Heidelberg: Springer-Verlag; 2016. p.
325–340. Available from: https://doi.org/10.1007/978-3-319-29485-8_19.

[15] Bos JW, Lauter K, Loftus J, Naehrig M. Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam M, editor. Cryptography and
Coding. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 45-64.

[16] Kim A, Polyakov Y, Zucca V. Revisiting homomorphic encryption schemes
for finite fields. In: Tibouchi M, Wang H, editors. Advances in Cryptology –
ASIACRYPT 2021. Cham: Springer International Publishing; 2021. p. 608-39.

[17] Costache A, Curtis BR, Hales E, Murphy S, Ogilvie T, Player R. On the precision
loss in approximate homomorphic encryption. In: Selected Areas in Cryptogra-
phy – SAC 2023: 30th International Conference, Fredericton, Canada, August
14–18, 2023, Revised Selected Papers. Berlin, Heidelberg: Springer-Verlag; 2024.
p. 325–345. Available from: https://doi.org/10.1007/978-3-031-53368-6_
16.

[18] Costache A, Laine K, Player R. Evaluating the effectiveness of heuristic worst-
case noise analysis in FHE. In: Computer Security – ESORICS 2020: 25th
European Symposium on Research in Computer Security, ESORICS 2020, Guild-
ford, UK, September 14–18, 2020, Proceedings, Part II. Berlin, Heidelberg:
Springer-Verlag; 2020. p. 546–565. Available from: https://doi.org/10.1007/
978-3-030-59013-0_27.

[19] Gentry C, Halevi S, Smart NP. Homomorphic evaluation of the AES circuit. In:
Safavi-Naini R, Canetti R, editors. Advances in Cryptology – CRYPTO 2012.
Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 850-67.

[20] Costache A, Nürnberger L, Player R. Optimisations and tradeoffs for HElib.
In: Rosulek M, editor. Topics in Cryptology – CT-RSA 2023. Cham: Springer
International Publishing; 2023. p. 29-53.

43

https://eprint.iacr.org/2018/637
https://eprint.iacr.org/2018/637
https://eprint.iacr.org/2019/521
https://doi.org/10.1007/978-3-319-29485-8_19
https://doi.org/10.1007/978-3-031-53368-6_16
https://doi.org/10.1007/978-3-031-53368-6_16
https://doi.org/10.1007/978-3-030-59013-0_27
https://doi.org/10.1007/978-3-030-59013-0_27

[21] Cheon JH, Han K, Kim A, Kim M, Song Y. A full RNS variant of approximate
homomorphic encryption. Selected areas in cryptography : annual international
workshop, SAC proceedings SAC. 2018;11349:347-68. Available from: https:

//api.semanticscholar.org/CorpusID:52977564.

[22] Lee E, Lee JW, Kim YS, No JS. Optimization of homomorphic comparison
algorithm on RNS-CKKS scheme. IEEE Access. 2022;10:26163-76.

[23] Albrecht MR, Player R, Scott S. On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology. 2015;9(3):169-203. Available from:
https://doi.org/10.1515/jmc-2015-0016.

[24] Lyubashevsky V, Peikert C, Regev O. A toolkit for ring-LWE cryptography.
In: Johansson T, Nguyen PQ, editors. Advances in Cryptology – EUROCRYPT
2013. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 35-54.

[25] Case B. Homomorphic encryption and cryptanalysis of lattice cryptogra-
phy (PhD thesis); 2020. Clemson University. Available from: https://

tigerprints.clemson.edu/all_dissertations/2635.

[26] Albrecht MR. On dual lattice attacks against small-secret LWE and parameter
choices in HElib and SEAL. In: Coron JS, Nielsen JB, editors. Advances in
Cryptology – EUROCRYPT 2017. Cham: Springer International Publishing;
2017. p. 103-29.

[27] Microsoft SEAL (release 4.1); 2023. Microsoft Research, Redmond, WA. https:
//github.com/Microsoft/SEAL.

[28] Yates K. Efficiency of homomorphic encryption schemes (MS thesis); 2022.
Clemson University. Available from: https://tigerprints.clemson.edu/all_
theses/3868.

[29] Player R. Parameter selection in lattice-based cryptography (PhD the-
sis); 2018. Royal Holloway, University of London. Available from:
https://pure.royalholloway.ac.uk/ws/portalfiles/portal/29983580/

2018playerrphd.pdf.

[30] Al Badawi A, Bates J, Bergamaschi F, Cousins DB, Erabelli S, Genise N, et al.
OpenFHE: open-source fully homomorphic encryption library. In: Proceedings of
the 10th Workshop on Encrypted Computing & Applied Homomorphic Cryptog-
raphy. WAHC’22. New York, NY, USA: Association for Computing Machinery;
2022. p. 53–63. Available from: https://doi.org/10.1145/3560827.3563379.

[31] HElib homomorphic encryption library; 2013. Available from: https://github.
com/homenc/HElib.

44

https://api.semanticscholar.org/CorpusID:52977564
https://api.semanticscholar.org/CorpusID:52977564
https://doi.org/10.1515/jmc-2015-0016
https://tigerprints.clemson.edu/all_dissertations/2635
https://tigerprints.clemson.edu/all_dissertations/2635
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://tigerprints.clemson.edu/all_theses/3868
https://tigerprints.clemson.edu/all_theses/3868
https://pure.royalholloway.ac.uk/ws/portalfiles/portal/29983580/2018playerrphd.pdf
https://pure.royalholloway.ac.uk/ws/portalfiles/portal/29983580/2018playerrphd.pdf
https://doi.org/10.1145/3560827.3563379
https://github.com/homenc/HElib
https://github.com/homenc/HElib

[32] Halevi S, Shoup V. Design and implementation of HElib: a homomorphic en-
cryption library; 2020. Cryptology ePrint Archive, Paper 2020/1481 (preprint).
Available from: https://eprint.iacr.org/2020/1481.

[33] Halevi S, Polyakov Y, Shoup V. An improved RNS variant of the BFV homomor-
phic encryption scheme. In: Matsui M, editor. Topics in Cryptology – CT-RSA
2019. Cham: Springer International Publishing; 2019. p. 83-105.

[34] Bajard JC, Eynard J, Hasan MA, Zucca V. A Full RNS Variant of FV Like
Somewhat Homomorphic Encryption Schemes. In: Avanzi R, Heys H, editors.
Selected Areas in Cryptography – SAC 2016. Cham: Springer International Pub-
lishing; 2017. p. 423-42.

[35] Han K, Ki D. Better Bootstrapping for Approximate Homomorphic Encryption.
In: Jarecki S, editor. Topics in Cryptology – CT-RSA 2020. Cham: Springer
International Publishing; 2020. p. 364-90.

[36] Peikert C. A decade of lattice cryptography. Found Trends Theor Com-
put Sci. 2016 mar;10(4):283–424. Available from: https://doi.org/10.1561/
0400000074.

[37] Peikert C, Regev O, Stephens-Davidowitz N. Pseudorandomness of ring-LWE
for any ring and modulus. In: Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing. STOC 2017. New York, NY, USA: As-
sociation for Computing Machinery; 2017. p. 461–473. Available from: https:

//doi.org/10.1145/3055399.3055489.

[38] Ducas L. Shortest vector from lattice sieving: a few dimensions for free; 2017.
Cryptology ePrint Archive, Paper 2017/999 (preprint). Available from: https:
//eprint.iacr.org/2017/999.

[39] Ajtai M. Generating hard instances of lattice problems (extended abstract). In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Com-
puting. STOC ’96. New York, NY, USA: Association for Computing Machinery;
1996. p. 99–108. Available from: https://doi.org/10.1145/237814.237838.

[40] Lindner R, Peikert C. Better key sizes (and attacks) for LWE-based encryption.
In: Kiayias A, editor. Topics in Cryptology – CT-RSA 2011. Berlin, Heidelberg:
Springer Berlin Heidelberg; 2011. p. 319-39.

[41] Lyubashevsky V, Micciancio D. On bounded distance decoding, unique shortest
vectors, and the minimum distance problem. In: Halevi S, editor. Advances in
Cryptology - CRYPTO 2009. Berlin, Heidelberg: Springer Berlin Heidelberg;
2009. p. 577-94.

45

https://eprint.iacr.org/2020/1481
https://doi.org/10.1561/0400000074
https://doi.org/10.1561/0400000074
https://doi.org/10.1145/3055399.3055489
https://doi.org/10.1145/3055399.3055489
https://eprint.iacr.org/2017/999
https://eprint.iacr.org/2017/999
https://doi.org/10.1145/237814.237838

[42] Lenstra AK, Lenstra HW, Lovász LM. Factoring polynomials with rational
coefficients. Mathematische Annalen. 1982;261:515-34. Available from: https:
//api.semanticscholar.org/CorpusID:5701340.

[43] Blum A, Kalai A, Wasserman H. Noise-tolerant learning, the parity problem,
and the statistical query model. Journal of the ACM. 2000 05;50:435-40.

[44] Schnorr C, Euchner M. Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Mathematical Programming. 1994 08;66:181-
99.

[45] Chen Y. Réduction de réseau et sécurité concrète du chiffrement
complètement homomorphe (PhD thesis); 2013. Available from: https://api.
semanticscholar.org/CorpusID:170791320.

[46] Regev O. The learning with errors problem (invited survey). In: 2010 IEEE
25th Annual Conference on Computational Complexity; 2010. p. 191-204.

[47] Becker A, Ducas L, Gama N, Laarhoven T. New directions in nearest neighbor
searching with applications to lattice sieving. In: Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’16.
USA: Society for Industrial and Applied Mathematics; 2016. p. 10–24.

[48] Laarhoven T. Search problems in cryptography: from fingerprinting to lattice
sieving (PhD thesis); 2016. Eindhoven University of Technology.

[49] Lepoint T, Naehrig M. A comparison of the homomorphic encryption schemes
FV and YASHE. In: Pointcheval D, Vergnaud D, editors. Progress in Cryptology
– AFRICACRYPT 2014. Cham: Springer International Publishing; 2014. p. 318-
35.

46

https://api.semanticscholar.org/CorpusID:5701340
https://api.semanticscholar.org/CorpusID:5701340
https://api.semanticscholar.org/CorpusID:170791320
https://api.semanticscholar.org/CorpusID:170791320

Appendix A Proofs of Lemmas

Proof of Lemma 2.1. By assumption, b0 ≡ −a0s + e0 mod (ϕ(x), Q). Therefore,
there exists r ∈ Rn such that

b ≡ −a0s+ e0 +Qr mod ϕ(x).

Since a′0 = ⌊
qa0
Q
⌉ and b′0 = ⌊

qb0
Q
⌉, there are polynomials ϵ1, ϵ2 ∈ R[x]/(ϕ(x)) such that

a′0 =
qa0
Q
− ϵ1 and b′0 =

qb0
Q
− ϵ2 with ∥ϵ1∥∞ , ∥ϵ2∥∞ ≤ 1/2. Then,

b′0 =
q

Q
b0 − ϵ2

≡ − q

Q
a0s+

q

Q
e0 + qr − ϵ2 mod ϕ(x)

≡ −a′0s+
q

Q
e0 + qr − ϵ2 − ϵ1s mod ϕ(x).

Let e′0 = q
Q
e0 − ϵ2 − ϵ1s. Then, b′0 ≡ −a′0s + e′0 mod (ϕ(x), q). Note that

∥∥e′0∥∥∞ ≤
q
Q
E +

δR∥s∥∞+1

2
. By assumption Q/q > 2E

δR∥s∥∞−1
, so

∥∥e′0∥∥∞ < δR ∥s∥∞.

Proof of Lemma 2.2. By assumption, we first note that (a0, b0) ∈ R2
n,Q satisfies

b0 ≡ −a0s + DQm0 + e0 mod (ϕ(x), Q). Therefore, there is some rQ ∈ Rn such
that b0 + a0s ≡ DQm0 + e0 + QrQ mod ϕ(x). Let ϵQ = Q/t − DQ, ϵq = q/t − Dq,
ϵ1 = qa0/Q− a′0, and ϵ2 = qb0/Q− b′0. Then,

b′0 =
qb0
Q
− ϵ2 ≡ −

qa0s

Q
+

qDQ

Q
m0 +

qe0
Q
− ϵ2 + qrQ mod ϕ(x).

Note that as DQ = Q/t−ϵQ, we have that qDQ/Q = q/t−qϵQ/Q. Since q/t = Dq+ϵq,
we have qDQ/Q = Dq + ϵq − qϵQ/Q. Therefore,

b′0 ≡ −
qa0s

Q
+

qDQ

Q
m0 +

qe0
Q
− ϵ2 + qrQ mod ϕ(x)

≡ −a′0s− ϵ1s+Dqm0 + (ϵq −
qϵQ
Q

)m0 +
qe0
Q
− ϵ2 + qrQ mod ϕ(x).

Let e′0 = qe0
Q

+ (ϵq − qϵQ
Q
)m0 − ϵ2 − ϵ1s. Then, b′0 + a′0s ≡ Dqm0 + e′0 mod (ϕ(x), q).

Furthermore if Q > q, t|(Q − 1), and t|(q − 1), then DQ = (Q − 1)/t and ϵQ = 1/t.
Similarly, Dq = (q − 1)/t and ϵq = 1/t. Then, |ϵq − qϵQ/Q| = 1

t
(1− q

Q
) < 1

t
. So,∥∥e′0∥∥∞ =

∥∥∥∥qe0Q + (ϵq − qϵQ/Q)m0 − ϵ2 − ϵ1s

∥∥∥∥
∞

≤ q

Q
∥e0∥∞ + |ϵq − qϵQ/Q|

t

2
+ ∥ϵ2∥∞ + ∥ϵ1s∥∞

≤ q

Q
E + 1 +

δR ∥s∥∞
2

.

47

By assumption Q/q > 2E
δR∥s∥∞−2

, so
∥∥e′0∥∥∞ < δR ∥s∥∞.

Proof of Lemma 2.3. First, note that a′0 and b′0 are polynomials with integer
coefficients since both qa0 + tωa and qb0 + tωb are equivalent to 0 modulo Q. Then,
we have

b′0 + a′0s ≡
qb0 + tωb

Q
+

qa0 + tωa

Q
s mod ϕ(x) (11)

≡ q

Q
(b0 + a0s) +

t

Q
(ωb + ωas) mod ϕ(x) (12)

≡ q

Q
(m0 + te0) +

t

Q
(ωb + ωas) + qr mod ϕ(x) (13)

≡ m0 + t

(
q −Q

Qt
m0 +

q

Q
e0 +

1

Q
(ωb + ωas)

)
+ qr mod ϕ(x) (14)

≡ m0 + te′0 mod (ϕ(x), q) (15)

where e′0 =
q−Q
Qt

m0+
q
Q
e0+

1
Q
(ωb+ωas). Since Q > |q−Q|, we have | q−Q

Qt
| < 1

t
. Thus,

we have that∥∥e′0∥∥∞ =

∥∥∥∥q −Q

Qt
m0 +

q

Q
e0 +

1

Q
(ωb + ωas)

∥∥∥∥
∞

≤
∣∣∣∣q −Q

Qt

∣∣∣∣ ∥m0∥∞ +
q

Q
∥e0∥∞ +

1

Q
∥ωb∥∞ +

1

Q
∥ωas∥∞

≤ 1

2
+

q

Q
E +

1

2
+

δR ∥s∥∞
2

=
q

Q
E + 1 +

δR ∥s∥∞
2

.

By assumption Q/q > 2E
δR∥s∥∞−2

, so
∥∥e′0∥∥∞ < δR ∥s∥∞.

Proof of Lemma 3.1. By assumption, the public key pk = (k0, k1) satisfies

k1 + k0s ≡ e mod (ϕ(x), p0q)

for some noise e ∈ Rn with ∥e∥∞ ≤ ρ. Then,

b0 + a0s ≡ k1u+ e2 + (k0u+ e1)s mod (ϕ(x), p0q)

≡ −(k0s+ e)u+ e2 + (k0u+ e1)s mod (ϕ(x), p0q)

≡ −k0su− eu+ e2 + k0su+ e1s mod (ϕ(x), p0q)

≡ −eu+ e2 + e1s mod (ϕ(x), p0q)

48

Let e0 = −eu+ e2 + e1s. Then, b0 + a0s ≡ e0 mod (ϕ(x), p0q). Note that

∥e0∥∞ = ∥−eu+ e2 + e1s∥∞
≤ δR ∥e∥∞ ∥u∥∞ + ∥e2∥∞ + δR ∥e1∥∞ ∥s∥∞
≤ δ2R ∥u∥∞ + δR + δ2R ∥s∥∞
= δ2R(∥u∥∞ + ∥s∥∞) + δR.

Since ∥s∥∞ = ∥u∥∞ = 1, ∥e0∥∞ ≤ 2δ2R + δR. By assumption p0 >
4δ2R+2δR
δR−1

, so
BFV.Modreduce(ct0, p0q, q) outputs ct

′
0 = (a′0, b

∗
0) satisfying

b∗0 ≡ −a′0s+ e′0 mod (ϕ(x), q)

with
∥∥e′0∥∥∞ ≤ ρ by Lemma 2.1. Since b′0 = [b∗0 +Dqm0]q, we have

b′0 + a′0s ≡ Dqm0 + e′0 mod (ϕ(x), q).

Proof of Lemma 3.2. By assumption, b0 + a0s ≡ Dqm0 + e0 mod (ϕ(x), q) with
∥e0∥∞ < (Dq − 1)/2. There is a polynomial r ∈ Rn such that [b0 + a0s]ϕ(x),q =
Dqm0 + e0 + qr mod ϕ(x). Thus,

tc = t[b0 + a0s]ϕ(x),q = tDqm0 + te0 + tqr = qm0 −m0 + te0 + tqr.

Then,[⌊tc
q

⌉]
t
=
[
m0 +

⌊
− m0

q
+

t

q
e0

⌉
+ tr

]
t
=
[
m0 +

⌊ t
q
(e0 −

1

t
m0)

⌉]
t
= m0.

The last equality follows from the fact that
⌊

t
q
(e0 − 1

t
m0)

⌉
= 0, as ∥e0∥∞ < (Dq−1)/2.

Proof of Lemma 3.3. By assumption, each cti = (ai, bi) ∈ R2
n,q satisfies

bi + ais ≡ Dqmi + ei mod (ϕ(x), q)

with ∥ei∥∞ ≤ E for all i = 0, . . . , k − 1. Then,

ct′0 =
[k−1∑

i=0

αicti

]
q
=
([k−1∑

i=0

αiai

]
q
,
[k−1∑

i=0

αibi

]
q

)
.

Since t|(q − 1) and Dq = (q − 1)/t, we have Dqt ≡ −1 mod q. There exists r ∈ Rn

such that
k−1∑
i=0

αimi =
[k−1∑

i=0

αimi

]
t
+ tr

49

with ∥r∥∞ ≤M . Then,

k−1∑
i=0

αibi +
k−1∑
i=0

αiais ≡ Dq

(k−1∑
i=0

αimi

)
+

k−1∑
i=0

αiei mod (ϕ(x), q)

≡ Dq

[k−1∑
i=0

αimi

]
t
+

k−1∑
i=0

αiei +Dqtr mod (ϕ(x), q)

≡ Dq

[k−1∑
i=0

αimi

]
t
+

k−1∑
i=0

αiei − r mod (ϕ(x), q)

Let e′ =
∑k−1

i=0 αiei − r. Then, we have

k−1∑
i=0

αibi +
k−1∑
i=0

αiais ≡ Dq

[k−1∑
i=0

αimi

]
t
+ e′ mod (ϕ(x), q).

So, ct′0 is a BFV ciphertext with noise term e′ and

∥∥e′∥∥∞ ≤ k−1∑
i=0

|αi| ∥ei∥∞ + ∥r∥∞ ≤ME +M = M(E + 1).

Proof of Lemma 3.4. By assumption, we have for i = 0, 1,

bi + ais ≡ Dqmi + ei mod (ϕ(x), q) (16)

with ∥ai∥∞ ≤ q/2, ∥bi∥∞ ≤ q/2, and ∥ei∥∞ ≤ E. We can rewrite (16) as

bi + ais ≡ Dqmi + ei + qri mod ϕ(x) (17)

where

∥ri∥∞ ≤
1

q
∥bi + ais∥∞ ≤

1

q

(q
2
+

q

2
δR ∥s∥∞

)
≤ 1

2

(
1 + δR ∥s∥∞

)
≤ δR ∥s∥∞ .

On the one hand,

(t/q)(b0 + a0s)(b1 + a1s) ≡ (t/q)
(
b0b1 + (b1a0 + b0a1)s+ a0a1s

2
)

mod ϕ(x)

≡ (t/q)(c0 + c1s+ c2s
2) mod ϕ(x)

≡ c′0 + c′1s+ c′2s
2 + (ϵ′0 + ϵ′1s+ ϵ′2s

2) mod ϕ(x)

with
∥∥ϵ′i∥∥∞ ≤ 1/2 for 0 ≤ i ≤ 2. Let rm ∈ Rn so that m0m1 = [m0m1]ϕ(x),t+ trm with

∥rm∥∞ ≤ tδR/4. Then on the other hand, noting that (t/q)Dq = (t/q)(q/t − 1/t) =

50

1− 1/q and tDq ≡ −1 mod q, we have

(t/q)(Dqm0 + e0 + qr0)(Dqm1 + e1 + qr1)

≡ (t/q)(D2
qm0m1 +Dq(m0e1 +m1e0)

+ q(e0r1 + r0e1) + e0e1 + qDq(m0r1 + r0m1) + q2r0r1) mod ϕ(x)

≡ (1− 1/q)Dq[m0m1]ϕ(x),t + (1− 1/q)Dqtrm + (1− 1/q)(m0e1 +m1e0)

+ t(e0r1 + r0e1) + (t/q)e0e1 + tDq(m0r1 + r0m1) + tqr0r1 mod ϕ(x)

≡ Dq[m0m1]ϕ(x),t − (Dq/q)[m0m1]ϕ(x),t +Dqtrm

− (Dqt/q)rm + (m0e1 +m1e0)− (1/q)(m0e1 +m1e0)

+ t(e0r1 + r0e1) + (t/q)e0e1 + tDq(m0r1 + r0m1) + tqr0r1 mod ϕ(x)

≡ Dq[m0m1]ϕ(x),t − rm + (m0e1 +m1e0) + t(e0r1 + r0e1)− (m0r1 + r0m1)

− (Dq/q)[m0m1]ϕ(x),t − (1/q)(m0e1 +m1e0) + (t/q)e0e1 mod (ϕ(x), q).

Let

ϵ1 = ϵ′0 + ϵ′1s+ ϵ′2s
2 and

ϵ2 = −rm + (m0e1 +m1e0) + t(e0r1 + r0e1)− (m0r1 + r0m1)

− (Dq/q)[m0m1]ϕ(x),t − (1/q)(m0e1 +m1e0) + (t/q)e0e1.

Let e′ = ϵ2 − ϵ1. Then,

c′0 + c′1s+ c′2s
2 ≡ Dq[m0m1]ϕ(x),t + e′ mod (ϕ(x), q).

We now turn to the noise bound for e′. First, note that

∥ϵ1∥∞ =
∥∥∥ϵ′0 + ϵ′1s+ ϵ′2s

2
∥∥∥
∞
≤ 1

2
+

δR ∥s∥∞
2

+
δ2R ∥s∥

2
∞

2
=

(1 + δR ∥s∥∞)2

2
.

To simplify the noise analysis for ϵ2, we break down ϵ2 into two pieces. Let

ω1 = −rm + (m0e1 +m1e0) + t(e0r1 + r0e1)− (m0r1 + r0m1) and

ω2 = −(Dq/q)[m0m1]ϕ(x),t − (Dqt/q)rm − (1/q)(m0e1 +m1e0) + (t/q)e0e1.

Then, ϵ2 = ω1 + ω2. For ω1, we have

∥ω1∥∞ ≤ ∥rm∥∞ + ∥m0e1 +m1e0∥∞ + t ∥e0r1 + r0e1∥∞ + ∥m0r1 + r0m1∥∞

≤ tδR
4

+ EtδR + 2Etδ2R ∥s∥∞ + tδ2R ∥s∥∞ .

51

For ω2, note that since Dq < q/t and q > 2t, we have

∥ω2∥∞ ≤
Dq

q

∥∥∥[m0m1]ϕ(x),t

∥∥∥
∞
+

Dqt

q
∥rm∥∞ +

1

q
∥m0e1 +m1e0∥∞ +

t

q
∥e0e1∥∞

<
1

t

∥∥∥[m0m1]ϕ(x),t

∥∥∥
∞
+ ∥rm∥∞ +

1

q
∥m0e1 +m1e0∥∞ +

t

q
∥e0e1∥∞

≤ 1

2
+

tδR
4

+
EtδR
q

+
EδR
2

≤ 1

2
+

tδR
4

+ EδR.

The bound on t
q
∥e0e1∥∞ follows from the fact that since e0, e1 are ciphertext noise

terms, so by assumption ∥ei∥∞ ≤ E < (Dq − 1)/2 < Dq/2 < q/(2t) for i = 0, 1. So,

t

q
∥e0e1∥∞ ≤

t

q
E2δR <

EδR
2

.

By assumption, δR ≥ 16, E ≥ 1, t ≥ 2, and ∥s∥∞ = 1. So,

∥∥e′∥∥∞ ≤ tδR
4

+ EtδR + 2Etδ2R ∥s∥∞ + tδ2R ∥s∥∞ +
1

2
+

tδR
4

+ EδR +
(δR ∥s∥∞ + 1)2

2

≤ tδR
2

+ EtδR + 3Etδ2R ∥s∥∞ + 1 + EδR +
δ2R ∥s∥

2
∞

2
+ δR ∥s∥∞

= Etδ2R ∥s∥
2
∞

(1

EδR ∥s∥2∞
+

1

δ2R ∥s∥
2
∞

+
3

∥s∥∞
+

1

Etδ2R ∥s∥
2
∞

+
1

tδR ∥s∥2∞
+

1

2Et
+

1

EtδR ∥s∥∞

)
≤ Etδ2R ∥s∥

2
∞

(1

16
+

1

162
+ 3 +

1

2 · 162
+

1

2 · 16
+

1

2 · 2
+

1

2 · 16

)
< 3.5Etδ2R ∥s∥

2
∞

= 3.5tEρ2.

Proof of Lemma 3.5. Notice that as β1 ≡ c′2k
′
1 mod (ϕ(x), p1q), we can write

β1 ≡ c′2k
′
1 + p1qα1 mod ϕ(x)

for some α1 ∈ Z. Then,

d′1 =

⌊
β1

p1

⌉
≡

⌊
c′2k

′
1 + p1qα1

p1

⌉
≡ c′2k

′
1

p1
+ qα1 + ϵ1 ≡

c′2k
′
1

p1
+ ϵ1 mod (ϕ(x), q)

for some ϵ1 ∈ R[x]/(ϕ(x)) with ∥ϵ1∥∞ ≤ 1/2. Note also that as c′2k
′
0 ≡ −c′2k′1s +

c′2e
′
1 + c′2p1s

2 mod (ϕ(x), p1q), we have that for some α0 ∈ Z,

β0 ≡ c′2k
′
0 ≡ −c′2k′1s+ c′2e

′
1 + c′2p1s

2 + p1qα0 mod ϕ(x).

52

Then,

d′0 =

⌊
β0

p1

⌉
≡

⌊
−c′2k′1s+ c′2e

′
1 + c′2p1s

2 + p1qα0

p1

⌉
mod (ϕ(x), q)

≡

⌊
−c′2k′1s

p1
+

c′2e
′
1

p1
+ c′2s

2 + qα0

⌉
mod (ϕ(x), q)

≡ −c
′
2k

′
1s

p1
+

c′2e
′
1

p1
+ c′2s

2 + qα0 + ϵ0 mod (ϕ(x), q)

≡ −c
′
2k

′
1s

p1
+

c′2e
′
1

p1
+ c′2s

2 + ϵ0 mod (ϕ(x), q)

for some ϵ0 ∈ R[x]/(ϕ(x)) with ∥ϵ0∥∞ ≤ 1/2. Therefore,

d′0 + d′1s ≡ c′2s
2 − c′2k

′
1s

p1
+

c′2e
′
1

p1
+ ϵ0 +

c′2k
′
1s

p1
+ ϵ1s mod (ϕ(x), q)

≡ c′2s
2 +

c′2e
′
1

p1
+ ϵ0 + ϵ1s mod (ϕ(x), q)

Let e′′ =
c′2e

′
1

p1
+ ϵ0 + ϵ1s. Then, d

′
0 + d′1s ≡ c′2s

2 + e′′ mod (ϕ(x), q). By assumption,

(c′0, c
′
1, c

′
2) satisfies

c′0 + c′1s+ c′2s
2 ≡ Dq[m0m1]ϕ(x),t + e′ mod (ϕ(x), q).

Let e∗ = e′ + e′′. Then,

c1 + c0s ≡ c′0 + d′0 + c′1s+ d′1s mod (ϕ(x), q)

≡ c′0 + c′1s+ c′2s
2 + e′′ mod (ϕ(x), q)

≡ Dq[m0m1]ϕ(x),t + e′ + e′′ mod (ϕ(x), q)

≡ Dq[m0m1]ϕ(x),t + e∗ mod (ϕ(x), q)

Now, we turn to the noise bounds on e′′ and e∗. Note that as e′1 ← χρ, we have∥∥e′1∥∥∞ ≤ ρ = δR ∥s∥∞. If p1 ≥ 6q and δR ≥ 16, then

∥∥e′′∥∥∞ =

∥∥∥∥∥c′2e′1p1
+ ϵ0 + ϵ1s

∥∥∥∥∥
∞

≤ q

2p1
δ2R ∥s∥∞ +

1

2
+

δR ∥s∥∞
2

≤ δ2R ∥s∥∞ (
1

12
+

1

δ2R ∥s∥∞
+

1

2δR
)

<
1

8
δ2R ∥s∥∞ .

53

By Lemma 7, we have that
∥∥e′∥∥∞ ≤ 3.5Etρ2 = 3.5Etδ2R ∥s∥

2
∞. As relinearization

introduces additional noise e′′ bounded by 1
8
δ2R ∥s∥∞, we have∥∥e∗∥∥∞ ≤ 3.5Etδ2R ∥s∥
2
∞ +

1

8
δ2R ∥s∥∞

= Etδ2R ∥s∥
2
∞

(
3.5 +

1

8Et ∥s∥∞

)
≤ Etδ2R ∥s∥

2
∞

(
3.5 +

1

16

)
< 3.6Etδ2R ∥s∥

2
∞

= 3.6Etρ2.

Proof of Lemma 3.6. By assumption, the public key pk = (k0, k1) satisfies

k1 + k0s ≡ te mod (ϕ(x), p0q)

for some noise e ∈ Rn with ∥e∥∞ ≤ ρ. Then,

b0 + a0s ≡ k1u+ te2 + (k0u+ te1)s mod (ϕ(x), p0q)

≡ −(k0s+ te)u+ te2 + (k0u+ te1)s mod (ϕ(x), p0q)

≡ −k0su− teu+ te2 + k0su+ te1s mod (ϕ(x), p0q)

≡ −t(eu+ e2 + e1s) mod (ϕ(x), p0q)

≡ te0 mod (ϕ(x), p0q)

Let e0 = −eu+e2+e1s. Then, b0+a0s ≡ te0 mod (ϕ(x), p0q). Since ∥s∥∞ = ∥u∥∞ =

1, we have ∥e0∥∞ ≤ 2δ2R+δR. By assumption p0 >
4δ2R+2δR
δR−2

, so BGV.Modreduce(ct0, p0q, q)
outputs ct′0 = (a′0, b

∗
0) satisfying

b∗0 ≡ −a′0s+ te′0 mod (ϕ(x), q)

with
∥∥e′0∥∥∞ ≤ ρ by Lemma 2.3. Since b′0 = [b∗0 +m0]q, we have

b′0 + a′0s ≡ m0 + te′0 mod (ϕ(x), q).

Proof of Lemma 3.7. By assumption, we have for i = 0, 1,

bi + ais ≡ mi + tei mod (ϕ(x), q)

with ∥ei∥∞ ≤ E. Let rm ∈ Rn such that m0m1 = [m0m1]ϕ(x),t + trm. Note that
∥rm∥∞ ≤ t. We have that

c′0 + c′1s+ c′2s
2 ≡ b0b1 + (b1a0 + b0a1)s+ a0a1s

2 mod (ϕ(x), q)

≡ (b0 + a0s)(b1 + a1s) mod (ϕ(x), q)

≡ (m0 + te0)(m1 + te1) mod (ϕ(x), q)

≡ m0m1 + t(m0e1 +m1e0 + te0e1) mod (ϕ(x), q)

≡ [m0m1]ϕ(x),t + t(m0e1 +m1e0 + te0e1 + rm) mod (ϕ(x), q)

54

Let e′ = m0e1 +m1e0 + te0e1 + rm. Then,

c′0 + c′1s+ c′2s
2 ≡ [m0m1]ϕ(x),t + te′ mod (ϕ(x), q)

with ∥∥e′∥∥∞ ≤ δRtE + δRtE
2 + t ≤ 2δRtE

2 + t ≤ 2δRt(E
2 + 1).

Proof of Lemma 3.8. First, observe that both β0 + tω0 and β1 + tω1 are divisible
by p1 since for i = 0, 1,

βi + tωi = βi + t[−t−1βi]p1 ≡ βi + t(−t−1βi) ≡ 0 mod p1,

so d′0 =
β0+tω0

p1
and d′1 =

β1+tω1

p1
have integer coefficients. Then,

d′0 + d′1s ≡
β0 + tω0

p1
+

β1 + tω1

p1
s mod (ϕ(x), q)

≡ c′2k
′
0 + ω0

p1
+

c′2k
′
1 + ω1

p1
s mod (ϕ(x), q)

≡ c′2(−k′1s+ p1s
2 + te′1) + tω0

p1
+

c′2k
′
1 + tω1

p1
s mod (ϕ(x), q)

≡ c′2s
2 + t

c′2e
′
1 + ω0 + ω1s

p1
mod (ϕ(x), q).

Let e′′ =
c′2e

′
1

p1
+ ω0+ω1s

p1
, which has integer coefficients. Then, d′0+ d′1s ≡ c′2s

2+ te′′. By

assumption, (c′0, c
′
1, c

′
2) satisfies

c′0 + c′1s+ c′2s
2 ≡ [m0m1]ϕ(x),t + te′ mod (ϕ(x), q),

where
∥∥e′∥∥∞ ≤ 2δRt(E

2 + 1). Let e∗ = e′ + e′′. Then,

c1 + c0s ≡ c′0 + d′0 + c′1s+ d′1s mod (ϕ(x), q)

≡ c′0 + c′1s+ c′2s
2 + te′′ mod (ϕ(x), q)

≡ [m0m1]ϕ(x),t + t(e′ + e′′) mod (ϕ(x), q)

≡ [m0m1]ϕ(x),t + te∗ mod (ϕ(x), q).

55

Then, note that

∥∥e′′∥∥∞ ≤
∥∥∥∥∥c′2e′1p1

∥∥∥∥∥
∞

+

∥∥∥∥ω0 + ω1s

p1

∥∥∥∥
∞

≤ q

2p1
δ2R ∥s∥∞ +

p1
2p1

+
p1
2p1

δR ∥s∥∞

≤ 1

12
δ2R ∥s∥∞ +

1

2
+

δR ∥s∥∞
2

= δ2R ∥s∥∞ (
1

12
+

1

2δ2R ∥s∥∞
+

1

2δR
)

≤ δ2R ∥s∥∞ (
1

12
+

1

512
+

1

32
)

<
1

8
δ2R ∥s∥∞ .

The bound on e∗ then follows immediately.

Proof of Lemma 3.9. By assumption, we first note that (a0, b0) ∈ R2
n,Q satisfies

b0 ≡ −a0s+m0 + e0 mod (ϕ(x), Q).

Therefore, there is some integer r ∈ Z such that b0 + a0s ≡ m0 + e0 +Qr mod ϕ(x).
Let ϵ1 = qa0/Q− a′0, and ϵ2 = qb0/Q− b′0. Then,

b′0 =
qb0
Q
− ϵ2

≡ −qa0s

Q
+

q

Q
m0 +

qe0
Q
− ϵ2 + qr mod ϕ(x)

≡ −a′0s− ϵ1s+
q

Q
m0 +

qe0
Q
− ϵ2 + qr mod ϕ(x)

Let e′0 =
q
Q
e0 − ϵ2 − ϵ1s. Then, b

′
0 + a′0s ≡

q
Q
m0 + e′0 mod (ϕ(x), q). Therefore,

∥∥e′0∥∥∞ ≤ q

Q
E +

1 + δR ∥s∥∞
2

.

By assumption Q/q > 2E
δR∥s∥∞−1

, so
∥∥e′0∥∥∞ < δR ∥s∥∞.

Proof of Lemma 3.10. We consider step 2 of Algorithm 14, in which we compute
ct := BFV.Encrypt(m, 1, pk). By an argument identical to the proof of Lemma 3.1,
steps 1-3 of Algorithm 4 produce an ordered pair (a0, b0) ∈ R2

n,p0q
satisfying

b0 + a0s ≡ e0 mod (ϕ(x), p0q)

56

for e0 ∈ Rn with ∥e0∥∞ ≤ 2δ2R + δR. By assumption p0 >
4δ2R+2δR
δR−1

, so (a′0, b
∗
0) :=

CKKS.Modreduce(p0q, q, ct0) satisfies

b∗0 ≡ −a′0s+ e′0 mod (ϕ(x), q)

with
∥∥e′0∥∥∞ ≤ ρ by Lemma 3.9. Since b′0 = [b∗0 +m]q, we have

b′0 + a′0s ≡ m+ e′0 mod (ϕ(x), q).

Let (a, b) = (a′0, b
′
0). Then, ct = (a, b) is the output of Algorithm 14 and is a CKKS

ciphertext with noise bounded by ρ.

Proof of Lemma 3.11. By assumption, each cti = (ai, bi) ∈ R2
n,q satisfies

bi + ais ≡ mi + ei mod (ϕ(x), q)

for some noise term ei with ∥ei∥∞ ≤ E. Then,

ct′0 =
[k−1∑

i=0

αicti

]
q
=
([k−1∑

i=0

αiai

]
q
,
[k−1∑

i=0

αibi

]
q

)
.

Let e′ =
∑k−1

i=0 αiei. Then,

k−1∑
i=0

αibi +
k−1∑
i=0

αiais ≡
k−1∑
i=0

αimi +
k−1∑
i=0

αiei ≡
k−1∑
i=0

αimi + e′ mod (ϕ(x), q)

So, ct′0 is a CKKS ciphertext with noise term e′ and

∥∥e′∥∥∞ ≤ k−1∑
i=0

|αi| ∥ei∥∞ ≤ME.

Proof of Lemma 3.12. By assumption, we have for i = 0, 1,

bi + ais ≡ mi + ei mod (ϕ(x), q)

with ∥ei∥∞ ≤ E. Let e′ = m0e1 +m1e0 + e0e1. Then,

c′0 + c′1s+ c′2s
2 = (b0 + a0s)(b1 + a1s)

≡ (m0 + e0)(m1 + e1) mod (ϕ(x), q)

≡ m0m1 +m0e1 +m1e0 + e0e1 mod (ϕ(x), q)

≡ m0m1 + e′ mod (ϕ(x), q)

The bound on e′ then follows immediately.

57

Proof of Lemma 3.13. It is clear from the proof of Lemma 3.5 that d′0+d′1s ≡ c′2s
2+

e′′ mod (ϕ(x), q) where e′′ =
c′2e

′
1

p1
+ϵ0+ϵ1s and ϵ0, ϵ1 ∈ R[x]/(ϕ(x)) with ∥ϵ0∥∞ ≤ 1/2

and ∥ϵ1∥∞ ≤ 1/2. By assumption, c′0 + c′1s + c′2s
2 ≡ m0m1 + e′ mod (ϕ(x), q) with∥∥e′∥∥∞ ≤ EtδR + E2δR, so

c1 + c0s ≡ c′0 + d′0 + c′1s+ d′1s mod (ϕ(x), q)

≡ c′0 + c′1s+ c′2s
2 + e′′ mod (ϕ(x), q)

≡ m0m1 + e′ + e′′ mod (ϕ(x), q)

Let e∗ = e′+e′′. Then, c1+c0s ≡ m0m1+e∗ mod (ϕ(x), q). The bound on e∗ follows
immediately.

Proof of Lemma 4.1. Suppose we have a collection of BFV ciphertexts, each with
noise bounded by ρ = δR ∥s∥∞. By Lemma 3.3, computing

ctj := Linearcombo(ctj,1, . . . , ctj,k1 , 1, . . . , 1)

results in BFV ciphertexts ctj for j = 1, . . . , 2k2, each with noise bounded by
k1δR ∥s∥∞ + k1. Since δR ≥ 16, we have

k1δR ∥s∥∞ + k1 = (k1 +
k1

δR ∥s∥∞
)δR ∥s∥∞ ≤

17

16
k1δR ∥s∥∞ .

By Lemma 3.4, each Multiply(ct2j−1, ct2j) in step 2 of Algorithm 17 for j = 1, . . . , k2
results in a polynomial triple with noise bounded by

3.5
(17
16

k1δR ∥s∥∞
)
tδ2R ∥s∥

2
∞ =

119

32
k1tδ

3
R ∥s∥

3
∞ .

Summing all k2 of these polynomial triples in step 2 of Algorithm 17 results in a
polynomial triple with noise bounded by

119

32
k1k2tδ

3
R ∥s∥

3
∞ + k2

by an equivalent argument to Lemma 3.3 with polynomial triples as the input. Notice,

119

32
k1k2tδ

3
R ∥s∥

3
∞ + k2 =

119

32
k1k2tδ

3
R ∥s∥

3
∞

(
1 +

32

119k1tδ3R ∥s∥
3
∞

)

≤ 119

32
k1k2tδ

3
R ∥s∥

3
∞

(
1 +

32

119 · 2 · 163

)
≤ 30

8
k1k2tδ

3
R ∥s∥

3
∞ .

58

By the proof of Lemma 3.5, BFV.Relinearize introduces additional noise of at most
1
8
δ2R ∥s∥∞. So, after performing relinearization in step 3 of Algorithm 17 we have a

BFV ciphertext with noise bounded by

30

8
k1k2tδ

3
R ∥s∥

3
∞ +

1

8
δ2R ∥s∥∞ =

30

8
k1k2tδ

3
R ∥s∥

3
∞

(
1 +

1

30k1k2tδR ∥s∥2∞

)

≤ 30

8
k1k2tδ

3
R ∥s∥

3
∞

(
1 +

1

30 · 2 · 16

)
≤ 31

8
k1k2tδ

3
R ∥s∥

3
∞ .

So, a worst case noise bound for a depth-1 multiplication is given by 31
8
k1k2tδ

3
R ∥s∥

3
∞.

Since δR − 2 ≥ 7
8
δR and δR ∥s∥∞ − 2 ≥ 7

8
δR ∥s∥∞, we have

2(31
8
k1k2tδ

3
R ∥s∥

3
∞)

δR ∥s∥∞ − 2
≤

62
8
k1k2tδ

3
R ∥s∥

3
∞

7
8
δR ∥s∥∞

< 9k1k2tδ
2
R ∥s∥

2
∞ .

As δR = n and ∥s∥∞ = 1, we have that 9k1k2tδ
2
R ∥s∥

2
∞ = 9k1k2tn

2 < qi. By
Lemma 2.2, BFV modulus reduction from Qi to Qi−1 gives a new ciphertext with
noise bounded by ρ. Thus, the lemma is proved.

Proof of Lemma 4.2. Suppose we have a collection of BGV ciphertexts, each with
noise bounded by ρ = δR ∥s∥∞. By a similar argument to Lemma 3.3, computing

ctj := Linearcombo(ctj,1, . . . , ctj,k1 , 1, . . . , 1)

results in BGV ciphertexts ctj for j = 1, . . . , 2k2, each with noise bounded by
k1δR ∥s∥∞ + k1. Since δR ≥ 16, we have

k1δR ∥s∥∞ + k1 = (k1 +
k1

δR ∥s∥∞
)δR ∥s∥∞ ≤

17

16
k1δR ∥s∥∞ .

By Lemma 3.7, each Multiply(ct2j−1, ct2j) in step 2 of Algorithm 17 for j = 1, . . . , k2
results in a polynomial triple with noise bounded by

2tδR

((17
16

k1δR ∥s∥∞
)2

+ 1
)
= 2tδR

(289
256

k2
1δ

2
R ∥s∥

2
∞ + 1

)
.

Then,

2tδR

(289
256

k2
1δ

2
R ∥s∥

2
∞ + 1

)
=

289

128
tk2

1δ
3
R ∥s∥

2
∞

(
1 +

256

289k2
1δ

2
R ∥s∥

2
∞

)
≤ 289

128
tk2

1δ
3
R ∥s∥

2
∞

(
1 +

1

289

)
=

290

128
tk2

1δ
3
R ∥s∥

2
∞ .

59

Summing all k2 of these polynomial triples in step 2 of Algorithm 17 results in a
polynomial triple with noise bounded by

290

128
k2
1k2tδ

3
R ∥s∥

3
∞ + k2

Notice,

290

128
k2
1k2tδ

3
R ∥s∥

3
∞ + k2 =

290

128
k2
1k2tδ

3
R ∥s∥

3
∞

(
1 +

128

290k2
1tδ

3
R ∥s∥

3
∞

)

=
290

128
k2
1k2tδ

3
R ∥s∥

3
∞

(
1 +

128

290 · 2 · 163

)
≤ 290

128
k2
1k2tδ

3
R ∥s∥

3
∞

(
1 +

1

18560

)
≤ 13

8
k2
1k2tδ

3
R ∥s∥

3
∞ .

By the proof of Lemma 3.8, BGV.Relinearize introduces additional noise of at most
1
8
δ2R ∥s∥

2
∞. So, after performing relinearization in step 3 of Algorithm 17 we have a

BGV ciphertext with noise bounded by

13

8
k2
1k2tδ

3
R ∥s∥

3
∞ +

1

8
δ2R ∥s∥

2
∞ =

13

8
k2
1k2tδ

3
R ∥s∥

3
∞

(
1 +

1

13k2
1k2tδR ∥s∥

2
∞

)

≤ 13

8
k2
1k2tδ

3
R ∥s∥

3
∞

(
1 +

1

416

)
≤ 14

8
k2
1k2tδ

3
R ∥s∥

3
∞ .

So, a worst case noise bound for a depth-1 multiplication is given by 14
8
k2
1k2tδ

3
R ∥s∥

3
∞.

Since δR − 2 ≥ 7
8
δR and δR ∥s∥∞ − 2 ≥ 7

8
δR ∥s∥∞, we have

2(14
8
k2
1k2tδ

3
R ∥s∥

3
∞)

δR ∥s∥∞ − 2
≤

28
8
k2
1k2tδ

3
R ∥s∥

3
∞

7
8
δR ∥s∥∞

= 4k2
1k2tδ

2
R ∥s∥

2
∞ .

As δR = n and ∥s∥∞ = 1, we have that 4k2
1k2tδ

2
R ∥s∥

2
∞ = 4k2

1k2tn
2 < qi. By Lemma

2.3, BGV modulus reduction from Qi to Qi−1 gives a new ciphertext with noise
bounded by ρ. Thus, the lemma is proved.

Proof of Lemma 4.3. Suppose we have a collection of CKKS ciphertexts, each with
noise bounded by E. Recall that δR ∥s∥∞ = n. By Lemma 3.11, computing

ctj := Linearcombo(ctj,1, . . . , ctj,k1 , 1, . . . , 1)

60

results in CKKS ciphertexts ctj for j = 1, . . . , 2k2, each with noise bounded by k1E.
Let t = 2∆Z + 1, and observe that for each encoding mj of message zj,∥∥mj

∥∥
∞ ≤ ∆

∥∥zj∥∥∞ +
1

2
≤ ∆Z +

1

2
= t/2.

By Lemma 3.12, each Multiply(ct2j−1, ct2j) in Step 2 of Algorithm 17 for j =
1, . . . , k2 results in a polynomial triple with noise bounded by

k1Etn+ k2
1E

2n = k1E(2∆Z + 1)n+ k2
1E

2n.

Summing all k2 of these polynomial triples in Step 2 of Algorithm 17 results in a
polynomial triple with noise bounded by

k1k2E(2∆Z + 1)n+ k2
1k2E

2n

by an equivalent argument to Lemma 3.11 with polynomial triples as the input. By
the proof of Lemma 3.13, CKKS.Relinearize introduces additional noise of at most
1
8
n2. So, after performing relinearization in Step 3 of Algorithm 17 we have a CKKS

ciphertext with noise bounded by

k1k2E(2∆Z + 1)n+ k2
1k2E

2n+
1

8
n2.

So, a worst-case noise bound for a depth-1 multiplication is given by k1k2E(2∆Z +
1)n+ k2

1k2E
2n+ 1

8
n2. Performing a rescaling operation then gives noise bounded by

2k1k2E∆Zn

∆
+

k1k2En

∆
+

k2
1k2E

2n

∆
+

n2

8∆
= 2k1k2nEZ +

k1k2En

∆
+

k2
1k2E

2n

∆
+

1

8
.

Proof of Lemma 4.7. By assumption the input of Algorithm 24 is the RNS repre-
sentation in basis B of some (c0, c1, c2) ∈ R3

n,Qi
satisfying

c0 + c1s+ c2s
2 ≡ DQi

[m0m1]ϕ(x),t + e′ mod (ϕ(x), Qi).

for
∥∥e′∥∥∞ ≤ E. From Step 1, (c̃

(0)
2 , . . . , c̃

(k−1)
2 , c

(0)
2 , . . . , c

(i)
2) is the RNS representation

of c̃2 ∈ Rn,PQi
in basis D satisfying c̃2 = c2+Qie for some e ∈ Rn with ∥c̃2∥∞ ≤ Qi(i+

1)/2 by Lemma 4.4. After Step 3, note (â(j), b̂(j))0≤j≤i+k is the RNS representation of

some (â, b̂) ∈ R2
n,PQi

satisfying

b̂+ âs ≡ c̃2k̃1 + c̃2k̃0s mod (ϕ(x), PQi)

≡ c̃2(−k̃0s+ Ps2 + ẽ) + c̃2k̃0s mod (ϕ(x), PQi)

≡ (c2 +Qie)(−k̃0s+ Ps2 + ẽ) + (c2 +Qie)k̃0s mod (ϕ(x), PQi)

≡ (c2 +Qie)(Ps2 + ẽ) mod (ϕ(x), PQi)

≡ c2Ps2 + c2ẽ+ PQies
2 +Qieẽ mod (ϕ(x), PQi)

≡ c2Ps2 + c2ẽ+Qieẽ mod (ϕ(x), PQi)

≡ c2Ps2 + ê mod (ϕ(x), PQi)

61

for ê = c2ẽ + Qieẽ = c̃2ẽ. Note that as ẽ ← χρ, we have ∥ê∥∞ = ∥c̃2ẽ∥∞ ≤ Qi(i +
1)ρ2/2. Furthermore, there exists ω ∈ Rn such that

b̂+ âs ≡ c2Ps2 + ê+ ωPQi mod ϕ(x).

By Lemma 4.5, Step 4 returns the RNS representation of some ĉ0 ∈ Rn,Qi
and ĉ1 ∈

Rn,Qi
satisfying

ĉ0 =
b̂

P
+ ê0,

ĉ1 =
â

P
+ ê1

with ∥ê0∥∞ ≤ k/2 and ∥ê1∥∞ ≤ k/2. Finally, Step 6 returns the RNS representation
of (a, b) ∈ R2

n,Qi
which satisfies

b+ as ≡ c0 + ĉ0 + (c1 + ĉ1)s mod (ϕ(x), Qi)

≡ c0 + c1s+ P−1(b̂+ âs) + ê0 + ê1s mod (ϕ(x), Qi)

≡ c0 + c1s+ P−1(c2Ps2 + ê+ ωPQi) + ê0 + ê1s mod (ϕ(x), Qi)

≡ c0 + c1s+ c2s
2 + P−1ê+ ωQi + ê0 + ê1s mod (ϕ(x), Qi)

≡ DQi
[m0m1]ϕ(x),t + e′ + P−1ê+ ê0 + ê1s mod (ϕ(x), Qi)

≡ DQi
[m0m1]ϕ(x),t + e∗ mod (ϕ(x), Qi)

for e∗ = e′+P−1ê+ ê0+ ê1s. We now turn to the noise term e∗. If P ≥ 6Qi, δR ≥ 16,
and k > i, then ∥∥e∗∥∥∞ ≤ ∥∥e′∥∥∞ + P−1 ∥ê∥∞ +

∥∥∥d̂0s∥∥∥
∞
+
∥∥∥d̂1∥∥∥

∞

≤
∥∥e′∥∥∞ +

Qi(i+ 1)

2P
δ2R ∥s∥∞ +

k

2
+

kδR ∥s∥∞
2

≤
∥∥e′∥∥∞ + δ2Rk(

1

12
+

1

δ2R
+

1

2δR
)

≤ E +
1

8
δ2Rk.

Proof of Lemma 4.8. By assumption the input of Algorithm 24 is the RNS repre-
sentation in basis B of some (c0, c1, c2) ∈ R3

n,Qi
satisfying

c0 + c1s+ c2s
2 ≡ [m0m1]ϕ(x),t + te′ mod (ϕ(x), Qi).

for
∥∥e′∥∥∞ ≤ E. From Step 1, (c̃

(0)
2 , . . . , c̃

(k−1)
2 , c

(0)
2 , . . . , c

(i)
2) is the RNS representation

of c̃2 ∈ Rn,PQi
in basis D satisfying c̃2 = c2+Qie for some e ∈ Rn with ∥c̃2∥∞ ≤ Qi(i+

62

1)/2 by Lemma 4.4. After Step 3, note (â(j), b̂(j))0≤j≤i+k is the RNS representation of

some (â, b̂) ∈ R2
n,PQi

satisfying

b̂+ âs ≡ c̃2k̃1 + c̃2k̃0s mod (ϕ(x), PQi)

≡ c̃2(−k̃0s+ Ps2 + tẽ) + c̃2k̃0s mod (ϕ(x), PQi)

≡ (c2 +Qie)(−k̃0s+ Ps2 + tẽ) + (c2 +Qie)k̃0s mod (ϕ(x), PQi)

≡ (c2 +Qie)(Ps2 + tẽ) mod (ϕ(x), PQi)

≡ c2Ps2 + tc2ẽ+ PQies
2 + tQieẽ mod (ϕ(x), PQi)

≡ c2Ps2 + t(c2ẽ+Qieẽ) mod (ϕ(x), PQi)

≡ c2Ps2 + tê mod (ϕ(x), PQi)

for ê = c2ẽ + Qieẽ = c̃2ẽ. Note that as ẽ ← χρ, we have ∥ê∥∞ = ∥c̃2ẽ∥∞ ≤ Qi(i +
1)ρ2/2. Furthermore, there exists ω ∈ Rn such that

b̂+ âs ≡ c2Ps2 + tê+ ωPQi mod ϕ(x).

By Lemma 4.6, Step 4 returns the RNS representation of some ĉ0 ∈ Rn,Qi
and ĉ1 ∈

Rn,Qi
satisfying

ĉ0 =
b̂

P
+ t · ê0,

ĉ1 =
â

P
+ t · ê1

with ∥ê0∥∞ ≤ k/2 and ∥ê1∥∞ ≤ k/2. Finally, Step 6 returns the RNS representation
of (a, b) ∈ R2

n,Qi
which satisfies

b+ as ≡ c0 + ĉ0 + (c1 + ĉ1)s mod (ϕ(x), Qi)

≡ c0 + c1s+ P−1(b̂+ âs) + tê0 + tê1s mod (ϕ(x), Qi)

≡ c0 + c1s+ P−1(c2Ps2 + tê+ ωPQi) + tê0 + tê1s mod (ϕ(x), Qi)

≡ c0 + c1s+ c2s
2 + P−1tê+ ωQi + tê0 + tê1s mod (ϕ(x), Qi)

≡ [m0m1]ϕ(x),t + te′ + P−1tê+ tê0 + tê1s mod (ϕ(x), Qi)

≡ [m0m1]ϕ(x),t + te∗ mod (ϕ(x), Qi)

for e∗ = e′ + P−1ê + ê0 + ê1s. The bound on e∗ follows identically as in the proof of
Lemma 4.7.

Proof of Lemma 4.9. By assumption the input of Algorithm 24 is the RNS repre-
sentation in basis B of some (c0, c1, c2) ∈ R3

n,Qi
satisfying

c0 + c1s+ c2s
2 ≡ m0m1 + e′ mod (ϕ(x), Qi).

for
∥∥e′∥∥∞ ≤ E. By an identical argument to the proof of Lemma 4.7, the output of

Algorithm 24 is the RNS representation in basis B of (a, b) ∈ Rn,Qi
satisfying

b+ as ≡ m0m1 + e∗

with ∥e∗∥∞ ≤ E + 1
8
δ2Rk.

63

	Introduction
	Notations and Preliminaries
	Notations
	Noise Distributions and Learning With Errors Problems
	Modulus Reductions

	Homomorphic Encryption Schemes and Noise Bounds
	Modified BFV Scheme
	Modified BGV Scheme
	Modified CKKS Scheme
	Comparison to Other Noise Bound Analyses

	Leveled Schemes and RNS Variants
	Budgeted Operations at Each Level
	Operations in the Residue Number System

	Lattices, Security, and Attacks
	Lattices and Lattice Problems
	LWE Attack Strategies

	Conclusions

