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Abstract—SPHINCS™, one of the Post-Quantum Cryptography
Digital Signature Algorithms (PQC-DSA) selected by NIST in the
third round, features very short public and private key lengths
but faces significant performance challenges compared to other
post-quantum cryptographic schemes, limiting its suitability for
real-world applications. To address these challenges, we propose
the GPU-based paRallel Accelerated SPHINCS™ (GRASP), which
leverages GPU technology to enhance the efficiency of SPHINCS™
signing and verification processes. We propose an adaptable
parallelization strategy for SPHINCS™, analyzing its signing and
verification processes to identify critical sections for efficient
parallel execution. Utilizing CUDA, we perform bottom-up op-
timizations, focusing on memory access patterns and hypertree
computation, to enhance GPU resource utilization. These efforts,
combined with kernel fusion technology, result in significant
improvements in throughput and overall performance. Extensive
experimentation demonstrates that our optimized CUDA imple-
mentation of SPHINCS™ achieves superior performance. Specif-
ically, our GRASP scheme delivers throughput improvements
ranging from 1.37x to 3.45x compared to state-of-the-art GPU-
based solutions and surpasses the NIST reference implementation
by over three orders of magnitude, highlighting a significant
performance advantage.

Index Terms—PQC, hash-based digital signature, SPHINCS™,
GPU, CUDA

I. INTRODUCTION

Public key cryptography is a fundamental component of
secure communication. However, it is widely known that
current public key algorithms, such as RSA and ECC, can
be broken by Shor’s [1] and Grover’s [2] algorithms on
quantum computers in polynomial time. Recently, many re-
search institutions and enterprises, including Google and IBM
[3], have made significant progress in the field of quantum
computing. To address this challenge, NIST has initiated a
process to solicit quantum-safe cryptographic algorithms from
around the world [4], which can replace traditional public-key
cryptographic algorithms.

In 2022, NIST announced the results of Round 3 of the
Post-Quantum Cryptography Standardization Process, which
included four selected algorithms (CRYSTALS-Kyber [5],
CRYSTALS-Dilithium [6], Falcon [7], and SPHINCS+ [8])
and four candidate algorithms (BIKE [9], Classic McEliece
[10], HQC [11], and SIKE). Among the selected algorithms,
CRYSTALS-Kyber, CRYSTALS-Dilithium, and Falcon are
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lattice-based, while SPHINCS+ is the only hash-based digital
signature algorithm. SPHINCS™ is a stateless hash-based
signature scheme, which means it does not require maintaining
any state information. One of the primary advantages of
SPHINCS™ is the relatively short lengths of its public and
secret keys, which simplifies key management. However, a
significant drawback is its performance; the signing and verifi-
cation processes for SPHINCS™ are approximately 150 times
and 50 times slower, respectively, than those for Dilithium
on an x86/64-bit CPU [12]. Consequently, to facilitate the
deployment of SPHINCS™ in various security protocols such
as TLS, DNSSEC, and others, performance optimizations,
particularly for the signing process, are essential.

Graphics Processing Units (GPUs) are auxiliary devices
designed for computer graphics processing tasks, such as
3D design rendering. The architecture of a GPU is highly
effective for parallelizing tasks and data operations due to
its numerous cores. NVIDIA developed the Compute Unified
Device Architecture (CUDA), which enables the design of
computational processing methods for GPUs using C, C++,
and Python [13]. Recently, substantial research has focused on
utilizing GPUs to enhance performance in cryptography. This
includes improving the performance of blockchain systems
[14] and accelerating cryptographic operations required for
TLS in cloud services [15]. GPUs are now widely used for
cryptographic acceleration, including homomorphic encryp-
tion [16], [17], public-key cryptography [18], [19] and so on.

A. Related works

Sun et al. [20] proposed parallelization techniques for MSS,
HORST, and WOTS™ to enhance the throughput of SPHINCS
on GPU devices. Their implementation achieved throughput
rates of 5152 operations per second on a GTX 1080, 6651
operations per second on a TITAN Xp, and 27052 operations
per second on a configuration with four TITAN Xp GPUs. Kim
et al. [21] introduced parallel methods for FORS, WOTS™,
MSS, and hypertree computation in SPHINCS' on GPU
platforms. Their implementation demonstrated throughput of
44391 operations per second for SPHINCS™ signature gen-
eration and 285681 operations per second for SPHINCS™
signature verification at security level 1 on an RTX 3090. At
security levels 3 and 5, their implementation achieved 24997
and 11401 operations per second for signature generation, and
155803 and 106282 operations per second for signature ver-
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ification, respectively. However, their use of multiple CUDA
kernels resulted in inefficient GPU utilization.

Furthermore, significant research efforts have focused on
optimizing SPHINCS™ performance across diverse hardware
platforms. Quentin Berthet et al. proposed a methodology
for implementing internal digital signature computations of
WOTS™ and FORS on FPGA hardware [22]. Their ap-
proach prioritized optimizing resource utilization for em-
bedded digital signature functions. In their implementation,
SPHINCS™ SHA256-128f-simple mode on a Xilinx XZU3EG
FPGA achieved a signature generation time of 64.34 ms
and a verification time of 2.51 ms, utilizing 5,917 LUTs,
210 LUTRAMs, 4,933 FFs, and 0.5 BRAM. Amiet et al.
conducted an optimization study aimed at accelerating SHA-3
and SHAKE functions specifically for SPHINCS* on FPGA
devices [23]. Their implementation of SPHINCST SHAKE-
128f-simple mode on 7-series Xilinx FPGAs achieved a
remarkable signature generation time of 1.01 ms, utilizing
47,991 LUTs, 72,505 FFs, and 11.5 BRAM.

Additionally, significant research has focused on acceler-
ating various Post-Quantum Cryptography (PQC) algorithms
using GPUs. Zhao et al. [24] meticulously optimized the
Dilithium algorithm by adjusting batch sizes to leverage
GPU thread efficiency. With a batch size of 15,360, they
achieved substantial reductions in computation time compared
to the reference C code running on an Intel Xeon Gold
6133 CPU. Specifically, on the P2000, V100, and T4 GPUs,
time reductions of 3.51x, 11.18x, and 4.92x were reported,
respectively. Shen et al. [25] expanded on this optimization
within GPU environments, targeting not only Dilithium but
also hash algorithms. Their research, unlike previous studies,
included optimization based on resource utilization analysis
from Nsight. Similar to Zhao et al. [24], this study empha-
sized throughput improvements. On an RTX 4090, significant
throughput enhancements were achieved compared to an In-
tel(R) XEON W7-2495X across security levels 2, 3, and 5.
Specifically, signature generation improved by 213x, 228x,
and 204 x, respectively. Key generation showed improvements
of 132x, 136x, and 117x, while verification exhibited en-
hancements of 152x, 142x, and 131x.

B. Our contribution

Compared to other post-quantum cryptographic schemes,
SPHINCS™ faces significant challenges regarding perfor-
mance efficiency. The inherent complexity and computational
demands of SPHINCS™ make it less performant than its coun-
terparts, which is a critical issue for its adoption in real-world
applications. GPUs, with their highly parallel architecture and
numerous computational cores, offer substantial advantages
in addressing these performance issues. They are particularly
well-suited for tasks requiring extensive parallel processing,
such as cryptographic operations. Despite these advantages,
existing research has not fully tapped into the computational
potential of SPHINCS* on GPU platforms. To bridge this gap,
we propose the GPU-based paRallel Accelerated SPHINCS+
(GRASP). GRASP aims to harness the power of GPU tech-
nology to significantly enhance the efficiency of SPHINCS™

signing and verification processes. By fully leveraging the
parallel processing capabilities of GPUs, GRASP seeks to
provide a robust solution for high-demand environments where
efficient cryptographic operations are paramount.

Our contributions are as follows:

« Firstly, through a comprehensive analysis of the sign-
ing and verification processes of SPHINCS™, GRASP
explores parallelization strategies across various dimen-
sions and proposes adaptable methodologies tailored to
specific application requirements. This approach enables
practitioners to select the optimal GPU thread configu-
ration based on their specific needs for throughput and
latency. In particular, GRASP identifies critical sections
within the SPHINCS™ algorithm that benefit most from
parallel execution, ensuring that the parallelization is
both efficient and scalable. Furthermore, we provide a
detailed explanation of the GPU thread configuration
that achieves the highest throughput, demonstrating its
superior performance through an in-depth analysis of
thread utilization and synchronization overhead.

o Secondly, we leverage the capabilities of CUDA to
perform a comprehensive, bottom-up optimization of
the SPHINCS™ implementation on the GPU, targeting
various performance aspects. A key focus is on opti-
mizing memory access patterns, resulting in substantial
performance gains. By minimizing memory latency and
maximizing throughput, GRASP enhances the overall
efficiency of cryptographic operations. Additionally, we
refine the hypertree computation process, reducing the to-
tal number of WOTS™ signatures required in SPHINCS ™.
Our approach employs kernel fusion technology, which,
compared to using multiple kernels, significantly en-
hances the efficiency of GPU resource utilization. This
method consolidates multiple computational steps into
a single kernel, reducing the overhead associated with
kernel launches and improving the overall speed.

« Finally, by applying our optimization strategy, we conduct
extensive experiments to achieve an efficient CUDA
implementation of SPHINCS™ for signature generation
and verification, leading to significant performance im-
provements. For signature generation, our implementation
improves throughput by 1.37x, 1.79x, and 1.58x on the
RTX 4090 across different security levels, compared to
the state-of-the-art implementation [21]. Additionally, for
low-latency signature generation at security level 1 on the
RTX 4090, our implementation achieves a 5.5x reduction
in throughput with a latency approximately 9.4x lower
than [21]. For signature verification, our implementation
enhances throughput by 1.53%, 1.80x%, and 3.45x on the
RTX 4090 across different security levels. Compared to
the NIST official reference implementation, our perfor-
mance improvement exceeds three orders of magnitude,
demonstrating a significant performance advantage.

The rest of the paper is organized as follows. Section 2
introduces the background related to this paper. Section 3
presents our specific optimization implementation scheme on
GPU. Section 4 shows the experimental results. Section 5
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concludes this paper.

II. PRELIMINARY KNOWLEDGE

This section introduces the preparatory knowledge related to
our work. Firstly, we briefly introduce the GPU architecture.
Then, we present a detailed description of the SPHINCS™
signature scheme.

A. GPU Architecture

As a computing platform, GPU has extremely broad appli-
cation scenarios, such as machine learning, deep learning and
artificial intelligence. In the field of cryptographic engineering,
the utilisation of general-purpose computing on GPUs offers
a significant computational advantage in accelerating crypto-
graphic algorithms. In the context of new parallel computing
architectures, the GPU can be regarded as a kind of parallel
data processing device. As a novel parallel computing archi-
tecture, the GPU can be conceptualised as a parallel data-
processing device, comprising thousands of stream processors
that can perform massively parallel computations by making
optimal use of various memories on the GPU to complete
diverse computational tasks at high speeds. The GPU can
be employed as a high-performance realisation platform for
cryptographic computation.

In this paper, we select NVIDIA GPUs and CUDA frame-
work for its popularity. Table shows the specifications of the
GPU/DCU architecture used in our paper. NVIDIA GPUs have
thousands of Streaming Multiprocessors (SM). An SM is the
basic unit that can execute GPGPU programs. SM consists of
several CUDA cores. Usually, dozens of cores form a group,
and the group corresponds to the block, which has its own
shared memory. Within a block, many threads can be launched.
Each thread corresponds to a core. In the hardware, there are
registers that can only be used by blocks. Threads in the same
block will share registers. So the more threads are launched,
the fewer registers can be used, which constrains the scale
of parallelism. By CUDA programming, the kernel function
can call GPU resources. Due to the parallelism principle in
hardware design, the smallest execution unit in SM is called a
warp. All threads in a warp execute the same instruction, which
maximizes GPU efficiency when the instructions executed by
all threads remain consistent.

TABLE I
GPU ARCHITECTURE SPECIFICATIONS

GTX 1080 RTX 3090 RTX 4090
Multiprocessors 20 82 128
CUDA Cores 2560 10496 16384
Memory clock 5005 MHz 1395 MHz 10501 MHz
Memory bus 256-bit 384-bit 384-bit
Power consumption 180W 350W 450W

B. The structure of SPHINCS™

SPHINCS™ is a stateless hash-based signature scheme
comprising a number of sub-algorithms, including WOTS™,
XMSS, hypertree and FORS.

1) WOTS*: Winternitz One-Time Signature (WOTS) is an
instance of the One-Time Signature (OTS) scheme [26]. OTS
restricts a private key to be used for exactly one message, as
its security quickly decreases with reuse. WOTS™ is a variants
of WOTS [27]. The security parameter and message length of
WOTS™ is denoted by n. The Winternitz parameter is w. As
the value of w increases, the length of the signature decreases,
while the time required for signature generation increases. Let
I be the number of blocks in an uncompressed WOTS™ private
key, public key, and signature, where

n log(ly(w —1))

b=bhtlnh = [log(w)w’l2 =1 log(w)

The core idea of WOTS™ is to use hash function chains

starting from random values. These random values together

act as the secret key. The public key consists of the ends of

all chains. The signature is computed by mapping the message
to one intermediate value of each function chain.

The WOTS™ private key sk consists of | random blocks
(sk = (ski,---,sk;),sk; € {0,1}"). The uncompressed
WOTS™* public keys {pk;}._, is derived by applying hash
function H iteratively for w — 1 times to each of the blocks
in the private key (pk; = wal(sk:i)), then the public keys
are compressed to a block using H (pk = H(pky, - ,pki))
In the process of signing, WOTS™ initially transforms the
message m into [ integers m; € {0,1,--- ,w — 1} using
the base w representation. This is followed by compute a
checksum ¢ = Zilzl(w — 1 —m;), represented as a string of
I base-w values ¢ = (¢1,- -+, ¢y,). This yields the following

I+ 1

result: 0 = (my, -+ ,my,c1, -+ ,c,). Apply H to each
private key sk; for 6; times (s; = HY (sk;)), the WOTS*
signature of message m is s = (s1,---,s;). The verifier

can them recompute the checksum and apply H to each
block for w — 1 — 6; times (pk; = H”17%(s;)). Finally
compress those values to an n-bit public key pk’ using H
(pk’ = H(pk},--- ,pk])). The verifier accepts this signature
if pk = pk’.

2) MSS and XMSS: MSS (Merkle Signature Scheme) is a
structure that combines Merkel tree and hash function [28]. In
order to sign oh’ messages, the signer generates 2h" WOTS*
key pairs and constructs a binary tree of height h’ using these
oh public keys as leaf nodes. Then, signer repeatedly applies
H to each pair of child nodes to generate the corresponding
parent node until reaching the root of the tree, which is the
public key for the MSS. XMSS (eXtended Merkle Signature
Scheme) is a variant of MSS [29]. The structure of XMSS is
similar to that of MSS, but it includes a process to XOR a
random mask value during node merging.

To sign a message, the signer picks one of the WOTS™
leaf nodes and publishes the WOTS™ signature as well as
all siblings of the nodes on the path from the leaf to the
root, which is referred to as the authentication path”. The
verifier first derives the WOTS™ public key from the signature
and then uses the nodes on the authentication path and their
siblings to reconstruct the root.

3) Hypertree: Hypertree is a tree of MSS trees. A hypertree
consists of d layers. The leaf nodes of the trees on the bottom
layer are used to sign messages (in SPHINCS™, the message
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TABLE 11
PARAMETERS OF SPHINCS™ IN DIFFERENT VERSIONS

. n Public Key Len | Private Key Len | Signature Len

Version (byte) w h d a k (bytegl (byte)y g (byte)
SPHINCS™ - 128s 16 16 | 63 7 12 | 14 32 64 7856
SPHINCS™ - 128f 16 16 | 66 | 22 6 33 32 64 17088
SPHINCS™ - 192s 24 16 | 63 7 14 | 17 48 96 16224
SPHINCS™ - 192f 24 16 | 66 | 22 8 33 48 96 35664
SPHINCS™ - 256s 32 16 | 64 8 14 | 22 64 128 29792
SPHINCST - 256f 32 16 | 68 | 17 9 35 64 128 49856

is a FORS public key), while the leaf nodes of trees on other
layers are used to sign the root nodes of the trees immediately
beneath them. The total height of the hypertree is specified as
h, therefore, the height of MSS tree at each layer is %. During
key generation, only the top-most tree is generated to derive
the public key. The rest of the trees can be generated when
needed.

4) FORS: Forest of Random Subset (FORS) is a few-time
signature scheme that allows a private key to sign multiple
messages, with security decreasing as the number of signatures
increases [30]. It is an improved version of HORS proposed
in SPHINCS™. FORS includes k Merkle trees with height a,
and can be used to sign messages of k - a bits. To construct
the FORS public key, the signer first construct k£ Merkel trees
with height a from k - 2 leave and then compress the root
nodes using H. The compressed result is the FORS public key.
Given a message of k - a bits, the signer split it into k£ blocks
of a bits. Each block value is used as the selection index
of leaf node in the corresponding Merkle tree. The signature
consists of these nodes and their respective authentication
paths. The verifier reconstructs all the root nodes from the
signature, compresses the root nodes using H, and compares
the result value against the public key. Fig. 1 presents a simple
diagrammatic representation of FORS.

PK = Hash(ro||r1||r2) |

Fig. 1. An example of a FORS signature with £ = 3 and @ = 3, on message
101 011 111.

The overall process of signing in SPHINCS™ is shown in
Fig. 2. SPHINCS™ uses the FORS method for signing the
original input message at the lowest level. Then, it utilizes
a hypertree structure to alleviate the overhead of generating
leaf nodes from 2" to d - 24 in the MSS like SPHINCS.
With the hypertree mechanism, single MSS of height & is
divided into d layers containing a subtree of height %. Namely,
each layer of the hypertree contains WOTS™ signing and
MSS construction. Note that MSS construction has two steps:

(Ohashnode [ ] OTS node
<> FTS node message

Fig. 2. An overview of SPHINCS™ structure with h =9 and d = 3

generation of leaf nodes (WOTS™ key pair generation) and
computation of authentication path. Through the signing pro-
cess, the final signature consists of randomness information,
FORS signature, d WOTS™ signatures, and the public key
which is the root node of the MSS in the highest layer. The
details of FORS, WOTS™T, MSS, and hypertree can be found
in the specification document [31].

C. SPHINCS™ Modes and their parameters

Table II shows the parameter sets of SPHINCST.
SPHINCS™ has three distinct security levels: level 1, level 3
and level 5. Each level offers a different strength of security,
with the strength increasing as the level rises. However,
the time required for operation also increases. Furthermore,
SPHINCS™' has two modes: small mode (SPHINCST-s),
which aims to minimize the signature length, and fast mode
(SPHINCS™-f), which aims to maximize operation speed. For
instance, SPHINCS™-f mode on security level 5 is faster
than SPHINCS*-s mode as faster as 16x, 9x, and 2x for
key generation, signing, and signature verification, respec-
tively [31]. However, the signature size of SPHINCS™-f is
much longer than that of SPHINCS™-s mode. In addition,
SPHINCS™ is subdivided into robust model and simple model,
depending on whether or not random values are used as mask
to XOR the input message of the hash function. The definitions
of all parameters are provided in the preceding section. A
variety of hash functions can be employed to construct distinct
SPHINCS™ instantiations. In the SPHINCS™ reference code,
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the underlying hash functions selected are SHA-256, SHAKE-
256 and Haraka. In this paper, we select the simple and
fast mode for our implementation, and the underlying hash
function is SHA-256. However, our scheme is equally effective
in all modes.

III. OPTIMIZED IMPLEMENTATION OF SPHINCS* oN
GPU

The detailed optimization strategies of SPHINCS™ on GPU
are discussed in this section. Firstly, parallel strategy analyses
were conducted in various aspects based on the SPHINCS™
signing process. Then, based on previous analyses, parallel
strategies for the SPHINCS™ signing process aimed at maxi-
mizing throughput and minimizing latency are proposed. Sub-
sequently, we analyzed the process of SPHINCS™ signature
verification and proposed our parallel scheme for signature
verification. Finally, we introduce the other optimization strate-
gies we employed.

A. Analysis of parallel strategies in different aspects for
SPHINCS™ signature generation

When utilizing GPUs to execute large-scale computing
tasks, an intuitive strategy is to assign an independent task
to each thread for processing. The advantage of this approach
lies in its ability to fully utilize GPU thread resources with-
out causing thread wastage, thereby achieving exceptionally
high throughput. However, due to the limited computational
capability of individual threads, this method often results in
significant task processing latency. This issue is particularly
pronounced in tasks like SPHINCS™ signature generation,
which inherently have low computational efficiency. The sub-
stantial latency caused by single-threaded processing is often
unacceptable in practical applications. Therefore, to achieve
both high throughput and low processing latency, it is essential
to adopt a parallel computing approach where a single task is
divided among multiple threads for collaborative processing.
In this section, we explore the feasibility of partitioning tasks
across multiple aspects for parallel computation during the
SPHINCS™ signature generation process.

;3 : Node Merging

D : Leaf Gen

Synchronize

(ady | ud, ) (Cidy T ids ] (4d, ] 4ds) ((4ds ] 4d; )

Fig. 3. Merkel tree parallel

1) FORS: As illustrated in Fig. 1, FORS is composed of
k independent subtrees that can be computed in parallel. A
natural approach is to utilize ¢ threads for the computation
of each subtree. Fig. 3 presents a simple example of multiple

sigy = H™0(skq)

sigy = H™(sk;)

sigy = H™2(skq) ‘

sig) = H™1(sky)

‘ sko ‘ sk ‘ sk ‘

(a) Signature Generation

\ PK = H(pkollphi|lpk: - - [[p) |

x x

[ ko = " (akg) [ ks = " aky) [k = oy

‘ Sko ‘ Skl ‘ Skz ‘

(b) Public Key Generation

Fig. 4. WOTS™T

threads computing a single tree of height 3 in parallel. It can
be observed that for a tree of height &, during the computation
of the root node, the number of node merging processes per
layer decreases incrementally from 2"~ at the lowest layer
to 1 at the topmost layer. Thus, we can infer the conclusion
that, for ¢ > 1, the process of root node computation (node
merging) leads to inefficient thread utilization. Furthermore,
Additionally, to ensure the correctness of the computation
process, h synchronizations are required between different
threads during the computation, which introduce additional
overhead and affect overall computational efficiency. There-
fore, to maximize throughput, we should set ¢ = 1, meaning
that each subtree is computed by a single thread. However, if
the objective is to minimize latency, ¢ should be as large as
possible to reduce the computational workload for each thread.

2) Hypertree: As illustrated in Fig. 2, the hypertree consists
of d layers. The selected MSS leaf nodes at the upper layer
sign the MSS root nodes located in the layer below using
WOTS™. We explored possible parallel strategies from two
different perspectives.

o In WOTS™, there are ! blocks, as shown in Fig. 4, in
the context of the WOTS™ key generation and signing
process, each WOTS™ block can be processed by a single
thread. However, since the WOTS™ public key is derived
by compressing the public keys of each block, and this
compression process requires only one thread, it results in
thread wastage. Furthermore, as shown in Fig. 3, thread
wastage also occurs when computing the MSS tree. The
parallel strategy in this dimension is not suitable for
maximizing throughput.

o According to the analysis in [21], we can achieve parallel
computation across the layers by first computing the MSS
trees at each layer of the hypertree and then generating
WOTS™ signatures based on the root node of MSS tree.
As depicted in Fig. 3, and similarly to FORS, we can
utilize t threads to compute each layer, setting ¢ > 1
leads to thread wastage. To achieve maximum throughput,
t should be set to 1 in this context as well.
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B. The SPHINCS* signing implementation to maximize
throughput

1) Differences from the prior work: To maximize the
throughput of parallel computing, it is crucial to design par-
allelization strategies tailored to the specific characteristics of
each computational module, thereby minimizing idle threads
during execution. However, as discussed in section II-B,
the computational patterns of the individual submodules in
SPHINCS™ vary significantly, making it highly challenging
to develop a unified and efficient parallelization strategy that
works across all submodules. To address this issue, Kim et al.
[21] proposed a method that employs multiple CUDA kernels,
with each kernel dedicated to handling the computational
tasks of a specific submodule. Their approach allows for the
parallelization strategy to be customized to the unique require-
ments of each submodule. While effective in optimizing the
performance of individual submodules, this method requires
intermediate results to be exchanged between submodules,
necessitating data transfers across different CUDA kernels.
[21] implemented these data exchanges using global memory,
the high latency of global memory access inevitably introduces
additional overhead.

To overcome these limitations, we propose a technique
called kernel fusion, which consolidates the computations of
all submodules into a single CUDA kernel. This approach
eliminates the performance overhead caused by inter-kernel
data exchanges. However, achieving this requires the devel-
opment of a universal parallelization strategy that can accom-
modate the diverse computational patterns of all SPHINCS™
submodules.

2) Our parallel computing srategy: CUDA software is
executed as a grid on a GPU and a grid is configured with
CUDA blocks (Each CUDA block has multiple threads),
which means we can generate signatures for a number of
messages at once and each message can be processed with
multiple threads. The number of threads used to process each
message, which we refer to as the thread configuration, can
significantly impact performance. Therefore, we need to find
the optimal configuration to achieve the best performance.
It is important to emphasize again that our implementation
utilizes only a single CUDA kernel, which means that the same
thread configuration is used across all submodules throughout
the entire SPHINCS™ signing process. Based on the analysis
results from section III-A, we designed a parallel strategy for
SPHINCS™ that can achieve the highest throughput.

TABLE III
THREAD CONFIGURATION FOR SPHINCS™ SIGNATURE GENERATION

Security level l d l k l CUDA Threads
Level 1 22 33 11
Level 3 22 33 11
Level 5 17 35 18

Table III shows the thread configurations for our high-
throughput SPHINCS™ signing implementation at various
security levels. As previously analyzed, to maximize signature
generation throughput, we allocate one thread to each layer in

D WOTS+ Sign Node Merging

tidiq L, : layer x of the hypertree

og o

L1y 414
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Fig. 5. HT parallel
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Fig. 6. FORS parallel

the hypertree and each subtree in FORS. Assuming the number
of threads used to generate a single signature is ¢, as illustrated
in Fig. 5, it can be deduced that, to minimize thread wastage,
a multiple of ¢ should approximate the number of layers (d)
in the hypertree. Similarly, as depicted in Fig. 6, a multiple
of ¢ should approximate the number of subtrees (k) in FORS.
It is worth noting that due to the hypertree being the most
time-consuming step in the SPHINCS™ signature generation,
our thread configuration prioritizes satisfying the requirements
of the hypertree.

Fortunately, at security levels 1 and 3, the values of d and
k are 22 and 33 respectively, with a greatest common divisor
of 11. This allows us to use 11 threads to perform two rounds
and three rounds of computation for hypertree and FORS,
respectively, without any thread wastage. However, at security
level 5, the values of d and k& are 17 and 35, we use 18 threads
to generate a signature, which will result in a wasted thread in
the computation of the hypertree. The advantage of our parallel
strategy is that it ensures that latency is within an acceptable
range while maximizing throughput.
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C. The SPHINCS™ signing implementation to minimize la-
tency

In contrast to the preceding section, the objective of this
section is to minimize the latency. Rather than focusing on
preventing thread wastage, the optimisation strategy will seek
to maximise parallelism. As previously mentioned, the hyper-
tree is the most time-consuming step of the entire SPHINCS™
signature generation process. The computation of the hypertree
involves two steps: first, the MSS tree computation, which
includes the highly time-consuming generation of Merkle tree
leaves (i.e., WOTS™ key pair generation) and the less time-
consuming computation of authentication path; second, the
WOTS™ signature generation, which is relatively less time-
consuming compared to the MSS tree computation. Therefore,
it is crucial to utilize a sufficient number of threads to ensure
that the generation of all Merkle tree leaves in the hypertree
can be completed within a single round of computation. Table
IV shows the thread configuration for each part of low-latency
SPHINCS™ signing implementation.

TABLE IV
THREAD CONFIGURATION FOR LOW-LATENCY SIGNING

Submodule CUDA Threads
WOTS key pair generation d-1-24
WOTS signature generation d-l
MSS authentication path computation d- 2%
FORS key pair generation k-t
FORS authentication path computation k-16

1) Parallel method for hypertree: As previously stated,
hypertree is comprised of two distinct components: MSS and
WOTS™ signing. Consider the structure of MSS tree. Since
each selected MSS tree in each layer of the hypertree has
a height of % and there are d layers, a total of d - 2
leaf nodes need to be computed. The message lengths for
security levels 1, 3, and 5 are 128 bits, 192 bits, and 256
bits. Thus, the number of divided parts (I) that need to be
computed in each leaf are 35, 51, and 67, respectively. We
need to simultaneously compute WOTS™ key pair for the
leaf nodes of the selected MSS tree at each layer in the
hypertree. Thus, d - [ - 24 threads are required to compute the
process of WOTS™ key pair generation in all layers in parallel,
to illustrate, for security level 1, a total of 6160 threads
were utilized. Fig. 7 depicts of our method for parallelizing
WOTS™ key pair generation at security level 1. We also
aim to achieve maximum parallelism in the remaining steps.
Therefore, for the authentication path computation in the MSS
and the generation of WOTS™ signatures, we adopted the same
parallelization strategy as described in [21].

2) Parallel method for FORS: Consider the structure of
FORS, containing % subtrees with heights of a. The compu-
tation of each subtree is independent of each other, so each
subtree can be computed in parallel. The computation process
of subtree is similar to that of MSS tree, the difference lies in
the way leaf node key pairs are generated. But in the same way,
The generation of leaf nodes and authentication path compu-
tation is applicable to a range of parallel strategies. FORS
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Fig. 7. WOTS™ key pair generation

contains k -t leaf nodes, for example, at security level 1, there
are 2112 leaf nodes. Given that we have sufficient threads,
we can generate key pairs for all leaf nodes simultaneously in
a single round of computation. In contrast to the generation
of leaf nodes, the computation of the authentication path is
less time-consuming and fewer threads are required. To enable
more efficient intra-block synchronization instead of inter-
block synchronization, the computation of the authentication
path is performed by a single block. In our implementation,
we use 16-k threads to compute the verification paths. That is,
every 16 threads are grouped to compute authentication path
of a subtree in FORS, and £ groups of threads are performed
simultaneously. Fig. 8 depicts the process of computing FORS.

D. The SPHINCS™ signature verification Implementation for
maximizing throughput

This section begins by analysing the differences between
the SPHINCS™ signature generation process and the signature
verification process. It then demonstrates that the parallel
strategy employed for the signature generation process is
not applicable to the signature verification. Finally, we an-
alyzed the feasibility of parallelizing SPHINCS™ signature
verification and introduce our implementation for signature
verification with maximum throughput.

1) Differences from the signature process: In the context
of SPHINCS™ signature verification, the verifier does not
possess the private key. The verifier derives the public key
from the message and the signature, then compares it with
the public key of the signer to verify the authenticity of the
signature. During the SPHINCS™ signing process, the signer
utilizes the SPHINCS™ private key seed to generate all leaf
nodes for the FORS subtrees and MSS trees and subsequently
computes the root node values in a bottom-up manner. In
contrast, the verifier does not generate all leaf nodes; rather,
it derives the necessary leaf node value from the signature
and utilizes the authentication path to compute the root node
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value. Given that the generation of FORS and MSS tree leaf
nodes consumes approximately 90% of the total time for the
SPHINCS™ signing process, the verification of a SPHINCS™
signature is considerably more efficient than its generation.

l PK = Hash(pko||pk; - - - |[pk1)

& :Node Merging | Sigo | 5ig1 | . | sigr |
O

:WOTS+ Verification

Fig. 9. MSS Verify in hypertree

2) The feasibility of parallelizing SPHINCS™ signature ver-
ification: Given that Merkel tree constitutes the fundamental
structure of FORS and hypertree, We first analyze the signature
verification process of Merkel tree. This process comprises two
distinct phases. Initially, the public key value of the leaf node
is derived based on the signature. Subsequently, the root node
value of Merkel tree is determined through the application of
the aforementioned public key value in conjunction with the
authentication path. Each subtree of FORS and each selected
tree of each layer of hypertree are Merkel tree structure. We
can analyze the potential for parallelizing signature verification
from three different perspectives: intra-leaf parallelism, intra-
tree parallelism, and inter-tree parallelism.

o For hypertree, as shown in Fig. 9, public key of the
leaf node is derived from [ data blocks in the signa-
ture through hash function computation. This allows for
the utilization of multiple threads to compute the leaf
node, with each thread responsible for processing one
of the data blocks. Nevertheless, this approach requires

the utilization of global memory to temporarily store
the computation results of each thread, enabling the
derivation of the public key. This, in turn, increases the
memory access time. Additionally, within each MSS tree,
the root node is computed by sequentially combining leaf
nodes and the data blocks along the authentication path,
which is inherently a serial process and does not lend
itself to parallel computation. As previously mentioned,
SPHINCS™ signature generation can be applied in the
parallel scheme of the hypertree layer. However, in the
SPHINCS™ signature verification process, the feasibility
of hypertree layer parallel scheme should be considered.
In i*" the layer of the hypertree, the computation of leaf
node public key values depends on the signature and the
root node values of the (i —1)*"* layer MSS tree. The root
node values of the (i —1)* layer MSS tree, subsequently,
hinge on the public key values of the (i — 1)*" layer leaf
nodes, and this dependency continues recursively. This
inherent sequential nature precludes parallel computation
across different layers or trees within the hypertree.

o For FORS, the public key value of leaf node is com-
puted by hashing a single data block from the signature,
eliminating the necessity for parallel computation using
multiple threads. Given that each subtree is a Merkle
tree, parallel computation within each subtree is similarly
infeasible, as analyzed in the context of hypertree. How-
ever, FORS is constructed from % independent subtrees,
allowing for the utilization of multiple threads across
subtrees, with each thread responsible for the computation
of a single subtree.

3) Parallel method for signature verification: Similar to
the signature generation process, the signature verification is
also performed within a single CUDA kernel. To maximize
throughput, each signature verification process is handled by
a single thread. This approach represents a simple yet highly
efficient parallel strategy.

As analysed in the previous section, there are k& MSS
structures in FORS that can be computed in parallel, and
d MSS structures in hypertree that cannot be computed in
parallel. Within the MSS of hypertree, the generation of the
public key for leaf nodes can be computed in parallel using
multiple threads. However, this approach cannot be applied to
the computation of the root node, as the computation of the
root node is a serial process. To elaborate further, utilizing
multiple threads for the computation of MSS leaf nodes will
lead to inefficient resource usage during the root node com-
putation. Moreover, synchronization between different threads
entails additional performance overhead. Consequently, it can
be anticipated that an increase in the number of threads will
result in a decrease in throughput. Therefore, we use only one
thread to process a signature verification process to achieve
maximum throughput. However, this approach results in higher
latency than simultaneous computation by multiple threads.
Fortunately, as previously mentioned, the latency of the signa-
ture verification process in SPHINCS™ is considerably lower
than that of the signing process, and we consider the latency of
using a single thread for signature verification to be acceptable.
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E. Other Optimization Methods

1) Optimization of the hypertree Computation Process:
As depicted in Fig. 2, for each layer of the hypertree, the
computation begins with the selection of leaf node, followed
by the generation of WOTS™ signature for the root node of
its underlying layer. Subsequently, the public key of the leaf
node is computed, thus deriving the root node value of the
MSS tree for the current layer. Fig. 4 elucidates that the
generation process of WOTS™ signature can be considered
an intermediate step in the public key generation process.
Consequently, if the message to be signed by the current layer
(i.e., the root node of the underlying layer) can be determined
beforehand, the generation of leaf node public keys and the
WOTS™ signing process can be combined. This integration
obviates the need for separate WOTS™ signature generation,
thereby enhancing efficiency.
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Fig. 10. Comparison of the Original Method and Our Method

Fig. 10 compares the original computation method with our
proposed method. On average, the generation of a WOTS™
signature requires “’T’l -1 hash operations. By implementing
our method, this part of the operations can be eliminated,
leading to a reduction in the overall number of hash operations
required at each layer of the hypertree. For the leaf nodes
executing WOTS™ signature generation, this method can re-
duce the number of hash operations by approximately 33%
across different security levels. Our method is effective for
both CPU and GPU implementations. On the CPU, hypertree
computation follows a sequential process. As each layer is
computed, its respective underlying root nodes have already
been derived. This enables us to integrate the WOTS™T sig-
nature generation with the leaf node public key generation,
reducing the frequency of WOTS™ signature generation from
d to 0. For GPU implementation, as shown in Fig. 5, each
thread processes consecutive layers in the hypertree. With the
exception of the initial layer, every thread can access the root
nodes of the underlying layer during its computation. Each
thread can employ our method, decreasing the total number
of WOTS™ signature generations from d times to ¢ times.

2) Optimized Memory Access: Ensuring coalesced memory
access is vital for optimizing performance in applications
developed on GPU architectures. It involves efficiently using
the memory bus to minimize the number of memory accesses,
thereby significantly reduce the time spent on memory read
and write operations. In GPUs, conventional memory access
operations read or write only one byte at a time, leading
to significant underutilization of the memory bus. For the
three security levels of SPHINCS™, the sizes of the data

blocks are 16 bytes, 24 bytes, and 32 bytes, respectively. If
conventional memory access operations are used, it would
require 16, 24, and 32 operations to read or write a single
data block, respectively, resulting in substantial time wastage.
CUDA provides special instructions to facilitate data access,
including INT, INT2 and INT4 instructions. By using the INT,
INT2 and INT4 instructions, the computing program can read
or write 4, 8, and 16 bytes of data at a time. These particular
instructions, which read multiple bytes at a time, are faster than
ordinary data access instructions. For security levels 1 and 5,
we employ the INT4 instruction for memory access, allowing
each data block to be read or written in 1 and 2 operations,
respectively. However, for security level 3, due to the 24-byte
size of the data blocks, utilizing the INT4 instruction would
result in memory misalignment. To address this, we use the
INT2 instruction, which requires 3 operations for each data
block read or write.

IV. RESULT AND ANALYSIS
A. Implementation Results

In this section, we present a comprehensive performance
analysis, comparing our implementation with previous imple-
mentations. We begin by detailing the experimental environ-
ment and setup used for our performance evaluations. Sub-
sequently, we exhibit the throughput of our high-throughput
SPHINCS™ implementation, benchmarked against existing
implementations: NIST PQC project SPHINCS™ reference C-
language-based code (version 3.0) [31], SPHINCS implemen-
tation on GPU [20], SPHINCS ™' implementations on GPU [21]
and FPGA [22], [23]. Additionally, we analyze the latency
of our low-latency SPHINCS™ implementation, comparing it
with the CPU reference code and the scheme proposed by
Kim et al. [21]. Lastly, we present the throughput of our
SPHINCS™ signature verification implementation and com-
pare it with the prior works.

B. Our Experimental Environment

A variety of hash algorithms can be employed to gener-
ate distinct SPHINCS™ instances, the hash function of our
implementation is SHA-256. In our performance test, each
experiment was performed 1000 times and the average value
is presented. The hardware environment of the GPU is an
RTX 4090. Given that the RTX 4090 platform contains 128
multiprocessors, we set the size of block to 128 in order to
fully utilize the computational resources of GPU. The software
environment is Linux operating system and NVCC compiler.
The hardware environment of the CPU is a AMD Ryzen5
5600G. The performance of CPU reference code is measured
on a single core. In our analysis, two performance metrics
are considered: throughput and latency. Throughput is the
amount of computed instances within a time unit, e.g., how
many signatures can be generated in one second. Hereafter, let
operations per second (ops/s) denote this metric. The latency
of our CUDA implementation includes only the CUDA kernel
execution time, excluding the memory copy time between the
CPU and GPU. This is because the copy time is influenced by
various factors such as CPU memory and PCI-E, which are
unrelated to the parallel optimization strategies of the GPU.
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TABLE V
COMPARISON OF SIGNATURE GENERATION THROUGHPUT ON OUR WORK WITH THE RELATED WORK

Security Level
Version | Hash Algorithm Platform Level 1 Level 3 Level 5
Maximum Ratio Maximum Ratio Maximum Ratio
Throughput Throughput Throughput
[31] SHA-256 Ryzen5 5600G 40 1 26 1 13 1
[22] SHA-256 Xilinx XZU3EG 15.54 0.39 - - 5.02 0.39
[23] SHAKE-256 Artix-7 990.10 24.75 854.70 32.87 396.82 30.52
[20] ChaCha GTX 1080 5152 128.8 - - - -
21] SHA-256 RTX 3090 44391* 1109.78 24997* 964.42 11401* 877.00
RTX 4090 106631 2665.78 46127 1774.12 25578 1967.54
GTX 1080 19405 485.12 9544 367.08 4481 344.69
Ours SHA-256 RTX 3090 53961* 1349.10 31257* 1202.19 14824* 1140.31
RTX 4090 146363 3659.08 82621 3177.73 40489 3114.54
* means that the memory copy time is calculated
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Fig. 11. Peak performance of signature generation across different grid size

C. SPHINCS™ Signature Generation Performance Analysis

Fig. 11 presents the peak performance of our implemen-
tation for SPHINCS™ signature generation on the RTX 4090
across varying grid sizes at different security levels. At security
level 1 (resp. 3 and 5), our implementation generates 146363
(resp. 82621 and 40489) SPHINCS™ signatures per second on
the RTX 4090. It is evident that as the grid size increases, the
latency gradually rises while the throughput correspondingly
improves, reaching its peak at a grid size of 128 % 512.

Fig. 12 illustrates the throughput and latency of SPHINCS™
signature generation for various thread configurations on the
RTX 4090 at three security levels within a grid size of
128 % 512. It can be observed that the algorithmic processing
with 11 (resp. 11 and 18) threads exhibited the highest
throughput performance at security level 1 (resp. 3 and 5).
As previously indicated, these thread configurations result in
minimal thread wastage during the signing process. Employing
diverse thread configurations for signature generation induces
variations in both latency and throughput. An increase in the
number of threads correlates with reduced latency. Therefore,
appropriate thread configurations can be selected based on the
specific requirements for throughput and latency in real-world
application scenarios.

Table V presents the peak throughput of various implemen-
tations of SPHINCS/SPHINCS™ signature generation across
diverse hardware platforms. The reference code running on
the CPU is utilized as the baseline, and the Ratio represents

Grid Size

128*256 128*512 128*64 128*128 128*256 128*512

Grid Size

the ratio of peak throughput to baseline throughput for each
implementation.First, we compared the performance of our
SPHINCS™ signature generation on the RTX 4090 to the
baseline. It was observed that the SPHINCS™ signature gen-
eration performance improved by a factor of 3659.08 x (resp.
3177.73x and 3114.54 %) at security level 1 (resp. 3 and 5)
compared to the baseline.

Amiet et al. [23] optimized SPHINCS™ on the FPGA
Artix-7. Despite the fact that their implementation utilized
the SHAKE-256 hash function while our implementation
employs the SHA-256 hash function, the disparity in the
signature generation performance is significantly greater than
the difference in performance between the two hash functions.
On the RTX 4090, our implementation achieves performance
improvements of 147.83x, 96.67x, and 102.03x across the
three different security levels, respectively, compared to the
work by Amiet et al. [23]. Berthet et al. [22] proposed a
SPHINCS™ implementation method in Xilinx XZU3EG de-
vices. Compared to their implementation, our approach on the
RTX 4090 achieves performance enhancements of 9418.47 x
and 8065.53 % at security levels 1 and 5, respectively.

Sun et al. [20] proposed a parallel scheme for SPHINCS on
GPU, implementing SPHINCS-256, which offers 128-bit se-
curity strength against quantum computers [32], equivalent to
the security strength of SPHINCS™ at security level 1. Despite
structural differences between SPHINCS and SPHINCS™, the
performance bottleneck in both is rooted in the WOTS™-
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Fig. 12. Performance of signature generation in different thread configuration

based MSS. Therefore, we also compared our implementation
with theirs. On the GTX 1080, our implementation achieved
a performance improvement of 3.77x at security level 1
compared to their work [20].

Kim et al. [21] proposed a parallel scheme specifically
designed to maximize throughput on various GPU architec-
tures, achieving the highest throughput currently reported.
Their performance metrics diverge from ours because the
latency in their CUDA implementation encompasses not only
kernel execution time but also includes memory copy time.
Although a direct comparison with the data presented in their
paper is not feasible, their implementation is open source,
allowing us to conduct our own evaluations. On the RTX 4090,
excluding memory copy time, their implementation achieves
a throughput of 106,631 (resp. 46127 and 25578) ops/s at
security level 1 (resp. 3 and 5), whereas our implementation
attains a throughput of 146,363 (resp. 82621 and 40489) ops/s,
reflecting a 1.37x (resp. 1.79x and 1.58x) improvement.
When accounting for memory copy time, at security level
1 (resp. 3 and 5), the throughput of their implementation
is 86,412 (resp. 39483 and 23876) ops/s, compared to our
throughput of 117,723 (resp. 65128 and 35510) ops/s, rep-
resenting a 1.36x (resp. 1.65x and 1.49x) enhancement.
Furthermore, on the RTX 3090, to facilitate comparison with
the data reported in their paper, we evaluated the performance
of our implementation including memory copy time. At se-
curity level 1 (resp. 3 and 5), their implementation yields a
throughput of 44,391 (resp. 24997 and 11401) ops/s, while
our implementation achieves 53961 (resp. 31257 and 14824)
ops/s, marking an improvement of 1.22x (resp. 1.25x and
1.30%).

The low-latency implementation, at security level 1, with
a grid size of 128 % 512, has a throughput of 19521 ops/s
and a latency of 0.512 ms. The signature latency of the CPU
reference code for SPHINCS™ is 25 ms, and the throughput
is 40 ops/s. The performance of the system was enhanced
by 48.8x and 488.03x in terms of latency and throughput,
respectively. Compared to Kim et al. [21] on the RTX 4090.
Their SPHINCS™ signature generation has a throughput of
106631 ops/s and a latency of 4.8 ms at security level 1. Our
implementation demonstrates a 5.5x decrease in throughput
and a 9.4x reduction in latency.

Thread Configuration
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Thread Configuration

D. SPHINCS™ Verification Performance Analysis

Fig. 13 illustrates the peak performance of our SPHINCS™
signature verification implementation on the RTX 4090, eval-
vated across various grid sizes at distinct security levels.
Specifically, at security level 1 (resp. levels 3 and 5), our im-
plementation can verify 1499590 (resp. 1408846 and 886361)
SPHINCS™ signatures per second on the RTX 4090. The
data demonstrates a clear trend: as the grid size expands,
the latency exhibits a gradual increase, while the throughput
concurrently enhances, ultimately reaching its peak at a grid
size of 128 * 512.

Fig. 14 presents the throughput and latency for SPHINCS™
signature verification under various thread configurations
across three security levels on the RTX 4090. The data reveal
that single-threaded execution consistently achieves the highest
throughput across all security levels. Conversely, increasing
the number of threads results in decreased latency and reduced
throughput. As previously demonstrated, single-threaded ver-
ification optimizes efficiency by minimizing thread wastage.
One intriguing phenomenon is that the peak throughput of sig-
nature verification at Level 3 and Level 5 does not significantly
differ. Upon analysis, during the FORS signature verification
stage, each subtree requires running the hash function once to
compute the public key of leaf from the signature and a times
to compute the root node. Thus, FORS requires running the
hash function (a + 1) - k times in total. During the hypertree
verification stage, for each layer, calculating the MSS tree
leaf’s public key from the signature requires running the hash
function an average of (“’T’l -1+1) times, and computing the
root node requires % hash operations. Therefore, the hypertree
requires a total of ((“5% -1+ 1) - d + h) hash operations.
According to the parameters provided in Table II, verifying at
Level 3 requires an average of 8800 hash operations, while
verification at Level 5 necessitates an average of 8977.5 hash
operations, which are very close.

As illustrated in Table VI, our SPHINCS™ verification per-
formance results on the RTX 4090 environment demonstrated
performance improvements of 2029.22x (resp. 1897.76x and
1820.05x) at security level 1 (resp. 3 and 5), compared to the
C reference code on CPU. On the GTX 1080, our implementa-
tion achieved a performance improvement of 1.19x at security
level 1 compared to the work of Sun et al. [20]. Compared
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TABLE VI

Thread Configuration

COMPARISON OF SIGNATURE VERIFICATION THROUGHPUT
ON OUR WORK WITH THE RELATED WORK

Security

Maximum

. Hash .
level ‘ Version Algorithm ‘ Flatform ‘ Throughput ‘ Ratio
[31] SHA-256 Ryzen5 5600G 739 1
[20] ChaCha GTX 1080 106390 143.96
Level 1 [21] SHA-256 RTX 4090 980092 1326.24
GTX 1080 127034 171.90
Ours | SHA-256 | —prx 4090 1499590 | 2029.22
[31] SHA-256 Ryzen5 5600G 492 1
Level 3 [21] SHA-256 RTX 4090 518044 1052.93
- Ours SHA-256 GTX 1080 71298 144.91
RTX 4090 933696 1897.76
[31] SHA-256 Ryzen5 5600G 487 1
Level 5 [21] SHA-256 RTX 4090 257286 528.31
Ours SHA-256 GTX 1080 70547 144.86
RTX 4090 886362 1820.05

to Kim et al.’s work [21], our SPHINCS™ verification per-
formance results on the RTX 4090 environment demonstrated
performance improvements of 1.53 x (resp. 1.80x and 3.45X%)
at security level 1 (resp. 3 and 5).

V. CONCLUSION

This paper presents an optimized implementation of

been proposed and further optimized by leveraging the ca-
pabilities of GPU and CUDA. Extensive experiments and
comprehensive performance analyses demonstrate that, com-
pared to previous works, including the SPHINCS™ CPU
reference implementation, GPU implementation, and FPGA
implementation, our proposed parallel strategies significantly
enhance the performance of SPHINCS™ signing and veri-
fication. Consequently, our research meets the demand for
improved SPHINCS™ performance in various application sce-
narios, benefiting service providers and security protocols.
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