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Abstract
The aim of an algebraic attack is to find the secret key by solving a

collection of relations that describe the internal structure of a cipher for
observations of plaintext/cipher-text pairs. Although algebraic attacks
are addressed for cryptanalysis of block and stream ciphers, there is a
limited understanding of the impact of algebraic representation of the
cipher on the efficiency of solving the resulting collection of equations.
In this paper, we investigate on how different S-box representations af-
fect the complexity of algebraic attacks, in an empirical manner. In the
literature some algebraic properties are intuitively proposed to evaluate
optimality of an algebraic description of S-boxes for algebraic cryptanaly-
sis. In this paper, we compare different S-box representation for algebraic
cryptanalysis with doing experiments with SR family of block ciphers. We
also show that the so-called Forward-Backward representation which is in
contrast with all mentioned criteria for optimal representations criteria,
practically gives better results than the compliant representations. We
also compare the representations for both GF (2) and GF (2n) fields.

1 Introduction
The Rijndael block cipher was chosen as the winner of the AES competition and
was later approved by NIST as the Advanced Encryption Standard (AES) [10].
The simple and elegant algebraic structure of AES provides a strong motivation
for the development of new cryptanalysis techniques.

These techniques involve describing a block cipher as a system of relations
and then solving the system of equations. Courtois and Pieprzyk proposed one
such approach using an extended sparse linearization (XSL) algorithm to solve
the system of relations [9]. The AES block cipher is represented by a system of
polynomial equations over the field GF (2), and the XSL algorithm is used to
recover the secret key. It was estimated that this attack would be slightly faster
than an exhaustive search.

The XSL attack turns out to be ineffective against AES block cipher [4, 5].
The system of relations that describe the AES block cipher with 128-bit keys
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consists of 8000 nonlinear relations in 1600 variables, making it impossible to
experimentally verify the claimed complexity of the XSL attack. Cid et al. [3]
proposed a family of scalable versions of AES to study and experiment with
cryptanalysis of AES.

In general, algebraic attacks progress in two following steps:

1. finding a system of relations that describe the block cipher, where an
adversary can observe plaintext and ciphertext pairs. The unknowns are
bits/bytes of secret key,

2. solving the obtained system of relations using appropriate algorithm (XL,
F4, SAT solvers, ...).

There are virtually an infinite number of ways to algebraically describe a block
cipher. As a result, the adversary (cryptanalyzer) would like to form these
algebraic relations in such a way that they can be solved as fast as possible.

The effectiveness of cryptographic attacks against cryptographic primitives
is measured by the attack complexity, which takes into account both the time
and space complexity of running the attack. In algebraic attack, since the cipher
is described by a collection of polynomial equations, the complexity of attack
is measured by complexity of solving such a system of equations. In general
solving a system of polynomial equations of degree 2 or more with coefficients
in a finite field is an NP-hard computational problem.

In general, the computational complexity of Gröbner basis would be of order

O(

(
n

Dreg

)ω

)

where ω is the matrix multiplication exponent (ω = 2.373) and Dreg is the
degree of regularity of the system which is the degree in which the system of
equations in Gröbner basis computation will be solved . Determining Dreg is not
straightforward and asymptotic estimations only reported for the so-called semi-
regular systems. In [12] it has been shown that the system of equations arising
from block ciphers are not semi-regular. Therefore currently it is not possible
to compare efficiency of different representation of S-boxes theoretically.

In [1] different approaches for S-box representation were evaluated for their
effectiveness in algebraic cryptanalysis. Surprisingly, the results showed that
utilizing a higher degree representation of S-boxes, referred to as the FWBW
representation, might result in a more efficient algebraic attack against block
ciphers, compared to using a degree 2 representation.

There are many S-box representation that have been proposed in the lit-
erature for algebraic cryptanalysis. In this paper, we compare different S-box
representation that have been proposed in the literature in properties that in-
tuitively might lead to efficient algebraic cryptanalysis. We also consider S-box
representation in GF (2n) field.

Additionally, our study extends the research done in [1] by considering the
impact of different S-box representations on the complexity of algebraic attacks
on larger S-boxes. We consider S-box representations for 5 and 6 bit S-boxes
which might provides valuable insight into how representations can affect the
security of block ciphers that use larger S-boxes.

The paper is organized as follows. In Section 2, we discuss different methods
for achieving algebraic representation of S-boxes . Then, in Section 3, we report
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different properties that discussed in the literature about algebraic representa-
tion of S-boxes for the aim of algebraic cryptanalysis. The empirical results
with the SR block cipher are also reported in this section. In Section 4, we
study representations in GF (2n). Section 5 provides an insight into effect of
S-box representation for larger S-boxes. We give conclusions and future research
directions in Section 6.

2 S-box description
S-boxes play a crucial role in many block ciphers, as they provide the non-
linearity to transform the input (plaintext) into the output (ciphertext). Typi-
cally, S-boxes are implemented as lookup tables that efficiently implement a vec-
tor of Boolean functions, and are defined as mapping from GF (2)n to GF (2)m.
If we define xi for 1 ≤ i ≤ n as the variables that denote input bits and yj
for 1 ≤ j ≤ m, as the variables that denote output bits , an S-box can be
represented as a vectorial Boolean function, using the following collection of
polynomials:

f1(x1, . . . , xn) + y1
...

fm(x1, . . . , xn) + ym

(1)

In the polynomial ring GF (2)[x1, . . . , xn, y1, . . . , yn], there exists a polynomial
ideal, denoted as IS , which contains all possible polynomials that define a rela-
tion between the input and output of the S-box [1]. This ideal can be expressed
as:

IS = ⟨f1, . . . , fn⟩+Q (2)

where Q is the ideal of field polynomials. Any generating set for the ideal IS
would be a set that define the S-box, uniquely. As a result, there exist virtually
infinite ways to describe an S-box.

The literature presents several methods for generating a set of polynomials
that describe the S-box [8, 7, 1, 2, 9]. These methods can be grouped into three
main categories:

1. Methods based on the hardware implementation of the S-box

2. Methods based on linear algebra

3. Methods based on algebraic properties

We will discuss each of these categories in the following.

2.1 Hardware Implementation
As the S-box might finally implemented in hardware, one way to describe it al-
gebraically is through its Boolean circuit realization. For example the Boolean
polynomials in (3) for the S-box of SR(n, 2, 1, 4), represent the Boolean realiza-
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tion of the S-box which are used during the encryption process.
f0 : y0+ x0x1x2 + x0x1x3 + x0x2x3 + x0x2 + x0x3 + x0+

x1x2x3 + x1x3 + x1 + x3
f1 : y1+ x0x1x3 + x0x2x3 + x1x2x3 + x1x2 + x1 + x2x3 + x3 + 1
f2 : y2+ x0x1x2 + x0x1 + x0x2x3 + x0 + x1x2 + x1x3 + x2x3 + x2 + x3 + 1
f3 : y3+ x0x1x2 + x0x1x3 + x0x1 + x0x3 + x0 + x2x3 + x3

(3)
The backward equations for the S-box are showed in (4). In these equations
inputs bits to the S-box are described by the output bits of the S-box. These
polynomials are used during the decryption process.

w0 : x0 + y0y1 + y0y2y3 + y0 + y1y2y3 + y1y2 + y2y3 + y2 + y3
w1 : x1 + y0y1y3 + y0y1 + y0y2y3 + y0y2 + y0 + y1y2y3 + y1y3 + y1 + 1
w2 : x2 + y0y1y2 + y0y2y3 + y0y3 + y1y2y3 + y2 + 1
w3 : x3 + y0y1y2 + y0y1y3 + y0y1 + y1y2y3 + y1y2 + y1 + y2y3 + y2 + 1

(4)
In [1], the first set of equations are referred to as forward (FW), and the second
as backward (BW). The FWBW representation in [1], is created by combining
the FW and BW representations.

The number of gates required for implementing an S-box is a crucial factor
in hardware implementation. In [8], an optimal hardware implementation of the
DES block cipher S-box was used to perform an algebraic attack on the cipher
with the help of a SAT-solver.

One of important aspects in hardware implementation of an S-box is the
number of required gates for S-box realization. In [8], an optimal hardware
implementation of the DES block cipher S-box is used to perform an algebraic
attack on the cipher with a SAT-solver. In [7], a SAT-solver based approach is
proposed to achieve optimal implementation of S-boxes. To generate a set of
polynomials for S-box circuit, the approach consider different criteria, including:

1. Multiplicative Complexity (MC): This is the minimum number of AND
gates required to implement the S-box circuit, without considering the
number of required XOR gates.

2. Gate Complexity: This is the minimum number of two input gates of any
type: XOR, AND, OR, NAND, NOR, XNOR.

3. Bit-Sliced Gate Complexity: The minimum number of two input gates
such as XOR, AND, OR, NAND, NOR, XNOR for bit-sliced implemen-
tation with SIMD instructions of the CPU.

4. NAND Complexity: The minimum number of two inputs NAND gate.

Taking into account that in algebraic cryptanalysis with computation of Gröb-
ner basis, the cipher is described as system of polynomial equations in Algebraic
Normal Form (ANF) in a polynomial ring, the only relevant criteria would be
multiplicative complexity. We refer to this kind of description as Minimal Multi-
plicative Complexity (MMC) representation. Considering the SR(n, 2, 1, 4), we
derived following system of equations for S-box SR(n, 2, 1, 4) using the method
outlined in [7]. The multiplicative complexity, i.e. the minimum of number of
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Boolean multiplications (AND gates) of the resulting system for this S-box is 5.

w0 = x0 + x1 + x2 + x3
w1 = x0 + x1
q0 = w0w1

w2 = x1 + q0
w3 = x0 + x3
q1 = w2w3

w4 = x0 + x2 + x3 + q0 + q1
w5 = x1 + x2 + x3 + q0
q2 = w4w5

w6 = x2 + q0 + q1 + q2
w7 = x0 + x3 + q0 + q2
q3 = w6w7

w8 = x0 + x2 + q0 + q1 + q2
w9 = x0 + x1 + x3
q4 = w8w9

y0 = x1 + x3 + q1
y1 = x0 + x1 + q3 + q4 + 1
y2 = x0 + x1 + x3 + q0 + q1 + q2 + q3 + q4 + 1
y3 = x3 + q0 + q1 + q3

(5)

2.2 Linear Algebra
Another approach to find algebraic relations between outputs and inputs of an
S-box is to utilize linear algebra. In [2] the algorithm is described with an
example. Consider following 3-bit S-box:

[7, 6, 0, 4, 2, 5, 1, 3]

A matrix with a row for each selected term is created to find linear-independent
polynomials for the given S-box. In this example, terms xi, yi, and xiyj with
i = 0, 1, 2 are selected. Each row in the matrix contains 2n elements represent-
ing the corresponding input values for an n-bit S-box. Gaussian Elimination is
then applied to the matrix, and corresponding row operations are performed on
the terms. At the end of the process, some zero rows may appear in the matrix,
and the corresponding relations are the desired equations.

For the mentioned example, the left matrix shows the value of each term
for all inputs. The right matrix yields from Gaussian Elimination and the
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corresponding operations on the corresponding terms.

1 1 1 1 1 1 1 1 1
x0 0 1 0 1 0 1 0 1
x1 0 0 1 1 0 0 1 1
x2 0 0 0 0 1 1 1 1
y0 1 0 0 0 0 1 1 1
y1 1 1 0 0 1 0 0 1
y2 1 1 0 1 0 1 0 0
x0y0 0 0 0 0 0 1 0 1
x0y1 0 1 0 0 0 0 0 1
x0y2 0 1 0 1 0 1 0 0
x1y0 0 0 0 0 0 0 1 1
x1y1 0 0 0 0 0 0 0 1
x1y2 0 0 0 1 0 0 0 0
x2y0 0 0 0 0 0 1 1 1
x2y1 0 0 0 0 1 0 0 1
x2y2 0 0 0 0 0 1 0 0



→



1 1 1 1 1 1 1 1 1
x0 0 1 0 1 0 1 0 1
x1 0 0 1 1 0 0 1 1
1 + x0 + x1 + y0 0 0 0 1 1 1 1 0
x2 0 0 0 0 1 1 1 1
1 + x1 + y1 0 0 0 0 0 1 0 1
1 + x0 + x1 + y0 + y1 + y2 0 0 0 0 0 0 1 1
x0 + x0y2 0 0 0 0 0 0 0 1
x2 + y0 + y1 + x0y1 0 0 0 0 0 0 0 0
1 + x1 + y1 + x0y0 0 0 0 0 0 0 0 0
1 + x0 + x1 + y0 + y1 + y2 + x1y0 0 0 0 0 0 0 0 0
x0 + x0y2 + x1y1 0 0 0 0 0 0 0 0
1 + x1 + x2 + y0 + x0y2 + x1y2 0 0 0 0 0 0 0 0
y0 + y2 + x0y2 + x2y0 0 0 0 0 0 0 0 0
x0 + x2 + y0 + y2 + x2y1 0 0 0 0 0 0 0 0
1 + x0 + x1 + y1 + x0y2 + x2y2 0 0 0 0 0 0 0 0


(6)

The expressions in the right matrix of (6) are valid relations for the S-box, as
they are satisfied for all inputs. However, to fully describe the S-box, there
needs to be enough equations. A notable example is DES S-boxes which there
is not enough quadratic relations to define the S-boxes uniquely and an exact
description must also consider monomials of degree three [8]. In [2], various
system of equations for S-boxes of some block ciphers is reported with this
method. For the S-box of SR(n, 2, 1, 4) we derive equations in 7 with monomials
of degree one and monomials of degree two which are of the form xixj and yiyj .
This system of equations is similar to the one proposed for S-box of SERPENT
block cipher in [2].

h0 : y1y2 + y1y3 + x1x3 + x1 + x2x3 + x2 + x3 + 1
h1 : y0y3 + y2 + x0x2 + x0x3 + x1x2 + x1x3 + x2 + 1
h2 : y0y3 + y0 + y1y3 + y3 + x0x1 + x1 + x3
h3 : y0y1 + y2y3 + y3 + x0x3 + x1x2 + x3
h4 : y0y1 + y0 + y1y3 + y1 + x0x3 + x0 + x1x3 + 1
h5 : y0y1 + y0y2 + y1 + y2y3 + y3 + x0x1 + x2x3 + 1

(7)

2.3 Algebraic Properties
For the so-called inverse S-boxes such as AES S-box, it is possible to derive the
set of equations based on their algebraic structure, as described in [9]. These
kind of S-boxes are composed of G(2)-linear transformations and patched version
of inverse function in G(2n):

y ←
{

0 x = 0
x−1 x ̸= 0

(8)

In case of x ̸= 0, the relation xy = 1 gives 8 bi-linear quadratic equations, con-
sidering valid relations x2y = x and xy2 = y we could derive 16 more equations.
This method allows for the description of the AES S-box with 24 relations, with
one of them being valid for a probability of 255/256. The same method can
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also be applied to the S-box of SR(n, 2, 1, 4) to derive 21 quadratic equations.
The main property of these equations is that they are overdefined, which will
be explained later. For instance, the S-box of ciphers from SR(n, r, c, 4) can
be described using an overdefined system of 21 polynomials of degree 2 with 36
monomials.

x2x3 + y1y2 + y0x1 + y0x0 + y2 + y1 + y0 + 1
x1x3 + y0x2 + y0x1 + y0y3 + y0y2 + x0 + y3 + y1 + y0 + 1
x1x2 + y1y2 + y0x2 + y0x0 + y0y1 + x1 + y2
x0x3 + y0x1 + y0x0 + y0y1 + x3 + x2 + x1 + x0 + y2 + 1
x0x2 + y1y2 + y0y2 + x3 + y3 + y2 + y1 + y0 + 1
x0x1 + y0x2 + y0x0 + y0y2 + x2 + x0 + y2 + y0 + 1
y3x3 + y0x1 + y0y3 + y0y1 + x3 + x2 + x1 + x0 + y2 + 1
y3x2 + y1y2 + y0x2 + y0x1 + y0x0 + y0y3 + y0y2 + x0 + y2 + y0
y3x1 + y0x1 + y0x0 + y0y3 + y0y1 + x2 + y3 + y2 + y0 + 1
y3x0 + y0x2 + y0x1 + x3 + x0 + y1 + 1
y2x3 + y1y2 + y0x1 + y0y2 + y0y1 + x0 + y3 + y2 + y0
y2x2 + y0x2 + y0x0 + y0y3 + y0y1 + x2 + y2 + 1
y2x1 + y1y2 + y0x2 + y0y3 + y0y2 + y2 + y0
y2x0 + y1y2 + y0y3 + y0y2 + x2 + 1
y2y3 + y1y2 + y0x2 + y0x1 + y0y1 + x2 + x0 + y3 + 1
y1x3 + y0x2 + y0x0 + x3 + x0 + y3 + y1 + y0 + 1
y1x2 + y1y2 + y0x0 + y0y2 + y0y1 + x3 + x2 + x0 + y3 + y2
y1x1 + y0x2 + y0y3 + y0y1 + x1 + y1 + 1
y1x0 + y0x1 + y0y3 + y0y1 + x3 + x2 + x1 + x0 + y3 + y2 + 1
y1y3 + y0x2 + y0x0 + y0y3 + y0y2 + x3 + x2 + x1 + x0 + y3 + y2 + 1
y0x3 + y0x0 + y0y3 + y0y1 + x3 + x0 + y3 + y1 + y0 + 1

(9)

It should be noted that the system of polynomials used to describe the S-box
of ciphers from SR(n, r, c, 4) is derived using the technique discussed in the
previous section.

3 Properties of S-box Description
In the field of algebraic cryptanalysis of block ciphers, various methods for
describing S-boxes with different properties have been proposed. For instance,
the MQ description of S-boxes,which was introduced in [9] for XSL attack, is an
overdefined set of equations. But, [8] used an S-box description with low gate
or multiplicative complexity property to attack the DES block cipher.

We enumerated following properties for various S-box descriptions that dis-
cussed in the literature.

• degree of polynomials.

• overdefinedness [6, 9].

• number of free terms [2].

• the ratio number of terms to number equations [2].

• multiplicative complexity [8].
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Generally one of main property that is being discussed for algebraic descrip-
tion of S-boxes is to have a system of equations with minimum degree. If the
degree of the system is low, then the number of possible monomials will also be
reduced, potentially we might expect a simpler complexity in algorithms such
as XL.

In [6] it is shown that if the system is overdefined the system might be solved
with less complexity. Suppose that an s-bit S-box could be described with r
linearly independent polynomials in t different monomials with maximum degree
d. Then system is considered to be:

• sparse if t≪
(
s
d

)
.

• overdefined if r ≫ s.

An example of an overdefined system of equations for the S-box of SR(n, r, c, 4)
ciphers is given by the system defined in Equation (9). We refer to this type of
system of equations as Overdefined Multivariate Quadratic (OD-MQ) system.

Another property that discussed for description of S-box which might be
effective in algebraic cryptanalysis, is the number of free terms [2]. This refers
to the number of linearly independent terms if the system is treated as a linear
system in monomials. In order to achieve a minimal number of free terms in an
S-box description, the difference between the number of terms and the number
of equations, should be minimized. The description in (7) gives such a system
of polynomials for S-box of SR(n, r, c, 4) ciphers. In this paper, we call such
polynomial systems Sparse Multivariate Quadratic (S-MQ) system.

An important property of a hardware implementation of an S-box is the
number of gates that required to implement the logic. In [8] an efficient hardware
description for DES is used to attack the cipher. In [7], a method is proposed to
achieve an optimal hardware description for S-boxes using Boolean Satisfiability
to prove its optimality. The system in (5) represents such a system for S-box of
SR(n, r, c, 4) ciphers, which we refer to as the Minimal Multiplicative Complexity
(MMC) system of equations

To study the effect of aforementioned properties of S-box description in
algebraic cryptanalysis of block ciphers based on Gröbner basis, we consider
following six different descriptions: OD-MQ, S-MQ, MMC, FW, FWBW and
OD-FWBW. The last system, combines FWBW and S-MQ systems to result in
an overdefined system.

In Tables 1, 3 and 2, a comparison between the arising system of equations
with different descriptions for SR(n, 2, 1, 4), is reported. The properties consid-
ered in the comparison include the degree of the polynomials, the number of
polynomials, the number of free terms, the ratio of the number of monomials
to the number of polynomials, and the number of variables. The parameter
Γ = ((t− r)/s)⌈(t−r)/s⌉ is also calculated, which is used to determine the com-
plexity of the XSL attack in [9]. In Table 1 OD-MQ, MMC and S-MQ are of
degree 2, while others have a degree of 3. OD-MQ have the highest number of
equations and monomials, with 21 equations and 36 monomials, while the FW
have the least number of equations and monomials, with 4 equations and 14
monomials respectively. Without considering the system of equations for the
whole block cipher, MMC description have the minimum number free terms i.e.
9, while FWBW have the most number of free terms, i.e. 20. From XSL attack
point of view (Γ parameter), MMC should have minimum complexity (Γ = 23.97)
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Table 1: Comparison of different representation of S-box
desc deg #eqs #mon #free Γ

OD-MQ 2 21 36 15 28.0

MMC 2 19 28 9 23.97

FW 3 4 14 10 24.38

FWBW 3 8 28 20 214.35

OD-FWBW 3 14 28 14 27.63

S-MQ 2 6 20 14 27.63

while FWBW gives (Γ = 214.35) which cause the maximum complexity for such
attack among the descriptions. In Table 2, we provide the number of variables,

Table 2: Comparison of the number of variables and equations SR(n, 2, 1, 4)

Nr #var OD-MQ FW FWBW OD-FWBW S-MQ MMC
#eqs #mon #eqs #mon #eqs #mon #eqs #mon #eqs #mon #var #eqs #mon

5 88 428 1093 88 1654 168 1694 288 1709 128 517 388 388 489
6 104 512 1335 104 2057 200 2097 344 2115 152 631 464 464 585
7 120 596 1577 120 2459 232 2499 400 2521 176 745 540 540 681
8 136 680 1819 136 2861 264 2901 456 2927 200 859 616 616 777
9 152 764 2061 152 3263 296 3303 512 3333 224 973 692 692 873
10 168 844 2303 168 3666 328 3706 568 3739 248 1087 768 768 969

monomials, and equations for rounds 5 to 10 of SR(n, 2, 1, 4). Additionally, we
have added another column to indicate the number of variables in the MMC
description. As seen from the table, MMC involves more variables compared to
the other descriptions, but it also has the least number of free terms, which is 9.
Furthermore, MMC has the minimum ratio of the number of monomials to the
number of polynomials, which is 1.26. On the contrast, FWBW description has
the most number of free terms and a large ratio of the number of monomials to
equations.

3.1 Empirical Study
We conducted an empirical study to investigate how the aforementioned proper-
ties affect algebraic cryptanalysis using MAGMA version 2.21 and the SageMath
computer algebra system version 6.7-x86_64 [13]. The experiments were per-
formed on a desktop computer with a Core i7 4770 processor, 32 GB of RAM
on a single core.

Experiments are done with SR(n, 2, 1, 4) cipher. For each experiment run,
we generated a collection of polynomial equations for 50 instances of the cipher
with randomly chosen plaintexts and keys. The computation of Gröbner basis
was done using the degrevlex monomial ordering, in which key variables were
assigned the lowest order. Table 3 presents the average running time in seconds
for computing the Gröbner basis for Nr rounds of the cipher . The numbers in
parentheses indicate the number of solved instances out of 50, and the entries
marked with ⊥ indicate cases where the computation of Gröbner basis failed.
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Table 3: Comparison of running time for different representations
Nr OD-MQ MMC FW FWBW OD-FWBW S-MQ
1 0.18 0.3 0.17 0.17 0.17 0.18
2 0.32 0.72 0.25 0.32 0.26 0.41
3 1.0 3.24 0.8 0.53 0.69 5.89
4 3.26 14.76 2.42 1.17 2.63 35.73
5 11.17 56.18 6.67 1.82 4.82 105.38
6 23.86 197.11 12.45 3.97 10.45 212.79
7 88.24 472.04 46.26 6.39 24.42 423.05
8 128.72 951.67 91.17 12.58 40.1 615.57
9 267.92 2042.18 155.12 16.07 62.42 897.29
10 327.29 ⊥ 217.08 22.81 87.73 1406.35

On average, computing the Gr”obner basis for a system of equations based
on the MMC description of S-boxes for SR(9, 2, 14) would take 2042.18 seconds
for the 9-round version of the cipher. However, our tool would fail to solve
the system of equations for the 10-round cipher. In contrast, for the OD-MQ
description, the average running time would be 267.92 and 327.29 seconds for the
9 and 10-round versions, respectively. For the FWBW description, such a system
of equations for SR(9, 2, 14) and SR(10, 2, 1, 4) would be solved on average in
just about 16.07 and 22.81 seconds, respectively. On the other hand, for the
S-MQ description, the average running time is 897.29 and 1406.35 seconds for
the 9 and 10-round versions, respectively. For FW, the average running time for
computing the Gr”obner basis for SR(9, 2, 14) and SR(10, 2, 1, 4) is 155.12 and
217.08 seconds, respectively. Finally, with OD-FWBW, the average running
time is 62.42 and 87.72 seconds for the 9 and 10-round versions, respectively.

The empirical results presented in Table 3 show a significant difference be-
tween the expected and actual running times for Gr”obner basis computation
using different algebraic descriptions. Surprisingly, the MMC description of S-
boxes, which has a minimal number of free terms, a minimum Γ parameter,
and polynomials of maximum degree 2, performs the worst in terms of running
time. In contrast, the FWBW description, which has a maximum number of
free terms, maximum Γ parameter, and all polynomials of degree 3, performs the
best. These results contradict what one might expect based on the properties
of these descriptions presented in Tables 1 and 2. Additionally, the OD-FWBW
description, which is a superset of FWBW, has a longer running time than
FWBW, which is unexpected.

To give more insight of Table 3, Figures 1, 2 and 3 might show other aspects
of the experiments. Figure 1 provides a visualization of the average running
time in logarithmic scale as a function of the number of rounds. This figure
demonstrates how the running time for solving the system of equations arising
from different representations evolves with respect to the number of rounds.
The figure reveals that the running time for the FWBW representation ap-
proximately doubles with each additional round, whereas other representations
exhibit a steeper increase in running time. Figures 2 and 3 give the average run-
ning time in logarithmic scale against the number of monomials and equations,
respectively. From figure 2, we can categorize these representations into three
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Figure 1: Comparison of running time for different representations

groups. MMC and SMQ representations have the fewest number of monomials
and show similar average running times in logarithmic scale. FWBW, FW, and
OD-FWBW can be seen as another group with very similar numbers of mono-
mials, while the OD-MQ representation falls between the two previous groups.
This observation suggests that good algebraic representations might include a
reasonable number of monomials, but further investigation is needed in this
direction.

4 Description in GF (24)

In this section, we investigate the impact of different S-box representations in
GF (24). Representing the cipher in GF (24) results in a system of equations
with fewer equations and variables. However, a rough description can lead to
polynomials of high degree. To address this, the BES method for AES descrip-
tion was proposed by Murphy [11]. This technique embeds the main cipher in
the space of a special big Cipher, resulting in the non-linear component of the
AES S-Boxes being described by only one quadratic equation, which efficiently
reduces the number of equations. We experimentally examine this approach for
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Figure 2: Comparison of running time for different representations against num-
ber of monomials

SR(n, 2, 1, 4) and compare the results with previously published ones.

4.1 FWBW
One way to derive an algebraic description of S-boxes in GF (2n) is to use
interpolation. In this technique, the Lagrange formula is used to interpolate
a polynomial description for the S-box.

f(x) =

2n∑
i=0

yi

d∏
j=0,j ̸=i

(
x− xj
xi − xj

)
(10)

where xi/ yi are input/output of S-box as elements in GF (2n). For the S-box of
SR(n, 2, 1, 4) we can derive following polynomial in GF (24), where the output
of S-box is derived based on the input.

f : Y + 5X14 +X13 + CX11 + 5X7 + 6 (11)
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Figure 3: Comparison of running time for different representations against num-
ber of equations

Another polynomial that describes the input of S-box based on its output is as
follows:

g : X+5Y 14+2Y 13+2Y 12+AY 11+Y 10+7Y 8+Y 7+Y 6+BY 5+BY 4+6Y 3+FY 2+3Y+E
(12)

In equations (11) and (12), the coefficients of the polynomial are expressed in
hexadecimal notation and are elements in GF (24) with irreducible polynomial
α4 + α+ 1. The polynomial in equation (11) is called the Forward polynomial,
while the polynomial in equation (12) is called the Backward polynomial. An-
other approach for the description of the block cipher in GF (24) is to use the
BES method, as proposed by [11].

4.2 BES
In [11] BES approach is introduced for AES to achieve a simpler algebraic de-
scription for the cipher in GF (28). In this section, we will explain the BES
representation for SR(n, 2, 1, 4) ciphers with adoptions from [3]. In this ap-
proach, a big cipher is defined such that any intermediate state of the original
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cipher could be mapped to a valid intermediate state in the big cipher. Con-
sidering that the space of the big cipher is much larger than the original one,
if intermediate states have a special property, they would be mapped to the
intermediate state of the original cipher. The big cipher is defined based on
vector conjugate. To describe the cipher in GF (2n), the cipher is described as
a set operation over vectors with elements in F = GF (2n). For SR(n, 2, 1, 4),
intermediate state in each step of encryption is represented as a vector in F2.

Definition 1 ([11]) for each element a ∈ F, vector conjugate of a is defined
as follows:

ã = (a2
0

, a2
1

, a2
2

, a2
3

)

where elements of the vector ã are GF (2)-conjugate of a.

Therefore the vector conjugate mapping ϕ is defined as ã = ϕ(a). This mapping
is easily extended from Fn to F4n. Therefore the n-dimensional vector a =
(a0, a1, . . . , an−1) ∈ Fn is mapped to ã = ϕ(a) = (ϕ(a0), ϕ(a1), . . . , ϕ(an−1)).
This mapping has two important algebraic properties: ϕ(ã) + ϕ(b̃) = ϕ(ã+ b̃)
and ϕ(a−1) = ϕ(a)−1. In the following intermediate state of SR(n, 2, 1, 4) is
denoted by A = F2. For the equivalent BES-SR the intermediate state is
denoted by B = F4×2. Each round of SR(n, 2, 1, 4) consists following operations
[3]:

1. Addition of Subkey: In this step, the intermediate vector state is added
with subkey vector of the round.

2. S-box application: In this operation, the S-box is applied on each ele-
ment of intermediate state vector. S-box mapping consists of three steps:

(a) inversion mapping over GF (24).
(b) GF (2)-linear map.
(c) Constant addition.

3. MixColumn: In this operation, anM2×2 is multiplied to the intermediate
state vector.

In the following we describe the corresponding operations for BES-SR, where
the definitions are adopted from [3].

Subkey Addition. Both SR(n, 2, 1, 4) and BES-SR behave similarly. In
SR(n, 2, 1, 4) the vector a ∈ A is combined with the subkey of round i with
addition operation, a← a+ ki

A. For BES-SR we have a← a+ ki
A.

Inversion mapping of S-box. The inversion operation for S-box of SR(n, 2, 1, 4)
is defined as inversion of each element of intermediate state vector, a ← a−1.
Similarly, for BES-SR for each element b ∈ B we apply b← b−1 .

GF (2)-linear mapping. In this operation matrix L is multiplied to the bit
representation of input.

L =


1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1


This mapping can be represented by a polynomial in F,

f(X) = λ0X
20 + λ1X

21 + λ2X
22 + λ3X

23
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where (λ0, λ1, λ2, λ3) = (5, 1, C, 5). The effect of this polynomial could be rep-
resented by a multiplication of a matrix in F to a vector b ∈ B. Therefore for
BES-SR the equivalent operation would be

L′ =


λ0 λ1 λ2 λ3
λ23 λ20 λ21 λ22
λ42 λ43 λ40 λ41
λ81 λ82 λ83 λ80


MixColumn operation for the collection of SR(n, 2, 1, 4) consist of a mul-

tiplication of a matrix with elements in F to the intermediate state vector a .
To preserve conjugacy, the corresponding operation would be a multiplication
of a matrix to a vector b ∈ B. Multiplication of an element z in F could be
represented by following matrix multiplication:

Dz =


z 0 0 0
0 z2 0 0
0 0 z4 0
0 0 0 z8


Therefore the MixColumn operation in BES-SR cipher can be described with
following matrix: [

D3 D2

D2 D3

]
The above definitions could be also extended for the key schedule part of the

cipher. For each step the following relation is satisfied for intermediate state
vector a in SR(n, 2, 1, 4) and b in BES-SR:

b = ϕ(a)

Therefore the state space of ciphers SR(n, 2, 1, 4) could be embedded in the
state space of BES-SR, with ϕ mapping. If plaintext and key vectors for BES-
SR satisfy conjugacy property, then we have:

a = ϕ−1(b)

Taking into account that there exists algebraic description of degree 2 for BES-
SR, we could derive a degree 2 description in GF (24) for SR(n, 2, 1, 4). The
approach for description of BES-SR is similar to [1], but with the difference
that operation here are done over vectors in GF (24). We generate the system
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of equations for BES-SR by relations in (13).

p20,i + p0,i+1 for i = 0, . . . , 2 conjugacy relation
p21,i + p1,i+1 for i = 0, . . . , 2 conjugacy relation
sbox(p0 + k0,0, y0,0, x0,0)
sbox(p1 + k0,1, y0,1, x0,1)
sbox(D3xi−1,0 +D2xi−1,1 + ki,0, yi,0, xi,0) for i = 1, . . . , n
sbox(D2xi−1,0 +D3xi−1,1 + ki,1, yi,1, xi,1) for i = 1, . . . , n
c0 +D3(xn,0 +D2xn,1 + kn,0)
c1 +D2(xn,0 +D3xn,1 + kn,1)
c20,i + c0,i+1 for i = 0, . . . , 2 conjugacy relation
c21,i + c1,i+1 for i = 0, . . . , 2 conjugacy relation
sbox(ki,0, k

′
i+1,0, ki+1,0 + rci) for i = 0, . . . , n− 1

sbox(ki,1, k
′
i+1,0, ki+1,1 + rci) for i = 0, . . . , n− 1

k20,0,i + k0,0,i+1 for i = 0, . . . , 2 conjugacy relation
k20,1,i + k0,1,i+1 for i = 0, . . . , 2 conjugacy relation

(13)
In (13) all operation are done in GF (24). In the above sbox() notation is used
to indicate generation of equations related to the S-box. The equations are
generated as follows:

sbox(X,Y,X ′)→


X2

i +Xi+1 for i = 0, . . . , 2 conjugacy relation
Y 2
i + Yi+1 for i = 0, . . . , 2 conjugacy relation
XiYi + 1 for i = 0, . . . , 3 inversion relation
X ′ + L′Y + C for i = 0, . . . , 3 linear mapping and constant addition

(14)
whereX is input vector of S-box and Y is the intermediate vector andX ′ denotes
input variables to the next round. In this paper we call this kind of system of
polynomials for algebraic S-box representation BES-MQ. In the following we
report another possible description for S-boxes in GF (2n).

4.3 Gröbner Basis
As mentioned, the polynomials derived using interpolation normally are of high
degree. Another possible approach may be using the Gröbner basis of the S-box
that is derived based on a degree-based order of variables to get polynomials
with lower degrees. This can be achieved by computation of Gröbner basis for
following ideal:

I = ⟨f, g,X16 +X,Y 16 + Y ⟩

where the f and g polynomials are forward and backward polynomials that
mentioned in relations (11) and (12). For S-box of SR(n, 2, 1, 4) we computed
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following Gröbner basis:

Y 6 + 3Y 5+FX2Y 2 + 2Y 4 + 4X2Y + 2XY 2 +BY 3 + 6XY + FY 2 + 3X + 8Y + 1

X5 + CY 5+FX4 + 2X3Y +BX2Y 2 + 9XY 3 + 9Y 4 + 5X3 + 5X2Y + 4XY 2 + 3Y 3 + 3X2+

CXY + 8Y 2 +DX + 2Y + 3

X4Y + 3Y 5+3X4 + FX3Y + 5X2Y 2 + 7XY 3 + 9Y 4 + 6X3 + 5X2Y +XY 2 + 2Y 3 + 2X2+

3XY +BY 2 +DX + CY + 2 (15)
X3Y 2 + 5Y 5+FX4 +X3Y + 8X2Y 2 + 9XY 3 +AY 4 + 8X3 + 6X2Y + 3XY 2 + 6Y 3 +DX2+

5XY + 2Y 2 + 5Y + 4

X2Y 3 + FY 5+5X2Y 2 + 4Y 4 + 7X2Y + CY 3 + 8X2 +DXY +AY 2 + 8X + 7Y + E

XY 4 + EY 5+X4 + 3X3Y + CX2Y 2 + 4XY 3 + FY 4 + EX3 + 5X2Y +XY 2 + 5Y 3 + 8XY+

3Y 2 +AX + EY + 6

The polynomials in (15) have degree less than 7, while FW and BW polynomials
are of degree 14.

4.4 Empirical Study
In this section, we compare studied representation based SR(n, 2, 1, 4). Table
4 reports the number of terms and equations for describing SR(n, 2, 1, 4) for
different descriptions.

Table 4: comparison of number of terms and equations for SR(n, 2, 1, 4) in
GF (24)

Nr
FWBW GRB BES-MQ

var #eqs #mon var #eqs #mon #var #eqs #mon
1 6 10 79 6 26 75 24 48 57
2 10 18 333 10 50 223 40 88 217
3 14 26 576 14 74 371 56 128 377
4 18 34 850 18 98 519 72 168 537
5 22 42 1100 22 122 667 88 208 697
6 26 50 1360 26 146 815 104 248 857
7 30 58 1619 30 170 963 120 288 1017
8 34 66 1878 34 192 1111 136 328 1177
9 38 74 2131 38 218 1259 152 368 1337
10 42 82 2383 42 242 1407 168 408 1497

Considering the Table 4 FWBW representation leads to fewer equations and
fewer monomials in comparison with other descriptions. Interestingly both BES-
MQ and GRB lead to a similar number of monomials, but GRB generates less
equations. Another point that may be mentioned is that in GRB representation
have monomials of degree 7 while in BES-MQ the maximum degree is two.

The experiments are done with the same system in the previous section.
Table 5 presents the average running time in seconds for computing the Gröbner
bases. Nr stands for the number of cipher rounds. The numbers in parentheses
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Table 5: Average running time for computation of Gröbner basis in GF (24)
(seconds)
Nr FWBW GRB BES-MQ
1 0.19 0.17 0.21
2 0.82 0.23 0.41
3 1.89 0.73 0.99
4 15.42 1.77 3.64
5 30.72 4.69 12.36
6 104.54(48) 11.83 22.69
7 101.61(41) 18.85 38.46
8 ⊥ 30.39 56.07
9 ⊥ 52.87 74.44
10 ⊥ 78.94 103.24

show the number of solved instances (out of 50). The entries with ⊥ indicate
cases where computation of Gröbner basis has failed.

Table 5 reports the average running time for solving the system of equations
that derived with FWBW, GRB and BES-MQ representations. According to
Table 5 FWBW representation leads to solving 7 round of SR(n, 2, 1, 4) and
average running time is much higher in comparison with GRB and BES-MQ.
The GRB representation leads to less running time in comparison with BES-
MQ. The interesting point is that GRB have more degree and less equations
with respect to BES-MQ. Another point is that BES-MQ description is valid
only if the inversion relation of S-box is valid, i.e. xy = 1 and the inputs of all
of the S-boxes must be non-zero. But for GRB description there is not such
limitation and the resulting system of equation is valid for all inputs and outputs
of S-boxes. Therefore we conclude that GRB is more efficient description than
BES-MQ for GF (24).

5 Experimenting with larger S-boxes
Considering the interesting behavior of FWBW representation of 4-bit S-boxes
it would be interesting to analyze it for S-boxes with larger dimensions. In
[3] block cipher SR(n, 2, 1, 4) and SR(n, 2, 1, 8) are only defined, which have 4
and 8 bit S-boxes respectively. Our experiments failed for even small rounds
of SR(n, 2, 1, 8). To achieve a better understanding of how FWBW and MQ
representations might affect algebraic cryptanalysis of a cipher with larger S-
boxes, we defined similar ciphers to SR(n, 2, 1, 4) and SR(n, 2, 1, 8) but with 5, 6
and 7 bit S-boxes. The designed S-boxes follow same structure as SR(n, 2, 1, 4)
and SR(n, 2, 1, 8) ones, i.e these S-boxes are based on inversion mapping and
have following algebraic structure:

S(x) = ψ−1(An×n × ψ(x−1)) + C (16)

In relation (16) the inversion is applied over GF (2n) and ψ is a mapping from
GF (2n) to GF (2)n. A is a n × n binary matrix and C is constant in GF (2n).
ψ−1 is the inverse of ψ and a mapping from GF (2)n to GF (2n). The definition
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Table 6: Comparison of number of terms, equations and avergae solving time
for FWBW and MQ representaion of SR(n, 2, 1, 5)

Nr #var
SR(r, 2, 1, 5)

OD-MQ FWBW
#eqs #mon T #eqs #mon T

1 30 106 191 0.22 50 181 0.22
2 50 202 568 0.83 90 2542 0.76
3 70 298 945 19.87 130 4903 2.26
4 90 394 1322 115.08 170 7264 451.44
5 110 490 1699 660.66 210 9625 404.41
6 130 586 2076 977.73 250 11986 1284.01
7 150 682 2453 2286.1 290 14347 1535.99
8 170 778 2830 4197.01 330 16708 2480.7
9 190 874 3207 ⊥ 370 19069 2523.43
10 210 970 3584 9211.54 410 21430 3991.09

of new S-boxes is reported in Appendix A. The system of equations for the
cipher is generated as section 2.

5.1 Empirical Study
In this section, we report some experiments to compare the effect of S-box de-
scription in solving the resulting system of equations. The setup for experiments
is as before. The experiments are applied for SR(n, 2, 1, 5) and SR(n, 2, 1, 6).
Table 6 reports the number of terms, equations and average running time for
computation of Gröbner basis for different description of S-box of SR(n, 2, 1, 5).
Considering the Table 6, it is obvious that generally FWBW yields a more ef-
ficient analysis in comparison with OD-MQ representation. But if we compare
the results with the effect of FWBW for SR(n, 2, 1, 5), there is not much differ-
ence until round 7. With an increase in the number of rounds the difference is
more. Another interesting thing is that for OD-MQ representation after each
round the running time is doubled, but for FWBW it happens for each 2 rounds.
But because FWBW has more degree than OD-MQ, it is counter-intuitive.

Table 7 reports the number of terms, equations, and average running time for
SR(n, 2, 1, 6). Considering Table 7, OD-MQ and FWBW did not lead to solving
a system of equation for SR(n, 2, 1, 6) with number of round greater than 3. But
taking into account the Table 6, we can not conclude that necessarily that MQ
representation would lead to more efficient analysis. The interesting point is that
with the increase of dimension of S-boxes the running time for computation of
Gröbner basis increases exponentially.

6 Conclusion
In this paper, we have studied the different of S-box representations that dis-
cussed in the literature, and we have compared their efficiency in algebraic
cryptanalysis. For the mentioned representations many properties have been
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Table 7: Comparison of number of terms, equations and avergae solving time
for FWBW and MQ representaion of SR(n, 2, 1, 6)

Nr #var
SR(r, 2, 1, 6)

OD-MQ FWBW
#eqs #mon T #eqs #mon T

1 36 128 271 0.24 60 373 0.32
2 60 244 813 1.66 108 12138 10.72
3 84 360 1355 19.87 156 23911 530.51
4 108 476 1897 ⊥ 204 35684 ⊥
5 132 592 2439 ⊥ 252 47449 ⊥
6 156 708 2951 ⊥ 300 59214 ⊥
7 180 824 3523 ⊥ 348 70987 ⊥
8 204 940 4065 ⊥ 396 82760 ⊥
9 228 1056 4607 ⊥ 444 94533 ⊥
10 252 1172 5149 ⊥ 492 106306 ⊥

discussed in the literature. Our study shows that these properties do not reflect
the actual efficiency of these representations in algebraic attacks. In particu-
lar, the FWBW representation, which is against all mentioned criteria such as
degree of polynomials, number of free terms, etc., gives the best running time
for solving the system of equations for ciphers SR(n, 2, 1, 4) with Gröbner basis
methods.

Another aspect that we have studied in this paper, was how these represen-
tations might behave for S-boxes with dimensions greater than 4. In [3] only
4-bit and 8-bit S-boxes have been defined for SR family of ciphers. But our
experiments even failed to run for ciphers with 8-bit S-boxes, therefore we de-
fined new ciphers with the same structure as SR(n, 2, 14) but with 5, 6 and 7
bit S-boxes. Our investigations showed with increase of one bit in dimension
of S-box, the running time for solving the system of equations increases signif-
icantly. For example, the system of equations for SR(10, 2, 1, 5) with FWBW
representation, solves in 3991 seconds in average, but for SR(10, 2, 1, 4) solves
in just about 22.81 seconds on average. This shows that for a more secure
design against algebraic cryptanalysis it might be better to use S-boxes with di-
mensions greater than 4. Another interesting observation was that the FWBW
representation gives a more efficient algebraic cryptanalysis in comparison with
MQ representation even with 5-bit S-boxes.

We also tried to extend our results for algebraic representation in larger
fields such as GF (2n). We compared three different approaches, i.e FWBW,
GRB and BES-MQ to algebraically represent S-boxes in GF (2n). BES-MQ
gives a system of equations with polynomials of degree 2 and only could be
derived if S-box have a special algebraic structure, even though the equations
are held with probability. The GRB representation is derived from computation
of Gröbner basis of FWBW representation with field polynomials in GF (2n).
Although GRB has high degree polynomials, it is still leads to faster solving time
for equations that arises from the cipher. In contrast to GF (2)-FWBW, the
GF (24) counterpart gives the worst running time among the representations.
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A Definition of larger S-boxes for SR family of
Block ciphers

S-box of SR(r, 2, 1, 4) [3] The inverse operation for S-box is defined as α4 +
α+ 1.

S(x) = ψ−1(


1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1

× ψ(x−1)) + 6

S-box of SR(r, 2, 1, 5) The inverse operation for S-box is defined as α5+α2+1.

S(x) = ψ−1(


1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1
1 1 0 0 1

× ψ(x−1)) + 3

S-box of SR(r, 2, 1, 6) The inverse operation for S-box is defined as α6+α+1.

S(x) = ψ−1(


1 1 0 1 0 0
0 1 1 0 1 0
0 0 1 1 0 1
1 0 0 1 1 0
0 1 0 0 1 1
1 0 1 0 0 1

× ψ(x
−1)) + 43

S-box of SR(r, 2, 1, 7) The inverse operation for S-box is defined as α7+α+1.

S(x) = ψ−1(



1 1 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
1 0 0 0 0 1 1
1 1 0 0 0 0 1


× ψ(x−1)) + 63
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S-box of SR(r, 2, 1, 8) [3] The inverse operation for S-box is defined as α8 +
α4 + α3 + α+ 1.

S(x) = ψ−1(



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1


× ψ(x−1)) + 63
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