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Abstract. The Impossible Boomerang Attack (IBA) has shown signif-
icant power in evaluating the security of block ciphers, such as AES.
However, current studies still lack foundational theory, user guild and u-
niversal method for constructing IBDs. This paper addresses these gaps
through comprehensive research. Theoretically, we establish a new frame-
work for constructing a series of IBDs by differential propagation, state
propagation, and generalized boomerang tables. We rigorously prove
their inclusion relations, resulting in a complete theory and hierarchi-
cal apply strategy for both single-key and related-key settings. We fur-
ther analyze IBD constructions in two types of related-key settings: two-
related-keys with arbitrary schedules and four-related-keys with linear
schedules, structurally in a unified way. Technically, we develop a schedul-
ing algorithm and a general SAT-based method to search for IBDs across
various block cipher designs, including SPN, Feistel, and ARX. Addi-
tionally, we propose several strategies to enhance the search process. As
applications, we derive (RK-)IBDs for 10 block ciphers, almost for the
first time. Compared to impossible differentials, our IBDs are at least as
effective, such as DES and PRESENT. Notably, we achieve 1 more round on
PRINTcipher48 in single-key setting; 2 more rounds on AES-128, and 1 or
2 more rounds on SPECK variants in two-related-keys settings; 1, 4, 2more
rounds on GIFT-64, CHAM-64/128 and CHAM-128/256 in four-related-keys
settings. We also obtain full-round RK-IBDs on GOST. Compared to cur-
rent IBDs, we achieve 1, 1 more rounds on SKINNY-64/192 and SKINNYee.
Furthermore, as an applied case of derived IBDs, we present a 31-round
IBA on SKINNYee, which is the first 31-round attack on SKINNYee and
the best result to date.

Keywords: Impossible Boomerang · Single-key · Related-key · Block
cipher · SPN · Feistel · ARX.

1 Introduction

The impossible boomerang attack (IBA) is a combination of impossible differ-
ential attack [1,2] and boomerang attack [3]. The core of IBA lies in the con-
struction of an Impossible Boomerang Distinguisher (IBD). Once an optimized

xchao_h@163.com
jiaolin_jl@126.com


2 Authors Suppressed Due to Excessive Length

IBD is established, it is feasible to extend the analysis forward and backward
by a specified number of rounds for key recovery, thereby enabling an effective
IBA. Since its proposal, the IBA has played a significant role in analyzing block
ciphers, particularly on AES. However, compared to its two predecessors, subse-
quent advancements in the IBA have been limited. To date, there are mainly four
key studies on IBD constructions, which all used a miss-in-the-middle approach.

The first two studies constructed IBDs by treating a block cipher E as two
sub-ciphers E0◦E1. They used two forward differentials for E0 and two backward
differentials for E1, all with probability 1, to create a contradiction by ensuring
a non-zero XOR of the four output differences. In J. Lu’s initial study [4,5], this
method has successfully broken 6-round AES-128, 7-round AES-192 and 7-round
AES-256 in single-key setting, as well as 8-round AES-192 and 9-round AES-256
in related-key setting, using a 4-round IBD. However, these results were derived
manually. To automate the contradiction search, Choy and Yap introduced UB-
method [6], which transforms differential propagation into matrix manipulation
based on defined criteria. This method was applied to some generalized Feistel
ciphers, but only considered the general structure, ignoring component details
like S-boxes, linear layers, and key schedules. Additionally, such division of block
ciphers is limited because it overlooks the dependence between the two sub-
ciphers, as noted by Murphy [7].

The two subsequent studies constructed IBDs based on current research of
BDs. Referring to the sandwich attack [8,9], they divides the block cipher E into
three parts E1 ◦ Em ◦ E0, where differentials with probability 1 for E0 and E1

are still required as well as the difference transition through Em with probability
0. The contradiction within Em is derived from boomerang switch constraints
based on the Boomerang Connectivity/Difference Tables (BCT or BDT) [10,11].
The ZWT -method [12] constructed Related-Key IBD (RK-IBD) using BCT or
Double Boomerang Connectivity Table (DBCT) [13,14] for SPN ciphers, which
is modeled by a tool based on MIQCP. It has been applied to three tweakable
block ciphers: Deoxys-BC, Joltik-BC and SKINNY. The BCL-method [15] con-
structed RK-IBDs for Feistel ciphers with quadratic round functions using Feistel
Boomerang Connectivity Table (FBCT) [16] searched by an SMT solver, as well
as (RK-)IBDs for SPN ciphers based on BCT or DBCT. As an application, it
presented a 23-round IBA on Simon-32/64 based on a 7-round RK-IBD and a
29-round IBA on SKINNYee based on an actually 22-round RK-IBD5. However,
constructing and modeling DBCT becomes challenging if the linear layer of the
block cipher is not byte- or nibble-based and sparse. Besides, ZWT -method and
BCL-method for S-box based block ciphers detect the positions of S-boxes with
known and input-output differences with some flags and their propagation rule,
then check for contradictions at these positions according to BCT, rather than
adding the information of BCT to the search process. Therefore, even though
they use BCT or DBCT, they may still overlook some details, which will affect
the construction of distinguishers covering more rounds.

5 The original result in [15] presented a 21-round IBD, while it can be extended by
one additional round without accounting for the first SC operation.
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Since the security of a block cipher against IBA can be evaluated by its
IBDs, constructing IBDs is crucial. In light of current research, the solutions to
the following three fundamental problems are still missing.

Question 1. Are existing construction methods for IBDs equivalent to the es-
sential definition? Within the same difference search space, is there a better
(RK-)IBD?

We observe that, existing methods impose certain limitations on the form and
scope of contradictions. Firstly, they divide the stages of block ciphers, thereby
restricting the positions of contradictions. If the contradictions span a signifi-
cant number of continuous rounds, these methods appear to be insufficient for
achieving such constructions. For example, current methods cannot reveal the
contradiction that exists across six consecutive rounds of S-boxes for SKINNY-
ee, which further improve the RK-IBD base on one-round contradiction in [16].
Secondly, they all require differentials with probability 1 for E0 and E1. For
most block ciphers, such differentials are impractical for covering many rounds,
limiting the development of longer IBDs. Overall, there is a lack of a unified
construction method that can both accurately capture the essential definition of
IBDs and be effectively transformed into a search model. Additionally, founda-
tional theory is missing to evaluate relationships between different construction
methods, hindering definitive assessments of block ciphers’ resistance to IBA.

Question 2. Can existing construction methods of IBDs fully exploit the details
of block cipher and generalize to all current structures?

Firstly, we examine the key schedule. In single-key setting, the key schedule can-
not be exploited because existing methods construct IBDs based on differential
propagation, which inherently counteracts the impact of key schedule, making
it ineffective. In related-key setting, these methods can only construct RK-IBDs
for block ciphers with linear key schedules under specific difference pattern of
(µ, µ, ν, ν). Additionally, there is no discussion on automatic search methods of
IBDs in block ciphers with nonlinear key schedules, despite the potential for
further exploration. Secondly, we examine the details of cipher components. The
UB-method fails to account for the specifics of S-boxes and linear layers. The
ZWT -method and BCL-method are limited to SPN ciphers with byte/nibble-
based sparse matrices and Feistel ciphers with quadratic round functions. They
do not apply to SPN ciphers with MDS matrices (such as AES) and bit permu-
tations (such as PRESENT), or Feistel ciphers with non-quadratic round functions
(such as DES). Furthermore, ARX ciphers also fall outside their scope of appli-
cability. In summary, there is a lack of a universal method for constructing IBDs
that can effectively generate contradictions by fully utilizing cipher details.

Question 3. For specific block ciphers with distinct characteristics, how can
we select the IBD construction method to effectively obtain IBDs? How can we
optimize the application of each IBD search method to achieve the best evaluation
results given the current computational resources?
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{
T0-IBDs c.b.o differential propagation

regarding a bijective S-box as only a permutation

}
∪

{T1-IBDs | c.b.o differential propagation}
∪


TSP -IBDs
TFP -IBDs
TAP -IBDs

c.b.o a mixed use of generalized tables including UDDT, LDDT
and GBCT, GUBCT, GLBCT, GEBCT for SPN-like ciphers
or GFBCT, GFUBCT, GFLBCT, GEBCT for Feistel-like ciphers
by any pre-defined propagation rule P



{T2-IBDs | c.b.o state propagation with any round keys}
∪

{TC -IBDs | c.b.o GEBCT merely for both SPN, Feistel and ARX ciphers}
∪

{IBDs | c.b.o the essential definition}
‖

{T3-IBDs | c.b.o state propagation considering the key schedule}
∪

Fig. 1: The inclusion relations between the newly-defined IBDs
†Here c.b.o is the abbreviation of “constructed based on”. T2-IBDs apply only to

single-key setting. T0-IBDs apply only to bijective S-boxes.

Relying solely on differential-based search methods for IBDs is insufficient, while
directly forming search models based on various Boomerang tables (BT) intro-
duces considerable complication. Currently, there is no hierarchical apply strat-
egy for applying different IBD construction methods to specific block ciphers
under varying evaluation criteria.

Our contribution. Motivated by the strong threat posed by IBA, as well as
the lack of solutions to these fundamental questions, we initiate comprehensive
research on constructing IBDs.

Firstly, we establish a complete theory for constructing IBDs (introduced in
Section 3). Drawing upon current analysis methods for impossible differential
attacks and boomerang attacks, we propose a series of construction methods
of (RK-)IBDs, encompassing differential propagation, state propagation, and
generalized BT perspectives. Specifically, we first introduce an IBD construction
method based on state propagation that fully exploits design details of various
ciphers like SPN, Feistel, and ARX without assumptions and cipher divisions.
We generalize all BTs into IBD construction framework. Furthermore, we prove
the inclusion relationships among these IBD constructions, leading to a tight
conclusion that aligns with the essential definition of IBD, as illustrated in Fig 1.
Additionally, for Feistel-like and SPN-like ciphers with full-(branch)-state round-
key-additions in single-key setting, GEBCT-based IBDs are equivalent to state-
propagation-based IBDs under any-key-assumption.

Based on the theoretical conclusion, we propose a hierarchical apply strategy
for IBD constructions when choosing the appropriate method.

– Use T0-IBD for a rough estimation (lower bound) and T3-IBD for a precise
evaluation (upper bound) of the number of rounds of IBDs.

– If solving time permits, prioritize constructing T3-IBDs. When encounter-
ing efficiency bottlenecks of solvers for searching for T3-IBDs, use TC-IBDs,
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TP -IBDs, T2-IBDs, T1-IBDs, T0-IBDs and hybrid techniques as effective sup-
plements for round estimation of IBDs.

– To select an appropriate search type of IBD from the diverse set of IBD
construction methods with varying precisions, we develop a scheduling al-
gorithm that leverages multi-process technology in computer engineering to
achieve an optimal balance between search capability and accuracy.

Secondly, we extend the analysis of IBD in related-key settings (introduced in
Section 4). In addition to current RK-IBDs, we focus on constructions with two
types of key schedules in a unified way, defined as RT ij -IBDs for j = 0, 1, 3, P, C
in i-related-keys setting for i = 2, 4 as follows:

- Two-related-keys setting: RK-IBDs under the key difference of (κ, κ, 0, 0) (ap-
plicable to block cipher with any key schedule, especially the nonlinear one).

- Four-related-keys setting: RK-IBDs under the key difference of (κ0, κ1, κ2, κ3)
(applicable to block cipher with linear key schedules, generalizing current
specific key difference pattern to a broader context).

By carefully offsetting round key differences and state differences in initial/final
rounds of RK-IBD, we derive the required key and input/output difference pat-
terns for central rounds. This enables efficient searching for potential central
RK-IBD and structurally extend it by probability-1 related-key differentials.
For block ciphers with non-linear key schedules, the default of lower trail key d-
ifferences in two-related-keys setting allow extension at the beginning of the RK-
IBD; whereas for block ciphers with linear key schedules, the definitive round
key differences enable extension at both ends.

Thirdly, we develop a general SAT-based automatic method based on our
newly established theoretical framework (introduced in Section 5), to search for
Tj-IBDs for j = 0, 1, 2, 3, P, C and RT ij -IBDs for i = 2, 4 and j = 0, 1, 3, P, C.
Aligned with our scheduling algorithm according to the hierarchical apply s-
trategy, it forms a universal model for various block cipher designs. This model
incorporates IBD construction methods including differential propagation, state
propagation, and generalized BT. Based on this model, we can obtain the optimal
IBD result for the currently executable search in the shortest time. Meanwhile,
the bottleneck issue in directly constructing models for generalized BTs with
a large number of variables has been successfully addressed. Additionally, we
propose several search and verify strategies. Especially, we remove the current
constraint of probability-1 differentials for E0 and E1.

Under our complete construct theory, hierarchical apply strategy and general
search method, we have addressed the fundamental questions of IBD construc-
tion. We apply this theoretical framework to various block ciphers (introduced
in Section 6), including SPN, Feistel network and ARX designs. The selections
cover the common classifications of block ciphers and serve to verify the effec-
tiveness of our approach. In single-key setting, we analyze AES [17] (SPN with
large S-boxes and an MDS matrix), DES [23] (Feistel with non-bijective S-boxes,
no limit on round function), PRESENT-80 [24] (lightweight with bit permutation),
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Table 1: A Summary of the results for IBDs.
Single-key setting

Cipher Type Round Number Time(hours) Method Note

AES ID 4 many - [17]
ID 5 none - [18]
IBD 4 less - Manual[4]

1 ABT T0-IBD 4 61440 149.04 Section 6.1
1 ABT T0-IBD 5 none 203.44 Section 6.1

DES 1 Ab ID 7 394 0.57 STa
1 Ab ID 8 none 0.91 STa

1 Ab T1-IBD 7 1904 327.64 Section 6.1 1-st IBD
1 Ab T1-IBD 8 none 372.38 Section 6.1

PRESENT-80 ID 6 many - [19]
1 AN ID 7 none - [20]

1 AN T2-IBD 6 58 7.13 Section 6.1 1-st IBD
1 AN T3-IBD 7 none 24.52 Section 6.1

PRINTcipher48 1 Ab ID 4 many - [20]
1 Ab ID 5 none - [20]

1 Ab T3-IBD 5 2 14.75 Section 6.1 1-st IBD
1-round>ID1 Ab T3-IBD 6 none 40.07 Section 6.1

Two-related-keys setting

AES-128 1 ABT RK-ID 3 64 0.39 STa
1 ABT RK-ID 4 none 0.52 STa

1 ABT RT 2
0 -IBD 5 768 14.44 Section 6.2 1-st IBD

2-round>ID1 ABT RT 2
0 -IBD 6 none 18.68 Section 6.2

SPECK-2w/4w RK-ID 7 many - [21] w=16,24,32,64RK-ID 8 none - [21]
SPECK-2w/3w RK-ID 6 many - [21] w=24,32,48,64RK-ID 7 none - [21]
SPECK-32/64 RT 2

3 -IBD 8 377 0.18 Section 6.2
RT 2

3 -IBD 9 none 0.97 Section 6.2
SPECK-48/72 RT 2

3 -IBD 7 6 0.06 Section 6.2
RT 2

3 -IBD 8 none 0.26 Section 6.2
SPECK-48/96 RT 2

3 -IBD 8 6 0.09 Section 6.2
RT 2

3 -IBD 9 none 0.60 Section 6.2
SPECK-64/96 RT 2

3 -IBD 8 4 0.29 Section 6.2 1-st IBD
1-/2-round>IDRT 2

3 -IBD 9 none 0.60 Section 6.2
SPECK-64/128 RT 2

3 -IBD 9 4 0.28 Section 6.2
RT 2

3 -IBD 10 none 0.99 Section 6.2
SPECK-96/144 RT 2

3 -IBD 8 4 0.22 Section 6.2
RT 2

3 -IBD 9 none 0.65 Section 6.2
SPECK-128/192 RT 2

3 -IBD 8 4 0.33 Section 6.2
RT 2

3 -IBD 9 none 1.18 Section 6.2
SPECK-128/256 RT 2

3 -IBD 9 4 0.41 Section 6.2
RT 2

3 -IBD 10 none 1.78 Section 6.2

Four-related-keys setting

SKINNY-64/192 RK-ID 17 1 - [22]
RK-IBD 18 1 - ZWT [12]

RT 4
3 -IBD 19 3 136.12 Section 6.2 2-round>ID

1-round>IBDRT 4
3 -IBD 20 none 267.21 Section 6.2

SKINNYee RK-IBD 22 103 - BCL[15]
RT 4

3 -IBD 23 5 209.78 Section 6.2 1-round>RK-IBD
RT 4

3 -IBD 24 none 488.89 Section 6.2

GIFT-64 1 AN RK-ID 12 48 - [21]
1 AN RK-ID 13-16 none - [21]

1 AN RT 4
3 -IBD 13 48 0.51 Section 6.2 1-st IBD

1-round>ID1 AN RT 4
3 -IBD 14 none 1.91 Section 6.2

continued on next page
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continued from previous page

Four-related-keys setting

Cipher Type Round Number Time(hours) Method Note

CHAM-64/128 RK-ID 26 many - [21]
RK-ID 27 none - [21]

RT 4
3 -IBD 30 3 0.15 Section 6.2 1-st IBD

4-round>IDRT 4
3 -IBD 31-32 none 0.22 Section 6.2

CHAM-128/256 RK-ID 26 many - [21]
RK-ID 27 none - [21]

RT 4
3 -IBD 28 4 0.48 Section 6.2 1-st IBD

2-round>IDRT 4
3 -IBD 29-30 none 0.63 Section 6.2

GOST-FB/PS RT 4
3 -IBD full-round 2 0.08 Section 6.2 1-st IBD

†The method marked with a represents our implementation rather than reference. ABT: active
byte truncated, Ab: active bit, AN: active nibble. All (RK-)IBDs are confined to a search space by
meticulous selection. 1-st IBD represents it is the first IBD result of this cipher. r-round>ID (resp.
IBD) represents our (RK-)IBDs cover r round more than current (RK-)IDs (resp. (RK-)IBDs).

and PRINTcipher48 [25] (SPN with key-dependent permutation). In two-related-
keys setting, we analyze AES-128, and SPECK [26] (ARX). In four-related-keys
setting, we analyze DES, SKINNY-64/192 [27] and SKINNYee [28] (tweakable block
ciphers), GIFT [29] (lightweight with bit permutation), CHAM [30] (ARX), and
GOST [31] (Feistel). The results are presented in Table 1. To illustrate the ef-
ficacy of the obtained IBDs, we utilize SKINNYee as a case study and provide
its corresponding 31-round IBA, which is the first 31-round attack on SKINNYee
and the best result to date. The findings indicate that our method outperforms
the current methods for IBDs. Moreover, specific results suggest that IBDs offer
an advantage over IDs. Given the importance of ID attacks as a fundamental
analysis technique, it is crucial to seriously consider and employ IBA.

2 Preliminaries

The primary notations used hereafter are detailed as follows.

- Let k denote the master key and rki the i-th round key, where rki = KSi(k)
is generated by the key schedule KS.

- Let E(r)
k (x) denote an r-round block cipher that encrypts input x ∈ Fn2 with

master key k ∈ Fm2 to produce output y = E
(r)
k (x) ∈ Fn2 .

- Let Ei,rki denote the i-th round of E(r)
k with round key rki. Then E

(r)
k (x) =

Er−1,rkr−1
◦ · · · ◦E0,rk0(x). In clear contexts, E(r)

k is abbreviated as E or Ek,
and Ei,rki is abbreviated as Ei.

- Let S, SL, LL, and AK denote an S-box, a parallel S-boxes operation, a
linear operation and a round-key-XOR operation, respectively.

We review the basic definitions of differential analysis. For a function f : Fm2 ×
Fn2 → Fn2 , the probability that input difference α propagates to output dif-
ference β under key difference κ is given by Pf,κ(α, β) = #{(k, x) ∈ Fm2 ×
Fn2 | f(k, x) ⊕ f(k ⊕ κ, x ⊕ α) = β}/2n+m. If Pf,κ(α, β) 6= 0, it is denoted
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Fig. 2: The illustration of RK-IBD
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Fig. 3: Generalized BTs

as α f,κ→ β. Define DPf,κ(α) = {β|α f,κ→ β}. Particularly, in single-key setting,

Pf (α, β) = # {x ∈ Fn2 | f(x)⊕f(x⊕α) = β} /2n, DPf (α) = {β|α f→ β}. Addi-
tionally, for a composite function f : Fm2 ×Fn2 → Fn2 , where f = fr−1◦· · ·◦f1◦f0,
an r-round related-key differential characteristic is defined as a series of dif-
ferences Ω = (α0, . . . , αr) under the key difference Γ = (κ0, . . . , κr), where
αi

fi,κi→ αi+1 for 0 ≤ i ≤ r − 1, and the probability of Ω is given by Pf,Γ (Ω) =∏r−1
i=0 Pfi,κi(αi, αi+1). The probability of differential defined by (α0, αr) is given

by Pf,Γ (α0, αr) =
∑
α1,...,αr−1

Pf,Γ (Ω). In single-key setting, Γ is omit. Given
two differences γ ∈ Fn2 , θ ∈ Fm2 , the DDT for an n×m-bit function is defined as
DDT(γ, θ) = # {x ∈ Fn2 | f(x)⊕ f(x⊕ γ) = θ} .

Next, we review the definitions of BTs.

Definition 1 ([10]). Given differences γ, θ, δ ∈ Fn2 , the BCT for an n-bit S-box
is defined as BCT(γ, δ) = #

{
x ∈ Fn2 | S−1(S(x)⊕ δ)⊕ S−1(S(x⊕ γ)⊕ δ) = γ

}
.

Let E = E1 ◦ Em ◦ E0 be an r-round block cipher with r = r0 + r1 + 1, where
E0, Em and E1 denote the initial r0 rounds, middle 1 round and final r1 rounds

of E respectively. Suppose α E0

→ γ and β
(E1)−1

→ δ, then

Pr(E−1(E(x)⊕ β)⊕ E−1(E(x⊕ α)⊕ β) = α) = (PE0(α, γ))2(PE1(δ, β))2Pm,

where Pm =
∏t
i=0 (BCT(γi, δi)/2

n) for SPN E, assuming that there are t n-bit
S-boxes in Em with the input difference γi and output difference δi. To apply
boomerang switch in multiple rounds, more BTs have been proposed. Especially,
a method for establishing BDs using mixed tables was proposed in [32].

Definition 2 ([11,13,14,32] ). Given four differences γ, θ, λ, δ ∈ Fn2 , the UBC-
T, LBCT and EBCT for an n-bit S-box are defined as

UBCT(γ, θ, δ) = #

{
x ∈ Fn2

S(x)⊕ S(x⊕ γ) = θ,
S−1(S(x)⊕ δ)⊕ S−1(S(x⊕ γ)⊕ δ) = γ

}
,

LBCT(γ, λ, δ) = #

{
x ∈ Fn2

S(x)⊕ S(x⊕ λ) = δ,
S−1(S(x)⊕ δ)⊕ S−1(S(x⊕ γ)⊕ δ) = γ

}
,

EBCT(γ, θ, λ, δ) = #

{
x ∈ Fn2

S(x)⊕ S(x⊕ γ) = θ, S(x)⊕ S(x⊕ λ) = δ,
S−1(S(x)⊕ δ)⊕ S−1(S(x⊕ γ)⊕ δ) = γ

}
,
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and the DBCT is defined as DBCT(γ, δ) =
∑
θ,λ UBCT (γ, θ, λ) ·LBCT (θ, λ, δ).

In addition to the BCTs for SPN ciphers, BTs are also defined for Feistel and
ARX ciphers with corresponding properties. We present these tables in Ap-
pendix A. The essential definition of (RK-)IBD is defined as follows, as shown
in Fig 2.

Definition 3 ([4]). Given a block cipher E : Fn2 × Fm2 → Fn2 with four related
master keys ki ∈ Fm2 , if for four differences α, α′, β, β′, any pair of plaintexts
(x1, x2) cannot satisfy Ek1(x1)⊕ Ek2(x2) = β,Ek0(x1 ⊕ α)⊕ Ek3(x2 ⊕ α′) = β′

simultaneously, then (α, α′, β, β′) is called an RK-IBD for E. Particularly, if
k = k0 = k1 = k2 = k3, (α, α′, β, β′) is called an IBD of E in single-key setting,
denoted by (α, α′) 9 (β, β′).

Given an IBD or RK-IBD, an attacker can extend the number of rounds before
and after the distinguisher to launch a key recovery attack, known as IBA.

3 New Construct Theory for IBDs in Single-Key Setting

In this section, we develop a new theory for constructing IBDs by from the
aspects of differential and state propagation, as well as generalized BTs for SP-
N, Feistel and ARX ciphers. We also prove the interrelationships among these
construction methods. Proofs of theorems and propositions are provided in Ap-
pendix B.

3.1 Constructing IBDs from the aspect of differential propagation

We present two IBD-definitions based on differential propagation. Firstly, we
present two boomerang trails based on DPf (α) and its relaxed variant.

Definition 4. Given an r-round block cipher E = E1 ◦ E0, for two input dif-
ferences α, α′ and two output differences β, β′,

– if there exist γ ∈ DPE0(α), γ′ ∈ DPE0(α′), δ ∈ DP(E1)−1(β), and δ′ ∈
DP(E1)−1( β′), such that γ ⊕ γ′ ⊕ δ ⊕ δ′ = 0, then

(α, α′)→ · · · → (γ, γ′)(δ, δ′)︸ ︷︷ ︸
γ⊕γ′⊕δ⊕δ′=0

→ · · · → (β, β′) (1)

is called an r-round T0 boomerang trail. Here, DPf (α) is a relaxed variant
of DPf (α) by considering all details of operations of f except S-boxes.

– if there exist γ ∈ DPE0(α), γ′ ∈ DPE0(α′), δ ∈ DP(E1)−1(β), and δ′ ∈
DP(E1)−1( β′), such that γ⊕γ′⊕δ⊕δ′ = 0, then Trail 1 is called an r-round
T1 boomerang trail.

Accordingly, we present the following two IBD-construction methods: T0-IBD
and T1-IBD. T0-IBD is newly proposed, while T1-IBD generalizes the method
from [4]. We also prove their inclusion relationship.
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Construction 1 (T0-IBD). Given an r-round block cipher E, for two input
differences α, α′ and two output differences β, β′, if no r-round T0 boomerang
trail exists, then (α, α′, β, β′) is an IBD, called an r-round T0-IBD.

Construction 2 (T1-IBD). Given an r-round block cipher E, for two input
differences α, α′ and two output differences β, β′, if no r-round T1 boomerang
trail exists, then (α, α′, β, β′) is an IBD, called an r-round T1-IBD.

Theorem 1. An r-round T0-IBD (α, α′, β, β′) is an r-round T1-IBD.

T0-IBD is suitable for block ciphers with bijective S-boxes, treating them as per-
mutations. T0-IBD takes the advantage of efficiently searching and assessing a
lower bound on the number of rounds of IBDs. T1-IBD offers broader applica-
bility, within which the differential propagation rule of each component can be
characterized. The examples of T0-IBD and T1-IBD are provided in Section 6.1,
e.g. the applications to AES and DES respectively.

3.2 Constructing IBDs from the aspect of state propagation

Inspired by the concept proposed in [20], which uses the propagation of two states
to construct IDs, we first extend this idea to construct IBDs by the propagation
of four states. This method adapts to any block cipher and considers all details of
components, as well as independent keys and key relations in single-key setting.

Definition 5. Let E = Er−1,rkr−1
◦ · · · ◦E0,rk0 be an r-round block cipher with

l-bit round keys. Given four differences α, α′, β, β′, let I = {(x0, x1, x2, x3) |
x0⊕x1 = α, x2⊕x3 = α′} and O = {(y0, y1, y2, y3) | y1⊕y2 = β, y0⊕y3 = β′}. If
there exist (x00, x01, x02, x03) ∈ I, (xr0, xr1, xr2, xr3) ∈ O and (rk0, · · · , rkr−1) ∈ (Fl2)r,
such that xi+1

j = Ei,rki(x
i
j) for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ 4, then (x00, x

0
1, x

0
2, x

0
3) →

· · · → (xr0, x
r
1, x

r
2, x

r
3) is called an r-round T2 boomerang trail.

Definition 6. Let E = Er−1,KSr−1(k) ◦ · · · ◦E0,KS0(k) be an r-round block cipher
with the key schedule KS. Given four differences α, α′, β, β′, let I = {(x0, x1,
x2, x3) | x0 ⊕ x1 = α, x2 ⊕ x3 = α′} and O = {(y0, y1, y2, y3) | y1 ⊕ y2 =
β, y0 ⊕ y3 = β′}. If there exist (x00, x01, x02, x03) ∈ I, (xr0, xr1, xr2, xr3) ∈ O and an
master key k such that xi+1

j = Ei,KSi(k)(x
i
j) for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ 4, then

(x00, x
0
1, x

0
2, x

0
3)→ · · · → (xr0, x

r
1, x

r
2, x

r
3) is called an r-round T3 boomerang trail.

These definitions enable us to assess the impact of round keys on IBD construc-
tion for the first time.

Construction 3 (T2-IBD). Given an r-round block cipher E, for two input
differences α, α′ and two output differences β, β′, if no r-round T2 boomerang
trail exists, then (α, α′, β, β′) is an IBD, called an r-round T2-IBD.

Construction 4 (T3-IBD). Given an r-round block cipher E, for two input
differences α, α′ and two output differences β, β′, if no r-round T3 boomerang
trail exists, then (α, α′, β, β′) is an IBD, called an r-round T3-IBD.
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The inclusion relationships between T2-IBD and T3-IBD, as well as between T1-
IBD and T2-IBD, are directly derived from their definitions. The examples of
T2-IBD and T3-IBD are provided in Section 6.1, e.g. the applications to PRESENT
and PRINTcipher respectively. However, the definitions of T1-IBD and T2-IBD
are not equivalent; for example, the T2-IBD of PRESENT presented in Section 6.1
is not a T1-IBD.

Theorem 2. An r-round T2-IBD (α, α′, β, β′) is an r-round T3-IBD. An r-
round T1-IBD (α, α′, β, β′) is an r-round T2-IBD.

Next, we prove that Construction 4 is the tightest method for constructing IBDs.

Theorem 3. T3-IBD is equivalent to the essential definition of IBDs given
in Definition 3.

3.3 Constructing IBDs from the aspect of generalized BTs

BTs are extensively utilized in BD constructions for SPN and Feistel ciphers,
with limited application in ARX ciphers. Theoretically, it is logical to extend
BD to IBD and construct IBDs based on generalized BTs. In this section, we
discuss constructing IBDs based on generalized BTs for SPN, Feistel and ARX
ciphers.

For SPN ciphers, the original boomerang attack assumes independence be-
tween two sub-ciphers E0 and E1. However, this assumption may not hold for
selected differential characteristics, as shown in [7]. An r-round T1 boomerang
trail derived in this manner could actually be an IBD, potentially overlooked
under this assumption. This issue is addressed by GBCT [33]. In this paper, we
present a slightly different definition.

Definition 7. Given four differences µ, µ′, ϕ, ϕ′ ∈ Fn2 , the GBCT for an n-bit
S-box is defined as GBCT(µ, µ′, ϕ, ϕ′) = # INGBCT(µ, µ

′, ϕ, ϕ′), where
INGBCT(µ, µ

′, ϕ, ϕ′) = {(x0, x1, x2, x3) ∈ F4n
2 | x0⊕x1 = µ, x2⊕x3 = µ′, S(x1)⊕

S(x2) = ϕ, S(x0)⊕ S(x3) = ϕ′}.

Furthermore, as Song et al. [34] observed, dependence can significantly influence
multiple rounds, such as up to 6 rounds for SKINNY. While BCT cannot eliminate
the incompatibility over multiple rounds, various tables like UBCT, LBCT, and
EBCT have been defined. We generalize these concepts to IBD6.

Definition 8. Given eight differences µ, µ′, ρ, ρ′, θ, θ′, ϕ, ϕ′ ∈ Fn2 where ρ′ =
µ⊕µ′⊕ρ, ϕ′ = θ⊕θ′⊕ϕ, the GUBCT, GLBCT and GEBCT for an n-bit S-box
are defined as
GUBCT(µ, µ′, θ, θ′, ϕ, ϕ′) = # INGUBCT(µ, µ

′, θ, θ′, ϕ, ϕ′), where
INGUBCT(µ, µ

′, θ, θ′, ϕ, ϕ′) = {(x0, x1, x2, x3) ∈ F4n
2 | x0 ⊕ x1 = µ, x2 ⊕ x3 =

6 Concurrent Work: [12] proposed similar definitions but did not develop search meth-
ods for IBDs using these tables. In contrast, our work provide a complete theoretical
analysis and modeling method.
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µ′, S(x0)⊕S(x1) = θ, S(x2)⊕S(x3) = θ′, S(x1)⊕S(x2) = ϕ, S(x0)⊕S(x3) = ϕ′},
GLBCT(µ, µ′, ρ, ρ′, ϕ, ϕ′) = # INGLBCT(µ, µ

′, ρ, ρ′, ϕ, ϕ′), where
INGLBCT(µ, µ

′, ρ, ρ′, ϕ, ϕ′) = {(x0, x1, x2, x3) ∈ F4n
2 | x0 ⊕ x1 = µ, x2 ⊕ x3 =

µ′, x1 ⊕ x2 = ρ, x0 ⊕ x3 = ρ′, S(x1)⊕ S(x2) = ϕ, S(x0)⊕ S(x3) = ϕ′},
GEBCT(µ, µ′, ρ, ρ′, θ, θ′, ϕ, ϕ′) = # INGEBCT(µ, µ

′, ρ, ρ′, θ, θ′, ϕ, ϕ′), where
INGEBCT(µ, µ

′, ρ, ρ′, θ, θ′, ϕ, ϕ′) = {(x0, x1, x2, x3) ∈ F4n
2 | x0⊕x1 = µ, x2⊕x3 =

µ′, x1 ⊕ x2 = ρ, x0 ⊕ x3 = ρ′, S(x0) ⊕ S(x1) = θ, S(x2) ⊕ S(x3) = θ′, S(x1) ⊕
S(x2) = ϕ, S(x0)⊕ S(x3) = ϕ′}.

The above tables are supplemented with two additional notations for clarity:
UDDT(µ, µ′, θ, θ′) = # INUDDT(µ, µ

′, θ, θ′), where
INUDDT(µ, µ

′, θ, θ′) = {(x0, x1, x2, x3) ∈ F4n
2 | x0⊕x1 = µ, x2⊕x3 = µ′, S(x0)⊕

S(x1) = θ, S(x2)⊕ S(x3) = θ′},
LDDT(ρ, ρ′, ϕ, ϕ′) = # INLDDT(ρ, ρ

′, ϕ, ϕ′), where
INLDDT(ρ, ρ

′, ϕ, ϕ′) = {(x0, x1, x2, x3) ∈ F4n
2 | x1⊕ x2 = ρ, x0⊕ x3 = ρ′, S(x1)⊕

S(x2) = ϕ, S(x0)⊕ S(x3) = ϕ′}.
A schematic diagram for these generalized BTs is shown in Fig 3.

Proposition 1. UDDT,LDDT,GBCT,GUBCT, GLBCT,GEBCT have the
following relations:

1. ∃η, η′, s.t. INGBCT(µ, µ
′, ϕ, ϕ′) ⊆ INUDDT(µ, µ

′, η, η′),
2. ∃ω, ω′, s.t. INGBCT(µ, µ

′, ϕ, ϕ′) ⊆ INLDDT(ω, ω
′, ϕ, ϕ′),

3. INGUBCT(µ, µ
′, θ, θ′, ϕ, ϕ′) ⊆ INUDDT(µ, µ

′, θ, θ′),
4. ∃ω, ω′, INGUBCT(µ, µ

′, θ, θ′, ϕ, ϕ′) ⊆ INLDDT(ω, ω
′, ϕ, ϕ′),

5. ∃η, η′, s.t. INGLBCT(µ, µ
′, ρ, ρ′, ϕ, ϕ′) ⊆ INUDDT(µ, µ

′, η, η′),
6. INGLBCT(µ, µ

′, ρ, ρ′, ϕ, ϕ′) ⊆ INLDDT(ρ, ρ
′, ϕ, ϕ′),

7. INGEBCT(µ, µ
′, ρ, ρ′, θ, θ′, ϕ, ϕ′) ⊆ INUDDT(µ, µ

′, θ, θ′),
8. INGEBCT(µ, µ

′, ρ, ρ′, θ, θ′, ϕ, ϕ′) ⊆ INLDDT(ρ, ρ
′, ϕ, ϕ′),

9. INGEBCT(µ, µ
′, ρ, ρ′, θ, θ′, ϕ, ϕ′) ⊆ INGBCT(µ, µ

′, ϕ, ϕ′),
10. INGEBCT(µ, µ

′, ρ, ρ′, θ, θ′, ϕ, ϕ′) ⊆ INGUBCT(µ, µ
′, θ, θ′, ϕ, ϕ′),

11. INGEBCT(µ, µ
′, ρ, ρ′, θ, θ′, ϕ, ϕ′) ⊆ INGLBCT(µ, µ

′, ρ, ρ′, ϕ, ϕ′).

We first propose an approach that makes a mixed use of DDT, GBCT, GUBCT,
GLBCT, and GEBCT to construct IBDs in a manner similar to optimizing BDs.
At first, we define a set of propagation rules for an SPN cipher E with t S-boxes
(S0, . . . , St−1) in total as

APSE ={(p0, . . . , pt−1)|pi ∈ {UDDT,LDDT,GBCT,GUBCT,GLBCT,GEBCT}}.

Then P = (p0, . . . , pt−1) ∈ APSE denotes that the propagation rule through the
i-th S-box follows pi.

Definition 9. Let E = Er−1 ◦ · · · ◦ E0 be an r-round SPN cipher. Let P =
(P0, . . . , Pr−1) be a predefined propagation rule of E, where Pi ∈ APSEi denotes
a propagation rule of Ei for i ∈ {0, . . . , r − 1}. Let εi0, εi1, εi2, εi3 be the four input
differences and εi+1

0 , εi+1
1 , εi+1

2 , εi+1
3 be the four output differences of Ei for i ∈
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{0, . . . , r− 1}. For two input differences α, α′ and two output differences β, β′ of
E, if there exists a trail

(ε00 = α, ε01, ε
0
2 = α′, ε03)

P0−→ · · · Pr−1−−−→ (εr0, ε
r
1 = β, εr2, ε

r
3 = β′), (2)

then it is called an r-round TSP boomerang trail. Here, Pi−→ represents the propa-
gation rule through S-boxes in Ei follows Pi.

Propagation P ∈ APSE must be connectable. Accordingly, we have the following
construction.

Construction 5 (TSP -IBD). Given an r-round SPN cipher E and a predefined
rule P ∈ APSE, for two input differences α, α′ and two output differences β, β′,
if no r-round TSP boomerang trail exists, then (α, α′, β, β′) is an IBD, called an
r-round TSP -IBD.

TSP -IBD corresponds to a serious of IBDs for different predefined propagation
rules P . Here, it is necessary to provide a clarification for DBCT used to de-
tect contradictions within two consecutive rounds in ZWT -method and BCL-
method [12,15]. The generalized DBCT (GDBCT) for an n-bit S-box is defined as

GDBCT(γ, γ′, δ, δ′) =
∑

θ,θ′,λ,λ′

GUBCT(γ, γ′, θ, θ′, λ, λ′)·GLBCT(θ, θ′, λ, λ′, δ, δ′),

where γ, γ′, θ, θ′, λ, λ′, δ, δ′ ∈ Fn2 in [12]. Unlike DBCT Definition 2, GDBCT
does not require that γ = γ′, δ = δ′, θ = θ′, and λ = λ′ for the input, output
and middle differences, which are extremely stringent when applying DBCT in
the middle two rounds of IBD. However, current methods have not made use
of GDBCT to detect contradictions. Additionally, a GDBCT-based boomerang
trail corresponds to a set of boomerang trails based on a composition of GUBCT
and GLBCT. Thus, the IBDs constructed by GDBCT also is one type of TSP -IBD.
Furthermore, T1-IBD is a special example of TSP -IBD.

Theorem 4. For any predefined rule P ∈ APSE, an r-round T1-IBD (α, α′, β, β′)
is an r-round TSP -IBD.

Proposition 1 shows that GEBCT belongs to all other tables. Therefore, we
consider to construct IBDs using only GEBCT.

Definition 10. Let E = Er−1◦· · ·◦E0 be an r-round block cipher. Let εi0, εi1, εi2, εi3
be the four input differences and εi+1

0 , εi+1
1 , εi+1

2 , εi+1
3 be the four output differ-

ences of Ei for i ∈ {0, . . . , r− 1}. For two input differences α, α′ and two output
differences β, β′ of E, if there exists a trail

(ε00 = α, ε01, ε
0
2 = α′, ε03)

GEBCT−−−−→ · · · GEBCT−−−−→ (εr0, ε
r
1 = β, εr2, ε

r
3 = β′), (3)

then it is called an r-round TC boomerang trail.

Construction 6 (TC-IBD). Given an r-round block cipher E, for two input
differences α, α′ and two output differences β, β′, if no r-round TC boomerang
trail exists, then (α, α′, β, β′) is an IBD, called an r-round TC-IBD.
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From the definitions, an r-round TC boomerang trail is a special r-round TSP
boomerang trail. Thus, we have the following inclusion relationship.

Theorem 5. For any predefined rule P ∈ APSE, an r-round TSP -IBD (α, α′,
β, β′) is an r-round TC-IBD.

Subsequently, we prove inclusion relationship between TC-IBD and T2-IBD.

Theorem 6. An r-round TC-IBD (α, α′, β, β′) is an r-round T2-IBD.

Additionally, we prove the equivalence of TC-IBD and T2-IBD for SPN with
full-state round-key-addition operations.

Proposition 2. Given an SPN cipher with full-state round-key-addition opera-
tions, (α, α′, β, β′) is an r-round TC-IBD if and only if it is an r-round T2-IBD.

Similarly, for Feistel and ARX ciphers, we explore the IBD construction methods
based on generalized BTs in Appendix A. The process is similar: For Feistel
ciphers, we generalize the definition of FBCT and FBDT to define GFBCT and
GFUBCT/GFLBCT; we define TFP -IBD and study the relationships between
TFP -IBD and Ti-IBD (0 ≤ i ≤ 3) as well as TC-IBD. For ARX ciphers, we redefine
a modular addition as an S-box, inspired by [35], and the IBD constructions
based on our generalized BTs for SPN and Feistel ciphers and their inclusion
relationships all apply to ARX ciphers.

In summary, we have the following relations:

Summary 1 For a block cipher E, let STi denotes the set of all Ti-IBDs and
SIBD be the set corresponding to the essential definition of IBDs, then

(ST0
⊆)ST1

⊆ STP ⊆ STC ⊆ ST2
⊆ ST3

= SIBD.

The inclusion relationship for T0-IBD specifically applies to block ciphers with
bijective S-boxes. Here, TSP , T

F
P and TAP are collectively denoted as TP . Especially,

for an (equivalently transformed) SPN or Feistel cipher E with full-(branch)-
state round-key-addition operations, we further have STSC = ST2

or STFC = ST2
.

In brief, the differential-propagation-based IBDs do not surpass those generalized-
BTs-based IBDs, and further those state-propagation-based IBDs, which are e-
quivalent to the essential IBD definition when considering the key schedules.
While constructing IBDs using BTs from BDs seems reasonable, there still exist
a gap between the optimal IBD and the construction using even a mixed use of
generalized BTs. Moreover, searching for IBDs using continuous generalized BTs
is lack and challenging, which requires more advanced modeling techniques.

So far, we have developed a complete theory of IBD constructions. Further-
more, we propose a hierarchical apply strategy for IBD constructions when choos-
ing the appropriate method as follows.

– The inclusion relationship in Summary 1 and the equivalence in Theorem 3
allow us to use T0-IBD for a rough estimation (lower bound) and T3-IBD for
a precise evaluation (upper bound) of the number of rounds of IBDs.
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– As no approach for constructing IBDs surpasses Construction 4, searching
for T3-IBDs remains prioritized, when solving time permits. When it en-
counters the efficiency bottleneck of solvers for searching T3-IBDs, TC-IBDs,
TP -IBDs, T2-IBDs, T1-IBDs, T0-IBDs and hybrid techniques provide valu-
able supplements and effective estimation of the number of rounds for IBDs.

– In the field of automatic search, a critical consideration is the trade-off be-
tween precision and computational consumption. Given a diverse set of IB-
D construction methods, each with distinct precision level, we develop a
scheduling algorithm to achieve an optimal balance between search time and
accuracy. The algorithm begins with random sampling input and output
differences of IBDs within the designated search space, and then initiates
multiple processes, each associated with an IBD construction method. Each
process uses its corresponding IBD model to validate whether the sampled
data qualifies as an IBD. The algorithm records the total executing time for
all sampled data and terminates the process whose time exceeds the pre-
set threshold. Among the IBD construction methods that complete within
the time limit, select the highest-priority method for subsequent full-space
search. The overall algorithm is detailed in Algorithm 1 in Appendix C.

Once the target is determined, the search process is initiated. To enhance imple-
mentation efficiency, we also employ multi-process technology for parallel compu-
tations of divided search space parts, significantly improving search performance.
All in all, the complete theory and strategy paves the way for subsequent research
on IBD constructions.

4 New Construct Theory for IBDs in Related-Key Setting

The power of RK-IBDs becomes more pronounced according to Definition 2, as
attackers have greater control over the relationships between related keys. In this
section, we construct the RK-IBDs in two-related-keys setting and four-related-
keys setting. The definitions of Tj boomerang trails for j = 0, 1, 3, P, C given in
Section 3 can be naturally extended to the related-key setting.

Definition 11. Given an r-round block cipher E = E1◦E0 with the key schedule
KS, for two input differences α, α′, two output differences β, β′, and four key
differences κ0, κ1, κ2 and κ3 = κ0 ⊕ κ1 ⊕ κ2,
– if there exist γ ∈ DPE0,κ0

(α), γ′ ∈ DPE0,κ1
(α′), δ ∈ DP(E1)−1,κ2

(β), and
δ′ ∈ DP(E1)−1,κ3

(β′), such that γ ⊕ γ′ ⊕ δ ⊕ δ′ = 0, then Trail 1 is called an
r-round T0 related-key boomerang trail, where DPf,κ(α) is a relaxed variant
of DPf,κ(α) by considering all details of operations of f except S-boxes.

– if there exist γ ∈ DPE0,κ0
(α), γ′ ∈ DPE0,κ1

(α′), δ ∈ DP(E1)−1,κ2
(β), and

δ′ ∈ DP(E1)−1,κ3
(β′), such that γ ⊕ γ′ ⊕ δ ⊕ δ′ = 0, then Trail 1 is called an

r-round T1 related-key boomerang trail.

Definition 12. Given E = Er−1,KSr−1(k) ◦ · · · ◦ E0,KS0(k) be an r-round block
cipher with the key schedule KS. For two input differences α, α′, two output
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differences β, β′, and four key differences κ0, κ1, κ2 and κ3 = κ0 ⊕ κ1 ⊕ κ2, let
I = {(x0, x1, x2, x3) | x0 ⊕ x1 = α, x2 ⊕ x3 = α′} and O = {(y0, y1, y2, y3) |
y1 ⊕ y2 = β, y0 ⊕ y3 = β′}. If there exist (x00, x01, x02, x03) ∈ I, (xr0, xr1, xr2, xr3) ∈ O
and master keys kj such that xi+1

j = Ei,KSi(kj)(x
i
j) for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ 3,

under the key differences k0 ⊕ k1 = κ0, k2 ⊕ k3 = κ1, k1 ⊕ k2 = κ2, k0 ⊕ k3 = κ3,
then (x00, x

0
1, x

0
2, x

0
3) → · · · → (xr0, x

r
1, x

r
2, x

r
3) is called an r-round T3 related-key

boomerang trail.

Let APSE , APFE and APAE be collectively denoted as APE , i.e., a set of propa-
gation rules for an block cipher E, then the following definition apply to SPN,
Feistel and ARX ciphers.

Definition 13. Given E = Er−1,KSr−1(k) ◦ · · · ◦ E0,KS0(k) be an r-round block
cipher with the key schedule KS. Let εi0, εi1, εi2, εi3 be the four input differences
and εi+1

0 , εi+1
1 , εi+1

2 , εi+1
3 be the four output differences of Ei,KSi(k0), Ei,KSi(k1),

Ei,KSi(k2), Ei,KSi(k3) for i ∈ {0, . . . , r − 1}. For two input differences α, α′, two
output differences β, β′, and four key differences κ0, κ1, κ2 and κ3 = κ0⊕κ1⊕κ2,
– if there exists a Trail 2 under the key differences k0 ⊕ k1 = κ0, k2 ⊕ k3 =
κ1, k1 ⊕ k2 = κ2, k0 ⊕ k3 = κ3, then it is called an r-round TP related-
key boomerang trail. Here, P = (P0, . . . , Pr−1) is a predefined propagation
rule of E, where Pi ∈ APEi for i ∈ {0, . . . , r − 1}, and Pi−→ represents the
propagation rule through S-boxes in Ei follows Pi.

– if there exists a Trail 3 under the key differences k0 ⊕ k1 = κ0, k2 ⊕ k3 =
κ1, k1 ⊕ k2 = κ2, k0 ⊕ k3 = κ3, then it is called an r-round TC related-key
boomerang trail.

The RK-IBDs in two-related-keys setting was first proposed by J. Lu [5],
focusing solely on differential propagation rather than state propagation and
generalized BTs. Therefore, we introduce the following definitions.

Construction 7 (RT 2
i -IBD). Given an r-round block cipher E with the key

schedule KS, for two input differences α, α′ and two output differences β, β′, if
no r-round Ti related-key boomerang trail under the key differences (κ, κ, 0, 0)
exists, where k0⊕k1 = κ, k2⊕k3 = κ, k1⊕k2 = 0, k0⊕k3 = 0, then (α, α′, β, β′)
is called an r-round RK-IBD in two-related-keys setting, denoted as RT 2

i -IBD
for i = 0, 1, 3, P, C.

Accordingly, the RK-IBDs in four-related-keys setting are defined as follows.

Construction 8 (RT 4
i -IBD). Given an r-round block cipher E with the key

schedule KS, for two input differences α, α′ and two output differences β, β′, if no
r-round Ti related-key boomerang trail under the key differences (κ0, κ1, κ2, κ3)
exists, where k0 ⊕ k1 = κ0, k2 ⊕ k3 = κ1, k1 ⊕ k2 = κ2, k0 ⊕ k3 = κ3 =
κ0⊕κ1⊕κ2, then (α, α′, β, β′) is called an r-round RK-IBD in four-related-keys
setting, denoted as RT 4

i -IBD for i = 0, 1, 3, P, C.

Using the same proving method, these RK-IBDs in the related-key setting
are superior to RT i1-IBD but inferior to RT i3-IBD for i = 2, 4.
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Summary 2 For a block cipher E, let SRT ij denotes the set of RT ij -IBDs, then

(SRT i0 ⊆)SRT i1 ⊆ SRT iP ⊆ SRT iC ⊆ SRT i3 ,

for i = 2, 4 and SRT 4
3
= SIBD. The inclusion relationship for RT0-IBD specifi-

cally applies to block ciphers with bijective S-boxes.

Additionally, as explained in Section 3, hierarchical apply strategy for IBD con-
structions also applies to related-key settings.

To search for RK-IBDs in practice, the selection of key differences involves
greater technicality. This view has been long known to our community, but
formal and general selection rules have not yet been established. In particular, by
examining different scenarios, we make the description of RK-IBD constructions
more expressive and accurate.
In two-related-keys setting. We set the two input differences with α = α′.
The two-related-keys setting is applicable to block ciphers with linear or nonlin-
ear key schedules.

A direct strategy is to set key differences κ that offset the input differences
α (usually define κ = L(α), where L represents a linear transformation accord-
ing to specific ciphers), thereby allowing several initial rounds of E to proceed
without any differences. Subsequently, for each (α, κ) pair, we search for output
differences (β, β′) such that (α, α, β, β′) forms an r-round RT 2

i -IBD for i = 0, 1, 3
under key differences (κ, κ, 0, 0). This approach ensures that the difference prop-
agates through the non-linear operations in the initial rounds with probability
1, thereby achieving the objective of an RK-IBD covering more rounds.

An advanced strategy involves using related-key differentials with probability
1. Specifically, for a block cipher E = E1 ◦E0, we control round key differences
to eliminate state differences before all nonlinear operations in E0. Firstly, we
search for an r0-round related-key differential (α, γ) with probability 1 under
key difference κ, i.e., PE0,κ(α, γ) = 1. During the search process, it is crucial to
ensure that the key difference does not undergo the nonlinear operation of KS.
Next, we search for (β, β′) such that (γ, γ, β, β′) is an r1-round RT 2

i -IBD of E1

for i = 0, 1, 3 under the key differences (κ, κ, 0, 0). Consequently, (α, α, β, β′) is
an (r0 + r1)-round RK-IBD under the key differences (κ, κ, 0, 0).
In four-related-keys setting. The four-related-keys setting is applicable to
block ciphers with linear key schedules. When the key schedule is linear, the key
differences k0⊕k1 = κ0, k2⊕k3 = κ1 and k1⊕k2 = κ2 imply that for any round
index i and j:{

KSi(k0)⊕KSi(k1) = KSi(κ0),KSi(k2)⊕KSi(k3) = KSi(κ1),

KSj(k1)⊕KSj(k2) = KSj(κ2),KSj(k0)⊕KSj(k3) = KSj(κ0 ⊕ κ1 ⊕ κ2),

indicating that the differences of round keys are fully determined.
For a block cipher E = E2 ◦ E1 ◦ E0, the search strategy for RT 4

i -IBD for
i = 0, 1, 3 under the key differences κ0, κ1, κ2 and κ3 = κ0 ⊕ κ1 ⊕ κ2 is as
follows. Firstly, we search for two r0-round related-key differentials (α, γ) under
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†Here D denotes a related-key differential with probability 1.

key difference κ0 and (α′, γ′) under key difference κ1 of E0 and two r2-round
related-key differentials (β, δ) under key difference κ2 and (β′, δ′) under key
difference κ3 of (E2)−1, all with probability 1:

PE0,κ0
(α,γ) = 1, PE0,κ1

(α′,γ′) = 1, P(E2)−1,κ2
(β, δ) = 1, P(E2)−1,κ3

(β′,δ′) = 1 (4)

Next, we verify whether (γ, γ′, δ, δ′) forms an r1-round RT 4
i -IBD for i = 0, 1, 3

under the key differences (κ0, κ1, κ2, κ3). If so, then (α, α′, β, β′) is an (r0 +
r1 + r2)-round RT 4

i -IBD for i = 0, 1, 3. However, directly searching for these
differentials while satisfying the relation κ3 = κ0 ⊕ κ1 ⊕ κ2 poses practical chal-
lenges. To address this issue, we focus exclusively on block ciphers with linear key
schedules, since the definitive round key differences KSi(κj) for i = 0, . . . , r − 1
and j = 0, 1, 2, 3 provided by the linear key schedule facilitates managing the
elimination of state differences in E2.

Comparison of RK-IBDs and RK-IDs. A related-key ID (RK-ID) is a pair of
difference (α, β) such that the input difference α cannot propagate to the output
difference β under the key difference κ. Compared to RK-IDs, RK-IBDs present
advantages in two folds.

Distinguisher Search. Considering the two-related-keys setting illustrated in
Fig 4, we focus on searching for the central distinguisher. After the contra-
diction in RK-IBDs, the key difference for RK-IBDs is 0. In contrast, the
key difference for RK-IDs undergoes extensive diffusion through KS algorith-
m, especially with respect to nonlinear KS, making it difficult to control or
eliminate. This allows RK-IBDs to accommodate more rounds than RK-IDs.



Impossible Boomerang Distinguishers Revisited 19

Distinguisher Extension. Considering the four-related-keys setting illustrat-
ed in Fig 5, we focus on the extension of central distinguisher. For block
ciphers with linear key schedules, extending both E0 and E2 under the
same key difference is necessary for RK-IDs, limiting flexibility. In con-
trast, RK-IBDs allow greater flexibility in key differences, requiring only that
κ3 = κ0 ⊕ κ1 ⊕ κ2. This enables RK-IBDs to extend more rounds compared
to RK-IDs.

5 New Automatic Search Methods for (RK-)IBDs

In this section, we present our search method for (RK-)IBDs from the aspects
of differential, state propagation and generalized BTs, and propose several key
search strategies.

5.1 Searching for (RK-)IBDs from the aspect of differential
propagation

To search for (R)T0-IBDs and (R)T1-IBDs, we propose a SAT-based method
to model the differential propagation through common operations such as Xor,
Copy, KeyAdd, MatrixMultiply and S-box, as well as arbitrary S-box (AS) pro-
posed in [36] that treats the S-box as only a permutation.

Model 1. The modeling method of differential propagation through Xor, Copy,
and KeyAdd is detailed as follows

Operation Input Diff Output Diff Modeling Method
Copy α ∈ F2 β0, β1 ∈ F2 β0 = α, β1 = α
Xor α0, α1 ∈ F2 β ∈ F2 β = α0 ⊕ α1

KeyAdd α ∈ F2 β ∈ F2 β = α

Model 2. For MatrixMultiply operation M = (mi,j)u×v, let {α0, . . . , αv−1}
and {β0, . . . , βv−1} be the input and output differences ofM , then βi = ⊕v−1j=0mi,jαj.
Thus, the differential propagation through MatrixMultiply can be expressed ac-
cording to Xor.

Model 3. For S-box operation of a v×u-bit S, let {α0, . . . , αv−1} and {β0, . . . ,
βu−1} be the input and output differences of S, then they are restricted by the
DDT of S. Thus, the differential propagation through S can be expressed as a set
of logic expressions with the help of some third-party tools like Logic Friday [37].

Model 4. For AS operation of a bijective S, let {α0, . . . , αv−1} and {β0, . . . , βv−1}
be the input and output differences, then the following transitions are impossible:
(0, 1), · · · , (0, 2v − 1), (1, 0), · · · , (2v − 1, 0), and can be removed by the boolean
expressions: αv−1|| · · · ||α0||¬βi = 1, ¬αi||βv−1|| · · · ||β0 = 1 for 0 ≤ i ≤ v − 1.
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Fig. 6: The search model for (R)T0-IBD or (R)T1-IBD
†Here (k)xij = (k)xi ⊕ (k)xj denoting the difference variable of (k)xi and (k)xj .

Based on above modeling method, for an r-round block cipher E = E1 ◦ E0

with its key schedule KS = KS1 ◦KS0, we can construct a model to deter-
mine whether a given D = (α, α′, β, β′) qualifies as an r-round (R)T0-IBD or
(R)T1-IBD under key differences (κ0, κ1, κ2, κ3) by describing the constraints of
differential propagation as shown in Fig 6. If the SAT-solver returns “no solu-
tion”, then (α, α′, β, β′) is an (RK-)IBD. Particularly in single-key setting, all
four key differences are set to zero. The corresponding algorithm is provided in
Algorithm 2 in Appendix C.

5.2 Searching for (RK-)IBDs from the aspect of state propagation

To search for T2-IBDs and (R)T3-IBDs from the aspect of state propagation, we
revisit the SAT-based method to model the state propagation through common
operations proposed in [20].

Model 5. The state propagation through Xor, Copy and MatrixMultiply fol-
lows the methods described in Model 1 and Model 2. The state propagation
through KeyAdd is modeled identically to Xor.

Model 6. For S-box operation of a v×u S, let {α0, . . . , αv−1} and {β0, . . . , βu−1}
be the input and output states of S, then they are restricted by the truth table
of S. Thus, the state propagation through S can be expressed as a set of logic
expressions with the help of Logic Friday.

Based on above modeling method, for an r-round block cipher E with its
key schedule, we can construct a model to determine whether a given D =
(α, α′, β, β′) qualifies as an r-round T2-IBD or (R)T3-IBD under key differences
(κ0, κ1, κ2, κ3) by describing the constraints of differential propagation as shown
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in Fig 7. If the SAT-solver returns “no solution”, then (α, α′, β, β′) is an (RK-
)IBD. Particularly in single-key setting, all four key differences are set to zero.
The corresponding algorithm is provided in Algorithm 3 in Appendix C.

5.3 Searching for (RK-)IBDs from the aspect of generalized BTs

To search for (R)TP -IBDs and (R)TC-IBDs from the aspect of generalized BTs,
we are faced with two challenges: First, although GBCT/GFBCT-based method
is relatively straightforward to model, however, GBCT can only detect contradic-
tions within a single round; Second, to detect contradictions within more round,
we need to search for IBDs based on continuous generalized BTs of GUBCT,
GLBCT for SPN-like ciphers or GFUBCT, GFLBCT for Feistel-like ciphers or
GEBCT, the number of parameters for input and output differences in these
tables is no less than six, making it extremely difficult to model these tables
directly by some third-party tools, even for 4-bit S-boxes. Therefore, currently
there is no modeling method for generalized BT beyond GBCT. Fortunately,
based on our state propagation method proposed in Section 5.2, we can provide
a searchable model for these generalized BTs.

For simplicity, in this section, we model GEBCT as an example; other gen-
eralized BTs follow a similar modeling method. We introduce intermediate state
variables (x0, x1, x2, x3, y0, y1, y2, y3) and use the following modeling method to
simulate GEBCT:

yi = S(xi) for i = 0, 1, 2, 3,

x0 ⊕ x1 = µ, x2 ⊕ x3 = µ′, x1 ⊕ x2 = ρ, x0 ⊕ x3 = ρ′,

y0 ⊕ y1 = θ, y2 ⊕ y3 = θ′, y1 ⊕ y2 = ϕ, y0 ⊕ y3 = ϕ′,

where µ, µ′, ρ, ρ′, θ, θ′, ϕ, ϕ′ are eight input and output differences of GEBCT.
Except SL, other operations (denoted as Λ), such as linear layer and round key
addition, still employ the method of differential propagation for their modeling.
Indeed, this method is a hybrid of iterative cross-use of differential propagation
and state propagation. Based on above modeling method, for an r-round block
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cipher E with its key schedule, we can construct a model to determine whether a
given D = (α, α′, β, β′) qualifies as an r-round (R)TC-IBD under key differences
(κ0, κ1, κ2, κ3) by describing the constraints of differential propagation as shown
in Fig 8. If the SAT-solver returns “no solution”, then (α, α′, β, β′) is an (RK-
)IBD. Additionally, in single-key setting, all four key differences are set to zero. In
related-key setting, the modeling for key schedules can be set based on differential
propagation if the key schedule is linear, or based on state propagation as shown
in the right part of Fig 7. The corresponding algorithm is provided in Algorithm 4
in Appendix C.

5.4 The search strategies for (RK-)IBDs

Search space. Based on Algorithm 2, 3, 4, we can efficiently search for (RK-)
IBDs within a given search space. Let n be the block size and s be the S-box
size, then there are t = n/s S-boxes in SL. For x = (xn−1, . . . , x0) ∈ Fn2 ,
wt(x) = ⊕ni=0xi and x = (xn−1| · · · |xs×(t−1), · · · , xs−1| · · · |x0), where | denotes
bitwise-OR. Similar to ID, we mainly focus on searching for the three following
types of (RK-)IBDs.

Type-1. li input and lo output active bits IBDs: an (RK-)IBD D = (α, α′, β, β′)
with wt2(α) = wt2(α

′) = li and wt2(β) = wt2(β
′) = lo. Particularly, when

li = lo, D is called an li-active-bits (RK-)IBD.
Type-2. li input and lo output active nibbles (resp. bytes) IBDs: an (RK-)IBD
D = (α, α′, β, β′) with wt(α) = wt(α′) = li and wt(β) = wt(β′) = lo.
Particularly, when li = lo, D is called an li-active-nibbles (resp. bytes) (RK-
) IBD.

Type-3. li input and lo output active nibbles (resp. bytes) truncated IBDs:
Given a, a′, b, b′ ∈ Ft2 with wt(a) = wt(a′) = li and wt(b) = wt(b′) = lo, if D
is an (RK-)IBD for ∀D ∈ {(α, α′, β, β′) | α = a, α′ = a′, β = b, β′ = b′}, then
(a, a′, b, b′) is called an li input and lo output active nibbles (resp. bytes)
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truncated IBD. Particularly, when li = lo, (a, a′, b, b′) is called an li-active-
nibbles (resp. bytes) truncated (RK-)IBD.

To search for Type-3 (RK-)IBD, we can simply modify Algorithm 2, 3, 4 by
adding the relations between the bitwise input differences and output differences
with (a, a′) and (b, b′).
Search strategy. When the search for (RK-)IBDs relying solely on state prop-
agation is extremely time-consuming, or relying solely on differential propaga-
tion or generalized BTs is not optimized enough, we further consider a hybrid
search method that use distinct propagation approaches and modeling methods
for different operations or cipher stages. The selection of hybrid search can be
integrated into the scheduling algorithm given in Algorithm 1.

Besides, we also propose a miss-in-the-middle approach for E = E1 ◦Em ◦E0

that removes the current constraint of probability-1 differentials for E0 and E1.
Instead, as shown in Fig 9, we propagate the input difference (α, α′) forward
and output differences (β, β′) backward based on differential propagation or
generalized BTs-based methods to derive all possible output differences of E0 and
all possible input differences of E1. Subsequently, we verify these combinations
of the intermediate differences all result in IBDs for Em using these pure or
hybrid modeling methods. Thus, we get an (RK-)IBD for E.
Verify strategy. To compensate for the limitations of manual verification, we
employ some techniques of computer-aided verification of (RK-)IBDs given in
Appendix F, where the computer can play the roles of detecting the contradiction
location, traversing and disproving all plausible trails, and implementing cross-
validation. Firstly, we can modify the bit-conditions in Algorithm 2, 3, 4 to
filter out unrelated positions, and limit the possible location of the contradiction
to a very small range, and then derive it further. Secondly, we can traverse
all plausible trails from two ends and then disprove them by generalized BTs
similarly as shown in Fig 9. Thirdly, we can call for different search methods for
the same result or refer to BTs or generalized BTs to verify the result.

Besides, the correctness of the code is crucial for successfully searching for
the correct distinguisher. In traditional methods, verifying the correctness of all
distinguishers obtained through automatic search typically involves validating a
subset of them. If issues arise, re-checking and re-running the search program
can be extremely time-consuming. Therefore, an automatic verification technique
that can minimize the occurrence of code implementation errors is essential. We
propose a code self-feedback verification technique. The idea is that when the
input and output differences are not an (RK-)IBD, the third-party solver will
return a solution. The solution must correspond to trails that propagate input
differences to output differences using state propagation, DDT, GEBCT, etc. By
verifying these trails, we can detect erroneous trails generated by incorrect code.

6 Applications of (RK-)IBDs

In this section, we apply our method to search for (RK-)IBDs on 10 block ciphers
with three main structures:
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SPN: AES (large S-box, MDS), PRESENT-80 and GIFT (bit-permutation), PRINT-
cipher48 (key-dependent permutation), SKINNY-64/192 and SKINNYee (twe-
akey);

Feistel: DES (non-injective and non-quadratic S-box), GOST;
ARX: SPECK, CHAM.

Specifically, we search for IBDs on AES, PRESENT-80, PRINTcipher48 and DES,
as well as RK-IBDs on AES-128, SPECK with nonlinear KS, and SKINNY-64/192,
SKINNYee, GIFT, CHAM and GOST with linear KS. For most of these ciphers, we
are capable of conducting IBD search for the first time, as previous methods
were ineffective on them. We present brief cipher descriptions in Appendix D,
examples of searched IBDs in Appendix E, and their verifications in Appendix F.

To demonstrate the efficacy of our IBDs, we use SKINNYee as a case study
and present its corresponding 31-round IBA. This constitutes the first 31-round
attack on SKINNYee and represents the best result to date.

Experiments were conducted on an AMD(R) @2.60GHz platform with 80.00G
RAM running a 64-bit Ubuntu18.04 system. For fair comparison, all timing is
attributed to the spent on searching for a distinguisher using a single core.

6.1 Applications of IBDs in single-key setting

AES

-Configurations. As AES is built with 8-bit S-boxes with excellent cryptograph-
ic properties, searching for Ti-IBDs (i = 1, 2, 3) is extremely time-consuming.
Therefore, our focus shifts to search for T0-IBDs that treat the S-boxes as
a permutation by Algorithm 2, allowing us to evaluate only truncated IBDs
(Type-3). Consequently, we search for 1-active-byte truncated T0-IBDs in a
space of size 164 = 65536.

-Results. We prove no 5-round 1-active-byte T0-IBDs exist in 203.44 hours;
and obtain all 61440 4-round 1-active-byte T0-IBDs in 149.04 hours.
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-Comparison. (i) Currently, the only result for IBDs on AES is some 4-round
IBDs derived manually [4]. In contrast, our method first enables automatic
search and result in a large number of 4-round IBDs, as our approach is
the first to enable the search for IBDs of block ciphers with large
S-boxes considering the details of linear layers. (ii) On AES, the max-
imum round number of IDs is 4 [17], with no 5-round ID existing [18]. Thus,
the IBDs we found cover the same number of rounds as the optimized IDs.

DES

-Configurations. Our experimental results show that searching for T2-IBDs or
T3-IBDs beyond 7 rounds is excessively time-consuming. Therefore, we focus
on searching for 1-active-bit T1-IBDs (Type-1) using Algorithm 2. Given
DES’s Feistel network, we restrict input active differences to the left branch
and output active differences to the right branch, allowing us to propagate
differences forward and backward through one round with probability 1.
Additionally, either the two input differences or two output differences must
be identical. The search space size is 2× 323 = 216.

-Results. We prove no 8-round 1-active-bit T1-IBDs within such search space
exist in 372.38 hours; and obtain 1904 7-round 1-active-bit T1-IBDs in 327.64
hours.

-Comparison. (i) Currently, BCL-method [15] is the only approach searching
for IBDs on Feistel ciphers, but it is limited to quadratic round functions
and does not apply to DES. Our approach is the first to enable searching
for IBDs of Feistel ciphers with arbitrary round functions. (ii) To
compare with IDs, we used ST-method [36], constraining input and output
differences to 1 active bit. This yielded 7-round IDs and confirmed no 8-
round ID existing within this search space. Thus, the IBDs we found cover
the same number of rounds as the optimized IDs.

PRESENT-80

-Configurations. We search for 1-active-nibble T3-IBDs (Type-2) using Algo-
rithm 3, with only the first S-box of the input and output differences being
active. The search space size is 154 = 50625.

-Results. We prove no 7-round T3-IBDs exist within such search space in 24.52
hours; and obtain 58 6-round 1-active-nibble T3-IBDs in 7.13 hours. To in-
vestigate the proper inclusion relationships in Summary 1, we tested whether
these T3-IBDs are also Ti-IBDs (0 ≤ i ≤ 2). The results show that all these
T3-IBDs are T2-IBDs but not T1-IBDs.

-Comparison. (i) Due to the use of bit permutation in PRESENT, existing meth-
ods based on truncated difference search for IBDs are not applicable. Our
approach is the first to enable the search for IBDs of block cipher-
s using bit permutation. (ii) To our knowledge, the maximum round
number of IDs for PRESENT-80 is 6 [19], with no 7-round 1-active-nibble ID
existing [20]. Thus, the IBDs we found cover the same number of rounds as
the optimized IDs.



26 Authors Suppressed Due to Excessive Length

PRINTcipher48

-Configurations. Since PRINTcipher48 uses a key-dependent permutation, we
directly search for 1-active-bit T3-IBDs (Type-1) using Algorithm 3. Specif-
ically, either the two input differences or the two output differences must be
identical. The search space size is 2× 483 = 221184.

-Results. We prove no 6-round T3-IBDs exist within such search space in 40.07
hours; and obtain 2 5-round 1-active-bit T3-IBDs in 14.75 hours. To investi-
gate the proper inclusion relationships given in Summary 1 academically, we
remove the relationship between round keys to test whether those T3-IBDs
are T2-IBDs, and the result shows they are not.

-Comparison. (i) Due to the lack of consideration for state, existing search
methods for IBDs cannot accurately model the key-dependent permutation
in PRINTcipher48. Our approach is the first to enable the search for
IBDs of block ciphers using key-dependent permutation. (ii) To our
knowledge, the maximum round number of IDs for PRINTcipher48 is 4, with
no 5-round ID existing [20] even considering the key schedule details. Thus,
the IBDs we found cover one more round than the optimized IDs.

6.2 Applications of RK-IBDs in related-key setting

AES-128

-Configurations. Since AES-128 uses a non-linear KS, we search for RT 2
0 -

IBDs using Algorithm 2. Similar to the single-key setting, we focus on 1-
active-byte RT 2

0 -IBDs (Type-3) with input-output differences (α, α, β, β′)
where α, β, β′ are 1-active-byte truncated differences under key differences
(κ0, κ1, κ2, κ3) = (α, α, 0, 0). The search space size is 163 = 212.

-Results. We prove no 6-round RT 2
0 -IBDs exist within such search space in

18.68 hours; and obtain 768 5-round 1-active-byte RT 2
0 -IBDs in 14.44 hours.

-Comparison. (i) 6-round RK-IBDs for AES-192 and AES-256 are manually de-
rived in [4]. However, no results have been reported for AES-128. Our method
presents the first 5-round RK-IBDs for AES-128, for the advantage dis-
cussed in in single-key setting. (ii) To compare with RK-IDs, we used the
AS mode in ST-method [36] to search for r-round RK-IDs with input-output
differences (α, β), where α and β are 1-active-byte truncated differences un-
der key difference α. This yielded 3-round RK-IDs and confirmed no 4-round
RK-IDs existing within this search space. Thus, the RK-IBDs we found cover
two more rounds than the optimized RK-IDs.

SPECK

-Configurations. Since SPECK uses a non-linear KS, we search for the RT 2
3 -

IBDs using the advanced strategy described in Section 4. First, we search
for the r0-round related-key differential with probability 1, i.e. (α, γ) under
key difference κ. Next, we search for β and β′ such that (γ, γ, β, β′) forms
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an r1-round RT 2
3 -IBDs under key differences (κ, κ, 0, 0). Here, β, β′ ∈ Λ =

{(µ, µ), (0, µ≫b), (µ, µ⊕(µ≫b))}, where≫b denotes a circular right shift
by b bits (b = 2 for SPECK-32, b = 3 otherwise), and µ is n/2-bit, with only
its most significant bit set to 1. This allows us to go backward through the
modulo addition operation in the last round with probability 1. By connect-
ing the central RK-IBD with the probability-1 related-key differentials at
the beginning, we obtain r = r0 + r1 rounds. The search space size is 9.

-Results. First, we find that SPECK-2w/4w (for w = 16, 24, 32, 64) has a 4-round
related-key differential characteristic with probability 1, and SPECK-2w/3w
(for w = 24, 32, 48, 64) has a 3-round related-key differential characteristic
with probability 1, in a very short time. Then, we use Algorithm 3 to search
for RT 2

3 -IBDs. The results are as follows.
Block cipher Round (r) Number Time (hours) Compared with IDs
SPECK-32/64 8/9 6/none 0.18/0.97 1 round more
SPECK-48/72 7/8 6/none 0.06/0.26 1 round more
SPECK-48/96 8/9 6/none 0.09/0.60 1 round more
SPECK-64/96 8/9 4/none 0.29/0.60 2 rounds more
SPECK-64/128 9/10 4/none 0.28/0.99 2 rounds more
SPECK-96/144 8/9 4/none 0.22/0.65 2 rounds more
SPECK-128/192 8/9 4/none 0.33/1.18 2 rounds more
SPECK-128/256 9/10 4/none 0.41/1.78 2 rounds more

-Comparison. (i) Since SPECK using the modular addition operation, all ex-
isting IBD search methods are not applicable to describe it. Our approach
is the first to enable the search for IBDs of block ciphers using
modular additions. (ii) To our knowledge, the maximum round number of
RK-IDs on SPECK-2w/4w(w = 16, 24, 32, 64) is 7, as well as that on SPECK-
2w/3w(w = 24, 32, 48, 64) is 6 [21]. Thus, the RK-IBDs we found cover one
or two more rounds than the optimized RK-IDs to date for each
version of SPECK.

SKINNY-64/192

-Configurations. Since SKINNY-64/192 uses a linear tweakable key schedule,
we search for r-round RK4

3 -IBDs using the strategy that connects related-
tweakey differentials with probability 1 by Algorithm 3. Let rb denote the
beginning round of the distinguisher and set rb = 0 without loss of gener-
ality. From Property 4 in Appendix G, there exists the difference of four
tweakeys ∆MTK such that ∆TKrb+j = 0 for 1 ≤ j ≤ 5, ∆TKrb 6= 0
and ∆TKrb+6 6= 0, and the difference of four tweakeys ∆MTK ′ such that
∆TK ′rb+r−6 6= 0, ∆TK ′rb+r 6= 0 and ∆TK ′rb+r−j = 0 for 1 ≤ j ≤ 5. We then
search for r-round RK4

3 -IBDs without the first SC operation (α, α′, β, β′) =

(∆TKrb, ∆TKrb,MC ◦SR(∆TK ′rb+r),MC ◦SR(∆TK ′rb+r) under tweakey
differences (κ0, κ1, κ2, κ3) = (∆MTK,∆MTK,∆MTK ′, ∆MTK ′), where
the notation x represents the operation of extending the 32-bit value x to a
64-bit value by appending zeros at the end of x. This choice allows the input
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differences to propagate 6 rounds forward and output differences propagate 6
rounds backward with probability 1. Besides, we set only one cell of ∆TKrb

and ∆TKrb+r active, the search space size is (8× 15)2 = 14400.
-Results. We prove no 20-round RT 4

3 -IBDs in above search space exist in 267.21
hours; and obtain 3 19-round 1-active-nibble RT 4

3 -IBDs in 136.12 hours.
-Comparison. For SKINNY-64/192, ZWT -method [12] proposed 18-round RK-

IBDs, while our method achieves 19-round RK-IBDs. Thus, the RK-IBDs we
found cover one more round than the previous best RK-IBDs.

SKINNYee

-Configurations. Since SKINNYee uses a linear tweak schedule, we search for r-
round RK4

3 -IBDs using the strategy that connects related-tweak differentials
with probability 1 by Algorithm 3. Let rb denote the beginning round of the
distinguisher and set it as rb = 0 without loss of generality. From Proper-
ty 5 in Appendix G, there exists the difference of four tweaks ∆MTK such
that ∆TKrb+j = 0(1 ≤ j ≤ 7), ∆TKrb 6= 0 and ∆TKrb+8 6= 0, and the
difference of four tweaks ∆MTK ′ such that ∆TK ′rb+r−8 6= 0, ∆TK ′rb+r 6=
0 and ∆TK ′rb+r−j = 0(1 ≤ j ≤ 7). We then search for r-round RK4

3 -
IBDs without the first SC operation (α, α′, β, β′) = (∆TKrb, ∆TKrb,MC ◦
SR(∆TK

′
rb+r),MC◦SR(∆TK ′rb+r) under tweaks differences (κ0, κ1, κ2, κ3) =

(∆MTK,∆MTK,∆MTK ′, ∆MTK ′), where the notation x represents the
operation of extending the 32-bit value x to a 64-bit value by appending
zeros at the end of x. This choice allows the input differences to propagate 8
rounds forward and the output differences to propagate 8 rounds backward
with probability 1. Besides, we set only one cell of ∆TKrb and ∆TKrb+r

active, the search space size is (8× 15)2 = 14400.
-Results. We prove no 24-round RT 4

3 -IBDs in above search space exist in 488.89
hours; and obtain 5 23-round 1-active-nibble RT 4

3 -IBDs in 209.78 hours.
-Comparison. BCL-method [15] proposed 22-round RK-IBDs for SKINNYee,

while our method achieves 23-round RK-IBDs. Thus, the RK-IBDs we found
cover one more round than the previous best RK-IBDs.

GIFT

-Configurations. Since GIFT uses a linearKS, we search for r-round RK4
3 -IBDs

using the strategy that connects related-key differentials with probability 1
by Algorithm 3. First, for GIFT-64, we search for RK4

3 -IBDs under key d-
ifferences (κ0, κ1, κ2, κ3) = (λ, λ, η, η) by setting input differences (α, α′) =
(KSrb(λ),KSrb(λ)) and output differences (β, β′) = (KSrb+r(η),KSrb+r(η)),
where rb denotes the beginning round of the distinguisher and is set as rb = 0
without loss of generality. This choice allows the input differences to prop-
agate 4 rounds forward and the output differences to propagate 4 rounds
backward with probability 1. Thus, we only need to verify whether (0, 0, 0, 0)
is an (r − 8)-round RK-IBD under key differences (λ, λ, η, η). Moreover, we



Impossible Boomerang Distinguishers Revisited 29

set the value of λ such that only one S-box is active in round (rb+ 5), and
the value of η such that only one S-box is active in round (rb+ r− 5), which
facilitates the search for distinguishers covering a large number of rounds.
The search space size is (16 × 3)2 = 2034. We apply the same method to
GIFT-128 and the search space size is (32× 3)2 = 9216.

-Results. The results obtained are as follows.
Block cipher Round(r) Number Time(hours) Compared with IDs
GIFT-64 13/14 48/none 0.51/1.91 1 round more
GIFT-128 10/11 373/none 3.71/32.15 same rounds

more distinguishers
-Comparison. (i) Similar to PRESENT, GIFT uses bit permutation, making it

impossible to search for RK-IBDs of GIFT using previous methods. (ii) To
our knowledge, the optimized RK-IDs are 48 12-round RK-ID for GIFT-64
and 96 10-round RK-IDs for GIFT-128 with no more round distinguisher
existing [20]. Thus, the RK-IBDs we found cover one more round than
the optimized RK-IDs for GIFT-64, and same as the maximum round
number of RK-IDs for GIFT-128. But there are more instances of RK-IBDs
compared to those of RK-IDs.

CHAM
-Configurations. Since CHAM uses a linear KS, we search for RT 4

3 -IBDs using a
strategy that connects related-key differentials with probability 1. Without
loss of generality, we assume that the distinguisher for E = E0 ◦ Em ◦ E1

starts from round 0. We search for (α, γ), an r0-round related-key differential
with probability 1 for E0 under the key difference µ, and (β, δ), an r2-round
related-key differential with probability 1 for (E1)−1 under the key difference
ν. Subsequently, we verify whether (γ, γ, δ, δ) is an r1-round RT 4

3 -IBD under
the key differences κ0 = κ1 = µ, κ2 = κ3 = ν by Algorithm 3; if so, then
(α, α′, β, β′) is an r0 + r1 + r2-round RK-IBD under the key difference.

-Results. The results obtained are as follows:
Block cipher Round(r) Number Time(hours) Compared with IDs
CHAM-64/128 30/31-32 3/none 0.15/0.22 4 round more
CHAM-128/256 28/29-30 4/none 0.48/0.63 2 round more

-Comparison. (i) To date, no existing methods have been able to search for
RK-IBDs on CHAM due to its use of modular additions. (ii) To our knowledge,
the maximum round number of RK-IDs for CHAM-64/128 and CHAM-128/256
are both 26 [21]. Thus, the RK-IBDs we found cover 4 and 2 more rounds
than the optimized RK-IDs for CHAM-64/128 and CHAM-128/256, respec-
tively.

GOST
-Configurations. Since GOST uses a linear KS, we search for RT 4

3 -IBDs using
the strategy that connects related-key differentials with probability 1 by Al-
gorithm 3. Specifically, according to KS, the key difference κi can be written



30 Authors Suppressed Due to Excessive Length

as κi = κi,7|| . . . ||κi,0, where κi,j for 0 ≤ j ≤ 7 is a 32-bit value. As shown in
Fig 40, 41, 42 and 43, GOST has 24-round related-key differential and 7-round
related-key differential with probability 1. To make good use of this prop-
erty, we position the distinguisher in round s from 23 to 25 and search for
the value of κ2,7 with κ0,7 = 0x800000000, κ1,7 = 0x000000000, κ3,7 = κ0,7⊕
κ1,7⊕κ2,7, such that ((0x00000000, 0x80000000), (0x80000000, 0x00000000),
(0x80000000, 0x00000000), (0x00000000, 0x80000000)) is an 2-round RT 4

3 -
IBDs. This enables us to extend the distinguisher to the full rounds. Specif-
ically, we set only 1 bit active in κ2,7. The search space size is 32.

-Results. We found two 2-round RT 4
3 -IBDs for both GOST-FB and GOST-PS

within 5 minutes. Specifically, it requires κ2,7 = 0x40000000 or κ2,7 =
0x20000000. These two RT 4

3 -IBDs can be extended to full-round distinguish-
ers for both GOST-FB and GOST-PS.

-Comparison. (i) To date, no existing methods have been able to search for
RK-IBDs on GOST due to its use of modular additions. Our results present
the first full-round RK-IBDs on GOST. As our distinguisher is full-round,
we do not compare it with other distinguishers anymore.

6.3 An applied case of derived IBDs for an RK-IBA on SKINNYee

The overview of the IBA is shown in Fig 10. Specifically, assume we have an rd-
round (RK)-IBD (α, α′, β, β′), then we propagate α, α′ rb-round backward and
propagate β, β′ rf -round forward, to get the sets ∆in, ∆′in, ∆out, ∆′out of plain-
text or ciphertext differences. To mount an attack, we construct the plaintext-
ciphertext quartets Q = {(P0, C0), (P1, C1), (P2, C2), (P3, C3)} that satisfy the
differeces within ∆in, ∆′in, ∆out, ∆′out. Then, by guessing necessary key and
partially encrypting the plaintext or decrypting the ciphertext, we can filter out
incorrect keys by IBDs, thus achieving the goal of recovering the key.

In [15], the authors proposed 22-round RK-IBDs of SKINNYee, and a 29-round
on SKINNYee based on the 22-round RK-IBD. As we find 23-round RK-IBDs,
we choose the Distinguisher 8, one of the 23-round RK-IBDs, and add 4 rounds
before the distinguisher and 4 rounds after the distinguisher to mount a 31-
round IBA on SKINNYee, where the data complexity is 266, the time complexity is
2126.6, and the memory complexity is 2104. Moreover, in the beyond full-codebook
setting [12], the data complexity, time complexity and memory complexity of 31-
round IBA on SKINNYee is 267.01, 2123.68, and 2104 respectively. The details of the
attack is given in Appendix H. As far as we known, this is the first 31-round
attack on SKINNYee and the optimized attack up to date.

7 Conclusion and Future Work

In this paper, we explore complete construct theory and hierarchical apply s-
trategy of IBDs in both single-key and related-key settings from aspects of dif-
ferential, state and generalized BTs. Additionally, we develop a SAT-based tool
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with novel strategies to automatically search for IBDs on various block cipher-
s, including SPN, Feistel, and ARX designs. The results obtained for the first
time demonstrate that our approach overcomes all limitations of current search
methods for IBDs and further reveals that IBDs can cover more rounds than IDs
in many block ciphers. Consequently, resistance against IBA becomes a crucial
consideration in block cipher designs.

It should be noted that our work only focuses on the search method for basic
IBDs with two input differences and two output differences. A more generalized
boomerang distinguisher can involve multiple input differences and output d-
ifferences; however, this aspect remains to be explored in future research. This
study also proposes to delve deeper into the integration of existing IBD construct
methods with the key recovery framework.
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A Constructing IBDs from the Aspect of generalized BTs
for Other Block Cipher Networks

A.1 Constructing IBDs based on generalized BTs for Feistel ciphers

To apply boomerang switch for Feistel ciphers, boomerang tables are proposed
accordingly.

Definition 14 ([16]). Given four differences γ, θ, λ, δ ∈ Fn2 , the FBCT, BDT
and FBET for an n-bit S-box are defined as

FBCT(γ, δ) = #
{
x ∈ Fn2 S(x)⊕ S(x⊕ γ)⊕ S(x⊕ δ)⊕ S(x⊕ γ ⊕ δ) = 0

}
,

BDT(γ, θ, δ) = #

{
x ∈ Fn2

S(x)⊕ S(x⊕ γ)⊕ S(x⊕ δ)⊕ S(x⊕ γ ⊕ δ) = 0,
S(x)⊕ S(x⊕ γ) = θ

}
,

FBET(γ, θ, δ, λ) = #

x ∈ Fn2
S(x)⊕ S(x⊕ γ)⊕ S(x⊕ δ)⊕ S(x⊕ γ ⊕ δ) = 0,
S(x)⊕ S(x⊕ γ) = θ,
S(x⊕ γ)⊕ S(x⊕ γ ⊕ δ) = λ

 .

The incompatibility of BDs resulting from the dependence in Feistel ciphers
was observed by Boukerrou et al. [16]. To address this problem, they extended
the BCT and BDT to Feistel and introduced FBCT, FBDT, and FBET. To con-
struct IBDs, we generalize FBCT and FBDT to define GFBCT, GFUBCT, and
GFLBCT. Additionally, the generalized table of FEBCT is defined identically
to that of GEBCT.

Definition 15. Given nine differences µ, µ′, ρ, ρ′, θ, θ′, ϕ, ϕ′ ∈ Fn2 where ρ′ =
µ⊕ µ′ ⊕ ρ, ϕ′ = θ⊕ θ′ ⊕ ϕ), the GFBCT, GFUBCT and GFLBCT for an n-bit
S-box is defined as
GFBCT(µ, µ′, ρ, ρ′, η) = #{(x0, x1, x2, x3) ∈ {0, 1}4n | x0 ⊕ x1 = µ, x2 ⊕ x3 =
µ′, x1 ⊕ x2 = ρ, x2 ⊕ x3 = ρ′,⊕3

i=0S(xi) = η},
GFUBCT(µ, µ′, ρ, ρ′, θ, θ′, η) = #{(x0, x1, x2, x3) ∈ F4n

2 | x0 ⊕ x1 = µ, x2 ⊕ x3 =
µ′, x1⊕x2 = ρ, x2⊕x3 = ρ′,⊕3

i=0S(xi) = η, S(x0)⊕S(x1) = θ, S(x2)⊕S(x3) =
θ′},
GFLBCT(µ, µ′, ρ, ρ′, ϕ, ϕ′, η) = #{(x0, x1, x2, x3) ∈ F4n

2 | x0⊕x1 = µ, x2⊕x3 =
µ′, x1⊕x2 = ρ, x2⊕x3 = ρ′,⊕3

i=0S(xi) = η, S(x1)⊕S(x2) = ϕ, S(x0)⊕S(x3) =
ϕ′}.

A schematic diagram for these generalized BTs is shown in Fig 11.
To illustrate the relationships among these generalized tables, we introduce

the following notations.

Notation 1. For an n-bit Feistel cipher E, let x = (xL‖xR) ∈ Fn2 be the state
of E, where xL and xR denote the left and right branches, respectively. Let
γ, γ′, η, η′ ∈ Fn2 be four input differences and ω, ω′, δ, δ′,∈ Fn2 be four output
differences of E. Then,
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LL1

SL

LL2 ⊕

LL1

SL

LL2 ⊕

LL1

SL

LL2 ⊕

LL1

SL

LL2 ⊕

γ′L||γ′R

γL||γR

δ′L||δ′R δL||δR

Fig. 11: The illustration of differential propagation rule through S-boxes in E
based on GFBCT

1. (γ, γ′)
GFBCT−−−−−→ (δ, δ′) indicates that the propagation rule through S-boxes fol-

lows GFBCT. Specifically, for an E as shown in Fig 11, let γ = γL||γR, γ′ =
γ′L||γ′R, δ = δL||δR, δ′ = δ′L||δ′R, let LL1(γL) = (at−1, . . . , a0), LL1(γL′) =
(a′t−1, . . . , a

′
0), LL1(δR) = (bt−1, . . . , b0), LL1(δ

′
R) = (b′t−1, . . . , b

′
0), and let

LL−12 (γR ⊕ γ′R ⊕ δL ⊕ δ′L) = (ct−1, . . . , c0), where LLi for i = 1, 2 are linear
layers and there are t S-boxes in SL. Thus, ai, a′i, bi, b′i and ci are the differ-
ences corresponding to GFBCT of the i-th S-box for i = 0, . . . , t− 1. Then,
(γ, γ′)

GFBCT−−−−−→ (δ, δ′) is equivalent to that there exists i ∈ {0, . . . , t−1} such
that GFBCT(ai, a

′
i, bi, b

′
i, ci) 6= 0.

2. (γ, γ′)
GFUBCT−−−−−−−→ (ω, ω′, δ, δ′) indicates that the propagation rule through S-

boxes follows GFUBCT, equivalent to (γ, γ′)
GFBCT−−−−−→ (δ, δ′) and (γ, γ′)

UDDT−−−−→
(ω, ω′).

3. (γ, γ′, η, η′)
GFLBCT−−−−−−→ (δ, δ′) indicates that the propagation rule through S-

boxes follows GFLBCT, equivalent to (γ, γ′)
GFBCT−−−−−→ (δ, δ′) and (η, η′)

LDDT−−−−→
(δ, δ′).

4. (γ, γ′, η, η′)
GEBCT−−−−−→ (ω, ω′, δ, δ′) indicates that the propagation rule through

S-boxes follows GEBCT, equivalent to (γ, γ′)
GFUBCT−−−−−−−→ (ω, ω′, δ, δ′) and

(γ, γ′, η, η′)
GFLBCT−−−−−−→ (δ, δ′).

Proposition 3. UDDT,LDDT,GFBCT,GFUBCT, GFLBCT,GEBCT have
the following relations:

1. If (γ, γ′)
GFBCT−−−−−→ (δ, δ′), then ∃η, η′, ω, ω′, s.t. (γ, γ′)

UDDT−−−−→ (ω, ω′) and
(η, η′)

LDDT−−−−→ (δ, δ′).
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2. If (γ, γ′) GFUBCT−−−−−−−→ (ω, ω′, δ, δ′), then ∃η, η′, s.t. (γ, γ′) UDDT−−−−→ (ω, ω′) and
(η, η′)

LDDT−−−−→ (δ, δ′).
3. If (γ, γ′, η, η′) GFLBCT−−−−−−→ (δ, δ′), then ∃ω, ω′, s.t. (γ, γ′) UDDT−−−−→ (ω, ω′) and

(η, η′)
LDDT−−−−→ (δ, δ′).

4. If (γ, γ′, η, η′) GEBCT−−−−−→ (ω, ω′, δ, δ′), then (γ, γ′)
UDDT−−−−→ (ω, ω′), (η, η′) LDDT−−−−→

(δ, δ′), (γ, γ′) GFUBCT−−−−−−−→ (ω, ω′, δ, δ′) and (γ, γ′, η, η′)
GFLBCT−−−−−−→ (δ, δ′).

We also consider a hybrid use of UDDT, LDDT, GFBCT, GFUBCT, GFLBCT
and GEBCT to construct IBDs. At first, we define a set of propagation rules for a
Feistel cipher E with t S-boxes (S0, . . . , St−1) in total as APFE = {(p0, . . . , pt−1)|
pi ∈ {UDDT,LDDT,GFBCT,GFUBCT, GFLBCT, GEBCT}} . Then P =
(p0, . . . , pt−1) ∈ APFE , denotes that the propagation rule through the i-th S-box
follows pi.

Definition 16. Let E = Er−1,rkr−1
◦ · · · ◦ E0,rk0(x) be an r-round Feistel ci-

pher. Let P = (P0, . . . , Pr−1) be a predefined propagation rule of E, where
Pi ∈ APFEi,rki denotes a propagation rule of Ei,rki for i ∈ {0, . . . , r − 1}. Let
εi0, ε

i
1, ε

i
2, ε

i
3 be the four input differences and εi+1

0 , εi+1
1 , εi+1

2 , εi+1
3 be the four out-

put differences of the round function Ei,rki for i ∈ {0, . . . , r − 1}. For two input
differences α, α′ and two output differences β, β′ of the block cipher E, if there
exists a trail

(ε00 = α, ε01, ε
0
2 = α′, ε03)

P0−→ · · · Pr−1−−−→ (εr0, ε
r
1 = β, εr2, ε

r
3 = β′),

then it is called an r-round TFP boomerang trail. Here, Pi−→ represents that the
propagation rule through S-boxes in Ei,rki follows Pi.

Accordingly, we have the following construction.

Construction 9 (TFP -IBD). Given an r-round Feistel cipher E and a prede-
fined rule P ∈ APFE, for two input differences α, α′ and two output differences
β, β′, if no r-round TFP boomerang trail exists, then (α, α′, β, β′) is an IBD, called
an r-round TFP -IBD.

T1-IBD is a special example of TSP -IBD.

Theorem 7. For any predefined rule P ∈ APFE, an r-round T1-IBD (α, α′, β, β′)
is an r-round TFP -IBD.

Proposition 3 demonstrates that GEBCT in Feistel block ciphers has a similar
status in SPN ciphers. Additionally, the definition of TC-IBD is also applicable
to Feistel ciphers. Thus, we have the following inclusion relationship.

Theorem 8. For any predefined rule P ∈ APFE, an r-round TFP -IBD (α, α′, β, β′)
is an r-round TC-IBD.

In addition to the relationship given in Theorem 6, we can prove that the def-
inition of TC-IBD is equivalent to that of T2-IBD for Feistel ciphers with full-
left-branch-state round-key-addition operations. A schematic diagram is shown
in Fig 17.
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Proposition 4. Given an Feistel cipher with full-left-branch-state round-key-
addition operations, (α, α′, β, β′) is an r-round TC-IBD if and only if it is an
r-round T2-IBD.

A.2 Constructing IBDs based on generalized BTs for ARX ciphers

For ARX ciphers, instead of considering the modular addition as a 2n-bit to n-
bit mapping, we regard it as an 2n×2n-bit S-box, inspired by [35]. As Illustrated
in Fig 12(a), this S-box is defined as S(x‖y) = (x�y, y). Thus, the definitions of
these S-box based generalized BTs still work for modular addition. For example,
BCT�(αl, αr, βl, βr) = #{(x, y) ∈ Fn2×Fn2 | (((x�y)⊕βl)�(y⊕βr))⊕((((x⊕αl)�
(y⊕αr))⊕βl)� (y⊕αr⊕βr)) = αl}. In doing so, the IBD construction methods
based on our generalized BTs apply to ARX ciphers as well. For example, the
SPECK cipher can be viewed as a SPN cipher when modular addition is treated as
an S-box, with round keys XORed with part of the state, as shown in Fig 12(b).

x y

x′ y′
(a)

xi yi

≫a

≪b

xi+1 yi+1

rki

Linear Layer

Non-linear Layer

Linear Layer

(b)

Fig. 12: The SPN cipher perspective of ARX cipher (SPECK)

Additionally, for non-typical SPN or Feistel like ARX ciphers, we can use
equivalent transformations to convert them into SPN or Feistel ciphers, such as
CHAM-like cipher shown in Fig 13 and GOST-like cipher shown in Fig 14. Thus, the
IBD construction methods based on our generalized BTs are still valid. Similar
to SPN and Feistel ciphers, we denote the IBD constructed based on a mixed
use of generalized BTs as TAP -IBD, and the IBD constructed based on GEBCT
as TC-IBD for ARX ciphers.

Therefore, the relationships among these construction methods are naturally
generalized to ARX ciphers as well.
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P

rki
xi yi

xi+1 yi+1

⇔

P

P−1

rki

rki

xi yi

xi+1 yi+1

Fig. 13: The SPN cipher perspective of modular addition (CHAM)

SLP

rki

⇔ SLP

rki ⊕ rki−1

Fig. 14: The Feistel cipher perspective of modular addition (GOST)

B Proofs

B.1 Proof of Theorem 1

Theorem 1

Proof (proof by contradiction). If an r-round T0-IBD (α, α′, β, β′) is not an r-
round T1-IBD, there must exist one r-round T1 boomerang trail:

(α, α′)→ · · · → (γ, γ′)(δ, δ′)︸ ︷︷ ︸
γ⊕γ′⊕δ⊕δ′=0

→ · · · → (β, β′).

But, an r-round T1 boomerang trail is an r-round T0 boomerang trail. Thus,
(α, α′, β, β′) is neither an r-round T0-IBD. ut

B.2 Proof of Theorem 2

Theorem 2

Proof (proof by contradiction). If an r-round T2-IBD (α, α′, β, β′) is not an r-
round T3-IBD, there must exist one r-round T3 boomerang trail: (x00, x01, x02, x03)→
· · · → (xr0, x

r
1, x

r
2, x

r
3), where x

i+1
j = Ei,KSi(k)(x

i
j) for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ 4.

But, an r-round T3 boomerang trail is an r-round T2 boomerang trail. Thus,
(α, α′, β, β′) is neither an r-round T2-IBD. ut
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B.3 Proof of Theorem 3

Theorem 3

Proof. (Definition 3⇒ Construction 4) Let (α, α′, β, β′) be an r-round IBD, then
any pair of plaintexts (x0, x3) cannot simultaneously satisfy Ek(x0)⊕Ek(x3) = β
and Ek(x0 ⊕ α) ⊕ Ek(x3 ⊕ α′) = β′. If (α, α′, β, β′) is not an r-round T3-IBD.
Let x00 = x0, x01 = x0 ⊕ α, x03 = x3, x02 = x3 ⊕ α′, there exist an r-round T3
boomerang trail (x00, x01, x02, x03)→ · · · → (xr0, x

r
1, x

r
2, x

r
3), where xr1 ⊕ xr2 = β and

xr0 ⊕ xr3 = β′. Thus Ek(x0) ⊕ Ek(x3) = β and Ek(x0 ⊕ α) ⊕ Ek(x3 ⊕ α′) = β′,
which is a contradiction.
(Construction 4⇒ Definition 3) Let (α, α′, β, β′) be an r-round T3-IBD. then
there is not any r-round T3 boomerang trail (x00, x01, x02, x03)→ · · · → (xr0, x

r
1, x

r
2, x

r
3).

Thus, any pair of (x00, x03) cannot simultaneously meet Ek(x00)⊕Ek(x03) = β and
Ek(x

0
0 ⊕ α)⊕ Ek(x03 ⊕ α′) = β′, which is according with Definition 3. ut

B.4 Proof of Theorem 4

Theorem 4

Proof (proof by contradiction). If ∃P ∈ APSE and an r-round T1-IBD (α, α′, β, β′)
such that it is not an r-round TSP -IBD, there must exist at least one r-round TSP
boomerang trail: (ε00 = α, ε01, ε

0
2 = α′, ε03)

P0−→ · · · Pr−1−−−→ (εr0, ε
r
1 = β, εr2, ε

r
3 = β′).

Based on the relations of tables in Proposition 1, it is also an r-round T1-IBD
boomerang trail. Thus, (α, α′, β, β′) is neither an r-round TSP -IBD. ut

B.5 Proof of Theorem 5

Theorem 5

Proof (proof by contradiction). If an r-round TSP -IBD (α, α′, β, β′) is not an
r-round TC-IBD, there must exist at least one r-round TC boomerang trail:
(ε00, ε

0
1, ε

0
2, ε

0
3)

GEBCT−−−−→ · · · GEBCT−−−−→ (εr00 , ε
r0
1 , ε

r0
2 , ε

r0
3 )

GEBCT−−−−→ (εr0+1
0 , εr0+1

1 , εr0+1
2 , εr0+1

3

)
GEBCT−−−−→ · · · GEBCT−−−−→ (εr0, ε

r
1, ε

r
2, ε

r
3). Based on the relations of tables in Propo-

sition 1, it is also an r-round TSP boomerang trail. Thus, (α, α′, β, β′) is neither
an r-round TC-IBD. ut

B.6 Proof of Theorem 6

Theorem 6

Proof (proof by contradiction). If an r-round TC-IBD (α, α′, β, β′) is not an r-
round T2-IBD, there must exist one r-round T2 boomerang trail: (x00, x01, x02, x03)→
· · · → (xr0, x

r
1, x

r
2, x

r
3), where x0 ⊕ x1 = α, x2 ⊕ x3 = α′, y1 ⊕ y2 = β, y0 ⊕ y3 = β′

and xi+1
j = Ei,rki(x

i
j) for 0 ≤ i ≤ r − 1, 0 ≤ j ≤ 4 and (rk0, · · · , rkr−1) ∈ (Fl2)r.

For each operation in Ei,rki , we can obtain a trail that conform to its differ-
ential propagation rule by XORing the input and output states. Especially for
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Fig. 15: The equivalence between TC-IBD and T2-IBD in SPN ciphers with full-
state round-key-addition operations

the S-box operation, we can derive the four input differences and four output
differences that are consistent with GEBCT accordingly. Thus, this r-round T2
boomerang trail is also an r-round TC boomerang trail. Thus, (α, α′, β, β′) is
neither an r-round TC-IBD. ut

B.7 Proof of Proposition 2

Proposition 2

Proof. The schematic diagram is given in Fig 15. This is equivalent to prove
that (ε00, ε
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0
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1
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AK→
· · · GEBCT→ (δr−10 , δr−11 , δr−12 , δr−13 ) is an r-round TC boomerang trail if and only
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AK→ · · · SL→
(zr−10 , zr−11 , zr−12 , zr−13 ) is an r-round T2 boomerang trail, where α = ε00, α

′ =
ε02, β = εr−11 , β′ = εr−13 , and α = x00 ⊕ x01, α′ = x02 ⊕ x03, β = zr−11 ⊕ zr−12 and
β′ = zr−10 ⊕ zr−13 . In particular, we prove this in the case of r = 3. The other
cases can be proved analogously. Suppose (ε00, ε01, ε02, ε03)

AK→ (γ00 , γ
0
1 , γ

0
2 , γ

0
3)

GEBCT→
(δ00 , δ

0
1 , δ

0
2 , δ

0
3)

LL→ (ε10, ε
1
1, ε

1
2, ε

1
3)

AK→ · · · GEBCT→ (δ20 , δ
2
1 , δ

2
2 , δ

2
3) is an 3-round TC

boomerang trail. Since (γi0, γi1, γi2, γi3)
SL, GEBCT→ (δi0, δ

i
1, δ

i
2, δ

i
3), there exists (yi0, yi1,

yi2, y
i
3) and (zi0, z

i
1, z

i
2, z

i
3), such that

yi0 ⊕ yi1 = γi0, y
i
1 ⊕ yi2 = γi1, y

i
2 ⊕ yi3 = γi2, y

i
0 ⊕ yi3 = γi3,

zi0 ⊕ zi1 = δi0, z
i
1 ⊕ zi2 = δi1, z

i
2 ⊕ zi3 = δi2, z

i
0 ⊕ zi3 = δi3.
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Fig. 16: The relation between GFBCT and UDDT

Let x0i = y0i ⊕rk0 (0 ≤ i ≤ 3) and rkj = LL(zj−1x )⊕yji (0 ≤ i ≤ 3, j = 1, 2), then
(x00, x

0
1, x

0
2, x

0
3)

AK→ (y00 , y
0
1 , y

0
2 , y

0
3)

SL→ (z00 , z
0
1 , z

0
2 , z

0
3)

LL→ (x10, x
1
1, x

1
2, x

1
3)

AK→ · · · SL→
(zr−10 , zr−11 , zr−12 , zr−13 ) is an 3-round T2 boomerang trail. The above process is
invertible. ut

B.8 Proof of Proposition 3

Proposition 3

Proof. As shown in Fig 16, let li be the linear function of LLi(i = 1, 2), γ =
γL||γR, γ′ = γ′L||γ′R, δ = δL||δR, and δ′ = δ′L||δ′R. (at−1, . . . , a0) = l1(γL),
(a′t−1, . . . , a

′
0) = l1(γL′), (bt−1, . . . , b0) = l1(δR), (b′t−1, . . . , b

′
0) = l1(δ

′
R), and

(ct−1, . . . , c0) = l−12 (γR⊕γ′R⊕δL⊕δ′L), where ai, a′i, bi, b′i and ci are the input or
the output difference of the S-box in SL and t is the number of the S-boxes in
SL. For the input differences ai and a′i, according to the definition of GFBCT,
there exist output differences di and d′i, such that ai propagates to di and ai
propagates to di, and di ⊕ d′i = ci(0 ≤ i ≤ t − 1). Let λ = l2((dt−1, . . . , d0))
and λ′ = l2((d

′
t−1, . . . , d

′
0)), then γR ⊕ γ′R ⊕ δL ⊕ δ′L = λ ⊕ λ′. Therefore, there

exist λ and λ′ with γR ⊕ γ′R ⊕ δL ⊕ δ′L = λ⊕ λ′, such that the difference γ can
propagate to the difference (γR ⊕ λ)||γL, and the difference γ′ can propagate to
the difference (γ′R ⊕ λ′)||γ′L. That is, (γ, γ′)

UDDT−−−−→ ((γR ⊕ λ)||γL, γ′R ⊕ λ′)||γ′L).
For other relations, we can prove them similarly.

B.9 Proof of Theorem 7

Theorem 7
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Fig. 17: The equivalence between TC-IBD and T2-IBD in Feistel cipher with full-
left-branch-state round- key-addition operations

Proof (proof by contradiction). If ∃P ∈ APFE and an r-round T1-IBD ((α, α′) , (β,
β′)) such that it is not an r-round TFP -IBD, there must exist at least one r-round

TFP boomerang trail: (ε00 = α, ε01, ε
0
2 = α′, ε03)

P0−→ · · · Pr−1−−−→ (εr0, ε
r
1 = β, εr2, ε

r
3 =

β′). Based on the Proposition 3, the TFP boomerang trail is also an r-round T1-
IBD boomerang trail. Thus, (α, α′, β, β′) is neither an r-round TFP -IBD. ut

B.10 Proof of Theorem 8

Theorem 8

Proof (proof by contradiction). If an r-round TFP -IBD (α, α′, β, β′) is not an
r-round TC-IBD, there must exist at least one r-round TC boomerang trail:
(ε00, ε

0
1, ε

0
2, ε

0
3)

GEBCT−−−−→ · · · GEBCT−−−−→ (εr00 , ε
r0
1 , ε

r0
2 , ε

r0
3 )

GEBCT−−−−→ (εr0+1
0 , εr0+1

1 , εr0+1
2 ,

εr0+1
3 )

GEBCT−−−−→ · · · GEBCT−−−−→ (εr0, ε
r
1, ε

r
2, ε

r
3). Based on the Proposition 3, it is also an

r-round TSP boomerang trail. Thus, (α, α′, β, β′) is neither an r-round TC-IBD.
ut
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B.11 Proof of Proposition 4

Proposition 4

Proof. As shown in Fig 17, this is equivalent to prove that ((ε00, ε01, ε02, ε03),
(ω0
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0
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0
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0
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GEBCT→ · · · GEBCT→ · · · GEBCT→ ((εr0, ε
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r
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r
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an r-round TC boomerang trail if and only if ((x00, x01, x02, x03), (y00 , y01 , y02 , y03))→
· · · → · · · → ((xr0, x

r
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r
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r
3),

(yr0, y
r
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r
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r
3)) is an r-round T2 boomerang trail, where (αL, αR) = (ε00, ω

0
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r
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(x00⊕x01, y00⊕y01), (α′L, α′R) = (x02⊕x03, y02⊕y03), (βL, βR) = (xr0⊕xr2, yr0⊕yr2), and
(β′L, β

′
R) = (xr1⊕xr3, yr1⊕yr3). In particular, we prove this in the case of r = 3. The

other cases can be proved analogously. Suppose ((ε00, ε
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Let lj be the linear function of LLj(j = 1, 2), (zi0, zi1, zi2, zi3) = l−11 (ui0, u
i
1, u

i
2, u

i
3),

and (wi0, w
i
1, w

i
2, w

i
3) = l2(v

i
0, v

i
1, v

i
2, v

i
3). Then zi0⊕zi1 = xi0⊕xi1, zi1⊕zi2 = xi1⊕xi2,

zi2⊕zi3 = xi2⊕xi3, and zi0⊕zi3 = xi0⊕xi3. Let rki = xi0⊕zi0, then rki = xij⊕zij(0 ≤
j ≤ 3). Let xi+1

j = wij ⊕ yij(0 ≤ j ≤ 3), then ((x00, x
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The above process is invertible. ut

C The Algorithm of Searching for (RK-)IBDs

C.1 Scheduling algorithm for searching (RK-)IBDs based on
hierarchical apply strategy

A brief illustration is as follows.

- For the input, the set SD consists of the (RK-)IBDs that are permitted to be
searched. This set can include all types or a subset of (RK-)IBDs.

- Line 4: We employ multi-process technology to measure the time for each (RK-
)IBD type within SD. If the size of SD exceeds Nmax, we process these types
in batches accordingly.

- Line 6: We select IBD types whose corresponding processes have completed
the determination of all sampling points within the time limit, and record
them as set SDC . Then, based on the IBD construction theory we have
established in Summary 1 and Summary 2, we will select the IBD types
with the highest level of coverage from set SDC as the final search type of
(RK-)IBDs. Here, we use the local execution results to identify the target
(RK-)IBD type, which is justified by our observation that the running times
of individual elements show minimal variation throughout the search space.
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Finally, Algorithm 1 returns the target type of (RK-)IBDs for further automatic
search.

Algorithm 1: Scheduling algorithm for searching r-round (RK-)IBD
Input: set of (RK-)IBD types SD, search space of input and output

differences SP, time limit Tmax, maximum number of processes
Nmax, number of sampling points Np, number of rounds r

Output: search type of (RK-)IBDs
1 Construct models for each type of (RK-)IBD in SD
2 Randomly select Np elements from SP as sampling points.
3 Invoke Nmax processes simultaneously, with each process evaluating one
type of (RK-)IBD in SD within the time limit Tmax by determining
whether the sampling points are r-round (RK-)IBD.

4 Create a table Ta to record the running time for each process. Determine
the search type of (RK-)IBDs according to Ta.

5 return determine (RK-)IBD

C.2 The algorithm of searching for (RK-)IBDs from the aspect of
differential propagation

Without ambiguity, we simplify the state full-round-update function and round
key generation function in i-round of key schedules to KS and KSi in this paper.

A brief illustration of Algorithm 2 is as follows.

- Due to potential contradictions in IBDs at different rounds, ru is included as
an input parameter in Algorithm 2.

- Line 2-5: BuildUpDP(r, x, z, kx, kz) establishes the relations of upper trial by

differential propagation for x E0,kx−−−−→ z and kx KS0

−−→ kz.
BuildLowDP(r, y, z, kx, kz, ky) establishes the relations of lower trail by dif-

ferential propagation for y
(E1)−1,kx−−−−−−−→ z, kx KS0

−−→ kz and kx KS−−→ ky according
to the modeling methods provided in Section 5.1. Here, x, z, y denote the vari-
ables for differences in E, and kx, kz, ky denote the variables for differences
in KS.

- Line 6: DiffConnectBD(z01, z23, z12, z03) sets z01 ⊕ z23 ⊕ z12 ⊕ z03 = 0 based
on BD definition.

- Line 7: DiffConnectKey(kz01, kz23, kz12, kz03) sets kz01⊕kz23⊕kz12⊕kz03 = 0
according to a trivial two-round XOR elimination of kz0, kz1, kz2, kz3.

- Line 8-10: SetDiffIn, SetDiffOut and SetDiffKey assign the latter part’s pa-
rameter values to the former part’s variables of input differences, output
differences and key differences.
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Algorithm 2: Search Model for (R)T0-IBD or (R)T1-IBD
Input: input differences (α, α′), output differences (β, β′), key differences

(κ0, κ1, κ2, κ3) with κ3 = κ0 ⊕ κ1 ⊕ κ2, E’s round number r, E0’s
round number ru

Output: Model C
1 Declare six variables of input differences x01, x23, kx01, kx23, kx12, kx03
and four variables of output differences y12, y03, ky12, ky03; Declare eight
intermediate variables of differences z01, z23, z12, z03 and
kz01, kz23, kz12, kz03

2 C0 ← BuildUpDP(ru, x01, z01, kx01, kz01)
3 C1 ←BuildUpDP(ru, x23, z23, kx23, kz23)
4 C2 ←BuildLowDP(r − ru, y12, z12, kx12, kz12, ky12)
5 C2 ←BuildLowDP(r − ru, y03, z03, kx03, kz03, ky03)
6 C4 ←DiffConnectBD(z01, z23, z12, z03)
7 C5 ←DiffConnectKey(kz01, kz23, kz12, kz03)
8 C6 ←SetDiffIn(x01, x23, α, α′)
9 C7 ←SetDiffOut(y12, y03, β, β′)

10 C8 ←SetDiffKey(kx01, kx23, kx12, kx03, κ0, κ1, κ2, κ3)
11 C ← [C0, C1, C2, C3, C4, C5, C6, C7, C8, C9]
12 return C

Finally, Algorithm 2 returns Model C to the SAT solver and identifies an IBD
if no solution exists.

C.3 The algorithm of searching for (RK-)IBDs from the aspect of
state propagation

A brief illustration of Algorithm 3 is as follows.

- Line 2: BuildRK (r, kx0, kx1, kx2, kx3) generates the round keys and establishes
their relations: For T2-IBD, rk0,i = rk1,i = rk2,i = rk3,i for i = 0, . . . , r − 1.
For RT3-IBD, rkj,i = KSi(kxj) for j = 0, 1, 2, 3, i = 0, . . . , r − 1.

- Line 3-6: BuildSP(r, xj , yj , rkj) establishes the relations of state propagation
of Er−1,rkj,r−1

◦ · · · ◦ E0,rkj,0(xj) = yj according to the modeling methods
provided in Section 5.2. Here, x, y denote the variables for state in E.

- Line 7: SetStateIn(x0, x1, x2, x3, α, α′) sets x0 ⊕ x1 = α, x2 ⊕ x3 = α′.
- Line 8: SetStateOut(y0, y1, y2, y3, β, β′) sets y1 ⊕ y2 = β, y0 ⊕ y3 = β′.
- Line 9: SetStateKey(kx0, kx1, kx2, kx3, κ0, κ1, κ2, κ3) sets kx0⊕kx1 = κ0, kx2⊕

kx3 = κ1, kx1 ⊕ kx2 = κ2, kx0 ⊕ kx3 = κ3.

Finally, Algorithm 3 returns Model C to SAT solver and identifies an IBD if no
solution exists.
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Algorithm 3: Search Model for T2-IBD and (R)T3-IBD
Input: input differences (α, α′), output differences (β, β′), key differences

(κ0, κ1, κ2, κ3) with κ3 = κ0 ⊕ κ1 ⊕ κ2, E’s round number r
Output: Model C

1 Declare eight input variables x0, x1, x2, x3, kx0, kx1, kx2, kx3, four output
variables y0, y1, y2, y3, and 4r immediate variables rk0,i, rk1,i, rk2,i, rk3,i
for round keys

2 C0, rk0, rk1, rk2, rk3 ← BuildRK (r, kx0, kx1, kx2, kx3, ky0, ky1, ky2, ky3)
3 C1 ← BuildSP(r, x0, y0, rk0)
4 C2 ← BuildSP(r, x1, y1, rk1)
5 C3 ← BuildSP(r, x2, y2, rk2)
6 C4 ← BuildSP(r, x3, y3, rk3)
7 C5 ← SetStateIn(x0, x1, x2, x3, α, α′)
8 C6 ← SetStateOut(y0, y1, y2, y3, β, β′)
9 C7 ← SetStateKey(kx0, kx1, kx2, kx3, κ0, κ1, κ2, κ3)

10 C ← [C0, C1, C2, C3, C4, C5, C6, C7, C8]
11 return C

C.4 The algorithm of searching for (RK-)IBDs from the aspect of
generalized BTs

A brief illustration of Algorithm 3 is as follows.

- Line 2: BuildRK (r) generates the round key differences for i = 0, . . . , r−1 and
establishes their relations: For TC-IBD, rk01,i = rk23,i = rk12,i = rk03,i = 0.
For RTC-IBD, if the round key differences are generated by differential prop-
agation, declare four variables of input differences kx01, kx23, kx12, kx03 of
the key schedule, and set C ←SetDiffKey(kx01, kx23, kx12, kx03, κ0, κ1, κ2, κ3)
and kx01

KSi−−→ rk01,i, kx23
KSi−−→ rk23,i, kx12

KSi−−→ rk12,i, kx03
KSi−−→ rk03,i;

if the round key differences are generated by state propagation, declare
four variables of input states kx0, kx1, kx2, kx3 of the key schedule, and set
C ← SetStateKey(kx0, kx1, kx2, kx3, κ0, κ1, κ2, κ3) and rk01,i = KSi(kx0)⊕
KSi(kx1), rk23,i = KSi(kx2) ⊕ KSi(kx3), rk12,i = KSi(kx1) ⊕ KSi(kx2),
rk03,i = KSi(kx0)⊕KSi(kx3).

- Line 3-6, 9-12: BuildDPΛ(y, x, rk) establishes the relations of Λ operation,
operations except SL, by differential propagation of y Λ,rk−−−→ x according to
the modeling methods provided in Section 5.1.

- Line 8:Ci0 ← BuildSPSL(x01,i, x23,i, x12,i, x03,i, y01,i, y23,i, y12,i, y03,i) estab-
lishes the relations of SL operation based on GEBCT for S-boxes, which
is simulated by state propagation as follows: Declare 4 immediate variables
of input states of SL operations x0,i, x1,i, x2,i, x3,i and 4 immediate variables
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Algorithm 4: Search Model for (R)TC-IBD
Input: input differences (α, α′), output differences (β, β′), key differences

(κ0, κ1, κ2, κ3) with κ3 = κ0 ⊕ κ1 ⊕ κ2, E’s round number r
Output: Model C

1 Declare two variables of input differences in01, in23, in12, in03 and two
variables of output differences out01, out23, out12, out03. Declare 4(r + 1)
immediate variables of round key differences rk01,i, rk23,i, rk12,i, rk03,i.
Declare 4r immediate variables of input differences of SL operations
x01,i, x23,i, x12,i, x03,i and 4r immediate variables of output differences of
SL operations y01,i, y23,i, y12,i, y03,i

2 Cr0, rk01, rk23, rk12, rk03 ← BuildRK (r)
3 Cr1 ← BuildDPΛ(in01, x01,i, rk01,0)
4 Cr2 ← BuildDPΛ(in23, x23,i, rk01,0)
5 Cr3 ← BuildDPΛ(in12, x12,i, rk12,0)
6 Cr4 ← BuildDPΛ(in03, x03,i, rk03,0)
7 for i=0,. . . ,r-1 do
8 Ci0 ← BuildSPSL(x01,i, x23,i, x12,i, x03,i, y01,i, y23,i, y12,i, y03,i)
9 Ci1 ← BuildDPΛ(y01,i, x01,i+1, rk01,i+1)

10 Ci2 ← BuildDPΛ(y23,i, x23,i+1, rk23,i+1)
11 Ci3 ← BuildDPΛ(y12,i, x12,i+1, rk12,i+1)
12 Ci4 ← BuildDPΛ(y03,i, x03,i+1, rk03,i+1)

13 end
14 Cp0 ←SetDiffIn(x01, x23, α, α′)
15 Cp1 ←SetDiffOut(y12, y03, β, β′)
16 C ← [Cp0, Cp1, Ci1, Ci2, Ci3, Ci4 for i = 0, . . . , r]
17 return C

of output states of SL operations y0,i, y1,i, y2,i, y3,i, and set
yj,i = SL(xj,i) for j = 0, 1, 2, 3,

x0,i ⊕ x1,i = x01,i, x2,i ⊕ x3,i = x23,i, x1,i ⊕ x2,i = x12,i, x0,i ⊕ x3,i = x03,i,

y0,i ⊕ y1,i = y01,i, y2,i ⊕ y3,i = y23,i, y1,i ⊕ y2,i = y12,i, y0,i ⊕ y3,i = y03,i

- Line 14-15: SetDiffIn and SetDiffOut assign the latter part’s parameter values
to the former part’s variables of input differences and output differences.

Finally, Algorithm 4 returns Model C to SAT solver and identifies an IBD if no
solution exists. Search Model for (R)TP -IBDs is similar.

D Specifications of Block Ciphers

Only brief descriptions of block ciphers for applications are given here. For more
details, please refer to their corresponding references.
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D.1 Specifications of AES-128

AES [17] is one of the most renowned block ciphers worldwide. Its design
philosophy has had a profound impact on block ciphers. AES is a 128-bit block
cipher that supports key sizes of 128, 192, and 256 bits, and the S-box size is
8 bits. It is an SPN cipher that employs the MDS matrix to achieve excellent
diffusivity. The internal state is regarded as a square array of bytes as follows,
where si ∈ F8

2 (0 ≤ i ≤ 15).

S =


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 .

AK SB SR MC

Fig. 18: One round of block cipher AES

One encryption round of AES is depicted in Fig 18, and it consists of the
following four operations:

- AddRoundKey(AK): The round key derived from the key schedule is XORed
with the state.

- SubBytes(SB): Applying the 8-bit S-box to each byte in parallel to the cipher’s
internal state.

- ShiftRows(SR): The i-th rows (0 ≤ i ≤ 3) of the internal state is rotated by i
bytes form right to left.

- Mix-Column(MC): Each column of the internal state is multiplied by the MDS
matrix.

AES-128 is AES block cipher with 128-bit key. The key schedule of AES-128
is shown as Fig 19. The function g is a 32-bit to 32-bit function which consists
of:

– Perform a right rotation of the input by 1 byte.
– Process all four bytes of this rotated input using the AES S-box.
– Add a fixed round coefficient to the output of the first S-box.

D.2 Specifications of DES

DES [23] is one of the earliest block ciphers to gain widespread adoption. It
was standardized for use in a variety of applications, thereby becoming a pioneer
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g

Fig. 19: The key schedule of AES-128

in bringing encryption to a broader range of users, including those in commercial
and civilian sectors. DES is a 64-bit block cipher with a real key size of 56 bits.
It employs eight distinct non-bijective S-boxes where the input of each S-box is
6 bits, and the output is 4 bits. DES adopts the Feistel network.

One round of DES is depicted in Fig 20, the round function acts on a 32-bit
branch at a time and is composed of four stages:

- Expansion (EX): The 32-bit half-block is expanded to 48 bits through the
expansion permutation by duplicating half of its bits.

- Key mixing: The result is XORed with a round key. Sixteen 48-bit round keys,
one per round, are derived from the main key via the key schedule.

- Substitution (SL): The eight 6-bit chunks of the state are non-linearly trans-
formed by eight distinct S-boxes. The output of each S-box is only 4 bits in
length.

- Permutation (P): This is a fixed permutation of the output of the substitution
layer, which guarantees diffusion.

EXSLP

rkr

Fig. 20: One round of block cipher DES

The key schedule divides the 56 effective bits of the key into two 28-bit halves.
The function responsible for partitioning the bits is named PC1. Each of these
two halves is cyclically rotated by a fixed amount in each round. The amount
of rotation is either one or two bits depending on the round. The sequence of
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rotation amounts is irregular. Specifically, in round s 1, 2, 9, and 16, the rotation
amount is one bit, while in all other rounds, it is two bits. From the two rotated
28-bit halves, 48 bits are selected, with 24 bits from each half, by using a fixed
function called PC2 to form the round key.

D.3 Specifications of PRESENT-80

PRESENT [24] is a notable lightweight block cipher. It is extremely crucial for
resource-constrained devices such as RFID tags and sensor nodes in the Internet
of Things (IoT). As of now, it acts as a benchmark for new lightweight ciphers
in terms of security and efficiency. PRESENT-80 is one version of PRESENT. It has
a block size of 64 bits, a key size of 80 bits, and a S-box size of 4 bits. It is an
SPN cipher that makes use of the operation of bit permutation.

Table 2: The S-box of PRESENT.
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 12 5 6 11 9 0 10 13 3 14 15 8 4 7 1 2

S S S S S S S S S S S S S S S S

rki

Fig. 21: One round of block cipher PRESENT

One round of PRESENT is depicted in Fig 21, the round function of it involves
an XOR with the round key, the application of a 4-bit S-box (as shown in Table 2)
in parallel to the state and a bit permutation.

For the key schedule of PRESENT-80, the master key is stored in a register K
and is represented as k79k78 · · · k0. At round i, the round key Ki consists of the
64 leftmost bits of the current content of the register Ki = k79k78 . . . k16. Once
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the round key is extracted, the register K is updated in the following way:

[k79k78 . . . k1k0] = [k18k17 . . . k20k19]

[k79k78k77k76] = S [k79k78k77k76]

[k19k18k17k16k15] = [k19k18k17k16k15]⊕ round_counter.

D.4 Specifications of PRINTcipher48

PRINTcipher [25] enjoys a prominent status in the realm of lightweight
cryptography. It is elaborately designed for settings with intense resource con-
straints. To date, it has rendered substantial contributions to the exploration
and development of security solutions specifically targeted at low-power devices.
PRINTcipher48 is one version of PRINTcipher. It has a block size of 48 bits, a
key size of 80 bits, and an S-box size of 3 bits. It is an SPN cipher that makes
use of the operation of key-dependent bit permutation.

P P P P P P P P P P P P P P P P

S S S S S S S S S S S S S S S S

rki

rci

Fig. 22: One round of block cipher PRINTcipher48

One round of PRINTcipher48 is shown in Fig 22, the round function of it
involves an XOR with the round key, a bit permutation, an XOR with the round
constant, the key-dependent bit permutation and the application of a 3-bit S-box
in parallel to the state.

The key schedule of PRINTcipher48 is rather simple, it uses the same key
for all rounds.

D.5 Specifications of SPECK

SPECK [26] is an important player in the field of lightweight cryptography. It
has emerged as a notable algorithm in the family of block ciphers. It has been
recognized for its suitability for use in resource-constrained environments, which
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has given it a distinct place in modern cryptographic research and development.
The SPECK is usually denoted as SPECK-n/m where n, m are block size and
key size respectively in bits, and SPECK-n if the key length does not need to
be specified, where the parameters n and m are shown in Table 3. SPECK is an
add-rotate-xor (ARX) cipher with operations modular addition and so on.

xi yi

≫a

≪b

xi+1 yi+1

rki

Fig. 23: One round of SPECK

block size n key size m

32 64

48 72
96

64 96
128

96 96
144

128 128
192
256

Table 3: Parameters n,m of
SPECK.

One round of SPECK is shown in Fig 23, the round function of it involves a
modular addition �, bitwise-xor ⊕, left circular shift≪, and right circular shift
≫, where (a, b) = (7, 2) for SPECK-32 and (a, b) = (8, 3) for other versions.

For the key schedule, the master key k is written as k = (lt−2, . . . , l0, k0),
where t = 2m/n. The ki and li are defined by

li+m−1 = (ki + (li≫a)⊕ i,
ki+1 = ki≪b ⊕li+m−1.

The value ki is the i-th round key.

D.6 Specifications of SKINNY

SKINNY [27] is a family of tweakable block ciphers designed within TWEAKEY
framework. The SKINNY family encompasses 6 distinct versions, which are des-
ignated as SKINNY-n-NT · n. Here, n ∈ {64, 128} represents the block size, and
NT ∈ {1, 2, 3} indicates the number of n-bit tweakey state For SKINNY-64, the
cell size c is 4, while for SKINNY-128, the cell size c is 8. The ordering of the



56 Authors Suppressed Due to Excessive Length

TKSr,0
PT

TKSr,1
PTLFSR1

TKSr,2
PTLFSR2

⊕
Xr

SC

Yr

AC
TKr

Zr

SR

Wr

MC

Xr+1

Fig. 24: One round of block cipher SKINNY

internal state and the tweakey state is represented by a 4× 4 matrix:

S =


s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

 .

One round of SKINNY-n-3n is shown in Fig 24. It uses three tweaks TKS0,0,
TKS0,1 and TKS0,2 to derive the tweakey. Besides, SKINNY-n-n uses TKS0,0

to derive the tweakey, and SKINNY-n-2n uses TKS0,0 and TKS0,1 to derive the
tweakey. One round of SKINNY consists of the following five operations:

- SubCell(SC): Applying the 4-bit S-box to each byte in parallel to the cipher’s
internal state.

- AddConstant(AC): The constant is XORed with the state.
- AddRoundTweakey(ART): There are NT tweak states TKSr,i(0 ≤ i ≤ NT −

1), the first and second row of TKSr,0 ⊕ · · · ⊕ TKSr,NT−1 is the tweakey
TKr that XORed with the first and second row of the state. At round r, the
first and second row of tweak states TKSr,i(1 ≤ i ≤ NT − 1) are updated
by LFSRi cell by cell first, then the tweak states TKSr,i(0 ≤ i ≤ NT ) are
updated by a cell permutation PT .

- ShiftRow(SR): The i-th rows (0 ≤ i ≤ 3) of the internal state is rotated by i
bytes form left to right.

- MixColumn(MC): Each column of the internal state is multiplied with the
matrix.

D.7 Specifications of SKINNYee



Impossible Boomerang Distinguishers Revisited 57

TKSr,0
PT

TKSr,1
PTLFSR1

TKSr,2
PTLFSR2

TKSr,3
PTLFSR3

⊕
Xr

SC

Yr

AC
TKr

Kr mod 4

Zr

SR

Wr

MC

Xr+1

Fig. 25: One round of block cipher SKINNYee

SKINNYee [28] is tweakable block cipher, its block size is 64-bit and the key
size is 128-bit. One round of SKINNYee is shown in Fig 25, and it consists of the
following six operations:

- SubCell(SC): Applying the 4-bit S-box to each byte in parallel to the cipher’s
internal state.

- AddConstant(AC): The constant is XORed with the state.
- AddRoundTweak(ART): There are 4 tweak states TKSr,i(0 ≤ i ≤ 3), the first

and second row of TKSr,0 ⊕ TKSr,1 ⊕ TKSr,2 ⊕ TKSr,3 is the tweak TKr

that XORed with the first and second row of the state. At round r, the first
and second row of tweak states TKSr,i(1 ≤ i ≤ 3) are updated by LFSRi
cell by cell first, then, the tweak states TKSr,i(0 ≤ i ≤ 3) are updated by a
cell permutation PT .

- AddRoundKey(ARK): The 128 bits master keyMK is divided into four 32-bit
round keys K0,K1,K2 and K3, and XORed with the third and fourth row
of the state in turn.

- ShiftRow(SR): The i-th rows (0 ≤ i ≤ 3) of the internal state is rotated by i
bytes form left to right.

- MixColumn(MC): Each column of the internal state is multiplied with the
matrix.

D.8 Specifications of GIFT
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GIFT [29] has solidly positioned itself as a significant constituent in the realm
of lightweight cryptography. With its design focused on efficient resource usage,
it stands apart from a plethora of cryptographic algorithms. It has garnered ac-
claim as a contemporary and superbly crafted block cipher and is being seriously
considered for applications where both security and efficiency hold paramount
significance. GIFT comes in two versions: GIFT-64 and GIFT-128. GIFT-64 is a
64-bit block cipher with a 128-bit master key. GIFT-128 is a 128-bit block ci-
pher also with a 128-bit master key. Both of these versions are SPN ciphers that
utilize the operation of bit permutation.

S S S S S S S S S S S S S S S S

rki
rci

Fig. 26: One round of block cipher GIFT-64

One round of GIFT-64 is shown in Fig 26, the round function of it involves
the application of a 4-bit S-box in parallel to the state, a bit permutation, and
an XOR with the round key. In particular, in i-th round, for the 64-bit state
sj(0 ≤ j ≤ 63), the 32-bit round key rki = u||v = u15 . . . u0||v15 . . . v0 is XORed
to the state as b4j+1 ← b4j+1 ⊕ uj , b4j ← b4j ⊕ vj , (0 ≤ j ≤ 15).

One round of GIFT-128 is similar to GIFT-64, the round function of it involves
the application of a 4-bit S-box in parallel to the state, a bit permutation, and
an XOR with the round key. In particular, in i-th round, for the 128-bit state
sj(0 ≤ j ≤ 128), the 64-bit round key rki = u||v = u31 . . . u0||v31 . . . v0 is XORed
to the state as b4j+1 ← b4j+1 ⊕ uj , b4j+2 ← b4j+2 ⊕ vj , (0 ≤ j ≤ 31).

For both versions of GIFT, the 128-bit master key k is denoted as k =
k7||k6|| . . . ||k1||k0, the key is updated as follows,

k7 ‖k6‖ . . . ‖k1‖ k0 ← k1≫2 ‖k0≫2‖ . . . ‖k3‖ k2,

where ≫i is an i bits right rotation within a 16-bit word. For GIFT-64, the
32-bit round key rki = u||v is derived as u← k1 and v ← k0. For GIFT-128, the
64-bit round key rki = u||v is derived as u← k5||k4 and v ← k1||k0.

D.9 Specifications of CHAM
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CHAM [30] is a family of block ciphers that is suitable for devices with limited
resources, such as Internet of Things (IoT) devices and embedded systems. Its
design has been optimized to have relatively low requirements for computational
power, memory, and energy consumption. Each cipher in this family is denoted
by CHAM-n/m, where n represents the block size and m represents the key size.
Table 4 presents the list of ciphers within the family along with their parameters.
Here, w denotes the bit length of a branch, and r represents the new number
of rounds, respectively. CHAM adopts the 4-branch generalized Feistel with the
operation modular addition.

Table 4: List of CHAM ciphers and their parameters.
Cipher n m w r

CHAM-64/128 64 128 16 88

CHAM-128/128 128 128 32 112

CHAM-128/256 128 256 32 120

wi

zi

yi

xi

wi+1

zi+1

yi+1

xi+1≪8

≪1

rki mod (2k/w)

i

wi+2

zi+2

yi+2

xi+2≪1

≪8

rk(i+1) mod (2k/w)

i+ 1

Fig. 27: Two consecutive rounds of block cipher CHAM beginning with the even
i-th round

As shown in Fig 27, CHAM-n/k encrypts four w-bit words (x0, y0, z0, w0) to
four w-bit words (xr, yr, zr, wr). To be more specific, in the i-th round (0 ≤ i < r)

(xi+1, yi+1, zi+1, wi+1)←
(
yi, zi, wi,

(
(xi ⊕ i)�

(
(yi≪ αi)⊕ rki mod 2k/w

))
≪ βi

)
,

where αi = 1 and βi = 8 when i mod 2 = 0 and αi = 8 and βi = 1 when
i mod 2 = 1, and rki mod 2k/w is the round key.

The key schedule of CHAM-n/k takes k/w secret keys K[0], K[1], · · · ,K[k/w−
1] and generates 2k/w w-bit round keys rk0, rk1, · · · , rk2k/w−1. The round keys
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are generated in the following way:

rki ←− K[i]⊕ (K[i]≪ 1)⊕ (K[i]≪ 8),
rk(i+k/w)⊕1 ←− K[i]⊕ (K[i]≪ 1)⊕ (K[i]≪ 11),

where 0 ≤ i < k/w.

D.10 Specifications of GOST

GOST 28147-89 has been used in a variety of applications in Russia and some
other regions with historical or technological ties to Russia. It has been imple-
mented in government and military communication systems, as well as in some
financial and industrial applications where data security is of great importance.
GOST is a block cipher with a 64-bit block size and a 256-bit key size. It consists
of 32 Feistel rounds and adopts the operation modular addition. As depicted in
Fig 28, the i-th round is defined as follows:

FKi (XL, XR) = (XR, XL⊕≪11 (S (XR �Ki))) ,

where ⊕ denotes bit-wise XOR and � denotes modular addition modulo 232,
≪11 (A) denotes cyclic left-rotation of A by 11 bits for 32-bit word A, Ki

denotes the round key, and S is an S-box layer of eight 4 bits S-boxes, these
S-boxes can be either public or secret and are not necessarily permutations.

In our work, we employ public S-boxes for automatic search. Particularly,
we search for IBDs in two of the most renowned versions, namely GOST-FB and
GOST-PS. GOST-FB indicates GOST that uses eight different S-boxes as employed
by the Central Bank of the Russian Federation (as following S0-S7), and GOST-PS
represents GOST with only the PRESENT S-box.

S0 = {4, 10, 9, 2, 13, 8, 0, 14, 6, 11, 1, 12, 7, 15, 5, 3}
S1 = {14, 11, 4, 12, 6, 13, 15, 10, 2, 3, 8, 1, 0, 7, 5, 9}
S2 = {5, 8, 1, 13, 10, 3, 4, 2, 14, 15, 12, 7, 6, 0, 9, 11}
S3 = {7, 13, 10, 1, 0, 8, 9, 15, 14, 4, 6, 12, 11, 2, 5, 3}
S4 = {6, 12, 7, 1, 5, 15, 13, 8, 4, 10, 9, 14, 0, 3, 11, 2}
S5 = {4, 11, 10, 0, 7, 2, 1, 13, 3, 6, 8, 5, 9, 12, 15, 14}
S6 = {13, 11, 4, 1, 3, 15, 5, 9, 0, 10, 14, 7, 6, 8, 2, 12}
S7 = {1, 15, 13, 0, 5, 7, 10, 4, 9, 2, 3, 14, 6, 11, 8, 12}

The key schedule is extremely simple. The 256-bit key is divided into eight
32-bit subkeys K0, . . . ,K7. These subkeys are employed in this particular order
three times during rounds 1− 24. In the last 8 rounds 25− 32, they are used in
the reversed order of K7, . . . ,K0.
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Fig. 28: One round of block cipher GOST

E Example of (RK-)IBDs

In this section, we provide some examples of derived (RK-)IBDs. Unless other-
wise specified, all input differences of (RK-)IBDs are assumed to be placed in
the first round.

E.1 The 4-round IBD of AES

Distinguisher 1. (α, α′, β, β′) is an IBD of 4 rounds AES without the last SR
and MC layer, where


α = 0xuv000000000000000000000000000000, (0xuv ∈ F8∗

2 ),
α′ = 0xu′v′000000000000000000000000000000, (0xu′v′ ∈ F8∗

2 ),
β = 0xpq000000000000000000000000000000, (0xpq ∈ F8∗

2 ),
β′ = 0x00000000p′q′0000000000000000000000, (0xp′q′ ∈ F8∗

2 ).

E.2 The 7-round IBD of DES

Distinguisher 2. (α, α′, β, β′) is an IBD of 7-round DES, where{
α = 0x4000000000000000, α′ = 0x4000000000000000,

β = 0x0000000040000000, β′ = 0x0000000010000000.

E.3 The 6-round IBD of PRESENT-80

Distinguisher 3. (α, α′, β, β′) is an IBD of 6-round PRESENT-80 without the
last bit permutation, where{

α = 0x0000000000000001, α′ = 0x0000000000000001,

β = 0x0000000000000001, β′ = 0x0000000000000005.
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E.4 The 5-round IBD of PRINTcipher48

Distinguisher 4. (α, α′, β, β′) is an IBD of 5-round PRINTcipher48, where{
α = 0x000080000000, α′ = 0x400000000000,

β = 0x000100000000, β′ = 0x000100000000.

E.5 The 5-round RK-IBD of AES-128

Distinguisher 5. (α, α′, β, β′) is an RK-IBD of 5-round AES-128 without the
last MC layer under the key differences (κ0, κ1, κ2, κ3) = (α, α′, 0, 0), where

α = 0x0000000000000000uv00000000000000, (0xuv ∈ F8∗
2 ),

α′ = 0x0000000000000000u′v′00000000000000, (0xu′v′ ∈ F8∗
2 ),

β = 0x0000pq00000000000000000000000000, (0xpq ∈ F8∗
2 ),

β′ = 0xp′q′00000000000000000000000000000000, (0xp′q′ ∈ F8∗
2 ).

E.6 The RK-IBDs of SPECK versions

Distinguisher 6. (α, α, β, β′) is an RK-IBD of r-round SPECK under the key
differences (κ0, κ1, κ2, κ3) = (κ, κ, 0, 0), where r, κ, α, β and β′ are shown in
Table 5.

E.7 The 19-round RK-IBD of SKINNY-64/192

Distinguisher 7. (α, α, β, β) is an RK-IBD of 19-round SKINNY-64/192 with-
out the first SC operation under the tweakey differences (κ0, κ1, κ2, κ3) = (η, η, θ, θ),
where η = (η0, η1, η2, η3, η4, η5) and θ = (θ0, θ1, θ2, θ3, θ4, θ5) are two tweakey d-
ifferences from round 1 to round 6, and

α = 0xc000000000000000,

β = 0x0000000000400000,

η0 = 0xc0000000,

η1 = η2 = η3 = η4 = η5 = 0x00000000,

θ0 = 0x00000070, θ2 = 0x00000a00, θ4 = 0x000b0000,

θ1 = θ3 = θ5 = 0x00000000.

E.8 The 23-round RK-IBD of SKINNYee

Distinguisher 8. (α, α, β, β) is an RK-IBD of 23-round SKINNYee without
the first SC operation under the tweak differences (κ0, κ1, κ2, κ3) = (η, η, θ, θ),
where α is the input difference in round 4, β is the output difference in round
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Table 5: The example of RK-IBDs of SPECK in two-related-keys setting.
Block cipher params value
SPECK-32/64 r 8

κ 0x0040000000000000
α 0x00000000
β 0x80008002
β′ 0x80008000

SPECK-48/72 r 7
κ 0x000080000000000000
α 0x000000000000
β 0x800000800004
β′ 0x800000800000

SPECK-48/96 r 8
κ 0x000080000000000000000000
α 0x000000000000
β 0x800000800004
β′ 0x800000800000

SPECK-64/96 r 8
κ 0x000000800000000000000000
α 0x0000000000000000
β 0x8000000080000004
β′ 0x8000000080000000

SPECK-64/128 r 9
κ 0x00000080000000000000000000000000
α 0x0000000000000000
β 0x8000000080000004
β′ 0x8000000080000000

SPECK-64/96 r 8
κ 0x000000000080000000000000000000000000
α 0x000000000000000000000000
β 0x800000000000800000000004
β′ 0x800000000000800000000000

SPECK-128/192 r 8
κ 0x000000000000008000000000

0x000000000000000000000000
α 0x00000000000000000000000000000000
β 0x80000000000000008000000000000004
β′ 0x80000000000000008000000000000000

SPECK-128/256 r 9
κ 0x00000000000000800000000000000000

0x00000000000000000000000000000000
α 0x00000000000000000000000000000000
β 0x80000000000000008000000000000004
β′ 0x80000000000000008000000000000000
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27, η = (η0, η1, η2, η3, η4, η5, η6, η7) and θ = (θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ7) are two
tweak differences from round 1 to round 8, and

α = 0x0b00000000000000,

β = 0x0005000500000005,

η0 = 0x00080000, η2 = 0x00000008, η4 = 0x0b000000,

η1 = η3 = η5 = η6 = η7 = 0x00000000,

θ0 = 0x40000000, θ2 = 0x00c00000, θ4 = 0x0000e000, θ6 = 0x000000b0,

θ1 = θ3 = θ5 = θ7 = 0x00000000.

In the view of the difference of four tweaks, let ∆TK1, ∆TK2, ∆TK3, and
∆TK4 be the differences of four tweaks in the upper trail, and ∇TK1, ∇TK2,
∇TK3, and ∇TK4 be the differences of four tweaks in the lower trail. Then, η
and θ can be derived from (∆TK1, ∆TK2, ∆TK3, ∆TK4) and ∇TK1,∇TK2,
∇TK3,∇TK4), where

∆TK1 = 0x000c000000000000, ∆TK2 = 0x0006000000000000,

∆TK3 = 0x0009000000000000, ∆TK4 = 0x000b000000000000,

∇TK1 = 0x5000000000000000,∇TK2 = 0x2000000000000000,

∇TK3 = 0xe0000000000000000,∇TK4 = 0xd000000000000000.

The process of deriving the difference of tweaks at round 0−27 (including η and
θ) from (∆TK1, ∆TK2, ∆TK3, ∆TK4) and ∇TK1,∇TK2,∇TK3,∇TK4) is
shown in Figure 29 and Figure 30.

E.9 The RK-IBDs of GIFT versions

Table 6: The example of RK-IBDs of GIFT in four-related-keys setting.
Block cipher params value
GIFT-64 r 13

α 0x0001000000000000
β 0x0000000000020000
η 0x00000000000000000000000000001000
θ 0x00000000000000000100000000000000

GIFT-128 r 10
α 0x00000000000000000002000000000004
β 0x00000000000000000000400000000000
η 0x00000000000000010000000000001000
θ 0x00000000000000000000000000008000

Distinguisher 9. (α, α, β, β) is an RK-IBD of r-round GIFT under the key dif-
ferences (κ0, κ1, κ2, κ3) = (η, η, θ, θ), where r, α, β, η and θ are shown in Table 6.
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Fig. 29: Derive the difference of tweaks at round 0-27 in the upper trail
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Fig. 30: Derive the difference of tweaks at round 0-27 in the lower trail
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E.10 The RK-IBDs of CHAM versions

Distinguisher 10. (α, α, β, β) is an RK-IBD of r-round CHAM under the key
differences (κ0, κ1, κ2, κ3) = (η, η, θ, θ), where r, α, β, η and θ are shown in Ta-
ble 7.

Table 7: The example of RK-IBDs of CHAM in four-related-keys setting.
Block cipher params value
CHAM-64/128 r 30

α 0x0000000000000000
β 0x0000000000000000
η 0x00006020000000000000000000000000
θ 0x6020c040000000000000000000000000

CHAM-128/256 r 28
α 0x00000000000000000000000000000000
β 0x00000000000000000000000000000000
η 0x78081828000000000000000000000000

0x00000000000000000000000000000000
θ 0x000000000000000078081828f0103050

0x00000000000000000000000000000000

E.11 The full-round RK-IBD of GOST

Distinguisher 11. (α, α′, β, β′) is an RK-IBD of full-round GOST under the
key differences κi,j(0 ≤ i ≤ 3, 0 ≤ j ≤ 7), where

α = 0x8000000000000000, α′ = 0x0000000080000000,

β = 0x0000000080000000, β′ = 0x8000000000000000,

κ0,0 = 0x00000000, κ1,0 = 0x80000000, κ2,0 = 0x00000000, κ3,0 = 0x80000000,

κ0,1 = 0x80000000, κ1,1 = 0x00000000, κ2,1 = 0x80000000, κ3,1 = 0x00000000,

κ0,2 = 0x00000000, κ1,2 = 0x80000000, κ2,2 = 0x00000000, κ3,2 = 0x80000000,

κ0,3 = 0x80000000, κ1,3 = 0x00000000, κ2,3 = 0x80000000, κ3,3 = 0x00000000,

κ0,4 = 0x00000000, κ1,4 = 0x80000000, κ2,4 = 0x00000000, κ3,4 = 0x80000000,

κ0,5 = 0x80000000, κ1,5 = 0x00000000, κ2,5 = 0x80000000, κ3,5 = 0x00000000,

κ0,6 = 0x00000000, κ1,6 = 0x80000000, κ2,6 = 0x00000000, κ3,6 = 0x80000000,

κ0,7 = 0x80000000, κ1,7 = 0x00000000, κ2,7 = 0x40000000, κ3,7 = 0xc0000000.
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F Verification of Examples of (RK-)IBDs

F.1 General verify strategies: computer-aided verification

For an automatic method, the correctness of the results depends on two factors:
the accuracy of the modeling approach and the precision of the code implemen-
tation. In our work, we use the same modeling method and call the same set of
code interfaces to automatically search for distinguishers. Therefore, verifying a
subset of the distinguishers is sufficient to demonstrate the overall correctness
of our results.

Manual derivation is commonly used to verify the correctness of automatic
results, but it can be difficult and time-consuming. In such cases, computer-aided
verification can be employed. Here, the computer can serve three roles:

-Detect the location where the contradiction occurs. Take Algorithm 2
as an example. Assume D = (α, α′, β, β′) is an IBD or an RK-IBD under key
differences (κ0, κ1, κ2, κ3). Use D as the input of Algorithm 2 for the input
and output differences. In Line 6 of Algorithm 2, we modify the function
DiffConnectBD(z01, z23, z12, z03) that sets z01⊕z23⊕z12⊕z03 = 0, equivalent
to z01,i ⊕ z23,i ⊕ z12,i ⊕ z03,i = 0 for 0 ≤ i ≤ n − 1 where n represents the
block size of the cipher, into a new function. The new function is defined as
DiffConnectD(z01, z23, z12, z03, p) for 0 ≤ p ≤ n − 1 that sets z01,i ⊕ z23,i ⊕
z12,i ⊕ z03,i = 0 for 0 ≤ i ≤ n − 1, i 6= p. Then, if D = (α, α′, β, β′) is
still an (RK-)IBD under the modified algorithm when p = j, j is a position
unrelated to the contradiction. Using this method, we can filter out all the
positions unrelated to the contradiction and then derive the contradiction
from the remaining positions.

-Traverse all plausible trails and disprove them. When the computing re-
sources permit, propagate the differences or states from the input to the
middle round forward and from the output to the middle round backward.
Then, use generalized BTs like GBCT and GEBCT to disprove all these
combined trails.

-Cross verification. There are multiple methods to search for (RK)-IBDs. Us-
ing two or more distinct approaches to search for distinguishers can validate
the findings. The recommended methods are state propagation and GEBCT-
based verification. Besides, for example, we can look for GEBCT and other
generalized BTs to verify the (RK)-IBDs derived by state propagation.

F.2 General verify strategies: code self-feedback verification

To verify the correctness of the code, we propose a code self-feedback verification
technique. This technique examines the code by verifying the correctness of the
solution returned by the solver when the input and output differences are not
an (RK-)IBD. The overall algorithm is shown in Algorithm 8. It automatically
parses the solution to create a dictionary of the values of all variables used
in the search for the distinguisher, and then checks the propagation of input
and output values through each operation. Examples of check algorithms are
provided in Algorithm 6, 5, 7. Similar checks can be applied to other operations.
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Algorithm 5: Check the propagation of difference through DDT
Input: input difference µ, output difference θ, the S-box S
Output: True or False to indicate whether µ can propagate to θ

1 flag = False
2 for x ∈ {0, . . . , 2n − 1} do
3 if S(x)⊕ S(x⊕ µ) = θ then
4 flag = True
5 break
6 end
7 end
8 return flag

Algorithm 6: Check the propagation of state through S-box
Input: input value x, output value y, the S-box S
Output: True or False to indicate whether x can propagate to y

1 flag = False
2 if S(x) = y then
3 flag = True
4 end
5 return flag

Algorithm 7: Check the propagation of difference through GEBCT
Input: input differences (µ, µ′, ρ, ρ′), output differences (θ, θ′, ϕ, ϕ′), the

S-box S
Output: True or False to indicate whether (µ, µ′, ρ, ρ′) can propagate to

(θ, θ′, ϕ, ϕ′)
1 flag = False
2 for x ∈ {0, . . . , 2n − 1} do
3 if (S(x)⊕ S(x⊕ µ) = θ) and (S(x⊕ µ)⊕ S(x⊕ µ⊕ ρ) = ϕ) and

(S(x⊕ µ⊕ ρ)⊕ S(x⊕ µ⊕ ρ⊕ µ′) = θ′) and (S(x)⊕ S(x⊕ ρ′) = ϕ′)
then

4 flag = True
5 break
6 end
7 end
8 return flag
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Algorithm 8: Code self-feedback verification
Input: a solution returned from a third-party solver.
Output: True or False to denote the correctness of the solution

1 flag = True
2 Parse the solution to obtain a dictionary that holds the values of all
variables used in the search for the distinguisher

3 for each operation do
4 Get the input and output values of the operation
5 Check the propagation of the input and output value through the

operation
6 if check fails then
7 flag = False
8 break
9 end

10 end
11 return flag

Now we present our verification of some examples of IBDs and RK-IBDs in
Appendix E as follows. Apart from the following examples, all the (RK-)IBDs
we obtained have passed both the computer-aided verification and code self-
feedback verification.

F.3 Verification of the 4-round IBD of AES

Distinguisher 1

Verification (verify by contradiction). Assume (α, α′) can propagate to (β, β′),
as shown in Figure 31. For X0, X1 = X0⊕α,X2, X3 = X2⊕α′, and Y0, Y1, Y2 =
Y1⊕β, Y3 = Y0⊕β′, let Zi be the value obtained by encrypting Xi after 2 rounds
without the last MC layer, andWi be the value obtained by decrypting Yi after 2
rounds. Then Z0⊕Z1 = γ, Z2⊕Z3 = γ′,W1⊕W2 = δ, andW0⊕W3 = δ′. On the
one hand,W0,0⊕W1,0⊕W2,0⊕W3,0 = δ0 6= 0 andW0,1⊕W1,1⊕W2,1⊕W3,1 = 0,
since

W1,0 ⊕W2,0 = δ0 6= 0,W0,0 ⊕W3,0 = 0,

W1,1 ⊕W2,1 = 0,W0,1 ⊕W3,1 = 0.



Impossible Boomerang Distinguishers Revisited 71

α

X

α′

AK + SB + SR+MC

AK + SB + SR

γ

Z

γ

MC

δ δ′

W

AK + SB + SR

MC +AK + SB + SR+AK

β β′

Y

Fig. 31: One of 4-round IBDs of AES

On the other hand, since


W0,0 ⊕W1,0 ⊕W2,0 ⊕W3,0

W0,1 ⊕W1,1 ⊕W2,1 ⊕W3,1

W0,2 ⊕W1,2 ⊕W2,2 ⊕W3,2

W0,3 ⊕W1,3 ⊕W2,3 ⊕W3,3

 =M ·


Z0,0 ⊕ Z1,0 ⊕ Z2,0 ⊕ Z3,0

Z0,1 ⊕ Z1,1 ⊕ Z2,1 ⊕ Z3,1

Z0,2 ⊕ Z1,2 ⊕ Z2,2 ⊕ Z3,2

Z0,3 ⊕ Z1,3 ⊕ Z2,3 ⊕ Z3,3



=M ·


γ0 ⊕ γ′0

0
0
0

 ,

W0,0 ⊕W1,0 ⊕W2,0 ⊕W3,0 = 0 and W0,1 ⊕W1,1 ⊕W2,1 ⊕W3,1 = 0, or W0,0 ⊕
W1,0 ⊕W2,0 ⊕W3,0 6= 0 and W0,1 ⊕W1,1 ⊕W2,1 ⊕W3,1 6= 0. Thus there is a
contradiction. ut
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F.4 Verification of the 7-round IBD of DES

Distinguisher 2

Verification (verify by contradiction). We propagate the input differences 3 round-
s in the forward direction, and the output differences 4 rounds in the back-
ward direction. The middle 5 rounds of the distinguisher are shown in Fig-
ure 32, where a and a′ are the two differences propagated from the input d-
ifferences, b and b′ are the two differences propagated from the output differ-
ences, and (x0, x1, x2, x3) is the states of the right branch in round 4. Then
x0⊕x1 = P (a)⊕1, x2⊕x3 = P (a′)⊕1, and x1⊕x2 = P (b)⊕1, x0⊕x3 = P (b′)⊕3,
where P denotes the permutation of DES. Thus b ⊕ b′ = a ⊕ a′ ⊕ P−1(3). Let
b′ = (b′0, . . . , b

′
7) where (b′i ∈ F4

2, 0 ≤ i ≤ 7). Then according to the permutation
P and the values of a, a′ and b, we have b′6 = b′0 = 0, which implies the bit 0
and bit 3 of the output of the second S-box in round 6 must be zero. However,
the input difference of the S-box is 0x20, the first and fourth bits of the output
cannot be zero simultaneously. There is a contradiction.
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EXSLP

rkr

01000000 01000000
00000000 00000000
00000000 00000000
00000000 00000000

00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000

∗∗∗∗0000 ∗∗∗∗0000
00000000 00000000
00000000 00000000
00000000 00000000

EXSLP

rkr+1

00000000 00000000
∗0000000 ∗0000000
∗00000∗0 ∗00000∗0
000000∗0 000000∗0

00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000

0000∗∗∗∗ 0000∗∗∗∗
∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗
0000∗∗∗∗ 0000∗∗∗∗

(a, a′)

EXSLP

rkr+2

(x0, x1, x2, x3)

EXSLP

rkr+3

01000000 0∗000000
∗0000000 ∗000∗000
∗00000∗0 ∗∗0000∗0
000000∗0 000∗00∗0

01000000 00010000
00000000 00000000
00000000 00000000
00000000 00000000

0000∗∗∗∗ ∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗
0000∗∗∗∗ ∗∗∗∗∗∗∗∗

(b, b′)

EXSLP

rkr+4

01000000 00010000
00000000 00000000
00000000 00000000
00000000 00000000

01000000 0∗000000
∗0000000 ∗000∗000
∗00000∗0 ∗∗0000∗0
000000∗0 000∗00∗0

∗∗∗∗0000 ∗∗∗∗∗∗∗∗
00000000 00000000
00000000 00000000
00000000 00000000

00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000

01000000 00010000
00000000 00000000
00000000 00000000
00000000 00000000

Fig. 32: The core of one 7-round IBDs of DES
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F.5 Verification of the 6-round IBD of PRESENT-80

Distinguisher 3

(1, 1, ∗, ∗)

A0

S S S S S S S S S S S S S S S S

rki

A1

S S S S S S S S S S S S S S S S

rki+1

A2

S S S S S S S S S S S S S S S S

rki+2

S S S S S S S S S S S S S S S S

rki+3

S S S S S S S S S S S S S S S S

B2

rki+4 B1

S S S S S S S S S S S S S S S S

rki+5

(∗, ∗, 1, 5)

B0

rk′i+6

Fig. 33: One of 6-round IBDs of PRESENT-80
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Our verification makes use of the definition of GEBCT. Thus we demonstrate
some basic properties of the S-box of PRESENT in the view of such table. The
analysis reveals some new properties of the S-box of PRESENT.

Property 1 (GEBCT). Let T and Tinv be the GEBCT of S-box and the
invertible S-box of PRESENT, then

(1, 1, ∗, ∗) T−→ (1, 1, 0, 0), (1, 1, 1, 1),

(∗, ∗, 1, 5) Tinv−−−→ (1, 0, 1, 0), (0, 1, 1, 0),

(1, 0, 1, 0), (0, 1, 1, 0)
Tinv−−−→ (1, 0, 1, 0), (0, 1, 1, 0),

where (µ, µ′, ρ, ρ′) T−→ (θ, θ′, ϕ, ϕ′) means T (µ, µ′, ρ, ρ′, x||θ, x′||θ′, y||ϕ, y′||ϕ′) 6= 0
for T ∈ {T , Tinv}, µ, µ′, ρ, ρ′ ∈ F4

2, θ, θ′, ϕ, ϕ′ ∈ F2, x, x′, y, y′ ∈ F3
2, "||" means

the concatenation of two variables, and ‘∗’ represents arbitrary 4-bit value.

Verification (verify by contradiction). As shown in Figure 33, let (µi, µ′i, ρi, ρ′i) be
the input differences of the 0-th S-box (least signification) at round i (i = 0, 1, 2),
(θi,0, θ

′
i,0, ϕi,0, ϕ

′
i,0) be the 0-th bit (least signification) of the output difference

of the 0-th S-box at round i (i = 0, 1, 2), Ai(i = 0, 1, 2) be the set of all possible
output difference of the 0-th bit of 0-th S-box at round i.

- Round 0: (µ0, µ
′
0, ρ0, ρ

′
0) = (1, 1, ∗, ∗), according to Property 1, we have (θ0,0,

θ′0,0, ϕ0,0, ϕ
′
0,0) ∈ {(1, 1, 0, 0), (1, 1, 1, 1)}. Thus, A0 = {(1, 1, 0, 0), (1, 1, 1, 1)}.

- Round 1: for the 0-th S-box, the 0-th bit of the input difference is indeed
(θ0,0, θ

′
0,0, ϕ0,0, ϕ

′
0,0). While the values of the other bits of the input difference

of 0-th S-box are all zero (they are not affected by the difference of the 0-th S-
box at round 0), we have (µ1, µ

′
1, ρ1, ρ

′
1) ∈ {(1, 1, 0, 0), (1, 1, 1, 1)}. According

to Property 1, we have (θ1,0, θ
′
1,0, ϕ1,0, ϕ

′
1,0) ∈ {(1, 1, 0, 0), (1, 1, 1, 1)}. Thus,

A1 = {(1, 1, 0, 0), (1, 1, 1, 1)}.
- Round 2: for the 0-th S-box, the 0-th bit of the input difference is indeed

(θ1,0, θ
′
1,0, ϕ1,0, ϕ

′
1,0). While the values of the other bits of the input difference

of 0-th S-box are all zero (they are not affected by the difference of the 0-th S-
box at round 0), we have (µ2, µ

′
2, ρ2, ρ

′
2) ∈ {(1, 1, 0, 0), (1, 1, 1, 1)}. According

to Property 1, we have (θ2,0, θ
′
2,0, ϕ2,0, ϕ

′
2,0) ∈ {(1, 1, 0, 0), (1, 1, 1, 1)}. Thus,

A1 = {(1, 1, 0, 0), (1, 1, 1, 1)}.

All in all, it holds that A0 = A1 = A2 = {(1, 1, 0, 0), (1, 1, 1, 1)}, and (θ2,0, θ
′
2,0,

ϕ2,0, ϕ
′
2,0) ∈ A2.

Let (µi, µ
′
i, ρi, ρ

′
i) be the output differences of the 0-th S-box at round i

(i = 3, 4, 5), (θi,0, θ′i,0, ϕi,0, ϕ′i,0) be the 0-th bit of the input difference of the
0-th S-box at round i (i = 3, 4, 5), Bi(i = 0, 1, 2) be the set of all possible input
difference of the 0-th bit of 0-th S-box at round (5− i).

- Round 5: (µ5, µ
′
5, ρ5, ρ

′
5) = (∗, ∗, 1, 5), according to Property 1, we have (θ5,0,

θ′5,0, ϕ5,0, ϕ
′
5,0) ∈ {(1, 0, 1, 0), (0, 1, 1, 0)}. Thus, B0 = {(1, 0, 1, 0), (0, 1, 1, 0)}.
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- Round 4: for the 0-th S-box, the 0-th bit of the output difference is indeed
(θ5,0, θ

′
5,0, ϕ5,0, ϕ

′
5,0). While the values of the other bits of the output differ-

ence of 0-th S-box are all zero (they are not affected by the difference of the
0-th S-box at round 5), we have (µ4, µ

′
4, ρ4, ρ

′
4) ∈ {(1, 0, 1, 0), (0, 1, 1, 0)}. Ac-

cording to Property 1, we have (θ4,0, θ′4,0, ϕ4,0, ϕ
′
4,0) ∈ {(1, 0, 1, 0), (0, 1, 1, 0)}.

Thus, B1 = {(1, 0, 1, 0), (0, 1, 1, 0)}.
- Round 3: for the 0-th S-box, the 0-th bit of the input difference is indeed

(θ4,0, θ
′
4,0, ϕ4,0, ϕ

′
4,0). While the values of the other bits of the input difference

of 0-th S-box are all zero (they are not affected by the difference of the 0-th S-
box at round 5), we have (µ3, µ

′
3, ρ3, ρ

′
3) ∈ {(1, 0, 1, 0), (0, 1, 1, 0)}. According

to Property 1, we have (θ3,0, θ
′
3,0, ϕ3,0, ϕ

′
3,0) ∈ {(1, 0, 1, 0), (0, 1, 1, 0)}. Thus,

B2 = {(1, 0, 1, 0), (0, 1, 1, 0)}.

All in all, it holds that B0 = B1 = B2 = {(1, 0, 1, 0), (0, 1, 1, 0)}, and (µ3,0, µ
′
3,0,

ρ3,0, ρ
′
3,0) ∈ B2.

There is a contradiction, since (θ2,0, θ
′
2,0, ϕ2,0, ϕ

′
2,0) = (µ3,0, µ

′
3,0, ρ3,0, ρ

′
3,0),

θ2,0 = 1, θ′2,0 = 1, and one value of µ3,0 and µ′3,0 is 0. ut

F.6 Verification of the 5-round IBD of PRINTcipher48

Distinguisher 4
To conduct this verification, we first give some properties of the S-box from the
perspectives of DDT and GBCT.

Property 2 (DDT). Let T and Tinv be the DDT of S-box and the invertible
S-box of PRINTcipher48, then

001
T−→ ∗ ∗ 1, 010 T−→ ∗1∗, 100 T−→ 1 ∗ ∗,

001
Tinv−−−→ ∗ ∗ 1, 010 Tinv−−−→ ∗1∗, 100 Tinv−−−→ 1 ∗ ∗,

where ‘∗’ can be 0 or 1, and abc
T−→ a′b′c′ means T (abc, a′b′c′) 6= 0 for T ∈

{T , Tinv} and 3-bit values abc and a′b′c′.

Property 3 (GBCT). Let T be the GBCT of S-box of PRINTcipher48, then

(α, 0) 6 T−→ (β, β),

(γ, 0)) 6 T−→ (0, 0), (γ, δ)) 6 T−→ (0, 0),

(1, 2)
T−→ (4, 4), (1, 4)

T−→ (2, 2), (2, 4)
T−→ (1, 1),

where the weight of both α and β is 1, γ 6= 0, and δ 6= γ.

Verification (verify by contradiction). We prove it as shown in Figure 34. In
which, blocks of the same color and the same symbol indicate that they are
affected by the same S-box. Let (x0i , x

1
i , x

2
i , x

3
i ) and (y0i , y

1
i , y

2
i , y

3
i ) be the four

states before and after the key-dependent layer at the round i, and (z0i , z
1
i , z

2
i , z

3
i )
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be the four states after the S-box layer at the round i, xti,j , yti,j and zti,j be the
value of j-th nibble of xti, yti and zti , xti,j,k, y

t
i,j,k and zti,j,k be the k-th bit value

of j-th nibble of xti, yti and zti(0 ≤ k ≤ 2, 0 ≤ j ≤ 15, 0 ≤ t ≤ 3).

We propagate the input two differences 3 rounds in the forward direction,
and the output two differences 2 rounds in the backward direction. According
to the Property 3, the input differences and output differences of S-box i (i ∈
{0, 3, 5, 7, 9, 12, 14}) in round 3 must be 0. Since z15,10,2⊕z25,10,2 = 1, and z05,10,2⊕
z35,10,2 = 1, according the Property 2, ∃k ∈ {0, 1, 2}, such that x15,10,j⊕x25,10,j = 1,
and x05,10,j⊕x35,10,j = 1, Similarly, ∃(j, k) ∈ {(1, 0), (2, 2), (4, 2), (6, 1), (8, 0), (10, 0),
(11, 2), (13, 1), (15, 1)}, such that z13,j,k ⊕ z23,j,k = 1, and z03,j,k ⊕ z33,j,k = 1.

Now we continue to discuss different cases. When the key-dependent permu-
tation 15 transforms the bit 1 to bit 2 and the key-dependent permutation 14
transforms the bit 2 to bit 2. As shown in Figure 35, ∃(j, k) ∈ {(4, 2), (6, 1), (13, 1),
(15, 1)}, such that z13,j,k⊕z23,j,k = 1, and z03,j,k⊕z33,j,k = 1. If only z13,15,1⊕z23,15,1 =

1, and z03,15,1 ⊕ z33,15,1 = 1, then the S-box 14 in round 4 is active, and the key-
dependent permutation 14 transforms the bit 2 to bit 0. This leads to a con-
tradiction. Meanwhile, x03,15,2 ⊕ x13,15,2 = 0, and x23,15,2 ⊕ x33,15,2 = 0, since the
key-dependent permutation 15 transforms the bit 1 to bit 2 already and cannot
transform the bit 2 to bit 2. Thus, x03,13,2 ⊕ x13,13,2 = 1, and x23,13,2 ⊕ x33,13,2 = 0
or x03,13,2 ⊕ x13,13,2 = 0, and x23,13,2 ⊕ x33,13,2 = 1. According to the Property 3,
z13,13,1 ⊕ z23,13,1 = 1, and z03,13,1 ⊕ z33,13,1 = 1 cannot hold.

Now, only ∃(j, k) ∈ {(4, 2), (6, 1)}, such that z13,j,k ⊕ z23,j,k = 1, and z03,j,k ⊕
z33,j,k = 1. Assume z13,4,2 ⊕ z23,4,2 = 1, and z03,4,2 ⊕ z33,4,2 = 1, then



z13,4,2 ⊕ z23,4,2 = 1, z03,4,2 ⊕ z33,4,2 = 1,

y03,4,2 ⊕ y13,4,2 = 0, y23,4,2 ⊕ y33,4,2 = 0,

z13,6,1 ⊕ z23,6,1 = a, z03,6,1 ⊕ z33,6,1 = a⊕ 1,

y03,6,1 ⊕ y13,6,1 = 0, y03,6,2 ⊕ y33,6,3 = 1,

z13,13,1 ⊕ z23,13,1 = b, z03,13,1 ⊕ z33,13,1 = b⊕ 1,

y03,13,1 ⊕ y13,13,1 = 1, y23,13,1 ⊕ y33,13,1 = 0,

must be hold, where a, b can be 0 or 1. Thus,

{
x15,10 ⊕ x25,10 = 1||a||b, x05,10 ⊕ x35,10 = 1||a⊕ 1||b⊕ 1,

x05,10 ⊕ x15,10 = c||0||1, x25,10 ⊕ x35,10 = c||1||0,

where c can be 0 or 1. For any permutation of key-dependent permutation 10
in round 5, this is impossible according to the GEBCT of S-box and z15,10,2 ⊕
z25,10,2 = 1, and z05,10,2 ⊕ z35,10,2 = 1. For other cases, we can verify similarly.
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Fig. 34: One of 5-round IBDs of PRINTcipher48
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Fig. 35: One impossible propagation trail of 5-round IBD of PRINTcipher48
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F.7 Verification of the 5-round RK-IBD of AES-128

Distinguisher 5

α

X

α′

AK

SB + SR+MC

AK

SB + SR+MC

AK

SB + SR

γ

Z

γ

MC

δ δ′

W

AK + SB + SR

MC

AK + SB + SR+AK

β β′

Y

Fig. 36: One of 5-round RT 2
0 -IBDs of AES-128
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Verification (verify by contradiction). Assume (α, α′) can propagate to (β, β′),
as shown in Figure 36, for X0, X1 = X0 ⊕α,X2, X3 = X2 ⊕α′, and Y0, Y1, Y2 =
Y1⊕β, Y3 = Y0⊕β′, let Zi be the value obtained by encrypting Xi after 3 rounds
without the last MC layer, and Wi be the value obtained by decrypting Yi after
2 rounds. Then Z0 ⊕ Z1 = γ, Z2 ⊕ Z3 = γ′, W1 ⊕W2 = δ, and W0 ⊕W3 = δ′.

On the one hand, since

W1,0 ⊕W2,0 = 0,W0,0 ⊕W3,0 = δ′0 6= 0,

W1,1 ⊕W2,1 = 0,W0,1 ⊕W3,1 = 0,

W1,2 ⊕W2,2 = δ2 6= 0,W0,2 ⊕W3,2 = 0,

W1,3 ⊕W2,3 = 0,W0,3 ⊕W3,3 = 0.

we have W0,0 ⊕W1,0 ⊕W2,0 ⊕W3,0 = δ′0 6= 0, W0,1 ⊕W1,1 ⊕W2,1 ⊕W3,1 = 0,
W0,2 ⊕W1,2 ⊕W2,2 ⊕W3,2 = δ2 6= 0 and W0,3 ⊕W1,3 ⊕W2,3 ⊕W3,3 = 0.

On the other hand,
W0,0 ⊕W1,0 ⊕W2,0 ⊕W3,0

W0,1 ⊕W1,1 ⊕W2,1 ⊕W3,1

W0,2 ⊕W1,2 ⊕W2,2 ⊕W3,2

W0,3 ⊕W1,3 ⊕W2,3 ⊕W3,3

 =M ·


Z0,0 ⊕ Z1,0 ⊕ Z2,0 ⊕ Z3,0

Z0,1 ⊕ Z1,1 ⊕ Z2,1 ⊕ Z3,1

Z0,2 ⊕ Z1,2 ⊕ Z2,2 ⊕ Z3,2

Z0,3 ⊕ Z1,3 ⊕ Z2,3 ⊕ Z3,3



=M ·


0
0

γ2 ⊕ γ′2
γ3 ⊕ γ′3

 .

If γ2 ⊕ γ′2 = γ3 ⊕ γ′3 = 0, then W0,i ⊕ W1,i ⊕ W2,i ⊕ W3,i = 0(0 ≤ i ≤ 3).
There exists a contradiction. If γ2 ⊕ γ′2 6= 0 or γ3 ⊕ γ′3 6= 0, then according
to the property of the MDS matrix, at least three of i(0 ≤ i ≤ 3) such that
W0,i ⊕W1,i ⊕W2,i ⊕W3,i = 0. There exists a contradiction. ut

F.8 Verification of the 8-round RK-IBD of SPECK-32/64

Distinguisher 6
We choose the example of RK-IBD of SPECK-32/64 to verify.

Verification (verify by contradiction). We propagate the input differences 5 round-
s in the forward direction, and the output differences 3 rounds in the backward
direction. The differential propagation of the last 4-round is shown in Figure 37,
where the ai, a′i, bi, b′i, ci, c′i can be 0 or 1 and b′11 = b′8 ⊕ 1.

On the one hand, since x0,9 ⊕ x1,9 = a0 = y0,9 ⊕ y1,9 and x2,9 ⊕ x3,9 = a′0 =
y2,9 ⊕ y3,9, x1,9 ⊕ x2,9 = 1, y1,9 ⊕ y2,9 = 0, x0,9 ⊕ x3,9 = c′2, y0,9 ⊕ y3,9 = 1, we
have c′2 = 0. Meanwhile, since x0,8⊕x1,8 = 1 and x2,8⊕x3,8 = 1, x1,8⊕x2,8 = 0,
we have x0,8⊕x0,8 = c′1 = 0. Similarly, it holds that c′0 = 0, b′11 = 1, b′7 = b′6 = 0.

On the other hand, for the second modular addition in the right of Fig 37,
the least 3 bits of input of the modular addition is (000, 100), thus b′6 = 1. This
is a contradiction.
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Fig. 37: The core of one 8-round RT 2
3 -IBDs of SPECK-32/64



Impossible Boomerang Distinguishers Revisited 83

F.9 Verification of the 23-round RK-IBD of SKINNYee

Distinguisher 8
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Fig. 38: One 23-round RT 2
3 -IBD of SKINNYee

Verification. We employ the cross-validation method to verify this distinguisher.
Since the distinguisher is detected via the propagation of the state, we refer to
the GEBCTs for its verification. Specifically, we use the GEBCT to depict the
propagation of the difference through the S-box. This approach enables us to
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verify the distinguisher from the perspective of difference propagation. Eventu-
ally, we complete the verification process. Moreover, we remove the constraints
of GEBCT of S-boxes as many as possible, and get the necessary cells as shown
in Figure 38. As shown in the Figure 38, the positional pattern of contradiction-
s is not obvious. Therefore, it is hard to construct this distinguisher by using
GBCT or other tables alone in a certain round.

F.10 Verification of the 13-round RK-IBD of GIFT-64

Distinguisher 9
We choose the example of RK-IBD of GIFT-64 to verify.

Verification (verify by contradiction). Let (γ, γ′) be the difference that propa-
gates (α, α′) 4-round in the forward direction, and (δ, δ′) be the difference that
propagates (β, β′) 4-round in the backward direction. Then, according the key
schedule, (α, α′) propagates to (γ, γ′) = (0, 0) under key differences (κ0, κ1) with
probability 1, and (β, β′) propagates to (δ, δ′) = (0, 0) under key differences
(κ2, κ3) with a probability of 1. Now, we show that (γ, γ′) cannot propagate
to the output differences (δ, δ′) under the key differences (κ0, κ1, κ2, κ3) after 5
rounds of GIFT-64.

Let (x0i , x
1
i , x

2
i , x

3
i ) and (y0i , y

1
i , y

2
i , y

3
i ) be the four states before and after

the S-box layer at the round i. Let xti,j and yti,j be the j-th nibble value of
xti and yti(0 ≤ j ≤ 15, 0 ≤ t ≤ 3). First, we remove the constraints nibble by
nibble in round 6 in our SAT model to detect the necessary nibble for generating
contradictions. The contradiction occurs in the nibble i (i ∈ {2, 3, 7, 15}). Then,
we propagate the input two differences 2 rounds in the forward direction, and
propagate the output two differences 2 rounds in the backward direction, and
whether those differences can be connected according to the GBCT of the S-box,
i.e. we check whether (x06,j ⊕x16,j , x26,j ⊕x36,j)

GBCT−−−−→ (y16,j ⊕ y26,j , y06,j ⊕ y36,j) (j ∈
{2, 3, 7, 15}). Through a simple Python program, we can remove most of the
differential propagations.

The remaining differential propagation is ((y04⊕y14 , y24⊕y34), (x18⊕x28, x08⊕x38),
where y04,0 ⊕ y14,0 ∈ {8, 9, 10, 11}, y24,0 ⊕ y34,0 ∈ {8, 9, 10, 11}, and x18,8 ⊕ x28,8 ∈
{5, 6, 7, 12, 13, 15}, x08,8⊕x38,8 ∈ {5, 6, 7, 12, 13, 15}. Thus, the bit 3 of y04⊕y14 and
y24 ⊕ y34 must be 1, and the bit 34 of x18⊕ x28 and x08⊕ x38 must be 1. That is, the
differential propagation in the Figure 39 must be hold, where κti denotes the key
difference of κt in round i. For the S-box 3 of round 6, if (x06,3⊕x16,3, x26,3⊕x36,3) =
(1, 1)

GBCT−−−−→ (y16,3⊕y26,3, y06,3⊕y36,3) = (8, 8), then x16,3⊕x26,3, x06,3⊕x36,3) = (1, 1).
Thus, for the S-box 12 of round 5, it must hold as follows:
(x05,12 ⊕ x15,12, x25,12 ⊕ x35,12) = (8, 8)

GBCT−−−−→ (y15,12 ⊕ y25,12, y05,12 ⊕ y35,12) = (1, 1),

y05,12 ⊕ y15,12 = 1,

y25,12 ⊕ y35,12 = 1.

However, the above formula does not hold. Thus, for the remaining differential
propagation, it still cannot hold. In conclusion, we have verified our distinguisher.
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0001rk4
rc4

S S S S S S S S S S S S S S S S

rk5
rc5

S S S S S S S S S S S S S S S S

rk6
rc6

S S S S S S S S S S S S S S S S

rk7
rc7

S S S S S S S S S S S S S S S S

rk8
rc8

S S S S S S S S S S S S S S S S

0001
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Fig. 39: The core of one 13-round RT 2
3 -IBD of GIFT-64
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F.11 Verification of the full-round RK-IBD of GOST

Distinguisher 11

Verification (verify by contradiction). As shown in Figure 40, Figure 41, Fig-
ure 42 and Figure 43. The input differences (α, α′) can propagate to ((0x00000000,
0x80000000), (0x80000000, 0x00000000)) with probability 1 after 23 rounds in
the forward direction, and the output differences (β, β′) can propagate to ((0x8000
0000, 0x00000000), (0x00000000, 0x80000000)) with probability 1 after 7 rounds
in the backward direction. Thus, we just need to verify ((0x00000000, 0x8000
0000), (0x80000000, 0x00000000) cannot propagate to ((0x80000000, 0x00000000),
(0x00000000, 0x80000000) after 2 rounds under the key differences κ0,7, κ1,7, κ2,7,
and κ3,7.

As shown in Figure 44, we have x1 = x0, x2 = x0⊕ 0x80000000 and x3 = x0.
On the one hand, since y0 ⊕ y1 ⊕ y2 ⊕ y3 = 0x80000000, with the values of
L2,25 and L3,25, we have z0 ⊕ z1 ⊕ z2 ⊕ z3 = 0. On the other hand, we have
k1,7 = k0,7 ⊕ 0x80000000, k2,7 = k3,7 = k0,7 ⊕ 0xc0000000. For a 32-bit value
v, let v′ be the most significant 4-bit, and S represents the S-box operating the
most significant 4-bit. Then, we have{

z′0 = S(x′0 + k′0), z
′
1 = S(x′0 + k′0 ⊕ 0x8),

z′2 = S(x′0 ⊕ 0x8 + k′0 ⊕ 0xc), z′3 = S(x′0 + (k′0 ⊕ 0xc).

Then, z′0⊕ z′1⊕ z′2⊕ z′3 = 0 cannot hold for S-box of both GOST-FB and GOST-PS.
This is a contradiction.
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Fig. 40: The 24-round related-key differential of GOST by iterating above 3 times
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Fig. 41: The 24-round related-key differential of GOST by iterating above 3 times



Impossible Boomerang Distinguishers Revisited 89

R2,24 L2,24 = 0x80000000

S7

S6

S5

S4

S3

S2

S1

S0

≪11

κ2,7

R2,25 = 0x80000000 L2,25 = 0x00000000

S7

S6

S5

S4

S3

S2

S1

S0

≪11

0x00000000
κ2,6 =

R2,26 = 0x00000000 L2,26 = 0x80000000

S7

S6

S5

S4

S3

S2

S1

S0

≪11

0x80000000
κ2,5 =

R2,27 = 0x80000000 L2,27 = 0x00000000

R2,28 = 0x00000000 L2,28 = 0x80000000

S7

S6

S5

S4

S3

S2

S1

S0

≪11

0x00000000
κ2,4 =

R2,28 = 0x00000000 L2,28 = 0x80000000

S7

S6

S5

S4

S3

S2

S1

S0

≪11

0x80000000
κ3,3 =

R2,29 = 0x80000000 L2,29 = 0x00000000

S7

S6

S5

S4

S3

S2

S1

S0

≪11

0x00000000
κ2,2 =

R2,30 = 0x00000000 L2,30 = 0x80000000

S7

S6

S5

S4

S3

S2

S1

S0

≪11

0x80000000
κ2,1 =

R2,31 = 0x80000000 L2,31 = 0x00000000

R2,32 = 0x00000000 L2,32 = 0x80000000

S7

S6

S5

S4

S3

S2

S1

S0

≪11

0x00000000
κ2,0 =

Fig. 42: The 7-round related-key differential of GOST



90 Authors Suppressed Due to Excessive Length

R3,24 L3,24 = 0x00000000

S7

S6

S5

S4

S3

S2

S1

S0

≪11

κ3,6 =

R3,25 = 0x00000000 L3,25 = 0x80000000

S7

S6

S5

S4

S3

S2

S1

S0

≪11

0x80000000
κ3,6 =

R3,26 = 0x80000000 L3,26 = 0x00000000

S7

S6

S5

S4

S3

S2

S1

S0

≪11

0x00000000
κ3,5 =

R3,27 = 0x00000000 L3,27 = 0x80000000

R3,28 = 0x80000000 L2,28 = 0x00000000

S7

S6

S5

S4

S3

S2

S1

S0

≪11

0x80000000
κ3,4 =

R3,28 = 0x80000000 L3,28 = 0x00000000

S7

S6

S5

S4

S3

S2

S1

S0

≪11

0x00000000
κ3,3 =

R3,29 = 0x00000000 L3,29 = 0x80000000

S7

S6

S5

S4

S3

S2

S1

S0

≪11

0x80000000
κ3,2 =

R3,30 = 0x80000000 L3,30 = 0x00000000

S7

S6

S5

S4

S3

S2

S1

S0

≪11

0x00000000
κ3,1 =

R3,31 = 0x00000000 L3,31 = 0x80000000

R3,32 = 0x80000000 L3,32 = 0x00000000

S7

S6

S5

S4

S3

S2

S1

S0

≪11

0x80000000
κ3,0 =

Fig. 43: The 7-round related-key differential of GOST
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Fig. 44: The core of one full-round RK-IBDs of GOST
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G Subtweakey Difference Cancellation for Tweakable
Block Ciphers

In this section, we study the properties of subtweakey difference cancellation
for SKINNY and SKINNYee. Those properties allow us to construct the 6-round
and 8-round difference characteristics with a probability of 1. for SKINNY and
SKINNYee, respectively. Here, we only give the proof of the property of SKINNY,
as the other properties can be proved analogously.

Property 4 (SKINNY). For SKINNY-n-3n, let TKSr,i(i = 0, 1, 2) be the
tweakey states in round r, and TKr be the tweakey that derived from TKSr,i(i =
0, 1, 2). For the round r0, if only a single cell of ∆TKr0 is active, and the dif-
ference of this cell is u, then there exist difference of ∆TKSr0,i(i = 0, 1, 2) and
a value v, such that ∆TKr0+i(1 ≤ i ≤ 5) is inactive, and only a single cell of
∆TKr0+6 is active, and the difference of this cell is v. Besides, in this case, for
∀j /∈ {r0, . . . , r0 + 6} and (j − r0) mod 2 = 0 , ∆TKj is active.

Proof. Let a0, a1 and a2 be differences of the active cell of TKSr0,i(i = 0, 1, 2),
respectively. Since LFSR2 and LFSR3 are two different linear operations, the
equation 

a0 ⊕ a1 ⊕ a2 = u,

a0 ⊕ LFSR1
2(a1)⊕ LFSR1

3(a2) = 0,

a0 ⊕ LFSR2
2(a1)⊕ LFSR2

3(a2) = 0,

has only one solution for (a0, a1, a2), where LFSRij(j = 2, 3) denoted the op-
eration that applying LFSRj(j = 2, 3) i(i > 0) times and applying the inverse
of LFSRj(j = 2, 3) i(i < 0) times. Then, it holds that a0 ⊕ LFSRi2(a1) ⊕
LFSRi3(a2) 6= 0(i 6= {0, 1, 2}). Otherwise, we will have three independent lin-
ear equations for (a0, a1, a2) equal 0, thus (a0, a1, a2) = (0, 0, 0), therefore u =
a0⊕a1⊕a2 = 0. This is a contradiction. Let v = a0⊕LFSR3

2(a1)⊕LFSR3
3(a2),

then v 6= 0 and v is determined by u. Consequently, in accordance with the
tweakey schedule, we conclude our proof. ut

Property 5 (SKINNYee). For SKINNYee, let TKSr,i(i = 0, 1, 2, 3) be the
tweak states in round r, and TKr be the tweak that derived from TKSr,i(i =
0, 1, 2, 3). For the round r0, if only a single cell of ∆TKr0 is active, and the
difference of this cell is u, then there exist difference of ∆TKSr0,i(i = 0, 1, 2, 3)
and a value v, such that ∆TKr0+i(1 ≤ i ≤ 7) is inactive, and only a single cell
of ∆TKr0+8 is active, and the difference of this cell is v. Besides, in this case,
for ∀j /∈ {r0, . . . , r0 + 8} and (j − r0) mod 2 = 0 , ∆TKj is active.
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H Impossible Boomerang Attacks of 31-round SKINNYee
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Fig. 45: Top 4 rounds added for key recovery in 31-round attack on SKINNYee

In this part, we propose a 31-round RK-IBA on SKINNYee, this is also the
first 31-round attack. In details, we employ the 23-round IBD as Distinguisher 8,
and add 4 additional rounds at the upper part and 4 additional rounds at the
lower part. The details of these procedures are respectively illustrated in Fig 45
and Fig 46. In Fig 45 and Fig 46, a cell marked with "v" means that we need
to know its value, while a cell marked with "d" means that we need to know
its corresponding difference. In Fig 45, cells colored red and yellow indicate that
the differences of these cells are utilized in the process of key sieving. Similarly,
cells colored green and yellow in Fig 46 also signify that the differences of these
cells are employed for key sieving. The notations used in this part are detailed
as follows.

- c = 4 be the cell size.
- ∆K and ∇K: the tweak differences that correspond to Distinguisher 8.
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Fig. 46: Bottom 4 rounds added for key recovery in our 31-round attack on
SKINNYee

Kr

MC ◦ SR
0 1 2 3
4 5 6 7

EKr
2, 5 3, 6 0, 7 1, 4

2 3 0 1
2 3 0 1

Fig. 47: The relation of Kr and its equivalent version EKr of SKINNYee
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Table 8: The known differences and the keys that need guessed of SKINNYee.
Difference Keys that need guessed

∆X3
2 ,∆X

′3
2 K0

0,0,K
0
0,3,K

0
0,1 ⊕K0

0,4,K
1
0,1,K

1
0,2

∆X3
10,∆X

′3
10 K0

0,0,K
0
0,3 ⊕K0

0,6,K
1
0,2

∆Y 4
1 ,∆Y

′4
1 K0,3 ⊕K0,6,K0,0 ⊕K0,7,K0,0,K0,1

K0
0,2,K

0
0,3,K

1
0,3 ⊕K1

0,6,K
1
0,0 ⊕K1

0,7

K1
0,0,K

1
0,1,K

1
0,2,K

1
0,3,K

2
0,0,K

2
0,1

K2
0,3,K

2
0,6,K

3
0,3,K

3
0,6

∆W 28
6 ,∆W ′286 K1

0,2,K
1
0,6,K

2
0,3,K

2
0,4,K

2
0,5,K

2
0,7

∆W 27
7 ,∆W ′277 K0

0,7,K
1
0,0,K

1
0,4,K

1
0,6,K

2
0,1,K

2
0,5,K

2
0,6,K

2
0,7

∆W 27
15 ,∆W

′27
15 K0

0,7,K
1
0,6,K

2
0,0,K

2
0,4,K

2
0,5

∆X27
3 ,∆X ′273 K1

0,0,K
1
0,4,K

2
0,1,K

2
0,5,K

2
0,6,K

2
0,7

∆X27
7 ,∆X ′277 K0

0,0,K
0
0,4,K

1
0,1,K

1
0,5,K

1
0,6,K

1
0,7,K

2
0,2,K

2
0,3,K

2
0,4,K

2
0,5,K

2
0,6,K

2
0,7

∆X27
15 ,∆X

′27
15 K0

0,6,K
1
0,5,K

2
0,3,K

2
0,4,K

2
0,7,K

3
0,7

Table 9: The key recovery steps of the early abort technique of SKINNYee.
Step Difference Guessed keys Time complexity Remained quartets

1 ∆X3
10,∆X

′3
10 K0

0,0,K
1
0,2 211c+2c · 218c · (2 · 4)/(16 · 31) 218c/22c = 216c

2 ∆X3
2 ,∆X

′3
2 K1

0,1 213c+c · 216c · 4/(16 · 31) 216c/22c = 214c

3 ∆W 28
6 ,∆W ′286 K1

0,6,K
2
0,3,K

2
0,5 214c+3c · 214c · 3 · 4/(16 · 31) 214c/22c = 212c

4 ∆W 27
15 ,∆W

′27
15 K0

0,7 217c+c · 212c · 4/(16 · 31) 212c/22c = 210c

5 ∆W 27
7 ,∆W ′277 K1

0,0,K
1
0,4,K

2
0,1 218c+3c · 210c · 3 · 4/(16 · 31) 210c/22·2c = 26c

∆X27
3 ,∆X ′273

6 ∆X27
7 ,∆X ′277 K1

0,5 221c+c · 26c · 4/(16 · 31) 26c/22c = 24c

7 ∆X27
15 ,∆X

′27
15 K3

0,7 222c+c · 24c · 4/(16 · 31) 24c/22c = 22c

8 ∆Y 4
1 ,∆Y

′4
1 K1

0,3,K
3
0,3,K

3
0,6 223c+3c · 22c · 3 · 4/(16 · 31) 22c/22c = 20
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- (Xr
0 , X

r
1 , X

r
2 , X

r
3 ): the input quartet of SC in round r.

- (Y r0 , Y
r
1 , Y

r
2 , Y

r
3 ): the output quartet of SC in round r.

- (Zr0 , Z
r
1 , Z

r
2 , Z

r
3): the input quartet of SR in round r.

- (W r
0 ,W

r
1 ,W

r
2 ,W

r
3 ): the input quartet of MC in round r.

- (∆Xr
0 , ∆X

′r
0 ): the two differences in the upper trails or the lower trails. In the

upper trails, it holds that Xr
0 ⊕Xr

1 = ∆Xr
0 , Xr

2 ⊕Xr
3 = ∆X ′r0 . In the lower

trails, it holds that Xr
1 ⊕Xr

2 = ∆Xr
0 , Xr

0 ⊕Xr
3 = ∆X ′r0 . Similar symbol hold

for (∆Y r0 , ∆Y ′r0 ), (∆Zr0 , ∆Z ′r0 ) and (∆W r
0 , ∆W

′r
0 ).

- (Kr mod 4
0 ,Kr mod 4

1 ,Kr mod 4
2 ,Kr mod 4

3 ): the quartet of the round keys in
round r.

- Xr
i,j : the j-th cell of Xr

i . Similar symbol hold for Y ri , Zri ,W r
i ,K

r mod 4
i (i =

0, 1, 2, 3), and ∆Xr
i , ∆Y

r
i , ∆Z

r
i , ∆W

r
i (i = 0, 1).

Furthermore, during the first two rounds of the attack, we utilize an equiva-
lent round key (and analogously, an equivalent round tweak) corresponding to
MC(SR(Kr)). Specifically, the states corresponding to the key Kr and its equiv-
alent counterpart EKr are presented as shown in Fig 47. Meanwhile, the input
quartet and difference of MC in round r is denoted as (EZr0 , EZ

r
1 , EZ

r
2 , EZ

r
3)

and (∆EZr, ∆EZ ′r), and the output quartet and difference of MC in round r
is denoted as (EW r

0 , EW
r
1 , EW

r
2 , EW

r
3 ) and (∆EW r, ∆EW ′r) (r = 0, 1). The

entire attack process is as follows.

1. For all 216c plaintexts, query the ciphertexts under four related tweaks:
(MK0,MK1,MK2,MK3) = (K,K⊕∆K,K⊕∆K⊕∇K,K⊕∇K). Denote
Ti be the plaintext-ciphertext sets encrypted by MKi(i ∈ {0, 1, 2, 3}).

2. Guess K0
0,1, K0

0,2, K0
0,3, K0

0,4, K0
0,6, K1

0,7, K2
0,0, K2

0,2, K2
0,4, K2

0,6, and K2
0,7.

Then,
(a) For each (EW 0

i , Z
30
i ) ∈ Ti(i ∈ {0, 1, 2, 3}), partial decrypt Z30

i un-
der the keys K1

i,7, K2
i,0, K2

i,2, K2
i,4, K2

i,6, and K2
i,7 to get the values

W 29
i,6,W

29
i,11,W

29
i,12,W

29
i,15,W

28
i,7 andW 28

i,15. and store Ci = (EW 0
i , Z

30
i ,W

29
i,6,

W 29
i,11,W

29
i,12,W

29
i,15,W

28
i,7,W

28
i,15) into a new table T ′i .

(b) LetRK0
i = ETK0

i ⊕EK0
i (i = 0, 1, 2, 3), thenRK0

i,1, RK
0
i,3, RK

0
i,9, RK

0
i,11

and RK0
i,12 are known as the keysK0

0,1,K0
0,2,K0

0,3,K0
0,4,K0

0,6 are known.
For x0 = (x01, x

0
3, x

0
4, x

0
6, x

0
9, x

0
11, x

0
12) ∈ (F4

2)
7 and x1 = (x11, x

1
3, x

1
4, x

1
6, x

1
9,

x111, x
1
12) ∈ (F4

2)
7, find all (x0, x1) such that

(S(x01 ⊕RK0
0,1)⊕ S(x11 ⊕RK0

1,1))⊕ (S(x011 ⊕RK0
0,11)

⊕S(x111 ⊕RK0
1,11)) = 0,

(S(x03 ⊕RK0
0,3)⊕ S(x13 ⊕RK0

1,3))⊕ (S(x09 ⊕RK0
0,9)

⊕S(x19 ⊕RK0
1,3))⊕ (S(x012 ⊕RK0

0,12)⊕ S(x112 ⊕RK0
1,12)) = 0,

(S(x04)⊕ S(x14))⊕ (S(x011 ⊕RK0
0,11)⊕ S(x111 ⊕RK0

1,11)) = 0,

(S(x06)⊕ S(x16))⊕ (S(x09 ⊕RK0
0,9)⊕ S(x19 ⊕RK1

1,9)) = 0,

S(S(x03 ⊕RK0
0,3))⊕ S(S(x13 ⊕RK0

1,3)) = 0x8,

and store them into a table T 0
p . As a result, for a fix x0, there are 22c

corresponding x1. Adopt the same steps to make table T 1
p under the keys

RK0
2 and RK0

3 .
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(c) For each plaintext EW 0
0 , construct EW 0

1 such that ((EW 0
0,1, EW

0
0,3,

EW 0
0,4, EW

0
0,6, EW

0
0,9, EW

0
0,11, EW

0
0,12), (EW

0
1,1, EW

0
1,3, EW

0
1,4, EW

0
1,6,

EW 1
0,9, EW

0
1,11, EW

0
1,12)) ∈ T 0

p , EW 0
1,7 ∈ F4

2, and the remained cell of
EW 0

1 are the same as EW 0
0 . Similarly, conduct the same operation to

get (EW 0
2 , EW

0
3 ). Finally, two lists of size 216c+3c = 219c are constructed.

L0 = {(EW 0
0 , C0, EW

0
1 , C1)},

L1 = {(EW 0
2 , C2, EW

0
3 , C3)}.

(d) Insert L0 into a hash table H indexed by the 20c bits in the cells
Z30
0,4, Z

30
0,5, Z

30
0,9, Z

30
0,13,W

29
0,6,W

29
0,11,W

29
0,12,W

29
0,15,W

28
0,7,W

28
0,15 and Z30

1,4, Z
30
1,5,

Z30
1,9, Z

30
1,13,W

29
1,6,W

29
1,11,W

29
1,12,W

29
1,15,W

28
1,7,W

28
1,15. For each (EW 0

2 , C2,
EW 0

3 , C3) ∈ L1, lookupH to find the the corresponding (EW 0
0 , C0, EW

0
1 ,

C1) such that
Z30
1,j ⊕ Z30

2,j = 0, Z30
0,j ⊕ Z30

3,j = 0, (j = 4, 5, 9, 13),

W 29
1,j ⊕W 29

2,j = 0,W 29
0,j ⊕W 29

3,j = 0, (j = 6, 11, 12, 15),

W 28
1,j ⊕W 28

2,j = 0,W 28
0,j ⊕W 28

3,j = 0, (j = 7, 15).

Finally, there are Q = 22·19c−2·10c = 218c quartets can be constructed.
(e) Guess the keys and employ the early abort technique [38] to eliminate in-

correct keys. In detail, with the early abort technique, we use the known
differences in Table 8 to recovery the key step by step. In Table 8, we
also summarize the keys that need guessed to get the known differences.
Finally, the key recovery steps is detailed in Table 9.

3. Exhaustively search the remaining key.

Complexity. The number of all keys that need guessed is 226c. After the early
abort technique, the probability of not discarding a key is p = (1−2−18c)Q = e−1.
The data complexity is 22 · 216c = 266. For the time complexity:

- Cost of step 2(a), for each (EW 0
i , Z

30
i )(i = 0, 1, 2, 3), 14 S-boxes are used in

partial decryption. Thus, the time complexity is 22 ·211c ·216c ·14/(16 ·31) ≈
2104.86.

- Cost of step 2(b), 22 S-boxes are employed to process the (27c)2 data, the time
complexity is 2× 211c × 214c · 22/(16 · 31) ≈ 297.51.

- Cost of step 2(c), the time complexity is 2× 211c × 219c = 2121.
- Cost of step 2(d), the time complexity is 211c × 218c = 2116.
- Cost of step 2(e), as shown in Table 9, the time complexity is mainly consumed

in step 1, 3, and 5. Thus, the time complexity is 231c · (2 · 4)/(16 · 31) + 2 ·
231c · (3 · 4)/(16 · 31) ≈ 2120.1.

- Cost of step 4, the time complexity is 2128/e ≈ 2126.6.

During the entire process, the largest memory consumption is for storing the
keys in step 2(e). As we guess 226c keys in step 2(e), the memory complexity is
2104.
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All in all, we successfully attacked 31-round SKINNYee, and the data com-
plexity is 266, the time complexity is 2126.6, and the memory complexity is 2104.
Beyond full-codebook attack. As SKINNYee takes an 16c-bit plaintext as
input and a (4 × 16c)-bit tweak, it is reasonable to assume that an attacker
may have available an amount of data with D > 216c to carry out an attack, as
long as D ≤ (216c+4×16c). The attack in such a setting is called the beyond full-
codebook attack [12]. If we choose 216c+τ plaintexts, then the data complexity
is 22 · 216c+τ = 266+τ . For the time complexity:

- Cost of step 2(a), the time complexity is 22·211c·216c+τ ·14/(16·31) ≈ 2104.86+τ .
- Cost of step 2(b), 22 S-boxes are employed to process the (27c)2 data, the time

complexity is 2× 211c × 214c · 22/(16 · 31) ≈ 297.51.
- Cost of step 2(c). In this step, two lists of size 216c+τ+3c = 219c+τ are con-

structed. Thus, the time complexity is 2× 211c × 219c+τ = 2121+τ .
- Cost of step 2(d). In this step, there are Q′ = 22·(19c+τ)−2·10c = 218c+2τ quar-

tets are constructed. Thus, the time complexity is 211c × 218c+2τ = 2116+2τ .
- Cost of step 2(e), as Q′/Q = 22τ , the time complexity is 2120.1+2τ . After this

step, the probability of not discarding a key is p′ = (1− 2−18c)Q
′
= e−2

2τ

.
- Cost of step 4, the time complexity is 2128/e2

2τ

.

During the entire process, the largest memory consumption is for storing the
keys in step 2(e). As we guess 226c keys in step 2(e), the memory complexity is
2104.

Finally, we choose τ = 1.01 to attack 31-round SKINNYee, the data complex-
ity is 22 · 216c+1.01 = 267.01, the time complexity is 2121+1.01 + 2120.1+2·1.01 +
2128/e2

2·1.01 ≈ 2123.68, and the memory complexity is 2104.
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