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Abstract—Privacy is a major concern in large-scale
digital applications, such as cloud-computing, machine
learning services, and access control. Users want to
protect not only their plain data but also their associated
attributes (e.g., age, location, etc). Functional encryption
(FE) is a cryptographic tool that allows fine-grained
access control over encrypted data. However, existing
FE fall short as they are either inefficient and far from
reality or they leak sensitive user-specific information.

We propose SACfe, a novel attribute-based FE
scheme that provides secure, fine-grained access control
and hides both the user’s attributes and the func-
tion applied to the data, while preserving the data’s
confidentiality. Moreover, it enables users to encrypt
unbounded-length messages along with an arbitrary
number of hidden attributes into ciphertexts. We design
SACfe, a protocol for performing linear computation on
encrypted data while enforcing access control based on
inner product predicates. We show how SACfe can be
used for online biometric authentication for privacy-
preserving access control. As an additional contribu-
tion, we introduce an attribute-based linear FE for un-
bounded length of messages and functions where access
control is realized by monotone span programs. We
implement our protocols using the CiFEr cryptographic
library and show its efficiency for practical settings.

1. Introduction

Functional Encryption (FE) is a cryptographic
primitive that allows fine-grained access control over
encrypted data. Unlike the traditional all-or-nothing
encryption, FE allows to recover specific functions
of the input messages with secret keys associated
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to these functions. Specifically, an FE scheme that
allows to evaluate a set of functions F on its input
messages, issues secret keys SKf corresponding to
specific functions f ∈ F . If CTm denotes a ciphertext
that encrypts a message m, then decrypting CTm with
a secret key SKf reveals f(m). The security of an FE
scheme ensures that no information apart from f(m)
is revealed from SKf ,CTm about the message m.

Functional Encryption for Inner Products. Al-
though there have been significant efforts [17], [21]
on constructing FE schemes for general functional-
ities, they rely on complex tools, assumptions, and
hence, are far from reality. As a result, there is more
focus on constructing FE schemes for specific func-
tionalities like linear or quadratic functions [3], [7],
[8], [38]. In this paper, we focus on linear functions,
more specifically inner product functional encryption
(IPFE). In an IPFE scheme, the ciphertext CTx and
the secret key SKy are computed for message and
key vectors x, y respectively and decryption of CTx

with SKy recovers the inner product ⟨x,y⟩. The
linear functionality, although simple, already captures
a wide range of applications in the domain of cloud
computing [3], [33], [36], machine learning [11], [27],
[39] and federated learning [11], [39], [40]. However,
the main limitation of an IPFE system is that each
secret key inherently leaks new information about
the plain message. Specifically, if an IPFE scheme
encrypts messages of length n then releasing n secret
keys corresponding to vectors forming a basis of
the message space enables complete recovery of the
plaintext.

Access Control over IPFE. To address the inherent
leakage of IPFE, Abdalla et al. [4] proposed a novel
approach that embeds access policies in the secret
keys and user attributes in the ciphertext while also
facilitating the computation of weighted sums on



the data. They named the primitive attribute-based
IPFE or AB-IPFE which provides access control by
attribute-based encryption (ABE) [19] and performs
linear computation on the encrypted data akin to
IPFE. More formally, a secret key is now additionally
associated with an access policy P and an input
message is encrypted under user-specific attributes
att. The recovery of ⟨x,y⟩ now depends on whether
the user’s attributes att satisfy the policy P , i.e., when
P (att) = 1. For example if the list of attributes are
att = {age, location, smoking}, an example of policy
P could be ‘(age > 18 AND location = Europe OR
Smoking = yes)’.

Previous works [4], [25], [32] have presented
various constructions of AB-IPFE, however these are
solely focused on hiding only the message vectors. In
contrast, several ABE and AB-IPFE schemes are built
[10], [15], [20], [23], [31] under the name of predicate
encryption or predicate based IPFE with a focus
on hiding attributes (or predicates) associated with
ciphertexts since attributes may reveal sensitive infor-
mation such as user’s identity, credit card information,
health-related contents. On the other hand, hiding the
function f or the weight vector y in an IPFE system
turns out to be crucial in several applications related
to biometric authentication, nearest neighbour search
on encrypted data and privacy-preserving machine
learning [9], [12], [24], [33]. In the context of privacy
preserving biometric authentication, f corresponds to
the reference biometric template of the client that
is collected at the time of registration and stored
in a remote server. At the time of authentication,
a live biometric template of the client is collected
and compared with the reference template. This is
usually done by a third party service provider and
giving the biometric templates in clear could lead to
identity theft. Therefore, we need to hide both the
reference and the live templates of the client from
the server. This is achieved by using a function-hiding
IPFE scheme.

Furthermore, in almost all applications of IPFE,
secret keys SKy are sent to a public server to enable
the decryption of ciphertexts by the cloud and, in fact,
this has been one of the main motivations for using
IPFE in place of a more complex and less efficient
tool called Fully Homomorphic Encryption (FHE)
[18], particularly in tasks such as training machine
learning models [27], [33], [39] or privacy-preserving
biometric authentication [24]. A crucial difference
between FHE and FE lies in their decryption process:
FHE requires the (master) secret key for decryption,
whereas FE can generate decryption keys tailored
to reveal specific plaintext information. In privacy-
preserving biometric authentication, the use of FHE
presents challenges because the server requires the
secret key to decrypt the authentication decision. This
is because the result of the evaluation of a function
on encrypted data is also encrypted in FHE. On

the contrary, functional encryption, particularly IPFE,
can send a functional decryption key to the server,
allowing it to learn computation results without need-
ing the master secret key for decryption. However,
there’s a concern that any information encoded into
the weight vector y, such as the activation function of
neural networks [33] or a live biometric template of
users [24], may be revealed to the server. Therefore,
it is crucial to preserve the privacy of user-specific
information along with plain data.

Unfortunately, existing AB-IPFEs which could
provide access control or better security than IPFE
cannot be used in the above-mentioned applications
since they are not designed to simultaneously hide
user-specific attributes and functions i.e., the weight
vectors y. This motivates the following question. Can
we ensure secure access control by protecting user-
specific information (i.e., attributes and functions) in
FE?

Our Contributions. We present SACfe a protocol
that guarantees secure access control by hiding (a)
user-specific attributes associated with the ciphertext
and (b) function embedded into the secret key of
an FE system. In particular, when a server receives
ciphertext CTx,att and secret key SKy,P (see Figure 1
where EK denotes the encryption key) the maximum
information it can extract about the message x, func-
tion y and attributes att is the inner product value
⟨x,y⟩ and P (att). More precisely, when employing
SACfe in the context of privacy-preserving attribute-
based biometric authentication, the message x denotes
the fresh biometric template, the attributes att could
include att = {age, location, paid subscription}, while
the reference template is associated with the vector y.
SACfe allows us to compute the distance between the
fresh and stored template i.e., ⟨x,y⟩, while hiding x,
y, the attributes of the users as long as the policy P is
satisfied i.e., P (att) = 1. This is done without setting
any limits on the length of x, y and the number of
associated attributes.

More precisely, in this paper, we construct SACfe
a protocol for inner product policies. We represent
the predicate P and attributes att as vectors v and w
respectively and the attributes are said to satisfy the
predicate if ⟨w,v⟩ = 0. It is called the zero-predicate.
We note that such an inner product predicate delivers
a wide variety of access control corresponding to
equality tests, disjunctions or conjunctions of equality
tests, polynomials, CNF/DNF formulae, or threshold
predicates [23], [26].

Additionally, the scheme supports unbounded
(i.e., unlimited) length vectors for accommodating
more data representing predicates, attributes, func-
tions and messages. By unbounded vectors we mean
that the sizes of those vectors are not fixed during the
system setup and the lengths of the vectors are known
only when they appear at the time of encryption or
key generation. The unboundedness property yields
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Figure 1. The general framework of SACfe

a more efficient system delivering constant size pub-
lic keys, input-specific (both message and attribute
vectors) ciphertext size and function-specific (both
function and predicate vectors) secret key size. It not
only enables a user to encrypt an arbitrary length
message vector but also a variable length attributes
can be associated with the ciphertext. We achieve full-
hiding indistinguishability based security with semi-
adaptive attributes under the standard and well-known
Symmetric eXternel Diffie-Hellman (SXDH) assump-
tion.

As an additional contribution, we present an un-
bounded AB-IPFE scheme supporting more expres-
sive access policies realized by monotone span pro-
grams [22]. The secret key size remains constant
with respect to the embedded function size. However,
we emphasize that in our second contribution i.e.,
the unbounded AB-IPFE scheme it only hides the
message vectors, but not the attributes and functions.
Finally, we have implemented both our schemes in
C using the CiFEr cryptographic library [27] and
analyse their performance in different conditions in
Section 6.

Applications: Secure & privacy-preserving Access
Control in Biometric Authentication. Let us con-
sider the scenario of a service provider that may
aim to replace password-based authentication with
a biometric authentication (BA) system to eliminate
password sharing and enforce access control based
on a user’s attributes. This could include services
such as purchasing online products (e.g., alcohol), ac-
cess streaming services (e.g. Netflix content), access
newspaper articles. It is very relevant to the recent
announcement1 made by the giant streaming platform
NETFLIX which is consistently putting some efforts
to stop password sharing. Unlike passwords, which
can be shared/changed if compromised, biometrics
are unique and permanent, making the breach of a
biometric database potentially more severe. In a BA

1. https://about.netflix.com/en/news/update-on-sharing-may-us

system, a live template of the user is compared against
a reference template stored in the server and suc-
cessful authentication is determined by a close match
between the two templates. In such applications, we
want to authenticate a user based on her biometrics
in a privacy-preserving way, while also checking that
a policy of attributes is satisfied; For instance, a
possible scenario is that we want to enable online
alcohol purchase for users who meet the following
criteria: they are at least 18 years old, they have a
paid subscription, they are located in Europe, and they
have no medical history of alcoholism.

However, biometric data as well as associated
attributes is highly privacy-sensitive, as it may reveal
sensitive information such as ethnic origin or health
conditions and therefore, should remain private. We
propose SACfe as a tool for implementing a BA sys-
tem which preserves the privacy of a user’s attributes
and biometric information. This scheme offers an
efficient and secure way to compute the distance be-
tween the reference and the live biometric templates
- without revealing the actual biometric information.
In addition to secure authentication, SACfe enables
content regulation based on specific attributes. In such
a BA system, during the enrollment or registration
phase, reference templates of users’ biometric data
(such as face, iris-scan, or fingerprint), are collected
from the user’s device, encrypted under the user’s
attributes (such as age, geographical location, IP ad-
dress, subscription plan) using SACfe and stored in
a database. During the authentication process, a live
biometric template is captured from the user’s device,
and a SACfe secret key corresponding to the live
biometric template and a certain policy is provided
to the user. Since the objective of this application is
to regulate content based on user attributes, the policy
can be defined as P : age > 18 and country located
in Europe. The user now sends the secret key to the
cloud server. The server can successfully compare
the already stored encrypted reference template with
the live template if the user’s attributes satisfy the
policy embedded into the secret key. Note that, the
server can only compute the (Hamming) distance
between the templates while remain oblivious about
the biometric templates since SACfe guarantees that
both the templates are encrypted in the ciphertext
and secret key respectively. Moreover, SACfe ensures
that the user’s attributes are hidden from the server
which only knows whether the policy is satisfied by
the attributes or not. Furthermore, the unboundedness
property of SACfe protocol allows the platform to
accommodate various biometric types for different
users and incorporate additional attributes for future
access control, ensuring the system’s scalability and
adaptability as the platform grows.

Related Works. The first IPFE schemes for un-
bounded length vectors are proposed simultaneously
and independently by Tomida and Takashima [37],
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TABLE 1. COMPARISON WITH EXISTING AB-IPFE

Work Access
Control Privacy Data Size

[4] MSP Msg bund

[28] MSP Msg bund

[15]
Z-IP Att, Msg Unbd
N-IP Att, Msg Unbd

Ours
Z-IP Att, Func, Msg Unbd
MSP Msg Unbd

• Z-IP,N-IP,MSP: zero inner product, non-zero inner prod-
uct, monotone span program.

• Att,Func,Msg: attribute, function, message.
• bund,unbd: bounded, unbounded.

and Dufour-Sans and Pointcheval [16]. The IPFEs
[16], [37] do not offer access control features like our
SACfe or unbounded AB-IPFE. An advanced variant
of IPFE with access control is built by Datta et al.
[14] which can handle unbounded length data, but it
neither hides the full attribute nor the function. Re-
cently, Dowerah et al. [15] constructed an unbounded
ZP-IPFE scheme relying on the SXDH assumption,
which hides attributes of the ciphertext, but secret
keys reveal the embedded function vectors. Therefore,
our SACfe ensures stronger security than [15] under
the same assumption and concurrently, it provides
better efficiency metrics than [15] as can be seen in
Table 3 and 4.

There are other variants of AB-IPFE explored
in the multi-users settings such as multi-client [5],
[28] and multi-authority [6], [13]. However, all these
works neither hide the users’ attributes nor user-
specific functions. Tomida [35] presented a partially
hiding unbounded quadratic FE scheme where only
a part of the function is hidden. Recently, Shi and
Vanjani [34] proposed a function hiding multi-client
IPFE without any access control. A comparison of
our scheme with existing AB-IPFEs is provided in
Table 1.

2. Technical Overview

2.1. SACfe: UZP-IPFE with Full-hiding Se-
curity

Our first contribution in this work is an un-
bounded inner-product IPFE with full-hiding security.
Given a ciphertext computed on two vectors (x =
(xi)i∈[m1],w = (wi)i∈[m2]) and a key generated for
two vectors (y = (yi)i∈Iy ,v = (vi)i∈Iv) where all
the vectors w,v,x,y are unbounded vectors defined
by their index sets [m1], [m2], Iy, Iv respectively, this
primitive computes ⟨x,y⟩ if R(w,v) = 1 (given by
⟨w,v⟩ = 0 in this case) and the index sets satisfy
a certain relation. Our construction achieves full-
hiding security in the so-called permissive setting [37]
which means that the index sets satisfy a permissive
relation. In other words, the index sets of the vectors

y and v are contained in the index sets of x and
w respectively. Before we describe the full-hiding
security model, we recall the permissive setting of
the vectors:

• x ∈ Zm1 ,w ∈ Zm2 .
• y = (yi)i∈Iy ∈ Z|Iy|,v = (vi)i∈Iv ∈ Z|Iv|.
• Permissive relation Rp: ((x,y), (w,v)) ∈ Rp if

and only if Iy ⊆ [m1] and Iv ⊆ [m2]. Then,
⟨x,y⟩ =

∑
i∈Iy

xiyi, ⟨w,v⟩ =
∑

i∈Iv
wivi.

Our work, for the first time in the literature,
considers unbounded ZP-IPFE (UZP-IPFE) with full-
hiding security (i.e. attribute-hiding and function-
hiding simultaneously). The channel of access con-
trol is kept secret from the server by hiding at-
tribute w in the ciphertext and hiding y in the se-
cret keys simultaneously. As discussed above, full-
hiding and unboundedness properties make ZP-IPFE
significantly more relevant in practice. We, therefore,
introduce FH-IND (Full-Hiding Indistinguishability)
security which allows all efficient adversaries to pose
challenges to both the encryption and key generation
oracles in an interleaved manner. That being said,
we mention that the FH-IND security in this paper
is non-adaptive in nature on the challenge attribute
vector w. In particular, the FH-IND adversary in
this paper, commits to a sequence of challenge at-
tributes {(w(0)

µ ,w
(1)
µ )}µ just after the setup phase.

The adversary is allowed to adaptively select many
functions of the form ((y

(0)
ℓ ,vℓ), (y

(1)
ℓ ,vℓ)) as a part

of key generation challenge and can also choose many
pair of challenge messages of the form (x

(0)
µ ,x

(1)
µ )

adaptively for encryption. Moreover, the adversary is
allowed to choose any arbitrary length vectors for
key generation and encryption oracles, but the vectors
appearing in the same pair must have the same index
sets. It is non-trivial and challenging to handle such
queries since we aim to achieve the unboundedness
property along with full security. As the challenger
returns a secret key on (y

(b)
ℓ ,vℓ) and a ciphertext

on (x
(b)
µ ,w

(b)
µ ), the adversary has to guess b chosen

uniformly at random by the challenger. To restrict the
adversary from trivially winning the security game,
if the queried vectors are permissive then they must
satisfy ⟨x(0)

µ ,y
(0)
ℓ ⟩ = ⟨x

(1)
µ ,y

(1)
ℓ ⟩ whenever it holds

that ⟨w(0)
µ ,vℓ⟩ = ⟨w(1)

µ ,vℓ⟩ = 0.

Construction Overview. The starting point of our
construction is the function-hiding unbounded (non-
attribute-based) IPFE of [37], which we call TT-
IPFE. TT-IPFE encodes a message vector x =
(x1, . . . , xm1) into ([[c1i ]]1)i∈[m1] and a key vector
y = (yj)j∈Iy into ([[k1

j ]]2)j∈Iy as

[[c1i ]]1 = [[(xi, 0, α, 0)Bi]]1, [[k
1
j ]]2 = [[(yj , 0, γj , 0)B∗

j ]]2

where Bi,B∗
i are the orthonormal bases of GL4(Zp)

and Bi encodes the ith component xi, B∗
j encodes the

jth component yj .
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A naive combination of two independent copies
of TT-IPFE— one strain encodes x to ([[c1i ]]1)i∈[m1]

and y by sky = ([[k1
j ]]2)j∈Iy whereas the sec-

ond strain encodes w to ([[c2i ]]1)i∈[m2] and v by
skv = ([[k2

j ]]2)j∈Iv— is insecure mainly due to
natural mix-and-match attacks. In particular, given
secret keys SKy,v = (sky, skv),SKz,u = (skz, sku)
for ((y, Iy), (v, Iv)) and ((z, Iz), (u, Iu)) respec-
tively, one can easily compute a legitimate secret key
SKz,v = (skz, skv) corresponding to the function
((z, Iz), (v, Iv)). The mixing of secret key compo-
nents would lead to an attack that breaks the security
of SACfe. To combine the two strains securely, a
secret share of zero is carefully distributed to bind the
secret key components [[k1

j ]]2 and [[k2
j ]]2. Although the

construction idea of our SACfe is adopted from [15],
the proof technique is quite complicated as we aim
to achieve full-hiding security. We give further details
below about how we achieved full-hiding security.
Our SACfe encodes the key and ciphertext vectors
as follows:

[[c1i ]]1 = [[(xi, 0, α, 0)Bi]]1, [[k1
i ]]2 = [[(yi, 0, γi, 0)B∗

i ]]2

[[c2j ]]1 = [[(δwj , α, 0)B̃j ]]1, [[k2
j ]]2 = [[(ωvj , γ̃j , 0)B̃

∗
j ]]2

where {{γi}i, {γ̃j}j} forms a secret share of zero and
the bases are sampled via a pseudorandom function
depending on the indices i and j of the vectors.
Another type of mix-and-match attack would arise
if we used the same basis pair (B,B∗) across all c1i
and k1

i (or (B̃, B̃
∗
) across all c2j and k2

j ). In that case,
the adversary can pair the ciphertext component [[c1i ]]1
with the unmatching key component [[k1

i′ ]]2 where
i′ ̸= i (or [[c2j ]]1 with the unmatching key component
[[k2

j′ ]]2 where j′ ̸= j). This would reveal unwanted
information about the message or the function. To
prevent the computation of such pairing operation
between the ciphertext and key components, we uti-
lize a pseudorandom function (with two independent
keys) to sample independent and pseudorandom bases
(Bi,B

∗
i ) associated with index i (or (B̃j , B̃

∗
j ) asso-

ciated with index j).
The decryption algorithm works as follows. First,

it recovers [[ωδ⟨w,v⟩+α
∑

j∈Iv
γ̃j ]]T from {c2j ,k

2
j}j .

If the zero-predicate relation is satisfied then this
yields [[α

∑
j∈Iv

γ̃j ]]T . Secondly, the other inner prod-
uct is computed as [[⟨x,y⟩ + α

∑
i∈Iy

γi]]T from
{c1i ,k

1
i }i. Now, if the key generator sets

∑
i∈Iy

γi +∑
j∈Iv

γ̃j = 0, that is {γi, γ̃j} forms a secret shares
of 0, then we can recover [[⟨x,y⟩]]T by combining the
outputs.

Full-hiding Security. We briefly outline the proof
here. Suppose (x

(0)
µ ,w

(0)
µ ) and (x

(1)
µ ,w

(1)
µ ) are the

µth challenge message-attribute vector pairs. The ad-
versary can ask mainly the following three types of
secret keys for the ℓth key-predicate pairs (y

(0)
ℓ ,vℓ)

or (y(1)
ℓ ,vℓ):

1) (x
(b)
µ ,y

(b)
ℓ ) ̸∈ Rp or (w(b)

µ ,vℓ) ̸∈ Rp.
2) (x

(b)
µ ,y

(b)
ℓ ), (w

(b)
µ ,vℓ) ∈ Rp, but R(w(0)

µ ,vℓ) ̸=
1 and R(w(1)

µ ,vℓ) ̸= 1.
3) (x

(b)
µ ,y

(b)
ℓ ), (w

(b)
µ ,vℓ) ∈ Rp and R(w(0)

µ ,vℓ) =

R(w
(1)
µ ,vℓ) = 1 and ⟨x(0)

µ ,y
(0)
ℓ ⟩ = ⟨x

(1)
µ ,y

(1)
ℓ ⟩.

Why Dowerah et al. [15] Technique does not work?
The main difference between the proof techniques of
ours and Dowerah et al. [15] is the fact that in our
case the adversary queries many challenge functional
vectors y(0)

ℓ and y
(1)
ℓ , whereas there was no challenge

on such functional vectors in case of [15]. Therefore,
a direct application of [15] will not suffice for our
purpose of hiding information encoded into the func-
tional vectors associated with secret keys. To replace
y
(0)
ℓ with y

(1)
ℓ in ([[k1

j ]]2)j∈Iy while keeping v the
same in ([[k2

j ]]2)j∈Iv and at the same time changing
x
(0)
µ with x

(1)
µ require more delicate hybrid approach

than in [15].

Our Ideas. At a very high level, we develop an
amalgamation of the proof techniques of TT-IPFE
and [15]. To achieve the requirement of full-hiding
security of SACfe, we design the following sequence
of hybrids. During the argument, we first change the
encoding (y

(0)
ℓ,i , 0, γℓ,i, 0)B

∗
i to (y

(0)
ℓ,i , y

(1)
ℓ,i , γℓ,i, 0)B

∗
i

following TT-IPFE. After this, we change the ci-
phertext from (x

(0)
µ,i, 0, αµ, 0)Bi, (δµw

(0)
µ,j , αµ, 0)B̃j

to (0, x
(1)
µ,i, αµ, 0)Bi, (δµw

(1)
µ,j , αµ, 0)B̃j . This step is

crucially handled by integrating the proof tech-
niques of TT-IPFE and [15]. More specifically,
we use techniques from TT-IPFE to change the
message-encoding component from (x

(0)
µ,i, 0, αµ, 0)Bi

to (0, x
(1)
µ,i, αµ, 0)Bi and the proof ideas of [15]

to change the attribute-encoding component from
(δµw

(0)
µ,j , αµ, 0)B̃j to (δµw

(1)
µ,j , αµ, 0)B̃j . It is impor-

tant to note that since at this stage, the function-
encoding component (y

(0)
ℓ,i , y

(1)
ℓ,i , γℓ,i, 0)B

∗
i is inde-

pendent of the challenge bit, we can freely change
the attribute vector from w

(0)
µ,j to w

(1)
µ,j in parallel

with the switching of x(0)µ,i with x(1)µ,i. We also utilize
the additional subspaces to encode secret shares of a
uniform value into the components of non-permissive
secret keys to restrict the adversary from extracting
useful information about the challenge bit.

Next, we swap function and message challenges
together. That is, the function-encoding and
message-encoding components are changed
from (y

(0)
ℓ,i , y

(1)
ℓ,i , γℓ,i, 0)B

∗
i , (0, x

(1)
µ,i, αµ, 0)Bi to

(y
(1)
ℓ,i , y

(0)
ℓ,i , γℓ,i, 0)B

∗
i , (x

(1)
µ,i, 0, αµ, 0)Bi respectively.

Finally, the function-encoding component is altered
to (y

(1)
ℓ,i , 0, γℓ,i, 0)B

∗
i . Although the core technical

idea discussed above provides a very high-level
intuition on how the full-hiding security of SACfe
is achieved, there are several subtle challenges. We
present a complete and formal security analysis in
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Section 4.2.

2.2. Our Strict UAB-IPFE

Our second contribution is an UAB-IPFE in the
strict setting where decryption is successful if the
index sets of the key and message vectors are equal.
The UAB-IPFE is inspired by the recently proposed
bounded AB-IPFE of Nguyen et al. [28]. We extend
their framework to handle unbounded length data
without compromising efficiency of their scheme. Our
UAB-IPFE is built in the public-key setting with
constant size public keys and succinct secret keys that
offers a more expressive access control realized by
LSSS. Previously, the only UAB-IPFE with succinct
secret keys is known to handle (non-zero) inner prod-
uct policies [15].

Bounded AB-IPFE of [28]. We start by recalling
the bounded AB-IPFE scheme of Nguyen et al. [28].
Their scheme is based on the framework of DPVS
[30]. To embed an access structure A into the secret
key, a set of random secret shares (aj)j∈List-Att(A) of
a0 ← Zp is sampled via LSSS based on A where
List-Att(A) denotes the list of attributes appearing in
the access structure. On the other hand, an attribute
set S is embedded in the ciphertext component in a
way that the secret a0 is recovered during decryption
if there exists A ⊆ S such that A ⊆ List-Att(A). This
functionality is implemented using the secret key and
ciphertext components

[[kac,j ]]2 = [[(πj(j, 1), zaj)F
∗]]2;

[[cac,j ]]1 = [[(σj(1,−j), ψ)F]]1

where (F,F∗) are the bases of DPVS, πj , z, σj , ψ are
random integers. For the authorized set of attributes
S, i.e., A ⊆ S, we can now use the reconstruction
coefficients {cj}j∈A satisfying

∑
j∈A cjaj = a0 to

compute [[zψa0]]T by pairing the vectors [[kac,j ]]2 and
[[cac,j ]]1.

Next, the remaining components of secret key and
ciphertext related to the key and message vectors
respectively are generated based on the ALS-style
[7] encoding techniques using a master secret key
(U = (ui)i,S = (si)i). The key and message vectors
y,x are encoded as follows:

[[kfe]]2 = [[(⟨U,y⟩, ⟨S,y⟩, za0)H∗]]2

[[cfe]]1 = [[(ω, µω, ψ)H]]1

[[ti]]1 = [[ω(ui + µsi) + xi]]1

where (H,H∗) are the bases of DPVS and ω is the
encryption randomness. In order to compute [[ti]]1
at the time of encryption the master public key of
the system must contain {[[ui + µsi]]1}i where µ ←
Zp is kept secret. Now, the pairing between [[kfe]]2
and [[cfe]]1 yields the masking term [[ω · (⟨U,y⟩ +
µ⟨S,y⟩) + zϕa0]]T and hence decryption follows.

Towards Unboundedness. As we can see from the
above bounded AB-IPFE, the master key components
U,S and {[[ui+µsi]]1}i∈[n] are generated in setup de-
pending on the vector length n. Our first observation
is that if we provide U and S in the exponent of G1

along with [[µ]]1 as a part of the master public key
then any one can compute {[[ui + µsi]]i}i∈[n] during
encryption. Our second observation is that the master
secret key components ui and si, once sampled, are
fixed for each index i throughout the scheme.

Based on these observations, it seems that we
can generate ui, si on the fly deterministically using
hash functions. More precisely, for each index i, the
hash functions H1, H2 generate H1(i) = [[ui]]2 and
H2(i) = [[si]]2 on the fly. Therefore, the master keys
in the transformed scheme does not depend on n as
only µ plays the role of master secret key and [[µ]]1
is sufficient to generate the public key component
[[ui+µsi]]T deterministically with the help of a hash-
and-pairing mechanism at the time of encryption. The
IPFE-related parts of secret key kfe and ciphertext
cfe, ti are now computed as follows:

[[kfe]]2 = [[(
∑
i∈Iy

uiyi,
∑
i∈Iy

siyi, za0)H
∗]]2;

H1(i) = [[ui]]2

H2(i) = [[si]]2

[[cfe]]1 = [[(ω, µω, ψ)H]]1;

[[ti]]1 = [[xi]]T · e(g1, ωH1(i)) · e([[µ]]1, ωH2(i)) ∀ i ∈ Ix

If the index sets Ix, Iy are equal then
∏

i yi[[ti]]T =
[[⟨x,y⟩+ω

∑
i∈Iy

uiyi+µω
∑

i∈Iy
siyi]]T . Therefore,

the decryption follows similar to the bounded scheme.
We now briefly sketch the selective message-hiding
security of the above UAB-IPFE. Before going to the
discussion, we would like to point out that additional
hidden spaces may be required to add in order to
achieve our security goal.
Overview of Security. We first recall that for all
secret key queries (yℓ,Aℓ) where the challenge at-
tribute set S satisfies the policies Aℓ, it must hold
⟨x(0),yℓ⟩ = ⟨x(1),yℓ⟩. At a very high level, our
security argument follows two steps – in the first step,
we randomize ⟨cfe,kℓ,fe⟩ by introducing an additional
term r′ℓ,0⟨∆x,yℓ⟩ where ∆x = x(0) − x(1), in the
second step, we apply the DBDH assumption and
program the random oracle model H1,H2 depending
on the decryption criteria to hide the challenge bit
from the adversary’s view. For the first step we use
a masking strategy similar to Nguyen et al. [28]. The
main idea is to introduce additional hidden subspaces
to the vectors (using SXDH assumption) as follows:

[[kℓ,fe]]2 = [[(
∑
i∈Iyℓ

uiyℓ,i,
∑
i∈Iyℓ

siyℓ,i, zaℓ,0, r
′
ℓ,0⟨∆x,yℓ⟩)H

∗]]2;

[[cfe]]1 = [[(ω, µω, ψ, τ)H]]1

Note that, if decryption is not successful then we al-
ways have δℓ = ⟨∆x,yℓ⟩ ≠ 0 for all such secret keys.
It ensures that the secret component aℓ,0ψz is masked
with r′ℓ,0τδℓ which prevents the adversary to gain any
unnecessary information about the message vector.
Then before going to the second step, we relocate
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the master secret key component µ from ciphertext
to secret key via a simple basis transformation. The
updated IPFE-realted vector takes the form

[[kℓ,fe]]2 = [[(⟨U,yℓ⟩, µ⟨S,yℓ⟩+ r′ℓ,0δℓ, zaℓ,0, r
′
ℓ,0δℓ)H

∗]]2;

[[cfe]]1 = [[(ω, ω, ψ, τ)H]]1.

We observe that the implicit IPFE encryption mecha-
nism of the transformed scheme in the current hybrid
coincides with the UIPFE of Dufour Sans et al. [16].
Consequently, we can now use the DBDH assumption
and program the hash functions following the ideas
of Dufour Sans et al. [16] and Datta et al. [13] to hide
the challenge bit. Although the overall techniques
of the security analysis are inspired from [13], [16],
[29] there are crucial technical challenges which we
overcome during the security analysis.

3. Preliminaries

Notations. For some prime p, Zp denotes a finite
field of order p and for n ∈ N, the set GLn(Zp)
denotes all n × n invertible matrices with entries
from Zp. We indicate by a ← S the process of
random sampling of an element a from the finite set
S. We consider a bold uppercase letter to represent
a matrix, e.g., A, a bold lowercase letter to indicate
a vector, e.g., x and Ix denotes the index set of the
vector x. For example, if x = (x1, x3, x8) then we
write Ix = {1, 3, 8}. Consider gι is a generator of
the cyclic group Gι. If x = (x1, x2, . . . , xn) is an
n-tuple vector then [[x]]ι = (gx1

ι , gx2
ι , . . . , gxn

ι ). For
a, u ∈ Zp, we represent a[[u]]ι = gauι . For a matrix
A = (aij) ∈ GLn(Zp), we define [[A]]ι = gAι where
exponentiation is carried out component-wise and ai
represents i-th row vector of A. For n ∈ N, we choose
random dual orthonormal bases (B,B∗ = (B−1)⊤)
[15] as B ← GLn(Zp) and [[B]]1, [[B

∗ = (B−1)⊤]]2
are dual orthonormal bases of vector spaces V =
Gn

1 , V
∗ = Gn

2 respectively and E be extended bilin-
ear map defined as E([[xB]]1, [[yB

∗]]2) = [[⟨x,y⟩]]T .
A function negl : N → [0, 1] is said to be negligible
if for every c ∈ N there exists a λc ∈ N such that
negl(λ) ≤ 1

λc for all λ > λc.

3.1. Bilinear Group
A bilinear group G = (p,G1,G2,GT , g1, g2, e)

consists of a prime p, two multiplicative source
groups G1,G2 and a target group GT with the order
|G1| = |G2| = |GT | = p where g1, g2 are the
generators of the group G1 and G2 respectively. Let
us consider a bilinear map e : G1 × G2 → GT . It
satisfies the following:

– bilinearity: e(ga1 , g
b
2) = e(g1, g2)

ab for all g1 ∈
G1, g2 ∈ G2, a, b ∈ Zp and

– non-degeneracy: e(g1, g2) is a generator of GT .
A bilinear group generator GBG.Gen(1

λ) takes the
security parameter λ and outputs a bilinear group
G = (p,G1,G2,GT , g1, g2, e) with a λ-bit prime
integer p.

3.2. Pseudo-Random Function
A pseudo-random function (PRF) family F =

{FK}K∈Kλ
with a keyspace Kλ, a domain Xλ and

a range Yλ is a function family that consists of
functions FK : Xλ → Yλ. Let Randλ be the set of
random functions with domain Xλ and co-domain Yλ.
Then for all PPT adversaries A, the following holds:

AdvPRF
A (1λ) =

∣∣∣Pr[AFK(·)(λ) = 1]− Pr[ARand(·)(λ) = 1]
∣∣∣

≤ negl(λ)

with K ← Kλ and Rand(·)← Randλ.

3.3. Complexity Assumptions
Assumption 1 (Symmetric External Diffie-Hellman

(SXDH) Assumption). For ι ∈ {1, 2}, we define
the distribution (D, [[tβ ]]ι) on a bilinear group G =
(p,G1,G2,GT , g1, g2, e)← GBG.Gen(1λ) as

D = (G, [[a]]ι, [[u]]ι) for a, u← Zp

[[tβ ]]ι = [[au+ βf ]]ι for β ∈ {0, 1} and f ← Zp.

We say that the SXDH assumption holds in G if for
all PPT adversaries A, if there exists a negligible
function negl(·) satisfying the following:
AdvSXDH

A (λ) =
∣∣∣Pr[A(D, [[t0]]ι) = 1]

− Pr[A(D, [[t1]]ι) = 1]
∣∣∣ ≤ negl(λ)

Assumption 2 (Decisional Bilinear Diffie-Hellman
(DBDH) Assumption). Consider a bilinear group
G = (p,G1,G2,GT , g1, g2, e) ← GBG.Gen(1λ).
The DBDH assumption holds in G if for all
PPT adversaries A, there exists a non-negligible
function negl(·) such that

AdvDBDH
A (λ) =

∣∣∣Pr[A(G, [[a]]1, [[b]]1, [[a]]2, [[c]]2, [[abc]]T ) = 1]

− Pr[A(G, [[a]]1, [[b]]1, [[a]]2, [[c]]2, [[d]]T ) = 1]
∣∣∣

≤ negl(λ)

where a, b, c, d← Zp.

3.4. Access Structures and Linear Secret
Sharing Schemes
Definition 1 (Access Structure [28]). Let Att =
{att1, . . . , attn} be a finite set of attributes. An
access structure over Att is a collection A of non-
empty subsets of {Att}, i.e., A ⊆ 2{Att} \ {∅}. A
set contained in A is called authorized, otherwise
it is called unauthorized. An access structure A
is monotone if S1 ⊆ S2 ⊆ A and S1 ∈ A imply
S2 ∈ A. Given a set of attributes S ⊆ Att, we
write A(S) = 1 if and only if there exists A ⊆ S
such that A is authorized. Note that, List-Att(A)
is the list of attributes appearing in the access
structure A.

We are interested in linear secret sharing schemes
(LSSS) defined below.
Definition 2 (Linear Secret Sharing Schemes [28]).

Let K be a field, d, f ∈ N, and Att be a finite
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universe of attributes. A Linear Secret Sharing
Scheme LSSS over K for an access structure A
over Att is specified by a share-generating matrix
A ∈ Kd×f such that for any I ⊂ [d], there exists
a vector c ∈ Kd with support I and c · A =
(1, 0, ..., 0) if and only if {atti | i ∈ I} ∈ A.

To share a secret s, pick uniformly random val-
ues v2, . . . , vd ← K and generate a vector of n
shares as s := (s, v2, . . . , vd) · A⊤ such that the
share for attribute atti is the i-th coordinate si of
s. Only an authorized set {atti | i ∈ I} ∈ A can
recover c to reconstruct s by computing c · s⊤ =
c · (A · (s, v2, . . . , vd)⊤) = s. For any unauthorized
set, reconstructing the secret will result in a closely
random value.

3.5. SACfe: Secure Access Control in FE

We present the syntax of our SACfe protocol.
First, we define an unbounded AB-IPFE (UAB-IPFE)
with general access structure and then we discuss
the property it should satisfy for a SACfe. We use
notations similar to the work of [15], [28]. The
functionality class is Fip × AC-K. The evaluation
functions Fip is the class of inner product functions
given by Fip = {Fy∈Yλ

: Xλ → Zp}λ where
{Xλ}λ and {Yλ}λ denote the message space and key
space respectively. The access control is represented
by a relation Rac : AC-K×AC-CT → {0, 1} for
some sets AC-K and AC-CT. For any two vectors
x = (xi)i∈Ix ,y = (yi)i∈Iy with associated index sets
Ix and Iy, we define a permissive relation Rp such
that

(x,y) ∈ Rp if and only if Iy ⊆ Ix
and, in this case, the inner product is defined as
⟨x,y⟩ =

∑
i∈Iy

xiyi. On the other hand, a strict
relation Rs between the vectors x, y is defined as

(x,y) ∈ Rs if and only if Iy = Ix = I(say)

and, in this case, the inner product is given by
⟨x,y⟩ =

∑
i∈I xiyi. Let us consider a toy example. If

x = (xi)i∈Ix and y = (yi)i∈Iy with Ix = {1, 2, 3, 4}
and Iy = {1, 3, 4}, then it is easy to verify that
(x,y) ∈ Rp since Iy ⊆ Ix and the inner product
value is ⟨x,y⟩ = x1y1 + x3y3 + x4y4. However, we
see that (x,y) ̸∈ Rs since Ix ̸= Iy.

We define our UAB-IPFE protocol for the func-
tion class Fip and access control relation Rac. Here, a
ciphertext is associated with (x, ac-ct) ∈ Xλ×AC-CT
and a secret key is associated with (y, ac-k) ∈ Yλ ×
AC-K. In the permissive (or strict) setting, decryption
outputs the inner product between x and y if and
only if Rac(ac-ct, ac-k) = 1 and (x,y) ∈ Rp (or
((x,y) ∈ Rs)). The permissive setting is more ex-
pressive and appealing as it allows computation over
a large encrypted database (e.g., x) using a secret key
associated with a variable length functions (e.g., y)

as long as the function size remains smaller than the
size of the actual database.

Definition 3 (UAB-IPFE for (Fip,Rac)). A UAB-
IPFE scheme for (Fip,Rac) consists of the fol-
lowing algorithms:
• Setup(1λ) → (PP,EK,MSK): It takes the
security parameter λ as input and outputs pub-
lic parameters PP, an encryption key EK and a
master secret key MSK. The pubic parameters PP
is an implicit input to the rest of the algorithms.
• Enc(EK,x, ac-ct) → CTx,ac-ct: It takes as
input ac-ct ∈ AC-CT, the encryption key EK, a
message vector x = (xi)i∈Ix ∈ Xλ and outputs a
ciphertext CTx,ac-ct.
• KeyGen(MSK,y, ac-k) → SKy,ac-k: Given
ac-k ∈ AC-K, the master secret key MSK and a
key vector y = (yi)i∈Iy ∈ Yλ, it outputs a secret
key SKy,ac-k.
• Dec(SKy,ac-k,CTx,ac-ct)→ d/ ⊥: It takes the
secret key SKy,ac-k and the ciphertext CTx,ac-ct
and outputs either a decrypted value d or a special
symbol ⊥ indicating failure.

Correctness. For all λ ∈ N, x ∈ Xλ, y ∈ Yλ,
ac-k ∈ AC-K, ac-ct ∈ AC-CT and (x,y) ∈ Rp

(or Rs) satisfying Rac(ac-ct, ac-k) = 1, the above
scheme is correct if the following condition holds:

Pr

d =⟨x,y⟩ :

(PP,EK,MSK)← Setup(1λ)
CTx,ac-ct ← Enc(EK,x, ac-ct)
SK

y,ac-k ← KeyGen(MSK,y, ac-k)

d← Dec(SK
y,ac-k,CTx,ac-ct)

= 1

Security. We define two security notions 1) full-
hiding indistinguishability (FH-IND) based security
with semi-adaptive attributes — in this model, the
adversary is allowed to query challenges to both the
encryption and the key generation oracles, however,
the adversary needs to submit the challenge attributes
before submitting queries to the key generation or-
acle; 2) selective message-hiding indistinguishability
(MH-IND) based security which restricts the adver-
sary to submit the challenge message pairs and the
attribute at the start of the experiment.

Definition 4 (FH-IND security). An UAB-IPFE
scheme E = (Setup,Enc,KeyGen,Dec) for
(Fip,Rac) is said to satisfy FH-IND security if
for any security parameter λ, any PPT adversary
A, there exists a negligible function negl such that
the following holds

AdvFH-IND
A,E (λ) =

∣∣∣Pr [ExptFH-IND
0,A,E (λ) = 1

]
−Pr

[
ExptFH-IND

1,A,E (λ) = 1
] ∣∣∣ ≤ negl(λ)

where the experiment ExptFH-IND
β,A,E (λ)

is defined for β ∈ {0, 1} as follows:
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ExptFH-IND
β,A,E (λ)

1) (PP,EK,MSK)← Setup(1λ).
2) {(ac-ct(0)i , ac-ct(1)i )}i∈QCT

← A(1λ,PP).
3) β′ ← AOKeyGenβ(MSK,·,·),OEncβ(EK,·,·,·)(PP).
4) Outputs: β′.

The oracle OKeyGenβ(MSK, ·, ·) takes as
input a key vector pair (y(0),y(1)) ∈ Y2

λ
with the same index set Iy and
ac-k ∈ AC-K and outputs the secret key
SKy(β),ac-k ← KeyGen(MSK,y(β), ac-k). The
oracle OEncβ(MSK, ·, ·) takes as input a message
vector pair (x

(0)
i ,x

(1)
i , i) ∈ X 2

λ × [QCT]
such that |Ix(0) | = |Ix(1) | = m1 and
(ac-ct(0)i , ac-ct(1)i ) ∈ AC-CT2 and outputs
CT

x
(β)
i ,ac-ct(β)

i

← Enc(EK,x(β)
i , ac-ct(β)i ).

Let QCT,QSK be the total number of
ciphertext and secret key queries of A,
then for all i ∈ [QCT] and ℓ ∈ [QSK],
we have ⟨x(0)

i ,y
(0)
ℓ ⟩ = ⟨x(1)

i ,y
(1)
ℓ ⟩ when

Rac(ac-ct(0)i , ac-kℓ) = Rac(ac-ct(1)i , ac-kℓ) = 1

with (x
(0)
i ,y

(0)
ℓ ), (x

(1)
i ,y

(1)
ℓ ) ∈ Rp (or Rs).

Definition 5 (MH-IND Security). A UAB-IPFE
scheme E = (Setup,Enc,KeyGen,Dec) for
(Fip,Rac) is said to satisfy MH-IND security if
for any security parameter λ, any PPT adversary
A, there exists a negligible function negl such that
the following holds

AdvMH-IND
A,E (λ) =

∣∣∣Pr [ExptMH-IND
0,A,E (λ) = 1

]
−Pr

[
ExptMH-IND

1,A,E (λ) = 1
] ∣∣∣ ≤ negl(λ)

where the experiment ExptMH-IND
β,A,E (λ)

is defined for β ∈ {0, 1} as follows:

ExptMH-IND
β,A,E (λ)

1) (x(0),x(1), ac-ct)← A(1λ) s.t Ix(0) = Ix(1) .
2) (PP,EK,MSK)← Setup(1λ).
3) β′ ← AOKeyGen(MSK,·,·),OEncβ(EK,·,·)(PP).
4) Outputs: β′.

In this experiment, OKeyGen(MSK, ·, ·) is an
oracle that takes as input (y ∈ Yλ, ac-k ∈ AC-K)
with associated index set Iy of y and outputs the
secret key SKy,ac-k ← KeyGen(MSK,y, ac-k).
The oracle OEncβ(EK, ·, ·), queried
only once, takes as input a message
vector pair (x(0),x(1)) ∈ X 2

λ such that
|Ix(0) | = |Ix(1) | = m1 and outputs
CTx(β),ac-ct ← Enc(EK,x(β), ac-ct).
For all queried (y, ac-k) pair satisfying
Rac(ac-ct, ac-k) = 1 and (x(β),y) ∈ Rp

(or Rs), we have ⟨x(0),y⟩ = ⟨x(1),y⟩.

Remark 1 (SACfe). For our concrete constructions,
the encryption key is either a private key, i.e.,
EK = MSK, or a public key, i.e., EK = PP.

We call a FH-IND secure UAB-IPFE scheme a
SACfe. We emphasize that function-hiding secu-
rity in IPFE can only be achieved in the setting
of EK = MSK due to the linear functionality
as discussed in previous works [9], [12], [24].
In Section 4, we present a SACfe scheme (with
EK = MSK) where AC-K and AC-CT repre-
sents sets of vectors over Zp and the relation
Rac(u ∈ AC-CT,v ∈ AC-K) holds if and only
if ⟨u,v⟩ = 0 and (u,v) ∈ Rp.
In our second construction of (strict) UAB-IPFE
of Section 5, AC-K and AC-CT represent an LSSS
access structure and a set of related attributes
respectively, and the relation Rac(A ∈ AC-K,S ∈
AC-CT) holds if and only if A(S) = 1.

4. SACfe: Function Hiding UZP-IPFE

This section presents our SACfe protocol which
is a private key function-hiding UZP-IPFE scheme in
the permissive setting based on the DPVS framework
of [30].

4.1. Construction

Let F1 := {FK}K∈Kλ
,F2 := {FK̃}K̃∈Kλ

be two
PRF families with a key space Kλ consisting of func-
tions FK : Z → GL4(Zp) and FK̃ : Z → GL3(Zp)
respectively. As all pairing-based IPFE in the litera-
ture, our required inner product values come from a
polynomial range so that at the end of the decryption
phase, we can efficiently perform an exhaustive search
to obtain the value. We present our UZP-IPFE scheme
in Figure 2.

Correctness. The decryption succeeds if (x,y),
(w,v) ∈ Rp and ⟨w,v⟩ = 0 as shown below∏

i∈Iy

E
(
[[c1i ]]1, [[k

1
i ]]2

)
= [[⟨x,y⟩+ α

∑
i∈Iy

γi]]T .

∏
j∈Iv

E
(
[[c2j ]]1, [[k

2
j ]]2

)
= [[ωδ(⟨w,v⟩) + α

∑
j∈Iv

γ̃j ]]T .

h = [[⟨x,y⟩+ ωδ⟨w,v⟩+ α(
∑
i∈Iy

γi +
∑
j∈Iv

γ̃j)]]T

= [[⟨x,y⟩+ ωδ⟨w,v⟩]]T . (1)

Using ⟨w,v⟩ = 0, it can be seen that the correctness
follows from Eq. (1).

4.2. Security

Theorem 1. Assuming the SXDH assumption holds
over the bilinear group G, our UZP-IPFE scheme
achieves FH-IND security as per Def. 4.

Proof of Theorem 1. Suppose A is a PPT adversary
against FH-IND security of our UZP-IPFE scheme.
We construct an algorithm B for breaking the SXDH
assumption that uses A as a subroutine. We prove
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Setup(1λ)→ (PP,MSK):
– Generate a bilinear group G =

(p,G1,G2,GT , g1, g2, e) ← GBG.Gen(1λ)
and a pair of PRF keys K, K̃ ← Kλ

– Output PP = G,MSK = (K, K̃)

Enc(MSK,x = (xi)i∈[m1] ∈ Zm1 ,w =
(wi)i∈[m2] ∈ Zm2)→ CTx,w:

– Compute FK(i) = Bi ∀i ∈ [m1] and
FK̃(j) = B̃j ∀j ∈ [m2]

– Sample δ, α← Zp and compute

[[c1i ]]1 = [[(xi, 0, α, 0)Bi]]1 ∀i ∈ [m1],

[[c2j ]]1 = [[(δwj , α, 0)B̃j ]]1 ∀j ∈ [m2]

– Output CTx,w = ({[[c1i ]]1}i∈[m1], {[[c2j ]]1}j∈[m2])

KeyGen(MSK,y = (yi)i∈Iy ∈ Z|Iy|,v =
(vi)i∈Iv ∈ Z|Iv|)→ SKy,v:

– Compute FK(i) = Bi ∀i ∈ Iy and FK̃(j) =

B̃j ∀j ∈ Iv.
– Sample ω ← Zp, γi, γ̃j ← Zp for all i ∈ Iy,
j ∈ Iv such that

∑
i∈Iy

γi +
∑

j∈Iv
γ̃j = 0

and compute

k1
i = (yi, 0, γi, 0)B∗

i ∀i ∈ Iy,
k2
j = (ωvj , γ̃j , 0)B̃

∗
j ∀j ∈ Iv

– Output SKy,v = ({[[k1
i ]]2}i∈Iy , {[[k

2
j ]]2}j∈Iv , Iy, Iv)

Dec(SKy,v,CTx,w)→ d/ ⊥:
– If (x,y) /∈ Rp or (w,v) /∈ Rp, output ⊥ else

compute

h =
∏
i∈Iy

∏
j∈Iv

E
(
[[c1i ]]1, [[k

1
i ]]2

)
·E

(
[[c2j ]]1, [[k

2
j ]]2

)
– Output d = loge(g1,g2) h

Figure 2. Our SACfe: UZP-IPFE

Theorem 1 by a series of games. For each game
transition, we calculate the difference of probabilities
that A outputs 1 in the corresponding games. In
every game, the challenger chooses a random element
m′

1 ← [m1,max], as a guess of m∗
1 at the beginning of

the games. As we consider the semi-adaptive model
here, we set m∗

2 = m2,max where m1,max,m2,max

as the maximum length of the challenge message
and attribute vectors (i.e., x and w) respectively
and consider smax, tmax to be the maximum indices
of the queried key and predicate vectors (i.e., y
and v) respectively to the key generation oracle.
Here Eι denotes the event that A outputs 1 in Game ι.

Game 0: This game is the same as the real security
game where the challenge ciphertext CT(0)

k,x,w is the
encryption of (x(0)

k ,w
(0)
k ) as described in Def. 4 i.e.,

[[c1k,i]]1 = [[(x
(0)
k,i , 0, αk, 0)Bi]]1 ∀i ∈ [m∗

1,k],

[[c2k,j ]]1 = [[(δkw
(0)
k,j , αk, 0)B̃j ]]1 ∀j ∈ [m∗

2,k]

with αk ← Zp and FK(i) = Bi, FK̃(j) = B̃j . The
ℓ-th secret key SKyℓ,vℓ

for y(0)
ℓ ,vℓ is replied as

[[k1
ℓ,i]]2 = [[(y

(0)
ℓ,i , 0, γℓ,i, 0)B

∗
i ]]2 ∀i ∈ Iyℓ

,

[[k2
ℓ,j ]]2 = [[(ωℓvℓ,j , γ̃ℓ,j , 0)B̃

∗
j ]]2 ∀j ∈ Ivℓ

where γℓ,i, γ̃ℓ,j , ωℓ ← Zp satisfying
∑

i∈Iyℓ
γℓ,i+∑

j∈Ivℓ
γ̃ℓ,j = 0.

Game 0′: Game 0′ is the same as Game 0, except we
use Bi ← GL4(Zp), B̃j ← GL3(Zp) to generate ci-
phertext and secret key components. Note that, Game
1-0-3 ≡ Game 0′.
Game (1-µ-1): For µ ∈ [QSK], same as Game 1-
(µ− 1)-3 except for the following components

[[k1
µ,i]]2 = [[(y

(0)
µ,i , 0, γµ,i, ηγµ,i )B

∗
i ]]2 ∀i ∈ Iyµ

,

[[k2
µ,j ]]2 = [[(ωµvµ,j , γ̃µ,j , ηγ̃µ,j )B̃

∗
j ]]2 ∀j ∈ Ivµ

where η ← Zp. Note that Game 1-0-3 ≡ Game 0′.
Game (1-µ-2): For µ ∈ [QSK], same as Game 1-µ-1
except for the following components

[[k1
µ,i]]2 = [[(y

(0)
µ,i , y

(1)
µ,i , γµ,i, ηγµ,i)B

∗
i ]]2 ∀i ∈ Iyµ

[[k2
µ,j ]]2 = [[(ωµvµ,j , γ̃µ,j , ηγ̃µ,j)B̃

∗
j ]]2 ∀j ∈ Ivµ

.

Game (1-µ-3): For µ ∈ [QSK], same as Game 1-µ-2
except for the following components

[[k1
µ,i]]2 = [[(y

(0)
µ,i , y

(1)
µ,i , γµ,i, 0 )B∗

i ]]2 ∀i ∈ Iyµ
,

[[k2
µ,j ]]2 = [[(ωµvµ,j , γ̃µ,j , 0 )B̃

∗
j ]]2 ∀j ∈ Ivµ

.

Game 2: Same as Game 1-QSK-3 except for the
following components

[[k1
ℓ,i]]2 = [[(y

(0)
ℓ,i , y

(1)
ℓ,i , γℓ,i, sℓ,i )B

∗
i ]]2 ∀i ∈ Iyℓ

,

[[k2
ℓ,j ]]2 = [[(ωℓvℓ,j , γ̃ℓ,j , tℓ,j )B̃

∗
j ]]2 ∀j ∈ Ivℓ

where sℓ,i, tℓ,j ← Zp :
∑

i∈Iyℓ
sℓ,i+

∑
j∈Ivℓ

tℓ,j = 0.
Game (3-ν-1): For ν ∈ [QCT], same as Game 3-
(ν − 1)-3 except for the following components

[[c1ν,i]]1 = [[(x
(0)
ν,i , 0, αν , α̂ν )Bi]]1 ∀i ∈ [m∗

1,ν ],

[[c2ν,j ]]1 = [[(δνw
(0)
ν,j , αν , α̂ν )B̃j ]]1 ∀j ∈ [m∗

2,ν ]

where αν , α̂ν ← Zp. Note that Game 3-0-3 ≡ Game
2.
Game (3-ν-2): For ν ∈ [QCT], same as Game 3-ν-1
except for the following components

[[c1ν,i]]1 = [[( 0, x
(1)
ν,i , αν , α̂ν)Bi]]1 ∀i ∈ [m∗

1,ν ],

[[c2ν,j ]]1 = [[( δνw
(1)
ν,j , αν , α̂ν)B̃j ]]1 ∀j ∈ [m∗

2,ν ].
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Game (3-ν-3): For ν ∈ [QCT], same as Game 3-ν-2
except for the following components

[[c1ν,i]]1 = [[(0, x
(1)
ν,i , αν , 0 )Bi]]1 ∀i ∈ [m∗

1,ν ],

[[c2j ]]1 = [[(δνw
(1)
ν,j , αν , 0 )B̃j ]]1 ∀j ∈ [m∗

2,ν ].

Game 4: Same as Game 3-QCT-3 except for the k-th
ciphertext and ℓ-th secret key component as follows

[[c1k,i]]1 = [[( x
(1)
k,i , 0 , αk, 0)Bi]]1 ∀i ∈ [m∗

1,k],

[[k1
ℓ,i]]2 = [[( y

(1)
ℓ,i , y

(0)
ℓ,i , γℓ,i, sℓ,i)B

∗
i ]]2 ∀i ∈ Iyℓ

.

Game 5: Same as Game 4 except for the k-th cipher-
text and ℓ-th secret key components as follows

[[c1k,i]]1 = [[(x
(1)
k,i , 0, αk, 0) Bi ]]1 ∀i ∈ [m∗

1,k],

[[c2k,j ]]1 = [[(δkw
(1)
k,j , αk, 0) B̃j ]]1 ∀j ∈ [m∗

2,k]

[[k1
ℓ,i]]2 = [[(y

(1)
ℓ,i , 0 , γℓ,i, 0 ) B∗

i ]]2 ∀i ∈ Iyℓ
,

[[k2
ℓ,j ]]2 = [[(ωℓvℓ,j , γ̃ℓ,j , 0 ) B̃

∗
j ]]2 ∀j ∈ Ivℓ

where FK(i) = Bi, FK̃(j) = B̃j .
We prove the indistinguishability arguments of

the above games in Appendix A. For each game
transition, we prove that the difference between prob-
abilities that the adversary A outputs 1 in both games
is negligible. Combining the arguments, the above
Theorem follows.

5. Strict UAB-IPFE

In this section, we construct a strict public key
UAB-IPFE scheme using the DPVS framework.

5.1. Construction

Our UAB-IPFE = (Setup,Enc,KeyGen,Dec)
scheme can be described in terms of the following al-
gorithms. Let two full-domain hash functions H1,H2

into G2. As with all pairing-based IPFE in the litera-
ture, our required inner product values come from a
polynomial range so that at the end of the decryption
phase, we can efficiently perform an exhaustive search
to obtain the value. We present our UAB-IPFE in
Figure 3.

Correctness: If (A(S) = 0) ∨ ((x,y) /∈ Rs), it
outputs ⊥, otherwise it computes∏

j∈A

E([[cac,j ]]1, cj [[kac,j ]]2) = [[ψza0]]T (2)

E([[cfe]]1, [[kfe]]2) = [[a0zψ − ω
∑
i∈Iy

yi(ui + µsi)]]T (3)∏
i∈Iy

yi[[ti]]T = [[
∑
i∈Iy

(xiyi − ωuiyi − ωµsiyi)]]T (4)

From Equ. (4),(3) and (2), it outputs [[⟨x,y⟩]]T .

Setup(1λ)→ (PP,MSK):
– Generate a bilinear group G =

(p,G1,G2,GT , g1, g2, e)← GBG.Gen(1λ).
– Sample z, µ ← Zp, F ← GL8(Zp), H ←

GL4(Zp) and output

PP = ({[[f i]]1}3i=1, [[h1 + µh2]]1, [[h3]]1, [[µ]]1)

MSK = ({f∗i }3i=1, {h
∗
i }3i=1, z)

Enc(PP,x = (xi)i∈Ix ∈ Z|Ix|
p ,S)→ CTx,S:

– Compute H1(i|Ix) = [[ui]]2, H2(i|Ix) = [[si]]2 ∀i ∈ Ix
– Sample ψ, ω, σj ← Zp ∀ j ∈ S and compute

[[cac,j ]]1 = [[(σj(1,−j), ψ, 0, 0, 0, 0, 0)F]]1
[[cfe]]1 = [[(ω, µω, ψ, 0)H]]1

[[ti]]T = [[xi]]T · e (g1, ω[[ui]]2)−1 · e([[µ]]1, ω[[si]]2)−1

– Output CTx,S = ({[[cac,j ]]1}j∈S, [[cfe]]1, {[[ti]]T }i∈Ix)

KeyGen(MSK,y = (yi)i∈Iy ∈ Z|Iy|
p ,A) →

SKy,A:
– Sample a0 ← Zp, use the secret sharing

scheme based on A to create the shares
(aj)j∈List-Att(A) of a0 as defined in Section
3.4.

– Compute H1(i|Iy) = [[ui]]2, and H2(i|Iy) =
[[si]]2 for all i ∈ Iy

– Sample πj ← Zp for all j ∈ List-Att(A) and
compute

[[kac,j ]]2 = [[(πj(j, 1), ajz, 0, 0, 0, 0, 0)F
∗]]2

[[kfe]]2 = [[(−
∑
i∈Iy

yiui,−
∑
i∈Iy

yisi, a0z, 0)H
∗]]2

– Output SKy,A =
(
{[[kac,j ]]2}j∈List-Att(A), [[kfe]]2

)
Dec(SKy,A,CTx,S)→ d/ ⊥:

– If (x,y) /∈ Rs ∨ A(S) = 0, output ⊥
– Else, there exists A ⊆ S and A ∈ A, then

find the reconstruction vector c = (cj)j of
the LSSS for A and compute the following

h =
∏
i∈Iy

yi[[ti]]T · E([[cfe]]1, [[kfe]]2)
−1·

∏
j∈A

E([[cac,j ]]1, cj [[kac,j ]]2)

Finally, output d = loge(g1,g2) h

Figure 3. Our UAB-IPFE

5.2. Security

Theorem 2. Assuming the SXDH, DBDH assump-
tions hold over the bilinear group G, then our
UAB-IPFE scheme achieves MH-IND security in
the random oracle model as per Def. 5.

Proof of Theorem 2. Suppose A is a PPT adversary
against MH-IND security of our UAB-IPFE scheme.
We construct an algorithm B for breaking the SXDH
and DBDH assumptions that uses A as a subroutine.
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We prove Theorem 2 by a series of games. For
each game transition, we calculate the difference of
probabilities that A outputs 1 in the corresponding
games. We represent Eι as the event that A outputs
1 in Game ι.

Game 0: This game is the same as the real security
game as presented in Def. 5 where the challenge
ciphertext and the ℓ-th secret key components are
given below:

[[cac,j ]]1 = [[(σj(1,−j), ψ, 0, 0, 0, 0, 0)F]]1
[[cfe]]1 = [[(ω, µω, ψ, 0)H]]1

[[t
(β)
i ]]T = [[x

(β)
i ]]T · e(g1, ω[[ui]]2)−1 · e([[µ]]1, ω[[si]]2)−1

[[kℓ,ac,j ]]2 = [[πℓ,j(j, 1), aℓ,jz, 0, 0, 0, 0, 0)F
∗]]2

[[kℓ,fe]]2 = [[(−
∑
i∈Iyℓ

yℓ,iuℓ,i,−
∑
i∈Iyℓ

yℓ,isℓ,i, aℓ,0z, 0)H
∗]]2

Here, aℓ,0 ← Zp, (aℓ,j)j∈List-att(A) ← Λaℓ,0
(A).

Game 1: Same as Game 0 except for the following
secret key component whenever Ix = Iyℓ

[[cfe]]1 = [[(ω, µω, ψ, τ )H]]1

[[kℓ,fe]]2 = [[(−
∑
i∈Iyℓ

yℓ,iuℓ,i,−
∑
i∈Iyℓ

yℓ,isℓ,i, aℓ,0z, r
′
ℓ,0δℓ )H∗]]2

where δℓ = ⟨∆x,yℓ⟩, τ, r′ℓ,0 ← Zp, ∆x :=

x(0) − x(1). Others secret keys for Ix ̸= Iyℓ
remain

unaltered.
Indistinguishability follows between Game 0 and
Game 1 from the SXDH assumption.

Game 2: Same as Game 1 except for the following
components

[[cfe]]1 = [[(ω, ω , ψ, τ)H]]1

[[kℓ,fe]]2 = [[(−
∑
i∈Iyℓ

yℓ,iuℓ,i, −µ
∑

i∈Iyℓ
yℓ,isℓ,i ,

aℓ,0z, r
′
ℓ,0δℓ)H

∗]]2

Game 3: Same as Game 2 except for the following
components

[[kℓ,fe]]2 = [[(−
∑
i∈Iyℓ

yℓ,iuℓ,i, −µ
∑

i∈Iyℓ
yℓ,isℓ,i + r′ℓ,0δℓ ,

aℓ,0z, r
′
ℓ,0δℓ)H

∗]]2

Game 4: Same as Game 3 except for the following
ciphertext component

[[t
(β)
i ]]T = [[x

(β)
i ]]T · αm(i)[[d]]T · e(g1, ω[[u′i]]2 )−1

· e([[µ]]1, ω[[s′i]]2 )−1

[[kℓ,fe]]2 =



[[( −
∑

i∈Iyℓ
yℓ,iu

′
ℓ,i , −µ

∑
i∈Iyℓ

yℓ,is
′
ℓ,i ,

aℓ,0z, r
′
ℓ,0δℓ)H

∗]]2 if Ix = Iyℓ

[[( −
∑

i∈Iyℓ
yℓ,iu

′
ℓ,i , −

∑
i∈Iyℓ

yℓ,is
′
ℓ,i ,

aℓ,0z, 0)H
∗]]2 if Ix ̸= Iyℓ

where d← Zp. Here the random oracles H1,H2 are
programmed for i ∈ Ix as follows:

H1(i|Ix) = [[u′ℓ,i]]2 := αm(i)[[a]]2 ·
∏

κ∈[n−1]

λm(i),κ[[ρκ]]2

H2(i|Ix) = [[s′ℓ,i]]2 := αm(i)[[c]]2 ·
∏

κ∈[n−1]

λm(i),κ[[ρκ]]2

where αi, λi,j ∈ Zp, a, c ← Zp and ρκ ← Zp with
m : Ix → [n] such that |Ix| = n. Otherwise for i /∈
Ix, but i ∈ Iyℓ

, oracles output [[u′ℓ,i]]2, [[s
′
ℓ,i]]2 ← G2.

We show that the adversary’s advantage in this
game is negligible relying on the DBDH assumption.
We provide detailed analysis of the indistinguishabil-
ity between each consecutive games in Appendix B.

6. Implementations and Evaluations

We report the ciphertext and secret key sizes
of our schemes in Table 3 which also provides the
comparison with the recent work of [15]. It shows
that the ciphertext and secret key sizes are much
smaller in SACfe compared to [15] and these im-
provements are achieved with the additional property
of function hiding. We implemented both schemes
using the CiFEr cryptographic library [27]. This li-
brary uses the GNU GMP library [2] to represent
arbitrary big numbers. For the pairing CiFEr uses
the Apache Milagro Cryptographic Library (AMCL)
[1] configured with the BN254 curve. All bench-
marks were conducted on a MacBook M1 with 16
GB of RAM. The heap consumption was evaluated
using the tool valgrind. The code of the implementa-
tion is available at https://anonymous.4open.science/
r/ipfe-impl-FFEF/README.md.

UZP-IPFE. We evaluated the performance of the
UZP-IPFE scheme in terms of execution time and
memory consumption for various values of m1, while
keeping m2 constant at 1000, which means we used
1000 attributes. Figure 4 shows the execution times
for encryption, key generation, and decryption. We
observe that encryption was faster than key gen-
eration, which is expected because key generation
requires sampling γi and γ̃j such that their sum is
zero. Decryption was the slowest operation, likely due
to the pairing computations involved. Compared to
the scheme in [15], our UZP-IPFE scheme achieved
faster execution times, as shown in Figure 5. The
ciphertext and FE key sizes increased linearly with
m1, as shown in Table 4. This is consistent with our
analysis, since each additional element in x adds one
element in G1 to the ciphertext, and each additional
element in y adds one element in G2 to the FE key.
Table 4 also shows that our UZP-IPFE scheme used
less memory than the scheme in [15].

UAB-IPFE. We implemented the UAB-IPFE scheme
using monotone access programs and linear secret
sharing scheme to define the access structure. The

12

https://anonymous.4open.science/r/ipfe-impl-FFEF/README.md
https://anonymous.4open.science/r/ipfe-impl-FFEF/README.md


TABLE 3. COMPARISON WITH EXISTING UAB-IPFE

Work Scheme |CT| |SK| Function Hiding Assumption

[15] UZP-IPFE 7(m1 +m2)|G1| 7(n1 + n2)|G2| × SXDH

Ours
SACfe: UZP-IPFE (4m1 + 3m2)|G1| (4n1 + 3n2)|G2| SXDH

UAB-IPFE m1|GT |+ (8|S|+ 4)|G1| (8|List-Att(A)|+ 4)|G2| × SXDH, DBDH
– m1,m2: the lengths of the message and attribute vectors associated with the ciphertext.
– n1, n2: the lengths of the vectors associated with the secret key.
– |CT| , |SK|: the size of the ciphertext and the secret key, respectively.
– |List-Att(A)|, |S|: number of attributes associated with secret key and ciphertext respectively.
– SXDH, bi-k-Lin, DBDH: symmetric external Diffie-Hellman (or 1-Lin), bilateral k-Lin, decisional bilinear Diffie-Hellman.

TABLE 4. UZP-IPFE: SIZE OF THE CIPHER TEXT AND FE KEY FOR DIFFERENT SIZES OF m1 .

m1 1 5 10 50 102 5 · 102 103 5 · 103 104

[15]
Cipher text 919.9 kB 923.9 kB 928.5 kB 976.8 kB 1,020.6 kB 1,377.3 kB 1,845.3 kB 5,589.3 kB 10,169.3 kB
FE key 1,809.3 kB 1,809.5 kB 1,908.7 kB 1,956.1 kB 2,102.9 kB 2,877.3 kB 3,845.3 kB 11,389.3 kB 20,969.3 kB

Ours
Cipher text 448.6 kB 451.0 kB 454.0 kB 477.6 kB 507.2 kB 744.0 kB 1,040.0 kB 3,408.0 kB 6,368.0 kB
FE key 937.6 kB 942.5 kB 948.6 kB 997.5 kB 1,058.7 kB 1,548.3 kB 2,160.3 kB 7,056.3 kB 13,176.3 kB

TABLE 5. UAB-IPFE: SIZE OF THE CIPHER TEXT AND FE KEY FOR DIFFERENT SIZES OF m1 .

m1 1 5 10 50 102 5 · 102 103 5 · 103 104

Cipher text 8.5 kB 11.0 kB 14.1 kB 38.9 kB 69.7 kB 317.2 kB 625.2 kB 310.1 kB 618.5 kB
FE key 11.4 kB 11.5 kB 11.6 kB 12.4 kB 13.3 kB 19.5 27.7 35.8 44.2
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Figure 4. UZP-IPFE: Execution time of Enc, KeyGen, Dec for
different sizes of m1.
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Figure 5. UZP-IPFE [15]: Execution time of Enc, KeyGen, Dec
for different sizes of m1.
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Figure 6. UAB-IPFE: Execution time of Enc, KeyGen, Dec for
different sizes of m1.

access policy can be specified with attributes that are
connected by OR and AND clauses. We evaluated
the performance of the scheme in terms of execution
time and memory consumption for different values
of m1, while keeping the access policy fixed with six
attributes. Figure 6 shows the execution times for en-
cryption, decryption, and key generation. Encryption
is the most costly operation, while decryption is the
least. Table 5 shows the sizes of the ciphertext and
the FE key for different values of m1. The ciphertext
size increases with m1, as each additional element
in x adds one more group element in GT to the
ciphertext. The FE key size should be constant in
this experiment, as it only depends on the number
of attributes and not on the size of the vector y.
However, our measurement was not accurate enough
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to confirm this. The measured values are given in
Table 5.
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secure functional encryption for inner products, from stan-
dard assumptions. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2016, Proceedings, Part III, volume
9816 of Lecture Notes in Computer Science, pages 333–362.
Springer, 2016.

[8] Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario
Fiore, and Romain Gay. Practical functional encryption for
quadratic functions with applications to predicate encryption.
In Jonathan Katz and Hovav Shacham, editors, Advances
in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-
24, 2017, Proceedings, Part I, volume 10401 of Lecture Notes
in Computer Science, pages 67–98. Springer, 2017.

[9] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk.
Function-hiding inner product encryption. In Tetsu Iwata
and Jung Hee Cheon, editors, Advances in Cryptology -
ASIACRYPT 2015 - 21st International Conference on the
Theory and Application of Cryptology and Information Se-
curity, Auckland, New Zealand, November 29 - December 3,
2015, Proceedings, Part I, volume 9452 of Lecture Notes in
Computer Science, pages 470–491. Springer, 2015.

[10] Dan Boneh and Brent Waters. Conjunctive, subset, and range
queries on encrypted data. In Salil P. Vadhan, editor, Theory
of Cryptography, 4th Theory of Cryptography Conference,
TCC 2007, Amsterdam, The Netherlands, February 21-24,
2007, Proceedings, volume 4392 of Lecture Notes in Com-
puter Science, pages 535–554. Springer, 2007.

[11] Yansong Chang, Kai Zhang, Junqing Gong, and Haifeng
Qian. Privacy-preserving federated learning via functional
encryption, revisited. IEEE Trans. Inf. Forensics Secur.,
18:1855–1869, 2023.

[12] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Func-
tional encryption for inner product with full function privacy.
In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano,
and Bo-Yin Yang, editors, Public-Key Cryptography - PKC
2016 - 19th IACR International Conference on Practice and
Theory in Public-Key Cryptography, Taipei, Taiwan, March
6-9, 2016, Proceedings, Part I, volume 9614 of Lecture Notes
in Computer Science, pages 164–195. Springer, 2016.

[13] Pratish Datta and Tapas Pal. Decentralized multi-authority
attribute-based inner-product FE: large universe and un-
bounded. In Alexandra Boldyreva and Vladimir Kolesnikov,
editors, Public-Key Cryptography - PKC 2023 - 26th IACR
International Conference on Practice and Theory of Public-
Key Cryptography, Atlanta, GA, USA, May 7-10, 2023, Pro-
ceedings, Part I, volume 13940 of Lecture Notes in Computer
Science, pages 587–621. Springer, 2023.

[14] Pratish Datta, Tapas Pal, and Katsuyuki Takashima. Compact
FE for unbounded attribute-weighted sums for logspace from
SXDH. In Shweta Agrawal and Dongdai Lin, editors, Ad-
vances in Cryptology - ASIACRYPT 2022 - 28th International
Conference on the Theory and Application of Cryptology
and Information Security, Taipei, Taiwan, December 5-9,
2022, Proceedings, Part I, volume 13791 of Lecture Notes
in Computer Science, pages 126–159. Springer, 2022.

[15] Uddipana Dowerah, Subhranil Dutta, Aikaterini Mitrokotsa,
Sayantan Mukherjee, and Tapas Pal. Unbounded predicate
inner product functional encryption from pairings. J. Cryptol.,
36(3):29, 2023.

[16] Edouard Dufour-Sans and David Pointcheval. Unbounded
inner-product functional encryption with succinct keys. In
Robert H. Deng, Valérie Gauthier-Umaña, Martı́n Ochoa, and
Moti Yung, editors, Applied Cryptography and Network Se-
curity - 17th International Conference, ACNS 2019, Bogota,
Colombia, June 5-7, 2019, Proceedings, volume 11464 of
Lecture Notes in Computer Science, pages 426–441. Springer,
2019.

[17] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova,
Amit Sahai, and Brent Waters. Candidate indistinguishability
obfuscation and functional encryption for all circuits. SIAM
J. Comput., 45(3):882–929, 2016.

[18] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic
encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In Ran Canetti and
Juan A. Garay, editors, Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I, volume
8042 of Lecture Notes in Computer Science, pages 75–92.
Springer, 2013.

[19] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee.
Attribute-based encryption for circuits. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, Symposium on
Theory of Computing Conference, STOC’13, Palo Alto, CA,
USA, June 1-4, 2013, pages 545–554. ACM, 2013.

[20] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee.
Predicate encryption for circuits from LWE. In Rosario Gen-
naro and Matthew Robshaw, editors, Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II,
volume 9216 of Lecture Notes in Computer Science, pages
503–523. Springer, 2015.

14



[21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishabil-
ity obfuscation from well-founded assumptions. In Samir
Khuller and Virginia Vassilevska Williams, editors, STOC
’21: 53rd Annual ACM SIGACT Symposium on Theory of
Computing, Virtual Event, Italy, June 21-25, 2021, pages 60–
73. ACM, 2021.

[22] Mauricio Karchmer and Avi Wigderson. On span programs.
In Proceedings of the Eigth Annual Structure in Complexity
Theory Conference, San Diego, CA, USA, May 18-21, 1993,
pages 102–111. IEEE Computer Society, 1993.

[23] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate
encryption supporting disjunctions, polynomial equations,
and inner products. In Nigel P. Smart, editor, Advances in
Cryptology - EUROCRYPT 2008, 27th Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings,
volume 4965 of Lecture Notes in Computer Science, pages
146–162. Springer, 2008.

[24] Sam Kim, Kevin Lewi, Avradip Mandal, Hart Montgomery,
Arnab Roy, and David J. Wu. Function-hiding inner product
encryption is practical. In Dario Catalano and Roberto De
Prisco, editors, Security and Cryptography for Networks
- 11th International Conference, SCN 2018, Amalfi, Italy,
September 5-7, 2018, Proceedings, volume 11035 of Lecture
Notes in Computer Science, pages 544–562. Springer, 2018.

[25] Qiqi Lai, Feng-Hao Liu, and Zhedong Wang. New lattice
two-stage sampling technique and its applications to func-
tional encryption - stronger security and smaller ciphertexts.
IACR Cryptol. ePrint Arch., page 779, 2022.

[26] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki
Takashima, and Brent Waters. Fully secure functional en-
cryption: Attribute-based encryption and (hierarchical) inner
product encryption. IACR Cryptol. ePrint Arch., page 110,
2010.

[27] Tilen Marc, Miha Stopar, Jan Hartman, Manca Bizjak, and
Jolanda Modic. Privacy-enhanced machine learning with
functional encryption. In Kazue Sako, Steve A. Schneider,
and Peter Y. A. Ryan, editors, Computer Security - ESORICS
2019 - 24th European Symposium on Research in Computer
Security, Luxembourg, September 23-27, 2019, Proceedings,
Part I, volume 11735 of Lecture Notes in Computer Science,
pages 3–21. Springer, 2019.

[28] Ky Nguyen, Duong Hieu Phan, and David Pointcheval. Multi-
client functional encryption with fine-grained access control.
In Shweta Agrawal and Dongdai Lin, editors, Advances in
Cryptology - ASIACRYPT 2022 - 28th International Con-
ference on the Theory and Application of Cryptology and
Information Security, Taipei, Taiwan, December 5-9, 2022,
Proceedings, Part I, volume 13791 of Lecture Notes in Com-
puter Science, pages 95–125. Springer, 2022.

[29] Ky Nguyen, David Pointcheval, and Robert Schädlich.
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Appendix A.
Security Analysis of Our SACfe

In this section, we provide the details of the in-
distinguishability argument of the consecutive hybrid
of Theorem 1.
Lemma 1. |Pr[E0]−Pr[E0′ ]| ≤ AdvPRF

B (λ)+2−Ω(λ).

Proof 1. Follows from the security of PRF function.
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Lemma 2. |Pr[E1-(µ−1)-3]− Pr[E1-µ-1]| ≤ AdvSXDH
B (λ).

Proof 2. We now construct a reduction algorithm B
from the SXDH challenges using A as a sub-
routine. B gets the challenge instances from the
adversary A for ι = 2, i.e., (G, [[a]]2, [[u]]2, [[tβ ]]2).
Now we consider two matrices Wi ← GL4(Zp),
W̃j ← GL3(Zp) and construct the matrices
(Bi,B

∗
i ), (B̃j , B̃

∗
j ) as follows:

Bi =

I2 0 1

1 −a

Wi;B
∗
i =

I2 a 1

1 0

W∗
i ;

B̃j =

1 0 1

1 −a

W̃j ; B̃
∗
i =

1 a 1

1 0

W̃
∗
j

Now depending on the µ ∈ [QSK], we can simu-
late the ℓ-th secret key (where ℓ ̸= µ) component
[[k1

ℓ,i]]2 corresponding to the vectors yℓ as follows:

[[k1
ℓ,i]]2 =

{
[[(y

(0)
ℓ,i , y

(1)
ℓ,i , γℓ,i, 0)B

∗
i ]]2 if ℓ < µ

[[(y
(0)
ℓ,i , 0, γℓ,i, 0)B

∗
i ]]2 if ℓ > µ

;

[[k2
ℓ,j ]]2 =

{
[[(ωℓv

(0)
ℓ,j , γ̃ℓ,j , 0)B̃

∗
j ]]2 if ℓ ̸= µ

where γℓ,i ← Zp and
∑

i∈Iyℓ
γℓ,i+

∑
j∈Ivℓ

γ̃ℓ,j =

0. For ℓ = µ, the secret key components [[k1
µ,i]]2,

[[k2
µ,j ]]2 are generated as:

[[k1
µ,i]]2 = [[(y

(0)
µ,i , 0, 0, 0)B

∗
i + γµ,i(0, 0, tβ , u)W

∗
i ]]2

= [[(y
(0)
µ,i , 0, uγµ,i, βfγµ,i)B

∗
i ]]2 (5)

[[k2
µ,i]]2 = [[(ωµvµ,j , 0, 0)B̃

∗
j + γ̃µ,j(0, tβ , u)W̃

∗
j ]]2

= [[(ωµvℓ,j , uγ̃µ,j , βf γ̃µ,j)B̃
∗
j ]]2 (6)

where γµ,i, γ̃ℓ,j ← Zp such that
∑

i∈Iyµ
γµ,i +∑

j∈Ivµ
γ̃µ,j = 0. The challenge ciphertext com-

ponents [[c1k,i]]1 simulate as follows:

[[c1k,i]]1 = [[(x
(0)
k,i , 0, αk, 0)Bi]]1;

[[c2k,j ]]1 = [[(δkw
(0)
k,j , αk, 0)B̃j ]]1

where αk ← Zp. The adversarial view is the same
as Game 1-µ-1 if β = 1 and Game 1-(µ − 1)-3
for β = 0. Thus the claim follows.

Lemma 3. |Pr[E1-µ-1]− Pr[E1-µ-2]| ≤ 2−Ω(λ).

Proof 3. We now construct the matrix (Di,D
∗
i ) as

follows:

Di =


1

1
y
(1)
µ,i

ηγµ,i

1

1

Bi;D
∗
i =


1

1

1

−
y
(1)
µ,i

ηγµ,i
1

B
∗
i

Therefore, for all k ∈ [QCT], ℓ ∈ [QSK], the chal-
lenge ciphertext component [[c1k,i]]1 is simulated
as follows:

c1k,i = (x
(0)
k,i , 0, αk, 0)Bi = (x

(0)
k,i , 0, αk, 0)Di

where αk ← Zp. For all ℓ ∈ [QSK], the secret key
component [[k1

ℓ,i]]2 is simulated as follows:

k1
ℓ,i = (y

(0)
ℓ,i , βℓy

(1)
ℓ,i , γℓ,i, β̂ℓηγℓ,i)B

∗
i

= (y
(0)
ℓ,i , (βℓ + β̂ℓ)y

(1)
ℓ,i , γℓ,i, β̂ℓηγℓ,i)

where γℓ,i, γ̃ℓ,j ← Zp such that
∑

i∈Iyℓ
γℓ,i +∑

j∈Ivℓ
γ̃ℓ,j = 0. Now, we set

βℓ =

{
0 if ℓ ≥ µ
1 if ℓ < µ

, β̂ℓ =

{
0 if ℓ ̸= µ

1 if ℓ = µ

Therefore, both the Game 1-µ-2 and Game 1-µ-3
are identically distributed.

Lemma 4. |Pr[E1-µ−2]− Pr[E1-µ-3]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

Proof 4. Follows similarly as Lemma 2 using SXDH
instance over G2.

Lemma 5. |Pr[E1-QSK-3]− Pr[E2]| ≤ AdvSXDH
B (λ) + 2−Ω(λ)

Proof 5. Follows similarly as Lemma 2 using SXDH
instance over G2.

Lemma 6. |Pr[E3-(ν−1)-3]− Pr[E3-ν-1]| ≤ AdvSXDH
B (λ) + 2−Ω(λ)

Proof 6. To achieve the indistinguishibility, the tech-
nique of Lemma 2 needs to apply over the cipher-
text components c1k,i, c

2
k,j . Thus, we consider the

SXDH instance over the group G1.

Lemma 7. |Pr[E3-ν-1] − Pr[E3-ν-2]| ≤
2m1,maxAdvSXDH

B (λ) + 2−Ω(λ)

Proof 7. Chooses m′
1,ν ← [m1,max] as a guess of

m∗
1,ν at the initial phase and consider intermediate

games between Game 3-ν-1 to Game 3-ν-2.
Game 3-ν-1-1 (ν ∈ [QCT]): Same as Game 3-ν-1,

except that the game will abort if m∗
1,ν ̸= m′

1,ν .
Game 3-ν-1-2 (ν ∈ [QCT]): Same as Game 3-ν-1-

1 except for the following components whenever
(max(Iyℓ

) > m′
1,ν) ∧ (min(Iyℓ

) ≤ m′
1,ν) and

(max(Ivℓ
) > m∗

2,ν) ∧ (min(Ivℓ
) ≤ m∗

2,ν) are
satisfied

k1
ℓ,i =

{
(y

(0)
ℓ,i , y

(1)
ℓ,i , γℓ,i, sℓ,i)B

∗
i i ≤ m′

1,ν

(y
(0)
ℓ,i , y

(1)
ℓ,i , γℓ,i, asℓ,i )B

∗
i i > m′

1,ν

k2
ℓ,j =

{
(ωℓvℓ,j , γ̃ℓ,j , tℓ,j)B̃

∗
j j ≤ m∗

2,ν

(ωℓvℓ,j , γ̃ℓ,j , atℓ,j )B̃
∗
j j > m∗

2,ν

with a← Zp.
Game 3-ν-1-3 (ν ∈ [QCT]): Same as Game 3-ν-1-2

except for the following components

k1
ℓ,i = (y

(0)
ℓ,i , y

(1)
ℓ,i , γℓ,i, ŝℓ,i )B

∗
i ∀i ∈ Iyℓ

k2
ℓ,j = (ωℓvℓ,j , γ̃ℓ,j , t̂ℓ,j )B̃

∗
j ∀j ∈ Ivℓ
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where ŝℓ,i, t̂ℓ,j ← Zp.
Game 3-ν-1-4 (ν ∈ [QCT]): Same as Game 3-ν-1-3

except for the following components

[[c2j ]]1 = [[( δνw
(0)
ν,j + ξ̂jα̂ν , αν , α̂ν)B̃j ]]1 ∀j ∈ [m∗

2,ν ]

k2
ℓ,j =

(ωℓvℓ,j , γ̃ℓ,j , tℓ,j − ξ̂jωℓvℓ,j )B̃
∗
j max(Ivℓ

) ≤ m∗
2,ν

(ωℓvℓ,j , γ̃ℓ,j , t̂ℓ,j − ξ̂jωℓvℓ,j )B̃
∗
j max(Ivℓ

) > m∗
2,ν

whenever ℓ-th quried predicate vector vℓ satisfy
min(Ivℓ

) ≤ m∗
2,ν with ξ̂j ← Zp.

Game 3-ν-1-5 (ν ∈ [QCT]): Same as Game 3-ν-1-
4 except for the following components whenever
(max(Iyℓ

) ≤ m′
1,ν) ∧ (max(Ivℓ

) ≤ m∗
2,ν) such

that ⟨w(0)
ν ,vℓ⟩ ≠ 0, ⟨w(1)

ν ,vℓ⟩ ≠ 0

k2
ℓ,j = (ωℓvℓ,j , γ̃ℓ,j , tℓ,j )B̃

∗
j ∀j ∈ Ivℓ

where tℓ,j ← Zp.

Game 3-ν-1-6 (ν ∈ [QCT]): Same as Game 3-ν-1-5
except for the following components

[[c1ν,i]]1 = [[( 0, x
(1)
ν,i , αν , α̂ν)Bi]]1 ∀i ∈ [m′

1,ν ],

[[c2ν,j ]]1 = [[( δνw
(1)
ν,j + ξ̂jα̂ν , αν , α̂ν)B̃j ]]1 ∀j ∈ [m∗

2,ν ].

Game 3-ν-1-7 (ν ∈ [QCT]): Same as Game 3-ν-1-6
except for the following components

[[c2j ]]1 = [[(δνw
(1)
ν,j + ξ̂jα̂ν , αν , α̂ν)B̃j ]]1 ∀j ∈ [m∗

2,ν ]

k2
ℓ,j =

(ωℓvℓ,j , γ̃ℓ,j , tℓ,j − ξ̂jωℓvℓ,j )B̃
∗
j max(Ivℓ

) ≤ m∗
2,ν

(ωℓvℓ,j , γ̃ℓ,j , t̂ℓ,j − ξ̂jωℓvℓ,j )B̃
∗
j max(Ivℓ

) > m∗
2,ν

whenever ℓ-th queried predicate vector vℓ satisfy
min(Ivℓ

) ≤ m∗
2,ν for ℓ ∈ [QSK] and ξ̂j ← Zp.

Game 3-ν-1-8 (ν ∈ [QCT]): Same as Game 3-ν-1-7
except for the following components

k1
ℓ,i = (y

(0)
ℓ,i , y

(1)
ℓ,i , γℓ,i, sℓ,i )B

∗
i ∀i ∈ Iyℓ

k2
ℓ,j = (ωℓvℓ,j , γ̃ℓ,j , tℓ,j )B̃

∗
j ∀j ∈ Ivℓ

[[c1ν,i]]1 = [[(0, x
(1)
ν,i , αν , α̂ν)Bi]]1 ∀i ∈ [m′

1,ν ],

[[c2ν,j ]]1 = [[( δνw
(1)
ν,j , αν , α̂ν)B̃j ]]1 ∀j ∈ [m∗

2,ν ]

Claim 1. Pr[E3-ν-1-1] =
1

m1,max
Pr[E3-ν-1].

Proof 8. Let m1,max,m2,max be the maximum length
of the challenge vector and challenge attribute
vector respectively. Note that Game 3-ν-1 is sim-
ilar to Game 3-ν-1-1 except that A’s output is ⊥
if m′

1,ν ̸= m∗
1,ν where m′

1,ν is the guess of m∗
1,ν .

Now, we have
Pr(E3-ν-1-1) =

∑
i∈[m1,max]

Pr[m′
1,ν= i]·Pr[m∗

1,ν = i ∧ E3-ν-1|m′
1,ν= i]

=
1

m1,max
· Pr(E3-ν-1).

Claim 2. |Pr[E3-ν-1-1]− Pr[E3-ν-1-2]| ≤ 2−Ω(λ).

Proof 9. For i > m′
1,ν ∧ j > m∗

2,ν , we construct the
matrices (Di,D

∗
i ), (D̃j , D̃

∗
j ) as follows:

Di =

[
I3

a

]
Bi, D∗

i =

[
I3

1
a

]
B∗

i ;

D̃j =

[
I2

a

]
B̃j , D̃

∗
j =

[
I2

1
a

]
B̃

∗
j

For i > m′
1,ν , j > m∗

2,ν , the secret key
[[k1

ℓ,i]]2, [[k
2
ℓ,j ]]2 and k-th (k ̸= ν) ciphertext com-

ponents [[c1k,i]]1, [[c
2
k,j ]]1 are generated as follows:

[[c1k,i]]1 = [[(βkx
(0)
k,i , (1− βk)x

(1)
k,i , αk, 0)Bi]]1

= [[(βkx
(0)
k,i , (1− βk)x

(1)
k,i , αk, 0)Di]]1

[[c2k,j ]]1 = [[(βkδkw
(0)
k,j + (1− βk)δkw(1)

k,j , αk, 0)B̃j ]]1

= [[(βkδkw
(0)
k,j + (1− βk)δkw(1)

k,j , αk, 0)D̃j ]]1

k1
ℓ,i = (y

(0)
ℓ,i , y

(1)
ℓ,i , γℓ,i, sℓ,i)B

∗
i = (y

(0)
ℓ,i , y

(1)
ℓ,i , γℓ,i, asℓ,i)D

∗
i

k2
ℓ,j = (ωℓvℓ,j , γ̃ℓ,j , tℓ,i)B̃

∗
j = (ωℓvℓ,j , γ̃ℓ,j , atℓ,i)D̃

∗
j

where ωℓ, a ← Zp and define βk = 0 if k < ν
elsewhere βk = 1. Observe that there is no
change for the distribution of third entries in the
both secret keys components k1

ℓ,i and k2
ℓ,j since∑

i∈Iyℓ
asℓ,i +

∑
j∈Ivℓ

atℓ,i = a(
∑

i∈Iyℓ
sℓ,i +∑

j∈Ivℓ
tℓ,i) = 0. Note that the ciphertext com-

ponent does not change its distribution because
the basis technique approach is only applied for
i > m′

1,ν , j > m∗
2,ν . Hence, Game 1-ν-1-2 and

Game 1-ν-1-1 are identically close unless a = 0.

Claim 3. |Pr[E3-ν-1-2]− Pr[E3-ν-1-3]| ≤ AdvSXDH
B + 2−Ω(λ).

Proof 10. This proof basically sets sℓ,i (resp. tℓ,i) as
an affine function usℓ,i + s′ℓ,i (resp. utℓ,i + t′ℓ,i)
for all i > m1,ν (resp. i > m∗

2,mu). It then re-
places [[au]]2 with [[f ]]2 by the SXDH assumption.
Due to its simple structure, we remove this proof
due to space limitations. We further note that this
proof is similar to that of [37, Claim 3].

Claim 4. |Pr[E3-ν-1-3]− Pr[E3-ν-1-4]| ≤ 2−Ω(λ).

Proof 11. We construct the matrix (W̃j ,W̃
∗
j ) for all

j ∈ Ivν
as follows:

W̃j =

 1

1

−ξ̂j 1

 B̃j , W̃
∗
j =

1 ξ̂j

1

1

 B̃
∗
j

where B̃j ← M3(Zp) and ξ̂j ← Zp. The chal-
lenger B generates ν-th challenge ciphertext com-
ponents corresponding to the message, attribute
vectors pair (xν ,wν) as follows:

[[c2k,j ]]1 = [[((1− βk)δkw(0)
k,j + βkδkw

(1)
k,j , αk, β̂kα̂k)B̃j ]]1

= [[((1− βk)δkw(0)
k,j + βkδkw

(1)
k,j + ξ̂j β̂kα̂k,

αk, β̂kα̂k)W̃j ]]1
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set βk =

{
0 if k ≥ ν
1 if k ≤ ν

and β̂k =

{
0 if k ̸= ν

1 if k = ν

Note that the challenge ciphertext component
[[c1k,i]]1 for all k ∈ [QCT] are generated as previous
Game 3-ν-1-2. The above changes does not ef-
fect the ciphertext component [[c1k,i]]1 as the basis
(B,B∗) remain unaltered. Now the second secret
key component [[k2

ℓ,i]]2 are generated by using the
basis (W̃j ,W̃

∗
j ) in Game 3-1-ν-3 as follows:

For j ∈ Ivℓ
: max(Ivℓ

) ≤ m∗
2,ν , we have

[[k2
ℓ,j ]]1 = [[(ωℓvℓ,j , γ̃ℓ,j , tℓ,j)B̃

∗
j ]]2

= [[(ωℓvℓ,j , γ̃ℓ,j , tℓ,j − ξ̂jωℓvℓ,j)W̃
∗
j ]]2

Also for j ∈ Ivℓ
: max(Ivℓ

) > m∗
2,ν , we have

[[k2
ℓ,j ]]1 = [[(ωℓvℓ,j , γ̃ℓ,j , t̂ℓ,j)B̃

∗
j ]]2

= [[(ωℓvℓ,j , γ̃ℓ,j , t̂ℓ,j − ξ̂jωℓvℓ,j)W̃
∗
j ]]2

where tℓ,j ← Zp such that
∑

i∈Iyℓ
sℓ,i +∑

j∈Ivℓ
tℓ,j = 0 and t̂ℓ,j ← Zp. Therefore,

Game 3-ν-1-3 and Game 3-ν-1-4 are identically
distributed unless ξ̂ν,j = 0.

Claim 5. |Pr[E3-ν-1-4]− Pr[E3-ν-1-5]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

Proof 12. We will show that B can utilize the
instance (G, [[a]]2, [[u]]2, [[tβ ]]2) of the SXDH
assumption to interpolate between Game 3-ν-1-4
and Game 3-ν-1-5 using A as a subroutine. The
algorithm B implicitly define orthonormal dual
bases (B̃j , B̃

∗
j ) by choosing D̃j , D̃

∗
j ← GL3(Zp)

and setting

B̃j =

0 0 −1
0 1 0

1 0 a

 D̃j , B̃
∗
j =

a 0 −1
0 1 0

1 0 0

 D̃
∗
j

for all j ∈ [m′
1,ν ] and a is implicitly provided

through the SXDH instance. For ⟨w(0)
k,j ,vℓ⟩ ̸=

0, ⟨w(1)
k,j ,vℓ⟩ ≠ 0, B simulates the ℓ-th secret key

component [[k2
ℓ,j ]]2 as follows:

[[k2
ℓ,j ]]2 = [[(ωℓvℓ,j , γ̃ℓ,j , tℓ,j − ξ̃j(ωℓ + u⟨w(0),vℓ⟩)vℓ,j)

B̃
∗
j + vℓ,j⟨w(0),vℓ⟩(tβ , 0,−u)D̃

∗
j ]]2

= [[((ωℓ + u⟨w(0),vℓ⟩)vℓ,j , γ̃ℓ,j , tℓ,j − ξ̃j
(ωℓ + u⟨w(0),vℓ⟩)vℓ,j + βfvℓ,j⟨w(0),vℓ⟩)B̃

∗
j ]]2

with γ̃ℓ,j , tℓ,j ← Zp such that
∑

i∈Iyℓ
γℓ,i +∑

j∈Ivℓ
γ̃ℓ,i = 0 and

∑
i∈Iyℓ

sℓ,j +
∑

j∈Ivℓ
tℓ,j =

0 where γℓ,i, sℓ,i ← Zp. As ⟨w(0),vℓ⟩ ≠ 0, we
can implicitly set ω′

ℓ = ωℓ + u⟨w(0),vℓ⟩, rℓ,j =

tℓ,j − ξ̃j(ωℓ + u⟨w(0),vℓ⟩)vℓ,j + fvℓ,j⟨w(0),vℓ⟩
which are random elements in Zp for f ̸= 0.
Therefore, the third component of [[k2

j ]]2 is a
random element for β = 1. Here, we use the fact
that r̃ℓ,j + sℓ,i + ξiyℓ,i ̸= 0 with high probability.
Hence, the adversarial view is the same as in

Game 3-ν-1-5 for β = 1, otherwise, the view is
similar as in Game 3-ν-1-4 if β = 0.
Now, the νth challenge ciphertext components are
constructed as follows:

[[c
(2)
ν,j ]]1 = [[(δνw

(0)
ν,j + α̂ν ξ̃

′
j , αν , 0)B̃j + (α̂ν , 0, 0)D̃j ]]1

= [[(δνw
(0)
ν,j + α̂ν ξ̃j , αν , α̂ν)B̃j ]]1 ∀j ∈ [m∗

2,ν ]

where δν , α̂ν , ξ̃
′
j ← Zp. Thus, the distribution

of the challenge ciphertext components in Game
3-ν-1-4 is identical with the distribution of Game
3-ν-1-5. Hence, B interpolates between Game
3-ν-1-5 and Game 3-ν-1-4 and the claim follows.

Claim 6. |Pr[E3-ν-1-5]− Pr[E3-ν-1-6]| ≤ 2−Ω(λ).

Proof 13. Let Ẽι be the event that denotes m′
1,ν =

m∗
1,ν in Game ι where m′

1,ν is the guess of the
length m∗

1,ν of νth message vector. Since A’s
view are equivalent for all previous ciphertext
query, we have Pr(Ẽ3-ν-1-5) = Pr(Ẽ3-ν-1-6). Let
us define (Di,D

∗
i ) for all i ∈ [m′

1,ν ], and ξ′j for
all j ∈ [m∗

2,ν ] as follows:

D̃i =


1

1

1
x
(0)
ν,i

α̂ν
−x

(1)
ν,i

α̂ν
0 1

 B̃i; D̃
∗
i =


1 −x

(0)
ν,i

α̂ν

1
x
(1)
ν,i

α̂ν

1 0

1

 B̃
∗
i

ξ̃′j = ξ̃j −
δν(w

(1)
ν,j − w

(0)
ν,j )

α̂ν

where α̂ν , δν , ξj ← Zp and (x(0),w(0)),
(x(1),w(1)) are challenge message and attribute
pairs. Note that, ξ̃′j are independently random
elements in Zp unless α̂ν = 0. Then the chal-
lenge ciphertext components [[c1k,i]]1 and [[c2k,j ]]1
are indistinguishable in Game 3-ν-1-5 and Game
3-ν-1-6 as shown below,

[[c1k,i]]1 = [[(βkx
(0)
k,i , (1− βk)x

(1)
k,i , αk, β̂kα̂k)Bi]]1

= [[((βk − β̂k)x(0)k,i , (1− βk + β̂k)x
(1)
k,i , αk,

β̂kα̂k)Di]]1 ∀i ∈ [m∗
1,ν ]

set βk =

{
0 if k ≤ ν
1 if k > ν

, β̂k =

{
0 if k ̸= ν

1 if k = ν

[[c2k,j ]]1 =


[[(δkw

(1)
k,j , αk, 0)B̃j ]]1 if k < ν

[[(δνw
(1)
ν,j + ξ̃′jα̂ν , αν , α̂ν)B̃j ]]1 if k = ν

[[(δkw
(0)
k,j , αk, 0)B̃j ]]1 if k > ν

where α̂ν , αk ← Zp for all k ∈ [QCT].
For all ℓ ∈ [QSK] we categorise adversary’s
queries to the ℓ-th oracle secret key on
yℓ = (yℓ,i)i∈Iyℓ

,vℓ = (vℓ,j)j∈Ivℓ
and show

that in each cases the ℓ-th secret key components
{[[k(1)

ℓ,i ]]2, [[k
(2)
ℓ,j ]]2} are indistinguishable in Game

3-ν-1-5 and Game 3-ν-1-6.

Case I when ⟨w(0)
ν ,vℓ⟩ ≠ 0, ⟨w(1)

ν ,vℓ⟩ ≠ 0.
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(i) If (max(Iyℓ
) ≤ m′

1,ν)∧(max(Ivℓ
) ≤ m∗

2,ν), then

[[k
(1)
ℓ,i ]]2 = [[(y0ℓ,i, y

1
ℓ,i, γℓ,i,

y0ℓ,ix
0
ν,i

α̂ν
−
y1ℓ,ix

1
ν,i

α̂ν
+ ŝℓ,i)B

∗
i ]]2

[[k
(2)
ℓ,j ]]2 = [[

(
ωℓvℓ,j , γ̃ℓ,j , t̃ℓ,j

)
B̃∗

j ]]2

where ŝℓ,i, t̃ℓ,j ← Zp for all j ∈ Ivℓ
, i ∈ Iyℓ

.
Observe that,

∑
i∈Iyℓ

(y0ℓ,ix
0
ν,i − y1ℓ,ix

1
ν,i) = 0.

Thus, we can set sℓ,i =
y0
ℓ,ix

0
ν,i

α̂ν
− y1

ℓ,ix
1
ν,i

α̂ν
+ ŝℓ,i

such that sℓ,i is randomly distributed. Thus,
{[[k(1)

ℓ,i ]]2, [[k
(2)
ℓ,j ]]2} are distributed properly.

(ii) If (max(Iyℓ
) > m′

1,ν)∧(max(Ivℓ
) ≤ m∗

2,ν), then

∀i ≤ m′
1,ν ,

[[k
(1)
ℓ,i ]]2 = [[(y0ℓ,i, y

1
ℓ,i, γℓ,i,

y0ℓ,ix
0
ν,i

α̂ν
−
y1ℓ,ix

1
ν,i

α̂ν
+ ŝℓ,i)B

∗
i ]]2

∀i > m′
1,ν , [[k

(1)
ℓ,i ]]2 = [[

(
y0ℓ,i, y

1
ℓ,i, γℓ,i, ŝℓ,i

)
B∗

i ]]2

∀j ≤ m∗
2,ν , [[k

(2)
ℓ,j ]]2 = [[

(
ωℓvℓ,j , γ̃ℓ,j , t̃ℓ,j

)
B̃∗

j ]]2

where ŝℓ,i, t̃ℓ,j ← Zp for all j ∈ Ivℓ
, i ∈ Iyℓ

.

Here we set sℓ,i =
y0
ℓ,ix

0
ν,i

α̂ν
− y1

ℓ,ix
1
ν,i

α̂ν
+ ŝℓ,i

for i ≤ m′
1,ν which are independently random

elements from Zp as there are no condition on
(y0ℓ,ix

0
ν,i − y1ℓ,ix

1
ν,i) and ŝℓ,i are independently

random elements in Zp. Also, ŝℓ,i are random
elements from i > m′

1,ν , the fourth component
of k

(1)
ℓ,i is uniform element from Zp. Thus,

{[[k(1)
ℓ,i ]]2, [[k

(2)
ℓ,j ]]2} are distributed properly.

Case II when ⟨w(0)
ν ,vℓ⟩ = ⟨w(1)

ν ,vℓ⟩ = 0.

(iii) If (max(Iyℓ
) ≤ m′

1,ν)∧(max(Ivℓ
) ≤ m∗

2,ν), then

[[k
(1)
ℓ,i ]]2 = [[(y0ℓ,i, y

1
ℓ,i, γℓ,i,

y0ℓ,ix
0
ν,i

α̂ν
−
y1ℓ,ix

1
ν,i

α̂ν
+ ŝℓ,i)B

∗
i ]]2

[[k
(2)
ℓ,j ]]2 = [[(ωℓvℓ,j , γ̃ℓ,j , t̂ℓ,j − ξjωℓvℓ,j)B̃

∗
j ]]2

= [[(ωℓvℓ,j , γ̃ℓ,j , t̂ℓ,j − ξ̃′jωℓvℓ,j

−
δνωℓ(w

(1)
ν,jvℓ,j − w

(0)
ν,jvℓ,j)

α̂ν
)B̃∗

j ]]2

where ŝℓ,i, t̂ℓ,j ← Zp for all j ∈ Ivℓ
, i ∈ Iyℓ

s.t.
∑

i∈Iyℓ
ŝℓ,i +

∑
j∈Ivℓ

t̂ℓ,j = 0. Hence, we

set sℓ,i =
y0
ℓ,ix

0
ν,i

α̂ν
− y1

ℓ,ix
1
ν,i

α̂ν
+ ŝℓ,i for i ≤

m′
1,ν and tℓ,j = t̂ℓ,j − δνωℓ

(w
(1)
ν,j−w

(0)
ν,j)

α̂ν
vℓ,j for

j ∈ [m∗
2,ν ]. Observe that,

∑
i∈Iyℓ

(y0ℓ,ix
0
ν,i −

y1ℓ,ix
1
ν,i) +

∑
i∈Ivℓ

(w
(1)
ν,j − w

(0)
ν,j )vℓ,j = 0. Ob-

serve that sℓ,i and tℓ,j are randomly distributed
s.t.

∑
i∈Iyℓ

sℓ,i +
∑

j∈Ivℓ
tℓ,j = 0. Thus,

{[[k(1)
ℓ,i ]]2, [[k

(2)
ℓ,j ]]2} are distributed properly.

(iv) If (max(Iyℓ
) > m′

1,ν)∧(max(Ivℓ
) ≤ m∗

2,ν), then

∀i ≤ m′
1,ν ,

[[k
(1)
ℓ,i ]]2 = [[(y0ℓ,i, y

1
ℓ,i, γℓ,i,

y0ℓ,ix
0
ν,i

α̂ν
−
y1ℓ,ix

1
ν,i

α̂ν
+ ŝℓ,i)B

∗
i ]]2

∀i > m′
1,ν , [[k

(1)
ℓ,i ]]2 = [[

(
y0ℓ,i, y

1
ℓ,i, γℓ,i, ŝℓ,i

)
B∗

i ]]2

∀j ≤ m∗
2,ν , [[k

(2)
ℓ,j ]]2 = [[

(
ωℓvℓ,j , γ̃ℓ,j , t̂ℓ,j − ξjωℓvℓ,j

)
B̃∗

j ]]2

= [[(ωℓvℓ,j , γ̃ℓ,j , t̂ℓ,j − ξ̃′jωℓvℓ,j

−
δνωℓ(w

(1)
ν,jvℓ,j − w

(0)
ν,jvℓ,j)

α̂ν
)B̃∗

j ]]2

where ŝℓ,i, t̂ℓ,j ← Zp for all j ∈ Ivℓ
, i ∈ Iyℓ

.

Here, we set sℓ,i =
y0
ℓ,ix

0
ν,i

α̂ν
− y1

ℓ,ix
1
ν,i

α̂ν
+ ŝℓ,i

for i ≤ m′
1,ν which are independently random

elements from Zp as there are no condition on
(y0ℓ,ix

0
ν,i − y1ℓ,ix

1
ν,i) and ŝℓ,i are independently

random elements in Zp. Also, ŝℓ,i are random el-
ements from i > m′

1,ν , the fourth component of
k
(1)
ℓ,i is uniform element from Zp for all i ∈ Iyℓ

.

Considering tℓ,j = t̂ℓ,j−δνωℓ
(w

(1)
ν,j−w

(0)
ν,j)

α̂ν
vℓ,j for

j ∈ [m∗
2,ν ] so tℓ,j are uniformly random. Thus,

{[[k(1)
ℓ,i ]]2, [[k

(2)
ℓ,j ]]2} are distributed properly.

Case III when max(Ivℓ
) > m∗

2,ν .
(v) If (max(Iyℓ

) ≤ m′
1,ν)∧(max(Ivℓ

) > m∗
2,ν), then

∀i ≤ m′
1,ν ,

[[k
(1)
ℓ,i ]]2 = [[(y0ℓ,i, y

1
ℓ,i, γℓ,i,

y0ℓ,ix
0
ν,i

α̂ν
−
y1ℓ,ix

1
ν,i

α̂ν
+ ŝℓ,i)B

∗
i ]]2

∀j ≤ m∗
2,ν , [[k

(2)
ℓ,j ]]2 = [[(ωℓvℓ,j , γ̃ℓ,j , t̂ℓ,j − ξjωℓvℓ,j)B̃

∗
j ]]2

= [[(ωℓvℓ,j , γ̃ℓ,j , t̂ℓ,j − ξ̃′jωℓvℓ,j

−
δνωℓ(w

(1)
ν,jvℓ,j − w

(0)
ν,jvℓ,j)

α̂ν
)B̃∗

j ]]2

∀j > m∗
2,ν , [[k

(2)
ℓ,j ]]2 = [[

(
ωℓvℓ,j , γ̃ℓ,j , t̂ℓ,j

)
B̃∗

j ]]2

where ŝℓ,i, t̂ℓ,j ← Zp for all j ∈ Ivℓ
, i ∈ Iyℓ

.

Hence, we set tℓ,j = t̂ℓ,j − δνωℓ
(w

(1)
ν,j−w

(0)
ν,j)

α̂ν
vℓ,j

for j ∈ [m2,ν ] which are independently random
elements from Zp as there are no condition on
(w

(1)
ν,j−w

(0)
ν,j )vℓ,j . Moreover, the third component

of k
(2)
ℓ,j are independently random elements in

Zp since t̂ℓ,j for j > [m∗
2,ν ] are independent of

tℓ,j for j ≤ [m∗
2,ν ]. Thus, {[[k(1)

ℓ,i ]]2, [[k
(2)
ℓ,j ]]2} are

distributed properly.

(vi) If max(Iyℓ
) > m′

1,ν ∧max(Ivℓ
) > m∗

2,ν , then

∀i ≤ m′
1,ν ,

[[k
(1)
ℓ,i ]]2 = [[(y0ℓ,i, y

1
ℓ,i, γℓ,i,

y0ℓ,ix
0
ν,i

α̂ν
−
y1ℓ,ix

1
ν,i

α̂ν
+ ŝℓ,i)B

∗
i ]]2

∀i > m′
1,ν , [[k

(1)
ℓ,i ]]2 = [[

(
y0ℓ,i, y

1
ℓ,i, γℓ,i, ŝℓ,i

)
B∗

i ]]2

∀j ≤ m∗
2,ν , [[k

(2)
ℓ,j ]]2 = [[

(
ωℓvℓ,j , γ̃ℓ,j , t̂ℓ,j − ξjωℓvℓ,j

)
B̃∗

j ]]2

= [[(ωℓvℓ,j , γ̃ℓ,j , t̂ℓ,j − ξ̃′jωℓvℓ,j

−
δνωℓ(w

(1)
ν,jvℓ,j − w

(0)
ν,jvℓ,j)

α̂ν
)B̃∗

j ]]2

∀j > m∗
2,ν , [[k

(2)
ℓ,j ]]2 = [[

(
ωℓvℓ,j , γ̃ℓ,j , t̂ℓ,j

)
B̃∗

j ]]2
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where ŝℓ,i, t̂ℓ,j ← Zp for all j ∈ Ivℓ
, i ∈ Iyℓ

.

Hence, we set sℓ,i =
y0
ℓ,ix

0
ν,i

α̂ν
− y1

ℓ,ix
1
ν,i

α̂ν
+ ŝℓ,i for

i ≤ m′
1,ν and tℓ,j = t̂ℓ,j − δνωℓ

(w
(1)
ν,j−w

(0)
ν,j)

α̂ν
vℓ,j

for j ∈ [m∗
2,ν ]. Observe that, sℓ,i for i ≤ m′

1,ν

and tℓ,j for j ∈ [m∗
2,ν ] are independently random

elements from Zp as there are no condition
on (y0ℓ,ix

0
ν,i − y1ℓ,ix

1
ν,i) and (w

(1)
ν,j − w

(0)
ν,j )vℓ,j

where ŝℓ,i and t̂ℓ,j are independently random
elements in Zp. Thus, the fourth component of
k
(1)
ℓ,i and the third component of k

(2)
ℓ,j are inde-

pendently random elements in Zp since ŝℓ,i, t̂ℓ,j
for i > [m′

1,ν ], j > [m∗
2,ν ] are independent of

sℓ,i for i ≤ [m′
1,ν ] and tℓ,j for j ≤ [m∗

2,ν ]. Thus,
{[[k(1)

ℓ,i ]]2, [[k
(2)
ℓ,j ]]2} are distributed properly.

Therefore, Game 3-ν-1-5 and Game 3-ν-1-6
are indistinguishable except a negligible prob-
ability i.e., |Pr(E3-ν-1-6) − Pr(E3-ν-1-5)| =
Pr(Ẽ3-ν-1-5) · Pr(E3-ν-1-5|Ẽ3-ν-1-5)− Pr(Ẽ3-ν-1-6) ·
Pr(E3-ν-1-6|Ẽ3-ν-1-6) ≤ 2Ω(λ). Here we utilize the
fact that A’s view is identical before νth cipher-
text query (i.e. Pr(Ẽ3-ν-1-5) = Pr(Ẽ3-ν-1-6)). This
establishes the claim.

Claim 7. |Pr[E3-ν-1-6]− Pr[E3-ν-1-7]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

Proof 14. Follows from Claims 5, 4, 3 and 2.

Lemma 8. |Pr[E3-ν-2]− Pr[E3-ν-3]| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

Proof 15. The proof is similar to Lemma 6.

Lemma 9. |Pr[E3-QCT-3]− Pr[E4]| ≤ 2−Ω(λ).

By a simple basis transformation, this Lemma holds.

Lemma 10. |Pr[E4]−Pr[E5]| ≤ AdvPRF
B (λ)+2−Ω(λ).

Proof 16. The proof is similar to Lemma 1.

This completes the proof of Theorem 1.

Appendix B.
Security Analysis of Our UAB-IPFE

To prove the above Theorem 2, we use the fol-
lowing Lemma from [28].

Lemma 11 (Masking Lemma). [28] Let A be an
LSSS-realizable over a set of attributes Att ⊆
Zq. We denote by List-Att(A) the list of at-
tributes appearing in A and by P the car-
dinality of List-Att(A). Let S ⊆ Att be a
set of attributes with (H,H∗) ← GOB.Gen(Z8

p)
and (F,F∗) ← GOB.Gen(Z2

p). The vectors
([[h1]]1, [[f1]]1, [[f2]]1, [[f3]]1) are public, while all
other vectors are secret. Suppose we have two
random labeling (aj)j∈List-Att(A) ← Λa0(A) and
(a′j)j∈List-Att(A) ← Λa′

0
(A) for a0, a′0 ← Zp. Then

Masking Lemma is to guess the bit β, given the
following distribution

D = (G← GBG.Gen(λ), ([[h1]]1, [[f1]]1, [[f2]]1, [[f3]]1),

[[h∗
1]]2, [[f

∗
1]]2, [[f

∗
2]]2, [[f

∗
3]]2)

kβ
j = (πj(j, 1), aiz, 0, 0, β · a′jyz/vj , 0, 0)F

∗

∀j ∈ List-Att(A)
cβj = (σj(1,−j), ψ, 0, 0, β · τvjx, 0, 0)F ∀j ∈ S

kβ
root = (a0z, β · a′0yz)H

∗

cβroot = (ψ, β · τx)H

Uβ =
(
{[[kβ

j ]]2, [[c
β
j ]]1}j , ([[k

β
root]]2, [[c

β
root]]1)

)
where x, y ∈ Zp, σj , z, τ, πj , vj , τ, ψ ← Zp. For
any PPT adversary A, ∃ a PPT adversary B for
the SXDH assumption such that

AdvML
A (λ) = |Pr[A(D,U0) = 1]− Pr[A(D,U1) = 1]|

≤ P · (6P + 3) + 2) · AdvSXDH
B (λ).

In the following, we prove that the adversary’s ad-
vantage for all the consecutive games is negligible
in the security parameter λ which completes the
proof of the Theorem 2.

Lemma 12. |Pr[E0]−Pr[E1]| ≤ 2QSK ·(P (6P +3)+
2) · AdvSXDH

B (λ)

Proof 17. This proof follows from AB-IPFE of
Nguyen et al. [28] using Masking Lemma 11 for
x = 1 and y = ⟨∆x,yℓ⟩ to achieve the selective
security. We consider a sequence of games
indexed by ℓ ∈ [QSK] corresponding to QSK
many functional key queries. We consider Game
0-ℓ be the first semi-functional secret key form
of Game 1 and denotes Game 0 ≡ Game 0-0
. . . Game 0-QSK ≡ Game 1. Consequently, for
ℓ ∈ [QSK], the Game 0-(ℓ − 1) is understood as
predecessor of Game 0-ℓ in the Game sequence
{Game 0-0,Game 0-1, . . . ,Game 0-QSK}. The
sequence of games from Game 0-(ℓ−1) to Game
0-ℓ is depicted in following.

Game 0-(ℓ− 1)-0: As previously mentioned, Game
0-(ℓ− 1)-0 is the same as Game 0-(ℓ− 1) where
the challenge ciphertext and secret keys compo-
nents are as follows:
[[cac,j ]]1 = [[(σj(1,−j), ψ, 0, 0, 0, 0, 0)F]]1
[[cfe]]1 = [[(ω, µω, ψ, o)H]]1

[[t
(β)
i ]]T = [[x

(β)
i ]]T − e(g1, ω[[ui]]2)− e([[µ]]1, ω[[si]]2)

[[kℓ,ac,j ]]2 = [[πℓ,j(j, 1), aℓ,j · z, 0, 0, 0, 0, 0)F∗]]2

[[kℓ,fe]]2 = [[(−
∑
i∈Iyℓ

yℓ,iuℓ,i,−
∑
i∈Iyℓ

yℓ,isℓ,i, aℓ,0z, 0)H
∗]]2

with aℓ,0 ← Zp, (aℓ,j)j∈List-att(A) ← Λaℓ,0
(A).

Game 0-(ℓ− 1)-1: Game 0-(ℓ− 1)-1 is identical
with Game 0-(ℓ− 1)-0 except that the following
changes in the challenge ciphertext and secret
keys components as follows:
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[[cac,j ]]1 = [[(σj(1,−j), ψ, 0, 0, τzj , 0, 0)F]]1
[[cfe]]1 = [[(ω, µω, ψ, τ )H]]1

[[kℓ,ac,j ]]2 = [[πℓ,j(j, 1), aℓ,j · z, 0, 0, a′ℓ,jδℓ/zj , 0, 0)F
∗]]2

[[kℓ,fe]]2 = [[(−
∑
i∈Iyℓ

yℓ,iuℓ,i,−
∑
i∈Iyℓ

yℓ,isℓ,i, aℓ,0z,

a′ℓ,0δℓ )H∗]]2

where τ, zj , a
′
ℓ,0, a

′
ℓ,j ← Zp with ∆x = x(0)−

x(1).

Game 0-(ℓ− 1)-2: This Game 0-(ℓ− 1)-2 is similar
to Game 0-(ℓ− 1)-1 except that the following
secret key component as follows:

[[kℓ,fe]]2 = [[(−
∑
i∈Iyℓ

yℓ,iuℓ,i,−
∑
i∈Iyℓ

yℓ,isℓ,i, aℓ,0z,

(a′ℓ,0 + r′ℓ,0)δℓ )H∗]]2

where r′ℓ,0 ← Zp.

Game 0-(ℓ− 1)-3: Game 0-(ℓ− 1)-3 is the same
as Game 0-(ℓ− 1)-2 except that the challenge
ciphertext and the secret key components are gen-
erated as follows:

[[cac,j ]]1 = [[(σj(1,−j), ψ, 0, 0, 0 , 0, 0)F]]1
[[kℓ,ac,j ]]2 = [[πℓ,j(j, 1), aℓ,j · z, 0, 0, 0 , 0, 0)F∗]]2

[[kℓ,fe]]2 = [[(−
∑
i∈Iyℓ

yℓ,iuℓ,i,−
∑
i∈Iyℓ

yℓ,isℓ,i, aℓ,0z,

r′ℓ,0δℓ )H∗]]2

where r′ℓ,0 ← Zp. In the following, we show that
the intermediate game transition between Game
0-(ℓ− 1)-0 to Game 0-(ℓ− 1)-3 relying on the
hardness of SXDH assumption G.

Game 0-(ℓ− 1)-0 ≈ Game 0-(ℓ− 1)-1: In this
Game the functional key is still capable to
decrypt the challenge ciphertext if the key policy
is satisfied. By applying the Masking Lemma 11
as described in that context, we get

|Adv0-(ℓ−1)-1(λ)− Adv0-(ℓ−1)-0(λ)| ≤
[P · (6P + 3) + 2] · AdvSXDH

G1,G2
(λ)

Game 0-(ℓ− 1)-1 ≈ Game 0-(ℓ− 1)-2: In this
game, we randomize a′ℓ,0 in the secret key
component kℓ,fe by uniform value rℓ,0 ← Zp.
Here, we categorize two cases based on the inner
product value ⟨∆x,yℓ⟩ zero or non-zero.

• For ⟨∆x,yℓ⟩ ≠ 0: From the security definition,
we have A(S) = 0, i.e., there is no way to find a
reconstruction vector c = (cj)j for an authorized
set A ⊆ S. More precisely, there are not enough

a′ℓ,j⟨∆x,yℓ⟩/zj from the ℓ-th functional key to
recover∑

j∈A

cja
′
ℓ,j

zj
· ⟨∆x,yℓ⟩τzj = τa′ℓ,0⟨∆x,yℓ⟩

Thus, (a′ℓ,j)j is a random labeling of a′ℓ,0 using
LSSS of the access structure A and τ, zj ← Zp.
Therefore, for all (a′ℓ,j)j are randomized into
a′ℓ,j/zj and become independent uniformly ran-
dom values. In this case, masking a′ℓ,0 by r′ℓ,0
are perfectly indistinguishable under A’s view.

• For ⟨∆x,yℓ⟩ = 0: Changing a′ℓ,0 to a′ℓ,0 + r′ℓ,0
does not affect the view of A. The given keys are
successful decrypting the challenge ciphertext in
both games which we discuss in the following.

e([[cfe]]1, [[kℓ,fe]]2)

= [[−ω
∑
i∈Iyℓ

yℓ,iuℓ,i − µω
∑
i∈Iyℓ

yℓ,isℓ,i + ψaℓ,0z+

τ(a′ℓ,0 + r′ℓ,0)⟨∆x,yℓ⟩]]T
= [[−ω

∑
i∈Iyℓ

yℓ,iuℓ,i − µω
∑
i∈Iyℓ

yℓ,isℓ,i + ψaℓ,0z]]T

e([[cac,j ]]1,
∑
j∈A

cj [[kℓ,ac,j ]]2)

= [[ψz
∑
j∈A

aℓ,j +
∑
j∈A

τzj
a′ℓ,jcj

zj
⟨∆x,yℓ⟩]]T

= [[ψzaℓ,0]]T

where A ⊆ S and (cj)j is obtained from
the LSSS. In total changing a′ℓ,0⟨∆x,yℓ⟩ to
(a′ℓ,0 + r′ℓ,0)⟨∆x,yℓ⟩ is perfectly indistinguish-
able under adversarial view. Thus, we have

Adv0-(ℓ−1)-1(λ) = Adv0-(ℓ−1)-2(λ)

Game 0-(ℓ− 1)-2 ≈ Game 0-(ℓ− 1)-3: Similar to
the game transformation of Game 0-(ℓ− 1)-1 to
Game 0-(ℓ− 1)-0, the game follows the same
transformation strategy. Therefore,

|Adv0-(ℓ−1)-3(λ)− Adv0-(ℓ−1)-2(λ)| ≤
(P · (6P + 3) + 2) · AdvSXDH

G1,G2
(λ)

We perform the above sequence of games for
each ℓ-th functional key. At the end, we arrive
at Game 0-Q ≡ Game 1. Thus the difference
between Game 0 and Game 1 is:

|Adv1(λ)− Adv0(λ)| ≤ 2QSK · (P (6P + 3) + 2) · AdvSXDH
G1,G2

(λ)

Lemma 13. |Pr[E1]− Pr[E2]| ≤ 1
p

Proof 18. Let us choose a matrix J← GL4(Zp) and
set the random dual orthonormal bases (H,H∗)
such that

H =

1 µ−1

I2

J; H∗ =

1 µ

I2

J∗
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where µ ← Zp. In the following, we simulate
the ℓ-th secret key component [[kℓ,fe]]2 and the
challenge ciphertext component [[cfe]]1. Now

[[cfe]]1 = [[(ω, µω, ψ, τ)H]]1 = [[(ω, ω, ψ, τ)J]]1

[[kℓ,fe]]1 = [[(−
∑
i∈Iyℓ

yℓ,iuℓ,i,−
∑
i∈Iyℓ

yℓ,isℓ,i, aℓ,0z,

r′ℓ,0⟨∆x,yℓ⟩)H
∗]]2

= [[(−
∑
i∈Iyℓ

yℓ,iuℓ,i,−µ
∑
i∈Iyℓ

yℓ,isℓ,i, aℓ,0z,

r′ℓ,0⟨∆x,yℓ⟩)J
∗]]2

From the above, it is clear that the ciphertext and
ℓ-th functional secret keys are simulated the same
as Game 1 except for µ = 0, i.e., except for the
probability 1

p . Thus, |Adv1(λ)− Adv2(λ)| ≤ 1
p .

Lemma 14. |Pr[E3]− Pr[E2]| ≤ negl(λ)

Proof 19. Let B← GL4(Zp) and set the matrix

H =


1

1 −1
1

1

B, H∗ =


1

1

1

1 1

B∗

where B∗ = (B−1)⊤. For Ix = Iyℓ
, then using

the basis (B,B∗), the secret key component and
ciphertext component kℓ,fe, cfe are simulated as
follows:

[[kℓ,fe]]2 = [[(−
∑
i∈Iyℓ

yℓ,iuℓ,i,−µ
∑
i∈Iyℓ

yℓ,isℓ,i, aℓ,0z,

r′ℓ,0⟨∆x,yℓ⟩)H
∗]]2

= [[(−
∑
i∈Iyℓ

yℓ,iuℓ,i,−µ
∑
i∈Iyℓ

yℓ,isℓ,i + r′ℓ,0⟨∆x,yℓ⟩,

aℓ,0z, r
′
ℓ,0⟨∆x,yℓ⟩)B

∗]]2

[[cfe]]1 = [[(ω, ω, ψ, τ)H]]1

= [[(ω, ω, ψ, τ − ω)B]]1

= [[(ω, ω, ψ, τ ′)B]]1

where implicitly set τ ′ = τ − ω.

Lemma 15. |Pr[E4]− Pr[E3]| ≤ AdvDBDH
B (λ)

Proof 20. To show the game transitions between
Game 2 and Game 3, we construct an ad-
versary B that break the DBDH assumption.
Let B obtains the DBDH challenge instance
(G, [[a]]1, [[b]]1, [[a]]2, [[c]]2, [[d]]T ) where a, b, c ←
Zp and d is either abc or d ← Zp. Let the
challenge index set |Ix| = n and consider a set
{w = (wi)i : i ∈ Ix, wi ∈ Zp} with the vector
space Zn

q where m : Ix → [n] maps the challenge
indices to those in Zn

p .
Now, we apply the proof techniques
of Abdalla et al. [3], [16], using the
information of ∆x = x(0) − x(1), the
challenger B generates a basis (zκ)κ∈[n−1]

of ∆x⊥ = {zκ : ⟨∆x, zκ⟩ = 0}. Based on these
zi’s, B picks n − 1 random scalars (ρi)i∈[n−1]

and (∆x, z1, z2, . . . , zn−1) is basis of Zn
p . Thus,

any canonical vectors ei can be represented
as ei = αi · ∆x +

∑
κ∈[n−1] λi,κ · zκ where

αi, λi,κ ∈ Zp for all i ∈ [n], κ ∈ [n − 1]. Now,
the challenger B can simulate the adversarial
view as follows:

Public key simulation. Using the challenge DBDH
instances, we set the master public key as
MPK =

(
{[[f i]]1}3i=1, [[h1 + ah2]]1, [[h3]]1, [[a]]1

)
.

Random Oracle Calls: On input i ∈ Iyℓ
, if i /∈ Ix,

(i.e., Ix ̸= Iyℓ
) returns two random group ele-

ments of G2 using both the random oracle H1 and
H2 and set these as [[u′i]]2 and [[s′i]]2 respectively.
On input i ∈ Ix, B responses as

H1(i|Ix) = αm(i)[[a]]2 · (
∏

κ∈[n−1]

λm(i),κ[[ρκ]]2);

H2(i|Ix) = αm(i)[[c]]2 · (
∏

κ∈[n−1]

λm(i),κ[[ρκ]]2)

where ρκ ← Zp for κ ∈ [n− 1].

Ciphertext simulation: The challenger B uniformly
chooses β ← {0, 1} and generates the challenge
ciphertext corresponding to the challenge message
vector x(β) = (x

(β)
i )i∈Ix from the given DBDH

instances as follows:

[[cac,j ]]1 = [[(σj(1,−j), ψ, 0, 0, 0, 0, 0)F]]1
[[cfe]]1 = [[(b, b, ψ, τ)H]]1

[[t
(β)
i ]]T = [[x

(β)
i ]]T · αm(i)e([[b]]1, [[a]]2)

−1·( ∑
κ∈[n−1]

λm(i),κ

)
e([[b]]1, [[ρκ]]2)

−1 · αm(i)([[d]]T )
−1

·
( ∑

κ∈[n−1]

λm(i),κρk

)
e([[b]]1, [[a]]2)

−1

Decryption keys simulation: The
adversary A can query ℓ-th secret keys
SKyℓ,A = ({[[kℓ,ac,j ]]2}j∈List-Att(A), [[kℓ,fe]]2)
corresponding to (yℓ = (yℓ,i)i∈Iyℓ

,A). Make
those calls to the random oracles H1, H2

that haven’t been made for inputs i ∈ Iyℓ
.

For Ix ̸= Iyℓ
or A(S) = 0, the challenger

simply returns the secret keys components
({[[kℓ,ac,j ]]2}j∈List-Att(A), {[[kℓ,fe]]2}) as

[[kℓ,ac,j ]]2 = [[πℓ,j(j, 1), aℓ,j · z, 0, 0, 0, 0, 0)F∗]]2

[[kℓ,fe]]2 = [[(−
∑
i∈Iyℓ

yℓ,iu
′
ℓ,i,−a

∑
i∈Iyℓ

yℓ,is
′
ℓ,i,

aℓ,0z, 0)H
∗]]2

For (Ix = Iyℓ
) ∧ (A(S) = 0), we simualte the
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secret key components as follows:

[[kℓ,fe]]2 = [[(−aδℓ −
∑

κ∈[n−1]

λm(i),κρκyi, r
′′
ℓ,0δℓ−

a
∑

κ∈[n−1]

λm(i),κρκyi, aℓ,0z, 0)H
∗]]2

where we implicitly set r′′ℓ,0 = r′ℓ,0 − ac, i.e.,
uniformly random in Zp. Otherwise for Ix = Iyℓ

and A(S) = 1, we can express the key vector
yℓ = (yℓ,i)i∈Iyℓ

as (yℓ,i)i∈Iyℓ
= ϑ · (x(0) −

x(1)) +
∑

ι∈[n−1] ει · zι where ϑ ← Zp and
εκ ← Zp for all κ ∈ [n− 1]. Here the coefficient
ϑ of x(0) − x(1) in the decomposition of yℓ for
which a key has been queried is zero, i.e.,

⟨x(0) − x(1),yℓ⟩ = ϑ · ⟨x(0) − x(1),x(0) − x(1)⟩
=⇒ ϑ = 0 (as ⟨∆x,yℓ⟩ = δℓ = 0)

Then the challenger simply returns the secret keys
components {[[kℓ,j ]]2}j∈List-Att(A) and {[[kℓ,fe]]2} as

[[kℓ,ac,j ]]2 = [[πℓ,j(j, 1), aℓ,j · z, 0, 0, 0, 0, 0)F∗]]2

[[kℓ,fe]]2 = [[(
(
−

∑
ι∈[n−1]

ει

( ∑
κ∈[n−1]

λι,κρκ

))
,(

−
∑

ι∈[n−1]

ει

( ∑
κ∈[n−1]

λι,κρκ

))
a, aℓ,0z, r

′
ℓ,0δℓ)H

∗]]2

The simulation of the secret keys are correctly
computed unless the adversary is not admissible.
At the end of the simulation if A correctly guesses
the challenge bit β, (the tuple is a proper BDH
tuple) B guesses that d = abc otherwise, it guesses
that d is uniformly random. According to the
DBDH assumption, A is unable to differentiate
between the these scenarios, and as a result, the
adversary A does not possess any information on
the challenge bit β.
This completes the proof of Theorem 2.
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