
Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors

Cecilia Boschini
ETH Zürich, Switzerland

Darya Kaviani
UC Berkeley, USA

Russell W. F. Lai
Aalto University, Finland

Giulio Malavolta
Bocconi University, Italy

Akira Takahashi
JPMorgan AI Research & AlgoCRYPT CoE, USA

Mehdi Tibouchi
NTT Social Informatics Laboratories, Japan

Abstract—A threshold signature scheme splits the signing key
among ℓ parties, such that any t-subset of parties can jointly
generate signatures on a given message. Designing concretely
efficient post-quantum threshold signatures is a pressing ques-
tion, as evidenced by NIST’s recent call.

In this work, we propose, implement, and evaluate a lattice-
based threshold signature scheme, Ringtail, which is the first to
achieve a combination of desirable properties: (i) The signing
protocol consists of only two rounds, where the first round is
message-independent and can thus be preprocessed offline. (ii)
The scheme is concretely efficient and scalable to t ≤ 1024

parties. For 128-bit security and t = 1024 parties, we achieve
13.4 KB signature size and 10.5 KB of online communication.
(iii) The security is based on the standard learning with errors
(LWE) assumption in the random oracle model. This improves
upon the state-of-the-art (with comparable efficiency) which
either has a three-round signing protocol [Eurocrypt’24] or
relies on a new non-standard assumption [Crypto’24].

To substantiate the practicality of our scheme, we conduct
the first WAN experiment deploying a lattice-based threshold
signature, across 8 countries in 5 continents. We observe that
an overwhelming majority of the end-to-end latency is con-
sumed by network latency, underscoring the need for round-
optimized schemes.

1. Introduction

In a t-out-of-ℓ threshold signature [Des88], [DF90],
secret-shares of the signing key are distributed among ℓ
parties, such that any t-sized subset can jointly compute
a signature on any message of their choice. Furthermore,
an adversary corrupting up to t − 1 users should not be
able to forge a new signature. Threshold signatures are a
versatile cryptographic primitive widely used to delegate
signing rights while tolerating a fraction of corrupted parties.
Because of their wide applicability, threshold signatures
have been extensively studied in pre-quantum settings, with
many efficient constructions known satisfying increasingly
stronger security guarantees, see, e.g. [BCK+22] and refer-
ences therein.

In contrast, post-quantum and, in particular, lattice-
based threshold signatures are far less studied. Indeed,

designing a scheme that is concretely efficient, conceptually
simple, and based on well-studied computational assump-
tions is still very much an open research question. Finding
such a scheme is increasingly pressing in the context of the
ongoing transition to post-quantum cryptographic systems,
particularly the preliminary call for multi-party threshold
schemes by the U.S. agency NIST [BP23]. We now describe
a set of properties that a threshold signature scheme suitable
for large-scale usage should ideally satisfy.

Concrete Efficiency: The signing and verification algorithms
must be fast on commodity hardware. The signature size
must be comparable to that of ordinary (non-threshold)
post-quantum signatures, e.g. Dilithium [LDK+20]. Overall,
all relevant efficiency metrics must scale sublinearly (e.g.
logarithmically) with both t (the threshold) and ℓ (the total
number of parties).

2-Round Offline/Online Signing: To avoid delays caused by
communication roundtrips, the scheme should minimize
round complexity, and should ideally consist of two rounds
of simultaneous communication between the users involved
in the signing protocol. Furthermore, an important property
is the so-called offline/online interaction, which requires that
the first round of interaction to be message-independent.
This allows parties to precompute many instances of the
first round in advance, effectively reducing the interaction
needed to compute a signature to a single broadcast.

Established Theoretical Foundations: Finally, it is important
that the scheme can be proven secure in a well-established
computational model against standard computational as-
sumptions. Besides reducing the risk of future cryptanalytic
breakthroughs, this makes it easier to conservatively esti-
mate the parameters of the scheme.

1.1. Our Results

In this work, we introduce Ringtail, a lattice-based
threshold signature scheme satisfying all the aforementioned
desiderata. In particular, Ringtail is concretely efficient, has
a 2-round signing protocol with only a single online round,
and is proven secure under the standard (module) LWE
assumption in the random oracle model, against a bounded

number of signature queries. In Section 3.3, we suggest
parameters for instantiating Ringtail with 128, 192, and 256
bits of security respectively, assuming that t ≤ 1024 and that
the adversary makes at most 260 signature queries, following
NIST’s recommendations [BP23].

The parameters are independent of the total number of
parties ℓ. We also provide a prototype implementation of
Ringtail and benchmark its performance in Section 4. For
128-bit security and t = 1024, the signature size is 13.4
KB. We conduct experiments in a WAN setting, with 8
servers across 5 continents as the signing parties. Our online
communication is 10.5 KB, which is 81% and 25% lower
than the state-of-the-art protocols, respectively [PKM+24],
[EKT24]. We find that the efficiency bottleneck of running
a full signing protocol is the network latency, whereas the
local computation accounts for a relatively insignificant frac-
tion of the total runtime. This highlights the importance of
minimizing the round complexity and online communication
bandwidth of the threshold signature scheme.

On a technical level, Ringtail is based on the state-
of-the-art Raccoon threshold signature family [PEK+23],
[PKM+24], [EKT24].1 It can be seen as a variant of the 2-
round threshold signature scheme of Espitau et al. [EKT24]
with a few important technical twists partly inspired by
MuSig-L [BTT22], a 2-round lattice-based multi-signature
scheme based on the standard (module) short integer so-
lution (SIS) assumption. These modifications allow us to
argue that Ringtail satisfies the standard security notion for
threshold signatures, assuming the hardness of the standard
(module) LWE problem, in the random oracle model. In
contrast, Threshold Raccoon [PKM+24] requires 3 online
rounds for signing, and the scheme of Espitau et al. [EKT24]
is only proven secure under a new non-standard assumption
called algebraic one-more LWE. A more detailed discussion
can be found in Section 1.3.

1.2. Applications

Threshold signatures are naturally applicable in set-
tings where centralized signing keys pose a great threat
(e.g. financial or infrastructural) of being compromised.
Distributing signing keys removes the central point of attack,
helping to mitigate these risks. We highlight a few settings
of particular importance. Digital asset custody offered by
popular MPC wallets secure billions of dollars in funds,
which risk being stolen if signing keys are compromised
[AB23]. Turning to wallets with threshold signing helps
mitigate this financial risk. Certificate authorities routinely
sign certificates that bind digital identities to cryptographic
keys. Breached signing keys have led to fraudulent cer-
tificates that green-light malware and impersonate trusted
websites [Wol16]. Threshold signatures allow a consortium
of certificate authorities (or their administrators) to jointly
sign certificates without a single central point of attack.
Well-known code signing services allow organizations who

1. The ringtail is a small mammal of the raccoon family.

provide critical software to sign code updates. With a thresh-
old signature, an attacker cannot endorse malicious software
unless t signing parties are breached.

1.3. Related Work

Generic Approaches. The question of efficient distributed
signing has received a lot of attention in recent years, due to
its application to blockchain-based technologies. Intuitively,
this should be a textbook use case for secure multi-party
computation (MPC), e.g. [BKP13], [CS19], or fully homo-
morphic encryption (FHE), e.g. [BGG+18], [ASY22]. In
particular, FHE-based solutions allow signing in a single
round. Unfortunately, these general methods do not yield
concretely efficient schemes, so tailored designs are prefer-
able in practice.

Fiat-Shamir-based Constructions. Several recent construc-
tions rely on the blueprint of efficient Schnorr-based thresh-
old (e.g., FROST family [KG20], [BCK+22], [CKM23],
SimpleTSig [CKM23]) and multisignatures (e.g., MuSig2
[NRS21], DWMS [AB21], BN scheme [BN06], mBCJ
scheme [BCJ08], [DEF+19]), exploiting the similarity be-
tween Schnorr and its lattice-based counterparts in the “Fiat-
Shamir with abort [Lyu12]” (FSwA) paradigm.

Damgård et al. [DOTT22] designed a 2-round (t, t)-
distributed signature and a multisignature2 by combining
the trapdoor commitment-based simulation from mBCJ with
FSwA. Subsequent works improved these constructions by
reducing the number of aborts [ADP24], improving the com-
munication complexity [Che23], or turning it into a (t, ℓ)-
threshold scheme [GKS24] with threshold homomorphic
encryption. The two-round scheme proposed in [GKS24]
obtains signatures of size 46.6 KB and public keys of size
13.6 KB for (t, ℓ) = (3, 5), while the first round cannot be
preprocessed.

Threshold Raccoon (tRaccoon) [PKM+24] is a 3-round
(t, ℓ)-threshold signature scheme with a similar design to
the SimpleTSig. Crucially, to overcome the technical issue
of generalizing the (t, t)-threshold schemes using Shamir
secret sharing [Sha79], tRaccoon introduced a masking
technique. Roughly, the idea is to use one-time masks to
hide the partial signatures generated by individual parties,
which may leak non-trivial information about the secret
key if revealed in plain. To realize a 2-round scheme, the
well-known “random linear combination trick” originated
from FROST, MuSig2, DWMS has been adapted to the
lattice setting. Boschini et al. [BTT22] obtained a 2-round
multi-signature MuSig-L from LWE and SIS assumptions
by plugging in a random linear combination into FSwA.
The construction by Chairattana-Apirom, Tessaro and Zhu
[CATZ24] also follows the structure of FROST but relies
on Benaloh-Leichter secret sharing [BL90] with very large

2. The difference is in the key generation algorithm: in multisignatures,
the set of signers is not fixed, but each signer generates their key pair when
they join, and verification of a signature requires all the public keys of the
signers (unless a key aggregation algorithm exists).

(in dimensions) shares. This allows them to obtain a 2-
round (t, ℓ)-threshold signature with offline/online signing
from standard SIS but at the cost of concrete efficiency.
Concretely, the signature size of [CATZ24] is over 200
KB for ℓ = 5 and arbitrary 0 ≤ t ≤ ℓ and the commu-
nication cost per signer is over 1MB. Similarly, Espitau,
Katsumata, and Takemure [EKT24] (henceforth EKT) ob-
tained a 2-round (t, ℓ)-threshold signature scheme, but by
carefully integrating the random linear combination method
into tRaccoon [PKM+24], making it compatible with stan-
dard Shamir secret sharing and achieving modest signature
sizes. The security of these constructions and Ringtail is
guaranteed in the static corruption model, in which the
adversary commits to a corruption set at the beginning of the
unforgeability game. Very recently, [KRT24] presented an
adaptively secure variant of tRaccoon that requires 5 rounds
of interaction (of which the first round can be preprocessed).
Comparison with EKT. The scheme Ringtail introduced
in this work can be seen as a variant of EKT, and thus
is also based on tRaccoon and FROST, with some cru-
cial differences: 1) Computational assumptions: EKT is
proven secure against a new non-standard computational
assumption called algebraic one-more LWE (AOM-LWE),
adapting the one-more discrete log-based proof for FROST
and MuSig2, while we follow a MuSig-L-like approach to
obtain a security proof from the standard LWE and SIS
assumptions. 2) Distribution of coefficients and randomness:
The difference in proof strategy leads us to sample random
coefficients of the linear combination from a discrete Gaus-
sian distribution, whereas EKT opts for elements with ℓ1-
and ℓ∞-norms being 1. Since MuSig-L-style proof crucially
relies on preimage sampling of Gaussian vectors, there
seems to be no obvious way to adapt our proof strategy
to EKT as-is. Moreover, we generate LWE commitments
in the offline phase from imbalanced Gaussian samples, to
invoke the Hint-LWE assumption [KLSS23]. On the other
hand, EKT does not seem to require this. 3) Full-rank check:
To prove the security of our protocol, it is crucial that each
party checks the sum of offline matrices being full-rank. This
is a unique step which does not appear in protocols based
on “one-more” assumptions including FROST and EKT, as
their honest party simulator can respond to signing queries
with the help of an oracle even if the sum is malformed.
4) Security model: It is worth mentioning that Ringtail has
a few drawbacks compared to EKT. As in tRaccoon, we
also rely on MACs to implement authenticated channels,
while EKT overcame this limitation. Our security proof
also assumes that offline signing oracles are aware of the
signing coalition (denoted by T ⊆ [ℓ]), while in EKT, the
offline phase can be agnostic of the coalition, and T can
be determined online upon receiving a message. Removing
these constraints while retaining a proof from standard
assumptions is an interesting direction for future work.

2. Preliminaries

Let λ ∈ N be the security parameter. For m,n ∈ N, write
[m] := {1, 2, . . . ,m}, [n,m] := {n, n+ 1, . . . ,m}, Zm for

the ring of integers modulo m with representatives taken
from [−m/2,m/2)∩Z, and Z×

m its unit group. For x ∈ Zm,
|x| is defined by the absolute value of its representative in
[−m/2,m/2) ∩ Z. For a vector x ∈ Rm, we write ∥x∥ :=
∥x∥∞ for the ℓ∞-norm, and ∥x∥2 for the ℓ2-norm.

For a distribution D, we write x ← D to denote that x
was sampled from D. When sampling uniformly at random
from a set S, we use the shorthand x

$← S. We write
D ≈c D′ (resp. D ≈s D′) to denote the two distributions
are computationally (resp. statistically) indistinguishable.

For every matrix M ∈ Rk×ℓ we can find a singular
value decomposition M = UDVT , where U ∈ Rk×k and
V ∈ Rℓ×ℓ are orthogonal matrices, i.e., UUT = Ik and
VVT = Iℓ, and D ∈ Rk×ℓ is an upper diagonal matrix.
The entries on the diagonal of D are called the singular
values of M. We denote by smax(M) the largest singular
value of M, and by smin(M) its smallest singular value.

2.1. Lattices and Discrete Gaussians

For x ∈ Rm and σ > 0, define the Gaussian function
with parameter σ as ρσ(x) := exp(−π ∥x∥22 /σ2). For a
lattice Λ ⊆ Rm and offset d ∈ Rm, define ρσ(Λ + d) :=∑

x∈Λ ρσ(x + d). The discrete Gaussian distribution with
parameter σ over the lattice coset Λ + d is defined as
DΛ+d,σ(x) := ρσ(x)/ρσ(Λ + d).

Lemma 2.1 ([Lyu12, Lemma 4.4(1,3)]). Let Λ ⊆ Rm be
a lattice, σ > 0. It holds that

1) For any k > 0, Pr
[
∥z∥∞ > kσ : z

$← DZ,σ

]
≤

2 exp(−k2/2) .
2) For any k > 1, Pr

[
∥DΛ,σ∥2 > kσ

√
m
]
≤

km exp(m/2(1− k2)) .

The ε-smoothing parameter of a lattice Λ ⊂ Rm, de-
noted by ηε(Λ), is defined as

ηε(Λ) := inf s > 0 : ρ1/s(Λ
∗ \ {0}) ≤ ε

where Λ∗ denotes the dual lattice of Λ.

Lemma 2.2 ([GPV08, Corollary 2.8 of [GPV07]]). Let
Ψ ⊂ Λ ⊂ Rm be lattices with Span(Ψ) = Span(Λ) = Rm.
For any ε ∈ (0, 1/2), any s ≥ ηε(Ψ), and any centre c ∈
Rm, the distribution of (DΛ,s,c mod Ψ) is within statistical
distance 2ε from the uniform distribution over (Λ mod Ψ).

2.2. Module Lattices

Let ζ = ζf ∈ C denote any fixed primitive f-th root of
unity where f is a power of 2, K = Q(ζ) the cyclotomic
field of conductor f and degree φ = φ(f) = f/2, and
R = Z[ζ] ∼= Z[X]/⟨Φf(X)⟩ its ring of integers, also called
a cyclotomic ring, where Φf(X) = Xφ + 1 is the f-th
cyclotomic polynomial.

An element x ∈ K (resp. R) is represented as a linear
combination of the power basis, i.e. x =

∑φ−1
j=0 xjζ

i where
xj ∈ Q (resp. Z). The vector coeff(x) := (xj)

φ−1
j=0 is

called the coefficient embedding of x. We write ∥x∥p :=

∥coeff(x)∥ for the ℓp norm of the coefficient embedding of
x. The notation extends naturally to vectors x = (xi)

m
i=1 ∈

Km, where we write coeff(x) for the concatenation of
coeff(xi) for i ∈ [m], and ∥x∥p := ∥coeff(x)∥p.

The ring expansion factor γ = γR :=
maxa,b∈R ∥a · b∥ /(∥a∥ · ∥b∥) measures the norm growth
(with respect to a choice of norm ∥·∥) when multiplying R
elements. For power-2 cyclotomic rings R of degree φ, it
is known (e.g. [AL21, Prop. 2]) that the expansion factor
for the ℓ∞ norm is at most φ.

When f is a power of 2, the spaces Km and Rφm

are isomorphic as inner-product spaces via the coefficient
embedding coeff·. The module Rm can thus be viewed as
a lattice. With Dm

σ , we refer to the discrete Gaussian distri-
bution with parameter σ over coeff(Rm). For A ∈ Rn×m

q

and w ∈ Rn
q , we define the m-dimensional q-ary module

lattice Λ⊥
q (A) =

{
x ∈ Rm

q : Ax = 0 mod q
}

and its coset
Λw
q (A) =

{
x ∈ Rm

q : Ax = w mod q
}

.

2.3. Shamir Secret Sharing

For prime q, we define the (t, ℓ)-Shamir secret sharing
scheme overRn

q with evaluation points given by an arbitrary
subset {α1, . . . , αℓ} ⊆ {1, . . . , q − 1}. On input a secret
s ∈ Rn

q , the Share = ShareRq,n,t,ℓ algorithm samples

r1, . . . , rt−1
$← Rn

q and outputs the shares (si)
ℓ
i=1, where

si = s+ r1 · αi + . . .+ rt−1 · αt−1
i mod q.

Given any t-subset T ⊆ [ℓ], and shares (si)i∈T , one can
recover the secret s via the linear combination

s =
∑
i∈T

si · λT ,i mod q

where λT ,i ∈ Rq are Lagrange coefficients λT ,i :=∏
j∈T :j ̸=i

αj

αj−αi
mod q. The Shamir secret sharing scheme

is secure in the following sense: Fix any distribution D over
Rq and let s ← D and (si)i∈[ℓ] ← Share(s, q, t, ℓ). Then,
for any subset I ⊂ [ℓ] with |I| < t, (si)i∈I contains no
information about s.

2.4. Rounding

The following material is taken almost verbatim from
Raccoon [PEK+23] and tRaccoon [PKM+24]. Let ν ∈ N \
{0}. Any integer x ∈ Z can be uniquely decomposed as

x = 2ν · xhi + xlo, (xhi, xlo) ∈ Z× ([−2ν−1, 2ν−1 − 1] ∩ Z)

which consists essentially in separating the lower-order bits
from the higher-order ones, that is, it drops ν lower bits.
We define the function

⌊·⌉ν : Z→ Z s.t. ⌊x⌉ν = ⌊x/2ν⌉ = xhi

where ⌊·⌉ : R → Z denotes the rounding operator. More
precisely, the “rounding half-up” method ⌊x⌉ = ⌊x+ 1/2⌋
half-way values are rounded up: e.g. ⌊2.5⌉ = 3 and
⌊−2.5⌉ = −2. With a slight overload of notation, when

q > 2ν , we extend ⌊·⌉ν to take inputs in Zq, in which
case, we assume the output is an element in Zqν where
qν = ⌊q/2ν⌋. Formally, we define:

⌊·⌉ν : Zq → Zqν s.t. ⌊x⌉ν = ⌊x/2ν⌉ mod qν = xhi mod qν

where x ∈ Zq is assumed to have the unsigned representa-
tive, i.e. x ∈ {0, 1, . . . , q − 1}.

The function ⌊·⌉ν naturally extends to vectors
coefficient-wise. We recall the useful lemma that bounds the
norm of difference of rounded vectors [PKM+24], [EKT24].

Lemma 2.3. Let ν, q ∈ N such that q > 2ν , ν ≥ 4, and
set qν = ⌊q/2ν⌋. Moreover, assume q and ν satisfy qν =
⌊q/2ν⌉, that is, q can be decomposed as q = 2ν · qν + qlo
for qlo ∈ [0, 2ν−1 − 1]. Then, for any x ∈ Zq, we have

|x− 2ν · ⌊x⌉ν | ≤ 2ν − 1.

Moreover, for any x, δ ∈ Zm
q , we have

∥2ν · (⌊x+ δ⌉ν − ⌊x⌉ν mod qν) mod q∥
≤∥2ν · ⌊δ⌉ν mod q∥+ 2ν · ∥1∥ .

2.5. Computational Assumptions

We recall a set of computational assumptions required
by the security proof for our construction. All of the lattice
assumptions are stated for modules, so we drop the prefix
“module” from the name of each assumption for brevity’s
sake. We recall the (ring/module) LWE assumption defined
over R with noise distribution χ.

Definition 2.4 (LWE). Let R,m, n, q, χ be parametrised by
λ, where χ is a distribution over R. The dLWER,q,m,n,χ as-
sumption states that for all PPT algorithm A, the following
probability is negligible in λ:

AdvdLWE
R,q,m,n,χ(λ)

:=

∣∣∣∣∣Pr
[
b = 1 :

A
$← Rm×n

q ; s
$← Rn

q ; e← χm;

y := As+ e mod q; b← A(A,y)

]

− Pr

b = 1 :
A

$← Rm×n
q ;

y
$← Rm

q mod q; b← A(A,y)

 ∣∣∣∣∣.
If χ = Dσ for a Gaussian parameter σ, we use the
notation dLWER,q,m,n,σ. Moreover, if in the above game
each entry of the secret s is also sampled from χ = Dσ

instead of uniform distribution, then we call this variant the
dLWE′

R,q,m,n,σ assumption.

We recall a variant of the LWE problem, which allows
an adversary to learn partial leakages of LWE secret and
error vectors. This problem was introduced in [DKL+23],
[KLSS23].

Definition 2.5 (Hint-LWE). Let R,m, n, k, q, χ, χ̄,L be
parametrised by λ, where χ, χ̄, L are distributions over
R. The hLWER,q,m,n,k,χ,χ̄,L assumption states that for all

PPT adversaries A, the following probability is negligible
in λ: AdvhLWE

R,q,m,n,k,χ,χ̄,L(λ) :=∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


b = 1 :

A
$← Rm×n

q ; s
$← χn; e← χm;

∀ i ∈ [1, k] : s̄i ← χ̄n; ēi ← χ̄m; ci ← L

l :=

{
ci ·
(
s
e

)
+

(
r̄i
ēi

)}k

i=1

;

c := {ci}ki=1

y := As+ e mod q; b← A(A,y, l, c)



−Pr


b = 1 :

A
$← Rm×n

q ; s
$← χn; e← χm;

∀ i ∈ [1, k] : s̄i ← χ̄n; ēi ← χ̄m; ci ← L

l :=

{
ci ·
(
s
e

)
+

(
s̄i
ēi

)}k

i=1

;

c := {ci}ki=1

y
$← Rm

q ; b← A(A,y, l, c)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

It is shown in [KLSS23] that, for the parameters that
we use in this work, this problem is as hard as the standard
LWE.

Theorem 2.6 (Hardness of Hint LWE [KLSS23, Theorem
1]). Let m,n, q, k be positive integers and L be a distribu-
tion over R. Let B > 0 be a real number which satisfies∑k

i=1 ∥ci∥
2
1 ≤ B for any possible (c1, . . . , ck) sampled from

L. For σ1, σ2 > 0, let σ > 0 be a real number defined as
1
σ2 = 2(1

σ2
1
+ B

σ2
2
). If σ ≥

√
2 · ηε(Zφ) for 0 < ε ≤ 1/2,

then there exists an efficient reduction from dLWE′
R,q,m,n,σ

to hLWER,q,m,n,k,σ1,σ2,L that reduces the advantage by at
most (m+ n) · 2ε.

We recall the definition of the self-target SIS (stSIS)
problem, which is equivalent to SIS (which itself is im-
plied by LWE) in the classical random oracle model
(ROM) via the forking lemma [KLS18], [PKM+24, Lemma
B.1]. Recently, Jackson et al. analyzed the hardness of
stSIS in the quantum ROM and showed a reduction from
LWE [JMW24]. The concrete hardness of SelfTargetSIS is
analyzed in [PKM+24, Section 8.1].

Definition 2.7 (SelfTargetSIS). Let m,n, q be integers and
β > 0 be a real number. Let C be a subset of Rq and
let G : Rm

q × {0, 1}∗ → C be a cryptographic hash
function modeled as a random oracle. The stSISR,q,m,n,C,β

problem states that for all PPT adversaries A, the following
probability is negligible in λ

AdvstSIS
R,q,m,n,C,β(λ)

:=Pr

 ∥y∥2 ≤ β∧
G([A | Im] · y,msg) = c

:

A
$← Rm×n

q ;

(msg,y)← AG(A);(
c
z

)
:= y

 .

2.6. Trapdoors for Module Lattices

For a positive integer q, b, m, k = ⌈logb q⌉, let
gt = [1, b, b2, . . . , bk−1] a gadget vector and G = I⊗ gt ∈
Rm×mk a gadget matrix. A module-based and computa-
tional instantiation of [MP12] gives rise to the following
trapdoor generation and preimage sampling algorithms. The
parameter constraints can be found e.g. in [BEP+21].

Theorem 2.8. Let b,m be positive integers, φ a power of
two, q a prime modulus, k = ⌈logb q⌉ and d̄ = 2m +mk.
Let σg >

√
2b · (2b + 1) ·

√
log(2k(1 + 1/ε))/π, σtd >

ηε(Zmφ) Gaussian parameters. There exist PPT algorithms
(GenTrap,SamplePre) satisfying the following:

GenTrap(Rq,m) takes as input parameters Rq, m and
outputs (D,T) ∈ Rm×d̄

q ×R2m×mk such that

D

(
T
I

)
= G mod q.

where T is sampled from DR2m×mk,σtd

SamplePre(D,T,w, σu) takes as input (D,T) ∈ Rm×d̄
q ×

R2m×mk generated by GenTrap, a target vector w ∈ Rm

and Gaussian parameter

σu >
√

(σ2
g + 1)s2max(T) + η2ε(Zd̄φ),

and outputs u ∈ Rd̄ such that Du = w mod q.

The distribution
{
D : (D,T)← GenTrap(Rq,m)

}
is in-

distinguishable from the uniform distribution over full-rank
matrices in Rm×d̄

q under the dLWE′
R,m,m,q,σtd

assumption
(Definition 2.4).

The following distributions are statistically close:{
(D,u,w) :

(D,T)← GenTrap(Rq,m)
u← DRd̄,σu

;w = Du mod q

}
,{

(D,u,w) :
(D,T)← GenTrap(Rq,m)

w
$← Rm

q ;u← SamplePre(D,T,w, σu)

}
.

Remark 1. To obtain a concrete lower bound on σu,
one needs to determine an upper bound on s2max(T). In
[BEP+21, A.4], the authors experimentally find s2max(T) <
1.1σtd(

√
2mφ+

√
mkφ+ 4.7) with high probability.

2.7. Pseudorandom Functions

Definition 2.9 (Pseudorandom Function ensemble (PRF),
from [Gol01]). An (efficiently computable) PRF ensemble
is an ensemble of polynomial-time computable functions
{PRFλ : {0, 1}l × {0, 1}x → {0, 1}y}λ∈N, each takes as
input a seed sd of length l = l(λ) and a bit string of length
x = x(λ), and returns a bit string of length y = y(λ) such
that the following holds:

Pseudorandomness: For all PPT adversaries A, let
AdvPRF(λ) be its advantage in distinguishing PRF from
any random functions Fλ : {0, 1}x → {0, 1}y, that is

AdvPRF(λ) :=|Pr[1← APRFλ(sd,·)(1λ) : sd
$← {0, 1}l]

− Pr[1← AFλ(·)(1λ) : Fλ
$← Fλ]|

where Fλ := {Fλ}. We say that the ensemble {PRFλ} is
pseudorandom if AdvPRF(λ) is negligible in λ.

To keep the notation lean, in the paper we will drop the
subscript and denote a PRF simply as PRF.

2.8. Raccoon Signature Scheme

We recall the signature scheme Raccoon = (Setup,Gen,
Sign,Ver), since it is going to be the base of our thresh-
old scheme. Raccoon follows the standard Fiat-Shamir
paradigm applied to a three-move identification protocol.
On a very high-level, the underlying identification can be
viewed as “LWE-based Schnorr” where prover and verifer
hold the public key b = As + e and prover has the
corresponding secret key s, respectively. An identification
prover first commits to ephemeral randomness r∗ by sending
h = Ar∗ + e∗ mod q to verifier. Upon receiving challenge
c with small coefficients, prover responds with z = sc+ r∗,
which is accepted by verifier if 1) Az− cb ≈ h mod q and
2) z has small norm. Here, the verification condition 1) only
holds approximately due to small error terms. To implement
the approximate check, one can discard low-order bits us-
ing the rounding operation introduced in Section 2.4 and
have prover additionally send “hint” information ∆ fixing
approximation error. To further reduce the public key size,
Raccoon also applies the same rounding operation to b.

In more detail, the scheme is parametrised by a ring
R, dimensions n,m ∈ N, modulus q, Gaussian parameters
σe, σ

∗ > 0, a hash function Hc : {0, 1}∗ → C, which is
modelled as a random oracle with outputs sampled from
the challenge set C =

{
c ∈ R : ∥c∥∞ = 1 ∧ ∥c∥1 = κ

}
,

and rounding parameters ν, ξ > 0, all dependent on λ. A
public key consists of a rounded LWE sample

b̃ = ⌊As+ e mod q⌉ξ
and to sign a message, one computes another LWE sample
h = Ar∗ + e∗ mod q and hashes a rounded version to
compute the challenge c as

c = Hc (pp, pk, ⌊h⌉ν , µ) .

The signature is then computed as z = sc+ r∗. In addition,
the signer also includes a hint ∆ that allows the verifier to
check the validity of the signature, by checking that

c = Hc

(
pp, pk,

⌊
Az− 2ξ · b̃ · c

⌉
ν
+∆ mod qν , µ

)
and that the norm of z and ∆ is small. We present a formal
description of the scheme below.
Raccoon.Setup(λ): Generate a uniformly random matrix

A
$← Rm×n

q . Output pp = A.

Raccoon.Gen(pp): Sample s ← Dn
σe

and e ← Dm
σe

. Com-
pute b̃ = ⌊As+ e mod q⌉ξ and output (pk, sk) = (b̃, s).
Raccoon.Sign(sk, µ): Perform the following steps.

• r∗ ← Dn
σ∗

• e∗ ← Dm
σ∗

• h = Ar∗ + e∗ mod q.
• c = Hc(pp, pk, ⌊h⌉ν , µ).
• z = sc+ r∗.
• ∆ = ⌊h⌉ν −

⌊
Az− 2ξ · b̃ · c

⌉
ν
mod qν .

• Output σ = (c, z,∆).

Raccoon.Ver(pk, µ, σ): Check that

c = Hc

(
pp, pk,

⌊
Az− 2ξ · b̃ · c

⌉
ν
+∆ mod qν , µ

)
and ∥(z, 2ν ·∆)∥2 ≤ B2.

2.9. Threshold Signatures

We provide the syntax for (t, ℓ)-threshold signatures.
Our syntax is tailored to two-round interactive threshold sig-
natures, whose first round (i.e., offline phase) is independent
of the message to be signed. We use the convention that t
is the number of parties required to sign, and allow the
adversary to corrupt up to t− 1 parties.

Definition 2.10 (Threshold Signatures). A (t, ℓ)-threshold
signature scheme consists of a tuple of PPT (interactive)
algorithms TS = (Setup,Gen,Sign1,Sign2,Combine,Ver)
with the following syntax:

pp← Setup(1λ): on input the security parameter λ, it re-
turns the public parameters pp (which are given implicitly
as an input to all the other algorithms).

(pk, {ski}i∈[ℓ])← Gen(1ℓ, 1t): on input the number of par-
ties ℓ and the threshold t, return the verification key pk
(which is given implicitly as an input to all the other
algorithms except Setup), and the secret keys of all parties.

Sign1,Sign2: These are the algorithm run by each party in
a signing set T ⊆ [ℓ], where |T | ≥ t, and each constitutes
a stage of the 2-round interactive signing protocol, of which
the first can be seen as a preprocessing phase:

(ρi, sti)← Sign1(ski),

σi ← Sign2({ρj}j∈T \{i}, µ, sti).

All parties are assumed to take as common input a message
µ (for the second round). The output ρi of the first round is
broadcast to all parties in T .

σ ← Combine(µ, T , {ρi, σi}i∈T): On input a message µ,
the set of signers T , and partial signatures ρi, σi, it returns
the aggregated signature σ.

b← Ver(pk, µ, σ): on input the verification key pk, a mes-
sage µ and a signature σ it returns a bit b ∈ {0, 1}.

Correctness of a threshold signature is trivially defined.

Definition 2.11 (Correctness of TS). A threshold signature
scheme TS is correct if for all λ ∈ N there exists a negligible
function negl such that for all allowable 1 ≤ t ≤ ℓ, for all
T ⊆ [ℓ] with |T | ≥ t, and for all messages µ ∈ {0, 1}∗, the
following probability is overwhelming in λ

Pr


b = 1 :

pp← Setup(1λ)

(pk, {ski}i∈[ℓ])← Gen(1ℓ, 1t)

∀i ∈ T (ρi, sti)← Sign1(ski)

∀i ∈ T σi ← Sign2({ρj}j∈T \{i}, µ, sti)

σ ← Combine(µ, T , {ρi, σi}i∈T)

b← Ver(pk, µ, σ)


We require the threshold signature to be unforgeable

against a malicious (active) adversary doing static corrup-
tions and triggering concurrent signing in the trusted key
generation model with public aggregation (i.e., the adver-
sary gets to see the partial signatures of honest parties even
when the set of signers T only includes honest parties) in
the ROM.

Definition 2.12 (TUF: Unforgeability of TS in the ROM).
A threshold signature TS is unforgeable if for all λ ∈ N, for
all PPT two-stage adversaries A = (A1,A2) there exists
a negligible function negl such that

AdvTUF
A,TS(λ) := Pr

[
ExpTUFTS,A(1

λ) = 1
]
≤ negl(λ)

where ExpTUFTS,A is defined in Game 1 and H denotes the
random oracle.

Remark 2. Following the stateless security notion of
[CKM23], we introduce an execution ID (eid) to keep track
of signing sessions. Note that eid is local to each honest
party and thus is different from a global session ID that all
parties must agree upon before the first round. We remark
that our definition of unforgeability slightly deviates from the
game for “partially non-interactive” threshold signatures
such as [BCK+22]. First, the offline signing oracle OSign1
takes a signing coalition T as input and OSign2 demands
consistent T is used for the same eid.Second, the online
signing oracle refuses to proceed in case there exists some
honest party j that has not generated its offline token ρj
for the same signing coalition T . That is, the oracle is
guaranteed to use legitimately generated ρj instead of ad-
versarially picked ones. Although this seems to be a weak se-
curity guarantee, in practice one can implement such checks
assuming the existence of authenticated channels between
honest parties, i.e., if both sender and receiver are honest, an
adversary cannot tamper with transcripts between them. Fol-
lowing tRaccoon [PKM+24], an authenticated channel can
be easily implemented by having the (trusted) key generation
output a key pair of a (non-threshold) signature scheme for
each signer or pair-wise MAC keys, and by having every
party i sign the tuple (T , i, ρi) after executing the offline
algorithm Sign1. In this way, one can assume that in the
unforgeability game the adversary cannot send to the sign-
ing oracles inputs on behalf of honest parties, as otherwise
that would violate the unforgeability of the (single-signer)

Table 1: Parameters for our threshold signature.

λ Security parameter
R f-th cyclotomic ring, R = Z[ζ] ∼= Z[X]/⟨Φf(X)⟩
φ degree of R, φ = φ(f)
q Ring modulus
κ ℓ1-norm of challenge c
ν Number of low-order bits discarded from h
ξ Number of low-order bits discarded from b

qν qν = ⌊q/2ν⌋, Zqν defines a space h̃ = ⌊h⌉ν and ∆ live in
qξ qξ =

⌊
q/2ξ

⌋
, Zqξ defines a space b̃ = ⌊b⌉ξ lives in

n Length of secret key
m Length of the public key
t Number of parties needed to sign
ℓ Total number of parties holding key shares
l Length of a PRF seed
d Width of Di

d̄ d̄ = d− 1, Length of u
σe Gaussian parameter of the LWE public key b
σ∗ Gaussian parameter of the LWE commitment di,0

σE Gaussian parameter of the LWE commitment Di,1

σu Gaussian parameter of the u sampled during signing
σtd Gaussian parameter of the trapdoor matrix T (only used in the

security proof)
B2 ℓ2-norm bound of a valid signature vector (z, 2ν ·∆)
Q Max number of signing queries supported by our scheme
Qc Max number of hash queries to Hc supported by our scheme
Qu Max number of hash queries to Hu supported by our scheme

signature scheme. For simplicity of exposition we do not
include this routine in the syntax of our construction, but
our program code contains an implementation of MACs.

3. Ringtail Threshold Signature Scheme

In the following, we give an informal and intuitive
description of our t-out-of-ℓ threshold-signature scheme
Ringtail, whereas we refer the reader to Algorithm 1 for
a formal presentation. We present the parameters for the
scheme in Table 1. Additionally, the scheme uses two hash
functions Hu : {0, 1}∗ → Dd̄

σu
and Hc : {0, 1}∗ → C,

modeled as random oracles. Here C ⊆ R is a challenge set
consisting of ternary polynomials with Hamming weight κ
(as defined in Section 2.8). On the other hand, outputs of
Hu are distributed as Gaussians. To implement Hu using a
standard hash function, one may first hash the input string
into a string ρ, and then use ρ as a randomness source to run
an appropriate Gaussian sampling algorithm that samples a
module element from Dd̄

σu
coefficient wise.

In a threshold signature scheme, the key generation is
performed by a trusted party. In the case of Ringtail, this
means sampling an LWE key b := As + e mod q, where
both the secret s and the noise e are sampled from discrete
Gaussian distributions. The trusted party then shares the
secret s using the standard Shamir secret sharing and dis-
tributes the resulting shares (s1, . . . , sℓ) to the participants.
We shall think of b as the joint public key of the participants
and, jumping ahead, a valid signature will be identical to a
Raccoon signature under b. The crux of the protocol will

Game 1: Unforgeability experiment with static corruptions for threshold signature

ExpTUFTS,A(1λ)

1: S ← ∅ // open signing sessions
2: S′ ← ∅ // closed signing sessions
3: M← ∅ // set of signed messages
4: pp← Setup(1λ)
5: C ← AH

1 (pp)
6: if (|C| ≥ t) ∨ (C ⊈ [ℓ]) then
7: return 0
8: (pk, {ski}i∈[ℓ])← Gen(1ℓ, 1t)
9: H ← {i}i∈[ℓ]\C // honest party indices

10: (µ∗, σ∗)← AOSign1
,OSign2

,H

2 (pk, {ski}i∈C)
11: b← Ver(pk, µ∗, σ∗)
12: if (b = 1) ∧ (µ∗ /∈M) then
13: return 1
14: else
15: return 0

OSign1(i, T)
1: if (i /∈ H) ∨ (i /∈ T) ∨ (|T | < t) ∨ (T ⊈ [ℓ]) then
2: return ⊥
3: eid

$← {0, 1}∗ // local execution ID
4: (ρi, sti)← Sign1(ski)
5: S ← S ∪ {(eid, i, T , ρi, sti)}
6: return (eid, ρi)

OSign2(eid, i, {ρj}j∈T \{i}, µ)

1: if ((eid, i, T , ·, ·) /∈ S) ∨ ((eid, i) ∈ S′) ∨ (∃j ∈ (T ∩ H) \ {i} : (·, j, T , ρj , ·) /∈ S) then
2: return ⊥
3: Load sti s.t. (eid, i, T , ·, sti) ∈ S
4: σi ← Sign2({ρj}j∈T \{i}, µ, sti)
5: S′ ← S′ ∪ {(eid, i)}
6: M←M∪ {µ}
7: return σi

Algorithm 1: Ringtail

Setup(1λ)

1: pp := A
$← Rm×n

q

2: return pp

Gen(1ℓ, 1t)

1: s
$← Dn

σe

2: e← Dm
σe

3: b := As+ e mod q
4: pk := b̃ = ⌊b⌉ξ
5: (s1, . . . , sℓ)← Share(s, q, t, ℓ)
6: for i ∈ [ℓ] do
7: for j ∈ [ℓ] do
8: sdi,j

$← {0, 1}l,
9: for i ∈ [ℓ] do

10: ski := (si, (sdi,j , sdj,i)j∈[ℓ])

11: return (pk, (ski)i∈[ℓ])

Combine(µ, T , (ρi, σj)j∈T)

1: (Dj , zj)j∈T := (ρj , σj)j∈T
2: u := Hu(pp, pk, T , (Dj)j∈T , µ)
3: D :=

∑
j∈T Dj

4: h := D

(
1
u

)
mod q

5: h̃ := ⌊h⌉ν
6: c := Hc(pp, pk, h̃, µ)
7: z :=

∑
j∈T zj mod q

8: ∆ := h̃−
⌊
Az− 2ξ · b̃ · c mod q

⌉
ν

mod qν

9: σ := (c, z,∆)
10: return σ

Sign1(ski)

1: (si, (sdi,j , sdj,i)j∈[ℓ]) := ski
2: r∗i ← Dn

σ∗ , e∗
i ← Dm

σ∗

3: Ri ← Dn×d̄
σE

, Ei ← Dm×d̄
σE

4: Di := [di,0 |Di,1] = A[r∗i |Ri] + [e∗
i |Ei] mod q ∈ Rm×d

q

5: ρi := Di

6: sti := (T , ski, r∗i ,Ri,Di)
7: return (ρi, sti)

Sign2((ρj)j∈T \{i}, µ, sti)

1: (T , ski, r∗i ,R∗
i ,Di) := sti

2: for j ∈ T \ {i} do
3: Dj := ρj
4: u := Hu(pp, pk, T , (Dj)j∈T , µ) ∈ Rd̄

5: D :=
∑

j∈T Dj ∈ Rm×d
q

6: [d | D̄] := D
7: if D̄ ∈ Rm×d̄

q is not full-rank then
8: abort
9: h := D

(
1
u

)
mod q

10: h̃ := ⌊h⌉ν
11: c := Hc(pp, pk, h̃, µ)
12: mi ←

∑
j∈T PRF(sdi,j , (pp, pk, T , (Dk)k∈T , µ))

13: m′
i ←

∑
j∈T PRF(sdj,i, (pp, pk, T , (Dk)k∈T , µ))

14: zi := si · λT ,i · c+ [r∗i |Ri] ·
(
1
u

)
+m′

i −mi mod q

15: return σi = zi

Ver(pk, µ, σ) Identical to Raccoon (see Section 2.8)

therefore be in how an authorized set of t parties can jointly
compute such signature, which we describe next.

As a straw-man protocol, one may first describe the
following simple method to aggregate t Raccoon signatures
(Section 2.8) with a shared challenge c: for each party i ∈ T
with |T | = t, 1) announce di,0 = Ar∗i + e∗i , 2) compute
challenge c = Hc (pp, pk, ⌊h⌉ν , µ) where h =

∑
i∈T di,0,

3) announce response zi = si · λT ,i · c + r∗i , and 4)
output c, z =

∑
i∈T zi and the corresponding hint vector

as a finalized signature. As observed in numerous works
e.g. [DEF+19], [BLL+21], [DOTT22], [PKM+24], such
a straw-man protocol is susceptible to concurrent attacks,
because an adversary launching parallel signing sessions
is able to craft a forgery by carefully combining partial
signatures from different sessions. Taking inspiration from
FROST [KG20] and MuSig-L [BTT22], to protect against
concurrent attacks, our Ringtail introduces an additional
commitment matrix Di,1 = ARi + Ei. Now, we modify
the straw-man protocol by hashing h =

∑
i(di,0 +Di,1u),

where u itself is derived by hashing all the commitments
and a message µ. Intuitively, transformation by u makes
it harder for an adversary to control the challenge c by
adaptively choosing Di,1 and µ after seeing honest parties’s
contribution.

We now elaborate on each step of the modified proto-
col. The protocol proceeds with a single broadcast round
followed by a single aggregation round. In the first (offline,
message-independent) round, each party samples an imbal-
anced LWE sample

Di := A[r∗i |Ri] + [e∗i |Ei] mod q

where r∗i and e∗i are sampled from a Gaussian distribution
with a much larger standard deviation than Ri and Ei

(whose purpose will become clear in the proof). Each party
then broadcasts Di. In the second round, the parties from
the authorized set T compute the combined matrix

D :=
∑
j∈T

Dj and h := D

(
1
u

)
mod q

where u is computed by hashing the transcript so far. Then
each party can derive the sigma protocol challenge c by
hashing a rounded version of h (where the rounding is done
to discard the noisy low-order bits). Finally, the share of the
signature can be computed as

zi := si · λT ,i · c+ [r∗i |Ri] ·
(
1
u

)
mod q

and it can be verified that summing up all {zj}j∈T one
obtains a valid signature under b, as desired. In the actual
protocol, each party will add a masking term m′

i−mi to the
signature share zi, which will serve the purpose of hiding
the partial contribution of each party. Note that the pairwise
PRF keys sdi,j , sdj,i are generated by Gen in such a way
that the sum of corresponding shares

∑
j∈T m′

j −mj will
always be 0. We take this masking technique verbatim from
tRaccoon [PKM+24], [KRT24].

We further require that an aggregated D = [d | D̄] ∈
Rm

q × Rm×d̄
q is well-formed (Line 7). This is essentially

to guarantee sufficiently high min-entropy of (rounded) d+
D̄u mod q even if the adversary contributes to D adaptively
after viewing honest parties’ contribution.

The verification operation is identical to a non-threshold
version of Raccoon (Section 2.8), although the ℓ2-norm
bound B2 must be set carefully to retain correctness while
accommodating a bounded number of active signers t as
in tRaccoon. Following [PKM+24], we set t ≤ 1024 and
estimate parameters based on this bound.

Remark 3 (Precomputable operations in Sign2). For
an optimized implementation, one can preprocess several
message-independent operations in Sign2 of Algorithm 1.
As soon as Dj’s are received from other parties in the
offline phase, each signer can pre-compute a hash of
(pp, pk, T , (Dj)j∈T , µ) and reuse it as input to both Hu

and PRF once a message µ to be signed is obtained. It
is also possible to preprocess the full rank-ness test of D̄
(Line 7).

3.1. Correctness Analysis

In this section, we describe the choice of the verification
bound B2 ensuring that the scheme of Algorithm 1 is
correct with correctness error ≲ 2−λ. We also show that
the probability that one execution of the protocol fails due
to the aborting condition (Line 7 of Algorithm 1) being
triggered is very small (< 2−1000 for all our parameters).
Correctness. Signature verification passes if (though not
necessarily only if) ⌊Az− bc mod q⌉ν + ∆ is equal to
the value ⌊h⌉ν computed in the Combine algorithm, and∥∥(z, 2ν∆)∥∥

2
≤ B2. The first condition is satisfied by con-

struction for all signatures output by the Combine algorithm,
so it suffices to check the second one.

Due to the cancellation of the masking values mj ,m
′
j

and correctness of Shamir secret sharing, the z element in
a signature can be expressed as:

z =
∑
j∈T

zj ≡ s · c+
∑
j∈T

(r∗j ,Rj) ·
(
1
u

)
(mod q).

where T ⊆ [ℓ] is a signing coalition such that |T | = t.
In this expression, the dominant term by far is the sum
r̄ :=

∑
j r

∗
j , which is distributed as a discrete Gaussian of

parameter σ∗√t. The fact that this term is of much larger
magnitude than all the others is necessary for the security of
the scheme with respect to the hLWE problem. Furthermore:

Az− bc ≡ As · c+A
∑
j∈T

(r∗j ,Rj) ·
(

1
uj

)
−Asc− ec

≡
∑
j∈T

(
Dj − (e∗j ,Ej)

)
·
(
1
u

)
− ec

≡ h−
(∑

j∈T

(e∗j ,Ej)

(
1
u

)
+ ec

)
(mod q).

Thus, if we write b⊥ = b− 2ξb̃, we get:

Az−2ξb̃c ≡ h−
(∑

j∈T

(e∗j ,Ej)

(
1
u

)
+ec+b⊥c

)
(mod q).

Denote the term in braces on the R.H.S. by ẽ. We have:

∆ = ⌊h⌉ν − ⌊h− ẽ⌉ν
and hence, by Lemma 2.3:

∥2ν∆∥2 ≤ ∥2ν ⌊ẽ⌉ν∥2 + 2ν ∥1∥2 ≤ ∥ẽ∥2 + 2ν+1 ∥1∥2 .

Now, in the error term ẽ, there is again a dominant term
by far, namely ē :=

∑
j∈T e∗j . Indeed, it is much larger

than the terms Eju and ec due to the security constraints
with respect to hLWE, and much larger than b⊥c because
ξ is chosen such that σ∗ ≫ 2ξ. Similarly, ν is also chosen
in such a way that σ∗ ≫ 2ν , and therefore, the previous
inequality reduces to ∥2ν∆∥2 ≲ ∥ē∥2. Overall, it follows
that: ∥∥(z, 2ν∆)∥∥

2
≲
∥∥(r̄, ē)∥∥

2
,

and the vector on the right-hand side is distributed as a
discrete Gaussian of parameter σ∗√t. Thus, to ensure that
the scheme is correct with correctness error ≲ 2−λ, it
suffices to choose B2 as an upper bound on the Euclidean
norm of a Gaussian vector of that parameter, except with
probability ≤ 2−λ. It suffices to take:

B2 = kσ∗
√

t(n+m)φ

where k satisfies k2− log(k2) ≥ 1+ 2λ log 2
(n+m)φ . Such a k can

be expressed directly in terms of Lambert’s W -function:

k :=

√
W−1

(
1 +

2λ log 2

(n+m)φ

)
.

Failure probability. The abort condition (Line 7 of Sign2
in Algorithm 1) is triggered if the matrix D̄ ∈ Rm×d̄

q is
not full-rank. In an honest verification of the protocol, the
matrix D̄ is uniformly random over Rq; therefore, the abort
happens with probability at most φ/qd̄−m by Corollary 3.2
below. This abort probability will be completely negligible
(less than 2−1000) in all of our parameter settings.

Lemma 3.1. A uniformly random m×d̄ matrix over the field
Fq0 with q0 elements is full-rank except with probability at
most 1/qd̄−m

0 .

Proof. Let v ∈ Fm
q0 be an arbitrary non-zero vector. For a

uniformly random M ∈ Fm×d̄
q0 , the vector vtM is uniformly

distributed in Fd̄
q0 , and hence Pr[vtM = 0] = 1/qd̄0 . Now,

M is not full-rank if and only if there exists a non-zero v
such that vtM = 0. By the union bound, it follows that
Pr[M not full-rank] ≤ (qm0 − 1)/qd̄0 < 1/qd̄−m

0 as required.

Corollary 3.2. A uniformly random m× d̄ matrix over Rq

is full-rank except with probability at most φ/qd̄−m.

Proof. Let r be the inertia degree of the prime q in R, so
that Rq is isomorphic to the product Fqr ×· · ·×Fqr of φ/r
copies of Fqr (we have r = 1 in the case of an NTT-friendly
q). A matrix M over Rq is full-rank if and only if all of its
components over this decomposition are full-rank. If M ∈
Rm×d̄

q is uniformly random, the components are uniformly
random as well, and by the previous lemma, each of them
is thus full-rank except with probability at most 1/qr(d̄−m).
Hence, by the union bound, the probability that M is not
full-rank over Rq is at most (φ/r)/qr(d̄−m) ≤ φ/qd̄−m as
required.

3.2. Security Analysis

Theorem 3.3. Let q,m, d̄ such that 1/qd̄−m ≤ negl(λ). Sup-
pose furthermore that (2ν ·(1+δ)/(σu

√
2πe))mφ ≤ negl(λ),

where δ = q/2ν − qν . For the parameters satisfying con-
straints from Lemma 2.3 and Theorem 2.8, the scheme
Ringtail is unforgeable as per Definition 2.12 under the
following assumptions

• stSISR,q,m,n+1,C,β with β = B2+
√
κ+(κ·2ξ+2ν+1)·√

φm (Definition 2.7)
• hLWER,q,m,n,k,σ,σ̄,L for (k, σ, σ̄,L) ∈
{(1, σE , σ

∗,Dσu
), (Qu, σe, σ

∗, C)} (Definition 2.5)
• dLWE′

R,q,m,k,σ for (k, χ) ∈ {(n, σ∗), (m,σtd)} with
σtd > ηε(Zmφ) (Definition 2.4)

• Security of PRF (Definition 2.9)
Concretely, for any PPT adversary A against the unforge-
ability game for Ringtail,

AdvTUF
A (λ) ≤ (Qc +Qu) ·AdvstSIS

R,q,m,n+1,C,β(λ)

+AdvhLWE
R,q,m,n,Qu,σe,σ∗,C(λ)

+QQu

(
d̄ ·AdvhLWE

R,q,m,n,1,σE ,σ∗,Dσu
(λ)

+ (d̄− 2m) ·Adv
dLWE′

R,q,m,m,σtd
(λ)

+Qu ·Adv
dLWE′

R,q,m,n,σ∗(λ)
)
+AdvPRF(λ) + negl(λ)

where negl(λ) denotes a statistical loss which is negligible
in λ, Q is the number of signing queries to OSign, Qu is
the number of hash queries to Hu, Qc is the number hash
queries to Hc, respectively. (We assume Qu and Qc include
hash queries made through queries to OSign2 .)

Proof Sketch. We sketch a proof of security for the con-
struction in Algorithm 1 and refer to Section A for a
formal proof. To illustrate the intuition, we focus on the
full threshold case i.e. ℓ = t where we already require
the same proof technique. Its generalization to a general
t-out-of-ℓ case mostly follows the idea of one-time masking
from [PKM+24], although additional care is required for
protecting against adversaries making queries to multiple
honest party oracles with inconsistent inputs. Since we
assume all-but-one corruption in this special case, in the
description below, we fix the index of an honest party to
h ∈ [t] and a set T = [t] of participants in every session.

To understand our proof strategy, it is useful to re-
call how one would ideally prove the unforgeability, for

the simplified case of a single honest party and a sin-
gle signing query. Loosely speaking, our simulation needs
to ensure that the verification relation is satisfied w.r.t. a
conceptual public key for the honest party i.e. a shifted
public key determined by the shares of corrupt parties
bh = b− (

∑
j∈T \{h} AsjλT ,j) = AshλT ,h + e:

Dh,1u ≈ Azh − bhc− dh,0 (1)

where [dh,0 |Dh,1] := Dh and the equality ignores noise
terms. The natural strategy would be to simulate the signing
query (without actually using the secret key) by sampling
c, u, and zh from the appropriate distribution, where the
distribution of zh is roughly Dn

σ∗ assuming σ∗ ≫ σe, σE

but still depends on the secret. Then one may sample all
but one column of Dh uniformly, namely Dh,1, and finally
solve for dh,0 by linear algebra. One can show that this
results in a distribution that is indistinguishable from the
original one, if one appropriately programs c and u as the
outputs of the respective random oracles.

When executing this strategy, one would encounter a
fundamental problem: One needs to program u as the output
of Hu, but at this point the matrix Dh is already fixed
(since it is taken as an input). Thus the simulator needs
to know ahead of time the query to the random oracle that
corresponds to the actual transcript. For the case of a single
signing query, the simulator can always guess such query,
which results into a loss of Qu in the advantage. However,
for k queries, this guessing translates into a loss of Qk

u,
which does not lead to any meaningful bound.

To overcome the above problem, we instead use a dif-
ferent simulation strategy inspired by [BTT22]. Our sim-
ulator programs a lattice trapdoor directly into the matrix
Dh,1, which allows us to simulate signatures by pre-image
sampling the vector u, instead of the column dh,0. The
advantage is that no guessing is needed in order for the
simulation to succeed, and we can furthermore prove that
the distribution induced by this alternative signing algo-
rithm is computationally close to the original one. To be
slightly more precise, we first argue that Dh,1 is indistin-
guishable from uniformly random matrix with a reduction
against the Hint-LWE problem (Definition 2.5), viewing
Dh,1 = ARh+Eh as an LWE instance, and Rhu+r∗h and
Ehu+e∗h as leakage vectors for the secret Rh and an error
Eh, respectively. Here, obtaining leakage vectors is crucial
for the reduction to simulate the view of an adversary in the
unforgeability game. Once Dh,1 is regarded uniform, we can
now invoke an appropriate trapdoor generation algorithm to
turn Dh,1 into pseudorandom matrix with a trapdoor, which
can be used to sample u satisfying (1).

Our proof then proceeds with a careful hybrid argument,
where we iteratively remove the need to use secret key for
each signing query, programming instead the matrix Dh that
is defined in the first round. Interestingly, the “guessing
strategy” defined above will be used as an intermediate
simulation, but only to prove indistinguishability between
the real and the simulated queries. Crucially, our simulator
will never have to guess more than a single query at a time.

After replacing all signing queries with simulated ones,
we are essentially left to 1) remove zh’s dependency on
the shared secret s, and 2) bound the probability that the
adversary outputs a valid forgery. These two steps are
essentially equivalent to those of tRaccoon. For 1), we
rely on Hint-LWE again to argue the public key b is
pseudorandom, this time viewing b = As + e as an LWE
instance, and cs+r∗h and ce+e∗h as leakage vectors, respec-
tively. Again, leakage vectors are necessary for simulating
the view of an adversary: cs + r∗h is programmed into
zh = (cs+ r∗h)+Rhu−

∑
j∈T \{h} cλT ,jsj , and ce+e∗h is

programmed into (1), both of which are needed for signing
oracle simulation. Since at this stage the secret key is not
used anywhere, we can now view [A |b] as an instance of
(SelfTarget)SIS (Definition 2.7) and turn the forgery tuple
(c∗, z∗,∆∗) with bounded ℓ2-norm into a solution vector
for SIS.

This description oversimplifies many aspects of the
proof. For instance, we also need to ensure that, whenever
we program c as the output of Hc, the oracle is not yet
defined at that point. We can show this with an information
theoretic argument on the min-entropy of h, which is es-
tablished by analyzing the distribution of D̄u. Furthermore,
we need to ensure that the simulation hides the contribution
of individual parties, which we do with (by now standard)
masking techniques. We refer to Section A for more details.

3.3. Concrete Parameter Selection

We now derive concrete parameters for the scheme,
targeting the λ = 128, 192 and 256-bit security levels. We
aim to support up to t = 1024 signers, and a large bound
Q = 260 on the number of signing queries per signing key.
As usual when deriving concrete parameters, we aim for
security with respect to the underlying problems, and ignore
the polynomial loss factors in security proofs.

The parameter constraints can be summed up as follows.
In all cases, we work over the ring R ∼= Z[x]/(xφ+1) with
φ a power of two. The modulus q is chosen as a prime such
that q ≡ 1 (mod 2φ) and ⌊q/2ν⌉ = ⌊q/2ν⌋, so that Rq

supports a fast NTT-based multiplication and the condition
for Lemma 2.3 is satisfied. Other constraints are as follows.
Gaussian widths. For accurate and well-behaved sampling
of the discrete Gaussians, we should have σe, σtd ≥ ηε(Rm)
and σE ≥ ηε(Rd̄).
Correctness. For correctness, §3.1 says that we should have
B2 ≥ kσ∗

√
t(n+m)φ, with:

k =

√
W−1

(
1 +

2λ log 2

(n+m)φ

)
to ensure a correctness error ≤ 2−λ.
Size of σu. By Theorem 2.8, we need to take σ2

u ≥ (σ2
g +

1)σmax(T)2+ηε(Rd̄)2 where σ2
g ≥ 2b ·(2b+1)2ηε(Zk), for

b the chosen trapdoor radix and k = ⌈logb q⌉. Moreover, by
Bai–Yin’s law, σmax(T) = (σtd + o(1)) · (

√
φd̄ +

√
2φm)

with high probability. These constraints together determine
the lower bound on σu.
Size of |C|. For the target collision resistance of Hc and
the security of the stSIS problem, we need |C| ≥ 2λ. Since
|C| = 2κ

(
φ
κ

)
, this gives a lower bound on the Hamming

weight κ.
Security I. Hardness of stSISR,q,m,n+1,C,β for β = B2 +√
κ+ (2ξκ+ 2ν+1) · √φm.

Security II. Hardness of dLWE′
R,q,m,k,σ for (k, σ) ∈{

(n, σ∗), (m,σtd),
}

. Among those constraints, the one on
σtd is more stringent.
Security III. Hardness of hLWER,q,m,n,k,σ,σ̄,χ for
(k, σ, σ̄, χ) = (1, σE , σ

∗,Dσu
) and (Qu, σe, σ

∗, C).
Estimating security with respect to the dLWE′ and stSIS

problems is standard, and we carry it out using Albrecht et
al.’s LWE Estimator [APS15], [A+], which now supports
both LWE and SIS problems. Regarding hLWE, we use the
following corollary of Theorem 2.6 to express it as a dLWE′

instance, again estimated using the LWE Estimator.

Corollary 3.4. Let σ0 =
√
2ηε(Zφ), σ = αηε(Zφ) for some

α > 2, and χ some distribution onRk. Let B be some bound
such that for (γ1, . . . , γk) sampled from χ,

∑
j ∥γj∥

2
1 ≤ B

with overwhelming probability, and σ∗ such that:

σ∗ ≥ ηε(Zφ) ·
√
B · 2α√

α2 − 4
.

Then there exists an efficient reduction from dLWE′
R,q,m,n,σ0

to hLWER,q,m,n,k,σ,σ̄,χ.

This imposes further constraints. For the first hLWE
instance, we need σE = αηε(Zφ) for some α > 2 and

σ∗ ≥ ηε(Zφ) ·
√

Bu ·
2α√
α2 − 4

,

where Bu is such that Pr[∥u∥21 > Bu] ≤ 2−λ for u ∼ Dσu
.

Now standard subgaussian bounds show that Pr[∥u∥1 >
kσu] ≤ 2φ exp

(
− k2/(2φ)

)
, so it suffices to pick Bu =

σ2
u · 2φ(φ log 2 + λ).

For the second hLWE instance, we need σe = αηε(Zφ)
for some α > 2 and

σ∗ ≥ ηε(Zφ) ·
√

Bc ·
2α√
α2 − 4

,

where Bc is a bound on
∑Qu

j=1 ∥cj∥
2
1 for cj ∈ C. Since

∥cj∥2 = κ2 for all j, we simply have Bc = κ2Qu.
Both hLWE instances are at least as hard as

dLWE′
R,q,m,n,σ0

with σ0 =
√
2ηε(Zφ).

Since the lower bound on σ∗ given by the second hLWE
instance depends on Qu, we need to pick a concrete value
for this bound on the number of Hu queries as well, and
we set Qu = Q = 260. While it may seem prudent to
pick Qu ≫ Q instead due to the fact that hash queries are
local computations, we claim that this choice more closely
captures the power of a real-world attacker. Indeed, even
though the reduction to hLWE (Lemma A.3) needs to receive
Qu leakage vectors from the hLWE game (as it does not

know which Hu queries are used by the online signing
oracle OSign2), the reduction only reveals at most Q leakage
vectors to a forger through OSign2 . In fact, if the reduction
could correctly guess in advance which Hu queries are used
by OSign2 , it would be possible to construct a reduction to
hLWE parameterized by Q. In that sense, the fact that the
hLWE problem is parametrized by Qu instead of Q seems
to be an artifact of the security proof, and hence choosing
Qu ≫ Q would highly overestimate the amount of leakage
available to a real-world forger.

We propose parameters satisfying those constraints at
the 128, 192 and 256-bit security levels in Table 2.

4. Implementation & Evaluation

Our evaluation aims to assess the following efficiency
metrics of Ringtail:

1) network bandwidth cost,
2) local per-party latency,
3) end-to-end latency in a realistic, global setting.

In particular, we compare to tRaccoon [PKM+24], which
is the current state-of-art implementation for lattice-based
threshold signatures. While tRaccoon signing takes 3
rounds, Ringtail takes only 2, where only the last round
requires knowledge of the message. Thus, the first round
can be preprocessed in an offline phase. The majority of
compute after the first round can also be locally computed
and preprocessed by each party without knowledge of the
message. In a live deployment, eliminating message-specific
pairwise communication between parties is instrumental
since network transmission time often dominates the latency
of multi-party protocols, as we show in Section 4.4.

4.1. Implementation

We implement Ringtail in ≈ 1800 lines of Golang using
Lattigo [lat23], [MBTPH20], an open-source library with
optimized arithmetic for lattice-based cryptography. Our
codebase can be found at:

https://github.com/daryakaviani/ringtail

We use Lattigo’s power-of-2 cyclotomic ring operations with
an NTT-friendly modulus

q = 248 + 214 + 211 + 29 + 1 = 281474976729601,

serialization, as well as uniform, discrete Gaussian, and
ternary sampling. We instantiate our implementation with
the parameters in Section 3.3.
Hash functions, MACs, & PRFs. We build our hash
functions, MACs, and pseudorandom functions from the
BLAKE3 hash function. In particular, Hc seeds a Gaussian
sampler with the BLAKE3 hash function output, and Hu

seeds a ternary sampler (configured with outputs of Ham-
ming weight κ) with the hash function output.
Optimizations. For fast ring element multiplications, we
integrated Lattigo’s implementations of the number theoretic

https://github.com/daryakaviani/ringtail

Table 2: Parameters for Ringtail at the 128, 192 and 256-bit security levels. Sizes in KB.

Level Bit security (LWE/SIS) φ ⌊log2 q⌉ κ (n,m, d̄) σe = σE log2 σu log2 σ
∗ log2 B2 (ν, ξ) |vk| |sig|

128 129 / 138 256 48 23 (7, 8, 48) 6.1 27.2 37.3 48.6 (29,30) 4.5 13.4
192 199 / 214 512 46 31 (5, 6, 42) 6.2 23.5 36.4 48.0 (25,29) 6.4 19.9
256 276 / 282 512 48 44 (7, 8, 48) 9.9 27.8 38.6 50.3 (29,31) 8.5 27.3

Table 3: Bandwidth (in bytes) for sending the verification key and signature across the network in Ringtail, tRaccoon and
EKT, as well as the the communication required between parties for signature generation and mask exchange.

Scheme |vk| |sig| Sign (Total) Sign (Online) Gen

Ringtail 4,608 13,702 612,864 + 16t 10,752 10,752 + 32ℓ
tRaccoon [PKM+24] 3,856 12,736 40,800 + 16t 40,800 + 16t 12,556 + 32ℓ
EKT [EKT24] 5,632 11,059 282,311 14,400 14,400 + 16ℓ

Table 4: Local per-party latency (ms) for Ringtail and tRaccoon for different thresholds. The tRaccoon entries in the Online
column are their total local signing time across all 3 of their online rounds.

t Scheme Gen Sign1 Sign2 Sign2 Finalize Verify

Preprocess Online

4 Ringtail 6.962 18.995 131.944 4.601 0.143 1.361
tRaccoon 0.282 — — 10.581 0.537 0.521

16 Ringtail 14.936 29.084 164.646 13.904 0.179 1.331
tRaccoon 0.199 — — 12.208 0.576 0.520

64 Ringtail 57.672 73.684 313.938 52.036 0.339 1.627
tRaccoon 0.389 — — 14.308 0.752 0.524

256 Ringtail 224.084 254.253 829.033 201.272 0.821 1.515
tRaccoon 1.351 — — 57.462 1.517 0.521

1024 Ringtail 1237.583 978.182 2949.853 794.288 2.706 1.434
tRaccoon 5.472 — — 194.149 5.510 0.527

Table 5: Global wide area network latency (ms) for Ringtail and for t = ℓ = 8.

Round Local Online Compute Network Latency Combine End-to-End

Sign1 26.248 1888.147 — 1914.395
Sign2 Online 7.497 620.513 0.173 628.183

transform (NTT) and Montgomery coefficient-wise multipli-
cations. We utilize a hash function with AVX2 acceleration3

for SIMD operations.
Networking. We design a networking stack for the WAN
setting, which allows signers to form peer-to-peer network
connections with other parties. Each party concurrently com-
municates with every other party by serializing and sending
its messages through outgoing TCP sockets, while simulta-
neously receiving and processing incoming messages.
Preprocessing & Full-Rankness Check. The Sign2 Prepro-
cessing phase involves MAC verification, hashing D, and
the full rank-ness test on D̄. These are steps after Sign1
which are message-independent and can be preprocessed in
the offline phase. To create a performant implementation for
the full-rankness check, we compute the element-wise NTT
of D̄, resulting in φ matrices over Zq. We then compute
the rank of each matrix using Gaussian elimination modulo

3. https://github.com/zeebo/blake3

q. Checking that all φ matrices are full-rank is equivalent
to checking that D̄ is full-rank, but avoids heavy ring
arithmetic, such as ring element division.

4.2. Bandwidth

Table 3 presents the number of bytes sent across the
network throughout in Ringtail, tRaccoon [PKM+24], and
EKT [EKT24]. In particular, we report the size of the
verification key and signature, as well as the the total number
of bytes sent during key generation and signing.

At t = 1024, Ringtail’s communication bandwidth in
the online phase is 81% less than tRaccoon and 25% less
than EKT, at the expense of a high-communication offline
phase which can be preprocessed. As we will concretize in
Section 4.4, minimizing the per-message bytes sent across
the network is crucial since this time often dominates the
end-to-end signing latency. The signature and verification
key size is comparable across all three schemes.

https://github.com/zeebo/blake3

0 250 500 750 1000 1250 1500 1750 2000
Latency (ms)

1

2

Si
gn

R
ou

nd

Ringtail WAN Latency
Local Compute Latency
Network Latency

Figure 1: Global wide area network latency (ms) for
Ringtail and for t = ℓ = 8.

4.3. Local Per-Party Latency

Experiment Setup. We run our local per-party computation
on one AWS c5.4xlarge instance with 16 vCPUs and 32
GB of memory. We use a single core without parallelism. To
prevent multiple signers from competing for CPU resources,
we perform each signer’s computation serially.

Table 4 compares the per-party compute latency of
Ringtail to tRaccoon. As the tRaccoon implementation
is not yet open-source, we use their results as reported
in [PKM+24].

We emphasize that since both schemes perform on the
order of milliseconds, granular differences relating to im-
plementation nuances, hardware, and randomness generation
make a significant difference in the results, so these numbers
are not a perfect comparison (e.g. verification exhibits a la-
tency difference, though the schemes are identical). We were
not able to identify these discrepancies since the tRaccoon
code is not open source, but we still provide these numbers
to show that, although the primary advantage of Ringtail is
its one-shot online round, the local compute latency is also
comparable. We average our results over 100 executions.

We expect the local latency to be higher than tRaccoon
due to the additional computation of processing the D
matrix in Algorithm 1, which is of higher dimension for
the standard-assumption security proof. As we will show
in Section 4.4, however, end-to-end latency is often dom-
inated by network latency. Thus, we actually predict that
Ringtail would be faster in a real-world deployment for two
reasons:

1) In our online phase, fewer bytes must be transferred
across the network than tRaccoon (Table 3).

2) Each additional roundtrip contributes significantly to
the total signature generation time. tRaccoon has three
online round, while we have one offline round and only
one online round (Table 5).

Note that Sign2 Preprocessing involves MAC verifica-
tion, hashing D, and the full-rankness check on D̄, as
in Remark 3. These can be performed in parallel with the
rest of the computation since they are message-independent.

4.4. Wide Area Network (WAN) Latency

In standard applications of threshold signatures (Sec-
tion 1.2), a small number of signers are located in distinct

trust domains, often in dispersed geographical regions. In
these cases, the time to generate a signature is often domi-
nated by network latency, making round-optimized protocols
vital. Therefore, we evaluate Ringtail’s performance in the
WAN setting.

Experiment Setup. We execute the protocol using 8
AWS c5.4xlarge instances with 16 vCPUs and 32
GB of memory. We select machines in the follow-
ing 8 regions across 5 continents, to achieve real-
istic network latency: us-west-1 (Northern Califor-
nia), us-east-1 (Northern Virginia), eu-central-1
(Frankfurt), eu-west-1 (Ireland), ap-northeast-1
(Tokyo), ap-southeast-1 (Singapore), sa-east-1
(São Paulo), and ap-southeast-2 (Sydney). We mea-
sure the round-trip-time and network throughput between
each pair of servers in our setup; the average RTT is 170.11
ms and the average network throughput is 183.23 Mbps.

Table 5 and Fig. 1 show the compute-only, network,
and end-to-end latency of Ringtail among our t = ℓ = 8
servers. We average our results over 10 executions. As
expected, the local per-party signing is significantly greater
than Table 4 due to the network latency, amounting to
98.63% and 98.78% of the round 1 and 2 online end-to-
end latencies, respectively. While tRaccoon does not provide
WAN benchmarks, we predict that Ringtail’s online phase
would be substantially faster for two reasons: First, fewer
bytes must be transferred across the network, and second,
each additional roundtrip contributes significantly to the
total signature generation time. Indeed, the fact that network
latency dominates overall time highlights the importance of
minimizing message-specific roundtrips.

5. Conclusion

In this work, we propose Ringtail, a practical two-round
threshold signature scheme. Our scheme is proven secure
against standard lattice assumptions (namely, LWE and SIS),
and it is concretely efficient, even for a large number of
parties. Our benchmarks show that Ringtail is competitive
with other standard-assumption protocols that have more
rounds of communication. Overall, our work demonstrates
that lattice-based threshold signatures with a single round
of online communication and solid security foundations can
be efficient enough to be used in the real world.

Acknowledgments

We thank Elizabeth C. Crites for discussions on the
security model of threshold signatures, and Jean-Philippe
Bossuat for discussions about the Lattigo codebase. We
thank anonymous reviewers of Symposium on Security and
Privacy 2025 for helpful comments and constructive feed-
back.

C.B. is supported by the SNSF Ambizione grant
No. PZ00P2_216140. R.L. is supported by the Research
Council of Finland project No. 358951. G.M. is supported

by the European Research Council through an ERC Starting
Grant (Grant agreement No. 101077455, ObfusQation). This
paper was prepared in part for information purposes by the
Artificial Intelligence Research group of JPMorgan Chase &
Co and its affiliates (“JP Morgan”), and is not a product of
the Research Department of JP Morgan. JP Morgan makes
no representation and warranty whatsoever and disclaims
all liability, for the completeness, accuracy or reliability
of the information contained herein. This document is not
intended as investment research or investment advice, or a
recommendation, offer or solicitation for the purchase or
sale of any security, financial instrument, financial product
or service, or to be used in any way for evaluating the merits
of participating in any transaction, and shall not constitute a
solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would
be unlawful.

References

[A+] M. R. Albrecht et al. Security estimates for lattice prob-
lems. GitHub repository. available at https://github.com/
malb/lattice-estimator.

[AB21] H. K. Alper and J. Burdges. Two-round trip schnorr multi-
signatures via delinearized witnesses. In CRYPTO 2021,
Part I, vol. 12825 of LNCS, pp. 157–188, Virtual Event,
2021. Springer, Heidelberg.

[AB23] S. Abramova and R. Böhme. Anatomy of a High-Profile data
breach: Dissecting the aftermath of a Crypto-Wallet case. In
32nd USENIX Security Symposium (USENIX Security 23),
pp. 715–732, Anaheim, CA, 2023. USENIX Association.

[ADP24] N. A. Alkadri, N. Döttling, and S. Pu. Practical lattice-
based distributed signatures for a small number of sign-
ers. Cryptology ePrint Archive, Paper 2024/449, 2024.
https://eprint.iacr.org/2024/449.

[AL21] M. R. Albrecht and R. W. F. Lai. Subtractive sets over
cyclotomic rings - limits of Schnorr-like arguments over
lattices. In CRYPTO 2021, Part II, vol. 12826 of LNCS,
pp. 519–548, Virtual Event, 2021. Springer, Heidelberg.

[APS15] M. R. Albrecht, R. Player, and S. Scott. On the concrete
hardness of learning with errors. J. Math. Cryptol., 9(3):169–
203, 2015.

[ASY22] S. Agrawal, D. Stehlé, and A. Yadav. Round-optimal lattice-
based threshold signatures, revisited. In ICALP 2022, vol.
229 of LIPIcs, pp. 8:1–8:20. Schloss Dagstuhl, 2022.

[BCJ08] A. Bagherzandi, J. H. Cheon, and S. Jarecki. Multisignatures
secure under the discrete logarithm assumption and a gen-
eralized forking lemma. In ACM CCS 2008, pp. 449–458.
ACM Press, 2008.

[BCK+22] M. Bellare, E. C. Crites, C. Komlo, M. Maller, S. Tes-
saro, and C. Zhu. Better than advertised security for non-
interactive threshold signatures. In CRYPTO 2022, Part IV,
vol. 13510 of LNCS, pp. 517–550. Springer, Heidelberg,
2022.

[BEP+21] P. Bert, G. Eberhart, L. Prabel, A. Roux-Langlois, and
M. Sabt. Implementation of lattice trapdoors on modules and
applications. In Post-Quantum Cryptography - 12th Inter-
national Workshop, PQCrypto 2021, pp. 195–214. Springer,
Heidelberg, 2021.

[BGG+18] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim,
P. M. R. Rasmussen, and A. Sahai. Threshold cryptosys-
tems from threshold fully homomorphic encryption. In
CRYPTO 2018, Part I, vol. 10991 of LNCS, pp. 565–596.
Springer, Heidelberg, 2018.

[BKP13] R. Bendlin, S. Krehbiel, and C. Peikert. How to share a lattice
trapdoor: Threshold protocols for signatures and (H)IBE.
In ACNS 13, vol. 7954 of LNCS, pp. 218–236. Springer,
Heidelberg, 2013.

[BL90] J. C. Benaloh and J. Leichter. Generalized secret sharing and
monotone functions. In CRYPTO’88, vol. 403 of LNCS, pp.
27–35. Springer, Heidelberg, 1990.

[BLL+21] F. Benhamouda, T. Lepoint, J. Loss, M. Orrù, and
M. Raykova. On the (in)security of ROS. In EURO-
CRYPT 2021, Part I, vol. 12696 of LNCS, pp. 33–53.
Springer, Heidelberg, 2021.

[BN06] M. Bellare and G. Neven. Multi-signatures in the plain
public-key model and a general forking lemma. In ACM
CCS 2006, pp. 390–399. ACM Press, 2006.

[BP23] L. Brandao and R. Peralta. Nist first call for multi-party
threshold schemes, 2023.

[BTT22] C. Boschini, A. Takahashi, and M. Tibouchi. MuSig-L:
Lattice-based multi-signature with single-round online phase.
In CRYPTO 2022, Part II, vol. 13508 of LNCS, pp. 276–305.
Springer, Heidelberg, 2022.

[CATZ24] R. Chairattana-Apirom, S. Tessaro, and C. Zhu. Partially
non-interactive two-round lattice-based threshold signatures.
Cryptology ePrint Archive, Paper 2024/467, 2024. https://
eprint.iacr.org/2024/467.

[Che23] Y. Chen. DualMS: Efficient lattice-based two-round multi-
signature with trapdoor-free simulation. In CRYPTO 2023,
Part V, vol. 14085 of LNCS, pp. 716–747. Springer, Heidel-
berg, 2023.

[CKM23] E. C. Crites, C. Komlo, and M. Maller. Fully adaptive
Schnorr threshold signatures. In CRYPTO 2023, Part I, vol.
14081 of LNCS, pp. 678–709. Springer, Heidelberg, 2023.

[CS19] D. Cozzo and N. P. Smart. Sharing the LUOV: threshold
post-quantum signatures. In Cryptography and Coding - 17th
IMA International Conference, IMACC 2019, Oxford, UK,
December 16-18, 2019, Proceedings, vol. 11929 of Lecture
Notes in Computer Science, pp. 128–153. Springer, 2019.

[DEF+19] M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss,
G. Neven, and I. Stepanovs. On the security of two-round
multi-signatures. In 2019 IEEE Symposium on Security
and Privacy, pp. 1084–1101. IEEE Computer Society Press,
2019.

[Des88] Y. Desmedt. Society and group oriented cryptography: A
new concept. In CRYPTO’87, vol. 293 of LNCS, pp. 120–
127. Springer, Heidelberg, 1988.

[DF90] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In
CRYPTO’89, vol. 435 of LNCS, pp. 307–315. Springer, Hei-
delberg, 1990.

[DKL+23] N. Döttling, D. Kolonelos, R. W. F. Lai, C. Lin, G. Malavolta,
and A. Rahimi. Efficient laconic cryptography from learning
with errors. In EUROCRYPT 2023, Part III, vol. 14006 of
LNCS, pp. 417–446. Springer, Heidelberg, 2023.

[DOTT22] I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchi. Two-
round n-out-of-n and multi-signatures and trapdoor commit-
ment from lattices. Journal of Cryptology, 35(2):14, 2022.

[EKT24] T. Espitau, S. Katsumata, and K. Takemure. Two-round
threshold signature from algebraic one-more learning with
errors. To appear in CRYPTO 2024, 2024.

[GKS24] K. D. Gur, J. Katz, and T. Silde. Two-round threshold lattice-
based signatures from threshold homomorphic encryption. To
appear in PQCrypto 2024, 2024.

[Gol01] O. Goldreich. Foundations of Cryptography: Basic Tools,
vol. 1. Cambridge University Press, Cambridge, UK, 2001.

https://github.com/malb/lattice-estimator
https://github.com/malb/lattice-estimator
https://eprint.iacr.org/2024/449
https://eprint.iacr.org/2024/467
https://eprint.iacr.org/2024/467

[GPV07] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. Cryptol-
ogy ePrint Archive, Report 2007/432, 2007. https://eprint.
iacr.org/2007/432.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In 40th
ACM STOC, pp. 197–206. ACM Press, 2008.

[JMW24] K. A. Jackson, C. A. Miller, and D. Wang. Evaluating the
security of CRYSTALS-Dilithium in the quantum random
oracle model. In EUROCRYPT 2024, Part VI, vol. 14656 of
LNCS, pp. 418–446. Springer, 2024.

[KG20] C. Komlo and I. Goldberg. FROST: Flexible round-optimized
Schnorr threshold signatures. In SAC 2020, vol. 12804 of
LNCS, pp. 34–65. Springer, Heidelberg, 2020.

[KLS18] E. Kiltz, V. Lyubashevsky, and C. Schaffner. A concrete
treatment of Fiat-Shamir signatures in the quantum random-
oracle model. In EUROCRYPT 2018, Part III, vol. 10822 of
LNCS, pp. 552–586. Springer, Heidelberg, 2018.

[KLSS23] D. Kim, D. Lee, J. Seo, and Y. Song. Toward practical
lattice-based proof of knowledge from hint-MLWE. In
CRYPTO 2023, Part V, vol. 14085 of LNCS, pp. 549–580.
Springer, Heidelberg, 2023.

[KRT24] S. Katsumata, M. Reichle, and K. Takemure. Adaptively
secure 5 round threshold signatures from MLWE/MSIS and
DL with rewinding. To appear in CRYPTO 2024, 2024.

[lat23] Lattigo v5. Online: https://github.com/tuneinsight/lattigo,
2023. EPFL-LDS, Tune Insight SA.

[LDK+20] V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe,
G. Seiler, D. Stehlé, and S. Bai. CRYSTALS-DILITHIUM.
Technical report, National Institute of Standards and Tech-
nology, 2020. available at https://csrc.nist.gov/projects/post-
quantum-cryptography/post-quantum-cryptography-
standardization/round-3-submissions.

[Lyu12] V. Lyubashevsky. Lattice signatures without trapdoors.
In EUROCRYPT 2012, vol. 7237 of LNCS, pp. 738–755.
Springer, Heidelberg, 2012.

[MBTPH20] C. V. Mouchet, J.-P. Bossuat, J. R. Troncoso-Pastoriza, and
J.-P. Hubaux. Lattigo: A multiparty homomorphic encryption
library in go. In Proceedings of the 8th Workshop on
Encrypted Computing and Applied Homomorphic Cryptog-
raphy, pp. 64–70, 2020.

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In EUROCRYPT 2012, vol. 7237 of
LNCS, pp. 700–718. Springer, Heidelberg, 2012.

[NRS21] J. Nick, T. Ruffing, and Y. Seurin. MuSig2: Simple two-
round Schnorr multi-signatures. In CRYPTO 2021, Part I,
vol. 12825 of LNCS, pp. 189–221, Virtual Event, 2021.
Springer, Heidelberg.

[PEK+23] R. D. Pino, T. Espitau, S. Katsumata, M. Maller,
F. Mouhartem, T. Prest, and M. O. Saari-
nen. Raccoon: A side-channel secure sig-
nature scheme. https://raccoonfamily.org/wp-
content/uploads/2023/07/raccoon.pdf, 2023.

[PKM+24] R. D. Pino, S. Katsumata, M. Maller, F. Mouhartem, T. Prest,
and M. O. Saarinen. Threshold Raccoon: Practical threshold
signatures from standard lattice assumptions. In EURO-
CRYPT 2024, vol. 14652 of LNCS, pp. 219–248. Springer,
2024.

[Sha79] A. Shamir. How to share a secret. Communications of
the Association for Computing Machinery, 22(11):612–613,
1979.

[Wol16] J. Wolff. How a 2011 hack you’ve never
heard of changed the internet’s infrastructure.
https://slate.com/technology/2016/12/how-the-2011-hack-
of-diginotar-changed-the-internets-infrastructure.html, 2016.

Appendix A.
Proof of Theorem 3.3

In this section, we provide a security proof of Ringtail
described in Algorithm 1. We first introduce some useful
notations. Let C ⊂ [ℓ] be a corruption set of size t − 1
chosen by the adversary at the beginning of the unforgeabilty
game. For each signing query, we denote by T ⊆ [ℓ] the
corresponding signing coalition4. For a fixed T , we call
T ∩ C a corrupted coalition and T ∩ H be an honest
coalition, respectively. Typically, we denote an index of
an honest party by i. For each honest coalition, we will
denote its smallest index by h := min(T ∩ H). We also
introduce a global counter ctrmin, denoting the number
of queries made to OSign1 so far with input (h, T). For
better readability, we slightly change the notations of sets
kept tracked by oracles OSign1 and OSign2 in Game 1. We
write “Store (resp. Load) (OFFLINE, eid, i, T ,Di, sti)” to
denote the tuple (eid, i, T ,Di, sti) is stored in (resp. loaded
from) the set S. Similarly, we write “Store (resp. Load)
(FINISH, eid, i)” to denote the tuple (eid, i) is stored in (resp.
loaded from) the set S′. The oracles also keep track of
potential online messages for all honest parties in the current
signing coalition, deter mined by invocations of Hu with
input (pp, pk, T , (Dj)j∈T , µ). We denote each online mes-
sage by a tuple (ONLINE, ctru, T , (Dj)j∈T , µ, (zj)j∈T ∩H),
where ctru is a counter that is initially set to 0 at the
beginning of the game and keeps track of the number of
fresh queries made to Hu. This counter will be used by
oracles in intermediate hybrids we introduce later.

Proof. We prove this by a hybrid argument, and use the
terms “hybrid” and “simulator” interchangeably. For com-
pleteness, in Algorithms 2 to 11 we present the pseudocode
for intermediate hybrids to detail out every hop precisely. In
the definitions of these hybrids, we omit subroutines which
are unchanged compared to the previous hybrid. Below, we
write Q for number of OSign1 queries made by the adversary
A.
Hyb0: This is equivalent to the unforgeability game as in
Game 1 with the construction inlined, except that OSign1
aborts if 1) it happens to generate Di that was already
generated by one of the previous calls to OSign1 , or 2)
the adversary previously queried Hu with input including
Di. Assuming that the event 1) does not occur, Di can
be used as a unique look-up key to load a recorded tu-
ple (OFFLINE, eid, i, T ,Di, . . .). Assuming that the event
2) does not occur, we may apply syntactic changes to Hu

such that it prepares a response zi for every honest party
i in T ∩ H as soon as it receives a query with input
(pp, pk, T , (D)j∈T , µ). Concretely, the input to Hu can be

4. In our security model, an adversary may query OSign1
for multiple

honest parties with inconsistent T , e.g., party 1 receives T = {1, 2, 3} and
party 2 may receive T ′ = {1, 2, 4}. However, such inconsistent coalitions
will be always detected in the following call to OSign2

since it validates that
all honest parties agreed to participate in the same coalition. As remarked
before, this is in practice guaranteed by having each party generate a
signature on (T , i,Di) and attach the signature to Di.

https://eprint.iacr.org/2007/432
https://eprint.iacr.org/2007/432
https://github.com/tuneinsight/lattigo
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://slate.com/technology/2016/12/how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.html
https://slate.com/technology/2016/12/how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.html

used to derive u, h, and thus challenge c after making a
query to Hc. As the input to Hu is consistent with that
of PRF, one time row and column masks mi,m

′
i can be

derived once Hu is queried. Since the preimage (r∗i ,Ri)
can be uniquely obtained from Di, Hu can indeed compute
zi for every i in T ∩H. Clearly, this syntactic change does
not alter the view of the adversary. We denote the routines
for generating an offline message Di by GenOffline, and
for all honest online messages (zi)i∈T ∩H by GenOnline,
respectively.
Hybs, s ∈ [Q]: In these hybrids, we change the way the
oracles answer the first s signing queries with input (i, T)
such that i is the smallest index in the honest coalition,
i.e., i = h := min(T ∩ H). In more detail, Hybs differs
from Hybs−1 in mainly two ways, which correspond to
substituting GenOffline and GenOnline with two new sub-
routines, SimOffline and SimOnline. First, for queries to
OSign with i = h, SimOffline samples Dh by sampling its
first column dh,0 uniformly at random, and the remaining
columns (denoted by Dh,1) with a trapdoor tdh. (To be
more precise, it generates D′

h,1 with a trapdoor and then
sets Dh,1 as its shift D′

h,1 + ARh + Eh for the reason
that becomes clear in later hybrids.) If the index i ̸= h,
it proceeds as in the real signing oracle. Second, for every
query to Hu containing (Dj)j∈T ∩H (from the queries to
OSign1), SimOnline does the following:

1) Sample c, r∗h, and e∗h at random from their respective
appropriate distributions.

2) Compute a session-wide response z∗ = sc + r∗h w.r.t.
the original secret s.

3) Use tdh to sample a short u such that

D′
hu = Az∗ − bc+ dh,0 + ec+ e∗h (2)

This step is carried out by preimage sampling algorithm
from Theorem 2.8.

4) Sample a response zi of parties i ∈ T ∩ H \ {h}
uniformly at random from Rn

q .
5) Compute a response zh of party h:

m =
∑

i∈T ∩H,j∈T ∩C

(mj,i −mi,j)

zh = z∗ +Rhu− (
∑

j∈T ∩C

sj · λT ,j) · c

−
∑

i∈T ∩H\{h}

(zi − r∗i −Riu) +m

where m is an intermediate value consisting of masks
and is never revealed.

6) Compute h, and attempt to program
Hc(pp, pk, ⌊h⌉ν , µ) with c. If Hc is already defined
on this input, Hu aborts.

Note that the adversary may query Hu many times with
different choices of (Dj)j ̸=h and µ before querying OSign2
on eid associated with Dh. At some point the adversary
queries OSign2 on (eid, h, (Dj)j ̸=h, µ) which fixes the first
round messages of the adversarial parties. Note that the logic

of OSign2 ensures that Hu must be queried on (Dj)j∈T and
µ, and hence zh returned by OSign2 is well-defined.
HybQ+1: This hybrid is identical to HybQ except that the
simulator generates the secret keys of the corrupted users as
sj

$← Rn
q for j ∈ C instead of executing Shamir sharing on

s. The hybrid remains well-defined since honest secret keys
(si)i∈H are not used for answering oracle queries.
HybQ+2: This hybrid is identical to HybQ+1 except that
the public key (before rounding) b is sampled uniformly at
random, while s and e sampled independently of b are used
for generating z∗ and u.
HybQ+3: This hybrid is identical to HybQ+2 except that
the simulator guesses a query to Hc that determines c̃ as
part of the forgery tuple (c̃, z̃, ∆̃) and aborts if c̃ was
previously programmed by SimOnline. That is, the simulator
picks a uniformly random q̃ ∈ [Qc + Qu] at the beginning
of the game, and skips programming Hc inside SimOnline
(Line 14) if its caller Hu was invoked as the q̃-the query to
random oracles (assuming that there is a common counter
for queries to both Hc and Hu); else, it invokes SimOnline
as in the previous hybrid. Similar to MuSig-L [BTT22],
we need to add this step to make sure that Hu does not
program Hc for all queries, since one of them might contain
a message µ̃ used for a forgery.

Lemma A.1 shows that the unforgeability experi-
ment ExpTUFTS,A and Hyb0 are statistically indistinguishable.
Lemma A.2 shows that HybQ and HybQ+1 are identical.
Lemma A.3 shows that HybQ+1 and HybQ+2 are computa-
tionally indistinguishable under the Hint-LWE assumption.
Lemma A.4 shows that the probability of the adversary
winning in HybQ+3 decreases by a multiplicative factor
1/(Qu + Qc) compared to HybQ+2. Lemma A.5 shows
that the probability of the adversary winning in HybQ+3

is negligible under the SelfTargetSIS assumption. Finally,
Lemma A.6 shows that Hybs−1 and Hybs are indistinguish-
able for s ∈ [Q]. Putting together, we obtain the concrete
advantage bound stated in Theorem 3.3.

Lemma A.1. The unforgeability experiment ExpTUFTS,A and
Hyb0 are statistically indistinguishable, i.e.

|AdvTUF
A (λ)− Pr[Hyb0(1

λ) = 1]| ≤ negl(λ).

Proof. Unless Hyb0(1
λ) aborts, the view of the adversary is

identical in both experiments. To bound the probability that
it aborts, we evaluate the min-entropy of the first column
di,0 = Ar∗i + e∗i which has at least the min-entropy of
e∗i . The min-entropy of a one-dimensional Gaussian of
parameter σ∗ over Z is given by log2 ρσ∗(Z), which is ε-
close to log2(σ

∗√2πe) since σ∗ > ηε(Z). It follows that
Di has min-entropy at least mφ log2(σ

∗√2πe). Therefore,
the probability of any possible value of Di is bounded by
(1/(σ∗√2πe))mφ, which is negligible in λ. Since there are
at most Q + Qu existing values of Di and the adversary
queries OSign1 at most Q times, by the union bound, the
probability that Hyb0 aborts is negligible.

Lemma A.2. HybQ and HybQ+1 are perfectly indistinguish-
able, i.e.

Pr[HybQ(1
λ) = 1] = Pr[HybQ+1(1

λ) = 1].

Proof. This trivially follows from the security of Sharmir
secret sharing. That is, the distribution of at most t − 1
shares is uniformly random and independent of the shared
secret s.

Lemma A.3. HybQ+1 and HybQ+2 are indistinguishable
under the hLWER,q,m,n,Qu,σe,σ∗,C assumption (see Defini-
tion 2.5). Concretely, there exists a PPT adversary B such
that

|Pr[HybQ+1(1
λ) = 1]− Pr[HybQ+2(1

λ) = 1]|
≤AdvhLWE

R,q,m,n,Qu,σe,σ∗,C(λ)

Proof. Upon receiving an LWE instance (A∗,y∗, l∗, c∗),
the reduction B sets A = A∗ and b = y∗. It then parses
l∗, c∗ as

l∗ =

{(
sci + r∗i
eci + e∗i

)}Qu

i=1

c∗ = {ci}Qu

i=1

and simulates the rest of HybQ or HybQ+1 for A using the
first component of each element of l∗ as z∗, and the second
component as the last two terms of w′

h (i.e., the RHS of (2)),
and c as challenge that gets programmed by SimOnline. If
the instance is real (resp. uniform), it is clear that the view
of the adversary A is identical to that of HybQ+1 (resp.
HybQ+2). The advantage of B is thus exactly the probability
of A distinguishing HybQ+1 from HybQ+2.

Lemma A.4.
Pr[HybQ+2(1

λ) = 1] ≤ (Qc +Qu) · Pr[HybQ+3(1
λ) = 1].

Proof. Since the adversary sets the output of Hc at most
Qc +Qu times (both directly to Hc and implicitly through
queries to Hu), the probability that the simulator correctly
guesses a critical query to Hc used for a forgery is at least
1/(Qc +Qu).

Lemma A.5. The probability that A wins in HybQ+3 is
negligible under the stSISR,q,m,n+1,C,β assumption (see
Definition 2.7). Concretely, if A makes at most Qc queries
to the random oracle Hc and Qu queries to Hu, there exists
a PPT adversary B such that

Pr[HybQ+3(1
λ) = 1] ≤ AdvstSIS

R,q,m,n+1,C,β(λ)

where β = B2 +
√
κ+ (κ · 2ξ + 2ν+1) · √φm.

Proof. At this stage, note that (s, e) used by the simulator
are sampled independently of uniform b, and that c̃ as part of
the forgery tuple is not derived by programming Hc. Thus, a
reduction against stSIS can relay all queries to Hc made by
the adversary to G in the stSIS game. The rest follows from
unforgeability of tRaccoon (see [PKM+24, Lemma 7.4]),
so we omit the proof.

Lemma A.6. For s ∈ [Q], Hybs−1 ≈c Hybs. Concretely,

|Pr[Hybs−1(1
λ) = 1]− Pr[Hybs(1

λ)]|

≤ Qu

(
d̄ ·AdvhLWE

R,q,m,n,1,σE ,σ∗,Dσu
(λ)

+ (d̄− 2m) ·Adv
dLWE′

R,q,m,m,σtd
(λ)

+Qu ·Adv
dLWE′

R,q,m,n,σ∗(λ)
)
+AdvPRF(λ) + negl(λ).

Proof. We prove the claim via a sequence of sub-hybrids

Hybs−1 ≈c Hybs,0, . . . ,Hybs,16 = Hybs,

each of which only changes how the game behaves at sign-
ing query s. Changes are grouped in two new subroutines,
PartSimOffline and PartSimOnline, that are substituted to
SimOffline in Hybs,5 and to SimOnline in Hybs,0 respec-
tively to simulate the s-th crucial query with i = h. To
shorten probability expressions, we introduce the shorthand

ρx := Pr[Hybx(1
λ) = 1].

Hybs,0 We change how the challenge c is generated: Hu

samples c uniformly at random, computes h, and then
programs Hc(pp, pk, ⌊h⌉ν , µ) with c. If Hc was already
defined on this input, it aborts.

To evaluate the min-entropy of ⌊h⌉ν , we require honest
signers to check that D̄ is full-rank over Rq, where D̄ is
the second component of the decomposed D = [d | D̄]. Up
to a possible permutation of the columns, we may therefore
assume that D̄ is of the form [D̄′ | D̄′′] with D̄′ ∈ Rm×m

q

invertible. It follows that h = d+ D̄′u′ + D̄′′u′′ with u =
[u′ |u′′] ∼ Dm+(d̄−m)

σu . Since u′ and u′′ are independent, h
has min-entropy greater or equal to the min-entropy of D̄′u′,
which, since D̄′ is invertible, is equal to the min-entropy of
u′. Now, the min-entropy of a one-dimensional Gaussian of
parameter σu over Z is given by log2 ρσu

(Z), which is ε-
close to log2(σu

√
2πe) since σu > ηε(Z). It follows that h

has min-entropy at least mφ log2(σu

√
2πe).

Finally, since preimages under the map x 7→ ⌊x⌉ν over
Zq have at most 2ν(1+q/2ν−qν) elements, the min-entropy
of ⌊h⌉ν is reduced by at most ν+log2(1+δ) per coefficient
over Z, where δ = q/2ν − qν .5 In other words, the min-
entropy of ⌊h⌉ν is at least mφ

(
log2(σu

√
2πe)−ν−log2(1+

δ)
)
.
Therefore, the probability of any possible value of

⌊h⌉ν is bounded by
(
2ν · (1 + δ)/(σu

√
2πe)

)mφ
, which

is chosen as negligible in λ. Since the adversary makes at
most Qc + Qu queries to Hc (both directly and indirectly
through Hu) and the number of attempts to program Hc

by PartSimOnline is at most Qu, by the union bound,

5. Recall ⌊x⌉ν = xhi mod qν , which is always just xhi, except for
one value of xhi, namely xhi = qν . For all the other values we have at
most 2ν preimages. The number of preimages of 0 can be obtained by
counting the the integers in [0, 2ν−1 − 1]∪ [2νqν − 2ν−1, q− 1], which
is 2ν + (q − 2νqν) = 2ν · (1 + δ) in total. As we choose q very close
to a power of two in our concrete parameter sets, δ is actually very small,
and we can essentially ignore the (1 + δ) factor when setting parameters.

the probability that Hybs,0 aborts is negligible (assuming
Qu, Qc are polynomial in λ). That is,

|ρs,0 − ρs−1| ≤ negl(λ)

Hybs,1-Hybs,4 These steps are analogous to the proof for

tRaccoon. In Hybs,1, PartSimOnline uniformly samples

pair-wise masks for all honest parties, i.e., mi,j
$← Rn

q for
i, j ∈ T ∩H. On the other hand, pair-wise masks for corrupt
parties are generated using PRF as before. Since honest
parties never reuse Di, the security of PRF guarantees that
its outputs are computationally indistinguishable from the
uniform distribution over Rn

q , that is,

|ρs,1 − ρs,0| ≤ AdvPRF(λ).

In Hybs,2, PartSimOnline uniformly samples row mask mi

for every honest party, column mask m′
i for every honest

party except h, and uniquely determines m′
h as follows:

m′
h :=

∑
i∈T ∩H

mi−
∑

i∈T ∩H\{h}

m′
i+

∑
i∈T ∩H,j∈T ∩C

(mj,i−mi,j)

Since pair-wise masks are generated uniformly in the pre-
vious hybrid and we set m′

h such that the sum of column
masks and row masks cancel out, this hybrid remains per-
fectly indistinguishable from the previous one, that is,

ρs,2 = ρs,1.

In Hybs,3, PartSimOnline uniformly samples zi for i ∈ T ∩
H \ {h} and determines their row masks as

m′
i := zi − si · λT ,i · c− r∗i −Riu+mi mod q.

Since m′
i was uniformly sampled in the previous hybrid, this

hybrid remains perfectly indistinguishable from the previous
one, that is,

ρs,3 = ρs,2.

In Hybs,4, we rewrite zh by plugging in the current con-
straints on m′

h into it:

zh = sh · λT ,h · c+ r∗h +Rhu+m′
h −mh

= sc+ r∗h +Rhu− (
∑

j∈T ∩C

sjλT ,j) · c

−
∑

i∈T ∩H\{h}

(zi − r∗i −Riu) +m mod q

where m is as defined in Step 5 of Hybs. That is, we
expressed zh in terms of the shared secret s and corrupt key
shares. Looking ahead, we regard the first two (resp. first
three) terms of the last expression as a session-wide response
z∗ (resp. shifted session-wide response z′) and uses them for
simulation throughout. Since this is a syntactic change, we
have

ρs,4 = ρs,3.

Hybs,5 The game guesses a query index q∗ ∈ [Qu] just for
the s-th crucial query in a new subroutine PartSimOffline
(see Algorithm 6). The subroutine PartSimOffline internally

samples c,u assuming that the q∗-th query to Hu is used
by OSign2 upon receiving i = h = min(T ∩ C). Assuming
that the guess is correct, since dh,0 can be determined by
the remaining elements in the transcript, we can set

z′ := sc+ r∗h +Rhu

dh,0 := Az′ − bc−Dh,1u+ ec+ e∗h +Ehu

One can check the RHS of the above indeed coincides
with Ar∗h + e∗h. Then we modify PartSimOnline such that
it simulates zh using z′ preprocessed by PartSimOffline
only if ctru = q∗, i.e., if PartSimOnline gets triggered by
the q∗-th query to Hu; else, it sets zh = ⊥. If the input
(eid, h, (Dj)j∈T \{h}, µ) to the online signing oracle OSign2
was not contained in the q∗-th query to Hu, then the game
aborts. Conditioned on the correct guess, the view of the
adversary is identical to the previous one, thus

ρs,4 ≤ Qu · ρs,5.

Hybs,6 We change the way Dh,1 is generated such that it

is sampled uniformly from Rm×d̄
q . By embedding a given

instance in Dh,1, we can construct a reduction solving
the hLWER,q,m,n,1,σE ,σ∗,Dσu

problem given an adversary
distinguishing Hybs,6 from Hybs,5, that is,

|ρs,6 − ρs,5| ≤ d̄ ·AdvhLWE
R,q,m,n,1,σE ,σ∗,Dσu

(λ).

Concretely, we replace k-th column d
(k)
h,1 of Dh,1 by a

uniformly random vector for k = 1, . . . d̄. Upon receiving
an Hint-LWE instance (A∗,y∗, l∗, c∗), the reduction B sets
A = A∗ and d

(k)
h,1 = y∗. It then parses l∗, c∗ as

l∗ =

(
r∗h + r

(k)
h,1u

k

e∗h + e
(k)
h,1u

k

)
c∗ = u(k)

and simulates the rest of Hybs,5 or Hybs,6 for A using the
first component of l∗ to compute z′, the second component
as the last two terms of dh,0, and u(k) as the k-th element of
u that gets programmed by Hu. If the instance is real (resp.
uniform), it is clear that the view of the adversary A is
identical to that of Hybs,5 (resp. Hybs,6). The advantage of
B is thus exactly the probability of A distinguishing Hybs,5
from Hybs,6.
Hybs,7, we first sample uniformly random D′

h,1 and shift
it by ARh + Eh to obtain Dh,1. We do so in order to
drop dh,0’s dependency on u. Moreover, the hybrid aborts
if D′

h,1 is not full-rank over Rm×d̄
q . By Corollary 3.2, D′

h,1

is not full-rank with probability at most φ/qd̄−m, which is
negligible. Unless the PartSimOffline aborts, the view of the
adversary is unchanged, thus |ρs,7 − ρs,6| ≤ negl(λ).
Hybs,8 PartSimOffline generates D′

h,1 by invoking a trap-
door generation algorithm GenTrap. The distribution of
D′

h,1 is indistinguishable with uniform distribution over
full-rank matrices in Rm×d̄

q due to the computational in-
distinguishability of GenTrap (Theorem 2.8) under the

dLWE′
R,m,m,q,σtd

assumption (since the LWE secret is also
sampled from Gaussian with parameter σtd), that is,

|ρs,8 − ρs,7| ≤ (d̄− 2m) ·Adv
dLWE′

R,m,m,q,σtd
(λ)

where d̄ − 2m comes from the width of trapdoor T in
Theorem 2.8.
Hybs,9 we change the way u is generated such that the
game first samples uniform w′

h from Rm
q and then samples

Gaussian u from the lattice coset Λ
w′

h
q (D′

h,1) = {x ∈
Rd̄ : D′

h,1x = w′
h} using the preimage sampling algorithm

SamplePre. The joint distribution of (D′
h,1,u,w

′
h) in Hybs,9

is statistically indistinguishable from the one in Hybs,8 due
to the property of SamplePre (Theorem 2.8), that is,

|ρs,9 − ρs,8| ≤ negl(λ).

Hybs,10 We apply minor syntactic changes to
PartSimOffline such that it first sets a session-wide
response z∗ determined by s and compute zh and dh,0

from z∗:

z∗ := sc+ r∗h z′ := z∗ +Rhu

dh,0 := Az∗ − bc−w′
h + ec+ e∗h

This is equivalent to the previous hybrid, thus ρs,10 = ρs,9.
Hybs,11 We apply minor syntactic changes to
PartSimOffline such that it first generates dh,0 uniformly
and sets w′

h. This is equivalent to the previous hybrid, thus

ρs,11 = ρs,10.

Hybs,12 We apply minor syntactic changes to
PartSimOffline and PartSimOnline so that most work
of transcript simulation is deferred to PartSimOnline.
In this subhybrid, PartSimOffline generates a uniformly
random dh,0 from Rm

q , and then later PartSimOnline sets

w′
h = Az∗ − bc− dh,0 + ec+ e∗h

after generating c, r∗h, e
∗
h from the corresponding distribu-

tions and setting z∗ as before. Note that in the previous
subhybrid c, z∗, e∗h,w

′
h are not revealed when dh,0 is output

by OSign1 . Thus, this hybrid is equivalent to the previous
one, that is, ρs,12 = ρs,11.
Hybs,13 We apply minor syntactic changes to
PartSimOnline. For all q̄-th queries to Hu with q̄ ̸= q∗, we
have PartSimOnline (triggered by queries to Hu) define the
target vector w′

h as follows:

w′
h := b′ +Asc− bc− dh,0 + ec

where b′ $← Rm
q and dh,0 is the first column of Dh. This

hybrid is equivalent to the previous one, that is, ρs,13 = ρs,12
Hybs,14 We change the behavior of PartSimOnline such that
it generates b′ as an LWE instance. Concretely, instead of
sampling uniformly, we let b′ = Ar∗h + e∗h and define the
target vector w′

h using b′ as before. By embedding a given
instance in b′, we can construct a reduction solving the

dLWE′
R,m,n,q,σ∗ problem given an adversary distinguishing

Hybs,14 from Hybs,13, that is,

|ρs,14 − ρs,13| ≤ Qu ·Adv
dLWE′

R,m,n,q,σ∗(λ)

Hybs,15 We apply minor syntactic changes to PartSimOnline

such that it prepares simulated transcripts for all queries to
Hu. ρs,15 = ρs,14
Hybs,16 Note that at this stage, no guessing argument is
required since dh,0 is uniform sampled independently of
the rest of the transcript and Hu can prepare transcripts
for arbitrary queries using the trapdoor for Dh,1. Thus, in
Hybs,16 the oracleOSign2 does not abort even when the guess
is incorrect.

ρs,15 = ρs,16/Qu.

Hybs,16 is in fact equivalent to Hybs, where the s-th signing
query is answered using a simulated transcript, i.e. ρs,16 =
ρs. This concludes the proof.

Algorithm 2: Hybs for s = 0, . . . , Q: Simulating the first s signing queries with input (h, T)

Gen(1ℓ, 1t)

1: s
$← Dn

σe

2: e← Dm
σe

3: b := As+ e mod q
4: pk := b̃ = ⌊b⌉ξ
5: (s1, . . . , sℓ)← Share(s, q, t, ℓ)
6: for i ∈ [ℓ] do
7: for j ∈ [ℓ] do
8: sdi,j

$← {0, 1}l

9: for i ∈ [ℓ] do
10: ski := (si, (sdi,j , sdj,i)j∈[ℓ])

11: return (pk, (ski)i∈[ℓ])

BaDδ((Dj)j∈T)

1: D :=
∑

j∈T Dj

2: [d|D̄] := D
3: if D̄ ∈ Rm×d̄

q is not full-rank then
4: return 1
5: else
6: return 0

OSign1(i, T)
1: if (i /∈ H) ∨ (i /∈ T) ∨ (|T | < t) ∨ (T ⊈ [ℓ])) then
2: return ⊥
3: eid

$← {0, 1}∗
4: h := min(T ∩ H)
5: if i = h then
6: Increment ctrmin

7: if ctrmin > s then
8: Di ← GenOffline(eid, i, T , ctrmin)
9: else

10: Di ← SimOffline(eid, i, T , ctrmin)

11: else
12: Di ← GenOffline(eid, i, T , ctrmin)

13: if (Hu(pp, pk, (Dj)j∈T , µ) is defined for some ((Dj)j∈T \{i}, µ)) ∨
(∃(OFFLINE, eid′, i, T ,Di, . . .) for some eid′ ̸= eid) then

14: Abort
15: return (eid,Di)

OSign2(eid, i, (Dj)j∈T \{i}, µ)

1: if (∄(OFFLINE, eid, i, T , . . .)) ∨ ∃(FINISH, eid, i) ∨ (∃ j ∈ (T ∩ H) \
{i} | ∄ (OFFLINE, ·, j, T ,Dj , . . .)) then

2: return ⊥
3: Load (OFFLINE, eid, i, T ,Di, . . . , ctrmin)
4: if BaDδ((Dj)j∈T) then
5: return ⊥
6: Run Hu(pp, pk, T , (Dj)j∈T , µ)
7: Load (ONLINE, ctru, T , (Dj)j∈T , µ, (zj)j∈T ∩H)
8: M :=M∪ {µ}
9: Store (FINISH, eid, i)

10: return zi

Hu(pp, pk, T , (Dj)j∈T , µ)

1: if the response is defined as u then
2: return u
3: Increment ctru
4: if (∃j ∈ T ∩ H | ∄(OFFLINE, ·, j, T ,Dj , . . .)) ∨ BaDδ((Dj)j∈T) then
5: u← Dd̄

σu

6: Hu(pp, pk, T , (Dj)j∈T ∩H, µ) := u
7: return u
8: h := min(T ∩ H)
9: Load (OFFLINE, eid, h, T ,Dh, (. . .), ctrmin)

10: if ctrmin > s then
11: (u, (zj)j∈T ∩H)← GenOnline(T , (Dj)j∈T , µ)
12: else
13: (u, (zj)j∈T ∩H)← SimOnline(T , (Dj)j∈T , µ)

14: Hu(pp, pk, T , (Dj)j∈T , µ) := u
15: Store (ONLINE, ctru, T , (Dj)j∈T , µ, (zj)j∈T ∩H)
16: return u

Hc(pp, pk, ⌊h⌉ν , µ)
1: if the response is defined as c then
2: return c
3: else
4: c

$← C
5: Hc(pp, pk, ⌊h⌉ν , µ) := c
6: return c

GenOffline(eid, i, T , ctrmin)

1: r∗i ← Dn
σ∗ ; e∗

i ← Dm
σ∗

2: Ri ← Dn×d̄
σE

; Ei ← Dm×d̄
σE

3: Di := [di,0|Di,1] = A[r∗i |Ri] + [e∗
i |Ei] mod q ∈ Rm×d

q

4: Store (OFFLINE, eid, i, T ,Di, (r
∗
i ,Ri), ctrmin)

5: return (Di)

SimOffline(eid, h, T , ctrmin)

1: Rh ← Dn×d̄
σE

; Eh ← Dm×d̄
σE

2: (D′
h,1, tdh)← GenTrap(Rq,m, d̄)

3: if D′
h,1 is not full rank then

4: Ask caller to abort
5: Dh,1 := D′

h,1 +ARh +Eh

6: dh,0
$←Rm

q

7: Dh := [dh,0 |Dh,1]
8: Store (OFFLINE, eid, h, T ,Dh, (D

′
h,Rh, tdh), ctrmin)

9: return (Dh)

GenOnline(T , (Dj)j∈T , µ)

1: for i ∈ T ∩ H do
2: Load (OFFLINE, ·, i, T ,Di, (r

∗
i ,Ri), ·)

3: u← Dd̄
σu

4: D :=
∑

j∈T Dj

5: h := D

(
1
u

)
mod q

6: c← Hc(pp, pk, ⌊h⌉ν , µ)
7: for i ∈ T ∩ H do
8: mi :=

∑
j∈T PRF(sdi,j , (pp, pk, T , (Dj)j∈T , µ))

9: m′
i :=

∑
j∈T PRF(sdj,i, (pp, pk, T , (Dj)j∈T , µ))

10: zi := si · λT ,i · c+ [r∗i |Ri] ·
(
1
u

)
+m′

i −mi mod q

11: return (u, (zj)j∈T ∩H)

SimOnline(T , (Dj)j∈T , µ)

1: h := min(T ∩ H)
2: Load (OFFLINE, eid, h, T ,Dh, (D

′
h,Rh, tdh), ·)

3: for i ∈ T ∩ H \ {h} do
4: Load (OFFLINE, ·, i, T ,Di, (r

∗
i ,Ri), ·)

5: [dh,0 |Dh,1] := Dh

6: c
$← C; r∗h ← Dn

σ∗ ; e∗
h ← Dm

σ∗

7: z∗ := sc+ r∗h
8: w′

h := Az∗ − bc− dh,0 + ec+ e∗
h

9: u← SamplePre(D′
h,1, tdh,w

′
h)

10: D :=
∑

j∈T Dj

11: h := D

(
1
u

)
mod q

12: if Hc(pp, pk, ⌊h⌉ν , µ) is defined then
13: Ask caller to abort
14: Hc(pp, pk, ⌊h⌉ν , µ) := c
15: for i ∈ T ∩ H \ {h} do
16: zi

$←Rn
q

17: for i ∈ T ∩ H, j ∈ T ∩ C do
18: mi,j := PRF(sdi,j , (pp, pk, T , (Dk)k∈T , µ))
19: mj,i := PRF(sdj,i, (pp, pk, T , (Dk)k∈T , µ))

20: m :=
∑

i∈T ∩H,j∈T ∩C(mj,i −mi,j)
21: zh := z∗ +Rhu− (

∑
j∈T ∩C sj · λT ,j)c

−
∑

i∈T ∩H\{h}(zi − r∗i −Riu) +m
22: return (u, (zj)j∈T ∩H)

Algorithm 3: Hybs,0: Abort if Hc is defined

Hu(pp, pk, T , (Dj)j∈T , µ)

... // Identical to the previous hybrid
10: if ctrmin > s then
11: (u, (zj)j∈T ∩H)← GenOnline(T , (Dj)j∈T , µ)
12: else if ctrmin = s then
13: (u, (zj)j∈T ∩H)← PartSimOnline(T , (Dj)j∈T , µ)
14: else
15: (u, (zj)j∈T ∩H)← SimOnline(T , (Dj)j∈T , µ)

16: Hu(pp, pk, T , (Dj)j∈T , µ) := u
17: Store (ONLINE, ctru, T , (Dj)j∈T , µ, (zj)j∈T ∩H)
18: return u

PartSimOnline(T , (Dj)j∈T , µ)

1: for i ∈ T ∩ H do
2: Load (OFFLINE, ·, i, T ,Di, (r

∗
i ,Ri), ·)

3: c
$← C; u← Dd̄

σu

4: D :=
∑

j∈T Dj

5: h := D

(
1
u

)
mod q

6: if Hc(pp, pk, ⌊h⌉ν , µ) is defined then
7: Ask caller to abort
8: Hc(pp, pk, ⌊h⌉ν , µ) := c
9: for i ∈ T ∩ H do

10: mi :=
∑

j∈T PRF(sdi,j , (pp, pk, T , (Dj)j∈T , µ))
11: m′

i :=
∑

j∈T PRF(sdj,i, (pp, pk, T , (Dj)j∈T , µ))

12: zi := si · λT ,i · c+ [r∗i |Ri] ·
(
1
u

)
+m′

i −mi mod q

13: return (u, (zj)j∈T ∩H)

Algorithm 4: Hybs,x for x = 1, 2: Truly random pair-wise masks for honest parties, determine a column mask for party h

PartSimOnline(T , (Dj)j∈T , µ) for x = 1

... // Identical to the previous hybrid
9: for i ∈ T ∩ H, j ∈ T ∩ H do

10: mi,j
$←Rn

q

11: for i ∈ T ∩ H, j ∈ T ∩ C do
12: mi,j := PRF(sdi,j , (pp, pk, T , (Dk)k∈T , µ))
13: mj,i := PRF(sdj,i, (pp, pk, T , (Dk)k∈T , µ))

14: for i ∈ T ∩ H do
15: mi :=

∑
j∈T mi,j

16: m′
i :=

∑
j∈T mj,i

17: zi := si · λT ,i · c+ [r∗i |Ri] ·
(
1
u

)
+m′

i −mi mod q

18: return (u, (zj)j∈T ∩H)

PartSimOnline(T , (Dj)j∈T , µ) for x = 2

... // Identical to the previous hybrid
9: for i ∈ T ∩ H \ {h} do

10: mi
$←Rn

q

11: m′
i

$←Rn
q

12: mh
$←Rn

q

13: for i ∈ T ∩ H, j ∈ T ∩ C do
14: mi,j := PRF(sdi,j , (pp, pk, T , (Dk)k∈T , µ))
15: mj,i := PRF(sdj,i, (pp, pk, T , (Dk)k∈T , µ))

16: m′
h :=

∑
i∈T ∩H mi −

∑
i∈T ∩H\{h} m

′
i +

∑
i∈T ∩H,j∈T ∩C(mj,i −mi,j)

17: for i ∈ T ∩ H do
18: zi := si · λT ,i · c+ [r∗i |Ri] ·

(
1
u

)
+m′

i −mi mod q

19: return (u, (zj)j∈T ∩H)

Algorithm 5: Hybs,x for x = 3, 4: Sample all-but-one zi uniformly, determine zh from s and corrupt shares

PartSimOnline(T , (Dj)j∈T , µ) for x = 3

... // Identical to the previous hybrid
9: for i ∈ T ∩ H \ {h} do

10: mi
$←Rn

q

11: zi
$←Rn

q

12: m′
i := zi − si · λT ,i · c− r∗i −Riu+mi mod q

13: mh
$← Rn

q

14: for i ∈ T ∩ H, j ∈ T ∩ C do
15: mi,j := PRF(sdi,j , (pp, pk, T , (Dk)k∈T , µ))
16: mj,i := PRF(sdj,i, (pp, pk, T , (Dk)k∈T , µ))

17: m :=
∑

i∈T ∩H,j∈T ∩C(mj,i −mi,j)
18: m′

h := m+
∑

i∈T ∩H mi −
∑

i∈T ∩H\{h} m
′
i

19: zh := sh · λT ,h · c+ r∗h +Rhu+m′
h −mh mod q

20: return (u, (zj)j∈T ∩H)

PartSimOnline(T , (Dj)j∈T , µ) for x = 4

... // Identical to the previous hybrid
9: for i ∈ T ∩ H \ {h} do

10: zi
$←Rn

q

11: for i ∈ T ∩ H, j ∈ T ∩ C do
12: mi,j := PRF(sdi,j , (pp, pk, T , (Dk)k∈T , µ))
13: mj,i := PRF(sdj,i, (pp, pk, T , (Dk)k∈T , µ))

14: m :=
∑

i∈T ∩H,j∈T ∩C(mj,i −mi,j)
15: zh := sc+ r∗h +Rhu− (

∑
j∈T ∩C sjλT ,j) · c

−
∑

i∈T ∩H\{h}(zi − r∗i −Riu) +m mod q
16: return (u, (zj)j∈T ∩H)

Algorithm 6: Hybs,x for x = 5, 6, 7, 8: Guess a critical query to Hu, replace Dh,1 with pseudorandom matrix with a trapdoor

OSign1(i, T)
1: if (i /∈ H) ∨ (i /∈ T) ∨ (|T | < t) ∨ (T ⊈ [ℓ])) then
2: return ⊥
3: eid

$← {0, 1}∗
4: h := min(T ∩ H)
5: if i = h then
6: Increment ctrmin

7: if ctrmin > s then
8: Di ← GenOffline(eid, i, T , ctrmin)
9: else if ctrmin = s then

10: Di ← PartSimOffline(eid, i, T , ctrmin)
11: else
12: Di ← SimOffline(eid, i, T , ctrmin)

13: else
14: Di ← GenOffline(eid, i, T , ctrmin)

15: if (Hu(pp, pk, (Dj)j∈T , µ) is defined for some ((Dj)j∈T \{i}, µ)) ∨
(∃(OFFLINE, eid′, i, T ,Di, . . .) for some eid′ ̸= eid) then

16: Abort
17: return (eid,Di)

PartSimOffline(eid, h, T , ctrmin)

1: q∗
$← [Qu]

2: Rh ← Dn×d̄
σE

; Eh ← Dm×d̄
σE

3: if x = 5 then
4: Dh,1 := ARh +Eh mod q ∈ Rm×d̄

q

5: else if x = 6 then
6: Dh,1

$←Rm×d̄
q

7: else if x = 7 then
8: D′

h,1
$←Rm×d̄

q

9: if D′
h,1 is not full rank then

10: Ask caller to abort
11: Dh,1 := D′

h,1 +ARh +Eh

12: else
13: (D′

h,1, tdh)← GenTrap(Rq,m)
14: if D′

h,1 is not full rank then
15: Ask caller to abort
16: Dh,1 := D′

h,1 +ARh +Eh

17: u← Dd̄
σu

18: wh := Dh,1u

19: c
$← C; r∗h ← Dn

σ∗ ; e∗
h ← Dm

σ∗

20: z′ := sc+ r∗h +Rhu
21: dh,0 := Az′ − bc−wh + ec+ e∗

h +Ehu
22: Dh := [dh,0|Dh,1]
23: Store (OFFLINE, eid, h, T ,Dh, c,u, z

′, ctrmin)
24: return Dh

OSign2(eid, i, (Dj)j∈T \{i}, µ)

... // Identical to the previous hybrid
7: Load (ONLINE, ctru, T , (Dj)j∈T , µ, (zj)j∈T ∩H)
8: if i = h ∧ ctrmin = s ∧ ctru ̸= q∗ then
9: Abort

10: M :=M∪ {µ}
11: Store (FINISH, eid, i)
12: return (zi)

PartSimOnline(T , (Dj)j∈T , µ)

1: for i ∈ T ∩ H\{h} do
2: Load (OFFLINE, ·, i, T ,Di, (r

∗
i ,Ri), ·)

3: if ctru = q∗ then
4: Load (OFFLINE, eid, h, T ,Dh, c,u, z

′, ctrmin)
5: else
6: c

$← C; u← Dd̄
σu

7: z′ := ⊥
8: D :=

∑
j∈T Dj

9: h := D

(
1
u

)
mod q

10: if Hc(pp, pk, ⌊h⌉ν , µ) is defined then
11: Ask caller to abort
12: Hc(pp, pk, ⌊h⌉ν , µ) := c
13: for i ∈ T ∩ H \ {h} do
14: zi

$← Rn
q

15: for i ∈ T ∩ H, j ∈ T ∩ C do
16: mi,j := PRF(sdi,j , (pp, pk, T , (Dk)k∈T , µ))
17: mj,i := PRF(sdj,i, (pp, pk, T , (Dk)k∈T , µ))

18: m :=
∑

i∈T ∩H,j∈T ∩C(mj,i −mi,j)
19: if z′ = ⊥ then
20: zh := ⊥
21: else
22: zh := z′ − (

∑
j∈T ∩C sjλT ,j) · c

−
∑

i∈T ∩H\{h}(zi − r∗i −Riu) +m mod q

23: return (u, (zj)j∈T ∩H)

Algorithm 7: Hybs,9: Sample u using a trapdoor for (shifted) Dh,1

PartSimOffline(eid, i, T , ctrmin)

1: q∗
$← [Qu]

2: Rh ← Dn×d̄
σE

; Eh ← Dm×d̄
σE

3: (D′
h,1, tdh)← GenTrap(Rq,m)

4: if D′
h,1 is not full rank then

5: Ask caller to abort
6: Dh,1 := D′

h,1 +ARh +Eh

7: w′
h

$← Rm
q

8: u← SamplePre(tdh,w
′
h,D

′
h,1)

9: wh := w′
h + (ARh +Eh)u

10: c
$← C; r∗h ← Dn

σ∗ ; e∗
h ← Dm

σ∗

11: z′ := sc+ r∗h +Rhu
12: dh,0 := Az′ − bc−wh + ec+ e∗

h +Ehu
13: Dh := [dh,0|Dh,1]
14: Store (OFFLINE, eid, h, T ,Dh, c,u, z

′,D′
h, tdh, ctrmin)

15: return Dh

PartSimOnline(T , (Dj)j∈T , µ)

1: for i ∈ T ∩ H \ {h} do
2: Load (OFFLINE, ·, i, T ,Di, (r

∗
i ,Ri), ·)

3: if ctru = q∗ then
4: Load (OFFLINE, eid, h, T ,Dh, c,u, z

′, . . .)
5: else
6: Load (OFFLINE, eid, h, T ,Dh, . . . ,D

′
h, tdh, ·)

7: c
$← C

8: w′
h

$←Rm
q

9: u← SamplePre(tdh,w
′
h,D

′
h,1)

10: z′ := ⊥
... // Identical to the previous

Algorithm 8: Hybs,x for x = 10, 11: Syntactic changes

PartSimOffline(eid, i, T , ctrmin) for x = 10

1: q∗
$← [Qu]

2: Rh ← Dn×d̄
σE

; Eh ← Dm×d̄
σE

3: (D′
h,1, tdh)← GenTrap(Rq,m)

4: if D′
h,1 is not full rank then

5: Ask caller to abort
6: Dh,1 := D′

h,1 +ARh +Eh

7: w′
h

$← Rm
q

8: u← SamplePre(tdh,w
′
h,D

′
h,1)

9: wh := w′
h + (ARh +Eh)u

10: c
$← C; r∗h ← Dn

σ∗ ; e∗
h ← Dm

σ∗

11: z∗ := sc+ r∗h
12: z′ := z∗ +Rhu
13: dh,0 := Az∗ − bc−w′

h + ec+ e∗
h

14: Dh := [dh,0|Dh,1]
15: Store (OFFLINE, eid, h, T ,Dh, c,u, z

′,D′
h, tdh, ctrmin)

16: return Dh

PartSimOffline(eid, i, T , ctrmin) for x = 11

1: q∗
$← [Qu]

2: Rh ← Dn×d̄
σE

; Eh ← Dm×d̄
σE

3: (D′
h,1, tdh)← GenTrap(Rq,m)

4: if D′
h,1 is not full rank then

5: Ask caller to abort
6: Dh,1 := D′

h,1 +ARh +Eh

7: dh,0
$←Rm

q

8: c
$← C; r∗h ← Dn

σ∗ ; e∗
h ← Dm

σ∗

9: z∗ := sc+ r∗h
10: w′

h := Az∗ − bc− dh,0 + ec+ e∗
h

11: u← SamplePre(tdh,w
′
h,D

′
h,1)

12: z′ := z∗ +Rhu
13: Dh := [dh,0|Dh,1]
14: Store (OFFLINE, eid, h, T ,Dh, c,u, z

′,D′
h, tdh, ctrmin)

15: return Dh

Algorithm 9: Hybs,12: Defer generation of c,u, z′ to PartSimOnline

PartSimOffline(eid, h, T , ctrmin)

1: q∗
$← [Qu]

2: Rh ← Dn×d̄
σE

; Eh ← Dm×d̄
σE

3: (D′
h,1, tdh)← GenTrap(Rq,m)

4: if D′
h,1 is not full rank then

5: Ask caller to abort
6: Dh,1 := D′

h,1 +ARh +Eh

7: dh,0
$←Rm

q

8: Dh := [dh,0|Dh,1]
9: Store (OFFLINE, eid, h, T ,Dh,D

′
h,Rh, tdh, ctrmin)

10: return Dh

PartSimOnline(T , (Dj)j∈T , µ)

1: for i ∈ T ∩ H \ {h} do
2: Load (OFFLINE, ·, i, T ,Di, (r

∗
i ,Ri), ·)

3: Load (OFFLINE, eid, h, T ,Dh,D
′
h,Rh, tdh, ·)

4: [dh,0|Dh,1] := Dh

5: c
$← C; r∗h ← Dn

σ∗ ; e∗
h ← Dm

σ∗

6: z∗ := sc+ r∗h
7: if ctru = q∗ then
8: w′

h := Az∗ − bc− dh,0 + ec+ e∗
h

9: u← SamplePre(tdh,w
′
h,D

′
h,1)

10: z′ := z∗ +Rhu
11: else
12: w′

h
$←Rm

q

13: u← SamplePre(tdh,w
′
h,D

′
h,1)

14: z′ := ⊥
... // Identical to the previous

Algorithm 10: Hybs,x for x = 13, 14, 15: Make PartSimOnline behave consistently for ctru = q∗ and ctru ̸= q∗

PartSimOnline(T , (Dj)j∈T , µ) for x = 13

1: for i ∈ T ∩ H \ {h} do
2: Load (OFFLINE, ·, i, T ,Di, (r

∗
i ,Ri), ·)

3: Load (OFFLINE, eid, h, T ,Dh,D
′
h,Rh, tdh, ·)

4: [dh,0|Dh,1] := Dh

5: c
$← C; r∗h ← Dn

σ∗ ; e∗
h ← Dm

σ∗

6: z∗ := sc+ r∗h
7: if ctru = q∗ then
8: w′

h := Az∗ − bc− dh,0 + ec+ e∗
h

9: u← SamplePre(tdh,w
′
h,D

′
h,1)

10: z′ := z∗ +Rhu
11: else
12: b′ $←Rm

q

13: w′
h := b′ +Asc− bc− dh,0 + ec

14: u← SamplePre(tdh,w
′
h,D

′
h,1)

15: z′ := ⊥
... // Identical to the previous

PartSimOnline(T , (Dj)j∈T , µ) for x = 14

1: for i ∈ T ∩ H \ {h} do
2: Load (OFFLINE, ·, i, T ,Di, (r

∗
i ,Ri), ·)

3: Load (OFFLINE, eid, h, T ,Dh,D
′
h,Rh, tdh, ·)

4: [dh,0|Dh,1] := Dh

5: c
$← C; r∗h ← Dn

σ∗ ; e∗
h ← Dm

σ∗

6: z∗ := sc+ r∗h
7: if ctru = q∗ then
8: w′

h := Az∗ − bc− dh,0 + ec+ e∗
h

9: u← SamplePre(tdh,w
′
h,D

′
h,1)

10: z′ := z∗ +Rhu
11: else
12: b′ := Ar∗h + e∗

h

13: w′
h := b′ +Asc− bc− dh,0 + ec

14: u← SamplePre(tdh,w
′
h,D

′
h,1)

15: z′ := ⊥
... // Identical to the previous

PartSimOnline(T , (Dj)j∈T , µ) for x = 15

1: for i ∈ T ∩ H \ {h} do
2: Load (OFFLINE, ·, i, T ,Di, (r

∗
i ,Ri), ·)

3: Load (OFFLINE, eid, h, T ,Dh,D
′
h,Rh, tdh, ·)

4: [dh,0|Dh,1] := Dh

5: c
$← C; r∗h ← Dn

σ∗ ; e∗
h ← Dm

σ∗

6: z∗ := sc+ r∗h
7: if ctru = q∗ then
8: w′

h := Az∗ − bc− dh,0 + ec+ e∗
h

9: u← SamplePre(tdh,w
′
h,D

′
h,1)

10: z′ := z∗ +Rhu
11: else
12: w′

h := Az∗ − bc− dh,0 + ec+ e∗
h

13: u← SamplePre(tdh,w
′
h,D

′
h,1)

14: z′ := z∗ +Rhu
... // Identical to the previous

Algorithm 11: Hybs,16: Stop guessing a critical query to Hu

OSign2(eid, h, (Dj)j∈T \{h}, µ)

1: if (∄(OFFLINE, eid, i, T , . . .)) ∨ ∃(FINISH, eid, i) ∨ (∃ j ∈ (T ∩ H) \
{i} | ∄ (OFFLINE, ·, j, T ,Dj , . . .)) then

2: return ⊥
3: Load (OFFLINE, eid, i, T ,Di, . . . , ctrmin)
4: if BaDδ((Dj)j∈T) then
5: return ⊥
6: Run Hu(pp, pk, T , (Dj)j∈T , µ)
7: Load (ONLINE, ctru, T , (Dj)j∈T , µ, (zj)j∈T ∩H)
8: M :=M∪ {µ}
9: Store (FINISH, eid, i)

10: return zi

PartSimOffline(eid, i, T , ctrmin)

1: Rh ← Dn×d̄
σE

; Eh ← Dm×d̄
σE

2: (D′
h,1, tdh)← GenTrap(Rq,m)

3: if D′
h,1 is not full rank then

4: Ask caller to abort
5: Dh,1 := D′

h,1 +ARh +Eh

6: dh,0
$← Rm

q

7: Dh := [dh,0|Dh,1]
8: Store (OFFLINE, eid, h, T ,Dh, (D

′
h,Rh, tdh), ctrmin)

9: return Dh

PartSimOnline(T , (Dj)j∈T , µ)

1: for i ∈ T ∩ H \ {h} do
2: Load (OFFLINE, ·, i, T ,Di, (r

∗
i ,Ri), ·)

3: Load (OFFLINE, eid, h, T ,Dh,D
′
h,Rh, tdh, ·)

4: [dh,0|Dh,1] := Dh

5: c
$← C; r∗h ← Dn

σ∗ ; e∗
h ← Dm

σ∗

6: z∗ := sc+ r∗h
7: w′

h := Az∗ − bc− dh,0 + ec+ e∗
h

8: u← SamplePre(tdh,w
′
h,D

′
h,1)

9: D :=
∑

j∈T Dj

10: h := D

(
1
u

)
mod q

11: if Hc(pp, pk, ⌊h⌉ν , µ) is defined then
12: Ask caller to abort
13: Hc(pp, pk, ⌊h⌉ν , µ) := c
14: for i ∈ T ∩ H \ {h} do
15: zi

$←Rn
q

16: for i ∈ T ∩ H, j ∈ T ∩ C do
17: mi,j := PRF(sdi,j , (pp, pk, T , (Dk)k∈T , µ))
18: mj,i := PRF(sdj,i, (pp, pk, T , (Dk)k∈T , µ))

19: m :=
∑

i∈T ∩H,j∈T ∩C(mj,i −mi,j)
20: zh := z∗ +Rhu− (

∑
j∈T ∩C sj · λT ,j) · c

−
∑

i∈T ∩H\{h}(zi − r∗i −Riu) +m mod q
21: return (u, (zj)j∈T ∩H)

	Introduction
	Our Results
	Applications
	Related Work

	Preliminaries
	Lattices and Discrete Gaussians
	Module Lattices
	Shamir Secret Sharing
	Rounding
	Computational Assumptions
	Trapdoors for Module Lattices
	Pseudorandom Functions
	Raccoon Signature Scheme
	Threshold Signatures

	Ringtail Threshold Signature Scheme
	Correctness Analysis
	Security Analysis
	Concrete Parameter Selection

	Implementation & Evaluation
	Implementation
	Bandwidth
	Local Per-Party Latency
	Wide Area Network (WAN) Latency

	Conclusion
	References
	Appendix A: Proof of thm:ts-sec-hlwe

