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Abstract. With concerns about data privacy growing in a connected world, cryptography researchers
have focused on fully homomorphic encryption (FHE) for promising machine learning as a service so-
lutions. Recent advancements have lowered the computational cost by several orders of magnitude, but
the latency of fully homomorphic neural networks remains a barrier to adoption. This work proposes
using multi-exit neural networks (MENNs) to accelerate the FHE inference. MENNs are network ar-
chitectures that provide several exit points along the depth of the network. This approach allows users
to employ results from any exit and terminate the computation early, saving both time and power.
First, this work weighs the latency, communication, accuracy, and computational resource benefits of
running FHE-based MENN inference. Then, we present the TorMENNt attack that can exploit the
user’s early termination decision to launch a concrete side-channel on MENNs. We demonstrate that
the TorMENNt attack can predict the private image classification output of an image set for both FHE
and plaintext threat models. We discuss possible countermeasures to mitigate the attack and examine
their effectiveness. Finally, we tie the privacy risks with a cost-benefit analysis to obtain a practical
roadmap for FHE-based MENN adoption.

Keywords: Fully Homomorphic Encryption · Multi-Exit Neural Networks · Privacy Preserving Machine
Learning.

1 Introduction

As the world becomes more connected, cloud services have become an increasingly popular solution for
businesses. In this paradigm, users send their data to the cloud for processing, allowing the user to offload
the computational cost and utilize the cloud service provider’s proprietary algorithms. For Machine Learning
as a Service (MLaaS), these proprietary algorithms are trained neural networks, which require lots of data
and processing power to develop. It is not always feasible for users to train neural networks on specialized
datasets, making MLaaS a prevalent solution [22,44].

Traditional neural network architectures have grown deeper as researchers try to obtain higher accura-
cies [46]. While accuracy gains improved at first, they reached a wall in recent years. This means that as
neural networks get deeper and deeper, accuracy gains decrease, and computational costs increase. Another
drawback is that deep neural networks suffer from the vanishing gradient problem, making it challenging to
train deep networks all at once [39,46].

Multi-exit neural networks (MENNs) were introduced to address these issues. The central concept of
MENNs is that easy-to-process inputs can take preliminary results from an early exit and terminate the
computation quickly. For example, [39] shows that many ImageNet dataset inputs can have a good prediction
after a few layers and can terminate earlier; other inputs may need to execute the remaining layers for further
processing to obtain more accurate results. As many inputs can exit early, MENNs provide the opportunity
to save computation time without large drops of precision. As an additional benefit, MENNs executed to
the end provide an ensemble of neural network outputs. This ensemble of multiple exits can be combined to
increase the prediction accuracy beyond a single-exit network [24, 51], or improve the confidence score [41].
Finally, MENNs can address the vanishing gradient problem when implemented as several cascaded neural
networks, trained one by one.



Fig. 1. FHE-MENNs and the TorMENNt Attack: In a multi-exit neural network (MENN), preliminary results
can be given back to the user. A user can decide, based on the confidence score (e.g., entropy) of the preliminary
results, whether they wish to terminate the computation early. An attacker can easily exploit this information to
predict the user’s inputs. This attack can affect both a plaintext and an encrypted privacy-preserving cloud model.

MENNs easily adapt to the machine learning as a service (MLaaS) paradigm. In this case, users send
their data to the cloud, and the cloud runs the first segment of the network and additional exit layers to
give the user an early result. If the user is happy with the confidence of the result, they can tell the cloud to
terminate the computation. However, if the result has low confidence, the user tells the cloud to continue to
the next network segment [32,37].

Unencrypted MENNs have been exhibited in applications such as autonomous driving [28] and speech
recognition [7]. They can either operate in fast edge computing [30], MLaaS [32], and low-power computing
environments [35]. One promising, yet unexplored environment of MENNs is fully homomorphic encryption
(FHE)-based privacy-preserving machine learning (PPML). Single exit FHE-based PPML uses state-of-the-
art encryption techniques to execute computations on ciphertexts, allowing neural networks to perform
inference on encrypted user data. This paradigm allows the cloud to maintain full control of its model IP
and MLaaS service, while protecting user data from being revealed to a curious cloud service provider. The
main drawback of FHE-based PPML is that it is computationally expensive, resulting in large inference
times and high dollar costs for the user. For example, a nine layer CIFAR-10 network takes 76 minutes to
compute on a 96-CPU core r5.24xlarge AWS server [19]. Due to this slow computational speed, MENNs are
a potential technique to obtain faster FHE-based PPML inference.

This work analyzes the potential of FHE-based MENNs to save computational cost and latency. As part of
this analysis, we present TorMENNt, a weak side-channel attack on multi-exit neural networks that enables
the attacker to recover the classification results of the user. TorMENNt is based on the user inherently
leaking information by deciding to terminate the computation early, as shown in Figure 1. The TorMENNt
attack is applicable to both unencrypted and FHE-based PPML MENNs.

Overall, our contributions are summarized as follows:

– We propose the use of MENNs for FHE-based PPML across a variety of architectures and PPML
frameworks;

– We expose TorMENNt, a new side-channel attack that impacts the privacy of MENN inference;
– We demonstrate how MENNs can be adapted for FHE-based PPML and evaluate the performance gains

and the security risks of several MENN inference schemes.

The rest of the paper is organized as follows: Section 2 covers important background information about
MENNs and PPML, while Section 3 defines the threat model to be attacked. Section 4 examines the benefits
of using FHE-based MENNs, while Section 5 defines the theoretical foundations of the proposed TorMENNt
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Fig. 2. Multi-Exit Early Termination Schemes: A simplified version of the four early termination schemes,
where the users are talking to the cloud.

attack and demonstrates its execution and mitigation strategies. Section 6 elaborates on how these findings
can be adapted to real-world applications. Finally, Section 7 presents related works and our concluding
remarks are discussed in Section 8.

2 Background

In this section, we provide the necessary background to deploy FHE-MENNs. In Section 2.1, we first present
an overview of multi-exit network architectures and how they can be used. Then, in Section 2.2, we present
an overview of homomorphic encryption schemes. Finally, in Section 2.3, we present current FHE-based
PPML speedup techniques.

2.1 Multi-Exit Learning

Overview of Multi-Exit Neural Networks Multi-Exit Neural Networks (MENNs) were developed to
speed up early termination in real-time embedded systems, such as video detection. They are sometimes
called by different names, including early-exit neural networks [48] and cascaded networks [39, 49]. The
original goal of MENNs was to limit overthinking, which occurs when deep neural networks are passed
easily classified inputs and process them far longer than necessary. Early works found that if the neural
network can determine the difference between easy and challenging inputs, then easily classified inputs can
exit early in a smaller network, whereas challenging inputs can be processed through additional layers [48,49].
Other works proved that training of multi-exit neural networks helps improve overfitting and mitigates the
vanishing gradient problem [12,39].

Multi-Exit Early-Termination Schemes There are four main types of early termination schemes to
determine which neural network exit is best to take during inference. These types of early termination are
summarized in Figure 2.

In the budgeted early termination scheme, the user or system supplies the cutoff constraint for running
the neural network upfront. For example, [35] determines whether to run the complete neural network based
on the remaining battery life for the embedded device. In contrast, [30] implies a time-based constraint for
its networks, where the system can request the best result for a predetermined amount of time.

In the anytime early termination scheme, the cloud will attempt to run the complete network with all
possible exits. The user can interrupt this process early, based on external constraints, and ask for the results
from the most recent exit. After the first exit is computed, the cloud should always have a result for the
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user, and this result has increased the accuracy of being correct over time [30, 32, 40]. Unlike the budgeted
early termination scheme, the anytime early termination scheme does not require the budget constraints to
be known upfront.

Next, the input-dependent early termination scheme outputs a confidence score of how accurate
the result is and lets the user decide if they want higher confidence. The user can specify they want 90%
confidence in their result, and the network can run until an exit exhibits their confidence score. Different
proxy functions can be used to determine this confidence score [30,32], as discussed in the next section.

Lastly, the distributed early termination scheme is similar to the input-dependent early termination
scheme, except one network is run locally. This scheme uses a shallow neural network for local computation
and a deep neural network for cloud computation; no data needs to be sent to the cloud if the user is
satisfied with the confidence score after local computation. The intent is to use this type of early termination
on devices with poor network connections; if the local computation is accurate, a fast and low-power result
is achieved without needing to wait for a reliable network connection [37].

Our work is primarily concerned with the input-dependent early termination scheme, but all FHE-MENN
early termination schemes are discussed in Section 6.1.

Confidence Scores An effective confidence score for the input-dependent early termination scheme is the
subject of recent works. Many works [24,46,48,49] use an entropy-based confidence score

Centropy = −
num classes∑

i=1

ci ∗ log ci, (1)

where ci is the softmax output of the i-th class.

A second common confidence score used is a max-min difference between values [15,26,37,49,51]. This is
represented as Cmax−min = max(c0, ..., ci)−min(c0, ..., ci) and is simplified in some works to just the max
function

Cmax ≈ max(c0, ..., ci) (2)

.

Another option is to use a secondary neural network to determine entropy [41, 49], and is defined as
CML = σ(f(x)), where σ() is the sigmoid function, x is an intermediate feature representation, and f() is a
separately trained neural network confidence predictor function.

Using Exits as an Ensemble Several works show that multi-exit neural networks can boost accuracy by
treating the different exits as an ensemble. Wolczyk et al. propose Zero Time Waste, which combines exits
for more accurate predictions [51]. Here, internal classifiers consisting of shallow neural networks are used
to combine the results of the different exits. Similarly, Qendro et al. found that not only can the accuracy
of a neural network increase through treating neural networks as an ensemble, but also the correctness of
confidence scores is benefited from multiple exits [41]. In their work, these confidence scores can be used
as uncertainty quantification, which is meaningful in fields such as medical imaging. Finally, knowledge
distillation can be used to effectively form an ensemble during training. Lee et al. propose using knowledge
distillation with the complete neural network to better train earlier exits for higher accuracy [34].

2.2 PPML Schemes

MLaaS is a common application that privacy-preserving computation looks to solve. Researchers are inves-
tigating ways to develop fast, deep, and private neural networks that require little computational power
and bandwidth from users. An overview of different PPML encryption schemes and techniques is discussed
below.
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Leveled Homomorphic Encryption Leveled Homomorphic Encryption (LHE) is a cryptographic tech-
nique that offers the ability to perform operations, such as addition and multiplication, on a ciphertext.
LHE-based encryption schemes rely on lattice cryptography and the learning with errors (LWE) prob-
lem [43]. Specifically, the LWE problem states that if small amounts of noise are added to a transformed
high-dimensional value in a lattice, it is NP-hard to reverse the transformation of the value into a plaintext.
This transformed value is the ciphertext, and its noise is essential to its post-quantum resilience. However,
this noise grows as HE operations (i.e., addition and multiplication) are performed; once the noise grows
beyond a certain level, the ciphertext cannot be decrypted correctly with the decryption key. Therefore, LHE
only supports a limited number of operations known as its multiplicative depth.

For HE-based PPML, the users typically send their data to the cloud for neural network classification
using the cloud’s own weights, and the cloud returns the computation result. The user is only involved in
the encryption and decryption process, which is a major benefit for HE-based PPML schemes. LHE-based
schemes support packing of multiple inputs into a single ciphertext during the encryption process. This allows
for vectorized computation and high throughput image classification. Nevertheless, a major drawback of LHE
is the multiplicative depth limits the computation to shallow neural networks, while supported activation
functions can only be expressed as polynomial approximations.

Popular LHE-based encryption libraries include HELib [20], which supports the BGV [5] and CKKS [8]
encryption schemes, as well as SEAL [6] that supports the BFV [18] encryption scheme.

Fully Homomorphic Encryption Fully Homomorphic Encryption (FHE) is an extension of LHE, adding
a process called bootstrapping to reduce ciphertext noise and allow for unlimited operations. Notably, boot-
strapping is computationally expensive, so its use must be limited as much as possible. Recent works have
added support for programmable bootstrapping (PBS) [10], or univariate function evaluation during a boot-
strap, and bi-directional bridging between binary and integer ciphertexts [19]. These two improvements
separately enable fast inference on neural networks.

Popular FHE libraries for PPML include Concrete ML [52] and (RED)cuFHE [19], both of which use the
TFHE [9] encryption scheme. We further remark that while the BFV and CKKS both theoretically support
bootstrapping, due to its high computational cost, these schemes are often run in LHE mode [1, 11].

2.3 Techniques for Efficient PPML in FHE

Privacy-preserving machine learning has different computational costs than plaintext computation. In gen-
eral, encrypted additions are low cost, encrypted multiplications are medium cost, and encrypted comparisons
are high cost. In this work, we analyze the performance of PPML networks based on the TFHE encryption
scheme. TFHE can efficiently perform Boolean operations, such as bit shifts and logic gates.

Approximation and discretization can be used to speed up PPML computation times. There exists two
main frameworks for TFHE-based PPML: REDsec [19] and Concrete ML [52]. In this section, we discuss
what approximations these frameworks use to achieve fast FHE-based ML inference.

REDsec Optimizations REDsec obtains its speedups with a technique called bidirectional bridging, which
converts integer ciphertexts into several binary ciphertexts represented as encrypted bits {0,1}. This allows
implementing efficient neural networks with ternary weights {−1, 0, +1}. Here, inputs multiplied by −1 use
the univariate NOT gate for 1’s complement and add 1 for 2’s complement later on. Inputs multiplied by 0
are ignored. Finally, inputs multiplied by +1 stay as-is. These operations are extremely PPML-friendly and
speed up computation significantly over PPML multiplications.

REDsec further utilizes binary ciphertexts for non-linear activation functions. Here, the sign function is
used

sign(x) =

{
−1 x < 0

+1 x ≥ 0
(3)

to restrict the convolution layer inputs to ±1, further simplifying computational cost. This reduces binary
weight multiplication to a single XNOR gate. In REDsec this is a special XNOR gate that takes inputs in
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{−1,+1} instead of the traditional {0,+1}, and it can be viewed as a multiplication function. ReLU is also
possible by ANDing the inverse sign bit with the remaining ciphertext bits [4, 19,45].

Concrete ML Optimizations Instead of bidirectional bridging, Concrete ML opts to use a technique
called programmable bootstrapping (PBS) for non-linear operations. PBS can be viewed as an encrypted
lookup table, where a multiplexer circuit can be inserted during a bootstrap operation on a ciphertext [10].

For multiplication and addition operations, Concrete ML uses low-precision TFHE integer ciphertexts,
where most networks cap the resulting ciphertexts to 13-bits to balance speed and efficiency. For non-linear
activation operations, PBS can be used for a wide range of activations: a PBS lookup table can handle any
univariate function, allowing for discretized ReLU, hard tanh, and sigmoid to be used [52].

3 Threat Model

3.1 Definitions

The TorMENNt side-channel attack leaks information about the user input data based on the MENN exit
taken. In order to model this information leakage, we assume a semantically secure inference (SSI)
game, defined as follows: Suppose a user (assuming the role of a challenger) publishes two plaintext images
of identical bitsize, m0 and m1. The user selects a random bit b, securely encrypts mb as Cb and uploads it
to a cloud service for encrypted processing and classification, and ultimately receives an encrypted result R.
Then, an eavesdropping attacker A with the ability to query the model (either within the cloud service or
monitoring the communication channel) predicts bit b′ = A(m0,m1, Cb, R), such that ε = |Prob[b′ = b]−0.5|.
We say that A wins the SSI game if and only if ε is non-negligible (i.e., the eavesdropper can predict bit b
with probability better than a random guess). If A cannot win the SSI game, the system does not leak any
information and is semantically secure.

Anytime a decision is made based on derivatives of input data mb, an attacker can gain information and
break semantic security. The TorMENNt attack, which will be presented in Section 5, demonstrates that
deciding which exit to take will allow an adversary to win the SSI game and leak information about the
underlying ciphertexts. This work further evaluates mitigation techniques in Section 5.4, making it more
difficult for adversaries to win the semantic security game.

3.2 Privacy Preserving Inference Model

The MLaaS inference model assumes an honest but curious cloud, identical to most FHE-based PPML works.
Here a user employs FHE to protect their input from a cloud service provider who owns the neural network
model. The cloud service will run the neural network inference correctly but will attempt to leak information
about the user input (e.g., be incentivized to use it for advertising purposes). We also assume the cloud, as
the computing party, has full access to the MENN model; this assumption is consistent with the REDsec
and Concrete ML framework implementations.

3.3 Malicious FHE Cloud

We will also consider a malicious cloud threat model in our FHE-MENN discussion in Section 6. A malicious
cloud enables the cloud to manipulate data to leak information. For FHE-based models, a malicious cloud
can run an encrypted test circuit to see if a certain attribute is present. The cloud can saturate values or use
an encrypted multiplexer to send false values to the user based on the results of the cloud’s encrypted test.

4 FHE MENN Performance

Due to their large computational complexity constraints, privacy-preserving machine learning technologies
are good candidates for early exit models. However, despite growing interest in PPML, the use of privacy-
preserving MENNs has not yet been adopted to the best of our knowledge. This section discusses the
performance benefits of MENNs when applied to FHE.
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Fig. 3. Network Architectures: We utilized three different networks across two different frameworks. First, we
adopted the CIFAR-10 BinaryNet from REDsec to have multiple exits. Then, for the Concrete library, we adapted a
VGG-style architecture and built a Resnet-style architecture for our experiments. Activation functions (with REDsec
employing the sign function and Concrete using hard tanh) and Batch Norm are implied for each Convolution and
Fully Connected Layer. Exit layers are shown in yellow, where the backbone of the network skips over the exit layers.
C: Convolution, F: Fully Connected, PM : MaxPool, PS: SumPool, A: ResNet Addition, Ei: Exit i.

4.1 Network Architectures and Training

For our early exit architectures, we used the CIFAR-10 [31] benchmark, which contains 32× 32 RGB images
sorted across 10 classes. We also measured performance on Tiny-Imagenet, which has 64 × 64 RGB im-
ages sorted across 200 classes. We further adapted several network architectures to incorporate multi-exits,
including BinaryNet [13,14], VGG [47] and Resnet [21].

BinaryNet was constructed using REDsec as its foundation. Exits were inserted every two layers to
assess the performance of the FHE-MENN. In developing this network, it was discovered that the default
MaxPooling layers in BinaryNet contributed to significant latency overhead. To address this, exits were
introduced before the MaxPooling operation, allowing for early exits before encountering these high-latency
computations.

Our VGG network was built using Concrete ML and has a structure similar to our BinaryNet network.
Concrete ML recommends SumPooling as no MaxPooling operation is available. Since SumPooling is more
homomorphically friendly in Concrete ML, we were able to place the early exits after the pooling layer. We
also opted for fewer exits to achieve lower latency and higher security (as discussed in Section 5).

Finally, we deployed a ResNet architecture, which introduces residual connections to allow for the direct
flow of information across layers. Our implementation was also built using Concrete ML. We placed the early
exits after each residual addition, where they seemed to naturally fit into the model.

The training process for all architectures followed a two-step approach, beginning with the initial focus
on training the backbone of the network while disregarding all but the final exit layers. Then, each exit
was individually trained while the backbone was concurrently fine-tuned. We used the cross-entropy loss
function, which is standard for supervised learning classification tasks.

4.2 Selecting an Early Exit Decision Boundary

Figures 4 and 5 illustrate the accuracy versus timing outcomes for our networks. The single-exit networks
exhibit fixed architectures featuring only one exit, while multi-exit architectures present accuracy and timing
results based on entropy and maximum decision thresholds.

To determine these thresholds in our inference methodology, we initially used an entropy cost score
described in Eq. 1 with a base threshold of maxentropy/2. This decision boundary worked well for CIFAR-10,
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Fig. 4. CIFAR-10 MENN Performance: Different accuracy-timing trade-offs for PPML networks. For CIFAR-10
MENNs, we used a base entropy of max entropy/2. Our initial results showed that the base entropy for CIFAR-10
was slightly high, so we evaluated the network three more times, reducing this threshold by 10%, 20%, and 30%. For
entropy, a lower threshold means later exits, resulting in slower latency but higher accuracy. The single exit networks
represent a series of individual networks trained with varying depths.
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Fig. 5. Tiny-Imagenet MENN Performance: Tiny-Imagenet used the maximum softmax output value as its
decision boundary, with values {0.15, 0.20, 0.25, 0.30} serving as the thresholds. For maximum, a higher threshold
means later exits, resulting in slower latency but higher accuracy.

although was slightly high, with many images exiting later than needed. Therefore, we reduced this threshold
by 0%, 10%, 20% and 30% for our timing results in Figure 4, giving us four unique data points.

For Tiny-Imagenet, we found that the maximum decision metric (Eq. 2) performs slightly better than
entropy. Based on our analysis, we observe that with more classes the network was less able to make confident
predictions. This lead to heightened confusion among top classes and fluctuations in lower-ranked irrelevant
classes, creating noise in the overall entropy measurements. Instead, the maximum decision boundary was
determined to be more suitable for this dataset. We used a base threshold of 0.25 and modified the values
in Figure 5 to be {0.15, 0.20, 0.25, 0.30}. Contrary to entropy, a higher maximum threshold means images
exit later with higher accuracy and slower latency.

We also summarize our performance results across different networks in Table 1; for the performance
metrics were evaluated using the base thresholds of maxentropy/2 for CIFAR-10 entropy threshold and 0.25
for the Tiny-Imagenet maximum threshold.

4.3 FHE-based PPML Performance

In terms of accuracy assessment, REDsec’s plaintext mode was employed, utilizing discretized ternary weights
of {−1, 0,+1}. REDsec relies on the Tensorflow-based Larq library for training, in which weights are dis-
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Table 1. Network Comparisons: Comparison of performance and attack vulnerability of our different networks.
The first two result columns show the classification accuracy and average time for a single image using the baseline
threshold. The next two columns demonstrate how well an attacker can guess the class of a user’s images based on
exit data. The last column reports the user accuracy drop after the isorecall mitigation.

MENN Avg. Attack Attack Isorecall
Model Dataset Acc.3 Time1 (Single4) (Batch2,4) Acc.3

Binary Cifar 59.3% 1502s 23.5% 47.4% 52.4%
VGG Cifar 76.1% 811s 15.8% 45.8% 73.6%

Resnet Cifar 71.0% 1367s 18.7% 67.3% 65.7%

VGG TImg 56.2% 5018s 1.35% 6.79% 46.1%
Resnet TImg 56.2% 9094s 1.58% 7.53% 44.7%

1 Avg. Times are for a FHE-based PPML implementation, using the base entropy discussed in Section 4.2.
2 Batch averages attack results of 90-100 pictures per batch for CIFAR10 -and 20-25 images per batch for
Tiny-ImageNet.
3 Performance Accuracy refers to a user’s classification accuracy, both raw (MENN Acc) and after the
mitigation (Isorecall Acc).
4 Attack Accuracy refers to how frequently an attacker correctly guessed a user’s image class.

cretized during the entire training process. For Concrete ML, weights and activations were discretized to 6
bits. The discretization in Concrete ML is implemented in the PyTorch-based brevitas library, where dis-
cretization is performed during fine-tuning. Both REDsec and Concrete ML accuracies were obtained using
simulation modes mimic FHE computations, which is an essential metric when evaluating the accuracy across
thousands of images. Moreover, all timing measurements were conducted on a c5a.24xlarge instance, and the
reported times are averages based on three inference measurements in encrypted mode.

As illustrated in Figures 4 and 5, when our selected architectures operate as single-exit networks, they
exhibit longer runtimes compared to the MENNs with similar accuracy. MENNs capitalize on the advantage
of most images being classified with an early exit, achieving lower latency without sacrificing accuracy. Only
images with high entropy outputs necessitate further processing, and these instances propagate through the
network.

It is surprising these trends held up across different architectures and FHE frameworks. The greatest
improvement came from BinaryNet using REDsec, showing about 7% accuracy improvement for the same
latency with using MENNs. This architecture exited before the expensive MaxPool operation which plagued
the single-exit networks. In addition, REDsec has efficient ternary weight kernels, allowing for quick exits
and faster FHE-MENNs.

The Concrete ML framework had a more efficient SumPool implementation, allowing single exit networks
to run faster. However, MENNs still achieve an impressive 1-3% accuracy improvement for the same latency.

Another advantage of MENNs is that the user can pick their accuracy-latency trade-off by adjusting
the threshold. Thus, if they need results quicker, they can raise the entropy-based threshold (or lower the
maximum-based threshold) to allow more images to exit early. Conversely, if they want a higher accuracy
for their inference, they can lower the entropy-base threshold (or raise the maximum-based threshold) to en-
courage the image to propagate deeper into the network if the result is uncertain. These MENN architectures
allow the user to decide this trade-off dynamically in this MLaaS system.

A more in-depth discussion of these results is presented in Section 6.

5 TorMENNt Attack

5.1 Attack Overview

The main issue with any input-dependent multi-exit neural network scheme is that a user must make a run-
time decision. At a high-level, any decision made on data that is visible to an adversary can leak information
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and therefore break semantic security. For MENNs in particular, the decision to terminate computation early
based on preliminary results will reveal a correlation between the execution time and the underlying class
of the input. Thus, in the TorMENNt attack, an adversary will be able to predict the classification of user’s
input with a probability better than a random guess.

To enable the TorMENNt attack, we observe that different classification results have different recall rates
when evaluated at a constant recall threshold (Figure 6a). For example, based on our BinaryNet CIFAR-10
results, plane pictures have lower entropy than other classes and can exit early from the network. In contrast,
CIFAR-10 truck pictures are harder to classify and will most likely take the last exit of the MENN. Therefore,
if an inference operation terminates early, an attacker can predict that the input is more likely to be a plane
than a truck.

In the privacy-preserving inference model the cloud itself trains the neural network and owns the cor-
responding weights; therefore the cloud also knows the recall rates for the model. In this case, the user
communicates directly with the honest-but-curious cloud to stop the computation, so the cloud has the
ability to execute this template attack.

We also remark that it is possible for a third party eavesdropper to extract the same information,
although it requires some stronger assumptions. First, the eavesdropper must have knowledge of the model
and recall rates for individual classes, which requires at minimum several queries to the target inference
service. Second, we assume the eavesdropper has access to the users decision via a side-channel, such as via
decreasing communication packets, power consumption, or memory access times on the cloud server. Luckily,
there are known techniques and mitigation strategies for these types of side channels [3, 17,23,25,27,50].

5.2 Attack Methodology

In the privacy preserving inference model, the cloud can process encrypted user data such that user data is
never directly exposed to the cloud. The cloud does, however, directly know which exit the user terminated
computation and can compare this information to its test set data. In this way, the cloud can implement the
TorMENNt attack and extract user information.

To launch the attack, we use the entropy-based confidence score on CIFAR-10 and the maximum-based
confidence score for Tiny-Imagenet. We use 70% of the test set to generate the recall rates

re,c,test =
exitede,c,test∑

e′∈E exitede′,c,test
, (4)

where exitede,c,test indicates the number of images belonging to class c that terminated at exit e in our test
set. This will be the template to compare with user data for the TorMENNt attack. For visualization, we
use cumulative recall rates

cumulative re,c,test =
∑
e′≤e

re′,c,test (5)

summarized in Figure 6 for each of our five networks. The distortion of the circles shows different recall rates
for different classes. From these results it is evident that the recall rates are different for each class, thus our
hypothesis about information leakage is confirmed.

To automate the interaction of a user in our analysis, we employ client-side scripts that send through
the neural network a random subset of n images from a single class of an attack validation dataset. In this
case, the cloud service is asked to terminate the MENN inference early when the entropy confidence score
is below the Centropy or Cmax thresholds. At the same time, a server-side attack script observes the early
termination exit to apply the TorMENNt attack. In particular, the attack calculates the recall of user data
re,user using an equation similar to Eq. 4, by replacing test data with actual user data and also dropping
class c (since it is not known).

We use a bayesian model to predict the classification, where

P (c|e) = P (c) · P (e|c)∑
∀c′∈C P (c′) · P (e|c′)

. (6)
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Fig. 6. Recall across Classes: These radar charts show the inconsistencies of exits taken among different classes.
In the top graph, we show BinaryNet recalls for each of the classes. As shown by the irregularities of the supposed
circles, different classes tend to exit the network at different exit points, leaking information about a user’s input.
As can be seen, truck images have about a 30% chance of exiting from Exit 0, whereas planes have around an 80%
chance. Thus if an image exits from Exit 0, it is more likely to be a plane. The bottom graphs show the irregularities
in recalls other networks. We utilize this information in the TorMENNt attack (Figure 7).
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Fig. 7. TorMENNt attack: Due to the inconsistencies of recall across classes, it is possible to extract the predicted
class based on which exit the user terminates. The attack success rate is the percentage of times the attacker correctly
deduced the class of user input data, where the baseline is random guessing. We note that Tiny-ImageNet had fewer
images in the validation set, so the trend did not level off as in 5.1. Even for a single image, the attacker had a
much better than random chance of predicting the correct class based on the exit taken. The attacker gains more
information as the user sends more images to the cloud.

Here, P (e|c) is approximated by the test set template re,c,test from Equation 4, and P (c) is a prior distribution
of classes. For multiple predictions, these probabilities can be determined with the expected value

E[# of images from class c] =
∑

images

P (c|e = E). (7)

The expected value estimates the number of images in class that the user sends.
If an attacker wants to test several different distributions, Kullback-Liebler divergence can be used to

test out the attacker’s guessed distribution, performed as:

KLP (C)(ruser∥rattack) =

−
∑

c:P (c)>0

∑
e∈E

re,user · log
P (c|e, P (C))

re,user
.

(8)

Here, re,user is measured user recall obtained by the eavesdropper, and P (C) is the attacker’s initial guess
of the classification distribution; this should be used for the prior distribution in Eq. 6. The lower the KL
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divergence between the user output data and the attacker’s predicted recall, the more likely the attacker’s
guess is accurate. The attacker can therefore determine the classification of private user information by
finding the lowest KL divergence as Attacker Prediction = argmin(KLc∈C).

5.3 TorMENNt Attack Results

The results of this prediction method are summarized in Figure 7 and Table 1. Here, we define the attacker
success rate based on the number of times the attack correctly guesses the class divided by the total number
of times the attacker guesses, as follows:

Attacker Success Rate =
correct predictions

total predictions
. (9)

For a single image on CIFAR-10, the attacker can guess the correct class 23.5% for BinaryNet of the time,
which is significantly higher than the 10% rate expected from random guessing; even the worst performing
attack for a single image on VGG was 15.8%. This divergence also demonstrates that the attacker can win
the semantic security game and the system is compromised based on our threat model definition. Notably,
with enough images, the success rate of the attacker’s guess can reach 45% to 67%.

For Tiny-Imagenet, which has many 200 classes, the attacker accuracy is predictably much lower. The
attacker prediction for a single image ranges from 1.3% to 1.5%, which is up to 3x the random guessing
baseline. As a user transmits more images from the same class, this increases to 6.3% to 7.7%, or up to
15.4% of baseline.

5.4 Attack Analysis

The average number of bits leaked from early exit decisions is limited to

avg leaked ≤ log2(num exits) (10)

bits for a single image input. Therefore, in our BinaryMENN inference example of a single image input,
an attacker can only leak a maximum of 2.32 bits of information, which is not sufficient to distinguish
between all ten classes of CIFAR-10, and far from sufficient from extracting out Tiny-Imagenet top class.
In the privacy-preserving MENN example, the user may risk a curious cloud attacker discovering they sent
a picture of a car, but the exact make, model or license plate information are not likely to be leaked by
the cloud. Therefore, compared to the privacy guarantees of plaintext-only MENNs, encrypted MENNs can
still provide a higher assurance level during inference. Nevertheless, if the attacker can accumulate multiple
MENN inputs, the amount of aggregate information grows linearly as

avg leaked ≤
num images∑

log2(num exits) (11)

bits. As a result, the TorMENNt attack becomes more impactful when the attacked users provide a lot of
input data or a group of users employ the target service. This is evident by the differences in single and
batch results in Table 1 and Figure 7.

5.5 Iso-Recall Mitigation

Since information about classification is leaked by comparing to test-set recall, one can eliminate the backdoor
by ensuring the exits have iso-recall across all exits. This method would prevent an attacker from leaking
information about the classification, as no unique information is provided per class.

While this approach mitigates the attack, it still suffers from several limitations. First, enforcing iso-
recall still leaves side channels for any image parameters that are not subject to iso-recall. For example, an
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Fig. 8. Iso-Recall Mitigation: By eliminating the differences in recall, we prevent side-channels between classes.
However, other side-channels still exist for different variables and data distributions.

attacker may still be able to leak the brightness of an image since it is not directly controlled by classification
recall. While our experimental results show that classification iso-recall did in fact help mitigate a brightness
TorMENNt attack for CIFAR-10, we conjecture that this may not always be guaranteed. Moreover, this
mitigation is limited as it assumes that the test set matches real-world applications. If this is not the case, or
there are regional variations in user data, then different real-world recall rates can exist. Thus, an attacker
can still leak information about the classes with these differing real-world recall rates. For example, isorecall
graph in Figure 8 still shows some noisy distortions due to differences in the test and attack sets. This
mitigation also requires information about a template set, which a user would not typically have access to.

Finally, the accuracy of the neural network degrades significantly, as shown in Table 1. In our BinaryNet
CIFAR-10 example, enforcing an iso-recall equal to the average optimal recall for individual classes leads to
a 7% decrease in classification performance. For Tiny-Imagenet, this mitigation is possible but the isorecall
accuracy (listed in Table 1) decreased compared to the single exit accuracies (Figure 5). Thus it does not
scale well to large numbers of classes.

5.6 Avoiding Early Terminations

One simple semantically secure defense is for the users to ask the cloud service to evaluate the entire MENN,
even if they are satisfied with the preliminary results. This solution does not reduce the computational
cost of the MENN, but does ensure the user data is kept private. Specifically, even though the users are
responsible for the evaluation cost of the entire model, they still get several benefits of using a multi-exit
neural network. First, accuracy is improved when using the multiple exits as an ensemble [51]. Second, the
users do get a preview of the neural network results early on. This feature is secure only if the users do not
leak any information when they are locally satisfied with the results, for example, through a direct response
(or even a side channel on the edge device). Finally, for budgeted or anytime inference, which is independent
of input data, the user has flexibility in choosing the correct accuracy-speed tradeoff for their application.
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Fig. 9. Bundling Mitigation: In order to preserve privacy, a user can bundle images together to exit from FHE-
MENNs in predefined way. A user sends a bundle of images, shuffled via a random permutation, to the cloud for
FHE-MENN processing. At the first exit, a predetermined number of images are terminated early. Since a prede-
termined number of images is dropped, the cloud gains no insights into the data within the bundle of images. This
process continues for the remaining exits. We note the initial permutation of images further prevents the cloud from
determining information about a specific image in a sequence.

5.7 Bundling Mitigation

To protect from attackers who aggregate user information, users can bundle inputs together and use a fixed
recall rate for the bundle of images. Here, users will terminate a fixed percentage of images with the lowest
confidence score in the bundle of images, as shown in Figure 9. For example, if a user processes a bundle of 3
images, a user can terminate the image with the lowest confidence scores at the first exit; then terminate the
next image with the lowest confidence scores at the second exit, and so on. By using this method, the user
can still use early termination for time speed-ups while preventing an attacker from aggregating information
about the user’s distribution as described in Equation 11.

This approach is effective for data aggregation. However, an attacker may still be able to determine
which bundled image exits. For example, suppose a video application uses a sliding window of 10 frames to
determine the relative confidence score thresholds. From this information, an attacker may still be able to
deduce an event that occurred in a specific video frame.

Therefore, we investigate two alternative approaches to make bundling more secure. The first is for the
user to randomly permutate the bundle of images, turning an ordered set into an unordered set. While an
attacker can determine which ciphertext exits early in this approach, since the images are unordered and
encrypted during the attack, this information is meaningless to the attacker. This approach assumes that
the channel is otherwise secure, such that no other information about a ciphertext is leaked.

A second bundling approach involves encrypted multiplexing of intermediate inputs. This is straightfor-
ward for the plaintext inference model: a user can send an array of images (over an encrypted connection)
indicating which ones require further processing. The cloud (which is not a threat in this scenario) can read
the user data and select the appropriate intermediate results that require further processing. However, for
the privacy-preserving inference model, FHE multiplexing is required. Here, a user will upload a series of
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encrypted bits and the cloud must run a homomorphic multiplexer circuit on these inputs to select the
appropriate image and continue processing. PPML multiplexing could be costly since it must be done on the
intermediate inputs. In our example MENN, for the first exit point we require about 115200 ciphertexts to
be multiplexed per bundled image. Our analysis shows that this approach would incur 11.3% of performance
overhead for the MaxPooling BinaryMENN network.

6 Discussion of our Findings

6.1 TorMENNt with Alternative Termination Schemes

Our attack model is primarily focused on the input-dependent MENN early termination scheme. Here, we
discuss how the attack model applies to the early termination schemes introduced in Section 2.1. This
discussion will help establish the necessary criterion for other MENN termination schemes and broadens the
possibilities for secure MENN implementations.

The budgeted early termination scheme requires users to declare the exit upfront. Specifically, users can
choose the exit considering their application’s timing, monetary, and accuracy requirements. If this decision
is made independent of the input data, then no information about the input data is leaked. This method can
give users optimal performance based on their requirements without hurting security. The flexibility that
FHE MENNs offer in this respect makes them a valuable feature for end-users.

Similarly, in anytime early termination, if the user’s decision to terminate computation is independent of
the input data and intermediate early-exit results, then the system remains semantically secure. Since this
decision is not made upfront, more responsibility is put on the user to not make decisions based on output
data. To remove this control from an unknowledgeable user, implementations of this scheme can enforce that
the users can only ask for the result once. This inference scheme can be helpful for systems where the timing
requirements to calculate the result vary, such as human-interactive technologies.

Finally, the distributed early termination scheme is the only scheme to offer semantically secure early
termination of easy-to-process inputs. Since the data is processed locally, the decision to terminate early
is not shared with the cloud, which conceals user inputs from potential eavesdroppers. However, the user
must still ensure that this information is not leaked through an edge device side-channel or the absence of
sending data. For example, if the edge device is known to generate one picture per minute, the absence of
sending data may make the user’s decision observable, which is significant depending on the context (e.g.,
plane images are never sent to the cloud). The bundling mitigation, discussed in Section 5.7, would be an
excellent candidate to protect data for these applications.

6.2 Balancing FHE-MENN Security and Efficiency

The TorMENNt attack shows that information about sensitive MENN inputs could be leaked through early
exit decisions in input-dependent inference. In order to improve security, much of the timing benefits discussed
must be sacrificed. However, privacy-preserving MENNs are still a promising technology if their features and
drawbacks are properly understood.

First, privacy-preserving MENNs can employ any of the other termination schemes discussed in Section
6.1. The underlying assumption of these schemes is that the early termination is not dependent on the
user data, including the early exit preliminary results. Secure implementations of these early termination
schemes can allow users more flexibility to choose the appropriate accuracy-timing tradeoff without sacrificing
security.

A second strategy is to simply accept the security risks of the TorMENNt attack. For a single isolated
image, an attacker can extract on average a few bits of information about the user based on Eq. 10. For
an honest but curious cloud, this information is severely limited, especially for a single input. Also, the
TorMENNt attack has strong assumptions that the template dataset has similar inputs compared to real
world deployment. Our template and attack datasets did match our benchmarks, but often in real-world
applications, this is not the case, which further protects the user.
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In order to accept the risk of MENNs, it is likely best for users to assume a malicious cloud threat model.
A malicious cloud can more directly leak attributes from users. Here, the malicious cloud can generate both
a low entropy and high entropy result. They can select which value to send to the user based on the result of
an encrypted test by using an encrypted multiplexer. Therefore, users need to clearly understand the security
implications of their early exit decisions, and be OK with leaking one bit of information per exit about their
input data. An alternative approach is to make a local decision based on early exit feedback but continue
running the MENN in the cloud to guarantee security.

A second use case for privacy-preserving MENNs is the use of bundling images, as discussed in section
5.7. This would allow a fixed number of images to exit early and take advantage of a reduced computational
cost without sacrificing security. This technique may be best suited for applications with many images that
can be bundled, such as video frame processing.

6.3 MENN implementations on non-FHE PPML

MENNs may also be suitable for other PPML solutions (not only FHE-based PPML). We provide a brief
discussion of the challenges we forsee with such potential implementations, as this remains an exciting
research direction.

LHE-based schemes could be used to protect MENNs, but several drawbacks make them less ideal
candidates than FHE-based schemes. First, LHE has limited multiplicative depth, making the usefulness
of MENNs questionable. Without efficient bootstrapping, it is difficult to parameterize the homomorphic
scheme without knowing the depth of the network.

6.4 Malicious Clouds

A malicious cloud can more directly leak attributes from users. Here, the malicious cloud can generate both
a low entropy and high entropy result. They can select which value to send to the user based on the result of
an encrypted test by using an encrypted multiplexer. In this threat model, applications will need to accept
that one bit of information can be leaked per image per exit. An alternative mitigation is to make a local
decision based on early exit feedback but continue running the MENN in the cloud to guarantee security.

7 Related Works

Many works look to steal model IP through various timing [17, 23, 25, 27], electromagnetic [3] or power [50]
side channels. In these works, an attacker sends inputs through the system and tries to recover the model
weights. Unlike TorMENNt, these works do not look to protect user data during inference but are instead
concerned with model IP (i.e., the network weights).

Several defenses against these attacks have been developed. MaskedNet [16] claims to be the first hardware
inference engine that protects against model side channels. Its attacks are focused on binarized neural
networks. The authors employ a masking technique where circuit-level inputs (e.g., an adder) are divided into
two parallel circuits so that any information leaked is not useful to the adversary. Other generic side-channel
obfuscations contribute to a large body of literature. The most relevant works include Zhang et. al. [53]
that adds random timing mitigation to program outputs, Raccoon [42] that introduces decoy paths into the
program flow, while others focus on secure execution environments for side-channel prevention [2,36,38], as
well as cloud-based side-channel prevention [29,53,54].

TorMENNt is different from the aforementioned side-channel attacks since it only considers whether
certain MENN layers are executed or not. For this reason, TorMENNt is more accessible compared to these
side-channel attacks, as it does not require fine-grained power or electromagnetic traces. This also makes
TorMENNt impervious to previously proposed obfuscation and masking defenses that aim to distort fine-
grained details of the side channels but do not obfuscate or mask whether a computation occurs. TorMENNt
also is applicable to the emerging PPML scenarios, which is not the case for the aforementioned attacks.
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Finally, these side-channel attacks are only intended for single exit networks and are geared towards stealing
model weights/IP, not the user inputs.

One notable example is the work by Wei et. al. [50] that attempts to steal inference data via a power side-
channel attack. Their FPGA-based setup uses oscilloscope data to predict model classification on the MNIST
digit dataset [33]. Their threat model assumes that the attacker has access to a high-resolution oscilloscope
or power monitoring Trojan horse. Overall, the authors report a high model prediction attack success rate
of 89% for their MNIST dataset. However, TorMENNt has a different threat model that involves a less
intrusive adversary using and targets MENNs. In particular, the attack by Wei et. al. requires fine-grained
power traces and is subject to obfuscation and masking defenses, which is not the case with TorMENNt.
Therefore, TorMENNt can support high noise tolerance in the side channel. Nevertheless, Wei et. al. report
89% attack success rate, whereas TorMENNt is limited by Eq. 10 and achieves about 22% attack success
rate using 5 exits. Notably, PPML techniques would defend against the side channel of Wei et. al., whereas
the TorMENNt attack is applicable on both encrypted and plaintext inference.

Finally, Dong et. al. [15] proposed fingerprinting MENN timings to prevent IP theft. They found that
MENNs with input-dependent exit termination schemes release information about the model IP (e.g., the
network weights). Therefore, they could determine the difference between independent and stolen MENN
models. Our TorMENNt attack leverages a similar principle (i.e., early exits leak information), but exploits
this leakage to predict the user inputs for a given model IP. Conversely, Dong et. al. utilize this leaked
information in an attempt to recover the model IP given the user inputs.

To the best of our knowledge, this is the first work to investigate MENNs for FHE, and the first to expose
a high-level ML-based side-channel that is immune FHE privacy protections.

8 Conclusion

This work introduces the possibility of using multi-exit neural networks in the context of fully homomorphic
encryption. We found that there are signifigant accuracy-latency benefits for using FHE-MENNs over single
exit networks, achieving up to 7% accuracy benefits for the same latency compared to single exit networks.

We also explore the security of MENNs, developing the TorMENNt attack to leak information on a users
input data. We demonstrate how this attack can leak classification information about a user’s input, be
remark that this attack can only leak one bit of information per exit per image. We discuss how this could
be acceptable for many PPML applications and users. We further provide suggestions on how to minimize the
TorMENNt security vulnerability. Our Iso-recall mitigation can control for a limited number of inputs, but
incurs an accuracy drop that increases the more classes or variables we try to control. Despite the TorMENNt
vulnerability, we see FHE-MENNs as a promising speed-up alternative for PPML and recommend developers
to consider this technology for their applications.

Acknowledgments

This work has been supported by NSF Award #2239334.

References

1. Ehud Aharoni, Allon Adir, Moran Baruch, Nir Drucker, Gilad Ezov, Ariel Farkash, Lev Greenberg, Ramy
Masalha, Guy Moshkowich, Dov Murik, et al. Helayers: A tile tensors framework for large neural networks
on encrypted data. arXiv preprint arXiv:2011.01805, 2020.

2. Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang, Insik Shin, and Byoungyoung Lee. Obfuscuro: A com-
modity obfuscation engine on Intel SGX. In Network and Distributed System Security Symposium (NDSS), 2019.

3. Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. CSI-NN: Reverse engineering of neural network
architectures through electromagnetic side channel. In 28th USENIX Security Symposium, pages 515–532, 2019.

4. Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast homomorphic evaluation of deep
discretized neural networks. In Annual International Cryptology Conference, pages 483–512. Springer, 2018.

19



5. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption without
bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–36, 2014.

6. Hao Chen, Kim Laine, and Rachel Player. Simple encrypted arithmetic library-seal v2. 1. In International
Conference on Financial Cryptography and Data Security, pages 3–18. Springer, 2017.

7. Sanyuan Chen, Yu Wu, Zhuo Chen, Takuya Yoshioka, Shujie Liu, Jinyu Li, and Xiangzhan Yu. Don’t shoot but-
terfly with rifles: Multi-channel continuous speech separation with early exit transformer. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6139–6143. IEEE, 2021.

8. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arithmetic of
approximate numbers. In Asiacrypt, pages 409–437. Springer, 2017.

9. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster fully homomorphic encryption:
Bootstrapping in less than 0.1 seconds. In Asiacrypt, pages 3–33. Springer, 2016.

10. Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable bootstrapping enables efficient homomorphic
inference of deep neural networks. Technical report, Cryptology ePrint Archive, Report 2021/091, 2021., 2020.

11. Pierre-Emmanuel Clet, Oana Stan, and Martin Zuber. Bfv, ckks, tfhe: Which one is the best for a secure neural
network evaluation in the cloud? In Applied Cryptography and Network Security Workshops (ACNS), pages
279–300. Springer, 2021.

12. Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang. Adanet: Adaptive struc-
tural learning of artificial neural networks. In International conference on machine learning, pages 874–883.
PMLR, 2017.

13. Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural networks
with binary weights during propagations. NeurIPs, 28, 2015.

14. Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized neural net-
works: Training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830, 2016.

15. Tian Dong, Han Qiu, Tianwei Zhang, Jiwei Li, Hewu Li, and Jialiang Lu. Fingerprinting multi-exit deep neural
network models via inference time. arXiv preprint arXiv:2110.03175, 2021.

16. Anuj Dubey, Rosario Cammarota, and Aydin Aysu. Maskednet: The first hardware inference engine aiming power
side-channel protection. In IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
pages 197–208. IEEE, 2020.

17. Vasisht Duddu, Debasis Samanta, D Vijay Rao, and Valentina E Balas. Stealing neural networks via timing side
channels. arXiv preprint arXiv:1812.11720, 2018.

18. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptol. ePrint
Arch., 2012:144, 2012.

19. Lars Folkerts, Charles Gouert, and Nektarios Georgios Tsoutsos. REDsec: Running Encrypted Discretized Neural
Networks in Seconds. In Network and Distributed System Security Symposium (NDSS), pages 1–17, 2023.

20. Shai Halevi and Victor Shoup. Bootstrapping for HElib. In International conference on the theory and applications
of cryptographic techniques, pages 641–670. Springer, 2015.

21. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

22. Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Cryptodl: Deep neural networks over encrypted data.
arXiv preprint arXiv:1711.05189, 2017.
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Appendix: Our neural network structure

Our experiments are primarily based on SumPooling as the pooling operation and ReLU for the activation
function. Our network architecture is as follows:

Layer Output Size

Input 32x 32x 3

Convolution 30x 30x 64

Activation 30x 30x 64

BatchNorm 30x 30x 64

Convolution 28x 28x 64

BatchNorm 28x 28x 64

Activation 28x 28x 64

Pooling 14x 14x 64

Branch at Exit 0

Convolution 12x 12x 64

BatchNorm 12x 12x128

Activation 12x 12x128

Convolution 10x 10x128

BatchNorm 10x 10x256

Pooling 5x 5x256

Branch at Exit 1

Activation 7x 7x256

Convolution 7x 7x512

BatchNorm 7x 7x512

ReLU Activation 7x 7x512

Convolution 7x 7x512

Branch at Exit 2

Pooling 3x 3x512

BatchNorm 3x 3x512

Flatten 4608

ReLU Activation 4608

FullyConnected 1024

BatchNorm 1024

ReLU Activation 1024

FullyConnected 1024

Branch To Exit 3

BatchNorm 1024

ReLU Activation 1024

FullyConnected 1024

BatchNorm 1024

ReLU Activation 1024

FullyConnected 1024

Branch To Exit 4
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Branching is assigned to the following exits:

Exit Layer Output Size

Exit 0:

Input 30x 30x128

Flatten 115200

BatchNorm 115200

Dropout 115200

Activation 115200

FullyConnect 10

BatchNorm 10

Softmax 10

Exit 1:

Input 15x 15x256

Flatten 57600

BatchNorm 57600

Dropout 57600

Activation 57600

FullyConnect 10

BatchNorm 10

Softmax 10

Exit 2:

Input 7x 7x512

Flatten 25088

BatchNorm 25088

Dropout 25088

Activation 25088

FullyConnect 10

BatchNorm 10

Softmax 10

Exit 3:

Input 1024

BatchNorm 1024

Dropout 1024

Activation 1024

FullyConnect 10

BatchNorm 10

Softmax 10

Exit 4:

Input 1024

BatchNorm 1024

Dropout 1024

Activation 1024

FullyConnect 10

BatchNorm 10

Softmax 10

23


	FHE-MENNs: Opportunities and Pitfalls for Accelerating Fully Homomorphic Private Inference with Multi-Exit Neural Networks

