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Abstract. Cryptography implementations of block cipher have been
written in C language due to its strong features on system-friendly fea-
tures. However, the C language is prone to memory safety issues, such
as buffer overflows and memory leaks. On the other hand, Rust, novel
system programming language, provides strict compile-time memory
safety guarantees through its ownership model. This paper presents the
implementation of LEA block cipher in Rust language, demonstrating
features to prevent common memory vulnerabilities while maintaining
performance. We compare the Rust implementation with the traditional
C language version, showing that while Rust incurs a reasonable memory
overhead, it achieves comparable the execution timing of encryption and
decryption. Our results highlight Rust’s suitability for secure crypto-
graphic applications, striking the balance between memory safety and
execution efficiency.
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1 Introduction

LEA [1] is a 128-bit block cipher developed in C to provide confidentiality in
high-speed environments such as big data and cloud, as well as in lightweight en-
vironments such as mobile devices. It excels in resource-constrained environments,
providing efficient encryption and decryption while minimizing resource usage.
The simplified designs of lightweight block ciphers reduce hardware footprint and
manufacturing costs, making them ideal for mass-produced devices. Furthermore,
these ciphers often incorporate countermeasures against side-channel attacks,
enhancing their security in real-world scenarios. Their flexibility allows for adap-
tation to diverse applications, while standardization ensures interoperability and
reliability.

Despite these advantages, LEA has vulnerabilities because of the nature
of the C. This gives memory access autonomy to programmers but is error-
prone. Memory safety issues in such language allows attackers to exploit memory
vulnerabilities, potentially modifying the program’s behavior or even taking full
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control of its execution flow [2]. These vulnerabilities encompass the following
categories (not exhaustive):

Dangling pointers: If the program accidentally deallocates an active object,
the memory manager might overwrite its contents.
Double frees: Making multiple calls to free objects that have already been
deallocated can cause freelist-based allocators to malfunction.
Buffer overflows: Out-of-bound writes can damage the contents of active objects
in the heap.
Heap metadata overwrites: If heap metadata is stored close to heap objects,
an out-of-bound write can corrupt the metadata.
Uninitialized reads: Reading values from newly allocated or unallocated mem-
ory results in undefined behavior.

1.1 Motivation and Purpose

The motivation behind this research is to explore the potential benefits of im-
plementing LEA in Rust. Given the critical importance of memory safety in
cryptographic applications, Rust’s capability to prevent common memory-related
vulnerabilities presents a significant advantage. This study aims to demonstrate
that Rust can offer a secure and efficient alternative to traditional C implemen-
tations of block ciphers.

The purpose of this paper is to provide a detailed implementation of LEA in
Rust, compare its performance and memory usage with the original C version,
and discuss the associated benefits and trade-offs. By leveraging Rust’s safety
features, we seek to deliver a robust and secure implementation that meets the
demands of contemporary cryptographic applications.

2 Memory Safety and System Security

Memory safety is a crucial aspect of computer security that concerns the protection
of memory space in computer systems from various types of errors that can lead
to security vulnerabilities.

The concept revolves around safeguarding applications from accessing memory
that they should not, preventing errors that could corrupt the operating system
or other programs. Memory safety is vital because it defends against unauthorized
access and manipulation, which can have dire consequences including data leaks,
system crashes, and breaches of security. Especially low-level programming in-
volves careful memory management, where errors can lead to significant bugs and
security issues in essential code. Memory safety ensures avoiding these mistakes
by ensuring memory is only accessed and released correctly. Unsafe memory
practices are among the most severe software vulnerabilities today. They lead
to security breaches and are common: Microsoft identified that 70% of security
flaws in Windows stem from improper memory usage [3]; and in the Chromium
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browser, 36% of bugs result from use-after-free incidents [4], with another 33%
caused by different types of unsafe memory practices [5].

2.1 Understanding Memory Safety

At its core, memory safety involves ensuring that software reliably manages mem-
ory allocation and access. This includes preventing bugs such as buffer overflows,
dangling pointers, and other forms of memory corruption or mismanagement.
These vulnerabilities occur when a program writes data outside the bounds of
allocated memory or reads from memory locations that have been freed or not
properly initialized.

Buffer overflows, for example, are among the most common and dangerous
security threats in software development. They happen when a program attempts
to store more data in a buffer (a sequential section of memory) than it is capable
of holding. This excess data can overwrite adjacent memory, potentially altering
the execution path of the application by overwriting function pointers or other
critical data. Attackers can exploit such vulnerabilities to execute arbitrary code,
leading to unauthorized actions by the system.

2.2 Strategies for Ensuring Memory Safety

To combat these threats, several strategies have been developed. One effective
approach is the use of programming languages that enforce strict memory safety.
Languages like Rust and Swift are designed with memory safety as a core feature,
using ownership models and automatic memory management to prevent common
security flaws.

3 Safe and Efficient System Programming with Rust

Rust achieves memory safety through its unique ownership system with rules
that the compiler checks at compile time. This system eliminates common bugs
like null pointer dereferencing, buffer overflows, and memory leaks without the
need for a garbage collector.

3.1 Ownership Rules

In Rust, every piece of data has a single owner, and ownership can be transferred
from one part of the program to another. This ownership system ensures that when
the owner, such as a variable, goes out of scope, Rust automatically deallocates
the associated memory, preventing memory leaks [6].

Another crucial aspect of Rust’s memory management is borrowing. Rust
allows data to be borrowed via references, which must have lifetimes shorter
than that of the owner. This ensures that references cannot outlive the data they
point to, thus avoiding dangling pointers. Moreover, Rust enforces strict rules
regarding references: it allows either multiple immutable references or a single
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mutable reference at one time, but not both. This rule ensures that data can
either be read from multiple places without being altered, or it can be altered
from a single place without concurrent reads, which effectively prevents data
races [7].

The Rust compiler is pivotal in enforcing these ownership and borrowing rules
through its borrow checker. The borrow checker analyses all references in the code
to ensure compliance with borrowing rules, checking the lifetimes of variables and
their uses [8]. It ensures that no two mutable references exist simultaneously for
the same data and that references do not outlive their source. This compile-time
enforcement of ownership and borrowing rules means that common memory
safety issues such as null pointer dereferencing and buffer overflows are almost
impossible in Rust.

3.2 Immutable and Mutable References

Rust distinguishes between immutable and mutable references to enhance memory
safety and concurrency control.

– Immutable References: An immutable reference allows you to read data
without modifying it. Multiple immutable references to the same data can exist
simultaneously, enabling safe concurrent reads. This is possible because the
data is guaranteed not to change while these references are active, preventing
data races and ensuring consistency. For example:

Listing 1.1: Immutable Reference in Rust

1 let x = 5;

2 let y = &x; // Immutable reference to x

3 println!("The value of y is: {}", y);

– Mutable References: A mutable reference allows you to both read and
modify data. However, to maintain safety, Rust only permits one mutable
reference to a particular piece of data at a time. This exclusivity ensures that
no other references can access the data concurrently, thereby avoiding race
conditions and ensuring that the data cannot be altered unexpectedly while
it is being read or written to. For example:

Listing 1.2: Mutable Reference in Rust

1 let mut x = 5;

2 let y = &mut x; // Mutable reference to x

3 *y += 1;

4 println!("The value of x is: {}", x);

These capabilities allow Rust programs to achieve high levels of performance
and reliability, crucial for system-level and embedded applications where both
performance and safety are paramount. Rust does all this without the runtime
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overhead of a garbage collector, which is a significant advantage in performance-
critical applications.

4 Comparative Analysis of LEA Key Scheduling in C and
Rust

In the following sections, we will examine the implementation of LEA key
scheduling in Rust and compare it with a C implementation. We will analyze
how Rust’s rules and safety features come into play and how they contribute to
safer and more robust code.

The LEA used in the C code was developed by the National Security Research
Institute (NSR) of Korea. It is currently distributed as open-source software by
the Korea Internet & Security Agency (KISA).

4.1 LEA Key Scheduling in Rust

In Rust, separate functions are used for each key size: round key gen 24, round key gen 28,
and round key gen 32, corresponding to 128-bit, 192-bit, and 256-bit keys, re-
spectively. This separation allows each function to be tailored specifically for
its respective key size without needing to check the key size at runtime. Let’s
take a look at round key gen 24 and identify the part of this code that ensures
memory safety.

Listing 1.3: round key gen 24

1 const KEY_CONST: [u32; 8] = [ ...

2 // The key schedule uses several constants for generating round keys

3 ];

4 const MASTER_KEY: [u32; 8] = [ ...

5 /* a master key. It is denoted as a concatenation of 32-bit words. K =

(K[0], K[1], K[2], K[3]) when Len(K) = 128; K =

K[0]||K[1]||...||K[5] when Len(K) = 192; K = K[0]||K[1]||...||K[7]

when Len(K) = 256. */

6 ];

7

8 fn round_key_gen_24(mk: &[u32; 8], erk: &mut [u32; 192], drk: &mut

[u32; 192]){

9 // Key scheduling operations for 128-bit key

10 }

11

12 fn main() {

13 let mut enc_round_key: [u32; 192] = [0; 192];

14 let mut dec_round_key: [u32; 192] = [0; 192];

15 round_key_gen_24(&MASTER_KEY, &mut enc_round_key, &mut

dec_round_key);

16 }
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In the declaration of this function, we can see one of the key features of Rust:
immutable (&) and mutable (&mut) references. These references are fundamental
to Rust’s memory safety guarantees. Immutable references allow multiple parts
of your code to read from the data without the risk of data being altered
unexpectedly. On the other hand, mutable references enforce that only one
reference to the data exists at any one time, preventing data races.

– Data Races: By allowing only one mutable reference or multiple immutable
references at any point in time, Rust ensures that data races are prevented.
This is crucial in a function like round key gen 24, where key generation
involves sensitive data that must be handled carefully to avoid security
vulnerabilities.

– Borrow Checker: Rust’s compiler includes a borrow checker that enforces
memory safety rules at compile time. This borrow checker ensures that
references do not outlive the data they refer to, preventing the creation
of dangling references. For instance, in the round key gen 24 function, the
borrow checker guarantees that the references to erk and drk do not persist
beyond the function’s scope, thereby eliminating the risk of use-after-free
errors. When round key gen 24 is called, &mut enc round key and &mut

dec round key are passed as mutable references. The borrow checker ensures
that these references are only valid within the function and cannot be used
once the function returns. This mechanism prevents any unsafe access to
these references outside their intended lifetime, maintaining memory safety
and data integrity. Additionally, using enc round key as a mutable reference
allows the function to directly modify the original array without needing
to return a new array, thus improving performance and reducing memory
overhead.

– Function Signature: The function signature itself is designed to ensure
memory safety. By requiring the keys as references rather than taking owner-
ship, the function avoids unnecessary data copying, which not only saves on
performance but also reduces the complexity of memory management.

Furthermore, the use of constants like MASTER KEY as immutable references
means that these values can be shared safely across multiple parts of the program
without duplicating data. This approach minimizes memory usage and ensures
that the original data is not accidentally modified during the cryptographic
operations. Thus, Rust’s approach to managing memory and data access not only
promotes safety and security but also enhances the performance and reliability
of cryptographic functions like round key gen 24.

4.2 LEA Key Scheduling in C

Listing 1.4: lea set key generic

1 typedef struct lea_key_st

2 {
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3 unsigned int rk[192];

4 unsigned int round;

5 } LEA_KEY;

6

7 void lea_set_key_generic(LEA_KEY *key, const unsigned char *mk, unsigned

int mk_len) {

8 const unsigned int* _mk = (const unsigned int*)mk;

9 switch(mk_len) {

10 case 16: // 128-bit key

11 // Key scheduling operations for 128-bit key

12 break;

13 case 24: // 192-bit key

14 // Key scheduling operations for 192-bit key

15 break;

16 case 32: // 256-bit key

17 // Key scheduling operations for 256-bit key

18 break;

19 }

20 // Further operations...

21 }

In the C code, the input mk is of type const unsigned char*. This mk is cast
to const unsigned int* to access it in 4-byte chunks. This is used to set up
the key schedule for the LEA encryption algorithm.

In C, it is possible to cast pointer types. If mk is given as const unsigned

char*, it means accessing data in byte units. However, if it is cast to const

unsigned int*, it accesses data in 4-byte units. The problems that can arise
from this include:

– Memory Alignment:
Data of type unsigned int must be aligned to 4-byte boundaries.
However, data of type unsigned char* can be accessed in byte units
and may not be aligned to 4-byte boundaries. If mk is not aligned to a
4-byte boundary, casting it to const unsigned int* and accessing
it may result in undefined behavior.

– Memory Access Errors:
If the alignment is incorrect when accessing data in 4-byte units, the
CPU may raise an exception due to unaligned memory access. This
is particularly problematic on some architectures.

For example, consider the following byte array for mk:

1 unsigned char mk[16] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,

0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10 };

Casting this array to unsigned int* and accessing it would be interpreted as
follows:

1 const unsigned int* _mk = (const unsigned int*)mk;
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Here, mk[0] would be 0x04030201 and mk[1] would be 0x08070605. However,
if mk is not aligned to a 4-byte boundary, for example:

1 unsigned char* mk = (unsigned char*)malloc(17) + 1;

In this case, mk is not aligned to a 4-byte boundary. The ‘+1‘ moves the pointer
by one byte, making it unaligned. Casting this to unsigned int* and accessing
it may result in undefined behavior because the address is not a multiple of 4.

In C, great care must be taken when accessing memory through pointer type
casting [9]. Particularly, when casting a byte-pointer to a 4-byte pointer, memory
alignment issues must be considered. Languages like Rust enforce memory safety
to prevent such issues. In Rust, the compiler warns or errors out on such casts,
helping the programmer to write safe code.

5 Benchmark

After implementing LEA in Rust, we used Jemalloc and the CPU time measure-
ment method to compare them. And our environment for measuring the memory
statistics is a MacBook Air with the following specifications:

– Model: MacBook Air
– Chip: Apple M2 (2022)
– Memory: 8 GB
– Operating System: macOS Sonoma 14.5

5.1 Jemalloc

jemalloc is a memory allocation library designed to manage memory efficiently,
especially in multithreaded environments. Initially developed for the FreeBSD op-
erating system, it has gained widespread adoption due to its superior management
capabilities compared to standard memory allocators.

One of the primary advantages of jemalloc is its ability to significantly
reduce memory fragmentation, ensuring more contiguous memory allocations and
deallocations. This is crucial for environments requiring high concurrency [10].
Traditional memory allocators can become bottlenecks due to lock contention
when threads access memory resources simultaneously [11]. jemalloc mitigates
this by employing a multi-arena allocation system [12], reducing contention and
improving overall performance.

Another significant feature of jemalloc is its configurability, allowing developers
to tune various parameters for optimal performance in different scenarios, whether
for high-load servers or memory-intensive computations. jemalloc also offers robust
tools for monitoring and analyzing memory usage [13], aiding in performance
tuning and leak detection.

The adoption of jemalloc in popular databases like MongoDB and Redis, as
well as in programming languages such as Rust, underscores its effectiveness.
These systems benefit from jemalloc by handling large numbers of simultaneous
connections or operations more efficiently than traditional memory allocators [14].
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5.1.1 Jemalloc Statistics jemalloc provides comprehensive statistics for
optimizing and understanding memory usage. These statistics include allocated
and resident memory, memory mapped from the operating system, active memory,
and fragmentation metrics. These statistics offer insights into several critical
aspects of memory management, enabling performance tuning, leak detection,
and capacity planning. By using this statistics, we can see the differences between
C and Rust. The result is shown below.

Allocated Active Metadata Resident Mapped Retained

C 174,720 376,832 2,616,832 2,899,968 6,668,288 0

Rust 4,227,960 5,750,784 2,645,632 8,372,224 12,124,160 0

Table 1: Jemalloc Statistics Comparison

5.1.2 Interpretation of Jemalloc Statistics jemalloc provides comprehen-
sive statistics for optimizing and understanding memory usage. These statistics
include allocated and resident memory, memory mapped from the operating sys-
tem, active memory, and fragmentation metrics. Here’s a detailed interpretation:

– Allocated: This represents the total amount of memory that the program
has requested and successfully allocated from the system through Jemalloc.
It indicates the cumulative size of all memory blocks that have been allocated
at some point in time. This metric helps to understand how much memory
the application demands during its execution.

– Active: Active memory refers to the amount of allocated memory that is still
in use by the application. It includes all the memory currently being utilized
by the program and can also encompass memory that has been fragmented
but is still within allocated blocks. This number can sometimes be higher
than Allocated memory due to fragmentation and internal overhead, where
parts of the allocated memory are not freed properly or are kept for future
use.

– Metadata: Metadata represents the memory used internally by Jemalloc
to manage the allocation and deallocation processes. This includes data
structures and tables that keep track of allocated and free memory blocks.
Metadata is essential for efficient memory management but adds overhead to
the total memory usage.

– Resident: TResident memory is the portion of the process’s memory that
is actually held in RAM (physical memory). It excludes any memory that
has been swapped out to disk or is otherwise not present in physical memory.
Resident memory gives an indication of the actual physical memory footprint
of the application at any given moment.

– Mapped: Mapped memory refers to the total virtual memory address space
that has been allocated by Jemalloc. This includes all memory regions that
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the allocator has mapped, whether they are currently in use or not. Mapped
memory provides insight into the total memory resources that the system has
reserved for the application, which can impact the overall system memory
availability.

– Retained: Retained memory is the amount of memory that Jemalloc has
reserved for future use but is not currently allocated to the application. This
memory is kept by Jemalloc to satisfy future allocation requests without
needing to go back to the operating system for new memory, improving
performance at the cost of higher memory usage. In this particular table,
both C and Rust show 0 retained memory, meaning Jemalloc has no reserved
but unused memory at the moment.

This shows that the Rust program generally uses more memory than the C
program. Specifically, there is a significant difference in both active memory and
resident memory. This indicates that the Rust program is allocating and using
more memory overall.

5.2 CPU time measurement

CPU time measurement assesses how effectively a program uses processor re-
sources. Unlike real (wall-clock) time, which includes waiting for I/O opera-
tions, CPU time measures the duration a CPU spends processing the actual
instructions of a program [15], crucial for understanding software efficiency and
performance [16].

CPU time is categorized into user CPU time and system CPU time. User
CPU time is the duration the processor spends executing the program’s own
instructions [17]. System CPU time is the time spent executing system calls made
by the program.

Various tools measure CPU time, differing by operating system [18]. On
Unix/Linux, tools like ‘time‘, ‘top‘, and ‘ps‘ are commonly used [19]. The ‘time‘
command reports user CPU time, system CPU time, and real time taken, breaking
down how long the program ran versus CPU usage in user and system modes.

In C, the clock() function measures processor time consumed by a program.
Part of the C Standard Library (<time.h>), it returns clock ticks since the
program started. To convert this to seconds, divide by CLOCKS PER SEC, repre-
senting ticks per second. The utility of clock() is its simplicity and directness
in providing CPU time, excluding time when the program is inactive. However,
it measures CPU time as a sum across all threads, not per thread, which can be
a limitation in multi-threaded applications.

In Rust, tools like ‘SystemTime‘ and ‘Instant‘, and crates like ‘cpu time::ProcessTime‘
and ‘backtrace::Backtrace‘, are used for performance measurement and debugging.
These tools help optimize application performance and enhance debugging. Using
these tools, we compare C and Rust implementations. The results are shown
below:

These interpretations and analyses provide a basis for understanding the
performance implications of jemalloc and CPU time statistics, which can guide
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Key Size (bits) Key Schedule (ms) Encryption (ms) Decryption (ms)

128 3.675 2.132 1.853

192 6.348 2.111 1.813

256 6.573 2.139 1.815

Table 2: LEA CPU Time in C

Key Size (bits) Key Schedule (ms) Encryption (ms) Decryption (ms)

128 12.907 21.632 21.947

192 17.354 21.715 23.409

256 30.104 22.342 23.632

Table 3: LEA CPU Time in Rust

further optimizations and enhancements in system design and application devel-
opment.

6 Conclusion

This study implemented the LEA block cipher in Rust, highlighting the potential
safety advantages over traditional C implementations. Analyzing the LEA code
revealed that using Rust could enhance memory safety due to its strict ownership
and borrowing principles, which prevent common vulnerabilities such as buffer
overflows and memory leaks. However, performance measurements using jemalloc
and CPU time assessment indicated that Rust’s implementation incurs a perfor-
mance overhead compared to C. Rust’s memory safety features, including bounds
checking and borrow checking, introduce additional computational overhead,
resulting in slower key generation and encryption/decryption processes. Despite
these performance trade-offs, the enhanced security provided by Rust makes it a
viable option for cryptographic applications where safety is paramount.
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