
zkVoting : Zero-knowledge proof based coercion-resistant and E2E verifiable
e-voting system

Seongho Park
Hanyang University

Seoul, Republic of Korea
seonghopark@hanyang.ac.kr

Jaekyoung Choi
Zkrypto

Seoul, Republic of Korea
cjk@zkrypto.com

Jihye Kim
Kookmin University

Seoul, Republic of Korea
jihyek@kookmin.ac.kr

Hyunok Oh
Hanyang University

Seoul, Republic of Korea
hoh@hanyang.ac.kr

Abstract—We introduce zkVoting, a coercion-resistant e-voting
system that utilizes a fake keys approach based on a novel
nullifiable commitment scheme. This scheme allows voters to
receive both real and fake commitment keys from a registrar.
Each ballot includes this commitment, but only the tallier
can efficiently discern the fake ballots, simplifying the tally
process to O(n) and ensuring coercion resistance. zkVoting also
preserves voter anonymity by ensuring each ballot conceals the
voter’s identity. Additionally, by integrating zero-knowledge
proofs, zkVoting achieves end-to-end (E2E) verifiability. We
formally prove its security and demonstrate its practicality
for real-world applications, with a ballot casting time of 2.3
seconds and a tally time of 3.9 milliseconds per ballot.

1. Introduction

Remote electronic voting (e-voting) systems enhance
efficiency and accessibility but face significant privacy chal-
lenges, such as voter coercion. Adversaries may compel
voters to favor specific candidates, abstain, or vote un-
der supervision, eroding fundamental democratic principles.
Moreover, verifiability is indispensable in e-voting systems.
Extensive research has explored verifiability criteria, high-
lighting its importance in ensuring election integrity [1]–
[10]. While all ballots are published on the (public) bulletin
board, individual verifiability allows voters to confirm that
their ballots are posted as intended. Universal verifiability
permits anyone to validate the tally results. End-to-end
(E2E) verifiability assures voters that their votes are cast
as intended, recorded as cast, and tallied as recorded.

Various e-voting systems designed to ensure coercion
resistance and verifiability have been proposed [11]–[14].
The initial method to counteract coercion introduced by
Juels, Catalano, and Jakobsson [11] (JCJ), employs fake
credentials. This technique allows voters to create multiple
fake credentials along with their genuine ones, enabling
them to submit spurious ballots to mislead coercers. This
strategy assumes that: 1) no coercion attacks occur during
the registration phase; 2) voters can securely store and
conceal cryptographic keys; and 3) they can convincingly lie
if coerced. The JCJ system [11], as implemented in Civitas
[12], requires a trusted registrar and tallier to ensure coercion

resistance. The time complexity of the tally phase, driven
by the plaintext equivalence test (PET) [15], is O

(
nb

2
)
,

where nb denotes the total number of ballots. The system
provides universal verifiability, predicated on the assumption
of a trusted registrar.

Another approach involves revoting, where voters cast
ballots multiple times using the same credentials, as ex-
plored in recent studies [13], [14], [16]. This method as-
sumes that: 1) voters possess inalienable authentication to
cast ballots; and 2) there is a designated period for revoting
after potential coercion. Systems based on this approach
require the additional assumption of a trusted voting server
to ensure coercion resistance. VoteAgain [14] achieves co-
ercion resistance with the aid of a trusted registrar, voting
server, and tallier, and it reduces the time complexity of
the tally phase to O(nb log nb). Meanwhile, Loki [16] in-
troduces a mechanism for flexible vote updating, eliminating
the need for a specific revoting period post-coercion. This
system attains coercion resistance through reliance on a
trusted voting server and tallier, with a tally time complexity
of O(nv), where nv denotes the number of voters. In Loki,
voters and the trusted voting server collaboratively manage a
shared list of real ballots, periodically re-randomizing each
voter’s latest or second-to-last ballot to thwart coercion. This
approach, akin to employing fake credentials, encourages
voters to deceive coercers about their true ballot list. How-
ever, it demands considerable computational resources from
the voting server for re-randomizing ballots, which poses
scalability challenges in large-scale elections.

We introduce zkVoting, a coercion-resistant e-voting sys-
tem that advances from the traditional fake credentials ap-
proach to an innovative fake keys method. Central to this
system is the newly introduced "nullifiable commitment
scheme," a novel cryptographic building block conceptu-
alized for the first time in this paper. In this scheme, a
trusted entity equipped with a master secret key issues both
real and fake commitment keys to voters. Each voter is
allowed only one real commitment key but may receive
any number of fake keys. Each key, whether real or fake,
serves as a component of a casting key, enabling a voter
to cast a single ballot. In scenarios of coercion, a voter
may use a fake key to cast a vote. The trusted entity can
perform a nullification operation using the master secret key,

where ballots committed with a real key retain their value,
whereas those committed with a fake key are transformed
to open with a zero value. This capability allows the trusted
entity to efficiently identify and disregard ballots containing
fake keys, significantly streamlining the tallying process and
reducing computational complexity to O(nb).

This architecture allows zkVoting to ensure end-to-end
(E2E) verifiability without the need to trust the registrar,
marking a significant divergence from most existing sys-
tems that rely on a shared secret voting key for coercion
resistance. Unlike traditional systems [11], [14], [16] where
the relationship between the voter and registrar typically
requires trust to achieve verifiability, zkVoting constrains the
registrar’s role to ensuring privacy-related aspects such as
ballot secrecy and coercion resistance. The unique setup
of the casting key, comprising the voter’s secret key and
a commitment key (either real or fake), further underpins
this trust architecture. The voter independently generates and
retains the secret key, and the registrar, accessing only the
voter’s public key information, issues the commitment key.
This arrangement allows the registrar to distinguish between
real and fake keys but prevents it from casting votes due to
the absence of access to the secret key.

To address potential ballot stuffing and ensure the in-
tegrity of the voting process, the registrar must also provide
proof that the number of real keys issued matches the total
number of eligible voters. This verification is facilitated
by integrating a homomorphic property into the nullifiable
commitment scheme, which permits the aggregation of com-
mitments, each corresponding to the number of eligible
voters after a nullifying process. The homomorphic nature of
the commitment also simplifies the proof of tally results for
universal verifiability and allows greater flexibility in choos-
ing encryption schemes beyond homomorphic encryption.

1.1. Contributions

Our main contributions are as follows:
• We introduce a novel concept of a nullifiable commit-

ment scheme. We formally define nullifiable encryption
schemes, construct an efficient homomorphic nullifiable
commitment scheme, and prove its security under the
discrete log and decisional Diffie-Hellman assumptions.

• We present the security definitions of e-voting systems
including coercion resistance in KTV [17] which is the
enhanced model presented from JCJ [11]. We also present
the security properties of individual verifiability, universal
verifiability, E2E verifiability, eligibility verifiability, and
voter anonymity.

• We develop a compiler to construct zkVoting, a coercion-
resistant E2E verifiable e-voting system utilizing a homo-
morphic nullifiable commitment scheme and basic crypto-
graphic building blocks. This system enables voters to cast
indistinguishable fake ballots, evading coercion. It simpli-
fies the tallying process with a linear time complexity and
proves the result with a constant time and size complexity.

• We provide security proofs for our e-voting system com-
piled under the security assumptions of hybrid encryp-

tions, nullifiable commitments, collision-resistant hash
functions, and zero-knowledge proof systems. Our system
ensures coercion resistance, E2E verifiability, eligibility
verifiability, and voter anonymity, requiring weaker trust
assumptions compared to prior works.

• We construct zkVoting, leveraging an efficient homomor-
phic nullifiable commitment. Our performance evaluation
shows remarkable efficiency: ballot generation with a
zero-knowledge proof in 2.3 seconds on a smartphone,
ballot decryption in 3.9 ms per ballot, and tally proof gen-
eration in 360 ms on a server. Note that ballot decryption
can be performed in parallel, further enhancing the tally
efficiency.

• We incorporate a mechanism to detect malfunctioning
devices using any trusted device. Upon casting a ballot,
a receipt is issued to verify the proper functioning of
the voter’s device. The receipt contains the serial number
(which locates its transaction in the blockchain) and the
symmetric key (used for encrypting the message). Using
any trusted device, the voter can confirm whether their
ballot has been accurately cast as intended by decrypting
the transaction and whether there are no duplicate ballots
by checking the serial number. Note that this receipt is
meaningful only to the voter who knows the real/fake key
information.

1.2. Security properties in e-voting systems

Before discussing previous e-voting systems, we outline
the fundamental properties of a secure e-voting system,
as defined in existing literature [1]–[8], [11], [17], [18].
The security properties of an e-voting system are primarily
categorized into privacy and verifiability and defined as
follows:

• Ballot privacy(BP) : a ballot does not reveal the voter’s
choice.

• Voter anonymity(VA) : a ballot does not reveal the identity
of voters.

• Receipt freeness(RF) : a voter is not able to prove their
choice.

• Coercion resistance(CR) : a voter is able to cast a vote
despite any influence.

• Individual verifiability(IV) : a voter must be able to verify
their ballot containing their vote is included on the bulletin
board.

• Universal verifiability(UV) : anyone must be able to
verify the tally result represents all the ballots on the
bulletin board.

• End-to-end verifiability(E2E V) : a voter can identify their
unique ballot in a certain way and verify their ballot is
cast-as-intended, their choice is recorded-as-cast and the
result is tallied-as-recorded.

• Eligibility verifiability(EV) : anyone can verify the ballot
is generated only from eligible voters with a voting right
and all voters cast at most one vote.

2

TABLE 1: Security comparison of e-voting systems : He-
lios [19], BeleniosRF [20], Provotum [21], JCJ [11], Civi-
tas [12], VoteAgain [14], Loki [16], and our zkVoting.

Properties [19] [20] [21] [11]/
[12] [14] [16] zkVoting

BP ! ! ! ! ! ! !

VA ✗ ✗ ✗ ! ! ✗ !

RF ✗ ! ✗ ! ! ! !

CR ✗ ✗ ✗ ! ! ! !

IV ! ! ! ✗ ! ! !

UV ! ! ! ! ! ! !

E2E V ! ✗ ! ✗ ! ! !

EV ✗ ! ! ! ! ! !

1.3. Related work

Table 1 presents and compares the evaluation results
of previous e-voting systems [11], [12], [14], [19]–[21],
assessed based on the criteria outlined in §1.2. Some studies
prioritizing coercion resistance often fall short of ensuring
verifiability. On the other hand, research focusing on verifi-
ability sometimes does so at the expense of privacy.

The most well-known e-voting system is Helios [19].
Helios presumes all voters to be honest and operates under
the assumption of low coercion environments. However,
Helios ensures E2E verifiability by issuing the receipt of
the ballot. BeleniosRF [20] aims to achieve receipt freeness
and E2E verifiability by improving Helios. However, the
authority is responsible for key distribution and thus needs
to be fully trusted. The authority with users’ secret keys not
only compromises voter anonymity but can also generate a
proxy ballot before the voter creates their ballot. Eligibil-
ity verifiability is asserted by fully trusting the authority.
Provotum [21] is a blockchain-based e-voting protocol that
provides E2E verifiability, with voters keeping the transac-
tion hash of the block. A trusted third party is responsible
for verifying the eligibility of voters. Consequently, only
eligible voters can cast a ballot, thereby ensuring eligibility
verifiability. However, it does not guarantee receipt freeness

and coercion resistance.
We provide a detailed analysis of various coercion-

resistant e-voting systems in Table 2, including those uti-
lizing fake credentials [11], [12] and those based on the
revoting approach [14], [16]. Systems that employ the fake
credentials approach exhibit high time complexity during
the tally phase. In contrast, systems utilizing the revoting
approach introduce a significant assumption: the necessity
of a new trusted party. Specifically, VoteAgain requires a
trusted tally server, and Loki depends on a trusted voting
server.

JCJ [11] is the first coercion resistance e-voting system
simultaneously achieving individual, universal, and eligibil-
ity verifiability. Civitas [12] is the implementation of the JCJ
protocol. Its approach involves the use of fake credentials
to deceive a coercer and requires extra computations to
differentiate whether the ballot was generated with a fake
credential which takes O

(
nb

2
)

computations where nb is
the number of ballots.

The other approach to achieve coercion resistance is
enabling voters to re-vote using the same credential called
revoting. VoteAgain [14] claims that using one credential
and allowing revoting can achieve coercion resistance with
E2E and eligibility verifiability. It reduces the time com-
plexity to O(nb log nb) for the tally server to filter the
genuine ballots among nb total ballots. However, it requires
the strong assumption that all entities participating in the
election should be trusted to ensure coercion resistance [22].

Loki [16] is the latest coercion-resistant voting system
introducing a new paradigm called flexible vote updating
which is built upon the revoting approach allowing voters
to revote but eliminating the conventional assumption that
voters require a specific period to revote after being coerced.
Instead, voters and the trusted voting server confidentially
share the intentions of voters. Loki demonstrates a time
complexity of O(nv), and E2E verifiability with an honest
registrar. Nonetheless, Loki is applicable only for small-
scale voting scenarios, since it receives revoted ballots or re-
randomizes ballots for all voters every period. Additionally,
each ballot contains the identity of the voter, which does

TABLE 2: Detailed security comparison of coercion-resistant e-voting systems where nb is the number of ballots and nv is
the number of voters. All systems require a trusted bulletin board.

JCJ [11] / Civitas [12] VoteAgain [14] Loki [16] zkVoting
Trusted party

for Verifiability registrar registrar registrar none

Trusted party
for BP registrar, tallier registrar, tallier registrar, tallier registrar, tallier

Trusted party
for VA registrar, tallier registrar not ensured none

Trusted party
for CR registrar, tallier registrar,

voting server, tallier voting server, tallier registrar, tallier

Paradigm
for CR fake credentials revoting flexible vote updating fake keys

Time complexity
for the tally phase O

(
n2
b

)
O(nb log nb) O(nv) O(nb)

3

not provide voter anonymity.

1.4. Outline

The remainder of this paper is organized as follows:
Section 2 defines the notion of a nullifiable commitment
scheme with homomorphism and instantiates a homomor-
phic nullifiable commitment scheme. Section 3 formally
defines an e-voting system and its associated security prop-
erties. In Section 4, we propose zkVoting, a secure generic e-
voting system using a homomorphic nullifiable commitment
scheme and prove its security. We also instantiate a specific
construction of zkVoting. Section 5 offers evaluations and
discussions. Finally, Section 6 wraps up our study.

2. Nullifiable commitment

We introduce a novel concept named nullifiable com-
mitment schemes. In this commitment scheme, a manager
who has a master secret key and a master public key pair
issues a commitment key. This commitment key can be
either a real or a fake commitment key which is indis-
tinguishable. Using the master secret key, the commitment
can be nullified, which transforms the commitment into
an alternative form of a commitment. Specifically, after
nullified, the new commitment generated from a fake key
is opened with a zero message while one from a real key
is opened with the original message. We distinguish the
nullifiable commitment key ck∗ from the standard real/fake
commitment keys ck, where ck∗ is exclusively used to open
all nullified commitments. While multiple ck’s can be issued
as requested by the user, after being nullified by a manager,
each commitment can be opened with a unique nullifiable
commitment key ck∗.

In nullifiable commitment schemes, the manager, upon
generating a master key pair, issues commitment keys to the
user. To ensure the integrity of key issuance, the manager
interacts with the user to validate the authenticity of the re-
ceived keys through a proving process (KeyProve described
below). While this interactive design enables the user to
verify the authenticity of received keys, universal verifica-
tion is precluded, making it impossible for any party other
than the user to distinguish between real and fake keys. The
concept of deniability, widely discussed in cryptographic
literature (e.g., [23]–[26]), plays a crucial role here. In our
context, deniability ensures that a user can plausibly deny
having received a fake commitment key and present it as
genuine. This feature is facilitated by a simulation algorithm
(SimKeyProve described below).

2.1. Protocols and properties

Definition 2.1. A nullifiable commitment scheme ΠNC =
(Setup, KeyGen, KeyProve, SimKeyProve, Commit, Nullify,
Open) is a set of protocols, which operates as follows:
• Setup(1λ) → (mpk,msk, ck∗) : on input a security pa-

rameter λ, outputs a master public key mpk, a master
secret key msk, and a nullifiable commitment key ck∗.

• KeyGen(mpk,msk, b ∈ {0, 1}) → ck : takes a master
public key mpk, master secret key msk and bit b and
returns a commitment key ck. If b = 1, it outputs a real
commitment key, otherwise, it outputs a fake one.

• KeyProve(mpk,msk, ck, b ∈ {0, 1}) → (πck, (1/0)) : is
an interactive protocol between a manager and a commit-
ter. Let the manager be a prover P takes a master public
key mpk, a master secret key msk, a commitment key
ck, and a bit b. Let the committer be a verifier V that
takes a master public key mpk, a public key ck, and a
bit b. Through the interaction, V can verify whether ck is
correctly generated and P knows msk. If the verification
passes, it returns 1. Otherwise, it returns 0.

• SimKeyProve(mpk, ck, b′ ∈ {0, 1}) → (π′
ck, (1/0)) : is a

simulation algorithm that a verifier(committer) V always
generates simulated proof π′

ck without knowing a master
secret key msk. A user can prove that ck is a real com-
mitment key even if it is a fake one, and vice versa. The
simulated proof always passes the verification progress.

• Commit(ck,m; r)→ cm : takes a commitment key ck, a
message m and a random r. It outputs a commitment cm.

• Open(ck, cm,m, r) → (1/0) : takes a commitment key
ck, a commitment cm, a message m and a random r.
If cm is a valid commitment of m using a random r, it
outputs 1; otherwise, it outputs 0.

• Nullify(msk, cm) → cm∗ : a manager transforms a stan-
dard commitment cm to a nullifiable commitment cm∗

using a master secret key msk. Specifically, if cm is
created with a fake commitment key, cm∗ is opened with
a message value set to zero. Conversely, if cm is formed
with a real commitment key, cm∗ is opened with the
original message committed in cm.

• Opennull(ck∗, cm∗,m, r) → (1/0) : takes a nullifiable
commitment key ck∗, nullified commitment cm∗, message
m and random r. If cm∗ is a nullified commitment from
a real commitment, it outputs 1. Otherwise, it outputs 0.

For defining its security properties, given a security
parameter 1λ, we denote a negligible function as negl(λ).
PPT refers to a probabilistic polynomial time. A nullifiable
commitment scheme ΠNC should satisfy the following prop-
erties:
Hiding. The commitment from nullifiable commitment
schemes ensures hiding even against a holder of the master
secret key. In Figure 3 at Appendix A, the hiding property
is defined as a game GameHiding

A,ΠNC
between a challenger and a

PPT adversary A. A receives (mpk,msk, ck∗, ck) from the
challenger, and submits (m0,m1). A challenger randomly
selects a bit c ∈ {0, 1} and sends a challenge commitment
cm ← Commit(ck,mc; r) to A by choosing r randomly.
The game outputs 1 if A correctly guesses c.

Definition 2.2. ΠNC satisfies hiding if Adv
Hiding
A,ΠNC

(1λ) is
negligible.

Binding. The committer, after committing a message, can-
not find any other message of which commitment is equiv-
alent to the original message commitment.

4

Definition 2.3. ΠNC ensures binding if the following holds:

Pr


(mpk,msk, ck∗)← Setup(1λ)

b←$ {0, 1}, ck← KeyGen(mpk,msk, b),
(m0, r0,m1, r1)← A(mpk,msk, ck∗, ck) :

m0 ̸= m1 ∧m0,m1 ̸= ⊥ ∧
Commit(ck,m0; r0) = Commit(ck,m1; r1)

 ≤ negl(λ).

Nullifiability. Nullifiability in nullifiable commitment
schemes is connected with the correctness of the scheme.
All commitments can be opened using Open. After nulli-
fication, using Opennull, a nullified commitment is opened
with the original message m if the original commitment was
generated using a real commitment key. If not, the nullified
commitment will be opened with a zero message.

Definition 2.4. ΠNC satisfies nullifiability if the following
holds:

Pr


(mpk,msk, ck∗)← Setup(1λ),

b←$ {0, 1}, ck← KeyGen(mpk,msk, b),
∀m, r, cm← Commit(ck,m; r),

Open(ck, cm,m, r) = 1 :
Opennull(ck∗,Nullify(msk, cm), b ·m, r) = 1

 = 1.

Indistinguishability of keys (IK). Consider two commit-
ment keys, where each key, independently, can be either real
or fake, or both could be of the same type. Given a commit-
ment committed using one of these keys, the probability of
correctly determining which key was used is negligible. This
is a similar concept of key indistinguishability in encryption
schemes (i.e, IK-CPA encryption scheme [27]), whereas
ours is indistinguishability of keys for the commitment
framework. Key indistinguishability is defined as a game
in Figure 4 in Appendix A. In GameIK

A,ΠNC
, A gets two

commitment keys and submits a message. From a challenge
commitment that is committed to the message using one of
the two keys, A tries to guess which key was chosen.

Definition 2.5. ΠNC ensures indistinguishability of keys if
AdvIK

A,ΠNC
(1λ) is negligible

Key deniability. While a msk holder can prove to a ck
holder whether ck is real or fake using the interactive
protocol KeyProve, any ck holder, without msk, can simulate
proof using SimKeyProve asserting that the commitment key
is real, even if it is a fake commitment key, and vice versa.
This disables any party not participating in the interactive
protocol distinguishing whether the commitment key is real
or fake. Namely, if the ck holder is coerced to reveal their
real key and proof from KeyProve, the ck holder can deny
by submitting a fake key with a simulated proof from
SimKeyProve.

Definition 2.6. In a nullifiable commitment scheme ΠNC,
the key is deniable if for any offline PPT adversary A, the

following is negligible:∣∣∣∣∣∣∣Pr
 (mpk,msk, ck∗)← Setup(1λ),

b←$ {0, 1}, ck← KeyGen(mpk,msk, b),
(πck, 1)← KeyProve(mpk,msk, ck, b) :

A(mpk, ck∗, ck, πck) = 1

−

Pr

 (mpk,msk, ck∗)← Setup(1λ), b←$ {0, 1},
ck← KeyGen(mpk,msk, b), b′ ←$ {0, 1},
(π′

ck, 1)← SimKeyProve(mpk, ck, b′) :
A(mpk, ck∗, ck, π′

ck) = 1


∣∣∣∣∣∣∣

Homomorphism. Nullifiable commitment schemes exhibit
homomorphic properties when homomorphic operations are
applied to their corresponding messages, which can also be
nullifiable. When homomorphism is applied, the behavior
depends on the nature of the original commitment: if it is a
real commitment, then the original message will be included
in the aggregation. Conversely, if the commitment is fake, a
zero message will be aggregated instead. Consequently, the
resulting aggregated commitment can be opened to reveal
the cumulatively aggregated nullifiable messages.

Definition 2.7. A nullifiable commitment scheme, ΠNC en-
sures homomorphism if the following holds:

Pr


(mpk,msk, ck∗)← Setup(1λ),

∀i, bi ←$ {0, 1}, cki ← KeyGen(mpk,msk, bi),
cmi ← Commit(cki,mi; ri),
Open(cki, cmi,mi, ri) = 1,

cm∗(=
∑

cm∗
i)← Nullify(msk,

∑
cmi) :

Opennull(ck∗, cm∗,
∑

bi ·mi,
∑

ri) = 1

 = 1.

2.2. Construction

We instantiate a homomorphic nullifiable commitment
scheme ΠNC over an elliptic curve group G with prime order
q where the discrete log (DL) assumption and the decisional
Diffie-Hellman (DDH) assumption hold. We utilize the cryp-
tographic hash function H . The construction is described in
Construction 1.

Theorem 2.1. If the DL assumption and DDH assumption
hold in the elliptic curve group G, then for all probabilistic
polynomial time adversaries A, ΠNC in Construction 1,
satisfies hiding, binding, nullifiability, indistinguishability of
keys, key deniability, and homomorphism.

We provide the formal proof in Appendix B.

3. Secure e-voting systems

3.1. Entities and assumptions

An e-voting system is a set of protocols executed among
a group of entities. The entities can be classified into three
types, based on their roles and functionalities within the
voting system.
Authority. An authority oversees the entire voting system,
conducting the setup and registration phases. In the tally
phase, the authority gathers all ballots, tallies the results,
and publishes them.

5

Voters. A voter has a right to cast a ballot. They should
register to cast a ballot. All voter has their id to participate
in the election.
Public Bulletin Board (BB). The bulletin board is public
and all entities can access it. All ballots from voters are
posted on the bulletin board.
Assumptions. When a voter registers their public key and
obtains casting keys, the voter needs to undergo authenti-
cation with their id. This procedure occurs either offline
or, in the case of an online scenario, assumes the use of
an authenticated private channel. Once authenticated, each
voter is provided with one real casting key and as many
fake keys as desired. The number of casting keys received
by a voter is known only to the voter and the authority,
excluding any third party. Throughout the voting process, an
anonymous communication channel like the mix-net [28]–
[31] is presumed, aligning with a foundational premise
common in most e-voting systems [11], [12], [14], [20].

We posit a period of non-interference for voters before
the election ends. This assumption ensures that every voter
has an opportunity to cast their ballot free from coercion,
safeguarding the integrity of their vote. It precludes scenar-
ios of constant surveillance or complete control over voters.
Threat Model. We consider a PPT coercer who tries to
coerce voters into either voting for a specific candidate or
abstaining from voting altogether with or without asking for
the voter’s casting key. A coercer possesses the capability
to coerce any voter, potentially extending this coercion to
all voters. A voter provides any information that the coercer

requests including the casting key.

3.2. Protocols

An e-voting system ΠVote = (Setup, Register, Vote,
VerifyBallot, Tally, VerifyTally) is a set of protocols that
operate as follows and can be classified into four phases:
Setup phase.
• Setup(1λ)→ (PP, SK) : The authority generates an elec-

tion key pair (PP, SK) and opens an election by setting
public parameters PP such as PK, the start and end times,
candidates, and eligible voters. The authority returns PP
and SK.

Register phase.
• Register(PP, SK, id) → (skid, pkid, ck) : A voter has

their own identifier id, generates a key pair (skid, pkid),
registers pkid for the election and obtain a casting key ck
to cast a ballot.

Voting phase.
• Vote(PP, (id, skid, pkid, ck,m))→ B : The voter encrypts

a message m, casts their ballot B, and post to the bulletin
board BB.

• VerifyBallot(PP,PK, B)→ (1/0) : Anyone can verify the
ballot on BB.

Tally phase.
• Tally(PP, SK) → T : The authority collects all the bal-

lots on BB and decrypts them. The authority tallies the
messages and publishes the tally T .

• VerifyTally(PP, T)→ (1/0) : Anyone can verify the tally.

Construction 1 Proposed nullifiable commitment scheme construction

Setup(1λ) :

ρ←$ Z∗
q ; g1, g2, g3 ←$ G; g4 = gρ1

mpk = (g1, g2, g3, g4); msk = ρ;

ck∗ = (g2/g
ρ
1 , g3);

return (mpk,msk, ck∗);

KeyGen(mpk,msk, b ∈ {0, 1}) :
parse mpk = (g1, g2, g3, g4);

h1 ←$ G; h2 = hmsk
1 gb3;

return ck = ((g1, h1), (g2, h2));

Commit(ck,m; r) :

parse ck = ((g1, h1), (g2, h2));

C1 = gr1h
m
1 ; C2 = gr2h2

m;

return cm = (C1, C2);

Nullify(msk, cm) :

parse cm = (C1, C2);

cm∗ = C2/(C
msk
1);

return cm∗;

Open(ck, cm,m, r) :

parse ck = ((g1, h1), (g2, h2)); cm = (C1, C2);

if C1 = gr1h
m
1 ∧ C2 = gr2h2

m then return 1;

else return 0;

Opennull(ck∗, cm∗,m, r) :

parse ck∗ = (g∗, h∗);

if cm∗ = g∗
r
h∗m

then return 1;

else return 0;

KeyProve(mpk,msk, ck, b ∈ {0, 1}) :
parse mpk = (g1, g2, g3, g4);

parse ck = ((g1, h1), (g2, h2));

V : c←$ Z∗
q ; sends d← H(c);

P : t←$ Z∗
q ; sends p = ht

1;

V : sends c;

P : assert d = H(c); sends k = t+ msk · c;
V : if hk

1 = p(h2/g
b
3)

c then

return (πck = (p, k, c), 1); else return 0

SimKeyProve(mpk, ck, b′ ∈ {0, 1}) :
parse mpk = (g1, g2, g3, g4);

parse ck = ((g1, h1), (g2, h2));

(k′, c′)←$ Z∗
q ;

p′ = hk′
1 /(h2/g

b′
3)c

′
;

return (π′
ck = (p′, k′, c′), 1);

6

3.3. Security properties

From here, we write a set {x1, x2, · · · , xN} as a vector
X. The operation of appending element e to a set X will
be represented as X⇐ e.
Ballot privacy. The game GameBP

A,ΠVote
in Figure 5 in Ap-

pendix A defines a game for ballot privacy. An adversary
A selects two messages of equal length, and a challenging
voter V flips a coin b and casts a ballot with a message mb.
V provides a ballot and A makes a guess b′ about the value
b.

Definition 3.1. For any PPT adversary A, let the advantage
be AdvBP

A,ΠVote
(1λ) =

∣∣Pr[GameBP
A,ΠVote

(1λ) = 1]− 1
2

∣∣ . The
voting system satisfies ballot privacy if AdvBP

A,ΠVote
(1λ) is

negligible.

Coercion resistance. The coercion resistance game
GameCR

A,ΠVote
is outlined in Figure 1, formulizing KTV frame-

work [17] which is a strengthened version of JCJ’s defini-
tion [11]. JCJ’s limitation lies in its inability to distinguish
between a voter intentionally casting a specific message and
being forced to do so. KTV framework addresses this by
ensuring voters can vote freely despite coercion attempts.

For each coercion attack CAi ∈ CA, the attacker wants
voters to be coerced by running a corrupted strategy cs′i.
However, voters can use the counter strategy csi and evade
CAi with probability 1. Coercion resistance is characterized
by the attacker’s minimal chance of distinguishing between
the voters’ defensive counter strategy csi and the manipu-
lated, corrupted strategy cs′i.

GameCR
A,ΠVote

(1λ, CAi, csi, cs
′
i) :

. Setup and register phase
(PP, SK)← Setup(1λ);
All voters register for the election and obtain a casting
key.
. Voting phase
Honest voters vote at any time during the voting phase.
A performs a coercion attack CAi to a targeted voter V .
b←$ {0, 1};
if b = 0 then V performs a counter strategy csi.
else V performs a corrupted strategy cs′i.
end if
. Tally phase
T ← Tally(PP, SK);
. .Challenging phase
b′ ← A(PP, T);
return b = b′;

Figure 1: Coercion resistance game GameCR
A,ΠVote

Definition 3.2. For all PPT adversaries A and all coer-
cion attack CAi ∈ CA, let SuccCR

A,ΠVote
(1λ, CAi, csi) be

the probability of the voter successfully evading coercion
attack CAi using the counter strategy csi. Let the corrupted
strategy cs′i be the strategy operated by the voter when

coerced. Let the advantage of the attacker distinguishing two
strategies csi and cs′i be AdvCR

A,ΠVote
(1λ, CAi, csi, cs

′
i) =∣∣Pr[GameCR

A,ΠVote
(1λ, CAi, csi, cs

′
i) = 1]− 1

2

∣∣. Then, ΠVote is
coercion-resistant if for all coercion attack CAi ∈ CA, the
followings hold:

• SuccCR
A,ΠVote

(1λ, CAi, csi) = 1

• AdvCR
A,ΠVote

(1λ, CAi, csi, cs
′
i) ≤ negl(λ)

Voter anonymity. The goal of A against voter anonymity
is to distinguish the voter’s id associated with a specific
ballot, even when A has access to the authority’s secret
key. This implies that voter anonymity is maintained even
if A can get the message of the ballot, ensuring the voter
associated with a particular ballot remains unidentified. We
present voter anonymity using a game, GameV A

A,ΠVote
, between

a challenging voter V and a PPT adversary A, as shown in
Figure 6 in Appendix A. V provides n public-private key
and casting key pairs to A. A selects two public keys and
make vote queries to V , providing a message m. V flips a
coin b, casts a ballot Bb and provides it to A. A makes a
guess b′ about the value b. The success of A in guessing b
should be negligible to ensure voter anonymity.

Definition 3.3. For any PPT adversary A, let the advantage
be AdvV A

A,ΠVote
(1λ) =

∣∣Pr[GameV A
A,ΠVote

(1λ) = 1]− 1
2

∣∣. ΠVote

ensures voter anonymity if AdvV A
A,ΠVote

(1λ) is negligible.

Individual verifiability. After the voting phase, the voter
must be able to verify that their ballot is uploaded on the
bulletin board and was not deleted or changed.
Universal verifiability. When the election ends and the
authority publishes the tally, anyone can verify the tally
includes all ballots on the bulletin board.
E2E verifiability. E2E verifiability is a combination of three
steps; the voter can verify their ballot was cast-as-intended,
their ballot was recorded-as-cast, and the election result was
tallied-as-recorded.
Eligibility verifiability. Anyone can verify that the ballot
was cast by an eligible voter.

4. zkVoting

In this section, we propose a compiler that generically
builds a coercion-resistant and E2E-verifiable e-voting sys-
tem zkVoting by using homomorphic nullifiable commitment
scheme(§2) and other building blocks in §4.1.

4.1. Cryptographic building blocks

Definition 4.1 (Hybrid encryption). Given a public key
encryption scheme ΠPKE = (Gen, Enc, Dec) and a sym-
metric key encryption scheme ΠSKE = (Gen, Enc, Dec), a
hybrid encryption scheme ΠHBE = (Gen, Enc,Dec) works
as follows:
• Gen(1λ) → (pk, sk) : using ΠPKE.Gen, outputs a public

key pk and a secret key sk.
• Enc(pk,m; k) → CT : takes k ← ΠSKE.Gen, a public

key pk, and a message m and outputs ciphertext CT ←
(ΠPKE.Enc(pk, k),ΠSKE.Enc(k,m)).

7

• Dec(sk, CT = (C1, C2))→ m : decrypts a message m←
ΠSKE.Dec(ΠPKE. Dec(sk, C1), C2).

Both ΠPKE and ΠSKE are IK-CPA [27] and IND-CPA se-
cure encryption scheme. Its ciphertexts are indistinguishable
under the chosen plaintext attack. Also, from the ciphertext,
no adversary can identify which key was used.

Definition 4.2 (Zero-knowledge proof). For some re-
lation R, a zero-knowledge proof scheme ΠZKP =
(Setup,Prove,Verify) works as follows:
• Setup(1λ,R)→ param : generates public parameters.
• Prove(R, param,Φ;w)→ π : given public parameters, a

statement Φ and witness w, the prover P generates proof
π that (Φ;w) ∈ R.

• Verify(R, param,Φ, π) → (1/0) : given public parame-
ters, a statement Φ and proof π, the verifier V confirms
if π is valid.

A zero-knowledge proof should satisfy completeness,
soundness, and zero-knowledge. Completeness means that
if for any statement (Φ;w) ∈ R, V always accepts any
proof π ← P(Φ;w), that is, ∀(Φ;w) ∈ R,V(Φ, π) = 1.
Soundness implies that for any statement Φ /∈ R, the
probability that any cheating P̂ can produce a valid proof
π ← P̂(Φ) such that V(Φ, π) = 1 is negligible. Zero-
knowledge represents that for all (Φ;w) ∈ R, there exists a
PPT simulator S with access only to the public statement
Φ that can output a valid proof π′ ← S(Φ) such that
V(Φ, π′) = 1.

If a system is only secure against a computationally
bounded adversarial prover then it becomes an argument
system. If a system proves that the prover knows a witness
then it provides knowledge soundness. An argument system
is considered succinct if the proof size and the verifying
time are succinct.

A membership proof scheme is a cryptographic method
used to prove that a certain element belongs to a specific
set.

Definition 4.3 (Membership proof). The membership proof
scheme ΠM = (BuildSet, Verify) for a set S is a set of
algorithms, which operates as follows:
• BuildSet(S)→ rt: takes a set S and outputs a set ID rt.
• Verify(rt, e) → (1/0): takes a rt, and an element e, and

outputs 1 if e is a member of the set.

4.2. Compiling coercion-resistant secure e-voting
systems

To enhance coercion resistance in the electronic voting
system, the commitment keys of the nullifiable commitment
scheme serve as casting keys. The inclusion of a fake
casting commitment key allows voters to submit a fake
ballot, creating a mechanism to resist coercion. Each casting
key is authorized to cast one ballot. While only one real
casting key is permitted, multiple fake casting keys can be
issued to counteract potential coercion attacks. At the end

of the registration phase, the casting keys are uploaded to
the bulletin board and used to verify voter eligibility.

The central concept for ensuring verifiability is to use a
zero-knowledge proof system (ZKP) to demonstrate that the
algorithm has been executed as intended, thereby ensuring
that all entities, such as voters and authorities, follow the
protocol. In scenarios such as clash attacks [32] where
two voters vote for the same candidate, malicious voting
devices or authority could deceive the voters with the same
ballot. Two voters do not realize they look at the same
ballot. Therefore, voter names or pseudonyms should be
attached to the ballot to satisfy E2E verifiability [10]. To
achieve E2E verifiability, we embrace the concept of a serial
number [33]. The serial number is bound to the secret key
of the voter and the casting key using a cryptographic hash
function H . This serial number also prevents double voting.
These techniques enable the construction of E2E verifiable
e-voting systems, providing a high level of confidence in the
integrity of the election. Every encrypted ballot is associated
with a commitment using ZKP, and the tallying process is
efficiently proven by the tallier through homomorphically
aggregated and nullifiable commitments.

The full construction ΠVote works as follows:
Setup phase.
• Setup(1λ)→ (PP, SK) : the authority generates a key pair
(mpk,msk, ck∗)← ΠNC.Setup(1λ) for a nullifiable com-
mitment, another key pair (pk, sk)← ΠHBE.Gen(1λ) for a
hybrid encryption and public parameters for all relations
param← ΠZKP.Setup(1λ,R) for zero-knowledge proofs.
Each relation is defined below. Then, the authority sets
public values PP including a master public key mpk, a
nullifiable commitment key ck∗, a public key pk, public
parameters param, a unique election ID e and other
information for the voting system such as the start time,
end time, and a list of nv number of eligible voters.
The authority returns PP = (mpk, ck∗, pk, param, e) and
SK = (msk, sk).

Register phase.
• Register(PP, SK, id) → (skid, pkid, ck) : a voter has

their own ID id and obtains a casting key ck which
is a commitment key in a nullifiable commitment
scheme. The voter sets a secret key skid and gener-
ates a public key pkid = H(skid) and proof πid ←
ΠZKP.Prove(Rid, param, pkid; skid). Then the voter reg-
isters a public key and sets a bit b ∈ {0, 1} meaning
that the voter requires a real casting commitment key if
b = 1 or a fake one if b = 0. The authority verifies
ΠZKP.Prove(Rid, param, pkid, πid) and issues a casting
key ck with proof πck ← ΠZKP.Prove(Rck, param,mpk,
ck, b;msk) guaranteeing the correctness of ck. Proof πck
can be generated using ΠNC.KeyProve(mpk,msk, ck, b).
Here, the voter can obtain a fake casting key multiple
times but a real key only once. At the end of the regis-
ter phase, the authority collects all voters’ casting keys
and public keys CKlist ⇐ (ck, pkid). They are then
uploaded to the bulletin board BB in the form of a set
rt = ΠM.BuildSet(CKlist).

8

While a voter can only obtain a real casting key once,
some might attempt to request it multiple times. For
this reason, the authority secretly stores CKdb ⇐
(id, (ck, pkid), b) to verify whether the voter has previ-
ously issued a real casting key. Furthermore, to guar-
antee that the authority does not issue more real keys
than the total number of voters, ensuring each voter
receives only one real key, the authority provides proof.
It establishes that a nullifiable commitment cm∗ from
the aggregated commitment cm, which is the summation
of commitment cmi committed using message 1, equals
the total number of eligible voters nv, since a message
from a real commitment is considered. This is confirmed
by πtotal = ΠZKP.Prove(Rtotal, ck∗, cm, nv;msk), where
cmi ← ΠNC.Commit(ck, 1; 0) and cm←

∑
cmi.

Voting phase.

• Vote(PP, (id, pkid, skid, ck,m)) → B : the voter
generates a unique serial number of their ballot,
sn = H(e, ck, skid). The voter encrypts a cipher-
text CT ← ΠHBE.Enc(pk,m; k) and a commitment
cm ← ΠNC.Commit(ck,m; r) with a random r. Then,
the voter generates proof πvote ← ΠZKP.Prove(Rvote,PP,
rt, e, sn, CT , cm;m, r, skid, pkid, ck). The voter takes a
receipt of a serial number and a random symmetric key
k which is used in the hybrid encryption scheme. Also,
the voter generates a ballot B = (e, sn, CT , cm, πvote)
and sends it to the bulletin board BB. By utilizing the
receipt, the voter can verify whether their device functions
correctly as intended. After casting a ballot and uploading
it to the bulletin board, voters can use any trusted device
to locate their ballot using a serial number. They can then
decrypt the corresponding portion of the ciphertext using
k and open the commitment, ensuring that their voting
device has accurately encrypted the ballot as intended.

• VerifyBallot(PP,PK, B) → (1/0) : BB checks if there
exist duplicated ballots with the same serial num-
ber, and verifies the validity of the ballot through
ΠZKP.Verify(Rvote,PP, rt, e, sn, CT , cm). The ballot is
uploaded on BB if VerifyBallot outputs 1.

Tally phase.

• Tally(PP, SK) → T : the authority downloads all the
ballots on BB. The authority decrypts each ballot’s ci-
phertext and nullifies the corresponding commitment.
Now, the authority can open the nullifiable commitment
with m, r. If a commitment successfully opens, it in-
dicates that the commitment was real (i.e. b = 1).
The authority proceeds to tally the message, computing
(mtally =

∑
bimi). All nullifiable commitments and

corresponding randoms are aggregated to cm∗
sum, rsum.

Subsequently, the authority generates a proof πtally ←
ΠZKP(Rtally,PP, cmsum,mtally;msk, rsum). This method
streamlines the process by nullifying all commitments and
utilizing the homomorphic properties of the nullifiable
commitment scheme. Instead of verifying each ballot in-
dividually, the authority produces a single comprehensive
proof that only real ballots are tallied.

• VerifyTally(PP, T) → (1/0) : Anyone can download
all the ballots on BB, and verify the tally using zero-
knowledge proof.

Relations. We describe the following relations for use in
our zero-knowledge proofs:
• Rid ensures the voter generates a valid piid = H(skid).

Rid = {(pkid; skid) : pkid = H(skid)}.

• Rck ensures that the authority issues a casting key
that the voter has required (knowledge of b) and
knowledge of msk. Proof can be made πck ←
ΠNC.KeyProve(mpk,msk, ck, b).

Rck = {(mpk, ck, b;msk) : ck = ΠNC.Gen(mpk,msk, b)}

• Rtotal guarantees that the authority issues nv real casting
keys to ensure that each voter receives a single real casting
key respectively.

Rtotal =

 (ck∗, cm, nv;msk) :
cm∗ ← ΠNC.Nullify(msk, cm),

ΠNC.Opennull(ck∗, cm∗, nv, 0) = 1


• Rvote ensures that the voter generated the ballot honestly.

Rvote =



(
PP, rt, e, sn, CT , cm;
m, r, skid, pkid, k, ck

)
:

pkid = H(skid) ∧ sn = H(e, ck, skid)∧
ΠM.Verify(rt, (ck, pkid)) = 1∧
CT = ΠHBE.Enc(pk,m; k)∧

cm = ΠNC.Commit(ck,m; r)


• Rtally ensures that the authority knows the master secret

key to identify the real ballots and collects all of them.

Rtally =

{
(PP, cmsum,mtally;msk, rsum) :

cm∗
sum = ΠNC.Nullify(msk, cmsum),

ΠNC.Opennull(ck∗, cm∗
sum,mtally, rsum) = 1

}
4.3. Security analysis

Coercion scenarios. We categorize coercion attacks CA
into four types. For each CAi ∈ CA, voters are capable
of running the counter strategy csi and evading CAi with
a probability of 1. Furthermore, the attacker can distinguish
between the strategies of the voters who use the counter
strategy csi and the corrupted strategy cs′i with negligible
probability.

The four types of coercion attacks are: 1) requiring a
casting key to cast a ballot on behalf of the voter, 2) requir-
ing a casting key to be absent, 3) instructing the choice, or
4) forcing the voter to be absent. In each scenario, a PPT
adversary A tries to coerce the voter V to cast a β message
ballot in some way, but the voter V can establish the counter
strategy cs and corrupted strategy cs′ indistinguishable from
the coercion attacker A to cast a α message ballot. Note that
BB is public, and A can observe BB and count the number
of uploaded ballots. This means that the number of ballots
cast in one scenario should be the same.

In each case, voters can evade coercion attacks by fol-
lowing instructions using fake casting keys and can cast their

9

ballot using a real casting key as they wish. Specifically,
voters can evade CA as follows: 1) and 2) provide a fake
casting key, 3) cast a ballot with a fake casting key, or 4) be
absent with a fake casting key, and later cast a ballot using
a real casting key. The attacker cannot distinguish whether
the given casting key is real or fake. Since key deniability
holds for our nullifiable commitment scheme, through the
SimKeyProve algorithm, the voter can generate proof that
any casting key is a real casting key. The attacker cannot
distinguish whether the ballot was cast using a real casting
key or a fake key. Even if they could, since our voting system
provides ballot privacy, the attacker only gets the knowledge
that the ballot is valid and the attacker cannot determine
whose casting key was used. This makes it meaningless for
the attacker to instruct voters or buy ballots.

lemma 4.1. For a PPT adversary A performing a coercion
attack CA1 ∈ CA, then the voter can set a counter strategy
cs1 against a corrupted strategy cs′1 where the followings
hold:

• SuccCR
A,ΠVote

(1λ, CA1, cs1) = 1

• AdvCR
A,ΠVote

(1λ, CA1, cs1, cs
′
1) ≤ negl(λ)

Proof. In the first scenario, the coercive attacker A performs
a coercion attack CA1 that A requires a casting key of the
targeted voter V . A tries to cast a ballot with a message
β on behalf of V using the acquired casting key. Then the
voter V performs the counter strategy cs1 as follows:
1) The voter submits a fake casting key.
2) A casts a ballot with a message β using the given key.
3) The voter casts an intended ballot with a message α using

a real casting key.
The corrupted strategy cs′1 works as follows:

1) The voter submits a real casting key.
2) A casts a ballot with a message β using the given key.
3) The voter casts a ballot with any message using a fake

casting key.
It is obvious that by running the counter strategy (if

b = 0) the voter can evade coercion with probability 1.
Therefore, we have, SuccCR

A,ΠVote
(1λ, CA1, cs1) = 1. Since

ΠNC is an indistinguishable commitment scheme and the
voter can simulate proof, whether A acquired a real key or
fake key, A cannot distinguish which strategy V performed.
The total number of ballots on BB is perfectly identical. We
also have AdvCR

A,ΠVote
(1λ, CA1, cs1, cs

′
1) ≤ negl(λ).

lemma 4.2. For a PPT adversary A performing a coercion
attack CA2 ∈ CA, then the voter can set a counter strategy
cs2 against a corrupted strategy cs′2 where the followings
hold:

• SuccCR
A,ΠVote

(1λ, CA2, cs2) = 1

• AdvCR
A,ΠVote

(1λ, CA2, cs2, cs
′
2) ≤ negl(λ)

Proof. In the second scenario, the coercive attacker A per-
forms a coercion attack CA2 that A requires a casting key of
the targeted voter V . A tries to be absent using the acquired
casting key. Then the voter V performs the counter strategy
cs2 as follows:

1) The voter submits a fake casting key.
2) The voter casts an intended ballot with a message α using

a real casting key.
The corrupted strategy cs′2 works as follows:

1) The voter submits a real casting key.
2) A does nothing to be absent using the given key.
3) The voter casts a ballot with any message using a fake

casting key.
It is obvious that by running the counter strategy (if

b = 0) the voter can evade coercion with probability 1.
Therefore, we have, SuccCR

A,ΠVote
(1λ, CA2, cs2) = 1. The to-

tal number of ballots on BB is perfectly identical, and indis-
tinguishable holds in ΠNC, A cannot distinguish strategies.
We also have AdvCR

A,ΠVote
(1λ, CA2, cs2, cs

′
2) ≤ negl(λ).

lemma 4.3. For a PPT adversary A, given a coercion attack
CA3 ∈ CA, then the voter can set a counter strategy cs3
and a corrupted strategy cs′3 where the following hold:

• SuccCR
A,ΠVote

(1λ, CA3, cs3) = 1

• AdvCR
A,ΠVote

(1λ, CA3, cs3, cs
′
3) ≤ negl(λ)

Proof. In the second scenario, the coercion attack CA3 of
A is to instruct V to cast a ballot β. Then the voter V runs
a counter strategy cs3 as follows:
1) V casts a coerced ballot with a message β using a fake

key.
2) V casts a intended ballot with a message α using a real

key.
For the corrupted strategy cs′3, V should cast any ballot

regardless of the message, to make two strategies indistin-
guishable, working as follows:
1) V casts a coerced ballot with a message β using a real

key.
2) V casts any ballot using a fake key.

If V runs the counter strategy then V can evade co-
ercion with probability 1, SuccCR

A,ΠVote
(1λ, CA3, cs3) = 1.

From the tally, no information on V’s ballot is leaked.
Owing to ballot privacy, A cannot distinguish the bal-
lots and which strategy V performed. We also have
AdvCR

A,ΠVote
(1λ, CA3, cs3, cs

′
3) ≤ negl(λ).

lemma 4.4. For a PPT adversary A, given a coercion attack
CA4 ∈ CA, if ballot privacy holds, then the voter can set
a counter strategy cs4 and a corrupted strategy cs′4 where
the following hold:

• SuccCR
A,ΠVote

(1λ, CA4, cs4) = 1

• AdvCR
A,ΠVote

(1λ, CA4, cs4, cs
′
4) ≤ negl(λ)

Proof. The coercion attack CA4 of A is to force the voter to
be absent from the election. Then the voter V runs a counter
strategy cs4 as follows:
1) V abstains from voting using a fake casting key.
2) V casts an intended ballot with a message α using a real

key.
For the corrupted strategy cs′4, V should cast any ballot

regardless of the message, to make two strategies indistin-
guishable, working as follows:

10

1) V abstains from voting and does not cast a ballot using
a real key.

2) V casts a ballot with any message using a fake key.
V runs the counter strategy and can evade coercion

with probability 1. We have SuccCR
A,ΠVote

(1λ, CA4, cs4) =
1. From the tally and proof, no information on V’s
ballot is leaked. Owing to ballot privacy and voter
anonymity, the ballots leak no information. A cannot dis-
tinguish which strategy V runs. Therefore, we also have
AdvCR

A,ΠVote
(1λ, CA4, cs4, cs

′
4) ≤ negl(λ).

Theorem 4.1. Given a nullifiable commitment scheme ΠNC,
a hybrid encryption scheme ΠHBE, a cryptographic hash
function H , and a zero-knowledge proof system ΠZKP, a
voting system ΠVote= (Setup,Register, Vote, VerifyBallot,
Tally, VerifyTally) ensures ballot privacy, receipt freeness,
coercion resistance, E2E verifiability, eligibility verifiability,
and voter anonymity.

Proof. Ballot privacy. In the ballot B = (e, sn, CT , cm,
πvote), the voter’s message is included in the ciphertext
CT , the commitment cm and the zero-knowledge proof
πvote. An adversary A wins the game if A distinguishes
between ciphertexts CT 0 and CT 1, between commitments
cm0 and cm1, or between zero-knowledge proofs πvote,0 and
πvote,1. We can construct auxiliary adversaries B, C and D
such that AdvBP

A,ΠVote
(1λ) ≤ AdvCT

B (1λ) + Advcm
C (1λ) +

Advπvote

D (1λ). Here, B tries to distinguish the ciphertexts,
C tries to distinguish commitments and D tries to distinguish
zero-knowledge proofs. ΠHBE is both IK-CPA and IND-CPA
secure, from definition 2.2, we know that the commitments
satisfy hiding, thus, AdvCT

B (1λ) and Advcm
C (1λ) have

a negligible probability. Additionally, since πvote is zero
knowledge, the advantage Advπvote

D (1λ) is negligible. Then,
the probability of winning the game GameBP

A,ΠVote
is only

a random guessing. Thus, the advantage AdvBP
A,ΠVote

(1λ) is
negligible, and ΠVote ensures ballot privacy.
Receipt freeness. Receipt freeness can be proven infor-
mally. Since the e-voting system ensures coercion resistance,
it naturally ensures receipt freeness. Therefore, we focus on
proving coercion resistance.

A voter gets a receipt after casting a ballot. If the voter
submits the receipt to the adversary, the adversary finds the
ballot on BB and tries to decrypt the message. The adversary
may find the exact ballot on BB since the receipt contains
a serial number. However, the adversary cannot nullify the
commitment, meaning that the ballot may be a fake ballot.
Thus, the attacker cannot be convinced that the voter cast
the decrypted message. Therefore, the voter cannot prove
their choice, and receipt freeness is ensured.
Coercion resistance. From lemmas 4.1, 4.2, 4.3, and 4.4, for
all cases, V can perform the counter strategy with probability
1. Also, A cannot distinguish the counter strategy from the
corrupted strategy. Thus, ΠVote is coercion-resistant.
Voter anonymity. From the ballot B = (e, sn, CT , cm,
πvote), the possible way for A distinguishing the casting
key of the ballot is to distinguish one of sn, cm, πvote.
We have, AdvV A

A,ΠVote
(1λ) ≤ Advsn

B (1λ) + Advcm
C (1λ) +

Advπvote

D (1λ). The serial number sn is the output of the
hash function where its inputs are (e, skid, ck). It looks like
a random in A’s view. ΠNC is an indistinguishable nullifiable
commitment scheme that the adversary cannot guess ck.
We know πvote is zero-knowledge. Then, A can win the
game GameV A

A,ΠVote
(1λ) only by random guessing, 1/2. We

have that AdvV A
A,ΠVote

(1λ) ≤ negl(λ). As a result, the voting
system ensures voter anonymity.
Individual verifiability. The voter can compute the serial
number of their ballots and find their ballot in the BB. Only
the ballots that have passed VerifyBallot are uploaded to the
blockchain. The relation Rvote includes checks for the hash
function for the serial number, the encryption process, and
the commit process. Given the soundness of ΠZKP, a ballot
generated with different sk∗id and ck∗ can pass VerifyBallot
with only a negligible probability.
Universal verifiability. Anyone can retrieve the inputs for
the relation Rtally and execute VerifyTally. If a dishonest
authority were to exclude certain ballots, include ballots
not uploaded on BB, or announce an incorrect tally, the
soundness of ΠZKP dictates that the verification process
would be unsuccessful.
E2E verifiability. Consider an honest voter V who casts a
ballot B. After the voting phase, BB discloses all the ballots.
Then, V can identify their ballot using their serial number
sn = H(e||ck||skid). If the ballot passes VerifyBallot, the
voter is assured that their vote was cast-as-intended. If the
content of the ballot matches what the voter originally cast,
they can be assured it was recorded-as-cast. In the tally
phase, the authority tallies all ballots and uploads the result
along with the zero-knowledge proof that the tally comes
from all ballots. Anyone can verify tallied-as-recorded. In
Appendix C, we prove E2E verifiability using Cortier’s
definition [9].
Eligibility verifiability. In the relation Rvote contains the
membership check to prove the membership of (ck, pkid).
By the soundness of ΠZKP, a ballot generated using the
arbitrarily generated ck′ and/or pk′id can pass VerifyBallot
only with a negligible probability.

4.4. Construction

In Construction 2, we instantiate zkVoting using the
proposed nullifiable commitment scheme ΠNC from §2.2 and
describe details for the practical instantiation. Unless other-
wise specified, each phase operates as described in §4. The
public bulletin board is implemented with the Blockchain
bulletin board using a smart contract denoted as BBB.
Message Format. There is no limitation on the message
space for an encryption scheme. It can vary depending
on the specific encryption scheme used and can be tai-
lored to adequately represent a candidate. For our nullifi-
able commitment scheme to achieve homomorphism, the
aggregated message is represented as a commitment with
a nullifiable commitment key. Note that although a single
block message is represented in Construction 1, it can
be extended to support a message with multiple blocks
by allowing a vector of g3, h1, and h2. For instance, k

11

blocks in a message m = (m1||m2|| · · · ||mk) are commit-
ted to (C1, C2) = (gr1

∏k
i=1 h

mi
1,i , g

r
2

∏k
i=1 h

mi
2,i) with ck =

((g1, h1,1, . . . , h1,k), (g2, h2,1, . . . , h2,k)) where h2,i =
hmsk
1,i gb3,i. The keyProof πck becomes (p1, . . . , pk, k, c), and

verifier V checks if hk
1,i = pi(h2,i/g

b
3,i)

c for 1 ≤ i ≤ k in
KeyProve. Therefore, in designing the message format, we
meticulously ensure that the size of each block is sufficiently
large to prevent overflow following aggregate commitments.
However, the message structure in an encryption scheme
does not necessarily have to mirror the format used in
commitments.

5. Experiment

We have implemented the proposed voting system. For
a zero-knowledge proof system, we use the Gro16 zk-
SNARK proof system in C++ [34], [35]. This system is
ideal for blockchain applications due to its constant-sized
proofs and efficient verification. A key aspect of this system
is the trusted setup phase, where the authority prepares
common random strings and uploads them to BBB. For
a collision-resistant hash function, we adopt the MiMC7
hash function [36] optimized for zk-SNARKs. For member-
ship proofs, we employed a Merkle hash tree. The nullifi-

Construction 2 zkVoting construction
. .Setup phase

Setup(1λ) :

(mpk,msk, ck∗)← ΠNC.Setup(1λ); (pk, sk)← ΠHBE.Gen(1λ); param← ΠZKP(1
λ,Rid,Rck,Rtotal,Rvote,Rtally); e←$ {0, 1}λ

return (PP = (mpk, ck∗, pk, param, e), SK = (msk, sk));
. Register phase

Authority(PP, SK) Voter(PP, id);

Register(PP, SK, id) :

parse PP = (mpk, ck∗, pk, param, e); SK = (msk, sk); parse PP = (mpk, ck∗, pk, param, e);
skid ←$ {0, 1}λ; pkid = H(skid);
πid = ΠZKP.Prove(Rid, param, pkid; skid);

id, pkid, πid, b←−−−−−−−−−−−−−−− b← 1(real) or 0(fake);
assert ΠZKP.Verify(Rid, param, pkid, πid) = 1;
ck = ΠNC.KeyGen(mpk,msk, b);
assert (id, (ck, pkid), b) ̸∈ CKdb;
CKdb⇐ (id, (ck, pkid), b);

CKlist⇐ (ck, pkid);
ck−−−−−−−−−−−−−−−→

assert ΠNC.KeyProve(mpk,msk, ck, b) = (πck, 1); ←−−−−−−−−→ assert ΠNC.KeyProve(mpk,msk, ck, b) = (πck, 1);
upload (ck, pkid) to BBB;
cm += ΠNC.Commit(ck, 1; 0);

upload cm, rt = ΠM.BuildSet(CKlist), πtotal = ΠZKP(Rtotal, param, ck∗, cm, nv;msk) to BBB;
. Voting phase

Vote(PP, ck,CKlist, pkid, skid,m) :

parse PP = (mpk, ck∗, pk, param, e);

sn = H(e, ck, skid); cm← ΠNC.Commit(ck,m; r);

CT ← ΠHBE.Enc(pk, (m, r); k);

πvote = ΠZKP.Prove(Rvote, PP, rt, e, sn, CT , cm;m, r, skid, pkid, k, ck);
send B to BBB;
return (k,B = (e, sn, CT , cm, πvote));

VerifyBallot(PP, B) :

parse PP = (mpk, ck∗, pk, param, e);

parse B = (e, sn, CT , cm, πvote);

assert sn ̸∈ BBB;
return ΠZKP.Verify(Rvote, PP, rt, e, sn, CT , cm, πvote);

. Tally phase

Tally(PP, SK) :

parse PP = (mpk, ck∗, pk, e); SK = (msk, sk);
foreach Bi = (e, sni, CT i, cmi) in BBB do

(mi, ri)← ΠHBE.Dec(sk, CT i); cmsum += cmi; rsum += ri;

if ΠNC.Opennull(ck∗,ΠNC.Nullify(msk, cmi),mi, ri) = 1 then

mtally += mi; endif endforeach

πtally = ΠZKP.Prove(Rtally, PP, cmsum,mtally;msk, rsum);

return T = (mtally, πtally);

VerifyTally(PP, T) :

parse T = (mtally, πtally);

foreach Bi = (e, sni, CT i, cmi) in BBB do

cmsum += cmi; endforeach

return ΠZKP.Verify(Rtally, PP, cmsum,mtally, πtally);

12

able commitment scheme was implemented over an elliptic
curve, following the methodologies in [37], [38]. Given that
this curve has an order of 254 bits, it supports messages up
to 254 bits in length. Consequently, we set the maximum
number of eligible voters, nv, to 216, and the number of
candidates to 15.

TABLE 3: Analysis for relations

Rid Rtotal Rvote Rtally

of constraints 365 2,243 15,829 6,111
CRS size 126 kB 0.9MB 5.7 MB 2.4 MB

TABLE 3 presents an analysis of the relations. Rvote

contains proof of membership and encryption, leading to a
large number of constraints and having the largest CRS size.
An increase in CRS size not only lengthens the proving time
but also impacts the overall size of the application.

The authority is implemented as a server using Intel
Xeon Gold 6242R CPU with 250 GB RAM. BBB is
designed as a blockchain smart contract (Ethereum [39]
ganache) using the Truffle framework. Voting devices are
shown in TABLE 4.

After voters download the application, they prove their
identity and register for the election. Figure 2(a) illustrates
the time cost for the register phase on various devices.

Figure 2(b) depicts the execution time for the voting
phase. The voting can be completed within a few seconds
on every device. Especially on higher-performance devices
C, D, and E, the voting time is less than 3s. The voting
transaction is processed in BBB, which requires 347,363
gas in Ethereum. Note that since the gas fee of 350K gas is
quite expensive in public blockchains, a dedicated sidechain
will be appropriate for BBB.

Figure 2(c) presents the execution time for the tally
phase where x-axis represents the number of ballots. The
tally process consists of ballot decryption and tally proof
generation. It requires 3.9ms to decrypt each ballot and
360ms to generate the tally proof on the server. Note that
the tally can be improved using parallel processing.
Comparison with other coercion-resistant e-voting sys-
tems. When compared to existing systems, Civitas [12]

TABLE 4: Voting devices

Voting devices Specification
Device1 OS: Android 13

A (Galaxy Processor: Qualcomm Snapdragon 8 Gen1
S22+) RAM: 8 GB LPDDR5 SDRAM

Device2 OS: Android 12
B (Galaxy Processor: Samsung Exynos 9825

Note 10+) RAM: 12 GB LPDDR4X SDRAM
Device3 OS: iOS 16.03

C (iPhone Processor: Apple A14 Bionic
12 Mini) RAM: 4 GB LPDDR4X SDRAM
Device4 OS: iOS 16.03

D (iPhone Processor: Apple A16 Bionic
14 Pro) RAM: 6 GB LPDDR5 SDRAM
Device5 OS: macOS Ventura 13.3.1

E (MacBook Processor: Apple M1 Pro
Pro 16) RAM: 32 GB

achieves a casting time of 345ms and tallies 500 ballots in
about 5 hours (36 sec per ballot). In contrast, VoteAgain [14]
has a casting time of 1.6 seconds and can tally 100,000
ballots in 13.5 minutes (8.1 ms per ballot). In Loki [16],
it takes approximately 78 ms to generate a ballot with
additional periodic obfuscation time which is close to the
ballot generating time. For tallying the ballot, it takes 7.1
ms per ballot.

6. Conclusion

In this paper, we introduce a novel cryptographic tool,
a nullifiable commitment scheme, designed specifically for
situations involving coercion. Leveraging this scheme, we
present zkVoting, a coercion-resistant, E2E-verifiable e-
voting system. Our system offers enhanced security prop-
erties while streamlining the tallying process. We provide
comprehensive theoretical frameworks and formal security
proofs to validate the robustness of our system. Furthermore,
we underscore the practicality of zkVoting by elaborating
on its seamless integration into smartphone and blockchain
applications, showcasing its readiness for real-world deploy-
ment.

A B C D E
0

200

400

600

400

520

9
75 48

Total [ms]
Prove [ms]

(a) Register phase

A B C D E
0

2

4

6

8
6.59

7.3

2.65 2.3
1.6

Total [s]
Prove [s]

(b) Voting phase

210 211 212
0

5

10

15

20

4.36

8.26

15.96Total [s]
Prove [s]

(c) Tally phase

Figure 2: Performance with 16 Merkle tree depth and 15 candidates: (a) register time and (b) voting time on various devices,
and (c) tally time by varying the number of ballots. Note that the y-axis represents the execution time in seconds.

13

References

[1] S. T. Ali and J. Murray, “An overview of end-to-end verifiable voting
systems,” CoRR, vol. abs/1605.08554, 2016. [Online]. Available:
http://arxiv.org/abs/1605.08554

[2] H. Jonker, S. Mauw, and J. Pang, “Privacy and verifiability in vot-
ing systems: Methods, developments and trends,” Computer Science
Review, vol. 10, pp. 1–30, 2013.

[3] R. Küsters, T. Truderung, and A. Vogt, “Verifiability, privacy, and
coercion-resistance: New insights from a case study,” in 2011 IEEE
Symposium on Security and Privacy, 2011, pp. 538–553.

[4] J. Lee, J. Choi, J. Kim, and H. Oh, “Saver: Snark-friendly, additively-
homomorphic, and verifiable encryption and decryption with reran-
domization,” Cryptology ePrint Archive, Report 2019/1270, 2019,
https://eprint.iacr.org/2019/1270.

[5] V. Cortier, D. Galindo, S. Glondu, and M. Izabachene, “Election
verifiability for helios under weaker trust assumptions,” in European
Symposium on Research in Computer Security. Springer, 2014, pp.
327–344.

[6] V. Cortier, D. Galindo, R. Küsters, J. Mueller, and T. Truderung, “Sok:
Verifiability notions for e-voting protocols,” in 2016 IEEE Symposium
on Security and Privacy (SP). IEEE, 2016, pp. 779–798.

[7] V. Cortier and J. Lallemand, “Voting: You can’t have privacy without
individual verifiability,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. ACM,
2018, pp. 53–66.

[8] S. Kremer, M. Ryan, and B. Smyth, “Election verifiability in elec-
tronic voting protocols,” in Computer Security – ESORICS 2010,
D. Gritzalis, B. Preneel, and M. Theoharidou, Eds. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2010, pp. 389–404.

[9] V. Cortier, D. Galindo, S. Glondu, and M. Izabachène, “Election
verifiability for helios under weaker trust assumptions,” in Computer
Security - ESORICS 2014, M. Kutyłowski and J. Vaidya, Eds. Cham:
Springer International Publishing, 2014, pp. 327–344.

[10] R. Küsters and J. Müller, “Cryptographic security analysis of e-
voting systems: Achievements, misconceptions, and limitations,” in
Electronic Voting: Second International Joint Conference, E-Vote-
ID 2017, Bregenz, Austria, October 24-27, 2017, Proceedings 2.
Springer, 2017, pp. 21–41.

[11] A. Juels, D. Catalano, and M. Jakobsson, “Coercion-resistant elec-
tronic elections,” in Proceedings of the 2005 ACM Workshop on
Privacy in the Electronic Society, 2005, pp. 61–70.

[12] M. R. Clarkson, S. Chong, and A. C. Myers, “Civitas: Toward a secure
voting system,” in 2008 IEEE Symposium on Security and Privacy
(sp 2008). IEEE, 2008, pp. 354–368.

[13] D. Achenbach, C. Kempka, B. Löwe, and J. Müller-Quade, “Improved
coercion-resistant electronic elections through deniable re-voting,”
{USENIX} Journal of Election Technology and Systems ({JETS}),
vol. 3, pp. 26–45, 2015.

[14] W. Lueks, I. Querejeta-Azurmendi, and C. Troncoso, “VoteAgain: A
scalable coercion-resistant voting system,” in 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, Aug.
2020, pp. 1553–1570. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity20/presentation/lueks

[15] M. Jakobsson and A. Juels, “Mix and match: Secure function eval-
uation via ciphertexts,” in Advances in Cryptology—ASIACRYPT
2000: 6th International Conference on the Theory and Application of
Cryptology and Information Security Kyoto, Japan, December 3–7,
2000 Proceedings 6. Springer, 2000, pp. 162–177.

[16] R. Giustolisi, M. S. Garjan, and C. Schuermann, “Thwarting last-
minute voter coercion,” Cryptology ePrint Archive, 2023.

[17] R. Küsters, T. Truderung, and A. Vogt, “A game-based definition
of coercion resistance and its applications,” Journal of Computer
Security, vol. 20, no. 6, pp. 709–764, 2012.

[18] D. Bernhard, V. Cortier, D. Galindo, O. Pereira, and B. Warinschi,
“A comprehensive analysis of game-based ballot privacy definitions,”
Cryptology ePrint Archive, Paper 2015/255, 2015, https://eprint.iacr.
org/2015/255. [Online]. Available: https://eprint.iacr.org/2015/255

[19] B. Adida, “Helios: Web-based open-audit voting.” in USENIX security
symposium, vol. 17, 2008, pp. 335–348.

[20] P. Chaidos, V. Cortier, G. Fuchsbauer, and D. Galindo, “Beleniosrf:
A non-interactive receipt-free electronic voting scheme,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 1614–1625.
[Online]. Available: https://doi.org/10.1145/2976749.2978337

[21] C. Killer, B. Rodrigues, E. J. Scheid, M. Franco, M. Eck, N. Zaugg,
A. Scheitlin, and B. Stiller, “Provotum: A blockchain-based and end-
to-end verifiable remote electronic voting system,” in 2020 IEEE 45th
Conference on Local Computer Networks (LCN). IEEE, 2020, pp.
172–183.

[22] T. Haines, J. Müller, and I. Querejeta-Azurmendi, “Scalable coercion-
resistant e-voting under weaker trust assumptions,” in Proceedings of
the 38th ACM/SIGAPP Symposium on Applied Computing, 2023, pp.
1576–1584.

[23] R. Bendlin, J. B. Nielsen, P. S. Nordholt, and C. Orlandi, “Lower
and upper bounds for deniable public-key encryption,” in Advances
in Cryptology–ASIACRYPT 2011: 17th International Conference on
the Theory and Application of Cryptology and Information Security,
Seoul, South Korea, December 4-8, 2011. Proceedings 17. Springer,
2011, pp. 125–142.

[24] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky, “Deniable en-
cryption,” in Advances in Cryptology—CRYPTO’97: 17th Annual
International Cryptology Conference Santa Barbara, California, USA
August 17–21, 1997 Proceedings 17. Springer, 1997, pp. 90–104.

[25] R. Canetti, S. Park, and O. Poburinnaya, “Fully deniable interactive
encryption,” in Advances in Cryptology–CRYPTO 2020: 40th Annual
International Cryptology Conference, CRYPTO 2020, Santa Barbara,
CA, USA, August 17–21, 2020, Proceedings, Part I 40. Springer,
2020, pp. 807–835.

[26] A. O’Neill, C. Peikert, and B. Waters, “Bi-deniable public-key en-
cryption,” in Advances in Cryptology–CRYPTO 2011: 31st Annual
Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2011. Proceedings 31. Springer, 2011, pp. 525–542.

[27] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval, “Key-privacy
in public-key encryption,” in Advances in Cryptology — ASIACRYPT
2001, C. Boyd, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001, pp. 566–582.

[28] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure and op-
timally efficient multi-authority election scheme,” in Advances in
Cryptology - EUROCRYPT ’97, International Conference on the
Theory and Application of Cryptographic Techniques, Konstanz, Ger-
many, May 11-15, 1997, Proceeding, ser. Lecture Notes in Computer
Science, vol. 1233. Springer, 1997, pp. 103–118.

[29] D. Boneh and P. Golle, “Almost entirely correct mixing with ap-
plications to voting,” in Proceedings of the 9th ACM conference on
Computer and communications security, 2002, pp. 68–77.

[30] A. Faonio and L. Russo, “Mix-nets from re-randomizable and re-
playable cca-secure public-key encryption,” in International Confer-
ence on Security and Cryptography for Networks. Springer, 2022,
pp. 172–196.

[31] S. S. Chow, J. K. Liu, and D. S. Wong, “Robust receipt-free election
system with ballot secrecy and verifiability.” in NDSS, vol. 8, 2008,
pp. 81–94.

[32] R. Kusters, T. Truderung, and A. Vogt, “Clash attacks on the veri-
fiability of e-voting systems,” in 2012 IEEE Symposium on Security
and Privacy. IEEE, 2012, pp. 395–409.

14

http://arxiv.org/abs/1605.08554
https://eprint.iacr.org/2019/1270
https://www.usenix.org/conference/usenixsecurity20/presentation/lueks
https://www.usenix.org/conference/usenixsecurity20/presentation/lueks
https://eprint.iacr.org/2015/255
https://eprint.iacr.org/2015/255
https://eprint.iacr.org/2015/255
https://doi.org/10.1145/2976749.2978337

[33] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in 2014 IEEE symposium on security and privacy. IEEE,
2014, pp. 459–474.

[34] J. Groth, “On the size of pairing-based non-interactive arguments,” in
Advances in Cryptology – EUROCRYPT 2016, M. Fischlin and J.-S.
Coron, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016,
pp. 305–326.

[35] SCIPR-Lab, “libsnark : a c++ library for zk-snark proofs,” 2014,
https://github.com/scipr-lab/libsnark.

[36] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen,
“Mimc: Efficient encryption and cryptographic hashing with minimal
multiplicative complexity,” in Advances in Cryptology – ASIACRYPT
2016, J. H. Cheon and T. Takagi, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 191–219.

[37] A. Kosba, Z. Zhao, A. Miller, Y. Qian, H. Chan, C. PAPAMAN-
THOU, R. Pass, S. ABHI, and E. SHI, “cøcø: A framework for build-
ing composable zero-knowledge proofs,” Cryptology ePrint Archive,
Report 2015/1093, 2015. http://eprint. iacr. org . . . , Tech. Rep., 2015.

[38] D. J. Bernstein, “Curve25519: New diffie-hellman speed records,” in
Public Key Cryptography - PKC 2006, M. Yung, Y. Dodis, A. Kiayias,
and T. Malkin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 207–228.

[39] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014,
pp. 1–32, 2014.

Appendix A.
Security games

A.1. Nullifiable commitment

Hiding. In Figure 3, let the advantage of the hiding game
be Adv

Hiding
A,ΠNC

(1λ) =
∣∣∣Pr[GameHiding

A,ΠNC
(1λ) = 1]− 1

2

∣∣∣.
GameHiding

A,ΠNC
(1λ) :

(mpk,msk, ck∗)← Setup(1λ);
ck← KeyGen(mpk,msk, b←$ {0, 1});
(m0,m1, aux)← A(mpk,msk, ck∗, ck);
c←$ {0, 1}; r ←$ {0, 1}λ;
cm← Commit(ck,mc; r);
c′ ← A(cm, aux);
return c = c′;

Figure 3: Hiding game GameHiding
A,ΠNC

Indistinguishability of keys (IK). From the game in Fig-
ure 4, let the advantage of IK game be AdvIK

A,ΠNC
(1λ) =∣∣Pr[GameIK

A,ΠNC
(1λ) = 1]− 1

2

∣∣.
A.2. Secure e-voting systems

Ballot Privacy.
Voter Anonymity.

GameIK
A,ΠNC

(1λ) :

(mpk,msk, ck∗)← Setup(1λ);
ck0 ← KeyGen(mpk,msk, b←$ {0, 1});
ck1 ← KeyGen(mpk,msk, b′ ←$ {0, 1});
(m, aux)← A(mpk, ck∗, ck0, ck1);
c←$ {0, 1}; r ←$ {0, 1}λ;
cm← Commit(ckc,m; r);
c′ ← A(cm, aux);
return c = c′;

Figure 4: IK game GameIK
A,ΠNC

GameBP
A,ΠVote

(1λ) :

(PP, SK)← Setup(1λ);
(m0,m1)← A(PP); b←$ {0, 1};
Bb ← VVote(PP,(id,skid,pkid,ck,mb));
b′ ← A(PP, Bb);
return b = b′;

Figure 5: Ballot privacy game GameBP
A,ΠVote

Appendix B.
Security proofs for Algorithm 1

We prove the security of ΠNC under the Discrete
Logarithm(DL) assumption and the Decisional Diffie-
Hellman(DDH) assumption. The DL assumption asserts that
given a cyclic group G of prime order q with generator g,
for randomly chosen element h ∈ G, it is computation-
ally infeasible to determine the unique integer x such that
h = gx ∈ G in polynomial time. The DDH assumption is
also defined over a cyclic group G. It states that the distin-
guishing between the tuple (gx, gy, gxy) and a random tuple
(gx, gy, gz) is computationally hard for randomly chosen
x, y, z ←$ Zq.

Theorem 2.1. If the DL assumption and DDH assumption
hold in the elliptic curve group G, then for all probabilistic
polynomial time adversaries A, ΠNC in Construction 1,
satisfies hiding, binding, nullifiability, indistinguishability of
keys, key deniability, and homomorphism.

Proof. Hiding. Since a nullifiable commitment scheme has
a real commitment and a fake commitment, we can define
the following games from the following cases: given two
commitments, a hiding adversary A distinguishing 1) fake
commitments, 2) a fake commitment and a real commitment
3) real commitments.
1) GameHiding−FF : This is a hiding game where the

challenge commitments are always fake. The advantage
of A guessing a message from the commitments is
Adv

Hiding−FF
A,ΠNC

(1λ) =
∣∣Pr[GameHiding−FF(1λ) = 1]− 1

2

∣∣.
15

https://github.com/scipr-lab/libsnark

GameV A
A,ΠVote

(1λ) :

(PP, SK)← Setup(1λ);
(skid,pkid, ck)← VRegister(PP,SK,id);
(m, (pkid,0, ck0), (pkid,1, ck1))←

A(PP, SK, (pkid, ck));
b←$ {0, 1}; Bb ← VVote(PP,(id,skid,b,pkid,b,ckb,m));
b′ ← A(PP, SK, Bb);
return b = b′;

Figure 6: Voter anonymity game GameV A
A,ΠVote

2) GameHiding−FR : GameHiding−FR is a hiding game
in which one of the commitments is fake and the
other is real. The advantage of A guessing a mes-
sage from the commitments is Adv

Hiding−FR
A,ΠNC

(1λ) =∣∣Pr[GameHiding−FR(1λ) = 1]− 1
2

∣∣.
3) GameHiding−RR : In this game, the challenge com-

mitments are always real commitments. The advantage
of A guessing a message from the commitments is
Adv

Hiding−RR
A,ΠNC

(1λ) =
∣∣Pr[GameHiding−RR(1λ) = 1]− 1

2

∣∣.
Then, we get, Adv

Hiding
A,ΠNC

(1λ) ≤ Adv
Hiding−FF
A,ΠNC

(1λ) +

Adv
Hiding−FR
A,ΠNC

+Adv
Hiding−RR
A,ΠNC

(1λ).
We now show that all advantages on the RHS are

negligible, thus concluding that Adv
Hiding
A,ΠNC

(1λ) is negligible
and ΠNC ensures hiding.

GameHiding−FF is a game where the adversary A tries
to guess a message from two fake commitments, cm0 =
Commit(ck0,m0, r0) and cm1 = Commit(ck1,m1, r1).
Since G is a cyclic group, we can map g2 = ga1 , g3 =
gc1. Suppose a message m0 is committed using a fake
key. The casting key is ck0 = ((g1, h1,0), (g2, h2,0)) =
((g1, g

x0
1), (ga1 , g

x0ρ
1)). Then, we get cm0 = (C1,0, C2,0) =

(gr01 hm0
1,0, gr02 hm0

2,0) = (gr0+x0m0
1 , gar0+x0ρm0

1). From C1,0 =

gr01 hm0
1,0 = gr0+x0m0

1 , since r0 is a random value in Z∗
q ,

then r0 + x0m0, is uniformly distributed in Z∗
q . Since the

adversary cannot distinguish between (gr01 , ga1 , g
r0a
1) and

(gr01 , ga1 , R) due to DDH where R is a random, the value
C2,0 = gar0+x0ρm0

1 also looks like a random element in G.
The same technique can be used for cm1. All elements

are uniformly distributed in G, the only probability for the
adversary to win the game is through random guessing, 1

2 .
Therefore, we can say Adv

Hiding−FF
A,ΠNC

(1λ) ≤ negl(λ).
GameHiding−FR is a game where the adversary A tries

to guess a message from a real commitment and a fake
commitment, cm0 = Commit(ck0,m0, r0) and cm1 =
Commit(ck1,m1, r1). Suppose encrypting a real commit-
ment with a message m0 using a real key. A real
commitment key ck0 is given as ((g1, h1,0), (g2, h2,0)).
We can replace g2 = ga, g3 = gc where a, c are
uniformly chosen in Z∗

q . Then the real commitment
cm0 is given by (C1,0, C2,0) = (gr01 hm0

1,0, g
r0
2 hm0

2,0) =

(gr0+x0m0
1 , gar0+x0ρm0+cm0

1). Then, both C1,0 = gr0+x0m0
1

and C2,0 = gar0+x0ρm0+cm0

1 look like random elements in
G due to DDH. As we have shown above, (C1,1, C2,1)also
look like random elements in G, we can say that a real
commitment is indistinguishable from a fake commitment.
Even the msk holder cannot distinguish between them.

Above, we prove that a fake commitment is indistin-
guishable from a real one. Since each commitment is indis-
tinguishable, we have, Adv

Hiding−FR
A,ΠNC

(1λ) ≤ negl(λ).
GameHiding−RR is a game in which the adversary A tries

to guess a message from two real commitments, cm0 =
Commit(ck0,m0, r0) and cm1 = Commit(ck1,m1, r1). Us-
ing the technique above, all real commitment looks like
random elements in the elliptic curve group G. Since all
real commitments are indistinguishable from each other,
even for the holder of the master secret key msk. We have,
Adv

Hiding−RR
A,ΠNC

(1λ) ≤ negl(λ).
From above, we prove that all advan-

tages Adv
Hiding−FF
A,ΠNC

(1λ), Adv
Hiding−FR
A,ΠNC

(1λ) and
Adv

Hiding−RR
A,ΠNC

(1λ) are negligible, we have that
Adv

Hiding
A,ΠNC

(1λ) ≤ negl(λ).
Binding. We can apply a simple technique to prove binding
in the Pedersen commitment scheme. A commitment is
defined as cm = Commit(ck,m, r) = (gr1h

m
1 , g

r
2h2

m). Using
contradiction, suppose our scheme is not ensuring binding
and we can compute m′, r′ such that cm = (gr

′

1 hm′

1 , gr
′

2 h2
m′
)

and m ̸= m′ and r ̸= r′. Then, we get gr1h
m
1 = gr

′

1 hm′

1 and
gr2h2

m = gr
′

2 h2
m′

. In the first equation, we can solve the
discrete logarithm problem that logh1

g1 = (r− r′)/(m′−m).
For the second equation, we can also solve the discrete loga-
rithm problem that logh2

g2 = (r−r′)/(m′−m). These violate
the DL assumption. Therefore, finding such m,m′, r, r′ that
satisfy these conditions is infeasible, ensuring the binding
of the commitment scheme.
Nullifiability. Given a master secret key msk, and a com-
mitment cm = (gr1h

m
1 , g

r
2h

m
2), we can nullify a commitment

and map it to another commitment cm∗. A manager has
a master secret key and generates another commitment
cm∗ = C2

Cmsk
1

. This commitment still ensures hiding and bind-
ing and can be opened with ck∗ and a nullifiable message.
From cm∗ = C2

Cmsk
1

=
gr
2h

m
2

(gr
1h

m
1)

ρ = (g2
gρ
1
)r · gb·m3 . Simply, r is

uniformly random, and cm∗ is hiding commitment including
the manager. Also, it is a form of the Pedersen com-
mitment, binding is straightforward. From cm∗, we show
Open(ck∗, cm∗, b · m, r) = 1. Since this is a commitment
scheme, later the committer will provide or the manager
will find the original message. Then, the manager can open
the commitment from ck∗ = (g∗, h∗) = (g2/g

ρ
1 , g3) by

checking if cm∗ = g∗rh∗b·m. Since cm∗ = (g2
gρ
1
)r · gb·m3 =

g∗rh∗b·m, Open outputs 1.
Indistinguishability of keys (IK). Consider a game in
which, given a commitment cm, an IK adversary A attempts
to distinguish which commitment key has been used. Given
that a nullifiable commitment scheme possesses both a real
commitment key and a fake commitment key, we can define
the games from the following scenarios: given a commit-

16

ment, an IK adversary A distinguishing which commitment
key was used between 1) two fake keys, 2) a fake key and
a real key 3) two real keys.
• GameIK−FF : GameIK−FF is a game where a com-

mitment is generated with a randomly chosen com-
mitment key among two fake keys. A tries to distin-
guish which key has been used. Let AdvIK−FF

A,ΠNC
(1λ) =∣∣Pr[GameIK−FF(1λ) = 1]− 1

2

∣∣ be the advantage.
• GameIK−FR : GameIK−FR is a game where given a com-

mitment generated with a randomly chosen commitment
key among one fake key and one real key to A. A tries to
distinguish which key has been used. Let the advantage
be AdvIK−FR

A,ΠNC
(1λ) =

∣∣Pr[GameIK−FR(1λ) = 1]− 1
2

∣∣.
• GameIK−RR : GameIK−RR is a game where a com-

mitment is generated with a randomly chosen com-
mitment key among two real keys. A tries to distin-
guish which key has been used. Let AdvIK−RR

A,ΠNC
(1λ) =∣∣Pr[GameIK−RR(1λ) = 1]− 1

2

∣∣ be the advantage.
Then, we get AdvIK

A,ΠNC
(1λ) ≤ AdvIK−FF

A,ΠNC
(1λ) +

AdvIK−FR
A,ΠNC

(1λ) +AdvIK−RR
A,ΠNC

(1λ).
In the game GameIK−FF, A is provided two fake com-

mitment keys, (h1,0, h2,0) and (h1,1, h2,1), A then sub-
mits two keys along with a message m. A commitment
cm = (C1,c, C2,c) is created using a randomly selected key
ckc = (h1,c, h2,c) where c ∈ {0, 1}.

Consider the element C1,c of the commitment. Regard-
less of c, C1 = gr1h0

m becomes random since gr1 is random.
In addition, both C2,0 = gar1 h2,0

m, and C2,1 = gar1 h2,1
m are

random since gar1 is indistinguishable from random due to
DDH for given g2 = ga1 , and gr1 . Therefore, the probability
that GameIK−FF(1λ) = 1 is equivalent to random guessing,
which is 1

2 . We have AdvIK−FF
A,ΠNC

(1λ) is negligible.
In the game GameIK−FR, suppose ck0 is a fake key and

ck1 is a real key. Using the same technique as above, we
have C2,c = gr2h

m
2,c = gar01 hm

2,c. Since gar1 is random due
to DDH, C2,c is random. Pr[GameIK−FR(1λ) = 1] = 1

2 , and
hence, AdvIK−FR

A,ΠNC
(1λ) is negligible.

In the game GameIK−RR where both ck0 and ck1 are all
real keys, due to DDH, the adversary cannot distinguish the
commitment from random without knowing opening key r.
Then, we can get Pr[GameIK−RR(1λ) = 1] = 1

2 , implying
that AdvIK−RR

A,ΠNC
(1λ) is negligible.

All advantages in the RHS are negligible, therefore,
AdvIK

A,ΠNC
(1λ) is negligible.

Key deniability. From a simulator SimKeyProve that out-
puts an accepting proof π′

ck without a master secret key
msk.

From π′
key, we have p′ = hk′

1 /(h2/g
b′

3)
c′ . Since k′ and

c′ are randomly chosen from Z∗
q , gb

′c′

3 can be represented
to hx

1 for any random r. We can say that p′ = hr
1 where

r is random. Comparing to the real proof πkey = (ht
1),

t is also a random. Each element in the real proof set
(ht

1, k, c, b) has the same distribution as ones in the sim-
ulated proof set (hr

1, k
′, c′, b′). The two proofs are in-

distinguishable and SimKeyProve can always outputs 1,
since hk′

1 = p′(h2/g
b′)c

′
. For a fake commitment key

ck = ((g1, h1), (g2, h2)) = ((g1, h1), (g2, h
ρ
1) and its proof

πck, we can also simulate a proof that ck is a real key.
From SimKeyProve(mpk, ck, b′ = 1), we set random k′, c′

and generate p′ = hk′

1 /(h2/g
b′

3)
c′ = hk′

1 /(hρ
1/g3)

c′ = hr
1

for some random r. This simulated proof is indistinguish-
able from real proof. And, p′ can pass the verification
hk
1 = p(h2/g

b
3)

c. If the committer claims this is a real
commitment key, b = 1 in the verification. Then, we can
get hk′

1 = (hk′

1 /(hρ
1/g3)

c′)(h2/g3)
c′ = hk′

1 , passing the
verification. The opposite case is straightforward.
Homomorphism. Consider two commit-
ments where h = gx1 cm0 = (gr01 hm0

1,0,
gr02 hm0

2,0) = (gr0+x0m0
1 , gr02 gx0ρm0

1 gb0m0
3) and

cm1 = (gr11 hm1
1,1, g

r1
2 hm1

2,1) = (gr1+x1m1
1 , gr12 gx1ρm1

1 gb1m1
3).

We can aggregate two commitments
∑

cm = cm0+ cm1 =
(gr0+x0m0+r1+x1m1

1 ,
gr0+r1
2 gx0ρm0+x1ρm1

1 gb0m0+b1m1
3). Then, a manager can

nullify commitments and map to new commitments
cm∗ = Nullify(msk,

∑
cm) = C2/(C

msk
1) =

g
r0+r1
2 g

x0ρm0+x1ρm1
1 g

b0m0+b1m1
3

(g
r0+x0m0+r1+x1m1
1)ρ

= (g2/g
ρ
1)

r0+r1gb0m0+b1m1
3 .

We can now open cm∗ with ck∗,
∑

b · m,
∑

r,
Open(ck∗, cm∗,

∑
b ·m,

∑
r) = (g2/g

ρ
1)

∑
rg

∑
b·m

3 = cm∗.
Thus, we can infer that homomorphism always holds.

Appendix C.
Security proofs for Verifiability

We adapt Cortier’s definition of verifiability [9] to ensure
the integrity of zkVoting. In a nutshell, a voting scheme is
verifiable if the election result reflects the votes of 1) all
honest voters who have verified that their ballots appear
correctly on the bulletin board; 2) a subset of honest voters
who did not verify their ballots; and 3) at most nc voters
under the control of an adversary. Notably, in our scheme, a
registrar is not trusted to ensure verifiability, which is known
as strong verifiability meaning that both individual verifia-
bility and universal verifiability are ensured. In addition, in
scenarios such as clash attacks [32] where two voters vote
for the same candidate, malicious voting devices or authority
could deceive the voters with the same ballot. Two voters
do not realize they are looking at the same ballot. This can
satisfy both individual verifiability and universal verifiability
but is not sufficient for E2E verifiability. Malicious authority
could replace one ballot in an undetectable way. Therefore,
voter names or pseudonyms should be attached to the ballot
to satisfy E2E verifiability [10]. Our system attaches a serial
number to ballots and allows the voter to trace their ballot
through the entire voting system, ensuring each ballot is
unique.

The verifiability experiment is formally illustrated
in Figure 7. We use U to denote the set of
(id, pkid, skid, ckid, B) pairs and C to denote the set
of (id, pkid, ckid, B) where nc be the number of the
set of corrupted voters. Let H = {(pkh

i , ckh
i ,mh

i , ∗)}
nh
i=1

correspond to voters who have checked that their ballots

17

Expver
A,ΠVote

(1λ) :

(PP, SK)← Setup(1λ);

(BB, T)← AO(SK);
if VerifyTally(PP, T) = 0 then return 0;

if mtally = 0 then return 0;

H = {(pkh
i , ckh

i ,mh
i , ∗)}nh

i=1; H ′ = {(pkh′

i , ckh′
i ,mh′

i , ∗)}nh′
i=1;

if ∃{(pkc
i , ckc

i ,mc
i , ∗)}nc

i=1 ⊆ C,

∃{(pkh′

i , ckh′
i ,mh′

i , ∗)}nh′
i=1 ⊆ H ′

s.t. mtally = ρ({(pkh
i , ckh

i ,mh
i , B

h
i)}nh

i=1∪

{(pkh′

i , ckh′
i ,mh′

i , Bh′
i)}nh′

i=1 ∪ {(pkc
i , ckc

i ,mc
i , B

c
i)}nc

i=1) then

return 0;

else return 1;

OCorrupt(id) :

if (id, ∗, ∗, ∗, ∗) /∈ U then return 0;

C ⇐ {(id, pkid, ckid, ∗)};
return (pkid, skid, ckid);

OVote(id,m) :

if (id, ∗, ∗, ∗, ∗) /∈ U or (id, ∗, ∗, ∗) ∈ C then return 0;

(k,B)← Vote(PP, ckid,CKlist, pkid, skid,m);

H ∪H ′ ⇐ (pkid, ckid,m, B);

return (k,B);

Figure 7: Verifiability experiment Expver
A,ΠVote

(1λ)

will be counted and H ′ = {(pkh′

i , ckh′

i ,mh′

i , ∗)}nh′
i=1

correspond to voters that have not checked their ballots.
We adapt the result function ρ for the election result. The
adversary A takes as input the authority’s secret key SK,
and can query the following oracles:

• OCorrupt(id), which allows the adversary A to corrupt
a voter id.

• OVote(id,m), which allows the adversary A to let an
honest voter id cast a vote for m.

Note that A does not need the ORegister oracle since he
controls the authority and thus can register arbitrarily. The
adversary wins if the result T verifies but violates any of the
following conditions: 1) for each voter that has checked his
ballot, the ballot is counted; 2) a subset of votes by honest
voters that did not check their ballots are counted; 3) at most
nc corrupted votes are counted.

Definition C.1. We say that ΠVote is E2E verifiable
if the advantage of any PPT adversary A such that
Pr[Expver

A,ΠVote
(1λ) = 1] is negligible and the ballot contains

a unique identifier.

Theorem C.1. Assume that the underlying ZKPs are com-
plete, sound, and zero-knowledge, and the security of the
cryptographic hash function. A voting system ΠVote provides
E2E verifiability.

Proof. Let the adversary A output a set of votes, and the
tally result T including the proof. Let {B1, · · · , Bnb

} be
the valid ballots on the BB. By the soundness of the ZKP
relation Rtally and the homomorphism and nullifiability
property of the nullifiable commitment scheme, we can
conclude that T is the correct tally of {B1, · · · , Bnb

} if
VerifyTally(PK, T) returns 1.

Now, we prove that for each ballot Bi ∈ BB, it is one
of the following sets:

• H = {(pkh
i , ckh

i ,mh
i , ∗)}

nh
i=1, the votes of the honest

voters who have checked their ballots.
• H ′ = {(pkh′

i , ckh′

i ,mh′

i , ∗)}nh′
i=1, the votes of the honest

voters who have not checked their ballots.
• C = {(pkc

i , ckc
i ,mc

i , ∗)}
nc
i=1, the votes of the corrupted

voters.
Due to the cryptographic hash function H , it is impossi-

ble for an adversary to forge a valid secret key skid that cor-
responds to a given public key pkid where pkid = H(skid).
The ZKP relation Rtotal ensures that the registrar can only
generate at most nv number of real casting keys. The
soundness of the ZKP relation Rck ensures that the casting
keys cks are formed correctly as the voter required. Another
ZKP relation,Rvote, verifies the membership of each voter’s
casting key in the system. As a result, the adversary cannot
produce a valid proof for Rvote. Therefore, any ballot that
does not align with the ballots of honest voters will be identi-
fied and excluded from the count. This rigorous verification
process ensures that only ballots associated with verified
casting keys and legitimate voter identities are tallied.

We now prove that the adversary cannot drop the votes
of the honest voters who have checked their ballots. By
the soundness of the ZKP relation Rvote, the adversary
cannot cast a valid ballot created with a ck for pkid due
to the cryptographic hash function H , it is impossible for
an adversary to forge a valid secret key skid that corresponds
to a given public key pkid where pkid = H(skid). We can
have that if the result mtally verifies, then it must correspond
to the result of the tally function ρ computed on all the
votes by honest voters who checked their ballots, at most
nc votes cast by corrupted voters, and a subset of votes cast
by honest voters who did not check their ballots. We can
observe that Expver

A,ΠVote
(1λ) = 1] is negligible and each ballot

contains a unique serial number, therefore, ΠVote ensures
E2E verifiability.

18

	Introduction
	Contributions
	Security properties in e-voting systems
	Related work
	Outline

	Nullifiable commitment
	Protocols and properties
	Construction

	Secure e-voting systems
	Entities and assumptions
	Protocols
	Security properties

	zkVoting
	Cryptographic building blocks
	Compiling coercion-resistant secure e-voting systems
	Security analysis
	Construction

	Experiment
	Conclusion
	References
	Appendix A: Security games
	Nullifiable commitment
	Secure e-voting systems

	Appendix B: Security proofs for Algorithm 1
	Appendix C: Security proofs for Verifiability

