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Abstract. Oblivious Transfer (OT) is at the heart of secure computation and is a foundation
for many applications in cryptography. Over two decades of work have led to extremely efficient
protocols for evaluating OT instances in the preprocessing model, through a paradigm called
OT extension. A few OT instances, generated in an offline phase, can be used to perform
many OTs in an online phase efficiently, i.e., with very low communication and computational
overheads.

Specifically, traditional OT extension protocols use a small number of “base” OTs, gener-
ated using any black-box OT protocol, and convert them into many OT instances using only
lightweight symmetric-key primitives. Recently, a new paradigm of OT with a public-key setup
has emerged, which replaces the base OTs with a non-interactive setup: Using only the public
key of the other party, two parties can efficiently compute a virtually unbounded number of
OT instances “on the fly.”

In this paper, we put forth a novel framework for OT extension with a public-key setup (hence-
forth, “public-key OT”) and concretely efficient instantiations. Implementations of our frame-
work are 30–100× faster when compared to the previous state-of-the-art public-key OT proto-
cols, and remain competitive even when compared to OT extension protocols that do not offer
a public-key setup. Additionally, our instantiations result in the first public-key OT schemes
with plausible post-quantum security.

In summary, this paper contributes:

– QuietOT: A framework for OT extension with a public-key setup that uses fast, symmetric-
key primitives to generate OT instances following a one-time public-key setup, and offering
additional features such as precomputability.

– A public-key setup for QuietOT from the RingLWE assumption, resulting in the first post-
quantum construction of OT extension with a public-key setup.

– An optimized, open-source implementation of our construction that can generate up to
1M OT extensions per second on commodity hardware. In contrast, the state-of-the-art
public-key OT protocol is limited to approximately 20K OTs per second.

– The first formal treatment of the security of OT with a public-key setup in a multi-party
setting, which addresses several subtleties that were overlooked in prior work.
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1 Introduction

In its simplest form, Oblivious Transfer (OT) allows a party (called the receiver) to privately retrieve
one out of two messages from another party (called the sender). The receiver has a choice bit b and
the sender has a pair of messages (m0,m1). Using OT, the receiver learns mb but learns nothing about
m1−b. Moreover, the sender is guaranteed to learn nothing about b. OT is a foundational building
block for secure multi-party computation [57], and its applications typically require a large number
of oblivious transfers (in the millions or billions). Unfortunately, all existing protocols for OT require
public-key cryptography, making them concretely inefficient in many applications. Since it is known
that OT cannot be constructed in a black-box manner using only symmetric-key primitives [51], this
inefficiency is somewhat inherent to the OT problem. Fortunately, however, since the seminal work of
Beaver [14] and the efficient construction of Ishai, Kilian, Nissim, and Petrank [53] (henceforth, IKNP),
lightweight OT can be realized by performing a small number of expensive “base” OTs that are then
extended (using only lightweight, symmetric-key cryptography) to perform any number of regular
OTs. Despite its concrete computational efficiency, the original paradigm of IKNP induces a large
communication overhead (λ bits of communication per extended OT). To address this overhead, new
paradigms have recently emerged that enable extending base OTs using much less communication.
Protocols like SoftSpokenOT [70] directly improve the communication efficiency of IKNP by a small
factor k (e.g., k = 5) at the cost of some increased computation. Silent OT extension protocols [63,
21, 23, 20, 68, 71, 76, 37] achieve optimal communication (3 bits of communication per OT), but come
with a concrete computational overhead that is noticeably larger than SoftSpokenOT (e.g., RRT, the
state-of-the-art silent OT [68], being about 8× slower than SoftSpokenOT on machines with AVX
instructions).

Our goal: “Diffie-Hellman” for secure computation. The state-of-the-art techniques for effi-
ciently evaluating a large number of OT instances all require the sender and the receiver to initially
interact in a distributed setup phase. Contrast this with the simpler task of establishing a secure com-
munication channel on the Internet. Thanks to the breakthrough key-agreement protocol of Diffie and
Hellman [41] in 1976, any pair of parties can locally derive a shared symmetric encryption key directly
from the public key of the other party. This approach to securing communication has proven to be
highly effective, and is now widely deployed [73]. Concretely, this means that over a large network of
N parties, all pairs of parties can securely communicate following a one-time public-key setup with
O(N) communication, where all parties broadcast their public keys.

The goal of oblivious transfer with a public-key setup, first explicitly put forth by Orlandi, Scholl,
and Yakoubov [63], is to achieve a similar feature for the task of secure computation on the Internet.
Concretely, over a large network of N parties, if all pairs of parties want to be able to jointly run
secure computation protocols (which typically requires evaluating many OTs), they must all run
the distributed setup pairwise, resulting in O(N2) communication and simultaneous interactions.
However, with a public-key setup (or non-interactive “public-key OT” for short), each pair of parties
can instead efficiently generate an arbitrary number of pseudorandom OT instances, given only the
public key of the other party! These pseudorandom OT instances can then be derandomized in one
round to perform regular OTs [63, 29, 15]. Unfortunately, despite being very desirable, this feature
is not achievable with any of the state-of-the-art OT extension protocols, even in the semi-honest
model.

Very recently, however, the work of Bui, Couteau, Meyer, Passelègue, and Riahinia [29] (hence-
forth, BCMPR) achieved the first practically efficient candidate construction of public-key OT by
building a new Pseudorandom Correlation Function (PCF) for the OT correlation, and showing that
it admits a public-key setup. Concretely, with a public-key PCF, two parties can, given only each
other’s public key, locally generate an arbitrary amount of pseudorandom OTs. In turn, these pseu-
dorandom OTs can be used to perform a regular bit-OT in one round of interaction and three bits
of communication). While this represents significant progress, their result falls short of providing a
fully satisfactory solution to the problem of efficient public-key OT. For one, their protocol is not
an OT extension, given that it requires (local) public-key operations for every OT that it generates.
Consequently, it is considerably less efficient than state-of-the-art OT extension protocols. Concretely,
BCMPR can generate up to 21K OTs per second, whereas state-of-the-art OT extension protocols can
generate several million OTs per second [70]. Additionally, BCMPR is built around group-based prim-
itives, making it not post-quantum secure, and relies on a new assumption they call “Sparse-power
DDH” (or SPDDH for short) which is only proven secure in the generic group model.
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1.1 Our contributions

In this paper, we make several contributions, which we highlight here and describe in depth in
our technical overview of Section 2. The primary contribution of this paper is QuietOT: a novel
framework for fast OT extension with a public-key setup. With QuietOT, given only each other’s
public key, two parties can generate an arbitrary amount of pseudorandom “ListOTs,” a variant
of OT which we introduce, which can be converted into pseudorandom (resp. regular) OTs in one
round and a small overhead in communication, e.g., using 4 bits/OT (resp. 7 bits/OT) in one of
our instantiations. The only difference between our approach via ListOT and a standard PCF for
OT is that the derandomization step incurs slightly more communication (e.g., 7 bits instead of 3
bits). Unlike all prior public-key OT protocols, QuietOT does not require public-key operations when
generating OTs, making the concrete performance one to six orders of magnitude faster compared to
the state-of-the-art OT protocols that offer a public-key setup. We show that the base OTs can be
replaced with a public-key setup under the standard RingLWE assumption (with a superpolynomial
modulus-to-noise ratio), allowing parties to non-interactively derive a shared key from which they
can generate OT extensions. Alternatively, the public-key setup of QuietOT can be replaced by a
simple two-round setup using any black-box base OTs, yielding new constructions of two-round OT
extension.

We note that state-of-the-art OT extension protocols, such as SoftSpokenOT [70], remain signifi-
cantly faster than QuietOT (e.g., about 7× faster in the regime where SoftSpokenOT communicates
16 bits/OT). The core advantage of QuietOT over these alternatives lies in its public-key setup:
concretely, using QuietOT, two parties can execute the vast majority of the computation before they
even interact, given only each other’s public key. The interactive phase that follows involves solely
cheap, non-cryptographic operations (a few XORs per OT). In contrast, using SoftSpokenOT or any
state-of-the-art OT extension, the parties must first interact (to generate base OTs) before they can
run the bulk of the computation and interact again to complete the protocol; this requires both par-
ties have to stay online. We believe that this precomputation feature of QuietOT is highly desirable
in the setting of on-demand pairwise secure computation over a large network. As a bonus, QuietOT
communicates less than SoftSpokenOT, and requires only one round of interaction to perform an OT.

Under the hood, our framework combines any “Inner-Product Membership” weak PRF (ipm-
wprf) [29] with a Shiftable Constrained Pseudorandom Function (ShCPRF), a new primitive that
we introduce in Section 5. Prior work [29, 63] requires using public-key operations for each OT,
translating to expensive group operations under either the Quadratic Residuosity (QR) or DDH
assumption (the construction of Orlandi, Scholl, and Yakoubov [63], henceforth OSY, is mostly of
theoretical interest due to the large number of group exponentiations required). In contrast, we show
that an ShCPRF can be constructed unconditionally in the random oracle model by exploiting a recent
CPRF construction [72]. In addition, because ipm-wprf are lightweight symmetric-key primitives
(i.e., they do not require public-key operations to evaluate), our overall OT extension protocol is very
efficient. We provide a comparison to related work in Table 1.

Additional contributions. In addition to the main contribution of the QuietOT framework, this
paper contributes:

– The first formal treatment of public-key OT when used in a secure multi-party computation over
a large network. Our definitions and analysis address several subtle issues with using any public-
key OT constructions (including BCMPR and OSY) in a multi-party setting where security must
be guaranteed with respect to an adversary corrupting a subset of parties.

– A definition and construction of shiftable CPRFs, a twist on CPRFs where the master key holder
can efficiently “shift” the constraint when evaluating the CPRF. This construction plays a crucial
role in our framework and may be of independent interest.

– An open-source, optimized implementation of the BCMPR protocol (Bui et al. [29] do not provide
an implementation of their public-key PCF), which we evaluate and compare to QuietOT in
Section 8.

2 Technical Overview

In this section, we provide a detailed overview of our results. In Section 2.1, we start by covering
the state-of-the-art BCMPR framework for public-key OT. Then, in Section 2.2, we cover the main
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OT/s
Max. Throughput

Bits/OT
Communication PKS† PQ Assumptions

IKNP 34,000,000 128 ✗ ✓ ROM

SoftSpokenOT (k = 2) 53,000,000 64 ✗ ✓ ROM

SoftSpokenOT (k = 8) 9,500,000 16 ✗ ✓ ROM

RRT 6,900,000 3 ✗ ✓ EC-LPN+ROM

OSY 1 3 ✓ ✗ QR+ROM

BCMPR 21,000 3 ✓ ✗ IPM-wPRF+SPDDH+ROM

QuietOT 1,200,000 7 ✓ ✓ IPM-wPRF+ROM

Table 1: An overview of OT extension protocols and their maximum throughput observed across different
hardware and parameter settings (full evaluation results provided in Section 8). PKS and PQ indicate whether
the construction has a public-key setup and is plausibly post-quantum secure, respectively. For efficiency,
nearly all OT extension protocols are instantiated in the Random Oracle Model (ROM). Note that in these
constructions, the random oracle assumption can be generically replaced with a suitable correlation-robust
hash function. †PKS not implemented.

ideas behind our QuietOT framework and the different instantiations of it. In Section 2.3, we show
how QuietOT implies two-round OT extension and full pre-computability for either the sender or
the receiver. In Section 2.4, we explain our approach to non-interactive public-key setup under the
RingLWE assumption. In Section 2.5, we overview our definitions of public-key setup with multi-
instance security, which becomes a crucial building block for applying public-key OT to a multi-party
computation setting.

2.1 Background on the BCMPR framework

The BCMPR framework constructs a pseudorandom correlation function (PCF) for OT correlations
using an ipm-wprf (an “inner-product membership” weak PRF; more details on this primitive
are given later). In addition to the ipm-wprf requirement, they also require the Sparse-Power DDH
(SPDDH) assumption and instantiate their public-key setup from the DCR assumption. In their PCF
construction, the sender and receiver can compute OT correlations on-demand: The sender outputs
two pseudorandom bits (s0, s1) while the receiver outputs (b, sb), where b ∈ {0, 1} is a pseudorandom
choice bit. This correlation can then be converted into a chosen-bit OT with 3 bits of communication
in one round of interaction using the transformation of Beaver [15].

At the heart of the BCMPR framework is a Constrained PRF (CPRF) F = (F.KeyGen, F.Eval,
F.Constrain, F.CEval) with the constraint predicate set to a weak PRF4 fz that outputs a pseudoran-
dom bit. At a high level, a CPRF has two keys: a master key and a constrained key. The constrained
key only allows evaluating the PRF when the constraint predicate is satisfied. Hence, the weak PRF
f indicates if the input to F is constrained or not, making roughly half the inputs to F constrained.
It was known (somewhat folklore) that any CPRF with a weak PRF as a constraint predicate can
be used to construct a PCF for OT correlations [13]. However, prior to BCMPR, all existing CPRF
constructions were either not sufficiently expressive to evaluate a weak PRF as a predicate or not
concretely efficient enough to result in practical solutions [30, 26, 32, 64, 27, 36, 9]. Therefore, at
the core of BCMPR is a construction of a CPRF just powerful enough to evaluate a suitable weak
PRF candidate as the constraint predicate while remaining concretely efficient in practice. They re-
alize such a CPRF by adapting the classical Naor–Reingold PRF [62]. In a nutshell, the BCMPR
framework for OT correlations combines:

– A CPRF supporting a special class of Inner-Product Membership (IPM) constraints (the con-
strained key can evaluate the PRF on x if and only if ⟨z, x⟩ ∈ S, for some constraint vector
z ∈ Rn defined over a finite ring R and fixed set S partitioning the ring elements)5, and

– Any weak PRF fz : {0, 1}n → {0, 1} having an evaluation function that can be described
as an inner-product membership predicate (which they call an ipm-wprf). That is, fz(x) =

4 A weak PRF is only pseudorandom on uniformly random inputs.
5 We slightly abuse notation by interpreting the bit string x as a vector of bits.

5



0 iff ⟨z, x⟩ ∈ S0 and fz(x) = 1 iff ⟨z, x⟩ ∈ S1, for a partitioning S0 ∪ S1 of the finite ring R over
which the inner product is defined, and a vector z ∈ Rn.

Building on the Naor–Reingold PRF, BCMPR constructs a CPRF supporting IPM predicates in the
Random Oracle Model (ROM) [17]. In particular, using any ipm-wprf (which can be realized from
a handful of assumptions), coupled with their CPRF construction supporting IPM predicates, allows
them to instantiate the following generic template for building a PCF for OT correlations, which will
serve as inspiration for our framework as well.

A general PCF template from CPRFs for IPM predicates. The template of BCMPR uses a
CPRF F with IPM constraints that evaluates an ipm-wprf fz as the predicate, for a vector z ∈ Rn

that we will call the wPRF key. The sender gets two master keys (msk0,msk1) for F , while the receiver
obtains two constrained keys (csk0, csk1). The master keys can be used to evaluate the PRF on the
entire domain. In contrast, the constrained key can only be used to evaluate the PRF when the
constraint predicate is satisfied. The idea is to have the constrained key csk0 have fz as the predicate,
and csk1 have the opposite predicate 1− fz. Notice that given the two constrained keys, the receiver
can only evaluate the CPRF using one of the two keys for an input x (depending on the value of fz(x),
which is pseudorandom). Moreover, given the ipm-wprf key z, the receiver can determine which of
the two evaluations is constrained for an input x by evaluating the “predicate” fz(x). The receiver can
then compute and output the correlation (b, sb), consisting of the pseudorandom bit b = fz(x) and
the string sb = F.CEval(cskb, x). The sender, in contrast, only obtains the master keys (msk0,msk1),
which are independent of the ipm-wprf key z. As such, the sender can only compute the strings
s0 = F.Eval(msk0, x) and s1 = F.Eval(msk1, x), consisting of the sender’s correlation (s0, s1), without
learning the pseudorandom bit b computed by the receiver.

Limitations of the general template. The core difficulty associated with the above template (and
the BCMPR framework by extension) is finding a CPRF with a predicate class that is sufficiently
powerful to evaluate fz. The most efficient construction to date is the constrained Naor–Reingold
PRF construction of BCMPR, which (1) requires a new cryptographic assumption, (2) is not post-
quantum secure and, (3) necessitates concretely expensive group operations to evaluate, placing an
upper limit on practical efficiency of BCMPR (e.g., 21K correlations per second in our optimized im-
plementation). In contrast, OT extension protocols like SoftSpokenOT [70] (which generalizes IKNP)
use only lightweight symmetric-key primitives, are post-quantum secure, and are incredibly fast (e.g.,
achieving several million OTs per second), but do not offer a public-key setup. Unfortunately, improv-
ing the efficiency of the BCMPR framework hinges on developing more efficient CPRF constructions
for IPM predicates, which appears to be the weakest class of predicates sufficiently powerful to eval-
uate any wPRF. Note that a pseudorandom function cannot have a linear evaluation, and therefore
inner-product equality predicates are inherently insufficient.

2.2 Our approach

Intuition. The starting point of our approach is the template construction of BCMPR. As with
BCMPR, in our framework, the receiver holds the key z ∈ Rn of an ipm-wprf and we let the
(pseudorandom) selection bit of the receiver be defined as the output fz(x) of the wPRF f on a
random input x. Recall that fz(x) = b iff ⟨z, x⟩ ∈ Sb (where S0, S1 are a public partitioning of the
inner-product range, associated with the ipm-wprf). The main limitation of BCMPR is the reliance
on a CPRF for a class of constraints that contains fz. While they provide an optimized construction,
it still requires public-key operations (group exponentiation) for every evaluation, and hence for every
OT instance.

At this point, we diverge significantly from the BCMPR framework by replacing their CPRF with
a far more efficient primitive. Our starting point is a recent CPRF construction of Servan-Schreiber
[72], which uses only symmetric-key primitives. Concretely, evaluating the CPRF involves computing
an inner product and hashing the result; furthermore, the CPRF was shown to be unconditionally
secure in the ROM. However, the catch is that the CPRF of Servan-Schreiber only handles inner-
product predicates. That is, given a constraint z, the constrained evaluation with csk on x matches
the evaluation with the master key if and only if ⟨z, x⟩ = 0 ∈ R. Observe that using this much weaker
CPRF, the receiver is now only able to evaluate F on all inputs where ⟨z, x⟩ = 06 (roughly 1

|Sb| of

6 We follow the convention of letting P (x) = 0 when the predicate P is satisfied.
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all inputs assuming f(x) = b, and where |Sb| ≈ |R|/2), which is too weak to instantiate the BCMPR
template.

Shiftable CPRFs to the rescue. Our first key observation is that (a slight modification of) the
CPRF framework of Servan-Schreiber enjoys an additional shiftability property. Concretely, the CPRF
evaluation with the master key msk can take an additional shift α as input, and provides the following
guarantee: the constrained evaluation F.CEval(csk, x) is equal to F.Eval(msk, x, α) whenever ⟨z, x⟩ −
α = 0. That is, the constraint is shifted by α. Given such a shiftable CPRF for inner products, the
sender can now compute F.Eval(msk, x, α) for all possible shifts α ∈ S0 ∪ S1. This yields two lists of
values: L0 = (F.Eval(msk, x, α))α∈S0

and L1 = (F.Eval(msk, x, α))α∈S1
. Our next core observation is

that the value F.CEval(csk, x) computed by the receiver belongs to exactly one of the two lists, and
furthermore, the index b of the list Lb it belongs to is simply fz(x). That is, the receiver knows a
pseudorandom value v and pseudorandom “selection bit” b = fz(x) such that v ∈ Lb. Additionally,
by using the constraint z, the receiver can determine the index i in Lb in which v is located (i.e., such
that v = Lb[i]).

Oblivious transfer from ListOT. So far, we have seen that given a shiftable CPRF for inner-
product predicates, the sender and the receiver can generate many instances of the following “corre-
lation:” the sender gets as output two (pseudorandom) lists (L0, L1), and the receiver obtains (v, b, i)
where v = Lb[i], and b is pseudorandom from the viewpoint of the sender. However, importantly, i
is not pseudorandom, which prevents this from being a true OT correlation. We call “ListOT” this
weaker variant of the OT correlation. The name is inspired from list decoding [43], where a decoding
algorithm for a code is allowed to output a list of code words from which the word can be decoded.7

Hence, for ListOT, the sender outputs two lists of messages, L0, L1, and the receiver outputs a bit b,
value v, and an index key i, such that v is located at Lb[i]. (Later, for ease of notation, L0 and L1

will be treated as key-value stores/dictionaries.)

While the pseudorandom ListOT instances are not correlations in the strict technical sense (be-
cause the distribution of i depends on the secret wPRF key), it is not too hard to see that it still
suffices to instantiate a random OT using some additional communication. To see this, observe that
given OT inputs (m0,m1), the sender simply sends (L0[j] ⊕ m0)j∈S0

and (L1[j] ⊕ m1)j∈S1
to the

receiver. The receiver recovers mb by unmasking Lb[i]⊕mb using v = Lb[i].
8

We now explain how we construct efficient ShCPRFs by adapting the CPRF framework of Servan-
Schreiber [72].

Constructing ShCPRFs. We make the observation that in all existing CPRF constructions for
inner-product predicates [72, 29, 39], the master key holder can efficiently compute the set of all
possible pseudorandom values evaluated under the constrained key csk. We will focus on the CPRF
construction of Servan-Schreiber, instantiated unconditionally using a hash function H modeled as a
random oracle. In this construction, the master key msk consists of a random vector z0 of length n,
with elements from some sufficiently large field F.9 For a constraint vector z ∈ Fn, the constrained key
is defined as z1 = z0−∆·z, where ∆ ∈ F\{0} is random. Simplifying slightly,10 the evaluation and the
constrained evaluation algorithms are defined as H(⟨z0, x⟩ , x) and H(⟨z1, x⟩ , x), respectively. Note
that when ⟨z, x⟩ = 0, it holds that H(⟨z0, x⟩ , x) is equal to H(⟨z1, x⟩ , x), which guarantees the master
key and constrained key evaluations agree. In contrast, when ⟨z, x⟩ ≠ 0, then H(⟨z1, x⟩ , x) is equal
to H(⟨z0, x⟩ −∆ ⟨z, x⟩ , x), which is independent of H(⟨z0, x⟩ , x) due to ∆. In particular, we observe
that when ⟨z, x⟩ ≠ 0, using z0 and ∆ allows the master key holder to evaluate all possible constrained
evaluations by computing H(⟨z1, x⟩+∆α, x), for all possible inner products α ∈ {⟨z, x⟩ | x ∈ {0, 1}n}
associated with the constraint class given by z. We point to Section 4 for more details on this ShCPRF
construction. Abstractly, we define the master key evaluation algorithm F.Eval(msk, x, α) to take a
shift α as an additional input while leaving the remaining CPRF algorithms unchanged.

7 We note that ListOT is not related to “list two-party computation” [33], which defines list OT as a security
definition for the standard oblivious transfer functionality.

8 When generating (pseudo)random OTs, this simple approach can be further improved by letting m0 and
m1 be the first element of L0 and L1 respectively, which allows communicating two elements less, for a
total of |S0|+ |S1| − 2 bits of communication. Concretely, with our most communication-efficient instance,
this translates to only 4 bits of communication per random OT.

9 Our actual ShCPRF construction is defined using a ring extension for efficiency.
10 The full construction has an extra additive term to handle the all-zero input x = 0n.
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Putting things together: A “PCF” for ListOT. Using the ShCPRF construction sketched
above, coupled with an ipm-wprf fz with partitioning S0 ∪ S1, the sender with the master secret
key msk computes the two lists, L0 and L1, corresponding to b = 0 and b = 1, respectively, as
L0 = (F.Eval(msk, x, α))α∈S0 , L1 = (F.Eval(msk, x, β))β∈S1 , using a random x. Importantly, note that
given the constrained key csk for a constraint vector z, the receiver obtains one value in Lb, where
b = fz(x). All other values, in both lists, remain pseudorandom from the viewpoint of the receiver.
At this stage, our framework can be instantiated using any choice of ShCPRF and any choice of
ipm-wprf. We choose to instantiate the ShCPRF in the random oracle model, as it offers the most
concretely-efficient solution. The ipm-wprf can be realized from several assumptions, as detailed in
BCMPR. Indeed, many wPRFs fit the ipm-wprf framework, including the learning with rounding
(LWR)-based wPRF [11], the Goldreich–Applebaum–Raykov (GAR) [47, 6], and several other low-
complexity wPRF candidates, including the Boneh, Ishai, Passelègue, Sahai, and Wu (BIPSW) [18],
and LPN-based candidates [22]. (Bui et al. [29] provide an overview of these different candidates
and others.) The BIPSW wPRF candidate is especially well-suited to this framework given that the
evaluation (defined in Equation (1)) is essentially just a rounded inner product computed in Z6:

fz(x) = ⌊⟨z, x⟩ mod 6⌉2 . (1)

Note that when fz(x) = 0, then it holds that ⟨z, x⟩ (mod 6) ∈ {0, 1, 2} and when fz(x) = 1 it
holds that ⟨z, x⟩ (mod 6) ∈ {3, 4, 5}. By instantiating the ShCPRF to compute predicates over an
extension of Z6, we can achieve very efficient evaluations using the BIPSW ipm-wprf (see Section 8
for our evaluation).

2.3 Two-round OT extension

Using our framework, we obtain a two-round OT extension protocol. Observe that the sender can
independently generate the ShCPRF master secret key, consisting of z0 and ∆, while the receiver can
independently generate the ipm-wprf key z. For the case where z ∈ {0, 1}n, we can use any two-
round string OT protocol repeated in parallel n times as follows. For i ∈ [n], the sender sets mi,0 = z0i
and mi,1 = z0i − ∆. The receiver uses zi ∈ {0, 1} as its choice bit to retrieve mi,zi = z0i − ∆zi,
and in this way can recover csk := z0 −∆z using n parallel calls to the two-round OT functionality
(indeed, because ∆ is the same across messages, any correlated OT protocol [7] is sufficient). In the
general case, when z ∈ Rn, we can use any two round “reverse” vector oblivious linear evaluation
(VOLE) protocol [3, 21], which directly generalizes correlated OT to work over a ring R. In reverse
VOLE, the sender inputs (b, x) ∈ Rn×R and the receiver inputs a ∈ Rn. The sender gets no output
while the receiver obtains ax+ b. By letting the sender input (z0, ∆) and the receiver input −z, we
immediately have that the receiver obtains z1 = z0 −∆z. See Appendix C for more details.

Two-round OT extension is known to be impossible under black-box symmetric-key primitives [45]
making our use of an ipm-wprf a rather weak assumption to circumvent the impossibility result of
Garg et al. [45] (in fact, an IPM-PRG suffices). In contrast, protocols like IKNP and SoftSpokenOT
inherently require three rounds of interaction due to their unconditional instantiations in the random
oracle model, and all previous two-round OT extensions (with the exception of Beaver [14], which is
not black-box and not concretely efficient) required variants of the LPN assumptions [76, 21, 20, 68].

Precomputability. A nice feature of our two-round setup is the ability for one party to precompute all
correlations before even knowing the identity of the other party. To see this, note that the receiver can
precompute all choice bits just using the ipm-wprf key z without needing to know the constrained
key. Additionally, the receiver can sample a uniformly random constrained key z1 for the ShCPRF
and use it to generate ahead-of-time all its ListOT triples (b, i, v). Later, once the identity of the
sender is known, the sender can engage with the receiver in a two-round OT protocol to compute
the master key z0 = z1 +∆z from the “constrained key” z1. Similarly, the sender can alternatively
generate all its ListOT instances (L0, L1) without needing to know the identity of the receiver by
locally sampling ∆ and z0. We provide details on precomputability and more motivation for the
notion in Appendix C.1.

2.4 Public-key setup from Ring-LWE

We present a non-interactive distributed setup protocol from RingLWE. To the best of our knowledge,
this forms the first distributed setup protocol for PCF for ListOT based on a plausibly post-quantum
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assumption. The goal of this protocol is for the sender with input ∆ and receiver with input z to
distributively derive keys z0 (part of the master secret key) and z1 (the constrained key), which can
be viewed as additive shares of ∆ · z in a ring R.

Parameters. In order to rely on the security of RingLWE, the receiver will “encode” the bits of
z ∈ Rn into the coefficients of an element z of a suitable polynomial ring P. The protocol is executed
over P and then, at the end of the protocol, the sender and receiver each “decode” their result back
into the ring R to obtain vectors z0 and z1, by parsing each polynomial as a vector of n coefficients
(and disregarding any extra coefficients).

Assume that R = Zt is an integer ring, and let q := n · t · B · 2ω(log λ) (B is some bound on the
noise that we compute later). We define P := Zq[X]/(Xη + 1), where η is a power of 2 that is larger

than n. Let χ = χ(P) be a suitable noise distribution over P, such that for e0, e1
R← χ, it holds that

∥e0e1∥∞ ≤ B/3, with overwhelming probability.
The protocol proceeds in two phases as follows. During the public-key generation phase, the sender

and receiver each broadcast a public key, which is used by the other party in the ShCPRF evaluation
key derivation phase.

Step 1: Generating public keys. Fix random a0, a1 ∈ P as part of the public parameters. To
generate public keys, the sender and receiver proceed as follows. These public keys can then be
posted to a bulletin board or broadcasted.

Sender

1: Sample secret s0
R← χ.

2: Sample error e0
R← χ.

3: Set pkS = ∆ · a0 + s0a1 + e0.

Receiver

1: Encode q
t · z as z ∈ P.

2: Sample secret s1
R← χ.

3: Sample errors e1, e
′
1

R← χ.

4: Set pkR = (z + s1a0 + e1, s1a1 + e′1).

Step 2: Deriving ShCPRF keys. To derive a master key msk and constrained key csk, respectively,
the sender and receiver use the other party’s public key to proceed as follows. (Here and throughout,
we overload rounding ⌈·⌋t notation to include “rounding” a polynomial coefficient-by-coefficient.)

Sender

1: Compute z0 := ⌈⟨pkR, (∆, s0)⟩⌋t.
2: Decode z0 ∈ P as z0 ∈ Rn.

3: Set msk := (z0, ∆).

Receiver

1: Compute z1 := ⌈pkS · s1⌋t.
2: Decode z1 ∈ P as z1 ∈ Rn.

3: Set csk := z1.

Correctness. The inner products computed in the key derivation phase are, in fact, noisy additive
shares of ∆ · z ∈ P, since we have that

⟨pkR, (∆, s0)⟩ − (pkS · s1)
= ∆ · z +∆ · a0s1 +∆ · e1 + s0a1s1 + s0e

′
1 −∆ · a0s1 − s0a1s1 − e0s1

= ∆ · z +∆ · e1 + s0e
′
1 − e0s1︸ ︷︷ ︸

noise

≈ ∆ · z.

Note that∆ ∈ Zt has low norm, so we can bound the magnitude of the noise term∆·e1+s0e
′
1−e0s1

by B. Hence, by a standard rounding lemma [25, 42], z0 − z1 = ⌈⟨pkR, (∆, s0)⟩⌋t − ⌈pkS · s1⌋t =
∆ · z mod t. After parsing as vectors over Rn, we have z0 − z1 = ∆ · z.

Security. Pseudorandomness of the public keys follows from the RingLWE assumption with short
secrets (i.e., normal form RingLWE).11 In the sender public key, the RingLWE sample s0a1 + e0
masks ∆ · a0 and thus the secret key ∆. Similarly, in the receiver public key, the RingLWE sample
s1a0+e1 masks z and thus the secret key z. For a complete description of our protocol, its parameters,
and proof of security, we refer to Section 7.5.

11 Normal form RingLWE is a standard variant of RingLWE where the secret is sampled from the noise
distribution instead of uniformly. It is known to be as hard as regular RingLWE and is often used for
practical schemes [58, 2, 60, 40].
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2.5 Multi-instance security

An immediate application of QuietOT (and public-key OT schemes in general [29, 63]) is for efficient
large-scale MPC. At a high level, with QuietOT, parties can, using just the public keys of all other
parties, create pairwise OT channels for the purpose of running a secure computation (e.g., as in the
GMW protocol [48]). This application was also described in prior public-key OT constructions [29,
63] but was never formalized. We make the rather subtle observation that existing definitions [29,
63] for public-key OT only require one-time security—i.e., privacy for the sender or receiver is not
considered when the same public keys are reused with different parties.

To address this gap and properly define public-key OT, we formalize the notion of “multi-instance
security” in Section 7. In a nutshell, our definition captures a setting where parties (re)use a long-
term secret (that depends on the public-key) and an ephemeral secret that is generated for each new
session. We then prove that our public-key setup satisfies multi-instance security.

3 Preliminaries

3.1 Notation

We let N denote the set of natural numbers, Z denote the set of integers, and G denote a finite group.
We let R denote a finite ring. We denote by poly(·) the set of all polynomials and by negl(·) any
negligible function. We occasionally abuse notation and let poly denote a fixed polynomial.

Sampling and assignment. We let x
R← S denote a uniformly random sample drawn from a set S. We

let x ← A denote assignment from a randomized algorithm A and x := y denote initialization of x
to the value of y (which may be the output of a deterministic algorithm).

Vectors and matrices. We denote a vector v using bold lowercase letters and a matrix A using bold
uppercase letters. The i-th coordinate of a vector v is denoted by v[i] (we will also occasionally abuse
notation and write v[i] to look up a value associated with key i in a key-value list). The i-th bit of a
bit-string s is denoted by si. For a ring Rn, we define ∆ · α for α ∈ Rn as the coordinate-wise scalar
product.

Efficiency and indistinguishability. By an efficient algorithm A we mean that A is modeled by a
(possibly non-uniform) Turing Machine that runs in probabilistic polynomial time. We write D0 ≈c

D1 to mean that two distributions D0 and D1 are computationally indistinguishable to all efficient
distinguishers D and D0 ≈s D1 to mean that D0 and D1 are statistically indistinguishable.

Rounding. We let ⌊x⌉ denote the rounding of a real number x to the nearest integer. For integers
q > p ≥ 2, we define the modular rounding function ⌊·⌉p : Zq → Zp as ⌊v⌉p = ⌊(p/q) · v⌉.

3.2 Cryptographic definitions

Here, we recall the cryptographic definitions that we will use throughout the paper. In Section 3.2.1,
we define the notion of an ipm-wprf. In Section 3.2.2, we cover the definition of Ring-LWE and the
basics of modular rounding.

3.2.1 Inner-Product Membership PRF. We define the notion of a weak PRF (wPRF)12 that
can be evaluated using the “inner-product membership” formalism introduced by Bui et al. [29].

Definition 1 (Inner-Product Membership wPRF (IPM-wPRF) [29]). Let λ be the security

parameter and R = R be a finite ring. Let S0 = S
(λ)
0 be a (polynomially-sized) subset of Rλ, and

set S1 := R \ S0. Then, f := {fλ : Kλ ×Xλ → {0, 1}}λ∈N is an inner-product membership weak
PRF (IPM-wPRF) family with respect to the partitioning (S0, S1), if it satisfies the following three
properties:

(1) Kλ = Xλ = Rn
λ for some n = n(λ),

12 A weak PRF is pseudorandom on uniformly random inputs.
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(2) its evaluation can be expressed as an inner product membership, i.e., for each λ ∈ N, z ∈ Kλ,
x ∈ Xλ, we have that

fz(x) =

{
0, if ⟨z,x⟩ ∈ S0

1, otherwise (i.e., ⟨z,x⟩ ∈ S1),

where ⟨·, ·⟩ is the standard (simple) inner product on Rn, and
(3) it achieves the standard notion of a secure (weak) PRF [55].

3.2.2 Ring learning with errors and rounding. We recall the standard ring learning with
errors (RingLWE) assumption of Lyubashevsky, Peikert, and Regev [59] and its normal form.

Definition 2 (The Ring LWE Assumption [59]). Let λ be a security parameter. Let η =
η(λ), q = q(λ) ∈ N be polynomial in λ. Define the polynomial ring P = Zq[X]/(Xη + 1) and let
χ = χ(λ) be an error distribution over P. The RingLWEη,q,χ assumption states that for any t =
t(λ) ∈ poly(λ), it holds that

(a, s · a+ e) ≈c (a,u),

where s
R← P,a R← Pt, e

R← χt,u
R← Pt. The “normal form” RingLWEη,q,χ assumption states that this

holds even when s
R← χ, and is implied by the original formulation [58, Lemma 2.24].

Modular rounding. We let ⌊x⌉ denote the rounding of a real number x to the nearest integer. For
integers q > p ≥ 2, we define the modular rounding function ⌊·⌉p : Zq → Zp as ⌊v⌉p = ⌊(p/q) · v⌉.

Rounding lemma. We recall the following “rounding lemma” [38, 42, 25]:

Lemma 1 (Rounding of Noisy Secret Shares). Let (t, q) be two integers such that t divides q.
Fix any z ∈ Zq and let (z0, z1) be any two random elements of Zq subject to z0+z1 = (q/t)·z+e mod q,
where e is such that q/(t · |e|) ≥ λω(1). Then, with probability at least 1− (|e|+1) · t/q ≥ 1−λ−ω(1), it
holds that ⌊z0⌉t+ ⌊z1⌉t = z mod t, and the probability is over the random choice of (z0, z1) ∈ Zq×Zq.

4 Shiftable CPRFs

In this section, we start by defining the notion of Shiftable CPRFs in Section 4.1. Then, in Section 4.2,
we construct ShCPRFs for inner-product predicates by adapting the framework of Servan-Schreiber
[72].

4.1 Defining shiftable CPRFs

For simplicity, we restrict the definition to 1-key (rather than multi-key) ShCPRFs and selective secu-
rity, which is the definition that is satisfied by our construction. The definition overlaps significantly
with the definition of (non-shiftable) CPRFs [19, 56, 24] but using the classic PRF-style “real-or-
random” security game, where all evaluations are either computed using the master key or using a
truly random function.

Remark 1 (On the choice of security game). By using the real-or-random security definition, we
manage to get a tight reduction when proving security of our constructions. In contrast, prior work
that uses CPRFs to construct PCFs [36, 29] has a polynomial loss in security in their security proofs,
proportional to the number of PCF evaluations, which was an artifact of the original CPRF definition
that uses the find-then-guess formulation.

Remark 2 (Relation to shift-hiding shiftable functions (SHSF)). SHSF are an extension to CPRFs
introduced by Peikert and Shiehian [64]. In a SHSF, the constrained CPRF evaluation computes
F.Eval(msk, x) + f(x), for a hidden “shift” function f embedded into the constrained key. In con-
trast, our notion of Shiftable CPRFs only allows the master key holder to shift the constraint when
evaluating the CPRF (using the master key) and does not affect the constrained key.
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Definition 3 (Shiftable Constrained Pseudorandom Functions). Let λ ∈ N be a security pa-
rameter. A Shiftable Constrained Pseudorandom Function (ShCPRF) with domain X = Xλ, range Y,
and a finite set of shifts S that supports constraints represented by the class of circuits C = {Cλ}λ∈N,
where Cλ : X × S → {0, 1}, consists of the following four algorithms. We highlight the parts that are
specific to shiftable CPRFs.

– KeyGen(1λ)→ msk. The randomized key generation algorithm takes as input a security parameter
λ. It outputs a master secret key msk.

– Eval(msk, x, α)→ y. The deterministic evaluation algorithm takes as input the master secret key
msk, an input x ∈ X , and a shift α ∈ S. It outputs y ∈ Y.

– Constrain(msk, C) → csk. The randomized constrain algorithm takes as input the master secret
key msk and a constraint circuit C ∈ C. It outputs a constrained key csk.

– CEval(csk, x) → y. The deterministic constrained evaluation algorithm takes as input the con-
strained key csk and an input x ∈ X . It outputs y ∈ Y.

We let any public parameters PP be an implicit input to all algorithms. An ShCPRF must satisfy the
following correctness, security, and pseudorandomness properties. We let F̃ = F̃λ denote the set of
all functions from X × S to Y.
Correctness. For all security parameters λ, all constraints C ∈ C, and all inputs x ∈ X , there exists an
efficiently computable α ∈ S such that C(x, α) = 0 (authorized), and for all α ∈ S where C(x, α) = 0
it holds that:

Pr

[
Eval(msk, x, α) = CEval(csk, x) :

msk← KeyGen(1λ)

csk← Constrain(msk, C)

]
= 1− negl(λ),

where the probability space is over the randomness used in KeyGen and Constrain.

(1-key, selective) Security. An ShCPRF is (1-key, selectively)-secure if for all efficient adver-

saries A, the advantage of A in the following security experiment ExpshcprfA,b (λ) is negligible in λ. Here,
b denotes the challenge bit.

1. Setup: On input 1λ, the challenger

– runs A(1λ) who outputs a constraint C ∈ C,
– computes msk← KeyGen(1λ) and csk← Constrain(msk, C),

– samples a uniformly random function R
R← F̃λ, and

– sends csk to A.
2. Evaluation queries: A adaptively sends arbitrary inputs x ∈ X and shifts α ∈ S to the chal-

lenger. For each pair (x, α), if C(x, α) = 0, then the challenger returns ⊥. Otherwise, the chal-
lenger proceeds as follows:

– If b = 0, it computes y := Eval(msk, x, α) and returns y.

– If b = 1, it computes y := R(x, α) and returns y.

3. Guess: A outputs its guess b′, which is the output of the experiment.

A wins if b′ = b, and its advantage AdvshcprfA (λ) is defined as

AdvshcprfA (λ) :=
∣∣∣Pr[ExpshcprfA,0 (λ) = 1]− Pr[ExpshcprfA,1 (λ) = 1]

∣∣∣ ,
where the probability is over the randomness of A and KeyGen.

Pseudorandomness. An ShCPRF is said to be pseudorandom if for all efficient adversaries A, it
holds that ∣∣∣∣∣ Pr

msk←KeyGen(1λ)
[AEval(msk,·,·)(1λ) = 1]− Pr

R
R←F̃λ

[AR(·,·)(1λ) = 1]

∣∣∣∣∣ = 1− negl(λ).

Remark 3 (The requirement for the pseudorandomness property). We note that while the pseudo-
randomness property is implicit in standard CPRF definition (which has a polynomial loss in secu-
rity) [19], in the real-or-random style definition for CPRFs (as in Definition 3), this property is not
immediately satisfied, since the challenger outputs ⊥ when given an unconstrained query. Hence, we
require the separate pseudorandomness property to capture the requirement that the function being
constrained is indeed a standard PRF.
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4.2 Constructing shiftable CPRFs

In this section, we adapt the framework of Servan-Schreiber [72] constructing CPRFs for inner-
product predicates from RKA-secure PRFs. We make the observation that the construction can be
easily adapted to fit the shiftable CPRF definition (Definition 3). In the process, we additionally
generalize the construction of Servan-Schreiber to work over a small ring as opposed to a large field,
which makes it integrate better with an IPM-wPRF as the predicate.

The CPRF framework of Servan-Schreiber in a nutshell. The CPRF of [72] is parameterized
by a security parameter λ, finite field F of order at least 2λ, and a vector length parameter n ≥ 1. The
master secret key msk consists of a random vector z0 ∈ Fn. The constrained key csk for a constraint
z ∈ Fn is then defined as z1 := z0−∆z, with ∆ ∈ F\{0} a random non-zero scalar. The main insight
behind the framework of [72] is that for an input x ∈ Fn, when ⟨z,x⟩ = 0 (i.e., when the constraint is
satisfied), then the inner product ⟨z0,x⟩ is equal to ⟨z1,x⟩. This fact can be used to derive identical
PRF keys k and k′ under both msk and csk:

k = ⟨z0,x⟩ = ⟨z1,x⟩ −����∆ ⟨z,x⟩ = ⟨z1,x⟩ = k′.

In contrast, when ⟨z,x⟩ ̸= 0, the ∆ ⟨z,x⟩-term makes k ̸= k′. Moreover, because ∆ is uniformly
random over F \ {0} (where F has order at least 2λ), z1 cannot be used to recover z0, even with
knowledge of the constraint z. The evaluation of the CPRF is then defined as Fk0+k(x) (resp. Fk0+k′(x)
for the constrained evaluation), where k0 is a “zero” PRF key used to handle the case where x = 0n.
One caveat, however, is that the derived PRF keys are highly correlated, which necessitates choosing
F to be a suitable RKA-secure PRF. The work of Servan-Schreiber shows that when the PRF F is
RKA-secure for affine key-derivation functions (Definition 12), then the CPRF instantiated with the
PRF F is secure. (We note that a random oracle H : F × Fn → {0, 1}∗ is RKA-secure PRF for all
non-trivial key-derivation functions, as we show in Appendix A.3.)

Adding shiftability. We make the simple observation that if we make the master secret key msk
also contain ∆, then the we can easily turn the above framework into a shiftable CPRF as follows.
Specifically, when ⟨z,x⟩ ≠ 0, the constrained key computes k′ = ⟨z0,x⟩ −∆ ⟨z,x⟩. The master key
holder, with knowledge of ∆, can compute k = ⟨z0,x⟩−∆ ·α = k′, where α = ⟨z,x⟩. This is enough to
satisfy the correctness property of Definition 3 (Shiftable CPRFs). In particular, here the constraint
predicate C(x, α) is 0 if ⟨z,x⟩ − α = 0 and 1 otherwise.

Moving to the ring setting. We require instantiating the ShCPRF with a small ring R (e.g.,
R = Z6) for efficiency purposes. However, to ensure each derived key is still at least λ-bits, we must
extend the small ring to a sufficiently large ring R′. As such, we replace the large field F with a large
R′ = Rm, where m ≥ λ to guarantee λ bits of security (we prove the security of this modification in
Lemma 2 of Appendix A). Doing so, however, makes the vectors z0 and z1 (now sampled in (R′)n)
better denoted asmatrices fromRm×n. While this induces notational changes, the CPRF construction
itself remains almost identical to the one of Servan-Schreiber. In particular, for a constraint z ∈ Rn,
we now have CPRF keys k,k′ ∈ Rm (as opposed to k, k′ ∈ F above) derived for an input x ∈ Rn as
k = Z0x = Z1x+(∆z⊤)x which is equal to k′ = Z1x, when the constraint ⟨z,x⟩ = 0 ∈ R. We present
our ring-based ShCPRF framework in Figure 1 and prove security in Section 4.3 and Appendix D.1.

To formally state the special type of Shiftable CPRF we obtain, we have the following definition.

Definition 4 (Shiftable CPRFs for Inner-Product Predicates). Let R = Rλ be a finite
ring. Let ShCPRF be a Shiftable CPRF with domain X = Rn for an n = n(λ), range R, and finite
set of shifts S = R that supports constraints represented by a class of circuits {Cλ}λ∈N, such that
Cλ = {Cz : z ∈ Rn}, where the Cz : X × S → {0, 1} are given via

(x, α) 7→

{
0, if ⟨z,x⟩ − α = 0,

1, otherwise.

Then, we identify the constraint circuit Cz with z, i.e., we just write that the constraint as a vector
z, and call ShCPRF a (ring-based) Shiftable CPRF for inner-product predicates.
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ShCPRF for Inner-Product Predicates

Public Parameters. Security parameter λ, finite ring R of order ℓ, integers m such that m ≥ λ, vector
length n ≥ 1, and an RKA-secure PRF family F : Rm ×Rn → Y for affine key-derivation functions.

ShCPRF.KeyGen(1λ):

1 : k0
R← Rm, ∆

R←Rm \ {0}

2 : Z0
R←Rm×n

3 : msk := (k0,Z0,∆)

ShCPRF.Eval(msk,x, α):

1 : parse msk = (k0,Z0,∆)

2 : k := k0 + Z0x−∆ · α
3 : return Fk(x)

ShCPRF.Constrain(msk, z):

1 : parse msk = (k0,Z0,∆)

2 : Z1 := Z0 −∆z⊤

3 : return csk := (k0,Z1)

ShCPRF.CEval(csk,x):

1 : parse csk = (k0,Z1)

2 : k := k0 + Z1x

3 : return Fk(x)

Fig. 1: ShCPRF framework for inner-product predicates based on RKA-secure PRFs.

4.3 Security analysis

Here, we analyze the security of the ShCPRF framework using the proof template of [72, Theorem 2].
We adapt it in several key locations to handle the shiftability property and operations in the ring R.

Theorem 1. If F is a family of RKA-secure pseudorandom functions with respect to affine related-
key derivation functions Φaff , as defined in Definition 12, then Figure 1 instantiated with F is a
(1-key, selectively-secure) ShCPRF for inner-product constraint predicates.

Proof. Deferred to Appendix D.1. ■

5 PCFs for ListOT: Framework

In this section, we formalize our PCF for ListOT framework using the Shiftable CPRF framework
from Section 4. As mentioned in Section 2, ListOT does not fulfill the definition of a “correlation”
as defined by Boyle et al. [23]. Therefore, we cannot use existing definitions of a pseudorandom
correlation function (PCF), since the correlation is only partially defined. In particular, the problem
is that the output of the receiver in ListOT has an additional lookup key i that depends directly
on the wPRF key used to compute the pseudorandom bit b, which cannot be efficiently sampled
given just the output of the sender. We sidestep these issues by adapting the standard definition of a
PCF [22] to work with the “partial correlation” that is ListOT. In Section 5.1, we define the notion of
a PCF for ListOT. Then, in Section 5.2, we describe our general framework for constructing a PCF
for ListOT. Finally, in Section 5.3, we explain how a PCF for ListOT is used to instantiate QuietOT.

5.1 Defining PCFs for ListOT

Here, we give a formal definition of (weak) PCF for ListOT. For convenience, we use of the following
distribution of lists notation.

Definition 5 (Distribution of Lists). Let λ be a security parameter, Y be a finite set, and I be
an arbitrary finite index set. We denote by Dlist

Y (I) the distribution that outputs a list (vi)i∈I , where

each vi
R← Y is independently sampled at random.

Definition 6 (Pseudorandom Correlation Function for ListOT). Let λ be a security parameter
and λ ≤ n = n(λ) ∈ poly(λ) be an input length. A Pseudorandom Correlation Function (PCF) for
ListOT with domain X = Xλ is defined by a pair of algorithms PCF = (KeyGen,Eval) with the
following functionality:
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– KeyGen(1λ) → (KS ,KR). The randomized key generation algorithm takes as input the security
parameter λ. It outputs a pair of keys (KS ,KR).

– Eval(σ,Kσ, x)→ yσ. The deterministic evaluation algorithm takes as input σ ∈ {S,R}, a key Kσ,
and input x ∈ X . It outputs a string yσ ∈ {0, 1}∗, where
• if σ = S then yσ = (L0, L1) for two lists L0, L1; otherwise

• if σ = R then yσ = (b, v, α) for a bit b ∈ {0, 1}, a list entry v ∈ L0 ∪ L1, and a lookup key α.

We will use PCF.EvalS(KS , x) and PCF.EvalR(KR, x) as shorthand for the Eval algorithm used by
the sender and receiver, respectively. We leave any public parameters PP as an implicit input to all
algorithms.

A PCF = (KeyGen,Eval) is a (weak) PCF for ListOT with domain X = Xλ, if the following correct-
ness, sender security, and receiver security properties hold. In each case, the adversary is given access
to N(λ) ∈ poly(λ) samples.

Pseudorandomness. For all efficient adversaries A, and all N ∈ poly(λ), there exists a negligible
function negl such that for all sufficiently large λ,

AdvprA,N (λ) =
∣∣∣Pr[ExpprA,N,0(λ) = 1]− Pr[ExpprA,N,1(λ) = 1]

∣∣∣ ≤ negl(λ),

where ExpprA,N,b(λ), for b ∈ {0, 1}, is as defined in Figure 2.

Correctness. Moreover, we want that for any λ ∈ N it holds that:

Pr

v ̸= Lb[α] :

(KS ,KR)← PCF.KeyGen(1λ)

x
R← Xλ

(L0, L1) := PCF.EvalS(KS , x)

(b, v, α) := PCF.EvalR(KR, x)

 ≤ negl(λ),

i.e., that the (relevant) entry v is at position α of list Lb with a probability that is overwhelming in λ.

Sender Security. For all efficient adversaries A, there exists a negligible function negl such that for
all sufficiently large λ,

AdvSsecA,N (λ) =
∣∣∣Pr[ExpSsecA,N,0(λ) = 1]− Pr[ExpSsecA,N,1(λ) = 1]

∣∣∣ ≤ negl(λ),

where ExpSsecA,N,b(λ), for b ∈ {0, 1}, is as defined in Figure 3.

Receiver Security. For all efficient adversaries A, there exists a negligible function negl such that
for all sufficiently large λ,

AdvRsecA,N (λ) =
∣∣∣Pr[ExpRsecA,N,0(λ) = 1]− Pr[ExpRsecA,N,1(λ) = 1]

∣∣∣ ≤ negl(λ),

where ExpRsecA,N,b(λ), for b ∈ {0, 1}, is as defined in Figure 4.

5.2 Framework: PCF for ListOT from IPM-wPRFs

In Figure 5, we describe the framework for constructing a PCF for ListOT by combining a Shiftable
CPRF with any ipm-wprf.

Theorem 2. Let n = n(λ) ∈ poly(λ) and R be a finite ring of order q, with extension parameter m ≥
λ. Let ShCPRF = (KeyGen,Eval,Constrain,CEval) be a shiftable CPRF for inner-product predicates
with domain Rn, and f : Rn × Rn → {0, 1} a weak PRF family for inner-product membership with
partitioning S0 ∪ S1 = R. Then, PCF = (KeyGen,Eval) from Figure 5 is a PCF for ListOT.

Proof. Deferred to Appendix D.2. ■
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ExpprA,N,0(λ):

(KS ,KR)← PCF.KeyGen(1λ)

for i = 1 to N(λ):

xi
R← Xλ

for σ ∈ {S,R} :
yi
σ := PCF.Eval(σ,Kσ, xi)

parse yi
S = (Li

0, L
i
1), y

i
R = (bi, vi, αi)

b′ ← A(1λ, (xi, L
i
0, L

i
1, bi)i∈[N(λ)])

return b′

ExpprA,N,1(λ):

for i = 1 to N(λ):

xi
R← Xλ

Li
0

R← Dlist
Y (S0), L

i
1

R← Dlist
Y (S1)

bi
R← {0, 1}

b′ ← A(1λ, (xi, L
i
0, L

i
1, bi)i∈[N(λ)])

return b′

Fig. 2: (Partially) Pseudorandom outputs of a PCF for ListOT. The distribution Dlist
Y (·) is defined in Defi-

nition 5.

ExpSsecA,N,0(λ) :

(KS ,KR)← PCF.KeyGen(1λ)
for i = 1 to N(λ):

xi
R← Xλ

(Li
0, L

i
1) := PCF.EvalS(KS , xi)

b′ ← A(1λ,KR, (xi, L
i
0, L

i
1)i∈[N(λ)])

return b′

ExpSsecA,N,1(λ):

(KS ,KR)← PCF.KeyGen(1λ)
for i = 1 to N(λ):

xi
R← Xλ

(bi, vi, αi) := PCF.EvalR(KR, xi)

Li
0

R← Dlist
Y (S0), L

i
1

R← Dlist
Y (S1)

Set Li
bi
[αi] := vi

b′ ← A(1λ,KR, (xi, L
i
0, L

i
1)i∈[N(λ)])

return b′

Fig. 3: Sender security game of a PCF for ListOT. The distribution Dlist
Y (·) is defined in Definition 5.

5.3 Realizing QuietOT from a PCF for ListOT

To generate random OT correlations, the sender and receiver use the PCF for ListOT to generate
pseudorandom ListOT instances. We use the template of Beaver [15] for converting a random ListOT
instance into a chosen-bit OT protocol. We describe this transformation in Figure 6.

Proposition 1. Let PCF = (KeyGen,Eval) be a PCF for ListOT. Then, the protocol given in Figure 6
securely realizes the OT functionality.

Proof. The OT functionality is defined in Appendix A.1. By the pseudorandomness property of the
PCF for ListOT we have that L0 and L1 are pseudorandom lists and b′ is a pseudorandom bit if x
(input to the PCF) is uniformly random. For an arbitrary choice bit b ∈ {0, 1} we consider the two
possible cases to prove correctness.

– Case 1: b = 0. In this case, c = b′ and so L′0 = Lb′ ⊕m0 and L′1 = L1−b′ ⊕m1. It then follows that
the receiver outputs (L′0[α]⊕m0)⊕ v, which equals m0 by the correctness property of the PCF.

– Case 2: b = 1. In this case, c = 1 − b′ and so L′0 = L1−b′ ⊕ m0 and L′1 = Lb′ ⊕ m1. It then
follows that the receiver outputs m1 = (L′1[α]⊕m1)⊕ v, since we have v = Lb′ [α] = L′1[α] by the
correctness property of the PCF.

Note that in both cases, the equality holds with overwhelming probability, because correctness of the
PCF holds with overwhelming probability (Definition 6).

Sender security follows directly from the sender security of the PCF which guarantees that (1)
the receiver only obtains Lb′ [α] and (2) all other values in both lists are pseudorandom from the
viewpoint of the receiver and therefore guarantees that the receiver only obtains mb.

Receiver security follows from the fact that b′ is a pseudorandom bit (by receiver security of the
PCF) and therefore a pseudorandom mask for the receiver’s choice bit b. Therefore, the sender learns
nothing. ■
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ExpRsecA,N,0(λ) :

(KS ,KR)← PCF.KeyGen(1λ)
for i = 1 to N(λ):

xi
R← Xλ

(bi, vi, αi) := PCF.EvalR(KR, xi)

b′ ← A(1λ,KS , (xi, bi)i∈[N(λ)])
return b′

ExpRsecA,N,1(λ):

(KS ,KR) := PCF.KeyGen(1λ)
for i = 1 to N(λ):

xi
R← Xλ

bi
R← {0, 1}

b′ ← A(1λ,KS , (xi, bi)i∈[N(λ)])
return b′

Fig. 4: Receiver security game of a PCF for ListOT.

6 PCFs for ListOT: Instantiations

In this section, we instantiate the framework from Section 5 using either the BIPSW or GAR IPM-
wPRF candidate, coupled with the “RKA-PRF” Fk(x) := H(k, x) for a hash function H modeled as
a random oracle. For the sake of completeness, we prove in Appendix A.3 that Fk is indeed an RKA-
PRF for all affine relations x 7→ αx + β with α ∈ R∗ and β ∈ Rm, as long as minα(|α · Rm|) ≥ 2λ.
Looking ahead, both our instantiations will satisfy minα(|α · Rm|) = 2m, and we will therefore set
m = λ.

These two instantiations result in our concretely efficient constructions (see Section 8). We also
describe other instantiations from different assumptions (in particular, replacing the random oracle
using an RKA-secure PRF), which have interesting theoretical implications but do not currently
result in concretely efficient constructions.

6.1 BIPSW IPM-wPRF instantiation

Our main instantiation is based on the BIPSW wPRF candidate, which can be easily viewed as
an IPM-wPRF. For a key z ∈ Zn

6 with n = n(λ) ∈ poly(λ), and x ∈ Zn
6 , the BIPSW wPRF is

defined as: fz(x) = ⌊⟨z,x⟩ mod 6⌉2, where ⌊α⌉2 = 0 for all α ∈ {0, 1, 2} and ⌊α⌉2 = 1 for all
α ∈ {3, 4, 5}. For a partitioning of Z6 consisting of S0 := {0, 1, 2} and S1 := {3, 4, 5}, we get that
⟨z,x⟩ mod 6 ∈ Sb ⇐⇒ fz(x) = b.

We instantiate the framework using the ring R = Z6 and set m ≥ λ (see Lemma 2). We interpret
{0, 1} as elements of Z6 in the natural way (mapping 0 to the additive identity and 1 to the multi-
plicative identity of Z6) and define map to be the canonical embedding from {0, 1}n to Zn

6 . The full
construction is presented in Figure 7 and closely follows the general framework from Figure 5. We
use the specific ShCPRF construction of Figure 1 with the random oracle H as the RKA-secure PRF
and explicitly work over the ring Z6.

6.2 GAR IPM-wPRF instantiation

Unlike for the BIPSW wPRF, converting the GAR wPRF into an ipm-wprf is more challenging.
For completeness, we describe how Bui et al. [29] express the evaluation function as an IPM and
discuss concrete parameters that we use for our instantiation, which differ from the parameters used
to instantiate BCMPR.

The GAR construction. In a nutshell, the GAR construction (when instantiated with the XOR-
MAJ predicate [5, 35]) has a key K ∈ {0, 1}n and takes as input a string x that is parsed as a tuple
of disjoint sets (Xxor, Xmaj) ⊂ [n]2 such that |Xxor| = k and |Xmaj| = ℓ, for integers k = k(λ), ℓ = ℓ(λ).
The evaluation of fK is then computed as: (

⊕
i∈Xxor

K[i]) ⊕MAJ((K[j])j∈Xmaj), where MAJ outputs
the majority bit.

The GAR construction as an IPM-wPRF. Converting this evaluation into an inner-product
membership can be done as follows. View the evaluation as two separate components: an XOR
component and a MAJ component. For each index i ∈ Xxor, let ei be the one-hot vector of length n
with 1 in its i-th coordinate. First, interpret K as zxor ∈ Zn

2 and as zmaj ∈ Zn
ℓ by mapping 0 to 0 ∈ Z2

(resp. Zℓ) and 1 to 1 ∈ Z2 (resp. Zℓ)). Then, compute vxor =
∑

i∈Xxor
⟨zxor, ei⟩. Similarly, for each
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PCF for ListOT

Public Parameters.

– Key length n = n(λ) ∈ poly(λ).

– Finite ring R of order q, with extension parameter m ≥ λ.

– IPM-wPRF family f : Rn ×Rn → {0, 1} with partitioning S0 ∪ S1 = R.
– An injective input mapping map : Xλ → Rn.

– An ShCPRF for inner-product predicates ShCPRF = (KeyGen,Eval,Constrain,CEval) with domain
Rn

PCF.KeyGen(1λ).

1: msk← ShCPRF.KeyGen(1λ)

2: z
R←Rn. ▷ ipm-wprf key

▷ Note that z can also be sampled from a non-uniform distribution over Rn.

3: csk← ShCPRF.Constrain(msk, z)

4: KS := msk, KR := (csk, z).

5: return (KS ,KR)

PCF.EvalS(KS , x).

1: parse KS = msk.

2: x := map(x).

3: foreach b ∈ {0, 1} and α ∈ Sb:

1: y := ShCPRF.Eval(msk,x, α).

2: Lb[α] = y.

4: return (L0, L1).

PCF.EvalR(KR, x).

1: parse KR = (csk, z).

2: x := map(x).

3: v := ShCPRF.CEval(csk,x)

4: b := fz(x), α := ⟨z,x⟩ ∈ R.
▷ Note that v = Lb[α] in the sender-computed list.

5: return (b, v, α).

Fig. 5: Framework for a PCF for ListOT from any ShCPRF and ipm-wprf.

QuietOT from a PCF for ListOT

Sender(KS ,m0,m1, x) Receiver(KR, b, x)

(L0, L1) := PCF.EvalS(KS , x) (b′, v, α) := PCF.EvalR(KR, x)

c = b⊕ b′

L′
0 := Lc ⊕m0

L′
1 := L1−c ⊕m1

L′
0, L

′
1

Output ⊥ Output L′
b[α]⊕ v

Fig. 6: QuietOT using a (weak) PCF for ListOT. Note that x (input to the PCF known by both the sender
and receiver) is uniformly random, as specified in Definition 6.
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PCF for ListOT from the BIPSW IPM-wPRF

Public Parameters.

– Integers n = n(λ) ∈ poly(λ), m ≥ λ and domain Xλ = {0, 1}n.
– BIPSW IPM-wPRF family f : Zn

6 × Zn
6 → {0, 1} with partitioning:

S0 := {α ∈ Z6 | α < 3} and S1 := Z6 \ S0.

– Input mapping map : Xλ →Rn is the canonical embedding of {0, 1}n in Zn
6 .

– The ShCPRF ShCPRF = (KeyGen,Eval,Constrain,CEval) from Figure 1, where the RKA-secure PRF
family F : Rm ×Rn → Y is instatiated by a random oracle H, cf. Appendix A.3.

Construction.
(PCF.KeyGen, PCF.EvalR, PCF.EvalS) are identical to Figure 5 using R = Z6.

Fig. 7: PCF for ListOT from the BIPSW ipm-wprf.

index j ∈ Xmaj, let ej be the corresponding one-hot vector. Then, compute vmaj =
∑

j∈Xmaj
⟨zmaj, ej⟩.

Observe that vmaj ≥
⌈
ℓ
2

⌉
⇐⇒ MAJ((zmaj[j])j∈Xmaj) = 1. We define R = Z2 × Zℓ, which intuitively

allows for computing the “XOR” and “MAJ” components in separate subrings. Therefore, we can
view f as an ipm-wprf with partition:

S0 =
{
(u, v) ∈ R | (u = 0 ∧ v >

⌊
ℓ
2

⌋
) ∨ (u = 1 ∧ v ≤

⌊
ℓ
2

⌋
)
}
and S1 = R \ S0.

Parameters. We follow the parameter selection process of Bui et al. [29], which builds upon the
state-of-the-art cryptanalysis of Goldreich’s PRG from [5, 35, 75, 74]. To achieve λ bits of security
with a key of length n = λδ and a bound n1+e on the number of queries, the analysis of Bui et al. [29]
suggests to use the XOR-MAJ predicate with ℓ1 = 2·e+1 terms in the XOR, and ℓ2 = (2δ/(δ−1))·e+1
terms in the MAJ. Concretely, we set e = 2 to get a stretch n3 (looking ahead, we will choose n = 211,
hence this corresponds to generating up to 233 OTs) and δ = 7/5 (hence δ/(δ−1) = 7/2). This implies
that we can set ℓ1 = 5 and ℓ2 = 15. With these parameters, we must set ℓ = ℓ2 + 1 = 16 to ensure
no wraparound when computing the MAJ predicate on the sum modulo ℓ of the ℓ2 entries in the
corresponding subset. While this analysis indicates that a seed size of n ≥ 128δ = 892 suffices, we set
n = 2048 which allows us to more efficiently parse uniformly random inputs x into the index sets Xxor

and Xmaj, and generate a larger number λδ = 233 of oblivious transfers. This results in an extremely
conservative parameter set: The estimated bit security of this parameter set, using the state-of-the-art
cryptanalysis [5, 35, 75, 74], is 2232.

Remark 4 (On the recent attack of Fu et al. [44]). Very recently, the work of Fu et al. [44] introduced
a new attack on Goldreich’s PRG that, in particular, breaks the parameters chosen in BCMPR using
about 225 calls to a Gaussian elimination routine (a reasonable estimate of the runtime is of the order
of 245 operations). This attack exploits the fact that, given enough equations, one can guess that
a subset of d seed bits will be zero, and filter for equations where the MAJ component includes all
these d bits. Then, because a MAJ predicate applied to ℓ2 values, of which d are zero, is highly likely
to yield zero, the corresponding XOR-MAJ equation can be viewed as a noisy linear equation. This
noisy linear equations can then be solved using information set decoding algorithms.

While the attack completely breaks the BCMPR parameters, it performs very poorly in our setting
due to our choice of a very small ℓ2 and a very large n. Concretely, to obtain at least n “filtered”
equations, their attack requires that m ·

(
n−d
ℓ2−d

)
/
(
n
ℓ2

)
> n, which in our case implies d ≤ 3. Using

ℓ2 = 15, fixing d = 3 bits of MAJ to zero yields a “noise rate” of 19%, and the runtime of ISD
with this noise rate is extremely large (e.g., on the order of 2660 using Prange’s algorithm [67], when
n = 2048).

6.3 Other instantiations

While we focus on the BIPSW and GAR ipm-wprf constructions when instantiating our framework,
several other instantiations are possible. First, we can instantiate the framework using a different
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PCF for ListOT from the GAR IPM-wPRF

Public Parameters.

– Integers n = n(λ) ∈ poly(λ) and m ≥ λ and R = Z2 × Zℓ.

– GAR IPM-wPRF family f : {0, 1}n×{0, 1}w → {0, 1} with parameters w0, w1, w = w(w0, w1), where
w0, w1, w ∈ N, and partitioning:

S0 =
{
(u, v) ∈ R | (u = 0 ∧ v >

⌊
ℓ
2

⌋
) ∨ (u = 1 ∧ v ≤

⌊
ℓ
2

⌋
)
}
and S1 = R \ S0.

– Input mapping map : {0, 1}poly(n) → Rn where each uniformly random input x ∈ {0, 1}poly(n) is
interpreted as a tuple (xxor, xmaj) ∈ {0, 1}n × {0, 1}n subject to HW(xxor) = w0 and HW(xmaj) = w1,
where HW(·) denotes the Hamming weight of the input. (xxor, xmaj) is interpreted as (xxor,xmaj) ∈ Rn

in the natural way (by interpreting 0 and 1 as elements of R).
– The ShCPRF ShCPRF = (KeyGen,Eval,Constrain,CEval) from Figure 1, where the RKA-secure PRF

family F : Rm ×Rn → Y is instatiated by a random oracle H, cf. Appendix A.3.

Construction.
(PCF.KeyGen, PCF.EvalR, PCF.EvalS) are as described in Figure 5 using the ring R = Z2 ×Zℓ and input
mapping map defined above.

Fig. 8: PCF for ListOT from the GAR ipm-wprf.

ipm-wprf candidate. While BIPSW and GAR appear to be the most efficient candidates to fit the
ipm-wprf template, future wPRF candidates or improved parameters for the LWR wPRF resulting
from tighter reductions for the LWR problem, could lead to new instantiations. For example, with the
VDLPN wPRF candidate [22] (which can be cast as an ipm-wprf [29]) and whose concrete security
is beginning to be analyzed [34], we could potentially have an additional practical instantiation.

Additionally, our framework is not restricted to the random oracle model (albeit, assuming a
random oracle can lead to the most practical instantiations, as is the case for other OT extension
protocols). As with prior OT extension protocols, we can replace the random oracle with a suitable
correlation-robust hash function [53]. However, we can even go one step further. Note that because
the security relies on the security of the ShCPRF, and the CPRF construction of Servan-Schreiber
[72] relies only on a suitable RKA-secure PRF (a property inherited by our construction of shiftable
CPRFs), we can instantiate it using other assumptions such as DDH, DCR, or VDLPN. We discuss
these (currently purely theoretical) instantiations in Appendix C.3.

7 Public-Key Setup

We define the notion of a public-key setup for our PCF for ListOT. These definitions provide the
necessary foundations to apply public-key OT to an MPC setting (e.g., where parties may engage in
pairwise OT extensions). While the application of public-key OT to MPC was mentioned in several
prior works [29, 63], they did not provide a formal treatment of this application. We find that the
standard definition of public-key OT only guarantees “one-instance” security, and does not address
the many subtleties that arise when the existing constructions are applied to a multi-party setting
where an adversary can corrupt multiple parties. Unfortunately, this makes existing public-key OT
constructions potentially insecure if used in such contexts. Here, we lay down the foundations nec-
essary for providing “ℓ-instance”-secure public-key OT, and prove that our main framework satisfies
this stronger definition.

7.1 ℓ-instance updatability of shiftable CPRFs

Here, we upgrade the definition from Section 5 to provide a notion of updatability, allowing two
parties to generate an ShCPRF key from “partial” keys.

Definition 7. Let ShCPRF = (KeyGen,Eval,Constrain,CEval) be a shiftable CPRF with domain X =
Xλ and range Y that supports constraints represented by the class of circuits C = {Cλ}λ∈N (cf. Defini-
tion 3). We say the ShCPRF is updatable, if the key generation algorithm KeyGen outputs a master
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secret key msk of the form (ltsk, esk), where ltsk is a long-term secret key, esk is an ephemeral secret
key, and there exists an efficient Update algorithm with the following syntax:

– Update(ltsk, csk∗, C)→ esk′. The deterministic update algorithm takes as input a long-term master
secret key ltsk, a constrained key csk∗, and a constraint C. It outputs an updated ephemeral master
secret key esk′.

Moreover, we require that correctness also holds with respect to msk′ = (ltsk, esk′) and csk∗, if csk∗ is
properly formatted. More formally, we have:

Updatable Correctness. For all security parameters λ, all constraints C ∈ C, allinputs x ∈ X , all
properly formatted csk∗, and all α ∈ S with C(x, α) = 0 (authorized), it holds:

Pr

Eval(msk′, x, α) = CEval(csk∗, x) :

(ltsk, esk)← KeyGen(1λ)

esk′ := Update(ltsk, csk∗, C)

msk′ := (ltsk, esk′)

 = 1− negl(λ),

Multi-instance Updatable Security. For every polynomial ℓ = ℓ(λ) ∈ poly(λ), an ShCPRF is (1-
key, selectively, ℓ-instance)-updatably secure if for all efficient adversaries A, the advantage of A in

the following security experiment Expmi-shcprf
A,b (λ) is negligible in λ. Here, b denotes the challenge bit.

1. Setup: On input 1λ, the challenger

– runs A(1λ) and receives ℓ constraints Ci ∈ C and the (possibly corrupted) constrained keys
csk∗i , for all i ∈ [ℓ],

– computes (ltsk, esk)← KeyGen(1λ) and esk′i := Update(ltsk, csk∗i , Ci),

– sets mski := (ltsk, esk′i), and

– samples a uniformly random function R
R← F̃λ, where F̃λ denotes the set of all functions from

[ℓ(λ)]×Xλ × S to Y.
2. Evaluation queries: A adaptively sends arbitrary inputs x ∈ X , shifts α ∈ S, and index i ∈ [ℓ]

to the challenger. For each triple (x, α, i), if Ci(x, α) = 0, then the challenger returns ⊥. Other-
wise, the challenger proceeds as follows:

– If b = 0, it computes y := Eval(mski, x, α) and returns y.

– If b = 1, it computes y := R(i, x, α) and returns y.

3. Guess: A outputs its guess b′, which is the output of the experiment.

A wins if b′ = b, and its advantage Advmi-shcprf
A (λ) is defined as

Advmi-shcprf
A (λ) :=

∣∣∣Pr[Expmi-shcprf
A,0 (λ) = 1]− Pr[Expmi-shcprf

A,1 (λ) = 1]
∣∣∣ ,

where the probability is over the randomness of A and KeyGen.

Pseudorandomness. Define the following stateful oracle Omi-eval:

Oracle Omi-eval

Initialize. Sample mski ← KeyGen(1λ), for all i ∈ [ℓ].

Evaluation. On input (x, α, i), return Eval(mski, x, α).

An ShCPRF is said to be multi-instance pseudorandom if for all efficient adversaries A, it holds that∣∣∣∣∣Pr[AOmi-eval(·,·,·)(1λ) = 1]− Pr
R

R←F̃λ

[AR(·,·,·)(1λ) = 1]

∣∣∣∣∣ ≤ 1− negl(λ),

where the left probability is over the randomness of KeyGen, and F̃λ is the set of all functions from
[ℓ]×Xλ × S to Y.
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Updatability for the Ring-based ShCPRF for Inner Products

Public Parameters.

– Security parameter λ.

– Finite ring R of order ℓ.

– Integers m such that m ≥ λ.

– Vector length n ≥ 1.

– RKA-secure PRF family F : Rm ×Rn → Y for affine RKA key-derivation functions.

ShCPRF.KeyGen(1λ):

1 : ltsk := ∆
R←Rm \ {0}

2 : esk := (Z0,k0)
R←Rm×n ×Rm

3 : return msk := (ltsk, esk)

ShCPRF.Update(ltsk, csk, z):

1 : parse ltsk =: ∆

2 : parse csk := (k′
0,Z1)

3 : Z′
0 := Z1 +∆z⊤

4 : return esk′ = (Z′
0,k

′
0)

The remaining algorithms (ShCPRF.Constrain, ShCPRF.Eval, ShCPRF.CEval), are as defined in Figure 1.
Note that due to the now slightly different format of msk, the algorithms ShCPRF.Constrain and
ShCPRF.Eval defined in Figure 1 need to be adapted to parse msk accordingly.

Fig. 9: A modified version of the KeyGen, and the additional Update algorithm for the ring-based shiftable
CPRF framework from Figure 1.

7.2 Constructing ℓ-instance updatably-secure shiftable CPRFs

We now describe a simple modification of the ShCPRF construction from Section 4 and prove that it
satisfies updatable correctness and ℓ-instance updatable security. The construction is given in Figure 9.

Theorem 3. If F is a family of RKA-secure pseudorandom functions with respect to affine related
key derivation functions Φaff , as defined in Definition 12, then for every polynomial ℓ(λ) ∈ poly(λ),
Figure 9 instantiated with F is a (1-key, updatably, selectively, ℓ-instance)-secure ShCPRF for inner-
product predicates.

Proof. Deferred to Appendix D.3. ■

7.3 Defining public-key PCFs for ListOT

In this section, we introduce the notion of public-key PCFs for ListOT. Our definition is geared to-
wards our main application: non-interactive setup of pairwise OT channels over a large-scale network.
Crucially for this application, our security notions incorporate the definition of ℓ-instance security,
which says (informally) that if a user uses the same public key pk to establish an OT channel with ℓ
different parties, then security is maintained even against an adversary corrupting all ℓ parties.

Definition 8 (ℓ-Instance Public-Key Pseudorandom Correlation Function for ListOT).
Let λ be a security parameter and λ ≤ n = n(λ) ∈ poly(λ) be an input length. A Public-Key
Pseudorandom Correlation Function (pkPCF) for ListOT is defined by a triple of algorithms pkPCF =
(Gen, KeyDer, Eval) with the following functionality. We leave the public parameters PP as an implicit
input to all algorithms.

– pkPCF.Gen(1λ, σ) → (pkσ, skσ). The randomized key generation algorithm takes as input the se-
curity parameter λ and a party index σ. It outputs a public and private key pair (pkσ, skσ).

– pkPCF.KeyDer(σ, skσ, pkσ̄) → Kσ. The deterministic key derivation algorithm takes as input a
party identifier σ ∈ {S,R} (where σ̄ denotes the other party’s identifier), a secret key skσ, and a
public key pkσ̄. It outputs a key Kσ. We assume this algorithm is deterministic.

– pkPCF.Eval(σ,Kσ, x)→ yσ. The deterministic evaluation algorithm takes as input σ ∈ {S,R}, a
key Kσ, and input x ∈ X . It outputs a string yσ ∈ {0, 1}∗, where
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• if σ = S then yσ = (L0, L1) for two lists L0, L1, and

• if σ = R then yσ = (b, v, α) for a bit b ∈ {0, 1}, a list entry v ∈ L0 ∪ L1, and a lookup key α.

We will use pkPCF.EvalS(KS , x) and pkPCF.EvalR(KR, x) as shorthand for the pkPCF.Eval algorithm
used by the sender and receiver, respectively.

A public key PCF pkPCF = (Gen,KeyDer,Eval) is a (weak) ℓ-instance public-key PCF for ListOT, if
the following correctness, ℓ-instance sender security, and ℓ-instance receiver security properties hold.
In each case, the adversary is given access to N(λ) ∈ poly(λ) samples.

– Pseudorandomness. For all efficient adversaries A, and all N ∈ poly(λ), there exists a negli-
gible function negl such that for all sufficiently large λ,∣∣∣Pr[ExppkprA,N,0(λ) = 1]− Pr[ExppkprA,N,1(λ) = 1]

∣∣∣ ≤ negl(λ),

where ExppkprA,N,b(λ), for b ∈ {0, 1}, is as defined in Figure 10.

– Correctness. We want that for any λ ∈ N the following probability is negligible in λ:

Pr

v ̸= Lb[α] :

(pkσ, skσ)← pkPCF.Gen(1λ, σ) for σ ∈ {S,R}
Kσ := pkPCF.KeyDer(σ, skσ, pkσ̄) for σ ∈ {S,R}

x
R← Xλ

(L0, L1) := pkPCF.EvalS(KS , x)

(b, v, α) := pkPCF.EvalR(KR, x)

,

i.e., that the (relevant) entry v is at position α of list Lb with a probability that is overwhelming
in λ.

– ℓ-Instance Sender Security. For all efficient adversaries A, there exists a negligible function
negl such that for all sufficiently large λ,∣∣∣Pr[ExppkSsecA,N,S,0(λ, ℓ(λ)) = 1]− Pr[ExppkSsecA,N,S,1(λ, ℓ(λ)) = 1]

∣∣∣ ≤ negl(λ),

where ExppkSsecA,N,S,b(λ, ℓ(λ)), for b ∈ {0, 1}, is as defined in Figure 11.

– ℓ-Instance Receiver Security. For all efficient adversaries A, there exists a negligible function
negl such that for all sufficiently large λ,∣∣∣Pr[ExppkRsecA,N,R,0(λ, ℓ(λ)) = 1]− Pr[ExppkRsecA,N,R,1(λ, ℓ(λ)) = 1]

∣∣∣ ≤ negl(λ),

where ExppkRsecA,N,S,b(λ, ℓ(λ)), for b ∈ {0, 1}, is as defined in Figure 12.

7.4 Constructing public-key PCFs for ListOT

In this section, we provide a construction of public-key PCFs for ListOT. In a nutshell, our con-
struction is exactly the construction of PCF for ListOT (Figure 5) instantiated with an ℓ-instance
updatable shiftable CPRF, enhanced with a distributed public-key setup protocol (Gen,KeyDer) to
generate the ShCPRF keys. Formally, we define a distributed public-key setup protocol as follows:

Definition 9 (Distributed Public-Key Setup Protocol). A distributed, corruptible public-key
setup protocol PKS is parameterized by an updatable, shiftable CPRF ShCPRF = (KeyGen, Eval,
Constrain, CEval, Update) with constraint class C, and consists of the following algorithms. We leave
the public parameters PP as an implicit input to all algorithms.

– PKS.Gen(1λ, σ,mσ)→ (pkσ, skσ). The randomized key generation algorithm takes as input a party
identifier σ ∈ {S,R}, a message mσ where mσ is a long-term secret key ltsk if σ = S and a
constraint C ∈ C if σ = R. It outputs a public-secret key pair.
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ExppkprA,N,0(λ):

for σ ∈ {S,R}:
(pkσ, skσ)← pkPCF.Gen(1λ, σ)

for σ ∈ {S,R}:
Kσ := pkPCF.KeyDer(σ, skσ, pkσ̄)

for i = 1 to N(λ):

xi
R← X

for σ ∈ {S,R} :
yi
σ := pkPCF.Eval(σ,Kσ, xi)

parse yi
S = (Li

0, L
i
1), y

i
R = (bi, vi, αi)

b′ ← A(pkS , pkR, (xi, L
i
0, L

i
1, bi)i∈[N(λ)])

return b′

ExppkprA,N,1(λ):

for σ ∈ {S,R}:
(pkσ, skσ)← pkPCF.Gen(1λ, σ)

for i = 1 to N(λ):

xi
R← X

Li
0

R← Dlist
Y (S0), L

i
1

R← Dlist
Y (S1)

bi
R← {0, 1}

b′ ← A(pkS , pkR, (xi, L
i
0, L

i
1, bi)i∈[N(λ)])

return b′

Fig. 10: (Partially) Pseudorandom outputs of a public-key PCF for ListOT.

ExppkSsecA,N,0(λ, ℓ(λ)) :

(pkS , skS)← pkPCF.Gen(1λ, S)
for i = 1 to ℓ,
(pkiR, sk

i
R)← pkPCF.Gen(1λ, R)

Ki
S := pkPCF.KeyDer(S, skS , pk

i
R)

Ki
R := pkPCF.KeyDer(R, skiR, pkS)

for j = 1 to N(λ):

xi,j
R← X

(Li,j
0 , Li,j

1 ) := PCF.EvalS(Ki
S , xi,j)

corr := ((pk1R, sk
1
R), . . . , (pk

ℓ
R, sk

ℓ
R))

b′ ← A(pkS , corr, (xi,j , L
i,j
0 , Li,j

1 )i∈[ℓ],j∈[N ])
return b′

ExppkSsecA,N,1(λ, ℓ(λ)):

(pkS , skS)← pkPCF.Gen(1λ, S)
for i = 1 to ℓ,
(pkiR, sk

i
R)← pkPCF.Gen(1λ, R)

Ki
S := pkPCF.KeyDer(S, skS , pk

i
R)

Ki
R := pkPCF.KeyDer(R, skiR, pkS)

for j = 1 to N(λ):

xi,j
R← X

(bi,j , vi,j , αi,j) := PCF.EvalR(Ki
R, xi,j)

Li,j
0

R← Dlist
Y (S0), L

i,j
1

R← Dlist
Y (S1)

Set Li,j
bi,j

[αi,j ] := vi,j

corr := ((pk1R, sk
1
R), . . . , (pk

ℓ
R, sk

ℓ
R))

b′ ← A(pkS , corr, (xi,j , L
i,j
0 , Li,j

1 )i∈[ℓ],j∈[N ])
return b′

Fig. 11: ℓ-instance sender security game of a pkPCF for ListOT.

– PKS.KeyDer(σ, skσ, pkσ)→ Kσ. The deterministic key derivation algorithm takes as input a party
identifier σ ∈ {S,R}, the corresponding secret key skσ, and the other party’s public key pkσ. It
outputs an evaluation key Kσ.

We say PKS = (Gen,KeyDer) is a distributed corruptible public-key setup if the following one-message
protocol realizes the ideal functionality described in Figure 13:

1. Each sender and receiver runs PKS.Gen and broadcasts the resulting public key.
2. Each sender (resp. receiver) uses the public key of each receiver (resp. sender) and its own secret

key to derive a shared updatable ShCPRF key using PKS.KeyDer.

Theorem 4. Let n = n(λ) ∈ poly(λ) and R be a finite ring of order q, with extension parameter
m ≥ λ. Let ShCPRF = (KeyGen,Eval,Constrain,CEval,Update) be an ℓ-instance updatable ShCPRF
for inner-product predicates with domain Rn, and f : Rn × Rn → {0, 1} a weak PRF family for
inner-product membership with partitioning S0 ∪ S1 = R. Let PKS = (Gen,KeyDer) be a distributed
public-key setup protocol for ShCPRF. Let pkPCF = (Gen,KeyDer,Eval) denote the PCF from Figure 5
(parameterized by ShCPRF), where the algorithm PCF.KeyGen is replaced by the distributed public-key
setup algorithms:

– pkPCF.Gen(1λ, σ). Takes as input a security parameter and party identifier σ ∈ {S,R}, and
• if σ = S, samples (ltsk, esk)← ShCPRF.KeyGen(1λ) and sets mσ := ltsk,

• if σ = R, samples a random constraint z over Rn and sets mσ := z.
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ExppkRsecA,N,0(λ, ℓ(λ)) :

(pkR, skR)← pkPCF.Gen(1λ, R)
for i = 1 to ℓ,
(pkiS , sk

i
S)← pkPCF.Gen(1λ, S)

Ki
R := pkPCF.KeyDer(R, skR, pk

i
S)

Ki
S := pkPCF.KeyDer(S, skiS , pkR)

for j = 1 to N(λ):

xi,j
R← X

(bi,j , vi,j , αi,j) := pkPCF.EvalR(Ki
R, xi,j)

corr := ((pk1S , sk
1
S), . . . , (pk

ℓ
S , sk

ℓ
S))

b′ ← A(pkR, corr, (xi,j , bi,j)i∈[ℓ],j∈[N ])
return b′

ExppkRsecA,N,1(λ, ℓ(λ)):

(pkR, skR)← pkPCF.Gen(1λ, R)
for i = 1 to ℓ,
(pkiS , sk

i
S)← pkPCF.Gen(1λ, S)

Ki
R := pkPCF.KeyDer(R, skR, pk

i
S)

Ki
S := pkPCF.KeyDer(S, skiS , pkR)

for j = 1 to N(λ):

xi,j
R← X

bi,j
R← {0, 1}

corr := ((pk1S , sk
1
S), . . . , (pk

ℓ
S , sk

ℓ
S))

b′ ← A(pkR, corr, (xi,j , bi,j)i∈[ℓ],j∈[N ])
return b′

Fig. 12: ℓ-instance receiver security game of a pkPCF for ListOT.

Outputs (pkσ, skσ)← PKS.Gen(1λ, σ,mσ).

– pkPCF.KeyDer(σ, skσ, pkσ̄) := PKS.KeyDer(σ, skσ, pkσ̄).

Then, pkPCF is an ℓ-instance secure public-key PCF for ListOT.

Proof. We consider each property in turn.

Pseudorandomness. We prove pseudorandomness via a sequence of hybrids.

– Hybrid H0. This hybrid consists ExppkprA,N,0(λ) from Figure 10, where pkPCF.KeyGen, pkPCF.KeyDer
and pkPCF.Eval are as defined in Theorem 4.

– Hybrid H1. In this hybrid, we rely on the simulator SPKS for PKS. SPKS sends an empty message to
FPKS on behalf of the ideal functionality, and receives no output. Then, it emulates the distribution
of (pkS , pkR). By security of the PKS scheme, H0 ≈c H1. Note that in this hybrid, the distribution
of (pkS , pkR) is independent of z and msk.

– Hybrid H2 (wPRF security). In this hybrid game, we replace each pseudorandom bit bi, sampled
in H1 using the ipm-wprf f , with truly random bits sampled uniformly at random. The proof
that H2 ≈c H1 reduces to the pseudorandomness of f and is identical to the proof between
hybrids H1 and H0 from the pseudorandomness proof of Theorem 2.

– Hybrid H3 (ShCPRF pseudorandomness). In this hybrid, for all i ∈ [N(λ)], the lists Li
0, L

i
1

are sampled uniformly from Dlist
Y (S0) and Dlist

Y (S1), respectively, where the distribution Dlist
Y (·)

is defined in Definition 5 and consists of uniformly random samples from Y. The proof that
H3 ≈c H2 reduces to the pseudorandomness of ShCPRF and is identical to the proof between
hybrids H2 and H1 in the pseudorandomness proof of Theorem 2.

Observe that H3 is identical to ExppkprA,N,1(λ), which concludes the proof of pseudorandomness.

Correctness. This is similar to the correctness proof of Theorem 2. Observe that the entry v output
by PCF.EvalR(KR, x) is computed as v := ShCPRF.CEval(csk,x), where x := map(x) and csk is
computed as in the key derivation phase of FPKS via csk← ShCPRF.Constrain(msk, z) for a constraint
z ∈ Rn, if the adversary A is honest, or is a properly formatted csk as output by A, in which case
esk′ := Update(ltsk, csk, z). In the first case (A is honest), correctness follows exactly as in the proof of
Theorem 2, using the correctness of ShCPRF. Similarly, for the second case (with a properly formatted
csk given by A), we make use of the updatable correctness of ShCPRF. Hence, using α = ⟨z,x⟩, the
entry v is equal to Eval(msk′, x, α), where msk′ := (ltsk, esk′) with (ltsk, esk)← KeyGen(1λ). Then, for
the (unique) b′ ∈ {0, 1} with α ∈ Sb′ , we have that, with overwhelming probability, Lb′ [α] = v. As
before, b′ = b by the property of the ipm-wprf which guarantees that b := fz(x) = 0 iff ⟨z,x⟩ ∈ S0

and fz(x) = 1 iff ⟨z,x⟩ ∈ S1.

Sender Security. We have a sequence of hybrids.
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Functionality FPKS

Parameters. The ideal corruptible functionality FPKS is parameterized by an updatable shiftable CPRF
ShCPRF = (KeyGen,Eval,Constrain,CEval,Update) that supports constraints in a constraint class C.

Parties. An adversary A, senders S1, . . . , Sℓ, and receivers R1, . . . , Rℓ.

Procedure.
The functionality aborts if it receives any incorrectly formatted message.

Generation phase (one time).

1: Receive a message containing a long-term secret key and an index (ltski, i) from every sender Si for
all i ∈ [ℓ].

2: Receive a message containing a constraint and an index (Cj , j) from receiver Rj , for all j ∈ [ℓ].

3: Send ready to A.

Key derivation phase (repeatable).

1: Receive a message (keyder, j) from a sender Si and a message (keyder, i) from a receiver Rj , for some
i, j ∈ [ℓ].

2: Receive a message from A which is either empty, contains an ephemeral master secret key esk, or
contains a constrained key csk.

3: If A sent an empty message (i.e., the sender Si and receiver Rj are both honest), then sample esk
uniformly as in KeyGen and compute csk← Constrain((ltski, esk), Cj).

4: If A sent esk (i.e., the sender Si is corrupted), then compute csk← Constrain((ltski, esk), Cj).

5: If A sent csk (i.e., receiver Rj is corrupted), then compute esk := Update(ltski, csk, Cj).

6: Output (esk, j) to Si and (csk, i) to Rj .

Fig. 13: Corruptible ideal functionality for the distributed public key setup.

– Hybrid H0. This consists of Exp
pkSsec
A,N,0(λ) defined in Figure 11, where pkPCF.KeyGen, pkPCF.KeyDer

and pkPCF.Eval are as defined in Theorem 4. In particular, we note that pkPCF.EvalS internally
runs the updatable ShCPRF ShCPRF = (KeyGen,Eval,Constrain,CEval,Update).

– Hybrid H1. In this hybrid, for each i ∈ [ℓ(λ)] and j ∈ [N(λ)], the call to ShCPRF.Eval(mski,x, α)
inside of the algorithm pkPCF.EvalS is replaced with a call to ShCPRF.CEval(cski,x) whenever

(x, α) is authorized (i.e., ⟨zi,x⟩ − α = 0), where cski is part of KRi
in ExppkSsecA,N,0(λ).

Claim. H1 ≈s H0.

Proof. By the updatable correctness of updatable ShCPRFs, we have that for all authorized
(xi,j , α) pairs, ShCPRF.Eval(mski,xi,j , α) = ShCPRF.CEval(cski,xi,j), with overwhelming proba-
bility. □

– Hybrid H2. In this hybrid, we rely on the simulator SPKS for PKS. SPKS simulates pkS and extracts
the constrained keys (cskj)j≤ℓ computed by the ℓ corrupted receivers from (pkS , sk

j
R). It sends

cskj to FPKS on behalf of A for each corrupted receiver Rj . Note that from this game onward,
the updated master secret keys mskj are not known anymore, which will allow us to invoke the
multi-instance updatable security of ShCPRF in the next hybrid.

– Hybrid H3. In this hybrid, the lists Li,j
0 , Li,j

1 are sampled uniformly at random fromDlist
Y (S0),Dlist

Y (S1),
respectively. Then, for each (i, j) where (xi,j , αi,j) is an authorized pair, find the bi,j ∈ {0, 1},
such that αi,j ∈ Sbi,j , and overwrite Li,j

bi,j
[αi,j ] := CEval(cski,xi,j).

Claim. H3 ≈c H2.

Proof. This follows from the ℓ-instance updatable security of ShCPRF; the proof proceeds essen-
tially as the proof between H3 and H2 in the sender security proof of Theorem 4. □
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Observe that H3 is exactly the experiment ExppkSsecA,N,1(λ) experiment defined in Figure 11, which
concludes the proof of sender security.

Receiver Security. We have a sequence of hybrids.

– Hybrid H0. This hybrid consists of the ExppkRsecA,N,0(λ) experiment defined in Figure 12, where pkPCF
is as defined in Theorem 4.

– Hybrid H1. In this hybrid, we rely on the simulator SPKS for PKS. SPKS simulates pkR and extracts
the ephemeral keys (eskj)j≤ℓ computed by the ℓ corrupted senders from (pkR, sk

j
S). It sends eskj

to FPKS on behalf of A for each corrupted sender Sj . Note that from this game onward, the
constraint z is not known anymore, which will allow us to invoke the wPRF security in the next
hybrid.

Claim. H1 ≈c H0.

Proof. This follows directly from the receiver security property of the PKS scheme, since pkR is
computationally indistinguishable from uniform. □

– Hybrid H2. In this hybrid, we sample a uniformly random function R from the set of all functions
from Xλ to {0, 1}, and generate bi,j := R(xi,j).

Claim. H2 ≈c H1.

Proof. The only difference between H2 and H1 is that bi,j = fz(xi,j) in H1, and bi,j = R(xi,j)
in H2. As the xi,j ’s are uniformly random (and pkR is simulated without using z), any distin-
guisher between H2 and H1 immediately yields a distinguisher for the wPRF f , contradicting the
pseudorandomness of fz. □

– Hybrid H3. In this hybrid, each bit bi,j is sampled uniformly at random: bi,j
R← {0, 1}. Note that

this hybrid is exactly ExppkRsecA,N,1(λ).

Claim. H3 ≈s H2.

Proof. Since R is a truly random function, H3 and H2 are perfectly indistinguishable conditioned
on all xi,j ’s being distinct. By a straightforward union bound, since all xi,j ’s are sampled randomly
from X , the condition is satisfied except with probability at most (N ·ℓ)2/|Xλ|, which is negligible
in λ because |Xλ| is exponential in λ. □

This concludes the proof of receiver security, and the proof of Theorem 4. ■

7.5 Public-key setup from RingLWE

Protocol. Here, we first informally describe the distributed public-key setup protocol (Gen,KeyDer).
See Figure 14 for a formal construction.

We assume R = Zt and work over a polynomial ring P = Zq[X]/(Xη + 1) (we will define the
RingLWE parameters η, q later). The public parameters include random a0, a1 ∈ P. In the public-key
generation phase, the sender samples ∆ from Rm\{0}, m secrets s10, . . . , s

m
0 from a noise distribution,

and noise e10, . . . , e
m
0 . It publishes as its public key pkS = (∆i · a0 + si0a1 + ei0)i∈[m], along with k0,

which it samples randomly from Rm.
The receiver samples z, a secret s1 from the noise distribution, and noise e1, e

′
1. It encodes q

t · z
in a polynomial z ∈ P and publishes as its public key pkR = (z + s1a0 + e1, s1a1 + e′1).

In the evaluation-key derivation phase, the sender computes, for each i ∈ [m], the rounded inner
product

⌈〈
pkR,

(
∆i, s

i
0

)〉⌋
t
13 and parses the resulting m polynomials as a matrix in Zm×n

t (ignoring

13 Recall that we write ⌈·⌋t to denote “rounding” a polynomial coefficient-by-coefficient.
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Public-Key Setup for Ring-based PCF for ListOT

Public Parameters. Security parameter λ, finite ring R = Zt, vector length n ≥ 1, integer m such that
m ≥ λ, polynomial ring P = Zq[X]/(Xη + 1), noise distribution χ over P, and random a0, a1 ∈ P.

Gen(1λ, S, ltsk =: ∆):

1 : s10, . . . , s
m
0

R← χ

2 : skS := (∆, s10, . . . , s
m
0 )

3 : e10, . . . , e
m
0

R← χ

4 : foreach i ∈ [m] :

5 : pkiS := ∆i · a0 + si0a1 + ei0

6 : k0
R←Rm

7 : return (pkS := (k0, (pk
i
S)i≤m), skS)

KeyDer(S, skS , pkR):

1 : parse skS = (∆, s10, . . . , s
m
0 )

2 : foreach i ∈ [m] :

3 : zi0 :=
〈
pkR,

(
∆i, s

i
0

)〉
4 : parse zi0 ∈ P as z̃i0 ∈ Zn

q

5 : round zi0 =
⌈
z̃i0

⌋
t
∈ Zn

t

6 : esk = (k0,Z0 = (zi0)i≤m)

7 : return KS := (∆, esk)

Gen(1λ, R, Cz):

1 : parse z ∈ Rn from Cz

2 : s1
R← χ

3 : skR := (z, s1)

4 : let z ∈ P have coeffs.
q

t
· (z∥0η−n)

5 : e1, e
′
1

R← χ

6 : pkR := (z + s1a0 + e1, s1a1 + e′1)

7 : return (pkR, skR)

KeyDer(R, skR, pkS):

1 : parse skR = (z, s1), pkS := (k0, (pk
i
S)i≤m)

2 : foreach i ∈ [m] :

3 : zi1 := pkiS · s1
4 : parse zi1 as z̃i1 ∈ Zn

q

5 : round zi1 =
⌈
z̃i1

⌋
t
∈ Zn

t

6 : csk := (k0,Z1 := (zi1)i≤m)

7 : return KR := (csk, z)

Fig. 14: A distributed public-key setup protocol for the ring-based updatable ShCPRF for inner products.
Note that when parsing elements of P as vectors in Zn

q , we ignore the last η − n coefficients.

the last η−n coefficients when parsing polynomial ring elements as vectors). The receiver computes,
for each i ∈ [m], the rounded product

⌈
pkiS · s1

⌋
t
and, as before, parses the result as a matrix in

Zm×n
t .

Concrete parameters. We rely on the RingLWE assumption (with a superpolynomial modulus-to-
noise ratio) in the polynomial ring P = Zq[X]/(Xη + 1) for some η a power of 2. We use the normal
form (see Definition 2), where the secret is drawn from the noise distribution rather than uniformly.
This is a standard choice in practical RingLWE-based schemes with hardness supported by security
reductions [58, 2, 60, 40].

We use a standard choice of error distribution—a discrete Gaussian with standard deviation
σ = 3.2. When applying the rounding lemma (Lemma 1) to prove correctness of our protocol, note
that the failure probability of rounding an element of Zq to an element of R = Zt will grow with t·B

q ,

where B is a bound on the magnitude of the error term in the derived polynomials (that depends
on χ and η). To ensure correctness with overwhelming probability, i.e., that with probability at least
1− 240, the sender and receiver correctly round all n ·m coefficients, we will set q = t ·B · n ·m · 240.

We need that η ≥ n (for values of n chosen for both the BIPSW and GAR instantiations), and
following post-quantum security standards for normal form RingLWE [2], the choice of η = 212 can
support up to a 103-bit modulus q, which is more than sufficient for our choice of q.

Public key size. The sender’s public key consists of m elements of P, as well as k0 ∈ Rm, so we can
bound the key size by m · (η · log q + log t) bits. The sender’s public key is roughly 5.5 MB in size for
the BIPSW ipm-wprf and GAR ipm-wprf. However, the receiver’s public key only consists of 2
elements of P, which makes it roughly 85 kB in size.
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Theorem 5. The distributed public-key setup protocol PKS = (Gen,KeyDer) defined in Figure 14
securely implements the corruptible ideal functionality represented in Figure 13 with respect to the
ring-based updatable ShCPRF framework defined in Figures 1 and 9.

Proof. Deferred to Appendix D.4. ■

8 Implementation and Evaluation

Implementation. We implement QuietOT in C with roughly 1200 lines of code for the BIPSW and
GAR implementations combined. Our implementation is open source and available at

https://github.com/sachaservan/QuietOT.

We additionally implement the BCMPR silent OT protocol in C in roughly 600 lines of code using
the P-256 elliptic curve implementation available in the OpenSSL library [73]. For OSY, we estimate
their runtime by benchmarking the dominant cost of their construction: computing λ = 128 modular
exponentiations in a 3200-bit RSA group. To heuristically instantiate the random oracle H(·), we use
fixed-key AES, operating with 128-bit inputs, and truncate the output to a single bit (such an instan-
tiation is shown to be correlation-robust in the ideal cipher model [49]). To generate pseudorandom
inputs for the PCF, we stretch a short seed (common to both the sender and receiver) using AES in
CTR mode. Our implementations make use of several optimizations, which are described further in
Section 8.1. We use the state-of-the-art implementation of existing OT extension protocols (IKNP,
SoftSpokenOT, RRT) available in libOTe [69] to compare to other OT extension protocols. In order
to provide a fairer comparison to existing OT extension protocols, we do not include the base OT
costs required in SoftSpokenOT and IKNP.

Environment. We run our benchmarks on an AWS c5.metal and t2.small instances, and on
an Apple M1 Pro laptop computer, using a single core. Because network latency and bandwidth
can fluctuate leading to high variance, our benchmarks take into account only the processing time
required by the sender and receiver. We compare the network overhead between each protocol using
the “bits/OT” measure, which provides an objective and consistent comparison between protocols,
avoiding network-specific or implementation differences.14

Parameters. We fix the security parameter λ = 128. For BIPSW, we set n = 768 and pre-compute
inner products with CPRF keys in blocks of 16 bits (this is an optimization we describe in Section 8.1).
We operate over the ring Z6, which allows us to use CRT decomposition and pack 128 elements of
Z2 into one machine word. For GAR, we set n = 2048, ℓ1 = 5 and ℓ2 = 15. This allows us to
work over the ring R = Z2 × Z16. The choice of n = 2048 is very conservative but allows us to
sample indices in {1, . . . , 2048} efficiently without rejection sampling. In turn, this improves concrete
performance by allowing us to efficiently generate inputs for the wPRF (all we require is checking
that the sampled set of random indices consist of distinct elements). SoftSpokenOT has a tunable
tradeoff between communication and computational efficiency parameterized by k. For a given k,
SoftSpokenOT requires λ/k communication but increases computation by a factor of 2k/k. Small
values of k (e.g., k = 4) provide a good tradeoff in practice, resulting in 32 bits/OT at an increase of
4× in computation.

Communication costs and comparison. QuietOT with BIPSW as the ipm-wprf requires 7 bits
of communication per chosen-bit OT. For random choice bits, communication is only 6 bits since the
receiver does not need to send its masked bit. Moreover, for random OT (when the sender inputs are
also random), the messages m0 and m1 can be set to the first elements of L0 and L1, respectively,
reducing communication to |S0|+ |S1| − 2 (or 4 bits when using the BIPSW ipm-wprf). QuietOT
with GAR as the ipm-wprf requires 33 bits of communication per chosen-bit OT. However, the same
logic above reduces communication to 32 bits/OT when the choice bit is random and 30 bits/OT
for random OT. QuietOT beats SoftSpokenOT on communication (for reasonable choices of k) when
instantiated with BIPSW and remains on-par with SoftSpokenOT in terms of communication when
instantiated with GAR. Silent OT protocols (i.e., RRT, BCMPR, OSY) have an optimal 3 bits/OT of
communication and 2 bits/OT when the receiver’s choice bit is random. This makes QuietOT roughly
2-10× worse in terms of communication when compared to silent OT.

14 The libOTe implementation is evaluated on localhost, and therefore is somewhat limited by the kernel
when transferring data making IKNP slower than SoftSpokenOT.
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|pksender| |pkreceiver| OT/s
(M1 Pro)

OT/s
(c5.metal)

OT/s
(t2.small)

Bits/OT

IKNP 2,592,000 34,174,000 12,264,000 128

SoftSpokenOT (k = 2) 2,732,000 52,676,000 33,121,000 64

SoftSpokenOT (k = 4) 1,636,000 44,443,000 27,504,000 32

SoftSpokenOT (k = 8) 249,000 9,500,000 5,891,000 16

SoftSpokenOT (k = 16) 2,000 76,000 49,000 8

RRT 1,230,000 6,856,000 2,492,000 3

OSY 50 kB 1 kB 0.6 0.5 0.3 3

BCMPR (BIPSW) 63 kB 72 kB 15,000 12,000 8,000 3

BCMPR (GAR) 33 kB 38 kB 21,000 17,000 11,000 3

QuietOT (BIPSW) 5.4MB 84 kB 1,165,000 561,000 362,000 7

with AVX512 support N/A 1,265,000 N/A 7

QuietOT (GAR) 5.6MB 88 kB 1,198,000 526,000 336,000 33

Table 2: OTs per second on a single core generated by the sender. Note that libOTe is not optimized for M1
since the AVX instructions are not available on M1 processors, hence we report these numbers in gray. The
GAR ipm-wprf cannot benefit from AVX due to limited bit-slicing opportunities. Setup costs are excluded.

Computational costs and comparison. The state-of-the-art OT extension protocol is SoftSpo-
kenOT. To provide an apples-to-apples comparison of the computational costs while fixing the com-
munication overhead in SoftSpokenOT, we could set k = 18 and k = 4 in SoftSpokenOT, leading to
7.1 bits/OT and 32 bits/OT, respectively. However, SoftSpokenOT becomes very inefficient with large
k which does not make the comparison fair when QuietOT is instantiated using BIPSW. Comparing
to SoftSpokenOT with small k and QuietOT (when instantiated with either BIPSW or GAR) shows
that QuietOT is roughly one to two orders of magnitude slower. However, we stress that SoftSpo-
kenOT benefits a lot more from advanced hardware instructions than QuietOT, potentially making
QuietOT outshine SoftSpokenOT on weak(er) devices. This is evidenced by QuietOT outperforming
the SoftSpokenOT implementation on the M1 (where AVX512 is not available). Unfortunately, since
the libOTe implementation is not optimized for performance when AVX is disabled, performing a
head-to-head comparison difficult. Comparing QuietOT to BCMPR (state-of-the-art public-key OT
protocol) shows that QuietOT is up to 100× faster in terms of computation while only increasing
communication by a few bits.

Public key size. Our public key setup has public keys that are roughly 20 to 60 times larger
compared to the public keys in BCMPR and OSY. This is primarily due to the parameters required
for the RingLWE assumption (see Section 7.5). However, as a consequence, we obtain plausible post-
quantum security. In practical terms, however, the average web page size is roughly 2MB as of
2023 [52], making the overall key size very reasonable for use on the Internet. Additionally, we note
that this is the sender ’s public key size—the receiver’s public key in our construction is only around
90 kB, which could potentially be beneficial to some applications.

8.1 Optimizations in the implementation

Our implementation makes use of several optimizations which we detail here.

Optimizing the BIPSW instantiation. We make several observations allowing us to concretely
optimize the BIPSW instantiation from Figure 7.

Working over the CRT decomposition. All computations over R = Z6 can be computed over the CRT
decomposition Z2 × Z3 ≃ Z6. This enables applying the following two optimizations:

– Bit-sliced arithmetic in Z2. We can pack the m elements of Z2 into ⌊m/64⌋ machine words (on
64-bit word processors). This allows parallelizing the Z2 component of all operations over Rm by
using a single machine instruction for each batch of ⌊m/64⌋ elements of Rm.

30



– Bit-sliced arithmetic in Z3. While we can also pack the Z3 elements into ⌊2m/64⌋ machine words
(using two bits for each element of Z3 on a 64-bit machine), such a packing requires computing
operations in Z3 over the bit-sliced representation. Fortunately, this very problem was explored in
WAVE [10, Appendix B.1], where they provide an efficient bit-sliced representation for computing
fast bit-sliced arithmetic over Z3. In particular, each arithmetic operation in Z3 requires using
only 7 machine instructions.

Our implementation in C. Concretely, we pack ring elements into uint128 t types in C (which
represent two 64-bit machine words). This allows us to pack the 128 Z2 elements into one uint128 t

type and pack the high and low order bits of the 128 Z3 elements into two uint128 t types. We can
then perform bit-sliced arithmetic over this packed representation.

Preprocessing inner products. A separate optimization, which we find also applies to the construction
of BCMPR when instantiated with the BIPSW ipm-wprf, is to preprocess the inner products
over small chunks of the key. When using the BIPSW wPRF, each matrix-vector product Z0x can be
equivalently written as a sum of smaller matrix-vector products. More precisely, let x = (x1, . . . ,xn/t)
such that |xi| ∈ {0, 1}t (we assume that t divides n) and let Z0 = (Z01, . . . ,Z0n/t). Then, by
preprocessing all possible 2t matrix-vector products associated with the i-th column block matrix
Z0i and storing the results, we can efficiently look up the result for any input block xi, saving a
factor t in computation at a cost of 2t in extra storage.

Optimizing the GAR instantiation. Unfortunately, we find fewer ways to optimize the GAR
instantation compared to our BIPSW instantiation. In particular, the GAR instantiation does not
benefit from preprocessing opportunities that we identify for our BIPSW instantiation. However, we
note that we can still take advantage of bit-sliced operations to compute the m operations over Z2 in
parallel. Performing bit-sliced arithmetic over Z16 (when ℓ = 16), in contrast, is more challenging.

Fast arithmetic over Z16. We found it to be more efficient to not pack the Z16 elements and instead
just use one byte for each of the 128 elements of Z128

16 . This allows us to sum modulo 16 by first
computing the sum over the integers and then using a bit-mask to reduce modulo 16. In particular,
we can sum two elements of Z16 via integer addition (summing two bytes) followed by a bit-wise
AND with 0b00001111, which zeroes-out the carry bit. This optimization makes summation modulo
16 fast, mitigating the impact of not being able to perform bit-sliced arithmetic for the Z16 elements.

General optimization: Compressing hash inputs via universal hashing. In the ring element
representations of both the BIPSW and GAR instantiations, we end up with a tightly packed rep-
resentation of the Z2 elements but only a “loosely-packed” representation of the Z3 elements (resp.
Z16 elements). The naive approach would be to feed the entire bit-string representation of the ring
elements (the ShCPRF key) and input x into the random oracle, which is heuristically instantiated
using fixed-key AES [49]. However, this would require breaking up the input string into blocks of 128
bits and then xoring all the resulting AES outputs together. While this solution does not introduce
noticeable slowdowns for the BIPSW instantiation,15 it is not ideal for the GAR instantiation. For
the GAR implementation, this approach would require packing all the elements of Z128

16 into four AES
blocks, which is inefficient since the packing itself is slow (recall that each element is represented as
a byte for fast arithmetic operations). However, we additionally need to pack the ShCPRF input x,
which would lead to even more overheads. To avoid these inefficiencies, we instead choose to com-
press the representation of the ring elements and input x into tightly packed λ-bit strings by using a
universal hash, which acts as a randomness extractor for the input to the random oracle. Specifically,
we can make use of the leftover hash lemma [50] to extract λ ≈ 128 bits from the representation of
the ring elements. This allows us to then only perform one AES call, using the compressed 128-bit
representation as input. We do the same for the ShCPRF input x and the Z128

2 block, leading to a
total of three independent AES calls that we then truncate and XOR together. The standard LHL
bound requires 128 + 2κ bits of entropy to extract 128-bits that are statistically close to uniform in
the worst-case [50], where κ is a statistical security parameter. However, the generalized LHL bound
of Barak et al. [12] allows us to do better. Specifically, they prove that when extracting randomness
to use as a key for a weak PRF (we assume that our ShCPRF takes uniformly random inputs and

15 In particular, we only need ≈ 80 bits for the Z3 components (which can be represented with two 128-bit
blocks), leaving 96 bits “on the table” into which we can pack the ShCPRF input string. This leads to only
three AES calls to instantiate the random oracle.
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thus is a weak PRF)16 the LHL bound can be improved to 128 + κ, which saves a factor of two in
the entropy loss. Therefore, we can increase the ring dimension m to 128+64 to ensure the universal
hashing produces a near-uniform 128 bit key for the ShCPRF, with ≥ 64-bits of statistical security.
As for the input x, universal hashing provides 128-bits with even more statistical security since under
our concrete parameter choice for GAR, we already have 308 bits of entropy in the input x, which
already give more than 64-bits of statistical security under the basic LHL bound. Finally, to further
improve efficiency, we use an almost-universal (as opposed to perfectly universal) hash function, which
results in faster implementations while only sacrificing a few bits of statistical security [12]. In our
implementation of the GAR instantiation, we use the open-source Polymur [65] almost-universal hash
function for this purpose.
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Supplementary Materials

A Additional Preliminaries

A.1 Oblivious transfer

We define oblivious transfer functionality in Figure 15.

Functionality FOT

Parameters. String length k.

Parties. The functionality interacts with a sender S, receiver R.

Procedure.

1: Wait for input (m0,m1) ∈ {0, 1}k from S.

2: Wait for input b ∈ {0, 1} from R.

3: Output mb to the R and ⊥ to S.

Fig. 15: Oblivious transfer ideal functionality FOT.

A.2 RKA-secure PRFs

Here, we define related-key attack (RKA)-secure PRFs.

Definition 10 (Φ-restricted Adversaries). An efficient RKA-PRF adversary A is said to be Φ-
restricted if its oracle queries use related-key derivation functions ϕ chosen arbitrarily from a set of
valid key derivation functions Φ.

Definition 11 (Related-Key-Attack Secure PRFs [16]). Let λ ∈ N be a security parameter
and ℓ = ℓ(λ) ∈ poly(λ). Let F = {Fk : Xλ → Y}k∈Kλ

be a family of functions and Φ : Kλ → Kλ

be a family of related-key derivation functions. F is said to be an RKA-secure PRF family if for
all efficient Φ-restricted adversaries A, the advantage of A in the following experiment ExprkaA,b(λ) is

negligible in λ. Here, b denotes the challenge bit and F̃λ denotes the set of all functions from Φ×Xλ

to Y.

– Setup: On input 1λ, the challenger samples k
R← Kλ, and a uniformly random function R

R← F̃λ,
and runs A(1λ).

– Evaluation queries: A adaptively sends arbitrary pairs (ϕ, x) ∈ Φ × Xλ to the challenger. For
each query (ϕ, x), the challenger proceeds as follows:

- If b = 0, the challenger computes y := Fϕ(k)(x), and sends y to A.
- If b = 1, the challenger computes y := R(ϕ, x) and sends y to A.

– Guess: A outputs its guess b′, which is the output of the experiment.

A wins if b′ = b, and its advantage AdvrkaA (λ) is defined as

AdvrkaA (λ) :=
∣∣∣Pr[ExprkaA,0(λ) = 1]− Pr[ExprkaA,1(λ) = 1]

∣∣∣ ,
where the probability is over the internal randomness of A and choice of k.

Definition 12 (Affine Related-Key Derivation Functions [1]). Let R be a finite ring and let
m ≥ 1 be an integer, let the class Φaff (aff for affine) denote the class of functions from Rm to Rm



that can be separated into m component functions consisting of degree-1 univariate polynomials. That
is,

Φaff :=

{
ϕ : Rm → Rm |

ϕ = (ϕ1, . . . , ϕm);

∀i ∈ [m], ϕi(ki) = γiki + δi, γi ̸= 0

}
.

Note that γi ̸= 0 is necessary to make the derivation function non-trivial. The definition of Abdalla
et al. [1] uses Zp; here we generalize it to any ring R.

A.3 RKA-secure PRFs from random oracles

In this section, we include, for completeness, a proof of the (folklore) fact that when H is modeled
as a random oracle, the function Fk(x) = H(k, x) (for a suitable choice of the domain of k) is an
RKA-secure PRF for affine relations.

Lemma 2. Let m = m(λ), n = n(λ), ℓ(λ) ∈ poly(λ) and let R be a ring. Let H : Rm×Fn
2 → Fℓ

2 be a
hash function, modeled as a random oracle. Then, the family of functions F = {x 7→ H(k, x)}k∈Rm is
an RKA-secure PRF for the family Φ of all affine relations Φ = {ϕα,β : k 7→ αk+β}α∈R∗,β∈Rm . More
precisely, any Φ-restricted adversary A against the RKA security of F , making at most qe evaluation
queries and qr random oracle queries, has advantage at most

AdvrkaA (λ) ≤ qr · qe
minα∈R∗ |α · Rm|

.

Proof. Let Qe denote the set of evaluation queries (ϕ, x) of A, and let Qr denote the set of random
oracle queries of A. Let us denote by Bad the following event during an execution of the experiment
ExprkaA,b(λ) (with b = 0 or b = 1): At the end of the experiment, the challenger computes (ϕ(k), x) for
each (ϕ, x) ∈ Qe and raises a flag Bad if (ϕ(k), x) ∈ Qr. If no flag Bad is raised, the challenger returns
a flag Good.

Conditioned on the event Good, every answer R(ϕ, x) (where R : Φ×Fn
2 → Fℓ

2 is a random function)
of the evaluation oracle to an evaluation query (ϕ, x) issued by A in ExprkaA,1(λ) is sampled as a fresh
random element independent of A’s view. In turn, it is distributed exactly as H(ϕ(k), x), because
the latter is a fresh uniform random element when A never queries (ϕ(k), x)—i.e., it is distributed
exactly as in ExprkaA,0(λ). In other words,

Pr[ExprkaA,0(λ) = 1 | Good] = Pr[ExprkaA,1(λ) = 1 | Good].

This implies

AdvrkaA (λ) =
∣∣∣Pr[ExprkaA,0(λ) = 1]− Pr[ExprkaA,0(λ) = 1]

∣∣∣
= Pr[Bad] ·

∣∣∣Pr[ExprkaA,0(λ) = 1 | Bad]− Pr[ExprkaA,1(λ) = 1 | Bad]
∣∣∣

≤ Pr[Bad].

Now, fix a query (ϕ, x) ∈ Qe, and let ϕ : k 7→ α · k + β. Define U := {u ∈ Rm | ∃v ∈ Fn
2 , (u, v) ∈ Qr}.

The probability, over the random choice of k, that (ϕ(k), x) ∈ Qr is at most the probability that there
exists u ∈ U such that α · k = u− β. Since α · k is a uniformly random element from the ideal α · R,
this happens with probability at most qr/|αR| ≤ qr/minα∈R∗ |αRm|. The lemma then follows by a
union bound over all queries in Qe. ■

B Application to Large-Scale MPC

We consider an application where a large number of parties are interacting over a network. Each
individual party is associated with a role (sender or receiver) and is identified by its public key. At
any time, a pair of parties (S,R) with respective key pairs (pkS , skS) and (pkR, skR) can engage in
a secure computation protocol, which reduces to a large number N of oblivious transfers [48]. Both
parties derive PCF keys for ListOT via KeyDer, compute N ListOTs, and use them in N instances of
the OT protocol from Figure 6. In this setting, we note that the ℓ-instance security notions of public
key PCFs for ListOT captures the following security properties:
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Sender security. Consider a sender S with key pair (pkS , skS) interacting with ℓ corrupted receivers
(R1, . . . , Rℓ) with public keys (pkR1

, . . . , pkRℓ
). The sender has N ·ℓ message pairs (mi,j

0 ,mi,j
1 )i≤N,j≤ℓ.

The sender and the receivers agree on N · ℓ uniformly random inputs (xi,j)i≤N,j≤ℓ.

– Key derivation. The sender S sets Kj
S := pkPCF.KeyDer(S, skS , pkRj

), for all j ∈ [ℓ].

– Oblivious transfers. For every i ≤ N, j ≤ ℓ, S computes (Li,j
0 , Li,j

1 ) := pkPCF.EvalS(Kj
S , xi,j).

For every j ≤ ℓ, upon receiving (ci,j)i≤N from Rj , S replies with (Li,j
ci,j ⊕mi,j

0 , Li,j
1−ci,j ⊕mi,j

1 )i≤N
(following Figure 6).

To argue security in this setting, consider the following sequence of hybrids.

– Hybrid H0. This hybrid is the protocol described above.

– Hybrid H1. In this hybrid game, a simulator S (who is given the random tapes of the receivers

R1, · · · , Rℓ, samples the lists (Li,j
0 , Li,j

1 ) exactly as in ExppkSsecA,N,1(λ, ℓ(λ)) from Figure 11, and plays
the role of the sender exactly as in H0 afterwards. In this experiment, for any i ≤ N and j ≤ ℓ,
the simulator S first samples (Li,j

0 , Li,j
1 ) uniformly at random and then sets Li,j

bi,j
[αi,j ] := vi,j ,

where (bi,j , vi,j , αi,j) := pkPCF.EvalR(Ki
R, xi,j) (note that S can reconstruct the keys Kj

R from

the tapes of the receivers). Importantly, for every (i, j), the list Li,j

b̄i,j
remains truly random.

Claim. H1 ≈c H0.

Proof. This claim follows directly from the ℓ-instance sender security property of the public key
PCF (cf. Figure 11). □

– Hybrid H2. In this hybrid game, the simulator S first samples pkS , reconstructs all keys Kj
R

using pkS by deriving skjR from the tape of the receiver Rj , and computes (bi,j , vi,j , αi,j) :=
pkPCF.EvalR(Ki

R, xi,j). For all i ≤ N, j ≤ ℓ it sends bi,j to the OT functionality, and obtains

m
(i,j)
bi,j

. Finally, S samples (Li,j
0 , Li,j

1 ) uniformly at random, and sets Li,j
ci,j [αi,j ] := vi,j ⊕m

(i,j)
bi,j

. For

j = 1 to ℓ, S sends (Li,j
ci,j , L

i,j
c̄i,j )i≤N to Rj .

Claim. H2 ≈ H1.

Proof. Note that the change in H2 is purely syntactic, because all values in Lc̄i,j and all values
Lci,j [k] for k ̸= αi,j are uniformly and independently random.

This concludes the proof of sender security.

Receiver security. Conversely, consider a receiver R with key pair (pkR, skR) interacting with ℓ
corrupted senders (S1, · · · , Sℓ) with public keys (pkS1

, · · · , pkSℓ
). The receiver has N · ℓ selection bits

(bi,j)i≤N,j≤ℓ. The senders and the receiver agree on N · ℓ uniformly random inputs (xi,j)i≤N,j≤ℓ.

– Key derivation. R sets Kj
R := pkPCF.KeyDer(R, skR, pkSj

), for all j ∈ [ℓ].

– Oblivious transfers. For every i ≤ N, j ≤ ℓ,R computes (b′i,j , vi,j , αi,j) := pkPCF.EvalR(Kj
R, xi,j).

For every j ≤ ℓ, the receiver sends ci,j := bi,j ⊕ b′i,j to Sj . Upon receiving (Li,j
0 , Li,j

1 )i≤N from Sj ,

R outputs mi,j := Li,j
bi,j

[αi,j ]⊕ vi,j .

The security analysis is straightforward: The simulator samples the bits bi,j uniformly at random,

as in the experiment ExppkRsecA,N,1(λ, ℓ(λ)) from Figure 12. The simulated game is indistinguishable from
the honest game by the ℓ-instance receiver security of pkPCF. In this simulated game, ci,j = bi,j ⊕ b′i,j
perfectly masks bi,j , and receiver security follows.
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C Precomputability, Two-Round OT Extension, and More

In this section, we discuss additional features offered by our framework and instantiations. In par-
ticular, we describe how our framework offers precomputability for either the sender or the receiver,
with an efficient “synchronization” protocol using standard building blocks. We additionally discuss
several other features offered by our framework, such as two-round OT extension and theoretical
instantiations in the standard model.

Tool: Vector Oblivious Linear Evaluation (VOLE). As a building-block for precomputabil-
ity and two-round OT extension, we first describe Vector OLE [61, 54] and “reverse” VOLE (reV-
OLE) [23]. We define the ideal functionalities for these primitives in Figure 16, when generalized to
matrix inputs (this generalization follows immediately from standard VOLE and reVOLE). At a high
level, matrix-VOLE allows the receiver to obtain A+bx⊤ as output (the sender gets no output), when
the sender inputs (A,b) and the receiver inputs x. In contrast, matrix-reVOLE allows the receiver
to obtain A + bx⊤ as output, when the sender inputs (A,x) and the receiver inputs b. Using any
matrix-VOLE (or matrix-reVOLE) protocol, we obtain precomputability for the sender and receiver
via simple building blocks (VOLE and reVOLE).

Parameters. Finite ring R and integers m,n ≥ 1.

Parties. The functionality interacts with a sender S and a receiver R.

Ideal functionality FVOLE:

1: Wait for input (A,b) ∈ Rm×n ×Rm from S.

2: Wait for input x ∈ Rn from R.

3: Compute C := A+ bx⊤, and output C to R and ⊥ to S.

Ideal functionality FreVOLE:

1: Wait for input (A,x) ∈ Rm×n ×Rn from S.

2: Wait for input b ∈ Rm from R.

3: Compute C := A+ bx⊤, and output C to R and ⊥ to S.

Fig. 16: Ideal functionalities for matrix-VOLE (FVOLE) [61, 54].

C.1 Precomputability

Here, we describe how either the sender or receiver can precompute all their inputs ahead of time,
without needing to know the identity of the other party. Our definition for precomputability is inspired
by the blueprint laid out by Couteau, Meyer, Passelègue, and Riahinia [36].17 Moreover, we explain
how VOLE or (reVOLE) can be used to efficiently synchronize the parties after one of the parties
precomputes their OT messages.

Remark 5. The definition of precomputability in [36, Def. 7] has downsides which we address here
in Definition 13. In particular, their definition does not rule out a “trivially precomputable” scheme
where KeyGen0 outputs both the keys (and the other party’s key would be fixed by having it as part
of the auxiliary information passed to KeyGen1). In this case, the first party has both keys and we do
not get meaningful security for the applications when using this setup. Additionally, their definition
provides no formalization of the interactive “synchronization” protocol, which we resolve by defining
the ideal functionality used by the parties to agree on common keys (without changing the first party’s
key) following one party’s precomputation.

Definition 13 (Precomputable PCF for ListOT). Let λ be a security parameter and λ ≤ n =
n(λ) ∈ poly(λ) be an input length. Let PCF = (KeyGen,Eval) be a PCF for ListOT. We say that PCF
is sender precomputable if there exist efficient algorithms KeyGenS, KeyGenRevS, and an interactive
key generation protocol KGR between the sender S and a receiver R, with the following syntax:

17 Note that simultaneous precomputability is not possible [36].
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– KeyGenS(1
λ)→ KS. The randomized key generation algorithm takes as input the security param-

eter. It outputs a key KS.

– KeyGenRevS(KS) → r. The deterministic reversal algorithm takes as input a sender’s key, and
outputs the sampling randomness r ∈ {0, 1}∗. (This is used to formalize a notion of oblivious
sampleability of the key.)

– KGR⟨S,R⟩ is an interactive protocol, where S has input KS (as output by the first algorithm),
and R has no input. After the protocol, R outputs a key KR, while S outputs ⊥.

Importantly, we have that the keys generated by this process are identically distributed to those gen-
erated by PCF.KeyGen. That is, we first require that the sender’s key is obliviously sampleable (inde-
pendently of the receiver’s key), a notion that is inspired by Canetti and Fischlin [31]. Formally,

1. Generating the sender’s key via KeyGenS is perfectly indistinguishable from the generating it via
PCF.KeyGen: {

KS | KS ← KeyGenS(1
λ)
}
≡

{
KS | (KS ,KR)← PCF.KeyGen(1λ)

}
,

and
2. the algorithm KeyGenRevS returns, for a sender’s key KS, the randomness that is used to generate

it using KeyGenS:{
(KS , r) | r

R← {0, 1}poly(λ);KS := KeyGenS(1
λ; r)

}
≈c

{
(KS , r)

∣∣∣∣∣ (KS ,KR)← PCF.KeyGen(1λ)

r ← KeyGenRevS(KS)

}
.

Additionally, we require that KGR securely realizes the functionality FKG,R described in Figure 17.

Receiver precomputability. This is defined in the exact analogous way, where all instances of S
and R are exchanged. Hence, it asks for the existence of KeyGenR, KeyGenRevR, and an interactive
key generation protocol KGS that fulfills the respective analogous properties.

Parties. The functionality interacts with a sender S and a receiver R.

Ideal functionality FKG,R:

1: Wait for input KS from S.

2: Wait for input (“KeyGen”) from R.

3: Compute KR := KeyDerR(KS), where KeyDerR is an algorithm that computes a fitting receiver’s key
(i.e., such that the distribution of (KS ,KR) is identical to the output of PCF.KeyGen(1λ)) from a valid
sender’s key KS . Then, output KR to R and ⊥ to S.

Fig. 17: Ideal functionality for the protocol that securely establishes a fitting key for the other party, after
one party’s key has been generated ahead of time.

The main motivation of precomputability is that one party can locally generate a key and use it
to precompute all evaluations. Then, at a later point in time, another party can use an interactive
protocol that securely establishes a key that “fits” to the key that was used by the first party for
the precomputation. We now turn to describing how we can achieve precomputability for either the
sender or the receiver.

Sender precomputability. KeyGenS simply outputs the ShCPRF master key, exactly as in the
construction. This gives us sender precomputability for Figure 5, because in the construction, we
have KS = msk = (k0,Z0) (an ShCPRF master key as defined in Figure 1) which is sampled
independently of the receiver’s key KR. Then, to obtain KR, the receiver can invoke a matrix-VOLE
protocol, defined in Figure 16, where the sender inputs (Z0, ∆) while the receiver inputs −z (note
that ∆ ∈ Rm and z ∈ Rn). The receiver then obtains Z1 = Z0−∆z⊤ as output, which is distributed
identically to Z1 in Figure 1. Note that k0, which is common to both msk and csk, can simply be
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sent over by the sender. As such, the receiver successfully derives KR = ((k0,Z1), z), which matches
the expected receiver key.

Receiver precomputability. Showing that we also get receiver precomputability is slightly more
involved. First, note that we can let the receiver sample k0, Z1, and z uniformly, which together form
KR = ((k0,Z1), z). Therefore, we can define KeyGenR to output these elements, which are distributed
identically to the receiver’s key in the construction. Using KR, the receiver can precompute all the
OT messages for Figure 6.

Then, the challenge is finding a way for the sender (who has ∆) to obtain the “master key”
msk = (k0,Z0) where Z0 = Z1 +∆z⊤. This can be achieved by invoking a matrix-reVOLE protocol,
defined in Figure 16, where now the receiver (playing the role of the sender) inputs (Z1, z) and the
sender (playing the role of the receiver) inputs∆ ∈ Rm. The sender obtains as output Z0 = Z1+∆z⊤,
which is distributed identically to Z0 in Figure 1. Once more, the receiver can simply send k0 to the
sender. This allows the sender to recover KS = (k0,Z0), as required.

Application: Fast OTs in a client-server model. To motivate the notion of precomputability,
consider the following setting: a weak client will want to, at some point in the future, run a secure
two-party computation protocol with some servers, the identity of which is yet unknown. During an
idle period, the weak client generates its key Kσ ← KeyGenσ(1

λ), for σ ∈ {S,R}, and precomputes a
large number of ListOTs (either list pairs (L0, L1) if the client has a sender role, or triples (b, v, α)).
When the client decides on a server they want to generate OTs with, a cheap distributed protocol
is performed (by our above discussion, this can be done with a single length-n VOLE or reVOLE
with our construction) to provide the key K1−σ to the server. The powerful server can then quickly
compute its share of the ListOTs “on the fly,” and engage in the two-party computation with the
client. In a typical scenario, the client could be a phone; at night, the phone automatically prepares
ListOTs. Then, whenever the phone holder decides to browse a website, the phone could enable
a two-party computation with the website (e.g., to securely get restaurant recommendations, find
matching profiles, or be served with a targeted ad) using only cheap computations on its side (indeed,
the bottleneck shifts entirely towards communication).

C.2 Two-round setup from two-round OT

In this section, we describe how our framework yields a protocol for two-round OT extension. Since
two-round OT is clearly optimal, two-round OT extension provides the best possible performance
one could hope for (in terms of rounds and use of symmetric vs. public-key primitives). However, due
to the impossibility result of Garg et al. [45], two-round OT extension is impossible to instantiate
unconditionally in the ROM, and therefore necessitates a non-black-box assumption. Here, we show
that using any black-box two-round OT protocol, we get a two-round key-derivation protocol for our
PCF for ListOT from Figure 5. This then allows us to build a two-round OT extension. Coupled with
our instantiation of QuietOT in the standard model (see Appendix C.3), we show that any ipm-
wprf suffices to achieve two-round OT extension and circumvent the impossibility of Garg et al. [45]
using a broad family of Minicrypt primitives.

Lemma 3 (VOLE and reVOLE from OT). Two-round OT implies two-round VOLE and reV-
OLE, as defined in Figure 16.

Proof. Two-round reverse VOLE can be constructed using n parallel calls to a two-round OLE func-
tionality (where the receiver inputs x ∈ Rn coordinate-by-coordinate and the sender inputsA column-
by-column and b). In turn, two-round OLE can be constructed from O(m log2 |R|) parallel calls to
a two-round OT functionality using the protocol of Gilboa [46] for ring Rm. The same holds for
reVOLE, since reVOLE is trivially implied by OLE [8, 3]. ■

Theorem 6 (Informal). There exists a two-round key derivation protocol for Figure 5 from any
two-round OT protocol.

Proof. The proof follows from the protocols described in Appendix C.1 and using Lemma 3. Consider
the PCF for ListOT framework of Figure 5. As shown in Appendix C.1, using a reVOLE protocol,
the receiver can obtain KR with one call to the reVOLE functionality by inputting −z and having
the sender input (Z0, ∆). Again, since k0 is common to both the sender and receiver in Figure 5,
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it can be transmitted separately. By Lemma 3, this reVOLE functionality can be instantiated using
O(n ·m log2(|R|)) parallel calls to a two-round OT functionality, which implies that the receiver can
derive KR in two rounds. ■

C.2.1 Two-round OT extension Note that, just using z (the wPRF key) and the random xi,
the receiver can precompute all the OT messages sent to the sender in Figure 6, without needing
to know csk (recall that KR = (csk, z)). Specifically, by (1) computing all the bits destined for the
sender in Figure 6 using z, and (2) executing the two-round key-derivation protocol from Theorem 6
in parallel with Figure 6, the receiver obtains csk and all the information it needs to decode the
response messages received from the sender. A little more concretely,

Round 1: Receiver → Sender. In the first round, the receiver, with choice bits b = (b1, . . . , bN ), starts
by computing all the bit masks b′ using the wPRF key z and x and sends c = b⊕b′ to the sender in
Figure 6. In addition, the receiver also sends the reVOLE message used to derive csk in parallel with
its choice bits.

Round 2: Sender → Receiver. The sender computes the lists L0 and L1 as in Figure 6, then using the
masked bits (ci ∈ c)i∈[N ] received from the receiver, it responds with its reVOLE response message
and lists (L′i,0, L

′
i,1)i∈[N ]. The receiver can then locally (1) reconstruct csk from the reVOLE response

message and (2) recover the messages exactly as in Figure 6.

C.3 Instantiations of QuietOT in the standard model

An interesting feature of our PCF for ListOT framework (Figure 5) is that security (for the sender)
reduces entirely to the ShCPRF, as seen in the proof of Theorem 2. While the simplest instantiation of
the ShCPRF framework (Section 5) is using a random oracle, any suitable RKA-secure PRF suffices.
In particular, the work of Servan-Schreiber [72], which shows that the VDLPN wPRF candidate
of Boyle et al. [22] can be used to instantiate a (weak) CPRF (in turn giving us a weak ShCPRF by
extension). Coupled with the work of Bui et al. [29], which shows that the VDLPN wPRF candidate
is actually an ipm-wprf, we can instantiate QuietOT solely based on the VDLPN assumption. Of
course, using alternative CPRF constructions supporting inner-product predicates based on DDH [72],
DCR [36], or LWE [39] is also an option. However, while such instantiations are interesting when
viewed from a theoretical lens, they do not lead to practical constructions given their “public-key”
nature.

Remark 6. We note that Applebaum, Harnik, and Ishai [4] have shown that it is possible to instantiate
the IKNP OT extension protocol assuming RKA-secure PRFs, which coupled with our framework,
makes studying the relationship between RKA-security and OT extension an interesting direction for
future work.

Remark 7 (Generating random inputs). In practice, the inputs to the PCF (which are used as inputs
to the ipm-wprf) need to be uniformly random. The random oracle model immediately implies a
common random string available to both parties to use as inputs. However, if we replace the random
oracle with an RKA-secure PRF, then the parties need a different way to obtain uniformly random
inputs. One idea is to settle for pseudorandom inputs and have both parties obtain a common seed for
a PRG (or alternatively obtain a PRF key), which they can expand into many (pseudo)random inputs
x1, . . . , xN to generate N correlations. Unfortunately, such an approach is only heuristically secure in
the general case, since there exist counter-examples to the security of wPRFs when evaluated using
(public) pseudorandomness [66]. However, for the BIPSW and VDLPN wPRF candidates, security
is believed to hold even when evaluated using public pseudorandomness, as shown in a recent work
of Brzuska et al. [28].

D Deferred Proofs

D.1 Proof of Theorem 1

Proof. We prove correctness, security, and pseudorandomness in turn.
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Correctness. Consider a constraint z ∈ Rn and input x ∈ Rn such that ⟨z,x⟩ = 0 (i.e, the
constraint is satisfied). It holds that k = k0 + Z0x = k0 + Z1x + (∆z⊤)x = k0 + Z1x. Therefore,
the resulting k is identical in Eval and CEval of Figure 1 for the same input x. Correctness then
follows from the correctness of F . For shiftability correctness, for all ⟨z,x⟩ − α ̸= 0, using shift α,
then k = Z0x − ∆α = k = Z0x − ∆α + ∆ ⟨z, x⟩ − ∆ ⟨z,x⟩ = Z1x + ∆ ⟨z,x⟩ − ∆α. Therefore,
when α = ⟨z,x⟩, the resulting k is identical in Eval and CEval of Figure 1 for the same input x and
correctness follows.

(1-key, selective) Security. We prove security by a reduction to the RKA-security of F . Our proof
consists of a sequence of hybrid games.

– Hybrid H0. This hybrid consists of the (1-key, selective) ShCPRF security game defined in Defi-
nition 3.

– Hybrid H1. In this hybrid, during setup, the challenger first samples the constrained key and then
samples the master key. Specifically, at the start of the game, given the constraint z ∈ Rn, the

challenger first samples a constrained key csk := (k0,Z1), where k0
R← Rm and Z1

R← Rm×n.

Then, the challenger computes the master secret key as msk := (k0,Z0, ∆), where ∆
R← Rm,

Z0 := Z1 +∆z⊤ and k0 is as in csk. The difference between H0 and H1 is purely syntactic. In
particular, it follows that the distribution of msk and csk in H1 is identical to H0.

– Hybrid H2. In this hybrid game, the challenger does not sample∆ anymore. Instead, the challenger
is given access to the following stateful oracle Orka:

Oracle Orka

Initialize. Sample ∆
R← Rm.

Evaluation. On input ϕ ∈ Φaff and x ∈ Rn, return Fϕ(∆)(x).

The challenger is then defined as follows.

1. Setup: On input 1λ, the challenger

• runs A(1λ) who outputs a constraint z;

• samples csk according to H1 by sampling k0
R← Rm, Z1

R← Rm×n;

• samples a uniformly random function R
R← F̃λ, where F̃λ is the set of all functions with

domain X × S and range Y; and
• sends csk to A.

2. Evaluation queries: For each query (x, α) from A, if Cz(x, α) = 0, then the challenger
responds with ⊥. Otherwise, the challenger proceeds as follows:

• If b = 0, it computes a := ⟨z,x⟩ − α and b := k0 + Z1x, defines the affine function
ϕ : u 7→ au+ b, queries Orka on input (ϕ,x), and forwards the response y to A.
▷ We note that y is computed by Orka as Fk′(x) where
▷ k′ = a∆+ b ∈ Rm = (⟨z,x⟩ − α)∆+ b = ϕ(∆), for some ϕ ∈ Φaff .

• If b = 1, it computes y := R(x, α) and returns y,

Claim. A’s advantage in H2 is identical to A’s advantage in H1.

Proof. The difference between H2 and H1 is again purely syntactic since each output is computed
identically in both games. However, note that the challenger now only has access to ∆ via the
oracle Orka. □

Claim. There does not exist an efficient A with greater than negligible advantage in H2 assuming
F is an RKA-secure PRF with respect to affine related key derivation functions Φaff .
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Proof. Note that the challenger in H2 is already playing the role of a Φaff -restricted adversary
when querying the oracle Orka to answer the evaluation queries. The reduction to RKA security
of F is therefore immediate. □

This concludes the proof of (1-key, selective) security.

Pseudorandomness. We prove the pseudorandomness property by a reduction to the RKA-security
of F . Our proof consists of a sequence of hybrid games.

– Hybrid H0. In this hybrid, the adversary is given oracle access to Eval(msk, ·, ·).

– Hybrid H1. In this hybrid, the reduction emulates the answers of the oracle queries of A as follows.

It samples Z0
R← Rm×n and ∆

R← Rm\{0}. In addition, the reduction interacts with the following
oracle Orka:

Oracle Orka

Initialize. Sample k0
R← Rm.

Evaluation. On input ϕ ∈ Φaff and x ∈ Rn, return Fϕ(k0)(x).

Given a query (x, α), the reduction defines ϕα : k 7→ k + Z0x − ∆ · α, and queries Orka on
input (ϕα,x), and forwards the response to A. Observe that the answers to A’s queries in H1 are
always equal to Eval(msk,x, α) for msk := (k0,Z0, ∆), hence A’s advantage in H1 is identical to
A’s advantage in H0.

– Hybrid H2. In this hybrid, the answer of Orka on a query (x, α) is computed as R(ϕα,x), where

R is a uniformly random function from the set F̃λ of all functions from Φaff × S to Y. By the
RKA-security of the PRF family, H1 and H2 are computationally indistinguishable.

– Hybrid H3. In this hybrid, we sample a uniformly random function R
R← F̃λ, where F̃λ is the set

of all functions from Rn × S to Y, and all queries of A are answered with R. Observe that for
any two queries (x0, α0) and (x1, α1), it holds that (ϕα0 ,x0) = (ϕα1 ,x1) iff (x0, α0) = (x1, α1),
hence H3 is perfectly indistinguishable from H2.

This concludes the proof of pseudorandomness and the proof of Theorem 1. ■

D.2 Proof of Theorem 2

Proof. We prove pseudorandomness, correctness, sender security, and receiver security in turn.

Pseudorandomness. We prove pseudorandomness via two hybrid games.

– Hybrid H0. This hybrid consists of ExpprA,N,0(λ) from Figure 2, where PCF.KeyGen and PCF.Eval
are as defined in Figure 5 (PCF for ListOT framework).

– Hybrid H1. In this hybrid game, we replace each pseudorandom bit bi computed in H0 using the
ipm-wprf f , with truly random bits.

Claim. H0 ≈c H1.

Proof. Suppose, towards a contradiction, that there exists an efficient A that distinguishes be-
tween H0 and H1 with non-negligible advantage ν(λ). Since the only difference between H0 and
H1 is that the pseudorandom bits in H0 are replaced with uniformly random bits in H1, the re-
duction to the wPRF pseudorandomness of f is immediate. (For this, note that z is independent
of msk.) □

– Hybrid H2. In this hybrid, for all i ∈ [N(λ)], the lists Li
0, L

i
1 are sampled uniformly from Dlist

Y (S0)
and Dlist

Y (S1), respectively, where the distribution Dlist
Y (·) is defined in Definition 5 and consists

of uniformly random samples from Y.
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Claim. H2 ≈c H1.

Proof. Suppose, towards a contradiction, that there exists an efficient A that distinguishes be-
tween H2 and H1 with non-negligible advantage ν(λ). We can then construct an efficient B that
contradicts the pseudorandomness property of the ShCPRF (Definition 3). Note that in Figure 5,
the list entries of Li

0, L
i
1 are sampled as

si0 := ShCPRF.Eval(msk,xi, α0) and si1 := ShCPRF.Eval(msk,xi, α1),

for all α0 ∈ S0 and α1 ∈ S1, where xi := map(xi) ∈ Rn, and then assembled into the two lists
Li
0, L

i
1.

Given oracle access toO, which is either a random functionR(·, ·) or the algorithm ShCPRF.Eval(msk, ·, ·),
we construct B as follows:
1. For all i ∈ [N(λ)],

• sample xi
R← Xλ and set xi := map(xi) ∈ Rn,

• query (xi, α0) to the oracle on all α0 ∈ S0 to get response sα0 ,

• query (xi, α1) to the oracle on all α1 ∈ S1 to get response sα1
,

• sample bit bi uniformly at random.

2. Then, assemble the lists Li
0, L

i
1 and run A on input (1λ, (xi, L

i
0, L

i
1, bi)i∈[N(λ)]) and output as

it does.

Observe that the lists (Li
0, L

i
1)i∈[N(λ)] output by B are distributed identically to the lists in

Figure 5 if B is given oracle access to the ShCPRF, and distributed as uniformly random lists
when B is given oracle access to a random function. Therefore, the distribution given to A is
identical to H1 or H2, allowing B to win the pseudorandomness game of the ShCPRF with the
same advantage. □

Now, it suffices to observe that H2 is identical to ExpprA,N,1(λ), which concludes the proof.

Correctness.Observe that v output by PCF.EvalR(KR, x) is computed as v := ShCPRF.CEval(csk,x),
where x := map(x) and csk ← ShCPRF.Constrain(msk, z) for a random constraint z. Hence, by
correctness of the ShCPRF, we know that there exists a shift α ∈ S0 ∪ S1, such that x and α are
authorized. More specifically, C(x, α) := ⟨z,x⟩ − α = 0, and with overwhelming probability, v is
equal to the list entry calculated via ShCPRF.Eval(msk,x, α). (Note that α is calculated in PCF.EvalR
exactly in this way.) Hence, for the (unique) b′ ∈ {0, 1} with α ∈ Sb′ , we have that, with overwhelming
probability, Lb′ [α] = v. Finally, b′ = b by the property of the ipm-wprf which guarantees that
b := fz(x) = 0 iff ⟨z,x⟩ ∈ S0 and fz(x) = 1 iff ⟨z,x⟩ ∈ S1.

Sender Security. Informally, this follows from the fact that by the shiftable CPRF security, for any

(possibly not uniform)18 xi
R← X and given only csk for a constraint z, all constrained values are

pseudorandom to the adversary. However, for the given xi := map(xi), it is authorized only exactly
for this constraint z with shift αi (because S0 ∪ S1 = R and αi = ⟨z,x⟩ ∈ R is the unique value such
that ⟨z,x⟩ − αi = 0). More formally, we have a sequence of hybrids.

– Hybrid H0. This hybrid consists of the ExpSsecA,N,0(λ) experiment defined in Figure 3, where PCF =
(KeyGen,EvalS,EvalR) are as defined in Figure 5 (PCF for ListOT framework). In particular, we
note that PCF.EvalS internally runs the ShCPRF ShCPRF = (KeyGen,Eval,Constrain,CEval).

– Hybrid H1. In this hybrid, for each i ∈ [N(λ)], the call to ShCPRF.Eval(msk,x, α) inside of
PCF.EvalS is replaced with a call to ShCPRF.CEval(csk,x) whenever (x, α) is authorized (i.e.,
⟨z,x⟩ − α = 0), where csk is part of KR in ExpSsecA,N,0(λ).

Claim. H0 ≈s H1.

Proof. By the correctness of shiftable CPRFs, we have that for all authorized (xi, αi) pairs,

ShCPRF.Eval(msk,xi, αi) = ShCPRF.CEval(csk,xi),

with overwhelming probability. □
18 For example, in the GAR instantiation, the uniformly random input is mapped to a non-uniform vector in

the ring.
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– Hybrid H2. In this hybrid, the lists Li
0, L

i
1 are sampled uniformly at random fromDlist

Y (S0),Dlist
Y (S1).

Then, for each i where (xi, αi) is an authorized pair, find the bi ∈ {0, 1}, such that αi ∈ Sbi , and
overwrite Lbi [αi] := ShCPRF.CEval(csk,xi).

Claim. H1 ≈c H2.

Proof. The claim follows directly from the security of the shiftable CPRF. Namely, let A be an
efficient adversary with a non-negligible advantage of distinguishing between H1 and H2. Then,
we define the following adversary B to the (1-key, selective) security experiment ExpshcprfB (λ) for

ShCPRF. When B is queried for a constraint, it samples a random z
R← Rn (or via some distribution

over Rn) and outputs it. When B is then run with a key csk, it sets KR := (csk, z). Then, for each

i ∈ [N(λ)], it samples an xi
R← X , maps it via xi := map(xi), and computes the corresponding

authorized shift, denoted by αi (recall that there always exists an efficiently computable shift, by
the correctness property of ShCPRF). Then for all b ∈ {0, 1} and all α ∈ Sb \ {αi}, it calls its
evaluation oracle with xi and shift α, and receives response yi,α. For the remaining authorized
entry pair (xi, αi) it computes yi,αi

:= CEval(csk,xi), as in the previous hybrid. It then assembles
these entries into the two lists Li

0, L
i
1, according to whether the respective shift belongs to S0 or

S1, and sends KR and (xi, L
i
0, L

i
1) to A. Finally, B outputs what A outputs.

Observe that B is an efficient algorithm, making N · (|R| − 1) oracle queries. (Note that for each
query issued by the adversary, B needs to perform |R| − 1 queries to the shiftable CPRF oracle.)

Moreover, if B is given inputs from the real game ExpshcprfB,0 (λ), then this perfectly simulates hybrid

H1 for A, and if it is given inputs from the ideal game ExpshcprfB,1 (λ), then this perfectly simulates
hybrid H2 for A. As such, B has the same advantage as A. □

Notice that H2 is distributed identically to ExpSsecA,N,1(λ), the experiment defined in Figure 3, which
concludes the proof of sender security.

Receiver Security. Receiver security follows from the fact that KS = msk and xi are independent
of the ipm-wprf key z, the xi are sampled uniformly at random, and because f is a wPRF with
range {0, 1}. Formally, we prove receiver security via a sequence of hybrids.

– Hybrid H0. This hybrid consists of the ExpRsecA,N,0(λ), the experiment defined in Figure 4, where
PCF = (KeyGen,EvalS,EvalR) are as defined in Figure 5.

– Hybrid H1. In this hybrid, we sample a uniformly random function R from the set of all functions
from Xλ to {0, 1}, and generate bi := R(xi).

Claim. H1 ≈c H0.

Proof. The only difference between H0 and H1 is that bi = fz(map(xi)) in H0, and bi = R(xi) in
H1. As the xi’s are uniformly random (and KS = msk is generated independently of z), any dis-
tinguisher between H0 and H1 immediately yields a distinguisher against the pseudorandomness
of fz. □

– Hybrid H1. In this hybrid, each bit bi is sampled uniformly at random: bi
R← {0, 1}. Note that

this hybrid is exactly ExpRsecA,N,1(λ).

Claim. H2 ≈s H1.

Proof. Since R is a truly random function, H2 and H1 are perfectly indistinguishable conditioned
on all xi’s being distinct. By a straightforward union bound, since all xi’s are sampled randomly
from X , the condition is satisfied except with probability at most N2/|Xλ|, which is negligible in
λ because |Xλ| is exponential in λ (we require this for the wPRF security anyway). □

This concludes the proof of receiver security and the proof of Theorem 2.
■
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D.3 Proof of Theorem 3

Proof. We prove each property in turn.

Correctness. Correctness follows directly from the proof of Theorem 1 (correctness proof of the
non-updatable ShCPRF, cf. Appendix D.1).

Updatable Correctness. Consider an arbitrary csk := (k′
0,Z1) ∈ Rm×Rm×n, a constraint z ∈ Rn,

and an input x ∈ Rn. Let α := ⟨z,x⟩. Given ltsk := ∆
R← Rm, we have msk′ = (ltsk, esk′) with

esk′ = (Z′
0 := Z1 +∆z⊤,k′

0). Then, denoting kα := k′
0 + Z′

0x−∆α, it holds that kα = k′
0 + (Z1 +

∆z⊤)x−∆α = k′
0 +Z1x+(((((((

∆(⟨z,x⟩ − α) = k′
0 +Z1x. Therefore, Fkα(x) = ShCPRF.CEval(csk, z,x).

(1-key, selective, ℓ-instance) Updatable Security. We prove security by a reduction to the
RKA-security of F . Our proof consists of a sequence of hybrid games.

– Hybrid H0. This hybrid game consists of the (1-key, selective, ℓ-instance) updatable security
game. Specifically, at the start of the game, the challenger is given the constraints zi and the
constrained keys cski := (k0i,Z1i), where k0i ∈ Rm and Z1i ∈ Rm×n for all i ∈ [ℓ]. Then, the
challenger computes the updated master secret key as msk′i := (ltsk := ∆, eski := (k0i,Z0i)),

where Z0i := Z1i +∆z⊤i with ∆
R← Rm.

– Hybrid H1. In this hybrid, we modify the updatable security gameH0 as follows: given (zi, cski)i≤ℓ,
the challenger does not sample ∆ anymore and instead interacts with the oracle Orka from the
proof of Theorem 1. Similarly to the proof of Theorem 1, for evaluation query (x, α, i) from A
with Czi

(x, α) ̸= 0, the challenger computes a := ⟨zi,x⟩ − α and b := k0i + Z1ix.

• If b = 0, the challenger queries Orka on input (ϕ,x), where ϕ : u 7→ au + b and forwards the
response to A.
• If b = 1, the challenger returns y := R(i,x, α).

Observe that for each query (x, α, i), it holds that kα = k0i + Z1ix +∆(⟨zi,x⟩ − α) is equal to
ϕ(x) = ax+b. Hence, the answers of the challenger to all queries issued by A in H1 are computed
identically to H0.

– Hybrid H2. This hybrid game consists of the RKA security game for F with respect to affine
related key derivation functions Φaff .

Claim. If there exists an efficient adversary A for H1 that wins with non-negligible advantage,
then there exists an efficient Φaff -restricted adversary B that wins the H2 game (RKA security
game) with the same advantage as A.

Proof. The challenger inH1 is already playing the role of a Φaff -restricted adversary when querying
the oracle Orka to answer the evaluation queries. The reduction to RKA security of F is therefore
immediate. □

Pseudorandomness. The proof of pseudorandomness follows directly from the proof of Theorem 1.

This concludes the proof of Theorem 3. ■

D.4 Proof of Theorem 5

Generation phase. For every corrupted sender Sk, the simulator reconstructs ltskk := ∆ ∈ Rm

(using their random tape) and sends (ltskk, k) on their behalf to FPKS. For every corrupted receiver
Rl, the simulator reconstructs the constraint Cl := z (using their random tape) and sends (Cl, l) to
FPKS on their behalf. We now emulate each key derivation phase between a sender S := Sk and a
receiver R := Rl.

Case 1: Both parties are honest. For each i ∈ [m], the sender computes zi0 :=
⌈〈
pkR, (∆i, s

i
0)
〉⌋

t
∈

P, the receiver computes zi1 :=
⌈
pkiS · s1

⌋
t
∈ P and they each parse the first n coefficients of their
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respective polynomial as vectors zi0, z
i
1 ∈ Zn

t . Observe that
〈
pkR, (∆i, s

i
0)
〉
and pkiS · s1 are in fact

noisy additive shares of ∆i · z over P, since we have that〈
pkR,

(
∆i, s

i
0

)〉
− (pkiS · s1)

= ∆i · z +∆i · a0s1 +∆i · e1 + si0a1s1 + si0e
′
1 −∆i · a0s1 − si0a1s1 − ei0s1

= ∆i · z +∆i · e1 + si0e
′
1 − ei0s1︸ ︷︷ ︸

noise

≈ ∆i · z.

Recall that the coefficients of z are (q/t)·(z∥0η−n), while∆i ∈ Zt (where t≪ q), and e1, s
i
0, e
′
1, e

i
0, s1

are all drawn from χ, which we take to be a discrete Gaussian with standard deviation σ. By basic con-
centration inequalities, we have that B = 3·(8σ)2 ·η is a bound on the magnitude of ∆·e1+si0e

′
1−ei0s1

with overwhelming probability. Further, note that by the normal form of RingLWE, the public keys
pkR and pkS are pseudorandom, so the shares

〈
pkR, (∆i, s

i
0)
〉
and pkiS · s1 are as well. Hence, by the

rounding lemma (Lemma 1), since we set q = t ·B ·n ·m ·240, the probability that a single component
is rounded incorrectly is at most 1

nm · 2
−40. Thus, by the union bound over all n ·m components of

the shares, for all i ∈ [m] we have that (after parsing the ring elements) zi0 − zi1 = ∆i · z ∈ Zn
t , with

very high probability.

Case 2: Sender S is corrupted. The view of the corrupted sender is (a0, a1, z+s1a0+e1, s1a1+e′1),

where a0, a1
R← P and s1, e1, e

′
1

R← χ. By the normal form of RingLWE we have that (a0, a1, s1a0 +

e1, s1a1 + e′1) ≈c (a0, a1, u0, u1), where u0, u1
R← P. Hence, the simulator emulates the view of the

sender using a random pkR := (u0, u1)
R← P2. Eventually, the simulator recovers skS = (∆, s10, . . . , s

m
0 ),

computes esk := (k0,Z0) := KeyDer(S, skS , pkR) and sends esk on behalf of the ideal adversary to the
functionality. The output of R in the ideal world is equal to (k0,Z0−∆z⊤), which is identical to R’s
output in the real world (by the same analysis as for Case 1).

Case 3: Receiver R is corrupted. In each key derivation phase with a sender, the view of the

corrupted receiver is (a0, a1,k0, (∆i · a0 + si0 + ei0)i∈[m]), where a0, a1
R← P,k0

R← Rm, and for

each i ∈ [m], si0, e
i
0

R← χ. By the normal form RingLWE assumption, this is computationally in-

distinguishable from (a0, a1,k0, (u
i)i∈[m]), where a0, a1

R← P and for each i ∈ [m], ui
R← χ, via a

straightforward hybrid argument. Hence, the simulator emulates the view of the receiver using a ran-

dom pkS := (k0, (u
i)i∈[m])

R← Rm × Pm. Eventually, the simulator recovers skR = (z, s1), computes
csk := (k0,Z1) := KeyDer(R, skR, pkS), and sends csk on behalf of the ideal adversary to the func-
tionality. The output of S in the ideal world is equal to (k0,Z1 + ∆z⊤), which is identical to S’s
output in the real world (by the same analysis as for Case 1).
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