
Grafting: Decoupled Scale Factors and Modulus in RNS-CKKS
Jung Hee Cheon

Seoul National University

Seoul, Republic of Korea

CryptoLab Inc.

Seoul, Republic of Korea

jhcheon@snu.ac.kr

Hyeongmin Choe

CryptoLab Inc.

Seoul, Republic of Korea

hyeongmin.choe528@gmail.com

Minsik Kang

Seoul National University

Seoul, Republic of Korea

kaiser351@snu.ac.kr

Jaehyung Kim

Stanford University

Stanford, California, USA

jaehk@stanford.edu

Seonghak Kim

CryptoLab Inc.

Seoul, Republic of Korea

ksh@cryptolab.co.kr

Johannes Mono

Ruhr University Bochum

Bochum, Germany

CryptoLab Inc.

Seoul, Republic of Korea

jmono@cryptolab.co.kr

Taeyeong Noh

CryptoLab Inc.

Seoul, Republic of Korea

tynoh0219@cryptolab.co.kr

ABSTRACT
The CKKS Fully Homomorphic Encryption (FHE) scheme enables

approximate arithmetic on encrypted complex numbers for a

desired precision. Most implementations use RNS with carefully

chosen parameters to balance precision, efficiency, and security.

However, a key limitation in RNS-CKKS is the rigid coupling

between the scale factor, which determines numerical precision,

and the modulus, which ensures security. Since these parameters

serve distinct roles—one governing arithmetic correctness and the

other defining cryptographic structure—this dependency imposes

design constraints, such as a lack of suitable NTT primes and limited

precision flexibility, ultimately leading to inefficiencies.

We propose Grafting, a novel approach to decouple scale factors

from the modulus by introducing (universal) sprouts, reusable
modulus factors that optimize word-sized packing while allowing

flexible rescaling. With the universal property, sprouts allow

rescaling by arbitrary bit-lengths and key-switching at anymodulus

bit-length without requiring additional key-switching keys. Decou-

pling the scale factor from themodulus in Grafting yields significant

efficiency gains: (1) Optimized RNS packing by decomposing the

modulus into machine word-sized components, accelerating com-

putations and reducing the ciphertext and encryption/evaluation

key sizes; and (2) A freely adjustable scale factor independent of

the modulus, unifying the ring structure across applications and

reducing modulus consumption through adaptive scalings.

Our experiments demonstrate that Grafting improves perfor-

mance across standard SHE/FHE parameter sets for ring dimen-

sions 2
14
-2

16
by up to 1.83× and 2.01× for key-switchings and

multiplications, respectively, and up to 1.92× for bootstrapping.

Grafting also reduces public key and ciphertext sizes by up to 62%

Part of this work was done while Hyeongmin Choe was affiliated with Seoul National

University, and while Jaehyung Kim was affiliated with CryptoLab Inc.

without compressions, maintaining the same number of public

keys as before. As an application, we showcase the CKKS gate

bootstrapping for bits (Bae et al.; Eurocrypt’24), achieving 1.89×
speed-up due to the reduced number of RNS factors. Finally, we

revisit the homomorphic comparison (Cheon et al.; Asiacrypt’20),

evaluating it with carefully chosen scale factors for each iteration,

reporting up to 204-bit fewer modulus consumption (27% reduction)

in the standard parameter set, without precision loss.

KEYWORDS
Homomorphic Encryption, CKKS, Residue Number System, Boot-

strapping

1 INTRODUCTION
The Cheon–Kim–Kim–Song (CKKS) scheme [CKKS17] is a Fully

Homomorphic Encryption (FHE) scheme that allows approxi-

mate computation over real/complex-valued encrypted data. For

real/complex-valued computations, the precision is determined

by the scale factors used for each homomorphic operation. It is

multiplied with the clear-text messages and rounded, encoding the

real/complex messages into integers via Discrete Fourier Transform

(DFT). Therefore, the sequence of scale factors becomes a key

parameter to ensure arithmetic correctness at the desired precision

level.

CKKS bases its IND-CPA security on the hardness of the Ring-

Learning-With-Errors (RLWE) problem, where the modulus budget

is limited for security. As in other RLWE-based FHE schemes,

a huge modulus budget of hundreds to thousands of bits is

used for its underlying cryptographic structure, the polynomial

ring. To efficiently handle the huge modulus, every competitive

library [Cry22, ABBB
+
22, SEA23, lat24] uses the Residue Number

System (RNS) and Number Theoretic Transform (NTT) [CHK
+
19],

Cheon et al.

decomposing the huge modulus into RNS factors, each of which

is a NTT prime. The use of RNS in CKKS enables significantly

more efficient homomorphic operations but introduces some

restrictions: the linkage between the scale factors and the RNS

factors. As the scale factors are multiplied during homomorphic

multiplications, it necessitates rescaling to revert its size. This

procedure not only scales down the scale factors but also the

ciphertext modulus, consuming the modulus budget. Thus, an RNS

factor should exist in the modulus, which has a size similar to the

scale factor; otherwise, it introduces a larger error that sometimes

exponentially explodes [CHK
+
19, KPP22, AAB

+
23] necessitating a

careful selection of the RNS factors.

In RNS-CKKS, the two key parameters–the scale factor, which

governs computational accuracy, and the ciphertextmodulus, which

provides cryptographic structure–are tightly coupled, significantly

restricting flexibility in parameter selection. Ideally, the scale

factor should be adjusted according to the application’s required

precision to minimize modulus consumption. However, since the

scale factor is intrinsically linked to the modulus structure, any

change requires regenerating not only the ciphertext modulus

but also the key modulus and the public keys accordingly, adding

substantial management overhead. As a result, most deployments

rely on general-purpose or pre-configured parameter sets.

Recent advances, however, have explored application-dependent

parameter optimization by fine-tuning scale factors to match

precision needs more precisely. In bootstrapping, for instance,

performance can be improved by assigning different scale factors

to each step based on individual precision requirements, which

results in faster execution and more efficient use of the available

modulus [Cry22, lat24]. This leads to better throughput in terms of

amortized bootstrapping time per available level. Also, the use of

fine-grained scale factors for different purposes reduces the overall

modulus consumption [KPK
+
22, CCKS23, SSKM24], resulting in

better running time.
1
It is also demonstrated that highly efficient

low-precision operations using small scale factors (e.g., 25–35 bits)

can be designed [BCKS24, BKSS24], enabling the use of smaller ring

dimensions, yielding benefits in both speed and memory footprint.

However, due to its bonded nature, it is unable to construct

parameters with arbitrary scale factors for RNS-CKKS. In particular,

there are not enough small NTT primes for typical CKKS ring di-

mensions of 2
14

to 2
17
, limiting the parameter designs. Furthermore,

when it comes to hardware implementation, we suffer from the

smaller word size of the machine, introducing another restriction

to the size of the scale factors to be less than the machine’s word

size, say, 32 bits.

Furthermore, the RNS factors following the scale factor sizes

significantly deteriorate performance and memory usage–it hinders

optimal utilization of the machine’s computational resources. Since

CKKS scale factors typically range from 30 to 60 bits, the ciphertext

modulus must be decomposed into RNS primes of similar sizes.

When these scale factors are utilized, the number of RNS factors

significantly increases compared to the optimal case. Given that

the performance of homomorphic operations scales linearly (and

sometimes quadratically) with the number of RNS factors, this

increase leads the overall performance to be far from optimal.

1
via decreasing the number of levels used, or the number of required bootstrappings.

Until now, decoupling the scale factors and the ciphertext modu-

lus has been a challenging problem. Precisely, the CKKS ciphertext

is a tuple (𝑎, 𝑏) over a polynomial ring R𝑄 = Z[𝑋]/(𝑋𝑁 +1), where
𝑁 is the ring dimension, which is a power-of-two integer and 𝑄 is

a positive integer modulus. Each ciphertext has its multiplicative

level ℓ , corresponding modulus𝑄ℓ , and scale factor Δℓ . Rescaling at
level ℓ essentially divides the squared scale factor Δ2

ℓ
by𝑞ℓ , resulting

in a scale factor Δℓ−1 = Δ2

ℓ
/𝑞ℓ . To slightly detour this relationship,

Agrawal et al. [AAB
+
23] introduced the composite rescaling using

the composition of the RNS factors instead of a single RNS factor

𝑞ℓ , to make the moderate precision RNS-CKKS available in the

hardware implementation. However, this does not actually decouple

the scale factors and the modulus; it allows the modulus factors

to be crafted to compose them roughly the size of the scale factor.

As a side effect, the number of RNS factors increases, leading to a

slower running time in the larger word-size machines, e.g., 64-bit

CPUs, but a better performance in the machines with smaller word

sizes, e.g., 32-bit GPUs.

Another approach of Mono et al. [MG23] was to adopt the nature

of using mostly word-sized primes from the Double-CRT format in

BGV [HS20] to RNS-CKKS. The ciphertext modulus can be switched

from one to another having a similar size while ensuring that the

newmodulus has a similar size to control the size of the error newly

introduced by the modulus switching. For example, when the scale

factor is 36-bit, one can construct a ciphertext modulus with 54-bit

NTT primes, and replace two 54-bit primes into three 36-bit primes

before rescaling. This allows for a smaller number of RNS factors in

the ciphertext modulus and decreases the overall computation time.

Despite that, this approach reduced the number of RNS factors and

improved the homomorphic computation efficiency; however, it

was restricted to particular cases and pre-determined scale factors.

Samardzic and Sanchez [SS24] extended this approach, suggest-

ing a similar concept of modulus managing technique, focusing on

designing a hardware accelerator. Fusing the modulus switching

with the CKKS rescaling,
2
the ciphertext modulus can be rescaled

with a rational factor, from 𝑄𝑎 to 𝑄𝑏, for some greatest common

divisor 𝑄 ∈ Z of the moduli and the integer factors 𝑎 and 𝑏,

where 𝑎/𝑏 ≈ Δ. Given the largest possible modulus and a sequence

of desired rescaling factors, one may find a descending chain of

ciphertext moduli, where each modulus is a composition of the

machine’s word-size NTT primes with possibly several smaller

NTT primes. Again, the application-dependent scale factors must be

pre-determined for public key generation. Also, it is not compatible

with the RNS-CKKS key-switching algorithm, the most frequent

and heavy operation in HE, which is used for homomorphic

multiplication or rotation. For key-switching, the ciphertext moduli

need to be divisible by one another so that the least common

multiple (LCM) of the ciphertext moduli becomes a factor of

the key-switching key modulus. Without divisibility, the LCM

becomes too large, pushing the key-switching key modulus beyond

the secure budget. To stay within the secure modulus budget,

multiple key-switching keys must be generated for each operation

type–e.g., several relinearization keys for different multiplicative

levels or multiple rotation keys for each rotation amount. This

significantly increases the size of the public key, which already

2
This concept was concurrently introduced in an earlier version of this work.

ranges from hundreds of megabytes to tens of gigabytes, amplifying

the communication overhead in the typical secure outsourced

computation scenarios.

None of the prior approaches efficiently resolve the tight

coupling between the scale factors and the ciphertext modulus,

and the following question arises:

Can we completely decouple the scale factors from the modulus,

increasing the efficiency of the homomorphic computations

while preserving the key-switching key sizes?

1.1 Our Contribution
We introduce Grafting, a modulus management framework for RNS-

CKKS that completely decouples scale factors from the ciphertext

modulus. This separation enables full utilization of the machine’s

computational and memory capabilities by allowing an optimal

number of RNS factors. As a consequence, Grafting yields both a

runtime speed-up and a significant reduction in the size of public

keys proportional to the decrease in the number of RNS factors.

Furthermore, the full decoupling allows application-independent

parameterization–a single parameter set can universally support a

wide range of applications. Moreover, unlike conventional schemes

where scale factors must be rigidly determined during public key

generation, Grafting supports flexible selection of scale factors

even after the public parameters and the keys are fixed. This

flexibility leads to substantial savings in modulus consumption,

further improving overall efficiency.

High-level Overview of Grafting. Grafting is built on top of

the RNS-CKKS multiplications and key-switchings but manages

the ciphertext and switching key moduli differently. As a useful

tool, we first introduce the rational version of the CKKS rescale

operation, rescaling by a rational number instead of an integer

similar to [SS24], namely the rational rescale. It is a composition of

integer multiplication, and the usual CKKS rescale, i.e., modulus

changing from 𝑄𝑎 to 𝑄𝑎𝑏, then rescaled down to 𝑄𝑏, at the

same time, the scale factor is also updated from Δ to Δ · 𝑏, then
Δ · 𝑏/𝑎 for some integers 𝑄 , 𝑎, and 𝑏. We proved that the error

introduced by rational rescaling is the same amount as the usual

rescaling, allowing the ciphertext modulus to be decomposed with

the machine’s word-sized factors as much as possible. However, this

is not enough for efficient key-switching, requiring the divisibility

between different ciphertext moduli. We introduce (universal)
sprout, a small and reusable part of the ciphertext modulus, so that it

can introduce divisibility to the ciphertext moduli. For instance, we

can have a power-of-two integer 2
𝛼
as an RNS factor, composing

the modulus 𝑄 = 𝑞0𝑞1 · · ·𝑞ℓ · 2𝛼 with the word-size primes 𝑞𝑖
for an integer 𝛼 smaller than the machine word’s bit-length, 𝜔 .

Any two moduli can divide one another, allowing key-switchings

as in RNS-CKKS. Based on this, we revisit the RNS-CKKS key-

switching algorithms to allow the RNS factors of small power-of-

two integers while keeping the NTT states. We illustrate how the

modulus changes in Grafting in Figure 1.

Applications. As Grafting breaks the linkage between the scaling

factors and the RNS factors, it can solve many restrictions that pre-

vious implementations had. Grafting optimally packs the modulus

using mostly machine word-sized factors, resulting in fewer RNS

Word-size moduli (auxiliary)
Sprouts (ciphertext)
Word-size moduli (ciphertext)

Modulus descending
scenario during HE

computations

Rational rescale when
input sprout< output sprout

Modulus changes
during Key
Switching

Inv-RS
RS

Inv-RS

ModUp
ModDown

𝑄1

𝑄0

𝑃

𝑄2

𝑞0

𝑞1

𝑞2

𝑞3

𝑞4

𝑟

𝑝0

𝑝1

Gadgets

Figure 1: Modulus changes in Grafting.

components. This reduction not only accelerates homomorphic

operations but also decreases the ciphertext and public key sizes,

roughly in proportion to the reduced number of factors. In this

respect, we revisit the Somewhat HE (SHE) and Fully HE (FHE)

parameters in the literature [BCC
+
24, Cry22, lat24, ABBB

+
22] and

re-design their grafted variants with reduced RNS factors by up to

41%.

Also, we do not need to suffer from the lack of small NTT

primes or scale factors larger than the machine’s word size, which

allows optimized performance for lower—and/or higher-precision

computation. In addition, Grafting is particularly effective in

applications that use smaller-than-usual scale factors [CCKS23,

BCKS24, BKSS24] where the original number of RNS factors is far

from optimal. In this regard, we revisit the Bit-CKKS [BCKS24],

which uses the scale factors of sizes down to 26 bits. The grafted

implementation can reduce the number of RNS factors by up to

46%. Further exploiting the benefits of Grafting, we introduce

an additional parameter set in log
2
𝑁 = 14, that cannot be

implemented in RNS-CKKS–3 available levels after binary gate

bootstrapping instead of 2 available levels.

On the other hand, because of the decoupled nature, the modulus

can be independent of the application. In this respect, in Grafting, a

single underlying parameter can be used universally in different ap-

plications and/or precisions. Further, the scale factors can be freely

changed for each sub-procedure of homomorphic computations.

Like adaptive-precision techniques in clear-text computation, such

as those used inmachine learning training/inference or Newton-like

iterative methods, the encrypted counterpart also enhances perfor-

mance by reducing overall modulus consumption through carefully

tuned scale factors at each sub-procedure. As an example, we revisit

the iteration-based homomorphic comparison technique [CKK20],

utilizing fine-grained scale factors for each iteration, ensuring

the accuracy of the homomorphic comparison. We theoretically

demonstrate that the scale factors can be adjusted smaller in

the early iterations, reducing the modulus consumption, possibly

reducing the number of bootstrappings in wider applications such

as the ReLU function evaluation for neural networks [LLL
+
22,

LLKN22, RKP
+
25] or lookup table evaluations [DMPS24, CCP24].

Cheon et al.

Parameter

Speed-ups Key-size

KeySwitch Mult BTS reduction

SHE15 1.29× 1.42× - 42% ↓
FHE15s 1.72× 1.78× 1.92× 62% ↓

BinFHE16 1.92× 2.07× 1.81× 25% ↓
Table 1: Gains obtained in the standard SHE [BCC+24],
FHE [Cry22], and Bit-CKKS [BCKS24] parameter sets using
Grafting.

Implementation and Experimental Results. We implemented

Grafting with RNS-CKKS in C++, relying onmost of the well-known

optimization techniques. To compare the performance, we also

implemented the non-grafted variant; we will refer to it as a simple
variant. Based on the re-designed parameters for SHE and FHE, we

achieved speed-ups of up to 2.01× for multiplications and 1.92×
for bootstrappings, and reduced the key sizes by up to 62% without

compression. Note that the available modulus after bootstrapping

and the precisions of the homomorphic operations remain the same

as before.

For Bit-CKKS [BCKS24], we achieved speed-ups of 1.89× and

1.81× for ring dimensions 2
14

and 2
15
. The additional parameter

set reports similar timings with the original log
2
𝑁 = 14 parameter

set, but one more available level.

We summarize the main results in Table 1. Please see Section 5

for more details.

For the homomorphic comparison, we analyze the error behav-

iors during the polynomial evaluations and pick the scale factors

that guarantee the precision as high as before.With the smaller scale

factors, we achieved 10-27% less modulus consumption compared to

the prior art for evaluating two different homomorphic comparison

functions without precision loss. We also demonstrate the reduction

in the number of bootstrapping for homomorphic comparison

evaluation, thanks to the reduced modulus consumption, naturally

accelerating the execution time by 3/2 = 1.5×.

Additional Contributions.Weprovide a fewmore interesting con-

tributions in the Appendices. First of all, we revisit the Tuple-CKKS

multiplication [CCKS23] with Grafting, introducing the grafted

variant of the tuple rescaling, relinearization, and multiplication, in

Appendix D. Based on our analysis, we expect around 2.4× speed-

up for double-CKKS multiplication and enable larger tuple sizes,

which was previously unrealistic due to the lack of NTT primes.

Secondly, in Appendix E, we showGrafting’s improved flexibility

from the decoupled nature: arbitrary-precision homomorphic

multiplication up to 113-bit precision and homomorphic linear

transformations up to 107-bit precision, based on a single underly-

ing parameter set. This is intrinsicallymade by utilizing a quadruple-

precision library for the scale factors.

Next, we revisit the CKKS bootstrapping in Appendix F and

showcase some experimental results: 1) ModRaise to arbitrary

modulus, innately supported in Grafting, and 2) EvalMod with

reduced modulus consumption, by utilizing fine-tuned scale factors

for sub-procedures of EvalModevaluations.

Finally, in Appendix G, we investigate the parameters in the

literature and provide their grafted variants with expected speed-

ups.

1.2 Additional Related Works
In the introduction, we already mentioned the relevant related

works to our work. Following, we present some additional related

works; the rest can be found in Appendix A.

RNS-CKKS. The original CKKS [CKKS17] scheme used the power-

of-two integers for its ciphertext modulus; however, due to its

limited efficiency, the RNS was introduced for CKKS implemen-

tations [CHK
+
19], as in other RLWE-based HE schemes like

BGV [BGV12, GHS12] or B/FV [FV12, Bra12, BEHZ16] schemes.

Currently, most of the available homomorphic encryption libraries,

indeed, every competitive library, are based on RNS for effi-

ciency [HHS
+
21, ABBB

+
22, Cry22, SEA23, lat24]. In RNS-CKKS,

the ciphertexts and the switching keys are decomposed into integers

smaller than the word size; each is a remainder modulo an RNS fac-

tor. The computation is done in a decomposedmanner, thanks to the

CRT. From its RNS-friendly nature, Han and Ki [HK20] introduced

an advanced key-switching technique for RNS-CKKS, adopted

from [BEHZ16, GHS12], which gave the flexibility of choosing the

usable ciphertext modulus compensating the size of the switching

keys and the key switching running times. Using the so-called RNS

gadget decomposition, the ciphertexts are decomposed into several

blocks and multiplied with the corresponding switching keys. By

elaborately designing the modulus, its RNS factors, and the gadgets,

more efficient bootstrappings can be achieved, accelerating the

overall homomorphic computations [KPK
+
22, KPP22, BMTH21]

and libraries [lat24, Cry22]. However, as mentioned earlier, the

relationship forces the RNS factors to be set far smaller than the

machine’s word size, making it hard to fully utilize the machine’s

computation and memory budget.

2 PRELIMINARIES
2.1 Notations
Polynomials are denoted in bold font and lowercase letters. We

let ⌊𝑦⌉ be a rounding of 𝑦 ∈ R to the nearest integer. We

naturally extend the rounding notation to vectors and polynomials

by applying it component-wise. For an integer 𝑛, we denote a

set of non-negative integers smaller than 𝑛 as [𝑛], i.e., [𝑛] =

{0, 1, · · · , 𝑛 − 1}.
We let R = Z[𝑋]/(𝑋𝑁 + 1) be a polynomial ring where 𝑁 is a

power-of-two integer. For any positive integer 𝑄 , let the quotient

ring R𝑄 = R/𝑄R = Z𝑄 [𝑋]/(𝑋𝑁 + 1). We let ct = (b, a) ∈ R2

𝑄
be

a ciphertext with ciphertext modulus 𝑄 with respect to a secret

key s ∈ R if it satisfies ⟨ct, (1, s)⟩ ≈ m mod 𝑄 for some message

m ∈ R with respect to a target message precision. For a positive

integer 𝑞 and a polynomial a ∈ R (or R𝑄 for some 𝑞 | 𝑄), we let
[a]𝑞 be a representative of a mod 𝑞 in R𝑞 . For positive integer 𝑟 and
𝑄 , we denote ord𝑟 𝑄 as the largest integer 𝑘 such that 𝑟𝑘 divides 𝑄 .

The definition and properties of Number Theoretic Transform

(NTT) can be found in Appendix B.1.

2.2 Computation in RNS-CKKS
RNS-CKKS scheme is an RNS variant of the CKKS scheme, first

introduced in [CHK
+
19]. The ciphertext and the switching key

modulus comprise NTT primes, constituting the RNS factors.

Specifically, 𝑄max = 𝑞0 · · ·𝑞𝐿 be the maximum ciphertext modulus,

where 𝑞𝑖 are relatively prime NTT primes. The ciphertext modulus

is 𝑄 = 𝑞0 · · ·𝑞ℓ for some ℓ ∈ [𝐿 + 1]. The switching key modulus

is 𝑃𝑄max, where 𝑃 = 𝑝0 · · · 𝑝𝐾−1, where 𝑝 𝑗 ’s are relatively prime

NTT primes. In addition, 𝑞𝑖 ’s and 𝑝 𝑗 ’s are relatively prime. The

polynomials inR𝑄 are stored and computed in RNS, i.e., for 𝑎 ∈ R𝑄 ,
we indeed have [a]𝑞𝑖 ∈ R𝑞𝑖 for every RNS factor 𝑞𝑖 |𝑄 . We note

that the CRT decomposition is homomorphic.

We now recall some main features of the RNS-CKKS scheme.

We include detailed explanations for some basic operations (Fast

Basis Conversion (FBC), Inv-RS,ModUp,ModDown, and RS, and
the level adjustment techniques) in Appendix B.2.

2.2.1 Gadget Decomposition and Key Switching. When the ring

dimension 𝑁 , the hamming weight of the secret key, and the target

security are chosen, the maximum possible modulus 𝑃𝑄max can be

decided based on the estimated attack costs of the known attacks

via Lattice estimator [APS15].

The switching key is generated in the largest modulus 𝑃𝑄max,

possibly using gadget decomposition. For RNS gadget decomposi-

tion, for instance, each gadget 𝑄𝑖 is composed of some RNS factors,

and the largest ciphertext modulus 𝑄max is composed into

𝑄max = 𝑄0 · · ·𝑄dnum−1

=(𝑞0 · · ·𝑞𝛼−1) · (𝑞𝛼 · · ·𝑞2𝛼−1) · · · (𝑞𝛼 (dnum−1) · · ·𝑞dnum·𝛼−1
),

where 𝛼 = ⌈(𝐿 + 1)/dnum⌉ for a pre-fixed parameter dnum ∈ N.
Note that the relinearization key rlk is a special switching key that

switches the secret key from s to s′ = s2
. We call dnum the gadget

rank. We choose 𝑃 to satisfy 𝑃 ≳ 𝑄𝑖 for all 𝑖 , so the maximum

possible modulus 𝑃𝑄max should be split into 𝑃 and 𝑄 with roughly

𝑃 ≈ 𝑄1/dnum
.

Let 𝑃 = 𝑝0 · · · 𝑝𝐾−1. Then, the switching keys are defined as

{swk𝑖 }𝑖∈[dnum] = {(𝜷𝑖 ,𝜶𝑖)}𝑖∈[dnum] ∈ R2×dnum
𝑃𝑄 , where

𝜷𝑖 = −𝜶𝑖 · s + 𝑃 · 𝑄̂𝑖 · [𝑄̂−1

𝑖]𝑄𝑖
· s′ + e𝑖 ∈ R𝑃𝑄 ,

for 𝑄̂𝑖 = 𝑄max/𝑄𝑖 , and e𝑖 ← 𝜒 be errors. We note that a larger

dnum results in a larger usable ciphertext modulus 𝑄max and a

slower key switching operation also with a larger switching key

size.

Key switching. Key switching of a ciphertext ct ∈ R2

𝑄
, denoted

as KeySwitchswk (ct), involves the following procedures.3.
(1) Regard the ciphertext in modulus 𝑄0 · · ·𝑄𝑑−1

instead of

𝑄 = 𝑞0 · · ·𝑞ℓ , for some 𝛼 and𝑑 satisfying 𝛼 (𝑑−1) ≤ ℓ < 𝛼𝑑 .
(2) ModUp each components of the ciphertext in modulus 𝑄𝑖 ,

to 𝑃𝑄0 · · ·𝑄𝑑−1
for 𝑖 ∈ [𝑑], resulting in 𝑑 ciphertexts in

modulus 𝑃𝑄0 · · ·𝑄𝑑−1
.

(3) External product part of each ciphertext with swk𝑖 for 𝑖 ∈
[𝑑], and add the remaining parts of the ciphertext.

3
It requires (𝑑 +2) (ℓ+𝐾 +1) (i)NTT operations, and in particular, (𝑑 +3+2/𝑑) (𝐿+1)
(i)NTTs at the top level ℓ = 𝐿 [MG23].

(4) ModDown from modulus 𝑃𝑄0 · · ·𝑄𝑑−1
to 𝑄 .

2.2.2 Homomorphic Multiplication. Homomorphic multiplication

consists of the tensor product of two ciphertexts in the same

modulus 𝑄 = 𝑞0 · · ·𝑞ℓ , then key switch 𝑠2
to 𝑠 via the rlk, then

RS by 𝑞ℓ . Note, the tensor of ciphertexts ct1 and ct2 satisfies

⟨ct1 ⊗ ct2, (1, 𝑠, 𝑠2)⟩ = ⟨ct1, (1, 𝑠)⟩ · ⟨ct2, (1, 𝑠)⟩, where sk = (1, 𝑠).

2.3 CKKS Bootstrapping
As CKKS multiplication consumes the modulus by an amount of

the scale factor sizes, CKKS bootstrapping is used to lengthen

the multiplicative budget for further computations when the

ciphertext modulus reaches the minimum. During bootstrapping,

the ciphertext is first homomorphically decoded, then its modulus

is raised, and the ciphertext is homomorphically encoded. Then, a

reduction modulo, the base modulus, is applied homomorphically.

Each sub-procedures are referred to as SlotToCoeff, ModRaise,
CoeffToSlot, and EvalMod.

Basically, for given an input ciphertext in R2

𝑞0

encrypting a

plaintext pt, ModRaise generates a ciphertext in R2

𝑄max

encrypting

a plaintext pt+𝑞0I, requiring moduluo 𝑞0 operation on the plaintext.

The homomorphic Discrete Fourier Transforms (DFT) SlotToCoeff
and CoeffToSlot appropriately switch the coefficient and the slot of

the ciphertext so that the real-valued messages m can be mapped

into m + 𝑞0I through the sequence of procedures SlotToCoeff,
ModRaise, and CoeffToSlot. During EvalMod, a polynomial ap-

proximating the function 𝑥 ↦→ (𝑥 mod 𝑞0) is homomorphically

evaluated. It is approximated as a sine function near the zeros,

which is sometimes decomposed into several functions, namely the

cosine, double angle formula, and arcsine functions with proper

approximations [BTH22].

3 GRAFTING: FILLING-UP MACHINE WORDS
IN RNS

All the computations in RNS-CKKS are done in the RNS format,

i.e., every ciphertext or key is decomposed with respect to RNS

factors, and each component is computed with the machine’s word

size. Therefore, if we can reduce the number of RNS components

representing the ciphertext, the whole FHE computations will

benefit from a straightforward speed-up by roughly the reduced

ratio, depending on the ciphertext modulus.

An appealing approach is to use the word size primes for the

RNS factors. However, it compromises the available multiplicative

depths, compared to the cases when the moduli are set approxi-

mately the same as the scaling factors, say Δ, which varies (from

20 to 120 in general) on the target message precision.

In this section, we introduce Grafting, a method of using

word-sized primes for RNS factors while allowing rescale by an

independent factor. We first introduce a tool for switching the

ciphertext modulus to an non-divisor modulus, namely, Rational
Rescale in Section 3.1. We introduce a method to maintain the

ciphertext modulus using word-sized NTT primes and a universal
sprout, enabling optimal performance throughmodulus resurrection.
This design supports rescaling to any scaling factor of arbitrary bit-

length at any modulus, without incurring additional key generation

costs compared to the original RNS-CKKS scheme. As detailed in

Cheon et al.

Section 3.2, this leads to a full decoupling between scale factors

and moduli, fully realizing what was only partially addressed in

prior works [AAB
+
23, MG23, SS24]. To support modulus switching

for the universal sprout—central to achieving full decoupling—we

extend the existing techniques to handle power-of-two factors in

the RNS factor, as detailed in Section 3.3.

3.1 Rational Rescale: Rescale with non-divisor
In this section, we decouple the RNS factors from the scaling

factors and propose a method to rescale a ciphertext from a

modulus 𝑄 to another modulus 𝑄 ′, where 𝑄 ′ does not necessarily
divide 𝑄 , which we call the Rational Rescaling. The rational rescale
procedure rescales an input ciphertext in modulus 𝑄 by a rational

number 𝑄/𝑄 ′ ∈ Q to an output ciphertext modulo 𝑄/(𝑄/𝑄 ′) =
𝑄 ′, rescaling the scaling factor as well. We note that the same

notion was introduced in [SS24], but without a formal definition

or correctness proof. Concretely, we define the rational rescale

operation and its correctness as follows.

Definition 3.1 (Rational Rescale). For given a polynomial a ∈ R𝑄
and 𝑄 ′ ∤ 𝑄 , we define rational rescaling as the rescaling by a

rational factor 𝑄/𝑄 ′, which can be computed as

RS𝑄/𝑄 ′ (a) = RS𝑆 (Inv-RS𝑅 (a) ∈ Rlcm(𝑄,𝑄 ′)) ∈ R𝑄 ′ ,
where 𝑅 = lcm(𝑄,𝑄 ′)/𝑄 ∈ Z and 𝑆 = lcm(𝑄,𝑄 ′)/𝑄 ′ ∈ Z.

Here, the operation RS𝑆 in Definition 3.1 corresponds to the

ModDown
lcm(𝑄,𝑄 ′)→𝑄 ′ in the original scheme, which rescales

by multiple prime factors. In our grafted RNS-CKKS framework,

we abuse the notation RS to encompass both the conventional

integer rescaling—either by a single factor (i.e., the original RS)
or multiple factors (i.e., ModDown)—and our extended notion of

rational rescaling by arbitrary rational factors.

The following theorem shows that the error introduced by

rational rescaling is of the same nature as the errors fromModDown
and RS operations, i.e., it grows linearly with the number of

eliminated RNS factors. The proof of the theorem can be found

in Appendix C.2.

Theorem 3.2 (Rational Rescale Correctness). For given a
ciphertext ct ∈ R2

𝑄
and𝑄 ′ ∤ 𝑄 , it holds that

[
⟨RS𝑄/𝑄 ′ (ct), sk⟩

]
𝑄 ′

=

(𝑄 ′/𝑄) · [⟨ct, sk⟩]𝑄 + 𝑒res for some rescale error 𝑒res satisfying
∥𝑒res∥∞ ≤ ℓ/2 · (∥𝑠 ∥1 + 1), where ℓ is the number of RNS blocks
in lcm(𝑄,𝑄 ′)/𝑄 ′, and 𝑠 be a secret key.

Rational rescale maps a ciphertext including a message with a

scaling factor Δ2
(after tensor) to a ciphertext whose message has

a scaling factor Δ2 ·𝑄 ′/𝑄 ≈ Δ, instead of Δ2/𝑞ℓ ≈ Δ. We describe

homomorphic multiplication with rational rescale in Algorithm 1.

We also note that the rational scaling factor can be tracked as

in [KPP22].

We also propose modulus adjustment that adjusts two cipher-

texts with different moduli and scaling factors before adding or

multiplying them, as shown in Algorithm 2. We note that our

modulus adjustment is a counterpart of the level adjustment in

RNS-CKKS [KPP22], while introducing more flexibility by allowing

one ciphertext to be adjusted to both the modulus and scaling

factor of another. The detailed correctness proof can be found in

Appendix C.3.

Algorithm 1: Homomorphic multiplication

Input: ct𝑖 = (b𝑖 , a𝑖 ;Δ) ∈ R2

𝑄
for 𝑖 = 0, 1 for the modulus

𝑄 = 𝑞0 · · ·𝑞ℓ−1 · 𝑟 , the scaling factor Δ, and the

relinearization key rlk ∈ R2·dnum
𝑃𝑄max

.

Output: ct = (b, a;Δ′) ∈ R2

𝑄 ′ where 𝑄
′ = 𝑞0 · · ·𝑞ℓ ′−1 · 𝑟 ′

and Δ′ = Δ2/(𝑄/𝑄 ′).
1 (b, a, d) ← ct1 ⊗ ct2 ⊲ b + as + ds2 ≈ Δ2m1m2

2 (b′, a′) ← KeySwitchrlk ((0, d)) ⊲ b′ + a′s ≈ ds2

3 ct← (b, a) + (b′, a′)
4 ct← RS𝑄/𝑄 ′ (ct) ⊲ Rational rescale by 𝑄/𝑄 ′ ≈ Δ
return ct

Algorithm 2:Modulus adjustment.

Input: ct ∈ R2

𝑄
with scaling factor Δ.

Output: ct′ ∈ R2

𝑄 ′ with scaling factor Δ′, where 𝑄 > 𝑄 ′Δ.

1 Choose the smallest 𝑄
mid
| 𝑄 such that 𝑄 ≥ 𝑄

mid
≳ 𝑄 ′ · Δ.

2 ct← (ct mod 𝑄
mid
) ⊲ Modulo reduction to 𝑄

mid

3 ct← ct · ⌈(𝑄
mid
· Δ′)/(𝑄 ′ · Δ)⌋ ⊲ Integer multiplication

4 ct′ = RS𝑄mid/𝑄 ′ (ct) ⊲ Rational rescale to 𝑄 ′

return ct′

Once we utilize rational rescaling to manage the scaling factor,

however, the resulting ciphertext modulus 𝑄 ′ may not be a divisor

of the switching key modulus 𝑃𝑄max. In this case, the original key-

switching procedure does not apply to the ciphertext due to the

changed modulus, which may not be compatible with the gadget

decomposition.

For instance, highlighting the difficulty regarding key-switching,

[SS24] introduces level-specific moduli, called terminal residues,
which capture the possible bit size of the ciphertext modulus after

rational rescaling for each ciphertext level. One might consider

preparing keys for all possible ciphertext moduli to support key

switching in this setting. However, this will increase the number

of switching keys, which degrades the communication cost for

key transmissions. When no specific circuits are predetermined, a

huge number of keys need to be transmitted for general circuit

evaluations. Having multiple copies is too much because the

switching keys are already hundreds to thousands of megabytes

for FHE parameters.
4

3.2 Modulus Resurrection with Universal
Sprouts

We propose the Modulus Resurrection technique, which enables the

use of Rational Rescale without generating additional switching

keys or incurring extra costs for key switching, by reusing factors

of the ciphertext modulus. As a primary condition for the RNS

factors is being relatively prime, we resurrect some factors of the

top ciphertext modulus, which was scaled out previously. By doing

so, the RNS factors remain relatively prime, while the ciphertext

modulus is kept to be a divisor of the switching key modulus.

4
See Table 5 for practical example. We also propose another solution that can be

applied to this problem in Appendix C.1

The special resurrecting part of the ciphertext modulus is called

sprout, which is flexible and possibly small. For all possible sprouts,

we define a common multiple 𝑟top of the sprouts, which we call the

top sprout. In other words, we set a maximal sprout 𝑟top and choose

sprouts from its divisors. Each ciphertext modulus is a product of

sprout and distinct word-sized NTT primes, which we call unit
moduli. In this case, we call the ciphertext modulus grafted with the
sprout.

The maximum ciphertext modulus is 𝑄max = 𝑞0 · · ·𝑞𝐿−1 · 𝑟top
where 𝑞𝑖 ’s be the unit moduli approximately of the machine word

size 𝑤 = 2
𝜔
. Each ciphertext modulus is 𝑄 = 𝑞0 · · ·𝑞ℓ−1 · 𝑟 for

some sprout 𝑟 . The switching key modulus is 𝑃𝑄max, where 𝑃 is

set conventionally, i.e., 𝑃 = 𝑝0 · · · 𝑝𝐾−1 for relatively prime unit

moduli 𝑝𝑖 ’s with gcd(𝑃,𝑄max) = 1. As each sprout 𝑟 is a divisor of

𝑟top, it satisfies 𝑟 | 𝑟top and thus 𝑄 | 𝑄max | 𝑃𝑄max. Hence, we can

key switch using the switching keys in modulus 𝑃𝑄max, as many

as in the conventional key-switching.

We describe how to construct the sprout 𝑟top in an optimal way,

in the sense that for any ciphertext modulus 𝑄 with an arbitrary

integer bit-length, one can always find ℓ ∈ [𝐿] and 𝑟 | 𝑟top such

that𝑄 ≈ 𝑞0 · · ·𝑞ℓ−1 ·𝑟 . Then, for any modulus𝑄 | 𝑄max and scaling

factor Δ of arbitrary bit-length, we can find 𝑄 ′ | 𝑄max such that

𝑄 ′ ≈ 𝑄/Δ. We refer to this property as universality and call such a

sprout a universal sprout, formally defined as follows:

Theorem 3.3 (Universal Rescalability). Let the ciphertext
modulus𝑞𝑖 ∈ [2𝜔 (1−𝜂), 2𝜔 (1+𝜂)] for some 𝜂 > 0 for 𝑖 ∈ [𝐿−1]. Let
the maximum sprout modulus 𝑟top = 𝑟0 · · · 𝑟𝑠 . Assume for any positive
integer𝛾 ≤ 𝑤 , there exist 𝑟 |𝑟top such that 𝑟 ∈ 2

𝛾 · [1−𝜖, 1+𝜖] for some
𝜖 > 0. Then, for any ciphertext in any possible ciphertext modulus
𝑄 , one can (rational) rescale by 2

𝛿 ·
(
1 ± (𝑛𝜂 + 2𝜖) + O

(
𝜂2 + 𝜖2

))
for

any positive integer 𝛿 < log
2
𝑄 , where 𝑛 = ⌈𝛿/𝑤⌉.

We refer to Appendix C.4 for the proof. A simple example of a

universal sprout is 𝑟top = 2
𝜔
, as illustrated below:

Example 3.1 (sprout-60). Let 𝑞𝑖 ’s be the 60-bit 5 NTT primes
and 𝑟top = 2

60. Each sprout 𝑟 is a power of two integers dividing
𝑟top = 2

60. Thus, any ciphertext modulus of approximately an integer
bit can be represented:

𝑄 = 𝑞0 · · ·𝑞ℓ−1 · 2𝛾 ≈ (60 · ℓ + 𝛾)-bit modulus,

where the top modulus is 𝑄max = 𝑞0 · · ·𝑞𝐿−1 · 260. From a ciphertext
modulus of approximately (60 · ℓ +𝛾) bits, one can rational rescale by
𝑞ℓ ′ · · ·𝑞ℓ−1 · 2(𝛾−𝛾

′) to obtain a ciphertext modulus of approximately
(60 · ℓ′ + 𝛾 ′) bits, regardless of whether 𝛾 ≥ 𝛾 ′.

For instance, if we want to rescale by ≈ 36 bits from a modulus
𝑄 = 𝑞0 · · ·𝑞ℓ−1 · 235, we can rational rescale by

(
𝑞ℓ−1/224

)
≈ 2

36,
resulting in a ciphertext modulus of 𝑄 ′ = 𝑞0 · · ·𝑞ℓ−2 · 259.

As in the above example, the top sprout 𝑟top is universal if and

only if its divisors can approximately represent all the bit lengths

from 1 to 𝜔 . A universal sprout enables rescaling by nearly any

bit-length, allowing it to be used universally, regardless of the target

circuit.

5
We take 60-62 bits for primes instead of 64 bits for some efficiency reasons even in

the 64-bit machines, e.g., due to key switching with dnum > 1 or lazy rescale.

We note that efficiently handling a ciphertext modulo 2
60
,

however, is difficult on a 64-bit machine. It requires embedding R
2

60

into a larger modulus ring R𝐵 , where 𝐵 must satisfy 𝐵 > 𝑁 · 2120

to prevent reductions modulo 𝐵 during multiplication.
6
In practice,

such a 𝐵 involves at least three word-sized moduli, making the

computation roughly three times more expensive than using a

single 60-bit NTT prime. Instead, we propose another universal

sprout in Example 3.2, whose handling cost is roughly twice that

of a word-sized NTT prime.

Example 3.2 (sprout-15-16-30). Let 𝑞𝑖 ’s be 61-bit NTT primes
and 𝑟top = 2

15 ·𝑟1 ·𝑟2, where 𝑟1 is a 16-bit NTT prime, and 𝑟2 is a 30-bit
NTT prime. Typically, we can choose 𝑟1 = 2

16+1 and 𝑟2 = 2
30−2

18+1,
which are NTT primes for ring dimension 𝑁 ≤ 2

15.7 Each sprout 𝑟
can be represented as 𝑟 = 2

𝛼 · 𝑟𝛽1

1
· 𝑟𝛽2

2
, where 0 ≤ 𝛼 ≤ 15, 𝛽𝑖 ∈ {0, 1}.

We note that the sprouts can represent any bit length from 1 to 61 as

{21, · · · , 215, 𝑟1, 𝑟1 · 21, · · · , 𝑟1 · 213, 𝑟2, 𝑟2 · 21, · · · , 𝑟2 · 𝑟1 · 215}.

Hence, it forms a universal sprout that supports rational rescale with
arbitrary bit-length.

For instance, from a modulus 𝑄 = 𝑞0 · · ·𝑞ℓ−1 · 𝑟 , where 𝑟 =

2
13 · 𝑟2 ≈ 2

43, let assume we want to rescale by ≈ 15 bits. We
can rational rescale by (𝑟2/2), resulting in a ciphertext modulus
𝑄 ′ = 𝑞0 · · ·𝑞ℓ−1 · 𝑟 ′, where 𝑟 ′ =

(
2

13 · 𝑟2
)
/(𝑟2/2) ≈ 2

14. If we
want to rescale by 34 bits in addition, we can rational rescale by(
2

3 · 𝑞ℓ−1/𝑟2
)
, resulting in a ciphertext modulus𝑄 ′′ = 𝑞0 · · ·𝑞ℓ−2 ·𝑟 ′′,

where 𝑟 ′′ =
(
𝑞ℓ · 214

)
/
(
2

3 · 𝑞ℓ/𝑟2
)
= 2

11 ·𝑟2 ≈ 2
41. Note that a larger

amount of rational rescale can be done as well.

In Example 3.2, arithmetic over both R
2

15 and R𝑟1𝑟2
can be

efficiently performed within a single word-sized modulus. In the

latter case, this is achieved using composite NTT [CHK
+
21]. We

refer the reader to Appendix C.6 for details on optimized arithmetic

over universal sprouts, and to Appendix C.5 for additional candidate

sprout-19-20-23.

Once a universal sprout is chosen, Algorithm 3 describes how

to derive an output modulus 𝑄 ′ ≈ 𝑄/Δ from the input modulus 𝑄

and the rescaling factor Δ via rational rescaling. In the algorithm,

the universality condition ensures that a suitable sprout 𝑟 ′ can be

found for 𝑄 ′.

Algorithm 3: Selecting grafted ciphertext moduli after

rational rescale.

Input: 𝑄 = 𝑞0 · · ·𝑞ℓ−1 · 𝑟 for input ciphertext with scaling

factor Δ and word size𝑤 = 2
𝜔
.

Output: 𝑄 ′ = 𝑞0 · · ·𝑞ℓ ′−1 · 𝑟 ′ for output ciphertext with
𝑄 ′ ≈ 𝑄/Δ.

1 Choose 𝑟 ′ | 𝑟top such that | log
2
𝑟 ′ − (log

2
(𝑄/Δ) mod 𝜔) |

achieves the minimum.

2 ℓ′ ←
⌊
(𝜔 · ℓ + ⌊log

2
𝑄 − log

2
Δ⌉)/𝜔

⌋
return 𝑄 ′ = 𝑞0 · · ·𝑞ℓ ′−1 · 𝑟 ′

6
One may consider using a real/complex-valued Discrete Fourier Transform (DFT)

instead of the NTT. However, it introduces implementation difficulties due to the need

for higher precision than the native word size.

7
Even for larger dimensions, we can use them by utilizing incomplete NTTs instead of

complete NTTs.

Cheon et al.

Using Algorithm 3, one can always select an output modulus

𝑄 ′ ≈ 𝑄/Δ in Algorithm 1 as a grafted modulus dividing 𝑄max,

thereby enabling key switching from ciphertexts in arbitrarymoduli

during homomorphic computations. We also note that only a

few unit moduli are eliminated during rational rescaling, and the

resulting error remains roughly of the same magnitude as that of

standard rescaling.

Now, we describe the overall process of the key switching

operation, as well as the relinearization, in the Grafted RNS-CKKS.

We decompose the largest ciphertext modulus 𝑄max into dnum
number of similar-sized blocks 𝑄0, · · · , 𝑄dnum−1

, known as the

gadget blocks, where 𝑃 ≳ max𝑖 𝑄𝑖 . Although the sprout can be

placed in any gadget block, the gadget block containing the sprout

must always participate in key switching. Therefore, we place the

sprout in the bottom gadget block 𝑄0 so that key switching under

the grafted moduli incurs no computational compromise compared

to the original key switching procedure. The gadget blocks are

defined as:

𝑄0 = 𝑟top · 𝑞0 · · ·𝑞𝛼−2,

𝑄𝑖 = 𝑞𝛼𝑖−1𝑞𝛼𝑖 · · ·𝑞𝛼 (𝑖+1)−2
for 1 ≤ 𝑖 ≤ dnum − 1,

where 𝐿 + 1 = dnum · 𝛼 . Then, a grafted ciphertext modulus with

sprouts can be represented as

𝑄 = 𝑟 · 𝑞0𝑞1 · · ·𝑞ℓ−1 = (𝑟 · 𝑞0 · · ·𝑞𝛼−2) · (𝑞𝛼−1 · · ·𝑞2𝛼−2)
· · · (𝑞𝛼 (𝑑−1)−1

· · ·𝑞ℓ−1)
= 𝑄 ′

0
·𝑄1 · · ·𝑄𝑑−2

·𝑄 ′
𝑑−1

,

for some 1 ≤ ℓ ≤ 𝐿, 𝑄 ′
0
| 𝑄0, and 𝑄

′
𝑑−1
| 𝑄𝑑−1

where 𝑑 =

⌈(ℓ + 1)/𝛼⌉. This choice clearly minimizes the number of gadgets

for each ciphertext modulus 𝑄 .

Following the original RNS-CKKS key-switching procedures

described in Section 2.2.1, we present its extension to grafted

ciphertext moduli in Algorithm 4.

Algorithm 4: Key switching in grafted moduli.

Input: ct = (b, a) ∈ R2

𝑄
for 𝑄 = 𝑄 ′

0
·𝑄1 · · ·𝑄𝑑−2

·𝑄 ′
𝑑−1

with a switching key swk = {swk𝑖 } ∈ R2×𝑑
𝑃𝑄max

.

Output: ct′ ∈ R2

𝑄
with a switched secret key.

1 a← Inv-RS𝑄inter/𝑄 (a) ⊲ Inv-RS to 𝑄inter = 𝑄0 · · ·𝑄𝑑−1

2 a𝑖 ← ModUp𝑄𝑖→𝑃𝑄inter

(a mod 𝑄𝑖) for 𝑖 ∈ [𝑑];
3 ct← ∑

𝑖 a𝑖 · (swk𝑖 mod 𝑃𝑄inter);
4 ct′ ← RS𝑃𝑄inter/𝑄 (ct) ⊲ RS to 𝑄

5 ct′ ← ct′ + (b, 0);
return ct′

3.3 Modulo Arithmetic with Power-of-two
Sprouts

The correctness of multiplication in Algorithm 1 and key switching

in Algorithm 4 under grafted ciphertext moduli follows directly

from the correctness of modulus switching, including rational

rescale,ModUp, andModDown processes. However, when a power-
of-two modulus in the universal sprout 𝑟top is involved, a new

type of issue arises during modulus switching. The original RNS-

CKKS scheme does not cover such cases, as modulus switching was

originally defined only between relatively prime bases.

In this section, we extend modulus switching algorithms so

that grafted RNS-CKKS supports RNS factors with power-of-two

factors. We begin by identifying cases where such extensions apply

naturally.

If the exponent of the power-of-two component remains un-

changed between the input and output moduli, then all CRT

factors—including the power-of-two modulus—remain pairwise

relatively prime. In this case, the fast basis conversion (FBC) and its
applications—RS (by an integer factor), Inv-RS, andModUp —can

be used without modification, as in the original RNS-CKKS.

When the exponent differs, we handle the switching in two stages

using an intermediate modulus 𝑄inter. First, we apply standard

modulus switching from 𝑄 to 𝑄inter, ensuring that their power-of-

two exponents are equal. Then, we use Inv-RS or RS from 𝑄inter to

𝑄 ′ to adjust the exponent. This order can also be reversed.

This two-step approach introduces negligible overhead, as shown

in Appendix B.2.2, and often improves error control by separating

exponent adjustment from standard switching.

Accordingly, we present new algorithms for Inv-RS and RS (in-

cludingModDown) to support such cases, as shown in Algorithms 5

and 6.

Algorithm 5: Inv-RS with power-of-two sprouts.

Input: a ∈ R𝑄 for𝑄 = 𝑄̃ · 2𝛽 and 𝑅 = 𝑅̃ · 2𝛾 , where 𝑄̃ and 𝑅̃

are odd integers and 𝛽,𝛾 ∈ Z≥0.

Output: Inv-RS𝑅 (a) ∈ R𝑄𝑅 .

1 b←
{
[2𝛾]𝑞𝑖 · [a]𝑞𝑖 (mod 𝑞𝑖) for 𝑖 ∈ [ℓ],

2
𝛾 · [a]

2
𝛽 (mod 2

𝛽+𝛾),
⊲ b ∈ R

𝑄̃ ·2𝛽+𝛾

2 c← Inv-RS
𝑅̃
(b) ⊲ c ∈ R𝑄𝑅

return c

In Algorithm 5, the intermediate polynomial satisfies b ≡ 2
𝛾 · a

(mod 𝑄̃ · 2𝛽+𝛾). Then, the Inv-RS with the integer factor 𝑅̃ can

be applied since 𝑅̃ is an odd integer, resulting in an output c ≡
𝑅̃ · (2𝛾 · a) ≡ 𝑅 · a (mod 𝑄𝑅) as desired.

Algorithm 6: RS with power-of-two sprouts.

Input: a ∈ R𝑄𝑅 for 𝑄 = 𝑄̃ · 2𝛽 and 𝑅 = 𝑅̃ · 2𝛾 , where 𝑄̃ and

𝑅̃ are odd integers and 𝛽,𝛾 ∈ Z≥ 0.

Output: RS𝑅 (a) ∈ R𝑄 .
1 b← ModDown

𝑄𝑅→𝑄̃ ·2𝛽+𝛾 (a) ⊲ b ∈ R
𝑄̃ ·2𝛽+𝛾

2 c←
{
[2−𝛾]𝑞𝑖

(
[b]𝑞𝑖 − [b]2𝛾

)
(mod 𝑞𝑖),(

[b]
2
𝛽+𝛾 − [b]2𝛾

)
/2𝛾 (mod 2

𝛽),
⊲ c ∈ R𝑄

return c

In Algorithm 6, the intermediate polynomial b satisfies ∥b− 𝑅̃−1 ·
a∥∞ ≤ 𝑘/2, where 𝑘 is the number of decomposed factors of 𝑅̃. We

note that the last division for modulo 2
𝛽
can be replaced by shifting

𝛾 bits. The final output c satisfies c = (b− [b]2𝛾)/2𝛾 , leading to the

bound ∥c − 2
−𝛾 · b∥∞ ≤ 1/2. This implies the overall error satisfies

∥c − 𝑅−1 · a∥∞ ≤ 1/2 + 2
−𝛾 · 𝑘/2, as desired.

Lastly, we note thatModUp is used only within the key switching
operation, where the power-of-two component is already adjusted

by the preceding Inv-RS (line 1) of Algorithm 4. As a result,ModUp
(line 2) can be applied without modification.

With the above extensions in place, we can now apply the key

switching in Algorithm 4 and the homomorphic multiplication in

Algorithm 1 directly under the universal sprout setting. We remark

that the key switching procedure can be slightly modified to omit

the Inv-RS by the power-of-two factors. That is, key switching in

Algorithm 4 for the power-of-two modulus part can be performed

modulo 2
ord2 (𝑄)

by reducing the modulus, rather than modulo

2
ord2 (𝑄max)

with an additional Inv-RS.

4 APPLICATIONS
Grafting optimally packs the modulus using mostly machine word-

sized factors, resulting in fewer RNS components. This reduction

not only accelerates homomorphic operations but also decreases the

ciphertext and public key sizes, roughly in proportion to the reduced

number of factors. Also, when using Grafting, we do not need to

suffer from the lack of small NTT primes or scale factors larger

than the machine’s word size, which naturally allows lower—and/or

higher-precision computation. In addition, Grafting is particularly

effective in applications that use smaller-than-usual scale factors

where the original number of RNS factors is far from optimal.

In this section, we revisit the CKKS applications with Grafting.

In Section 4.1, we first suggest grafted parameters for the standard

RNS-CKKS parameters for SHE and FHE, showcasing the expected

speedups gained from Grafting. Then, in Section 4.2, we revisit the

Bit-CKKS gate bootstrappings of Bae et al. [BCKS24] with Grafting,

which benefit from the small-sized scale factors ≈ 28-30 bits. Finally,

in Section 4.3, we revisit homomorphic comparison [CKK20] using

Grafting as an example of Newton-like methods accelerated via

adaptively chosen scale factors.

4.1 Grafted SHE and FHE Parameters
We revisit various CKKS parameters of SHE and FHE in the

literature standard, specifically from the white paper of Bossuat

et al. [BCC
+
24], which specifies the guidelines for securely im-

plementing HE schemes and the libraries such as HEaaN [Cry22]

and OpenFHE [ABBB
+
22]. In Table 2, we summarize the details

of the parameter sets, including SHE parameters in log
2
𝑁 = 14

and 15 and FHE parameters in log
2
𝑁 = 15 and 16. The security

guideline white paper introduces several parameters basically based

on Lattigo [lat24] and OpenFHE, but with full ternary secret keys,

meaning that the coefficients of the secret keys are randomly

sampled from {−1, 0, 1}. The security parameters are set as 𝜆 ≳ 128

for all the parameter sets, and a parameter set from [BCC
+
24] has

𝜆 ≈ 192. The sizes of the RNS factors consisting of the ciphertext

modulus are shown for each subprocedure as 𝑋 × 𝑌 , implying

that it can be decomposed into 𝑌 RNS factors of size 𝑋 bits each.

The total number of the RNS factors (denoted as #) and the rank

for gadget decompositions (denoted as d) are given in advance.

We note that for simSHE15s, the larger than word-size moduli

are used for the RNS factors requiring multiple-precision integer

arithmetic [ABBB
+
22]. We, instead, decompose them into factors

smaller than word-size and use composite rescaling [AAB
+
23],

which shows better performance in general.

In the table, we also introduce their adaptation to Grafting using

the universal sprouts sprout-15-16-30 and sprout-19-20-23.
The maximum modulus (denoted as log

2
𝑃𝑄) and the modulus for

multiplication (shown in parenthesis for grafted parameters) in

the grafted adaptation are maintained similarly to the original

parameters. As an exception, the FHE parameter for log
2
𝑁 = 16

has a much smaller maximum modulus than the original parameter

but offers more available modulus for multiplications between

the two consecutive bootstrappings. This is because the moduli

for ciphertexts and for switching keys can be adjusted in a more

efficient way.

Speed-up Expectations. The speed-up when using Grafting

compared to the prior state-of-the-art can be expected via the

ratio of the number of RNS factors. The run-time of the tensor

product at level 𝐿 is proportional to the number of RNS factors,

𝐿 + 1. The run-time of the key-switching can be roughly expected

as (dnum + 2) (𝐿 + 𝐾 + 1) for 𝐾 , the number of RNS factors

for temporary modulus (𝑃) and the gadget rank dnum, when

focusing on the number of NTT/iNTT operations. The speed-ups

for homomorphic multiplications are expected to be similar to

those of the key-switchings, as they are the dominating part of the

multiplications. However, when the overall speed is very fast, e.g., at

the bottom level, the ratio may differ due to slightly more expensive

rescaling in Grafting. For instance, when comparing simSHE14 and
graSHE14, we expect 8/7 = 1.14× speed-up for tensor product and

(6 · 10)/(5 · 9) = 1.33× speed-up for key-switchings at level 𝐿 = 7.

For SlotToCoeff, CoeffToSlot, and EvalMod in FHE parameters,

the run-time is significantly affected by the key-switching and

multiplication timings. They will have a similar ratio to the

key-switchings. However, as the levels are changing during the

procedures, it is not easy to expect the gains. We roughly estimate

the speed-up as the weighted mean of the ratios for SlotToCoeff,
CoeffToSlot, and EvalMod, where each ratio is estimated as the key-

switching ratio at the middle levels. For instance, when comparing

simFHE15 and graFHE15, we expect (12 ·21)/(8 ·14) = 2.25× speed-
up for key-switchings at level 𝐿 = 18, (9 · 15)/(7 · 12) = 1.61× at

level 𝐿 = 13, and (4 · 6)/(4 · 6) = 1× at level 𝐿 = 2. Assuming 50% of

CoeffToSlot, 40% of EvalMod, and 10% of SlotToCoeff for the total

timings, we can expect the bootstrapping speed-up as 1.87×. We

note that the ratio can differ in the levels, and we expect almost no

gain in the bottom levels.

4.2 Bit-CKKS, Revisited
The binary bootstrapping of Bae et al. [BCKS24] assumes a

ciphertext encrypts only a bit in each slot. Thus, the scale factors

can be smaller than usual. Specifically, the BinBoot algorithm
in [BCKS24] assumes each complex message 𝑏+𝜖 for a bit 𝑏 ∈ {0, 1}
with an error |𝜖 | ≪ 1 and a fine-grained scale factor 𝑞0/2. The
EvalMod algorithm is then adapted to approximate (𝑏 + 𝜖)/2 + 𝐼 ↦→
𝑏 + 𝑜 (𝜖2) via

𝑓BinBoot (𝑥) =
1 − cos(2𝜋𝑥)

2

,

Cheon et al.

Table 2: Various HE parameters for CKKS from the security guidelines white paper [BCC+24], the HEaaN library [Cry22], and
the OpenFHE library [ABBB+22], along with their grafted adaptations. All the parameters have a security parameter of 𝜆 ≳ 128,
and specifically for simple/graSHE15, 𝜆 = 192. The last s indicates using sparse ternary secret.

Parameters 𝑁 log𝑃𝑄 ℎ
log𝑞𝑖

log𝑝𝑖 # d
Base StC Mult EvalMod CtS

simSHE14
[BCC

+
24] 2

14
427 full

40 38 × 7 60 × 2 10 4

graSHE14 51 × 6 60 × 2 8 3

simSHE15
[BCC

+
24] 2

15
592 full

43 41 × 9 60 × 3 13 4

graSHE15 58 + 59 × 6 60 × 3 10 3

simSHE15s
[ABBB

+
22] 2

15
675

192

105 (52 + 53) 90 × 5 (45 × 10) 60 × 2 14 6

graSHE15s 679 61 × 3 + 62 × 6 62 × 2 11 5

simFHE15s
[Cry22] 2

15
777

192

38 32 + 28 × 2 28 × 5 38 × 8 41 × 3 42 × 2 22 10

graFHE15s 780 38 + 61 × 5 + 62 × 5 + 4
∗

(137) 61 + 62 13 6

simFHE16
[BCC

+
24] 2

16
1734 full

45 30 × 3 35 × 10 60 × 12 56 × 4 61 × 5 35 6

graFHE16 59 × 11 + 60 × 13 (361) 61 × 5 29 5

simFHE16s
[Cry22] 2

16
1555 192

58 42 × 3 42 × 9 58 × 9 58 × 3 59 × 3 + 60 × 2 30 5

graFHE16s 36 + 58 × 20 + 62 (378) 59 × 3 + 60 × 2 27 5

so that 𝑓BinBoot ((𝑏 +𝜖)/2+ 𝐼) = (1−cos(𝜋𝑏 +𝜋𝜖))/2 = 𝑏 +𝑜 (𝜖2) for
𝑏 ∈ {0, 1} and |𝜖 | ≪ 1.

8
Similar approaches apply to boolean gates,

e.g., 𝑓nandBoot (𝑥0, 𝑥1) = 2(1 + cos(2𝜋 (𝑥0 + 𝑥1) + 𝜋/6))/3, sharing
most of the parameters.

In Table 3, we provide the original and grafted variants of the

Bit-CKKS [BCKS24] parameters utilizing sprout-15-16-30 and

sprout-19-20-23 for ring dimensions 𝑁 = 2
14

and 2
16
, respec-

tively. All the parameters use sparse secret encapsulation [HS21,

BTH22] between a normal secret key with a Hamming weight

ℎ and a sparser secret key with a Hamming weight ℎ′, to avoid

costly EvalMod and to lower the failure probability. The grafted

adaptation follows the same strategy as in Table 2. As an exception,

we could reduce the maximum modulus and the Hamming weight

ℎ for 𝑁 = 2
16

while keeping the security parameter 𝜆 ≳ 128.
9

In addition to the parameters in the prior art, we suggest

another parameter set for log
2
𝑁 = 14, namely graBinFHE14Opt,

with optimizations for more available levels after bootstrapping: 3

available levels instead of 2, which was unavailable due to the lack

of the NTT primes, but enabled by Grafting.

4.3 Homomorphic Comparison, Revisited
Iterative methods for finding a specific real number, such as

Newton’s iterative methods, benefited from adaptive-precision

computation in cleartext. Its encrypted counterpart can be the

homomorphic computation with adaptive scale factors, changing

corresponding to the iterations.

This also applies to homomorphic comparison methods [CKK20,

LLNK22, LLKN22], which is basically an iterative homomorphic

evaluation of low-degree polynomials. The comparisons are fre-

quently required for applications, such as machine learning, but

which consume a lot of moduli, even requiring a few numbers of

bootstrappings.

8
Since cos(𝜋𝜖) = 1 + 𝑜 (𝜖2) and 1 + cos(𝜋 + 𝜋𝜖) = 2 sin

2 (𝜋𝜖/2) = 𝑜 (𝜖2) .
9
Estimated for grafted variants via lattice estimator [APS15].

The homomorphic comparison function proposed in [CKK20]

is constructed of two polynomials, 𝑓 and 𝑔. The composited

polynomial maps [−1,−𝜖] and [𝜖, 1] to [−1,−1+2
−𝛼] and [1−2

𝛼 , 1],
respectively, which approximates the sign function in the range

[−1, 1]. In more detail, composing 𝑔 multiple times maps [𝜖, 1] to
[𝑝, 1], where 𝑝 ≈ 0.8 is widely chosen. The more 𝑔 is composed,

the less 𝜖 becomes. After that, [𝑝, 1] is mapped into [1 − 2
−𝛼 , 1] by

composing 𝑓 multiple times. The more 𝑓 is composed, the larger 𝛼

becomes.

Regarding the homomorphic computation errors, indeed, com-

posing 𝑔 multiple times maps [𝜖, 1] to the interval [𝑝 − 𝑒𝑔, 1],
where 𝑒𝑔 is the error introduced during composing 𝑔 multiple times.

During computing 𝑓 , the error 𝑒𝑔 can vanish. With this heuristic

property, we can adjust the scaling factors per step using grafting

while maintaining the final precision.

5 EXPERIMENTAL RESULTS
We implement Grafting using C++ for the non-grafted (simple) and

grafted variant of RNS-CKKS. In this section, we report and compare

execution times, ciphertext and key sizes, and the bootstrapping

precision of our simple and grafted RNS-CKKS implementations,

following the previous section’s parameters.

We run our experiments on Ubuntu 24.04.1 LTS with an AMD

Ryzen 7 3700X CPU and 32 GB of available memory. We disable

CPU scaling, use only a single thread, and pin execution to one

CPU core.

In the following, we define the precision of each experiment

as the negative base-2 logarithm of the maximum error obtained

from over 100 runs. Note that in [BCC
+
24], the precision is defined

differently–the average of the negative base-2 logarithm of the

error, i.e., − log
2
|error| averaged over the slots and executions. We

will refer this measure to L1-precision, mainly to compare with the

precision given in [BCC
+
24]. The timings are averaged from over

100 runs.

Table 3: Parameters for Bit-CKKS [BCKS24] and their grafted variants with security parameter 𝜆 ≳ 128. Note that for the
additional parameter graBinFHE14Opt, the modulus consumption for each sub-procedure is given in advance.

Parameters 𝑁 log 𝑃𝑄 ℎ (ℎ′) log𝑞𝑖
log𝑝𝑖 # dnum

Base StC Mult EvalMod CtS

simBinFHE14
[BCKS24] 2

14
424

256 (32)

32 28(= 14 + 14) 26 × 2 32 × 7 29 × 2 33 14 13

graBinFHE14 426 28 + 56 × 5 + 62 (52) 56 8 7

graBinFHE14Opt Ours 2
14

424 256 (32)

26 24(= 12 + 12) 24 × 3 28 × 7 25 × 2

56 8 7

26 + 56 × 5 + 62 (72)

simBinFHE16
[BCKS24] 2

16
1598 256 (32) 32 32(= 16 + 16) 30 × 28 32 × 7 32 × 2 58 × 7 46 3

graBinFHE16 1522 192 (32) 34 + 62 × 19 (840) 62 × 5 25 4

5.1 SHE and FHE with Grafting
We display the experimental results for SHE and FHE operations in

Table 4 based on the parameter designed in Table 2. The timings

for tensoring, key-switching, homomorphic multiplications, and

bootstrappings are shown in seconds, and the ratios between the

simple and the grafted variants are given in the parenthesis. The

timings are measured at the top levels for evaluations, i.e., top levels

after bootstrapping for the FHE parameters. Our experiments report

up to 1.58×, 1.83×, 2.01× speed-ups for homomorphic evaluations

for available levels after bootstrapping, and up to 1.92× speed-up for
bootstrapping. Note that for sim/graFHE16s, the speed-up is low as

expected–due to the larger scale factors. The experiments reported

precisions at least higher than or similar to the non-grafted cases,

for instance, multiplication precision of 22.8 bits (L1-precision of

26.2 bits) for graSHE14, and bootstrapping precision for graFHE16
of 13.2 bits. Note that the L1-precision is similar to or larger than

that given in [BCC
+
24].

Table 4: Execution timings for SHE and FHEoperations, given
in milliseconds. The bootstrapping (BTS) timings are given in
seconds. Note that SHE and FHE parameters are abbreviated as
S and F, respectively. The speed-up is given in the parenthesis.

Params Tensor KeySwitch Mult BTS

simS14 1.94 32.22 41.61 -

graS14 1.51 (1.3×) 24.16 (1.3×) 36.52 (1.1×) -

simS15 4.55 93.39 118.86 -

graS15 3.53 (1.3×) 65.61 (1.4×) 91.95 (1.3×) -

simS15s 5.56 127.38 171.64 -

graS15s 4.74 (1.2×) 93.42 (1.4×) 128.44 (1.3×) -

simF15s 4.2 69.16 102.2 14.5

graF15s 2.78 (1.5×) 40.29 (1.7×) 57.28 (1.8×) 7.6 (1.9×)
simF16 12.96 248.47 360.84 86.5

graF16 8.21 (1.6×) 136.07 (1.8×) 179.87 (2.0×) 71.7 (1.2×)
simF16s 12.46 227.68 329.38 37

graF16s 9.88 (1.3×) 186.81 (1.2×) 247.45 (1.3×) 35.5 (1.1×)

In addition to the performance gain in the execution time, we

also present the sizes of the public keys under various parameters

in the basic RNS-CKKS case, in BitPacker [SS24], and Grafting.

The sizes are the same for every key-switching key, we focus on

the relinearization key and estimate its sizes in Table 2, required

for each level for multiplication. For better performance, each key

component is in CRT format during key switching. We note that in

simple and grafted, the keys are naturally packed in the machine’s

word size, and the size of each key is already near optimal.
10

However, in BitPacker, the number of required keys is different.

In general, each level requires keys in the different moduli, which

should be generated independently for each level.

In Table 5, we compare each parameter set’s relinearization key

sizes to allow multiplications at each level. The simple and grafted
cases are assumed to generate only one key at modulus 𝑃𝑄max

for whole levels, which can be reused. They differ by the ratio

between the number of primes consisting of the modulus 𝑃𝑄max.

In the case of BitPacker [SS24], we assume one key for each level

(except for the SlotToCoeff and CoeffToSlot levels), but the gadget
decompositions are optimized for better sizes. Note the key sizes are

computed based on the levels of the corresponding simple SHE/FHE

parameters. Thus, if one wants to use ciphertext modulus other

than the levels at the simple parameter, the key sizes will increase

for BitPacker but not for Grafting.

Table 5: Size estimations for the relinearization key in SHE
and FHE parameters, in MB. The changes in the key sizes in
percentile for each parameter over the simple parameters
are given in parentheses.

Parameters simple BitPacker [SS24] grafted

SHE14 10.49 29.88 (185%↑) 7.08 (32%↓)

SHE15 27.26 88.60 (225%↑) 17.30 (37%↓)

SHE15s 44.04 97.00 (122%↑) 31.46 (29%↓)

FHE15 115.34 313.00 (171%↑) 44.04 (62%↓)

FHE16 220.20 1394.61 (533%↑) 157.29 (29%↓)

FHE16s 157.29 981.47 (524%↑) 146.80 (7%↓)

5.2 Bit-CKKS with Grafting
We display the experimental results for Bit-CKKS parameters

in Table 6, based on the parameter designed in Table 3. The

message space for the input messages is binary, {0, 1}, and the

10
For transmission, half of the key’s polynomials (say, 𝑎-parts) can be replaced by the

seed when stored and transformed on the fly via an extendable output function (XOF).

Cheon et al.

messages are randomly chosen. We use real slots for log
2
𝑁 = 14

parameters (i.e., 2
13

binary messages) and full complex slots for

log
2
𝑁 = 16 parameters (i.e., 2

16
binary messages), as in [BCKS24].

Our experiments report 1.81-1.89× speed-up while reporting the

moderate precisions of 6.6 and 6.1 bits for sim/graBinFHE14
and sim/graBinFHE16, respectively. Note that for the additional
parameter set with optimized available levels, 3.5 bits of precision is

reported. The precisions are again similar for both non-grafted and

grafted variants. We additionally report the multiplication timings

with speed-ups of up to 2.07×. For log
2
𝑁 = 14, the measurement

was done at the near-bottom modulus; it shows the same as timings.

The relinearization key sizes are given in advance.

Table 6: Execution times for Bit-CKKS binary NAND gate
bootstrapping (in seconds), multiplication (in milliseconds),
and size estimations for the relinearization key (rlk, in MB).

Parameters nandBoot Mult rlk size

simBinFHE14 5.18 16.1 47.71

graBinFHE14 2.74 (1.9×) 16.2 (1.0×) 16.52 (65%↓)
graBinFHE14Opt 2.75 (1.9×) 15.7 (1.0×) 16.52 (65%↓)
simBinFHE16 102.1 884.8 144.70

graBinFHE16 56.41 (1.8×) 428.1 (2.1×) 109.05 (25%↓)

5.3 Homomorphic Comparison with Grafting
We display the experimental results for the homomorphic compari-

son in Tables 7 and 8, based on the parameters in Table 2.We provide

implementations that mainly reduce the modulus consumption and

execution timings of various homomorphic comparison functions

proposed in [CKK20] while maintaining precision. Specifically, we

used seven-degree polynomials 𝑓3 and𝑔3 from [CKK20] to construct

homomorphic comparison functions.

We use two different homomorphic comparison functions, comp1
and comp2, both composing the 𝑓 and 𝑔 functions but by different

numbers targeting different input ranges and precisions. The input

range of the homomorphic comparison function can be denoted by

[−1,−𝜖] ∪ [𝜖, 1] where 𝜖 = 2
−8

for comp1 and 𝜖 = 2
−16

for comp2.
The function 𝑓3 is composed twice for both comparison functions.

The function 𝑔3 is four times composed for comp1 and eight times

for comp2.
In the following tables, the amounts of modulus consumed per

step are denoted as 𝑋 × 𝑌 , where 𝑋 represents the number of bits

consumed when computing a single polynomial (either 𝑓3 or 𝑔3)

and 𝑌 is the number of such polynomials. Note that computing a

seven-degree polynomial requires three multiplicative depths, so

the scale factor used during computing a polynomial is 𝑋/3 bits.

Table 7 reports 10% to 27% reduction in modulus consumption

compared to the simple(non-grafted) case. In practice, computing

homomorphic comparison requires a few bootstrappings. Therefore,

reducing modulus consumption can be directly converted into

significant speed-up by reducing the number of bootstrapping. Ad-

ditionally, adjusting the available modulus for each bootstrapping

using the flexible output modulus bootstrapping described in the

Appendix F can further enhance the speed up of each bootstrapping.

Table 8 reports 1.24× to 1.56× speed up compared to the simple

(non-grafted) case.

Table 7: Modulus consumption for homomorphic compari-
son. The per-step modulus consumption is denoted by 𝑋 ×𝑌 ,
where 𝑋 represents the modulus consumed for computing
a single polynomial (either 𝑓3 or 𝑔3) and 𝑌 represents the
number of such polynomials. An additional parameter is
introduced in advance.

Configs Parameters

Modulus Consumption

Prec

Total Per-Step

comp1
simFHE16 630 105 × 6 16.3

graFHE16 531 (16%↓) 84 × 4 + 90 + 105 16.5

comp2
simFHE16 1050 105 × 10 16.4

graFHE16 942 (10%↓) 93 × 9 + 105 16.4

comp1
simFHE16s 756 126 × 6 23.1

graFHE16s 552 (27%↓) 84 × 4 + 90 + 126 23.1

comp2
simFHE16s 1260 126 × 10 23.5

graFHE16s 963 (24%↓) 93 × 9 + 126 23.3

Table 8: Execution timings for homomorphic comparison
functions with bootstrapping. For graFHE16s, we additionally
applied the flexible output modulus bootstrapping described
in Appendix F.

Configs Parameters

Bootstrapping

Time(s)

#BTS Avail. Modulus

comp1
simFHE16s 1 378× 1 42.7

graFHE16s 1 216 34.3 (1.24)

comp2
simFHE16s 3 378 × 3 114.5

graFHE16s 2 372 + 219 73.5 (1.56)

REFERENCES
[AAB

+
23] Rashmi Agrawal, Jung Ho Ahn, Flavio Bergamaschi, Ro Cammarota,

Jung Hee Cheon, Fillipe D. M. de Souza, Huijing Gong, Minsik Kang,

Duhyeong Kim, Jongmin Kim, Hubert de Lassus, Jai Hyun Park, Michael

Steiner, and Wen Wang. High-precision RNS-CKKS on fixed but smaller

word-size architectures: theory and application. In Proceedings of the 11th
Workshop on Encrypted Computing & Applied Homomorphic Cryptography,
WAHC ’23, page 23–34, New York, NY, USA, 2023. Association for

Computing Machinery.

[ABBB
+
22] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins,

Saroja Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey

Kim, Yongwoo Lee, Zeyu Liu, Daniele Micciancio, Ian Quah, Yuriy

Polyakov, Saraswathy R.V., Kurt Rohloff, Jonathan Saylor, Dmitriy

Suponitsky, Matthew Triplett, Vinod Vaikuntanathan, and Vincent Zucca.

OpenFHE: Open-source fully homomorphic encryption library. In

Proceedings of the 10th Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, WAHC’22, pages 53–63, New York, NY,

USA, 2022. Association for Computing Machinery.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete

hardness of learning with errors. Journal of Mathematical Cryptology,
9(3):169–203, 2015.

[BCC
+
24] Jean-Philippe Bossuat, Rosario Cammarota, Ilaria Chillotti, Benjamin R.

Curtis, Wei Dai, Huijing Gong, Erin Hales, Duhyeong Kim, Bryan Kumara,

Changmin Lee, Xianhui Lu, Carsten Maple, Alberto Pedrouzo-Ulloa,

Rachel Player, Yuriy Polyakov, Luis Antonio Ruiz Lopez, Yongsoo Song,

and Donggeon Yhee. Security guidelines for implementing homomorphic

encryption. Cryptology ePrint Archive, Paper 2024/463, 2024.

[BCG
+
23] Mariya Georgieva Belorgey, Sergiu Carpov, Nicolas Gama, Sandra Guasch,

and Dimitar Jetchev. Revisiting key decomposition techniques for FHE:

Simpler, faster and more generic. Cryptology ePrint Archive, Paper

2023/771, 2023.

[BCH
+
24] Youngjin Bae, Jung Hee Cheon, Guillaume Hanrot, Jai Hyun Park, and

Damien Stehlé. Plaintext-ciphertext matrix multiplication and FHE

bootstrapping: Fast and fused. In Leonid Reyzin and Douglas Stebila,

editors, CRYPTO 2024, Part III, volume 14922 of LNCS, pages 387–421.
Springer, Cham, August 2024.

[BCK
+
23] Youngjin Bae, Jung Hee Cheon, Jaehyung Kim, Jai Hyun Park, and

Damien Stehlé. HERMES: Efficient ring packing using MLWE ciphertexts

and application to transciphering. In Helena Handschuh and Anna

Lysyanskaya, editors, CRYPTO 2023, Part IV, volume 14084 of LNCS, pages
37–69. Springer, Cham, August 2023.

[BCKS24] Youngjin Bae, Jung Hee Cheon, Jaehyung Kim, and Damien Stehlé.

Bootstrapping bits with CKKS. In Marc Joye and Gregor Leander, editors,

EUROCRYPT 2024, Part II, volume 14652 of LNCS, pages 94–123. Springer,
Cham, May 2024.

[BEHZ16] Jean-Claude Bajard, Julien Eynard, M. Anwar Hasan, and Vincent Zucca.

A full RNS variant of FV like somewhat homomorphic encryption

schemes. In Roberto Avanzi and Howard M. Heys, editors, SAC 2016,
volume 10532 of LNCS, pages 423–442. Springer, Cham, August 2016.

[BGV12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully

homomorphic encryption without bootstrapping. In ITCS, 2012.
[BKSS24] Youngjin Bae, Jaehyung Kim, Damien Stehlé, and Elias Suvanto.

Bootstrapping small integers with CKKS. In Kai-Min Chung and Yu Sasaki,

editors, ASIACRYPT 2024, Part I, volume 15484 of LNCS, pages 330–360.
Springer, Singapore, December 2024.

[BMTH21] Jean-Philippe Bossuat, Christian Mouchet, Juan Ramón Troncoso-

Pastoriza, and Jean-Pierre Hubaux. Efficient bootstrapping for

approximate homomorphic encryption with non-sparse keys. In Anne

Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part I,
volume 12696 of LNCS, pages 587–617. Springer, Cham, October 2021.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus

switching from classical GapSVP. In Reihaneh Safavi-Naini and Ran

Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 868–886.
Springer, Berlin, Heidelberg, August 2012.

[BTH22] Jean-Philippe Bossuat, Juan Ramón Troncoso-Pastoriza, and Jean-Pierre

Hubaux. Bootstrapping for approximate homomorphic encryption with

negligible failure-probability by using sparse-secret encapsulation. In

Giuseppe Ateniese and Daniele Venturi, editors, ACNS 22International
Conference on Applied Cryptography and Network Security, volume 13269

of LNCS, pages 521–541. Springer, Cham, June 2022.

[CCKS23] Jung Hee Cheon, Wonhee Cho, Jaehyung Kim, and Damien Stehlé.

Homomorphic multiple precision multiplication for CKKS and reduced

modulus consumption. In Weizhi Meng, Christian Damsgaard Jensen,

Cas Cremers, and Engin Kirda, editors, ACM CCS 2023, pages 696–710.
ACM Press, November 2023.

[CCP24] JungHee Cheon, Hyeongmin Choe, and Jai Hyun Park. Tree-based lookup

table on batched encrypted queries using homomorphic encryption.

Cryptology ePrint Archive, Report 2024/087, 2024.

[CHK
+
19] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo

Song. A full RNS variant of approximate homomorphic encryption. In

Carlos Cid and Michael J.: Jacobson, Jr., editors, SAC 2018, volume 11349

of LNCS, pages 347–368. Springer, Cham, August 2019.

[CHK
+
21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer,

Gregor Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT multiplication

for NTT-unfriendly rings: New speed records for saber and NTRU on

Cortex-M4 and AVX2. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2021(2):159–188, Feb. 2021.

[CKK20] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. Efficient

homomorphic comparison methods with optimal complexity. In Shiho

Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume

12492 of LNCS, pages 221–256. Springer, Cham, December 2020.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song.

Homomorphic encryption for arithmetic of approximate numbers. In

Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I,
volume 10624 of LNCS, pages 409–437. Springer, Cham, December 2017.

[Cry22] CryptoLab. HEaaN library, 2022. Available at https://heaan.it/.

[DMPS24] N. Drucker, G. Moshkowich, T. Pelleg, and H. Shaul. BLEACH: Cleaning

errors in discrete computations over CKKS. J. Cryptol., 2024.
[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully

homomorphic encryption. Cryptology ePrint Archive, Report 2012/144,

2012.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation

of the AES circuit. In Reihaneh Safavi-Naini and Ran Canetti, editors,

CRYPTO 2012, volume 7417 of LNCS, pages 850–867. Springer, Berlin,
Heidelberg, August 2012.

[HHS
+
21] Shai Halevi, Hamish Hunt, Victor Shoup, Oliver Masters, Flavio

Bergamaschi, Jack Crawford, Fabian Boemer, et al. HElib (version 2.2.1),

October 2021. Available at https://github.com/homenc/HElib.

[HK20] Kyoohyung Han and Dohyeong Ki. Better bootstrapping for approximate

homomorphic encryption. In Stanislaw Jarecki, editor, CT-RSA 2020,
volume 12006 of LNCS, pages 364–390. Springer, Cham, February 2020.

[HS20] Shai Halevi and Victor Shoup. Design and implementation of HElib:

a homomorphic encryption library. Cryptology ePrint Archive, Paper

2020/1481, 2020.

[HS21] Shai Halevi and Victor Shoup. Bootstrapping for helib. J. Cryptol., 34(1),
January 2021.

[KLSS23] Miran Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song. Accelerating

HE operations from key decomposition technique. CRYPTO 2023., Aug
2023.

[KPK
+
22] S. Kim, M. Park, J. Kim, T. Kim, and C. Min. EvalRound algorithm in

CKKS bootstrapping. In ASIACRYPT, 2022.
[KPP22] Andrey Kim, Antonis Papadimitriou, and Yuriy Polyakov. Approximate

homomorphic encryption with reduced approximation error. In Steven D.

Galbraith, editor, CT-RSA 2022, volume 13161 of LNCS, pages 120–144.
Springer, Cham, March 2022.

[lat24] Lattigo v6. Online: https://github.com/tuneinsight/lattigo, August 2024.

EPFL-LDS, Tune Insight SA.

[LLK
+
23] Seewoo Lee, Garam Lee, Jung Woo Kim, Junbum Shin, and Mun-Kyu Lee.

Hetal: efficient privacy-preserving transfer learning with homomorphic

encryption. In Proceedings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023.

[LLKN22] Eunsang Lee, Joon-Woo Lee, Young-Sik Kim, and Jong-Seon No.

Optimization of homomorphic comparison algorithm on rns-ckks scheme.

IEEE Access, 10:26163–26176, 2022.
[LLL

+
22] Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune

Kim, Jong-Seon No, and Woosuk Choi. Low-complexity deep

convolutional neural networks on fully homomorphic encryption using

multiplexed parallel convolutions. In Kamalika Chaudhuri, Stefanie

Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors,

Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 12403–
12422. PMLR, 17–23 Jul 2022.

[LLNK22] Eunsang Lee, Joon-Woo Lee, Jong-Seon No, and Young-Sik Kim.

Minimax approximation of sign function by composite polynomial for

homomorphic comparison. IEEE Transactions on Dependable and Secure
Computing, 19(6):3711–3727, 2022.

[MG23] Johannes Mono and Tim Güneysu. A new perspective on key switching

for bgv-like schemes. Cryptology ePrint Archive, 2023.
[Par25] Jai Hyun Park. Ciphertext-ciphertext matrix multiplication: Fast for large

matrices. Cryptology ePrint Archive, Paper 2025/448, 2025.

[RKP
+
25] Donghwan Rho, Taeseong Kim, Minje Park, Jung Woo Kim, Hyunsik

Chae, Ernest K. Ryu, and Jung Hee Cheon. Encryption-friendly llm

architecture, 2025.

[SEA23] Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL, January

2023. Microsoft Research, Redmond, WA.

[SS24] Nikola Samardzic and Daniel Sanchez. Bitpacker: Enabling high

arithmetic efficiency in fully homomorphic encryption accelerators. In

Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2,
ASPLOS ’24, page 137–150, New York, NY, USA, 2024. Association for

Computing Machinery.

[SSKM24] Hyewon Sung, Sieun Seo, Taekyung Kim, and Chohong Min. EvalRound+

bootstrapping and its rigorous analysis for CKKS scheme. Cryptology

ePrint Archive, Paper 2024/1379, 2024.

A MORE RELATEDWORKS

Approaches Filling the Machine Word Sizes. The idea to use

word-sized primes mostly and a few small primes in the RNS factors

was first proposed by Gentry, Halevi, and Smart [GHS12] from

https://heaan.it/
https://github.com/homenc/HElib
https://github.com/tuneinsight/lattigo
https://github.com/Microsoft/SEAL

Cheon et al.

their BGV implementation [HS20]. They introduce a method of

choosing word-size primes and some smaller primes, enabling the

ciphertext modulus to be fairly close to any desired target value.

For key-switching, they switch the modulus by putting more word-

sized primes and dropping non-word-sized primes, maintaining the

same message. However, this approach is not applicable to CKKS

since the message is not well preserved as in BGV. This induces

an absolutely larger error during modulus-switching unless the

input/output ciphertext moduli are extremely close.

In [KLSS23], the machine word-sized moduli were partly utilized

for the key-switching operation. However, their technique is

advantageous only for sufficiently large gadget ranks and applies

only to the key-switching operation. Grafting, however, accelerates

the whole homomorphic computations with no such restrictions

on gadget ranks.

A following work by Belorgey et al. [BCG
+
23] extended their

technique to digit-based gadget decompositions and proposed

to implement FHE using binary modulus with Discrete Fourier

Transform (DFT) instead of NTT. However, this requires higher

precision and increases the number of DFT units, leading to less

efficient implementation.

Machine-dependent Approaches. Agrawal et al. [AAB
+
23]

proposed an implementation depending on the machine word size

to design a 32-bit hardware implementation with the RNS-CKKS

parameters. As the scaling factors range from 48 to 58 bits, two NTT

primes of 24 to 29 bits were required for each rescale operation.

It is worth noting that the smaller primes are hard to use since

there are fewer NTT primes, such as 24 to 29 bits, lacking NTT

primes for larger ring degrees. This was also the case in Tuple-

CKKS [CCKS23], where the performance was restricted due to the

non-existence of NTT primes of appropriate sizes.

B MISSING PRELIMINARIES
B.1 Number Theoretic Transform
For a polynomial a = 𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑁−1𝑥

𝑁−1 ∈ R𝑞 , we
let NTT(a) = (a(𝜁 0), a(𝜁 1), · · · , a(𝜁𝑁−1)) ∈ Z𝑁𝑞 be a number

theoretic transform (NTT) of a in modulus 𝑞, where 𝜁 ∈ Z𝑞 be a

primitive𝑁 -th root of unity inZ𝑞 , which only exist when 2𝑁 | (𝑞−1).
We call primes 𝑞 satisfying the condition 2𝑁 | (𝑞−1) the NTT primes

(with respect to ring dimension 𝑁 and modulo 𝑞). For a vector b =

(𝑏0, · · · , 𝑏𝑁−1) ∈ Z𝑁𝑞 , we let iNTT (b) = ∑𝑁−1

𝑖=0

˜𝑏𝑖𝑥
𝑖
be an inverse

NTT transfrom (iNTT), where
˜𝑏𝑖 = 𝑛

−1 ·∑𝑁−1

𝑗=0
𝑏 𝑗 ·𝜁 −𝑖 𝑗 ∈ Z𝑞 . Note

that NTT and iNTT commutes, i.e.,

NTT (iNTT (b)) = b, and iNTT (NTT (a)) = a,

and that NTT and iNTT are homomorphic. We let the coefficient

vector (𝑎0, 𝑎1, . . . , 𝑎𝑁−1) ∈ Z𝑁𝑞 be an NTT-coefficient format of a,
and NTT(a) ∈ Z𝑁𝑞 be an NTT-evaluated format of a.

B.2 Basic Computations in RNS-CKKS
B.2.1 Fast Basis Conversion in [CHK+19]. Let B = {𝑝0, . . . , 𝑝𝑘−1

}
and C = {𝑞0, . . . , 𝑞𝑙−1

} be the bases for moduli 𝑃 =
∏𝑘−1

𝑖=0
𝑝𝑖 and

𝑄 =
∏𝑙−1

𝑗=0
𝑞 𝑗 , respectively, where the base moduli are pairwise

relatively prime. A RNS representation of an element a ∈ Z𝑄 is

denoted by

[a]C = (a(0) , . . . , a(𝑙−1)) ∈ Z𝑞0
× · · · × Z𝑞𝑙−1

.

One can convert such a into its RNS representation with respect

to Z𝑃 as

ConvC→B ([a]C) =
©­«
ℓ−1∑︁
𝑗=0

[a(𝑗) · 𝑞−1

𝑗]𝑞 𝑗 · 𝑞 𝑗 (mod 𝑝𝑖)ª®¬0≤ 𝑗<𝑘

,

where 𝑞 𝑗 = 𝑄/𝑞 𝑗 . Note that ã :=
∑ℓ−1

𝑗=0
[a(𝑗) ·𝑞−1

𝑗
]𝑞 𝑗 ·𝑞 𝑗 = a+𝑄𝑒 for

some small 𝑒 ∈ Z satisfying |ã| ≤ (ℓ/2) ·𝑄 . Let us use the notation
𝑄 → 𝑃 instead of C → B if there is no confusion.

B.2.2 Modulus Switching. For a polynomial a ∈ R2

𝑄
, we define the

ModUp procedure so that the resulting polynomial is in R𝑃𝑄 , but
with the same value in modulus 𝑄 and not too large. ModDown
reduces the modulus from 𝑃𝑄 to 𝑄 . It reduces the size of the

polynomial and the modulus with the same factor, i.e., by a factor

of 𝑄/𝑃𝑄 ∼ 𝑃−1
. RS is the same as ModDown but is rescaled by

fewer moduli factors than ModDown. It reduces the size of the

polynomial and the modulus by 𝑞ℓ . Let us borrow the notations

from the previous Section and let D = B ∪ C. Precisely,

ModUpC→D (·) :

ℓ−1∏
𝑗=0

R𝑞 𝑗 →
𝑘−1∏
𝑖=0

R𝑝𝑖 ×
ℓ−1∏
𝑗=0

R𝑞 𝑗

[a]C → (ConvC→B ([a]C), [a]C) ,

ModDownD→C (·) :

𝑘−1∏
𝑖=0

R𝑝𝑖 ×
ℓ−1∏
𝑗=0

R𝑞 𝑗 →
ℓ−1∏
𝑗=0

R𝑞 𝑗

([a]B , [b]C) → [𝑃−1]C · ([b]C − ConvB→C ([a]B)) ,

and RS𝑞ℓ−1
(·) = ModDownC→C′ (·), where C′ = C \ {𝑞ℓ−1}.

We note that theModUp operationmaps a ∈ R𝑄 to a+𝑄e ∈ R𝑃𝑄 ,
where |e| ≤ ℓ/2 from the fast basis conversion. The ModDown
operation maps a = ([a]𝑃 , [a]𝑄) ∈ R𝑃𝑄 to a′ = 𝑃−1 · (a− ã) ∈ R𝑄 ,
where ã ≡ a (mod 𝑃) and ∥ã∥∞ ≤ (𝑘/2) · 𝑃 , resulting ∥a′ − 𝑃−1 ·
a∥∞ = 𝑃−1 · ∥ã∥∞ ≤ 𝑘/2. RS introduces an error of size ≤ 1/2.

When applied to ciphertext, the error becomes multiplied by the

secret key s and thus has an infinity norm of ≤ 𝑘/2 · (∥s∥1 + 1) and
≤ 1/2 · (∥s∥1 + 1), respectively, for ModDown and RS. Let us use
the notation 𝑄 → 𝑃𝑄 (Resp. 𝑃𝑄 → 𝑄) instead of C → D (Resp.

D → C) if there is no confusion. We note that in [AAB
+
23], it is

demonstrated that rather than processing theModDown at once,

splitting the procedure into two or more steps – such as from 𝑃𝑄

to 𝑝0𝑄 , and then 𝑄 – can reduce the output error by a factor of 𝑘

with only small additional costs for Hadamard multiplications.

We additionally define the Inv-RS operation, which is sometimes

called zero-padding. It multiplies a factor to both the ciphertext

and its modulus and is used during key switching with gadget

decomposition.

B.2.3 Inverse Rescale. For given a polynomial a ∈ R𝑄 , we define
inverse rescaling by an integer factor 𝑅 as

Inv-RS𝑅 (a) = 𝑅 · a ∈ R𝑄𝑅,

or in the RNS representation, one can write as:

Inv-RS𝑅 (a) ≡
{
[𝑅]𝑞𝑖 · [a]𝑞𝑖 (mod 𝑞𝑖)

0 (mod 𝑟 𝑗)
,

for 𝑖 ∈ [ℓ], 𝑗 ∈ [𝑘], where 𝑄 =
∏ℓ
𝑖=0

𝑞𝑖 and 𝑅 =
∏𝑘
𝑗=0

𝑟 𝑗 with

co-prime NTT primes 𝑞𝑖 ’s and 𝑟 𝑗 ’s. We note that can be naturally

extended to a vector of polynomials or ciphertexts.

B.2.4 Level Adjustments. In the RNS setting, we rescale the ci-

phertexts during multiplication by one of the RNS factors, say

𝑄𝑖 , instead of the real scaling factor Δ. This yields an additional

error after a series of rescaling. In [CHK
+
19], it is suggested that

choosing each modulus 𝑞𝑖 as close as possible to Δ to minimize the

error, and later in [KPP22] the authors suggest using level-specific

scaling factors. Specifically, the scaling factor Δℓ for each level ℓ is

defined as Δℓ−1
:= Δ2

ℓ
/𝑞ℓ , iteratively from ℓ = 𝐿 to 1. With different

scaling factors in different levels, one may need to manipulate two

input ciphertexts having different levels and, thus, different scaling

factors. To adjust the ciphertext, the level adjusting technique is

introduced [KPP22].

Let ct and ct′ be the ciphertexts with level ℓ and ℓ′ (ℓ > ℓ′)
and scaling factors Δℓ and Δℓ ′ , respectively. Before performing

homomorphic operations over ct and ct′, we adjust ct to level ℓ′

with the scaling factor Δℓ ′ , by Adjust operation: For inputs ct in
level ℓ > ℓ′, and the target level ℓ′,

(1) Let ct = [ct]𝑞0 · · ·𝑞ℓ ′+1 ∈ R2

𝑞0 · · ·𝑞ℓ ′+1 by dropping the RNS

factors {𝑞ℓ ′+1, . . . , 𝑞ℓ },
(2) Multiply a constant

⌈
Δℓ ′ ·𝑞ℓ ′+1

Δℓ

⌋
in R𝑞0 · · ·𝑞ℓ ′+1 .

(3) RS by 𝑞ℓ ′+1.

The resulting ciphertext is in R2

𝑞ℓ ′ and has a scaling factor Δℓ ′ with
an additional error, which is approximately a rounding error.

C MISSING DETAILS FROM SECTION 3
C.1 Key Switching with an Intermediate

Modulus Chain
This section presents an alternative approach for achieving full

decoupling between the scaling factor and modulus, independent

of grafting. Specifically, the idea is to temporarily switch to an

intermediate modulus, chosen as a divisor of the switching key

modulus, and to execute the key switching operation within this

intermediate modulus. That is, for a ciphertext encrypting an

encoded message Δm + e in modulus 𝑄 , one can choose a modulus

𝑄int ≳ 𝑄 satisfying 𝑄int | 𝑃𝑄max. Similar to the rational rescaling,

one can switch the modulus of the ciphertext to 𝑄int, then apply

key switching. The resulting ciphertext will encrypt an encoded

message (𝑄int/𝑄) · (Δm+ e) + e′ with a switched secret key, where

e′ includes the rescale and the key switching errors. We can convert

the modulus back to 𝑄 using the rational rescale procedure while

maintaining the error within e plus the rescale error.
Extending the above method, one can prepare a switching key

in a modulus 𝑄swk consisting mostly of word-sized RNS factors.

Depending on the scaling factors, we can rationally rescale the

ciphertext modulus from𝑄 to𝑄 ′ ≈ 𝑄/Δ, while temporarily moving

the ciphertext modulus to 𝑄int | 𝑄swk for key switching.

𝑄swk 𝑄swk 𝑄swk

↕ KeySwitch ↕ KeySwitch ↕ KeySwitch
𝑄int 𝑄 ′

int
𝑄 ′′
int

↕ ↕ ↕
· · · → 𝑄 → 𝑄 ′ ≈ 𝑄/Δ→ 𝑄 ′′ ≈ 𝑄 ′/Δ → · · ·

However, the temporary change in modulus from 𝑄 to 𝑄int

introduces additional (i)NTT operations, even when fused with

the ModUp operation. Specifically, ModUp requires the same

number of (i)NTT operations for inputs of coefficients and for NTT-

evaluated formats to output the results in an NTT-evaluated state

since some NTT-evaluated inputs can be reused. Thus, we need

additional (ℓ + 1) (i)NTT operations for the temporary modulus

switching, where ℓ + 1 is the number of RNS factors in 𝑄 .

In addition, the temporary modulus switching, as well as the

rational rescaling, induce additional Hadamard multiplication costs.

They are not small, especially when the factors of the two moduli

do not overlap much. Precisely, when assuming ℓ = ℓ1 + ℓ2 factors

in 𝑄 and ℓ′ = ℓ2 + ℓ3 factors in 𝑄 ′ (or 𝑄int), where exactly the ℓ2
factors are overlapped, the cost for changing the modulus from 𝑄

to 𝑄 ′ is O (𝑁 (ℓ + (ℓ − ℓ2) · ℓ′)), where 𝑁 is the ring dimension.

C.2 Proof of Theorem 3.2
Proof. Let us follow the notations inDefinition 3.1. Let [⟨ct, sk⟩]𝑄 =

Δ · 𝑚 + 𝑒 , or ⟨ct, sk⟩ = Δ · 𝑚 + 𝑒 + 𝑄𝐼 for some 𝐼 ∈ R. Then
⟨Inv-RS𝑅 (ct), sk⟩ = 𝑅Δ · 𝑚 + 𝑅𝑒 + 𝑄𝑅𝐼 . The final rescaling RS𝑆
introduces an additional error 𝑒res, where ∥𝑒res∥∞ ≤ ℓ/2 · (∥𝑠 ∥1 +1)
for ℓ the number of RNS blocks in 𝑆 = lcm(𝑄,𝑄 ′)/𝑄 ′. Precisely, we
have

⟨RS𝑄/𝑄 ′ (ct), sk⟩ = (𝑄 ′/𝑄) · (Δ ·𝑚 + 𝑒) +𝑄 ′𝐼 + 𝑒res,

which concludes the proof. □

C.3 Correctness of Modulus Adjustment
Suppose we have a ciphertext ct = (b, a) ∈ R2

𝑄
satisfying the

following relation,

b + a · s = Δ ·m + e (mod 𝑄),

with a scaling factor Δ and the modulus 𝑄 = 𝑞0 . . . 𝑞ℓ−1 · 𝑟 for ℓ
unit moduli 𝑞𝑖 ’s and a sprout 𝑟 . Note that the adjustments can be

fused into a circuit, as in the level adjustment technique.

We first choose an appropriate modulus 𝑄
mid

which is a divisor

of 𝑄 to satisfy 𝑄 ≥ 𝑄
mid

> 𝑄 ′ and 𝑄
mid

> 𝑄 ′ · Δ. We

reduce the ciphertext modulus to modulus𝑄
mid

, by dropping some

components. We then multiply an integer constant and rational

rescale the ciphertext to the final modulus 𝑄 ′. Specifically, the
integer constant can be represented as⌈

𝑄
mid

Δ′

𝑄 ′Δ

⌋
=
𝑄
mid

Δ′

𝑄 ′Δ
+ 𝛿,

Cheon et al.

for some 𝛿 ∈ (−1/2, 1/2]. For the output ciphertext ct′ = (b′, a′) ∈
R2

𝑄 ′ , it holds that

b′ + a′ · s = 𝑄 ′

𝑄
mid

·
(
𝑄
mid

Δ′

𝑄 ′Δ
+ 𝛿

)
· (Δm + e) + eres (mod 𝑄 ′)

=

(
Δ′

Δ
+ 𝑄 ′𝛿
𝑄
mid

)
· (Δm + e) + eres (mod 𝑄 ′)

= Δ′m + e
adj

(mod 𝑄 ′),

where the eres is an error added during rescaling, and e
adj

is defined

as

e
adj

=
Δ′e
Δ
+ 𝑄
′𝛿Δm
𝑄
mid

+ 𝛿𝑄
′e

𝑄
mid

+ eres .

The error is bounded by the scaled error, the rescale error, and the

rounding error, where the rescale error becomes themost significant

one. We note that the condition𝑄
mid

> 𝑄 ′ · Δ allows us to manage

the error e
adj

to be sufficiently small.

C.4 Proof of Theorem 3.3
Proof. Let ct be a ciphertext with modulus 𝑄 = 𝑞0 · · ·𝑞ℓ · 𝑟 ,

where 𝑟 is a sprout satisfying 𝑟 |𝑟top, and 𝑟 ∈ 2
𝛾 · [1−𝜖, 1+𝜖], where

0 ≤ 𝛾 < 𝑤 . Let𝑤ℓ + 𝛾 − 𝛿 = 𝑤ℓ′ + 𝛾 ′, where 0 ≤ 𝛾 ′ < 𝑤 . Since 𝛿 =

𝑤 (ℓ− ℓ′) +𝛾 −𝛾 ′, it holds that 𝑛 = ⌈𝛿/𝑤⌉ = ⌈ℓ − ℓ′ + (𝛾 − 𝛾 ′)/𝑤⌉ ≥
ℓ − ℓ′. Moreover, there exists 𝑟 ′ |𝑟top such that 𝑟 ′ ∈ 2

𝛾 ′ · [1−𝜖, 1+𝜖]
from the assumption. Therefore, for a modulus 𝑄 ′ = 𝑞0 · · ·𝑞ℓ ′ · 𝑟 ′,
we have

1 − 𝜖
1 + 𝜖 ·(1−𝜂)

ℓ−ℓ ′ ≤ 𝑄/𝑄
′

2
𝛿

=
𝑞ℓ ′+1
2
𝑤
· · · 𝑞ℓ

2
𝑤
· 𝑟
2
𝛾
· 2
𝛾 ′

𝑟 ′
≤ 1 + 𝜖

1 − 𝜖 ·(1+𝜂)
ℓ−ℓ ′ ,

which concludes the proof. □

Note that the choice of sprout in Examples 3.1 and 3.2 are

universal sprouts satisfying the assumption of Theorem 3.3 with

𝜖 < 2
−13

. Also, there are plenty of 61-bit primes in [2𝜔 (1 −
2
−20), 2𝜔 (1+2

−20)]. Thus, these sprouts have universal rescalability,
i.e., the ciphertexts are rational rescalable by 2

𝛿 · (1 ± 2
−12) for

any 𝛿 ∈ N smaller than the current ciphertext modulus, where the

ciphertext moduli are grafted with the sprout.

C.5 Candidates for Universal Sprout
We propose another candidate for a universal sprout that is

applicable to higher ring dimensions 𝑁 , as follows:

Example C.1 (sprout-19-20-23). Let 𝑞𝑖 ’s be 62-bit NTT primes
and 𝑟top = 2

19 · 𝑟1 · 𝑟2, where 𝑟1 is a 20-bit NTT prime, and 𝑟2 is
a 23-bit NTT prime. Typically, we can choose 𝑟1 = 1,179,649 and
𝑟2 = 8,519,681, the NTT primes for ring dimension 𝑁 ≤ 2

17. Here,
the sprouts can represent any bit length from 1 to 62 as

{21, · · · , 219, 𝑟1, 2𝑟1, 2
2𝑟1, 𝑟2, · · · , 219𝑟2, 𝑟2𝑟1, · · · , 218𝑟2𝑟1}.

C.6 Efficient Sprout Arithmetic
In this subsection, we discuss hardware-level arithmetic strategies,

mostly focusing on standard 64-bit processors. In other words, we

figure out efficient instantiations of the methods described in the

previous section.

C.6.1 Basics for 64-bit processors. Given a (universal) sprout for

standard 64-bit processors, a naive approach requires three 64-bit

moduli to handle any polynomial multiplications via NTT. To check

this, let 𝑟 < 2
64

be a product of all moduli in the sprout. In order to

deal with polynomial multiplication over modulo 𝑟 , one may use

emulated NTT : embed modulo 𝑟 into a larger modulus 𝑝 > 𝑁𝑟2

so that NTT over modulo 𝑝 emulates polynomial multiplication

modulo 𝑟 without modular reduction by 𝑝 ever occurring.
11

In this

case, as 𝑝 should typically be larger than 2
128

(∵ 𝑟 is close to 2
64
),

we need three 64 bit NTT primes.

For 64-bit processors, we mainly suggest using two NTT moduli

rather than three. This can be enabled through composite number
NTT [CHK

+
21], which constructs an NTT modulus out of compos-

ite number instead of a prime number.

Example C.2. We follow the settings in Example 3.2 so that 𝑟top =

2
15 · 𝑟1 · 𝑟2 where 𝑟1 is a 16-bit NTT prime and 𝑟2 is a 30-bit NTT
prime. The key observation is that the modulus 𝑟1𝑟2 ≃ 2

46 can be
handled with a composite NTT. As both 𝑟1 and 𝑟2 are NTT primes,
one can easily find 2𝑁 -th primitive roots of unity modulo 𝑟1𝑟2. Then,
we may construct one NTT modulus to be 𝑟1𝑟2 and the other one to
be a larger modulus 𝑔 > 𝑁 · 230 so that we can emulate modulo 2

15

arithmetic in modulo 𝑔 arithmetic. This results in using two NTT
moduli instead of three, as desired.

Note that the strategy described in Example C.2 is compatible

with RLWE switching keys: if one has only either 𝑟1 or 𝑟2 in the

sprout modulus at some point, then this can be naturally embedded

into the modulus 𝑟1𝑟2 without any costly transformations. Notably,

we may properly define the embedding Embed𝑟1→𝑟1𝑟2
: R𝑟1

→
R𝑟1𝑟2

to be compatible with NTT. That is, we have

Embed𝑟1→𝑟1𝑟2
◦ NTT𝑟1

= NTT𝑟1𝑟2
◦ Embed𝑟1→𝑟1𝑟2

inR𝑟1
, whereNTT𝑟 is an NTT over modulo 𝑟 . For instance, one may

define embedding as simply putting 0 modulo 𝑟2 and performing

the CRT. Then the equality is directly checked in both modulo 𝑟1
(where both sides correspond to NTT𝑟1

) and modulo 𝑟2 (where both

sides are 0).

If the sprout modulus is sufficiently small, then we may even

use one word-sized NTT for the sprout. In particular, the following

types of sprouts from Example 3.2 support single-word arithmetic.

• Sprout with no 𝑟2: As 𝑔 is chosen to be sufficiently large

to ensure that the coefficients modulo 2
15

do not exceed 𝑔,

the emulated part and the 𝑟1 part can be computed using a

single-word composite NTT, modulo 𝑔 · 𝑟1.
• Sprout with sufficiently small power-of-two: Consider the

sprout 2
𝑡 · 𝑟1 · 𝑟2 for some 𝑡 ≤ 15. Note that the modulus 2

𝑡

can be embedded into a modulus𝑔′ > 2
2𝑡 ·𝑁 , and the whole

sprout can be embedded into 𝑔′𝑟1𝑟2. Hence, if 𝑔′𝑟1𝑟2 < 2
64
,

we may use a single-word modulus for composite NTT.

C.6.2 Other machine word sizes. Wemay consider using a different

word size than the standard 64-bit. The main strategy is almost

the same as the standard one. We pack as many NTT moduli as

possible using composite NTT and embed the remaining moduli

into a larger modulus.

11
We compute via inclusions R𝑟 ↩→ R ∪ [−𝑝, 𝑝]𝑁 ↩→ R𝑝 .

Example C.3. The strategy for 2
𝜔 -bit word size for 𝜔 ≥ 7 (i.e.,

128-bit or larger size architectures) can easily be generalized from
the 64-bit case. That is, we choose 𝑟top = 2

15 · 𝑟1 · 𝑟2 · · · · · 𝑟log
2
(𝜔)−4

where 𝑟𝑖 is a 2
𝑖+3-bit prime for each 1 ≤ 𝑖 ≤ log

2
(𝑤) − 4. Then, this

sprout can be computed with two words, as in the standard 64-bit
case, by embedding the power-of-two part to a larger prime and using
composite NTT for the rest.

Example C.4. We describe a strategy for a 32-bit word size. Let
𝑟top = 2

15 ·𝑟 be a sprout where 𝑟 = 2
16+1 is an NTT prime. We embed

2
15 to 𝑔1𝑔2 where 𝑔1, 𝑔2 are sufficiently large word-sized NTT primes
such that 2

30 · 𝑁 < 𝑔1𝑔2. Then we may handle the sprout arithmetic
with three words 𝑔1, 𝑔2, and 𝑟 . If the power-of-two part 2

𝑡 become
sufficiently small such that 2

2𝑡 · 𝑁 < 𝑔1, we can use two words.

D TUPLE-CKKS, REVISITED
In [CCKS23], the authors introduced a novel multiplication algo-

rithm for CKKS, reducing the amount of modulus consumption for

each homomorphic multiplication. Asymptotically, their algorithm

should have similar throughput and possibly better latency when

switched to a smaller ring. However, in many cases, the reduced

modulus consumption is not converted directly to efficiency gain

because any computation modulo 𝑞 has roughly the same perfor-

mance as long as 𝑞 fits in the machine word size. Grafting bridges

the gap between expectation and reality: the tuple multiplication

no longer has significant throughput degradation compared to the

original (single) multiplication.

In this section, we check the compatibility of Grafting with the

Tuple multiplication and their efficiency. We follow the notations

from [CCKS23]: CT denotes a tuple of ciphertexts,𝑄 (ℓ) denotes the
modulus for the ciphertext of level ℓ , ⊗ denotes the CKKS tensor

operation, Relin denotes the CKKS relinearization, RS𝑞 denotes the

rescaling by 𝑞, DCP and RCB denote the decomposition of CKKS

ciphertext into quotient and remainder and their recombination.

D.1 Compatibility
We check the compatibility of our method with the multiplication

of [CCKS23]. For simplicity, we stick to the pair multiplication - the

general tuple multiplication should be checked almost the same.

Let’s recall the definitions of the components of the pair

multiplication in [CCKS23, Definition 4.1, 4.3, 4.5]. In the definitions,

⊗ denotes the CKKS tensor operation, Relin denotes the CKKS re-

linearization, RS𝑞 denotes the rescaling by 𝑞, DCP and RCB denote

the decomposition of CKKS ciphertext into quotient and remainder

and their recombination as defined in [CCKS23, Definition 3.3].

Definition D.1 (Pair Tensor). LetCT1 = (ĉt1, čt1),CT2 = (ĉt2, čt2) ∈
𝑅2

𝑄 (ℓ)
× 𝑅2

𝑄 (ℓ)
be ciphertext pairs. The tensor of CT1 and CT2 is

defined as

CT1 ⊗2 CT2 :=
(
ĉt1 ⊗ ĉt2, ĉt1 ⊗ čt2 + čt1 ⊗ ĉt2

)
∈ 𝑅3

𝑄 (ℓ)
× 𝑅3

𝑄 (ℓ)
.

Definition D.2 (Pair Relinearize). LetCT = (ĉt, čt) ∈ 𝑅3

𝑄 (ℓ)
×𝑅3

𝑄 (ℓ)

be an output of ⊗2
. The relinearization of CT is defined as

Relin2 (CT) = DCP𝑞div (Relin(𝑞div · ĉt)) + (0,Relin(čt)) .

Definition D.3 (Pair Rescale). Let CT = (ĉt, čt) ∈ 𝑅2

𝑄 (ℓ)
×𝑅2

𝑄 (ℓ)
be

a ciphertext pair. Let 𝑞ℓ = 𝑄ℓ/𝑄ℓ−1. The rescale of CT is defined as

RS2

𝑄 (ℓ)
(CT) =

(
RS𝑄 (ℓ) (ĉt), RS𝑄 (ℓ) (𝑞div · ĉt+ čt)−𝑞div ·RS𝑄 (ℓ) (ĉt)

)
.

It belongs to 𝑅2

𝑄 (ℓ−1) × 𝑅2

𝑄 (ℓ−1) .

When applying the concept of grafting to the double multi-

plication framework, we may perform all the operations except

Relin(𝑞div · ĉt) and (0,Relin(čt)), which we may outsource the com-

putation to bigger modulus. The outsourced relinearization can be

used in a black boxmanner, regarding them as a relinearization with

slightly different error distributions. Although the relinearization

error upper bound 𝐸Relin is different, the new pair relinearization

should give exactly the same inequality as the one in [CCKS23,

Lemma 4.4].

Hence, the only difficulty is to define pair rescalewhen𝑄 (ℓ)/𝑄 (ℓ−1)

is not an integer, which can happen in our new framework. We

define a generalized (rational) version of pair rescale as follows:

Definition D.4 (Pair Rescale, Rational). LetCT = (ĉt, čt) ∈ 𝑅2

𝑄 (ℓ)
×

𝑅2

𝑄 (ℓ)
be a ciphertext pair. Let 𝛼ℓ/𝛽ℓ = 𝑄 (ℓ)/𝑄 (ℓ−1)

where 𝛼ℓ , 𝛽ℓ ∈
Z>0 are coprime. The rescale RS2

𝛼ℓ /𝛽ℓ of CT is defined in 𝑅2

𝑄 (ℓ−1) ×
𝑅2

𝑄 (ℓ−1) as(
RS𝛼ℓ (𝛽ℓ · ĉt),RS𝛼ℓ (𝑞div𝛽ℓ · ĉt + 𝛽ℓ · čt) − 𝑞div · RS𝛼ℓ (𝛽ℓ · ĉt)

)
.

When applying the concept of Grafting to the double multi-

plication framework, we may perform all the operations except

Relin(𝑞div · ĉt) and (0,Relin(čt)), which we may outsource the com-

putation to bigger modulus. The outsourced relinearization can be

used in a black boxmanner, regarding them as a relinearization with

slightly different error distributions. Although the relinearization

error upper bound 𝐸Relin is different, the new pair relinearization

should give exactly the same inequality as the one in [CCKS23,

Lemma 4.4].

We also give a generalized version of [CCKS23, Lemma 4.6] in

Lemma D.5, showing the correctness of the pair multiplication after

changing the pair rescale definition.

Lemma D.5. Let CT ∈ 𝑅2

𝑄 (ℓ)
× 𝑅2

𝑄 (ℓ)
be a ciphertext pair. Let

𝛼ℓ/𝛽ℓ = 𝑄 (ℓ)/𝑄 (ℓ−1) where 𝛼ℓ , 𝛽ℓ ∈ Z>0 are coprime. Let sk =

(1, s) ∈ 𝑅2 be a secret key with s of Hamming weight ℎ. Then the
following quantity has an infinity norm of ≤ (ℎ + 1)/2.[(
RCB𝑞div (RS2

𝛼ℓ /𝛽ℓ (CT))
)
· sk

]
𝑄 (ℓ−1)

− 𝛽ℓ
𝛼ℓ

[(
RCB𝑞div (CT)

)
· sk

]
𝑄 (ℓ) .

Proof. Let the quantity be 𝑆 where 𝛼ℓ𝑆 ∈ Z. We have, modulo

𝑄 (ℓ−1)
,(

RCB𝑞div (RS2

𝛼ℓ /𝛽ℓ (CT))
)
· sk =

(
RS𝛼ℓ (RCB𝑞div (CT) · 𝛽ℓ)

)
· sk.

Now, to complete the proof, note that

𝛼ℓ
[(
RS𝛼ℓ (RCB𝑞div (CT) · 𝛽ℓ)

)
· sk

]
𝑄 (ℓ−1)−𝛽ℓ

[(
RCB𝑞div (CT)

)
· sk

]
𝑄 (ℓ)

has infinity norm ≤ 𝛼ℓ · (ℎ + 1)/2. □

Cheon et al.

The TheoremD.6 is an analog of [CCKS23, Theorem 4.8], guaran-

teeing the correctness of pair multiplication. The correctness proof

follows from the Lemma D.5. We define Mult2 as a composition of

tensor, relinearize, and rescale.

Theorem D.6. Let CT = (ĉt1, čt1),CT2 = (ĉt2, čt2) ∈ 𝑅2

𝑄 (ℓ)
×

𝑅2

𝑄 (ℓ)
be ciphertext pairs. Let 𝛼ℓ/𝛽ℓ = 𝑄 (ℓ)/𝑄 (ℓ−1) where (𝛼ℓ , 𝛽ℓ) =

1 and sk = (1, s) ∈ 𝑅2 be a secret key with 𝑠 of Hamming weight
ℎ. Assume that ∥Dec(ĉt𝑖)∥∞ ≤ 𝑀̂ and ∥Dec(čt𝑖)∥∞ ≤ 𝑀̌ for all
𝑖 ∈ {1, 2} and for some 𝑀̂, 𝑀̌ satisfying 𝑁 (𝑀̂𝑞div + 𝑀̌)2 + 𝐸Relin +
ℎ < 𝑄 (ℓ)/2. Then the following quantity has an infinity norm of
≤ (𝑁𝑀̌2/𝑞div + 𝐸Relin + ℎ) (𝛽ℓ/𝛼ℓ) + (ℎ + 1)/2.[(

RCB𝑞div (Mult2 (CT1,CT2))
)
· sk

]
𝑄 (ℓ−1)

− 𝛽ℓ
𝛼ℓ
·
[(
RCB𝑞div (CT1) · sk

)
·
(
RCB𝑞div (CT2) · sk

)]
𝑄 (ℓ) .

Proof. Let the quantity be 𝑆 where 𝛼ℓ𝑆 ∈ Z. We have, modulo

𝑄 (ℓ−1)
,(

RCB𝑞div (RS2

𝛼ℓ /𝛽ℓ (CT))
)
· sk =

(
RS𝛼ℓ (RCB𝑞div (CT) · 𝛽ℓ)

)
· sk.

Now, to complete the proof, note that

𝛼ℓ
[(
RS𝛼ℓ (RCB𝑞div (CT) · 𝛽ℓ)

)
· sk

]
𝑄 (ℓ−1)−𝛽ℓ

[(
RCB𝑞div (CT)

)
· sk

]
𝑄 (ℓ)

has infinity norm ≤ 𝛼ℓ · (ℎ + 1)/2. □

D.2 Efficiency
Next, we focus on efficiency gain when applying Grafting to double-

CKKS. Let 𝑎 = ⌊log
2
(𝑞div)⌉, 𝑏 = ⌊log

2

(
𝑄 (ℓ)/𝑄 (ℓ−1)

)
⌉ be sizes of

the division prime and the rescaling factors, respectively. Here 𝑏

can be chosen so that 𝑏 is slightly larger than 𝑎. When comparing

Mult and Mult2, one 𝑎 + 𝑏 bit RLWE multiplication in Mult is
compared with two 𝑏 bit multiplications inMult2. Assuming that

𝑎 + 𝑏 bit computation is (𝑎 + 𝑏)/𝑏 times more expensive than 𝑏 bit

computation, the throughput ofMult2 should be asymptotically the

same as that ofMult. However, actual implementations are affected

by the machine word size, and in the worst case, it was estimated

in [CCKS23] that theMult2 could be two times slower thanMult
in terms of throughput.

In [CCKS23, Table 2], they provided a parameter that increases

the homomorphic capacity compared to the conventional CKKS

parameter using 57-bit primes. The modulus they used is consisting

of two 61-bit primes, eighteen 38-bit primes, and three 23-bit primes.

Using Grafting, we can use 15 unit moduli of ≈ 61 bits. This allows

us to use dnum of 14 instead of 22 and the number of RNS factors of

15 instead of 23. As a result, the double-CKKS with Grafting should

win by roughly a factor of
22

14
× 23

15
≈ 2.41.

We note that the efficiency gain could be even more significant

for lower precision or with fewer slots that require smaller division

primes and rescaling factors. For instance, we may use log
2
(𝑞div) ≤

10 and log
2

(
𝑄 (ℓ)/𝑄 (ℓ−1)

)
≤ 20 for ≲ 15-bit precision, leading to

a factor of ≥ 3 improvements compared to the naïve double-CKKS

implementation.

E ARBITRARY PRECISION COMPUTATION
As the sizes of the RNS factors no longer limit the precision, we

can easily obtain lower or higher precision computation results by

changing the scale factor (and its data type). We can use smaller

scale factors of 15-30 bits to achieve low-precision homomorphic

multiplications and reduce the modulus consumption. For higher

precisions, the only parts we should handle is the data type for the

scale factors. After the messages are encoded, the homomorphic

computation error is proportional to the scale factor, requiring the

large scale factors. To accurately handle the scale factors for highly

precise encoding and decoding, we also need the scale factors to be

high-precision–and it is the only requirement for high-precision

computation in Grafting! By replacing the double data type for

scale factors with quadmath data type–supporting the quadruple-

precision–, we could compute up to 113-bit precise homomorphic

multiplications and up to 107-bit precise homomorphic linear

transformations. Our benchmark reported, the speed-up of 2.20×
for the standard double 53-bit precision homomorphic multiplica-

tion, using 66-bit Δ. The non-grafted counterpart is implemented

using the composite-rescaling [AAB
+
23] in simple RNS-CKKS

implementation. In Table 9, we also report the precisions obtained

for SlotToCoeff and CoeffToSlot, the linear transformations for

homomorphic en/decoding, for the changing scale factor sizes.

Table 9: Precision of homomorphic DFT for various scaling
factor sizes with the error statistics.

Hom. DFT log
2
Δ Prec.

Error

Average Std. Dev. Max

StC

20 1.93 2.37𝑒-01 1.23𝑒-02 2.62𝑒-01

40 21.95 2.14𝑒-07 5.01𝑒-08 2.47𝑒-07

60 41.97 2.00𝑒-13 4.67𝑒-14 2.33𝑒-13

80 61.89 1.97𝑒-19 4.63𝑒-20 2.34𝑒-19

100 81.82 1.97𝑒-25 1.37𝑒-26 2.34𝑒-25

120 98.94 1.42𝑒-30 8.81𝑒-32 1.64𝑒-30

CtS

20 7.43 4.62𝑒-03 5.14𝑒-04 5.79𝑒-03

40 27.49 4.31𝑒-09 1.08𝑒-09 5.31𝑒-09

60 47.95 2.78𝑒-15 7.34𝑒-16 3.67𝑒-15

80 66.16 1.08𝑒-20 5.00𝑒-22 1.21𝑒-20

100 87.11 4.68𝑒-27 1.20𝑒-27 5.98𝑒-27

120 107.36 3.61𝑒-33 9.10𝑒-34 4.81𝑒-33

F BOOTSTRAPPING, REVISITED
F.1 Bootstrapping with Adaptive Precision.
During EvalMod, the reduction modulo 𝑞0 is approximated to a

polynomial, composing the polynomial approximating the cosine,

double angle formula, and arcsine. We focus on the cosine function,

which is commonly approximated via Chebyshev approximation,

e.g., a 63-degree polynomial with coefficients for the Chebyshev

basis. In general, the Chebyshev coefficients rapidly decay when

the degree increases, and for the cosine function, it is known that it

decreases in quadratic order. We can consider sparing modulus

using smaller scale factors for the higher-degree coefficients

(multiplied by a large constant to compensate) without damaging

the final precision.

As an instance, we can evaluate the polynomial with a circuit

that is divided into two subordinate circuits using different moduli

chains: 1) compute the first half of the polynomial, i.e., for degrees

0 to 31, consuming 5 multiplicative depths with a desired precision,

and 2) compute the second half, e.g., for degrees 32 to 63 with

smaller coefficients consuming 6 multiplicative depths with lesser

precision. As the second half requires more multiplicative depths,

we can reduce the total modulus consumed during the polynomial

approximation, e.g., 5 depths with Δ ≈ 42 bits, and 6 depths

with Δ ≈ 37 bits in parallel, consuming the modulus of total

≈ max(5× 42, 6× 37) = 222 bits, instead of 6× 42 = 252 bits, saving

30 bits of modulus. Note that the cost of evaluating the cosine

function increases slightly since the Chebyshev bases are computed

in both subordinate circuits, but are by little, only about 5-10% of the

EvalModcost. Note that this can be extended to general Chebyshev

approximation evaluations, including other approximationmethods

that guarantee the coefficient decay, resulting in reduced modulus

consumption.

We report the error statistics and the modulus consumption in

Table 10, where 15 bits of modulus consumption can be reduced

without precision loss. Note that this value can be significant when

the polynomial approximation is designed friendly to the technique.

Table 10: Error statistics and modulus consumption (in bits)
for grafted cosine function evaluation and its variants with
reduced modulus consumption.

Chebyshev

Error Modulus

Average Std.dev Max consum.

Original 2.44𝑒-7 3.10𝑒-8 3.65𝑒-7 252

2.45𝑒-7 2.69𝑒-8 3.13𝑒-7 247

Reduced 2.42𝑒-7 2.60𝑒-8 3.33𝑒-7 242

modulus 2.45𝑒-7 2.48𝑒-8 3.15𝑒-7 237

consumption 1.44𝑒-6 3.08𝑒-8 1.53𝑒-6 232

1.10𝑒-4 3.37𝑒-8 1.10𝑒-4 227

F.2 Bootstrapping with Flexible Output
Modulus.

In scenarios where bootstrapping is required but the total modulus

consumption is relatively modest
12
, the bootstrapping time can be

improved by lowering theModRaise modulus.

We target the specific scenario where we want to evaluate a

plaintext-ciphertext matrix multiplication, abbreviated as PCMM. It

was demonstrated in [BCH
+
24] that evaluating the PCMMwith the

matrices in coefficient encoding can be done very efficiently, with

one depth of available multiplications. We also note that matrix

multiplication requires higher precision than usual because the

messages and errors, as many as the dimensions of the matrices,

are summed up. Hence, we do not need to make the full modulus

12
Such as large matrix multiplications for machine learning, at the low levels. It is

sometimes much faster to evaluate in the levels as low as possible [BCK
+
23, BCH

+
24,

Par25, RKP
+
25, LLK

+
23] than to evaluate in the higher levels.

available after bootstrapping but raise it to the smallest modulus,

roughly a sum of the base modulus (for latter bootstrapping), and a

larger-than-usual scaling factor of approximately 74 bits. In such

a setting, we report bench-marked speedups of 5% and 51% in

log
2
𝑁 = 15 and 16, respectively. We note that the speed-up is

somewhat restricted in log
2
𝑁 = 15, since the maximum possible

modulus is too small.

G EXPECTED SPEED-UP OF EXISTING
PARAMETERS

We investigate the parameters used in the RNS-CKKS libraries and

suggest their Grafted version. We list up the default or the pre-set

parameters in the libraries HEaaN [Cry22], Lattigo [lat24], and

OpenFHE [ABBB
+
22] in Table 11. All sizes are given in logarithms

base-two and #mod. denotes the number of NTT primes comprising

the switching key modulus 𝑃𝑄max, denoted as 𝑃𝑄 due to space

limit. The size of the RNS factors log𝑞𝑖 and log𝑝𝑖 are given with

the number of moduli of that size. Moduli with fractional sizes are

only partially used by the step they are allocated to, as referenced

in [BMTH21]. For the FHE parameters, we additionally provide

the size of the RNS factors reserved for each bootstrapping sub-

procedure or general homomorphic multiplications.

In particular, the parameters for OpenFHE [ABBB
+
22] are

automatically generated using the default setting, where parameter

customization is also allowed. The default scaling factor is 59 bits,

and the base modulus prime is 60 bits, which implies our Grafting

technique may not be effective since all prime moduli are already

set to be roughly the word size. It also supports higher precision,

with a default scaling factor size of 78-bits and a base modulus

prime from 89 to 105-bits. In this case, our technique reduces the

inefficiency of using two RNS factors to perform 78-bit arithmetic

operations.

Following the re-designing methodology introduced in Sec-

tion 4.1, we provide the re-designed parameters in Table 12. Some

of the parameters are expected to be accelerated well, but some are

not, especially when Δ is close to the machine’s word size or when

dnumis set not so compatible with the mostly word-sized moduli.

Cheon et al.

Table 11: HE parameters for CKKS scheme in the literature. Here, S and F denote the SHE and FHE parameters, respectively.
The RNS factors for SHE parameters are given for the base prime, the auxiliary modulus, and the rest. The RNS factors for FHE
parameters are given for the base prime, the ones reserved for bootstrapping, the auxiliary modulus, and the rest.

l
o

g
𝑁

l
o

g
𝑃
𝑄

l
o

g
Δ

#
m
o
d
. log𝑞𝑖

log 𝑝𝑖Base StC Mult EM CtS

H
E
a
a
N

[
C
r
y
2
2
]

S

13 217 41 5 47 41 × 3 47

14 436 42 10 50 42 × 7 46 × 2

15 866 42 20 48 42 × 14 46 × 5

15 860 40 21 50 40 × 19 50

F
15 771 36 17 49 33 × 3 36 × 1 49 × 8 47 × 3 54 × 1

16 1,555 42 30 58 42 × 3 42 × 9 58 × 9 58 × 3 59 × 3 + 60 × 2

17 2,070 51 40 61 51 × 3 51 × 13 51 × 10 51 × 3 53 × 10

L
a
t
t
i
g
o

[
l
a
t
2
4
]

S
14 438 34 12 45 34 × 9 43 × 2

15 880 40 21 50 40 × 17 50 × 3

F
15 768 25 16 50 60 50 + 25 50 × 8 49 × 2 50 × 2

16 1,546 40 30 60 39 × 3 40 × 9 60 × 8 56 × 4 61 × 5

16 1,553 30 27 55 60 × 1.5 60 × 7.5 55 × 8 53 × 4 61 × 5

O
p
e
n
F
H
E

[
A
B
B
B
+ 2
2
]

S
14 371 50 7 60 50 × 5 60

15 675 90 7 105 90 × 5 119

F
16 1,579 58 27 60 58 × 2 58 × 4 58 × 13 58 × 2 60 × 5

17 2,910 78 34 89 78 × 3 78 × 8 78 × 13 78 × 3 119 × 6

Table 12: Grafted parameters corresponding to the HE parameters in the literature. The number of RNS factors shows the
changes from the original to the Grafted parameters. The scaling factor Δ is unnecessary for the Grafted parameters; however,
we give them as a reference. The maximum ciphertext modulus 𝑄max is set approximately the same as the original parameters
for fair comparisons. The expected speed-up ratios for addition and tensor products (Add, Tensor) and key-switching (KS) are
given in the last columns. The ratio is especially small when Δ is close to the machine’s word size or when log

2
𝑃𝑄 is already

split well into word-sized moduli. An asterisk (∗) indicates that the machine word size (or the unit arithmetic) is set to be 128

bits, expecting much larger speed-ups when using 64-bit with Grafting.

l
o

g
𝑁

l
o

g
𝑃
𝑄

l
o

g
Δ

#
m
o
d
.

log𝑞𝑖 log𝑝𝑖

Speed-ups

Add

KS

Tensor

H
E
a
a
N

[
C
r
y
2
2
]

S

13 217 41 5→ 4 54 × 3 55 1.00 1.20

14 437 42 10→ 8 54 × 3 + 55 × 3 55 × 2 1.14 1.33

15 860 42 20→ 16 53 × 4 + 54 × 8 54 × 4 1.15 1.18

15 855 40 21→ 14 61 × 13 62 1.43 2.05

F
15 773 36 17→ 13 59 × 8 + 60 × 4 61 1.23 1.56

16 1,545 42 30→ 25 61 × 5 + 62 × 15 62 × 5 1.19 1.35

17 2,070 51 40→ 36 57 × 15 + 58 × 12 57 × 3 + 58 × 6 1.07 1.08

L
a
t
t
i
g
o

[
l
a
t
2
4
]

S
14 428 34 12→ 7 61 × 6 62 1.43 1.31

15 886 40 21→ 15 59 × 12 59 × 2 + 60 1.38 1.75

F
15 768 25 16→ 13 59 × 11 59 + 60 1.17 1.29

16 1,546 40 30→ 25 61 × 4 + 62 × 16 62 × 5 1.19 1.35

16 1,553 30 27→ 25 61 × 4 + 62 × 16 62 × 5 1.00 1.21

O
p
e
n
F
H
E

[
A
B
B
B
+ 2
2
]

S
14 371 50 7→ 6 61 + 62 × 4 62 1.00 1.14

15 675 90 7→ 6 111 × 4 + 112 119 1.00
∗

1.14
∗

F
16 1,558 58 27→ 26 62 × 20 53 × 6 1.05 1.17

17 2,910 78 34→ 24 121 × 18 122 × 6 1.47
∗

1.90
∗

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Additional Related Works

	2 Preliminaries
	2.1 Notations
	2.2 Computation in RNS-CKKS
	2.3 CKKS Bootstrapping

	3 Grafting: Filling-up machine words in RNS
	3.1 Rational Rescale: Rescale with non-divisor
	3.2 Modulus Resurrection with Universal Sprouts
	3.3 Modulo Arithmetic with Power-of-two Sprouts

	4 Applications
	4.1 Grafted SHE and FHE Parameters
	4.2 Bit-CKKS, Revisited
	4.3 Homomorphic Comparison, Revisited

	5 Experimental Results
	5.1 SHE and FHE with Grafting
	5.2 Bit-CKKS with Grafting
	5.3 Homomorphic Comparison with Grafting

	References
	A More Related Works
	B Missing Preliminaries
	B.1 Number Theoretic Transform
	B.2 Basic Computations in RNS-CKKS

	C Missing Details from Section 3
	C.1 Key Switching with an Intermediate Modulus Chain
	C.2 Proof of Theorem 3.2
	C.3 Correctness of Modulus Adjustment
	C.4 Proof of Theorem 3.3
	C.5 Candidates for Universal Sprout
	C.6 Efficient Sprout Arithmetic

	D Tuple-CKKS, Revisited
	D.1 Compatibility
	D.2 Efficiency

	E Arbitrary Precision Computation
	F Bootstrapping, Revisited
	F.1 Bootstrapping with Adaptive Precision.
	F.2 Bootstrapping with Flexible Output Modulus.

	G Expected Speed-up of Existing Parameters

