
1

Designated-Verifier zk-SNARKs Made Easy
Chen Li, Fangguo Zhang

Abstract—Zero-knowledge succinct non-interactive argument
of knowledge (zk-SNARK) is a kind of proof system that enables
a prover to convince a verifier that an NP statement is true
efficiently. In the last decade, various studies made a lot of
progress in constructing more efficient and secure zk-SNARKs.
Our research focuses on designated-verifier zk-SNARKs, where
only the indicated verifier knowing some secret verification state
can be convinced by the proof. A natural idea of getting a
designated-verifier zk-SNARK is encrypting a publicly-verifiable
zk-SNARK’s proof via public-key encryption. This is also the core
idea behind the well-known transformation proposed by Bitansky
et al. in TCC 2013 to obtain designated-verifier zk-SNARKs.
However, the transformation only applies to zk-SNARKs which
requires the complicated trusted setup phase and sticks on
storage-expensive common reference strings. The loss of the
secret verification state also makes the proof immediately lose
the designated-verifier property.

To address these issues, we first define “strong designated-
verifier” considering the case where the adversary has access to
the secret verification state, then propose a construction of strong
designated-verifier zk-SNARKs. The construction inspired by
designated verifier signatures based on two-party ring signatures
does not use encryption and can be applied on any public-
verifiable zk-SNARKs to yield a designated-verifiable variant. We
introduce our construction under the circuit satisfiability problem
and implement it in Circom, then test it on different zk-SNARKs,
showing the validity of our construction.

Index Terms—zero-knowledge proof, SNARKs, designated ver-
ifier, circuit satisfiability

I. INTRODUCTION

ZERO-KNOWLEDGE succinct non-interactive argument
of knowledge (zk-SNARK) for an NP relation R enables

a prover to produce a proof π, which convinces a verifier
his knowledge of a secret witness w satisfying an instance u
i.e. (u,w) ∈ R. Also, the proof π must not reveal anything
about w (zero-knowledge) and its length and verification time
must be at most sublinear in the size of u and w (succinct-
ness). There are many practical applications for zk-SNARK,
such as privacy-preserving deep-learning [1], blockchains [2]
and cryptocurrencies [3]. Building efficient and practical zk-
SNARKs has become a hotspot of cryptographic research in
recent years and there has been a large number of constructions
from different computational models.

Gennaro et al. [4] use a new characterization of NP relations
called Quadratic Span Programs (QSP) to reduce arithmetic
circuits satisfiability problems and constructed a zk-SNARK
where the proof only contains 9 group elements. The QSP
characterization is generalized into Quadratic Arithmetic Pro-
grams (QAP) by Parno et al. [5], and they proposed Pinocchio
which significantly reduces setup time, prover time and proof
size and be used in practical applications including the cryp-
tocurrency Zcash [3] to achieve anonymity and prevent double-
spending. Groth16 [6] is a further optimized construction

where the proof size is only 3 group elements and is easier
to verify. These constructions are built upon the classic pre-
quantum discrete logarithm type assumptions, bilinear pair-
ing and the information-theoretic tool linear probabilistically-
checkable proof (LPCP) where the prover is restricted to
compute a linear function of verifier’s queries [7], [8]. A
trusted setup phase is also required in these constructions as
the party which runs the setup algorithm has access to the
secret randomness and can forge proofs using them. Besides,
These zk-SNARKs have to run the setup phase every time for
each instance to be proved, which could be a barrier to real
world deployments.

Later zk-SNARKs use different building blocks. The ZK-
Boo series [9], [10] and Ligero series [11], [12] are based on
the idea of MPC-in-the-Head [13]. Recently, it has become
a trend to combine polynomial or vector commitments and
interactive oracle proofs (IOPs) to design new zk-SNARKs.
Such constructions include Marlin [14], Plonk [15], Aurora
[16], Fractal [17], Spartan [18], Brakedown [19], Orion [20],
Vortex [21] and HyperPlonk [22] from polynomial or vector
commitments and interactive oracle proofs (IOPs). Marlin and
Plonk (and its successors) are constructed in a “universal
and updatable” fashion, which means that a single trusted
setup can be applied to all instances of a certain bounded
size and can be updated by any user if the current setup is
considered corrupted. Others target transparent setup, which
means the randomness used in the setup phase is public. These
improvements in the setup phase simplify the deployment in
the real world. Some of these zk-SNARKs also target post-
quantum security.

Typically, zk-SNARKs are designed in the publicly-
verifiable model, which means the proof can be verified
by everyone. There is also an alternative line of research
focusing on designed-verifier zk-SNARKs, where the verifier
is required to hold a secret verification state to verify the proof.
Nevertheless, sometimes we only want the proof only convince
a specified group of people. In this case, we can consider the
designated-verifier property as an extra feature of zk-SNARKs.
Here we give some potential use cases of designed-verifier zk-
SNARKs.

• E-Voting. In e-voting, the voter needs to prove that the
ballot indeed contains the option he selected, and the
proof should only convince the voting center, just as in
real voting which needs to go behind the cloth curtains of
the voting station to cast his vote. Otherwise, we would
know who he has voted for, which makes room for vote
selling. On the other side, the voting center also needs
to prove to the voter that they have indeed received his
ballot, but the proof can also disclose the fact that he
has participated in the vote to others, which impacts
anonymity. By setting the voting center and the voter

2

as the designated verifier in the two cases above, we
can ensure that nobody else will know whether the voter
participated in the vote or not and who he has voted for.

• Business trading. In business trading, both parties in-
volved create proof to prove the validity of the transac-
tion, but this transaction may involve trade secrets and
they might not wish a third party to be informed of the
transaction, as well as not wanting to have traitors who
could leak the details. By using designated-verifier zk-
SNARKs in this case, even if the parties’ competitors
access the proof of the transaction, they can have a reason
for suspecting that it is just a smoke screen since they are
not the designated verifier and cannot be convinced by the
proof.

• Paid contents. Another scenario is that the proof might
be some sort of paid content. The prover just wants to
give paid members (as the designated verifier) access to
the proof. Moreover, the prover might not want them to
share the proof content with others, just as some video-
on-demand websites applying strict account sharing re-
strictions through checking geolocations and login device
limits.

Designated-verifier zk-SNARKs can be obtained by trans-
forming existing publicly-verifiable zk-SNARKs. A natural
idea is to enable “access control” to the proofs via public-
key encryption. Campanelli et al. [23] pointed out that if
there exists a publicly-verifiable SNARK (zero-knowledge
property is not required) and a public-key encryption scheme,
then a key-less designated-verifier zk-SNARK can be directly
obtained by encrypting the proof with the public key and
treat the secret key as the verification state. However, the
key-less zero-knowledge property mentioned here is weaker
than the standard one, as it requires that the proof reveals
nothing about the witness only if the adversary does not hold
the verification state. The adversary’s ability is limited in this
case. Another widely utilized transformation is the efficient
compiler proposed by Bitansky et al. [8] from LPCP-based
zk-SNARKs by applying additively homomorphic encryption
on the common reference string (CRS).

A. The “LIPs to Designated-Verifier zk-SNARKs” compiler
At a very high level, Bitansky’s compiler is performed in the
following way. A two-message linear interactive proof (LIP) is
constructed from LPCP first. In this case, the prover’s proof is
a linear combination of elements in the CRS generated during
the zk-SNARK’s trusted setup phase. To make it designated-
verifier, the compiler involves a cryptographic primitive called
linear-only encryption which only supports linear homomor-
phism. Now the trusted setup phase additionally generates a
keypair for the encryption, encrypts the CRS and sets the secret
key as an extra verification state. The prover runs the LIP’s
prover algorithm and invokes the homomorphic add on the
encrypted CRS to output the proof. Then, the verifier decrypts
the proof and decides whether to accept or reject it by running
the LIP’s verifier algorithm. Candidate encryption schemes
that can be used in this compiler include variants of Paillier
[24], Elgamal [25] and Benaloh [26] encryption, which all
satisfy the homomorphism property.

This provides a general template for constructing
Designated-Verifier zk-SNARKs and is used as a general
blueprint in many related studies. Boneh et al. [27] improved
the compilation by constructing from LPCP directly to
get rid of the communication complexity and soundness
penalty introduced in the LIP construction, and using a
linear-only encryption scheme based on LWE to obtain a
Designated-Verifier zk-SNARK. Their subsequent work [28]
gives a lattice-based Designated-Verifier zk-SNARK with
quasi-optimal prover complexity. Gennaro et al. [29] and
Ishal et al. [30]’s work makes further improvements in
efficiency. There are also relevant works for pre-quantum
zk-SNARKs, recently Zhu et al. [31] substituted pairing
checks with Σ-protocols in the CRS consistency verification
of an improved variant Groth16 which satisfies subversion
zero-knowledge, making it compatible with the compiler.

The compiler only applies to zk-SNARKs where the CRS
is required for each statement to be proved. As a result, the
resulting Designated-Verifier zk-SNARKs have to stick on
the trusted setup from a trusted party for each statement to
ensure the secret randomness, which could be used to forge
valid proofs and often referred to as “toxic waste” for this
reason, is erased after publishing the CRS. However, such a
trustworthy third party barely exists in the real world. While
the ideal trusted third party can be substituted with secure
multi-party computation [32]–[34], this is still an expensive
and verbose procedure and might be vulnerable to subversion.
To resolve this issue, a large number of zk-SNARKs with
universal setup [14], [15], [22] or transparent setup [11],
[16]–[21], [35]–[37] instead of the trusted setup phase has
been proposed in recent years. Unfortunately, the previously
mentioned compiler does not apply to any of them because
the prover is not restricted to computing linear functions (of
the CRS) in these zk-SNARKs. Therefore we cannot construct
Designated-Verifier zk-SNARKs from them.

Another drawback to the encryption-based construction is
that it is not secure against stronger adversaries. Consider an
adversary that performs an attack on the designated verifier
and successfully steals the secret key (or is made public by the
verifier himself). In these situations, previously created proofs
immediately lost the designated-verifier property. Therefore,
we need to consider stronger security notions of Designated-
Verifier zk-SNARKs which can resist such attacks.

After discussing these prior works, we can form our research
question: Is there such a method of constructing Designated-
Verifier zk-SNARKs other than encryption, which can be
applied to as many existing zk-SNARKs as possible, whether
they are pre-quantum or post-quantum, require trusted setup
or transparent, and which also makes the designated-verifier
property more difficult to break?

B. Our Contributions
In this paper, we focus on constructing Designated-Verifier
zk-SNARKs in an easier and more generic way which also
satisfies stronger security notions. We believe that our work
can indicate a new direction in the study of zk-SNARKs.

We present several contributions to address the above re-
search question:

3

1) We give a more formal and stronger simulation-based
definition of Designated-Verifier zk-SNARKs inspired
by designated verifier signatures proposed by Chaum
[38] and Jakobsson et al. [39] for the first time since the
proof in zk-SNARKs can be considered as a “signature”
for knowing the secret witness satisfying the given
instance. We call this definition “stronger” because we
give the adversary access to the verification state in the
definition.

2) We propose a new construction of Designated-Verifier
zk-SNARKs which satisfies the stronger definition
above. The construction is inspired by two-party ring
signatures, which is also a way to construct designated
verifier signatures [40], [41]. It requires the verifier to
hold a statement indicating his identity (for example the
secret key corresponding to his public key, or even the
verifier’s biometric authentication data including face,
fingerprint and so on), and then the prover composes
this circuit with what he wants to prove into a new
instance and uses a zk-SNARK to create the proof of
the new instance as usual. The construction does not
use encryption and has no additional requirements for
the underlying zk-SNARK, therefore we consider our
construction to be easier and more generic.

3) We implement our construction in Circom [42], a pro-
gramming language for building circuits, then tests
with three widely-used and state-of-the-art zk-SNARKs:
Groth16 [6], Aurora [16] and Plonk [15], which in-
dicates that our construction can be applied to zk-
SNARKs either requires a trusted setup or transparent,
pre-quantum or post-quantum and for different con-
straint systems. We also evaluate the proof size, prover
time and verifier time for the prover’s circuit in different
sizes and using our construction or not, then analyze the
potential additional overhead of our construction.

II. PRELIMINARIES

We recall the definition of zk-SNARKs here.
Definition 1 (zk-SNARKs): A zero-knowledge succinct non-

interactive argument of knowledge (zk-SNARK) is a tuple of
PPT algorithms

∏
= (Setup,Prove,Verify) such that:

• Setup(1λ,R) → (crs, st, td) On input an NP relation
R over public parameters, outputs a common reference
string (CRS) crs, the corresponding verification state st
and a simulation trapdoor td.

• Prove(crs, u, w) → π On input an instance u and the
prover’s secret witness w, outputs a proof π.

• Verify(crs, st, u, π) → {0, 1} On input an instance u, a
proof π and the verification state st, returns 1 if the proof
is accepted and 0 otherwise.

And satisfies the following properties:

• Completeness: An honest prover with the true witness of
the instance should convince an honest verifier. Formally,

for all λ ∈ N:

Pr

Verify(crs, st, u, π)= 1

∣∣∣∣∣∣∣∣
(crs, st, td)
← Setup(1λ,R)
(u,w) ∈ R

π ← Prove(crs, u, w)


= 1

(1)

• Knowledge soundness: For any PPT adversary, it is
difficult to create a valid proof π without holding a valid
witness. Formally, for any adversary A with auxiliary
inputs z, there exists a PPT extractor E such that:

Pr


Verify(crs, st, u, π)
= 1

∧
(u,w) /∈ R

∣∣∣∣∣∣∣∣
(crs, st, td)
← Setup(1λ,R)

(u, π)← A(crs, z)
w ← E(crs, st, u, z)


= negl(λ)

(2)

• Zero-knowledge: There exists an efficient simulator
SimZK that can output a simulated proof π′ with the sim-
ulation trapdoor td instead of the witness. The simulated
proof π′ is also valid and indistinguishable from the real
proof π, which means that nothing about the witness is
leaked. Formally, for all PPT distinguisher DistZK:

Pr



Verify(crs, st, u, π)
= 1

∧
DistZK(crs, st, u, π)
= r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, st, td)
← Setup(1λ,R)
(u,w) ∈ R
r

R←− {0, 1}

π ←


Prove(crs, u, w)

if r = 0

SimZK(crs, td, u)

if r = 1


≤ 1

2
+ negl(λ)

(3)
• Succinctness: The proof π must be small and easy to

verify. The size of the proof π and the verifier’s time
to check it is at most polylogarithmic in the size of the
instance u and the witness w [43].

Remark 1 (Transparent zk-SNARKs [37]): A zk-SNARK is
transparent if the randomness used by Setup and Verify is
public. Other zk-SNARKs that do not satisfy this property
commonly notate Setup as the “trusted setup phase”, since the
non-public randomness (also known as “toxic waste”) must be
kept secret from the prover and can be used to forge proofs if
leaked or not properly destroyed afterward.

Remark 2 (Publicly-Verifiable and Designated-Verifier zk-
SNARKs [8], [27], [30], [44]): A zk-SNARK is publicly-
verifiable if Verify only depends on the public crs. Otherwise,
if Setup also outputs a verification state st which is used for
Verify, and the security holds only if st remains secret against
adversaries (only the holder of st can be convinced by the
proof), then we call such type of zk-SNARKs designated-
verifier.

The above definition is for zk-SNARKs for arbitrary NP
relations. In this paper, we discuss zk-SNARKs under boolean

4

circuit satisfiability (C-SAT) problems at first, as our construc-
tion is more convenient to state in terms of C-SAT, and C-
SAT is NP-Complete so it can be reduced from any other NP
problems in polynomial time.

Definition 2 (Boolean Circuit Satisfiability Problem): The
C-SAT problem of a boolean circuit C : {0, 1}n → {0, 1} is
defined by the following relation:

R = {(a1, · · · , an) ∈ {0, 1}n : C(a1, · · · , an) = 1} (4)

III. A STRONGER DEFINITION OF DESIGNATED-VERIFIER
ZK-SNARKS

Recall the definition of designated-verifier zk-SNARKs from
above, the designated-verifier property depends on the secrecy
of st. If the secrecy is lost, the previously created proofs
immediately lose the designated-verifier property. This can
happen in reality, as the verifier may accidentally leak st to an
adversary: losing the storage device, man-in-the-middle attack
on the network, or an even more extreme situation such as
being forced to hand over st by threats.

Another scenario is that the verifier can share his authority
of verifying the proof with others by giving st, or even
just making the proof public to make it public-verifiable. Of
course, it does not require the prover’s consent.

For these situations, we need a stronger designated-verifier
property which makes it impossible for the verifier to transfer
his authority of verifying the proof, either by force or out of
choice.

In the study of cryptology, there exists a cryptographic
primitive named designated verifier signatures, proposed by
Chaum [38] and Jakobsson et al. [39] independently. Notice
that we can treat zk-SNARK proofs as a “signature” for the
message “the prover knows a secret witness satisfying the
given instance”, which can be verified with the proof as
the prover’s “public key”. So we can borrow the relevant
definitions of designated verifier signatures to designated-
verifier zk-SNARKs. This is the starting point of our research.

Jakobsson et al. gives the threat and trust model of des-
ignated verifier proofs in [39]. They figuratively name the
two previously mentioned scenarios as “the demon attack”
(taking total command of the verifier) and “the suicide attack”
(transferring the verifier’s identity to the adversary and then
self-destructing). More importantly, they use indistinguishabil-
ity to define the designated-verifier property. We modify the
definition slightly to make it adapt to zk-SNARK’s definition.

Definition 3 (Strong Designated-Verifier zk-SNARKs): A zk-
SNARK

∏
= (Setup,Prove,Verify) is strong designated-

verifier if there exists an efficient simulator SimDV that can
output a simulated proof π′ with the verification state st
instead of the witness. The simulated proof π′ is also valid
and indistinguishable from the real proof π. Formally, for all

PPT distinguisher DistDV:

Pr



DistDV(crs, st, u, π)
= r

∧


r = 0
∧

Verify(crs, st, u, π)
= 1


∨

r = 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs, st, td)
← Setup(1λ,R)
(u,w) ∈ R
r

R←− {0, 1}

π ←


Prove(crs, u, w)

if r = 0

SimDV(crs, st, u)

if r = 1


≤ 1

2
+ negl(λ)

(5)
Notice that this definition is very similar to the zero-

knowledge property. The difference is that SimZK uses the
simulation trapdoor td, which is held neither by the prover
nor the verifier. Some literature may refer to the process of
using the trapdoor as “rewinding”. This can only happen in
the ideal world. However, the verifier can run SimDV with the
verification state st in his hand indeed in the real world.

In other words, given a proof π outputs from a designated-
verifier zk-SNARK, we want the adversary learn nothing about
whether π is produced by the prover or the verifier. Thus, the
verifier can never convince the adversary that π is produced by
the prover instead of the verifier himself [40]. Moreover, we
give access to the adversary to the verification state st. This is
a stronger attack model than the previous definition, therefore
we name the new definition as “strong designated-verifier”. We
also notice that this definition guarantees a property similar to
the forward secrecy in key agreement protocols, as the leak
of st cannot damage the designated-verifier property of proofs
created before the leak. Of course, the leaked st should not be
used to create new proofs in the future.

However, Bitansky’s compiler [8] does not satisfy this
stronger definition, as the distinguisher can be easily built
with access to st = (sk, s) where in the context of zk-
SNARKs sk is the secret key used to encrypt the CRS and s is
the zk-SNARK’s secret verification state (see construction 6.1
in the paper [8] for details). The distinguisher first decrypts
the proof π using sk then verifies it using the zk-SNARK’s
Verify algorithm. If the proof is a valid ciphertext of the
chosen linear-only encryption scheme and it can pass the
verification after decryption, then the probability that the proof
is created by the prover, not simulated by the simulator,
is overwhelming since the linear-only encryption’s linear-
only homomorphism property and zk-SNARK’s knowledge
soundness property makes it almost impossible for anyone
who does not hold the witness w to forge the (encrypted)
proof and fool the distinguisher. In short, anyone with access
to st will be convinced that the proof is indeed created by the
prover with a valid witness, which does not correspond to the
designated verifier property.

IV. GENERIC CONSTRUCTION OF (STRONG)
DESIGNATED-VERIFIER ZK-SNARKS

In this section, we describe our new construction of
designated-verifier zk-SNARKs. The new construction satis-
fies the previously defined stronger security notions. It is

5

Prover

DesinatedEncrypted crs verifier

Transfer
identity

Other
verifier

Verification state st

Coerced
verifier

Encrypted
proof π

Fig. 1. A scenario example of constructing designated-verifier zk-SNARKs
with encryption. Normally, only the designated verifier holding st can decrypt
and verify the proof π, while others will not be convinced by the proof
because they cannot verify it. However, in the latter two cases shown here,
the designated verifier actively or passively gives st to someone else, and then
the designated-verifier property is broken.

also a more generic construction, as it can be applied to
any existing zk-SNARKs, whether it is pre-quantum or post-
quantum, requires trusted setup or transparent, for free and
without little extra cost for running time and proof size.

Recall that the definition of strong designated-verifier zk-
SNARKs is derived from designated verifier signatures. Des-
ignated verifier signatures can be constructed with other basic
cryptographic tools, such as undeniable signatures [39], ring
signatures [40], [41], key distribution mechanisms [45], key
encapsulation mechanisms [46] and so on. We mainly pay at-
tention to ring signature-based constructions. In ring signature
schemes, several members form a ring and all ring members’
public keys are used for signing and verifying. Of course, the
signer’s secret key is also required for signing. Due to the ring
signature scheme’s anonymity property, it is difficult to know
who generated the signature among all possible ring members.

Now consider the special case where there are only two
ring members named Alice and Bob. If Alice creates a ring
signature, of course, it can be verified by Bob and any other
verifier. The difference is that for Bob since the signature is not
created by himself, he can definitely confirm that the signature
is created by Alice. But for other verifiers, the signature will
not be able to convince them since Bob could also be the
signer (or to say the signatures created by Alice and Bob are
indistinguishable) in their view. In this two-party case, Bob
becomes a designated verifier. And since the ring cannot be
changed after Alice creates the signature, Bob cannot transfer
the identity of the designated verifier to someone else.

Similarly, we can also form a “ring” with the prover and
the verifier for designated-verifier zk-SNARKs. Usually, the
relation to be proved is public. Therefore we can use the
relations and the circuits behind them to play the role of public
keys. While the prover holding a circuit CP that he wants to
prove its satisfiability, the verifier is also required to hold a
circuit CV that only he knows a secret witness such that the
circuit can be satisfied, which indicates his identity. To make
the proof designated-verifier, what needs to be proved turns
into “the statement the prover wants to prove to the verifier OR
knowing some secret the verifier holds”, or the satisfiability of
the circuit CP ∨CV . This gives a feature similar to two-party

Prover

Desinated
verifier

Other
verifier

The two-party ring

Proof π

Convinced

convinced
Not

“It should be from the prover”

Fig. 2. An illustration of our purposed construction, anyone outside of the
“ring” cannot determine whether the proof is created by the prover or the
verifier, even if they could verify the proof. But the designated verifier in the
“ring” can definitely believe that the proof is created by the prover.

ring signatures: both the prover and the designated verifier
can create indistinguishable and valid proofs that can pass
the verification. However, only the designated verifier can be
convinced that the proof is created by the prover because it is
not created by himself.

Remark 3 (On the proper selection of CV): A malicious
verifier may submit a CV to the prover, then claim that he
actually doesn’t know any witness satisfies CV after receiving
the proof of the satisfiability of CP∨CV , thus turning the proof
back into a plain proof of CP ’s satisfiability and destroying
the designated-verifier property. For this reason, we need to
emphasize that the CV here should represent some relation
that can be publicly verified and cannot be denied by the
verifier. An example of such a relation is holding the secret
key of a public key of some public-key cryptosystem, since a
trusted public key of a particular person can be easily obtained
from Public Key Infrastructures (PKI) in practice. The public
key can also attach signatures signed by other individuals or
CAs the prover trusts. Another choice can be relations that
the verifier made a public verifiable zero-knowledge proof
previously. These relations use some evidence that cannot be
erased to indicate the verifier’s identity. On the contrary, if the
CV given by the verifier does not satisfy such a requirement,
the prover should refuse to produce the proof.

Remark 4 (Does the designated-verifier property still
hold?): One might argue that in our construction, the proof
π can still be verified by anyone including the adversary,
so this is actually a public-verifiable zk-SNARK and not a
designated-verifier zk-SNARK. We need to point out that the
essence of the designated-verifier property is not whether it
can be verified, but that only the designated verifier can be
convinced by the proof. The previously mentioned encryption-
based Bitansky’s compiler satisfies this (unless the secret key
is leaked) because no one else can decrypt the proof, so
they cannot verify and then be convinced by the proof. Our

6

g3

g6

g4

g5

w0

w1

w2

w3

CP (w) = (w0 ∨ w1) ∧ (w2 ∨ w3)

CV (w) = w1 ∨ (w2 ∧ w3)

g1

g2

Input bits and logic gates’ outputs

w g1 g2 g3 g4 g5 g6

(1, 0, 1, 0) 1 1 1 0 0 1

(0, 0, 1, 1) 0 1 0 1 1 1

Fig. 3. A tiny example of the composed circuit from CP and CV with
different input sizes in our construction. The table on the right gives two
inputs that satisfy CP and CV respectively, both of them also satisfy the
composed circuit. Due to the zero-knowledge property of zk-SNARKs, the
proof created from these two inputs is indistinguishable. Therefore, if you are
a third party other than the prover and the designated verifier and received
valid proof of this circuit, you cannot exclude the possibility that it was created
by the verifier himself.

construction uses another approach which is somewhat similar
to deniability to achieve the same result, since no one else can
determine who created the proof.

In the context of zk-SNARKs, the input is usually divided
into two parts u (instance) and w (witness), where u denotes
the public input and w denotes the private input that only
the prover knows but does not want to reveal. Since we are
describing the construction under boolean circuits, and CP and
CV share the same input in the composed circuit CP ∨ CV ,
we treat u as a part of the circuit and omit it for simplicity.
Without loss of generality, we assume that the input sizes of
CP and CV are the same. In cases where the input sizes are
different, the circuit with a smaller input size can be padded
by adding additional variables without any wire connections.

Now we can formally propose this designated-verifier zk-
SNARK construction. Different from the previous definition
of zk-SNARK (Definition 1), there is an extra procedure for
assigning the designated verifier.

Construction 1 (Designated-Verifier zk-SNARKs from Ar-
bitrary zk-SNARKs): Let RP and RV be two C-SAT re-
lations of boolean circuits CP : {0, 1}n → {0, 1} and
CV : {0, 1}n → {0, 1}, where the prover has wP ∈ RP

which satisfies CP . CV can be used to check the verifier’s
identity and the verifier is assumed to hold wV ∈ RV which
satisfies CV . Let (Setup,Prove,Verify) be a zk-SNARK for
any relation R. A designated-verifier zk-SNARK (AssignDV,
SetupDV,ProveDV,VerifyDV) can be obtained as follows:

• AssignDV(RP ,RV) → R Outputs a new relation R =

{w ∈ {0, 1}n : CP (w)∨CV (w) = 1} for the subsequent
steps of the designated-verifier zk-SNARK.

• SetupDV(1
λ,R) → (crs, st, td) Works as Setup in the

usual way. wV is treated as a part of st.
• ProveDV(crs, u, wP) → π Works as Prove in the usual

way. The proof is different from the one created under
RP .

• VerifyDV(crs, st, u, π) → {0, 1} Works as Verify in the
usual way.

Theorem 1: (AssignDV, SetupDV,ProveDV,VerifyDV) from
Construction 1 is a strong designated-verifier zk-SNARK.

Proof: Completeness, knowledge soundness, zero-
knowledge and succinctness directly follow from the corre-
sponding properties of the underlying zk-SNARK.

For the strong designated-verifier property, since the verifier
is assumed to hold wV ∈ RV which satisfies CV , wV should
also satisfy CP ∨ CV and he can do what the prover does
in ProveDV to simulate a valid proof. Due to the zero-
knowledge property of the underlying zk-SNARK, both the
proofs generated by Prove(crs, u, wP) and Prove(crs, u, wV)
are indistinguishable from the simulated proofs generated by
the simulator SimZK with the simulation trapdoor td, thus it is
also difficult to distinguish between these two types of proofs.

Our construction is based on boolean circuits in the form
{0, 1}n → {0, 1}. However, most currently existing zk-
SNARKs and relevant toolchains are constructed targeting the
satisfiability of arithmetic circuits like Fn → Fm. As the
arithmetic circuit satisfiability problem is also NP-complete,
it is certainly feasible to reduce other NP problems to arith-
metic circuits. This also includes boolean circuit satisfiability
problems (adding additional constraints like x(x − 1) = 0
to ensure that variables must only be 0 or 1 and emulating
logical gates with additions and multiplications). But this
wastes log2|F| − 1 bits for each element in F and results
in greater communication cost. The reduction of the whole
problem can also be a bit expensive sometimes. For example,
for problems like factorizing a large number, it would be
simpler to instantiate it using an arithmetic circuit instead of a
boolean circuit. Therefore, it is also necessary to consider how
to implement the above construction under arithmetic circuits.
For arithmetic circuits C̃P : Fn → FmP and C̃V : Fn → FmV

(without loss of generality we can still assume that the input
size is the same), the new relation to be proved now becomes
something like

{w ∈ Fn : (C̃P (w) = p) ∨ (C̃V (w) = v) = 1} (6)

where p ∈ FmP , v ∈ FmV are the expected outputs of C̃P

and C̃V . The construction consists of two parts: the equality
testing and the OR relation, both can be implemented with a
small number of additions and multiplications emulating the
logical gates:

• Checking two variables’ equality a = b is equal to check
a − b = 0. To check whether the variable x = a − b is
zero or not, we need an auxiliary variable

xinv =

{
x−1 if x ̸= 0

0 if x = 0
(7)

7

and an additional constraint

x(1− (x · xinv)) = 0 (8)

to ensure that

z(x) = 1− x · xinv (9)

gives the boolean result: if x = 0 then z(x) outputs 1,
otherwise 0 [47].

• Two arrays’ equality (a1, · · · , am) = (b1, · · · , bm) is
given by checking whether

m∏
i=1

z(ai − bi) = 1. (10)

• For two boolean variables a, b (output from the array
equality test above in our construction) where the values
are restricted to 0 or 1 even though in an arithmetic
circuit, a∨b = 1 is equal to the constraint a+b−a·b = 1.

V. CONCRETE IMPLEMENTATION AND EVALUATION

A. Implementation

We show a concrete implementation of our construction in
Circom [42], an industrial and constraint-based language for
building arithmetic circuits. Circom also comes with a com-
piler that compiles the code into a rank-1 constraint system
(R1CS) instance (often known as “arithmetization” as it uses
polynomials to represent gates in a circuit) and a program
in C++ or WebAssembly for witness computation. An R1CS
instance is defined by three matrices A,B,C ∈ Fm×n and
a vector io containing public input and output. Denoting the
vector consists of public input, public output and private input
(collectively called “wires”) as z = (1, w, io) (|z| = n), an
NP relation of the instance and corresponding witnesses can
be defined as

RR1CS = {⟨(F, A,B,C, io), w⟩ : A · z ◦B · z = C · z}. (11)

Considering each row of these matrices, then the above
relation is equivalent to

ai · z ◦ bi · z = ci · z ∀i ∈ {1, · · · , n}. (12)

Each equation of a single row is called an R1CS constraint,
which can represent a multiplication gate and several addition
gates in an arithmetic circuit.

Assume that C̃P and C̃V are declared using the following
template:

template CircuitP(inLength, outLength) {
signal input in[inLength];
signal output out[outLength];

// Constraints of the circuit
}

template CircuitV(inLength, outLength) {
signal input in[inLength];
signal output out[outLength];

// Constraints of the circuit
}

Then we can construct the composed circuit in the following
way:

// Use the IsEqual() template from the
// builtin Circomlib to test equality of
// two arrays
template IsEqualArray(length) {
signal input in[2][length];
signal output out;
component eq[length];
signal temp[length + 1];
temp[0] <== 1;
for (var i = 0; i < length; i++) {

eq[i] = IsEqual();
eq[i].in[0] <== in[0][i];
eq[i].in[1] <== in[1][i];
temp[i + 1] <== temp[i] * eq[i].out;

}
out <== temp[length];

}

template DVComposed(
inLengthP, outLengthP,
inLengthV, outLengthV

) {
// The larger of the input sizes of
// CircuitP and CircuitV
signal input in[

inLengthP > inLengthV
? inLengthP
: inLengthV

];
// Public expected output of CircuitP
// and CircuitV
signal input expectP[outLengthP];
signal input expectV[outLengthV];

// The two circuits share the same
// private input
component circuitP = CircuitP(
inLengthP, outLengthP

);
component circuitV = CircuitV(
inLengthV, outLengthV);

for (var i = 0; i < inLengthP; i++) {
circuitP.in[i] <== in[i];

}
for (var i = 0; i < inLengthV; i++) {
circuitV.in[i] <== in[i];

}

// Check if the output is the expected
// output
component eqP = IsEqualArray(outLengthP);
component eqV = IsEqualArray(outLengthV);
for (var i = 0; i < outLengthP; i++) {

8

eqP.in[0][i] <== circuitP.out[i];
eqP.in[1][i] <== expectP[i];

}
for (var i = 0; i < outLengthV; i++) {

eqV.in[0][i] <== circuitV.out[i];
eqV.in[1][i] <== expectV[i];

}
// The final OR gate
eqP.out + eqV.out - eqP.out * eqV.out === 1;

}

component main { public [
expectP,
expectV

] } = DVComposed(...);

As mentioned earlier, a feasible choice of constructing C̃V

is holding a secret key of a trusted public key. We can
demonstrate a simple example here, such as building a wrapper
C̃V of the ECDSAPrivToPub component from [48] to check
ECDSA keypairs over secp256k1 curve1:

template CircuitV(inLength, outLength) {
signal input in[4];
signal output out[8];

component c = ECDSAPrivToPub(64, 4);

for (var i = 0; i < 4; i++) {
c.privkey[i] <== in[i];

}
for (var i = 0; i < 2; i++) {

for (var j = 0; j < 4; j++) {
c.pubkey[i][j] ==> out[i * 4 + j];

}
}

}

Assuming we have fetched the public key of the designated
verifier from PKI2, we can use it as a part of the public input
of the composed circuit. The other part of the input is the
expected output of C̃P .

[
...,
"0xb9d3d296e43ff8e2",
"0xce906d62615e2afc",
"0xcf8561a3467ae190",
"0xd5f103d0e369611b",
"0xee9fb3b2b5d3bef4",
"0xf8b75367a2bef8ee",
"0x9a63e7e77f6bf6d4",
"0xfb549ab9c5d25362"

]

1The secret key is a 256-bit integer, the (uncompressed) public key is a
point on the curve and the x and y coordinates are also 256-bit integers.
These integers are represented using four 64-bit integers in the circuit.

2The keypair in this example is taken from the first set of test vectors
from https://github.com/someone42/hardware-bitcoin-wallet/blob/master/test_
vectors/keypairs.txt.

For the designated verifier, he should hold the corresponding
secret key, so it is possible for him to give the composed circuit
the following private input with his secret key and create valid
proofs without knowing any inputs satisfying C̃P :

{
"in": [

"0x71834475041066ec",
"0x877e87fa54d39daa",
"0x18ac73a985b5566d",
"0x1b6b2d957e7b346b",
...

],
"expectP": [...],
"expectV": [

"0xb9d3d296e43ff8e2",
"0xce906d62615e2afc",
"0xcf8561a3467ae190",
"0xd5f103d0e369611b",
"0xee9fb3b2b5d3bef4",
"0xf8b75367a2bef8ee",
"0x9a63e7e77f6bf6d4",
"0xfb549ab9c5d25362"

]
}

B. Comparison with zk-SNARKs without Designated-Verifier
Settings

To verify the validity of our construction, we compiled the
composed circuit with composite C̃P of different number
of constraints and the same ECDSA keypair checking C̃V

which contains about 95000 ≈ 216.54 R1CS constraints or
1600000 ≈ 220.61 Plonkish constraints3, then prepared two
sets of inputs that can satisfy C̃P and C̃V respectively and
created proofs and witnesses of the composed circuit with
these inputs, checking whether both of them are valid proofs.

We evaluate our construction with the following zk-
SNARKs, which cover as many types of zk-SNARKs as possi-
ble and have well-documented open-source implementations,
allowing us to easily apply our custom (composed) circuits to
them:

• Groth16 [6], the classic, simple and popular pairing-based
per-circuit setup zk-SNARK. We use the implementation
in snarkjs [51] for its popularity and first-class support
for R1CS instances compiled from Circom.

• Aurora [16], a transparent and post-quantum zk-SNARK
built upon polynomial commitments and IOPs. We use
the implementation in libiop [52]. Since it uses C++ code
to define the circuit and cannot directly read R1CS files
compiled by Circom, we write a simple adapter for that.

• Plonk [15], another popular pairing-based but universal
setup zk-SNARK. We also use the implementation in
snarkjs. Plonk uses a constraint system other than R1CS

3Constructions for deriving public keys in other widely used cryptosystems
like RSA and Ed25519 also exist [49], [50], but are not selected in evaluation
because of the huge R1CS constraint number over 500000. In addition, none
of them are optimized for the Plonkish constraint system. We will mention
the difference between the two constraint systems later.

https://github.com/someone42/hardware-bitcoin-wallet/blob/master/test_vectors/keypairs.txt
https://github.com/someone42/hardware-bitcoin-wallet/blob/master/test_vectors/keypairs.txt

9

TABLE I
EVALUATION RESULTS OF GROTH16.

Number of R1CS
constraints in C̃P

Prover time

216 Without DV 2.47s
216 With DV 6.53s +164.6%

217 Without DV 3.45s
217 With DV 7.71s +123.4%

218 Without DV 5.83s
218 With DV 11.20s +92.2%

219 Without DV 12.90s
219 With DV 17.60s +36.4%

220 Without DV 25.96s
220 With DV 30.08s +15.9%

called Plonkish for circuit arithmetization, but it is pos-
sible to convert R1CS instances into Plonkish instances
and snarkjs has implemented this function. So we suppose
our construction can also be applied to its successors like
FFlonk [53] 4 and HyperPlonk [22] 5 as well.

The evaluations on the two R1CS-based zk-SNARKs are
run with the same R1CS instances and inputs for C̃P over the
BLS12-381 prime field. The evaluation on Plonk uses a set of
similar C̃P with different sizes. We keep records of the proof
size, prover time and verifier time with and without using
the designated-verifier construction we proposed to measure
its extra overhead. The evaluations are run on an Arch Linux
virtual machine with 16 Intel Xeon w5-2465X CPU cores and
64 GB memory assigned.

1) Evaluations on Groth16: We only compare the prover
time for Groth16. This is because the proof size is constant,
and though the verifier time is linear to the size of private and
public inputs there is almost no difference since the verification
is fast enough. The prover time is linear to the size of the R1CS
instance, and since our construction composes C̃P and C̃V into
a new circuit, the increase in prover time depends largely on
the size of C̃V . In the evaluation, the selected C̃V with 216.54

R1CS constraints will introduce a fixed 4-5s overhead to the
prover time. Theoretically, for a small C̃P with 216 constraints,
the increase is about 216.54−16 ≈ 145% of the prover time
without using the designated-verifier construction. But for an
intermediate-sized C̃P with over 220 constraints, the increase
is relatively negligible.

2) Evaluations on Aurora: Aurora requires that the number
of constraints must be a power of 2. For the C̃P with 216

constraints, the new composed circuit will contain 216 +
216.54 ≈ 217.30 constraints and then be padded to 218. Thus
the proof size, prover time and verifier time are the same as
creating a proof for a C̃P with 218 constraints without using
the designated-verifier construction. An Aurora proof has size
O(log2 n), can be created in O(n log n) time and verified in

4Snarkjs also contains an implementation of FFlonk. However, we did not
evaluate it because it trades a 3× slower prover for a 3× faster verifier.

5The code of HyperPlonk is available for now. Currently, it can only be used
with randomly generated mock circuits or hand-written circuits. However, the
author indicates that integration with Circom and other frontends may be
added in the future.

TABLE II
EVALUATION RESULTS OF AURORA.

Number of R1CS
constraints in C̃P

Proof size Prover time Verifier time

216 Without DV 132 KB 25.80s 0.57s
216 With DV 156 KB +17.9% 107.01s +314.7% 2.41s +319.7%

217 Without DV 143 KB 53.42s 1.17s
217 With DV 156 KB +9.1% 114.00s +113.4% 2.47s +111.3%

218 Without DV 156 KB 117.13s 2.54s
218 With DV 167 KB +7.4% 227.88s +94.6% 4.61s +81.8%

219 Without DV 167 KB 240.11s 5.21s
219 With DV 181 KB +8.4% 461.37s +92.1% 9.47s +81.7%

220 Without DV 181 KB 509.33s 10.31s
220 With DV 205 KB +13.2% 1010.45s +98.4% 19.68s +91.0%

TABLE III
EVALUATION RESULTS OF PLONK.

Number of Plonkish
constraints in C̃P

Prover time

217 Without DV 157.03s
217 With DV 1302.38s +729.4%

218 Without DV 160.58s
218 With DV 1340.41s +734.7%

219 Without DV 372.62s
219 With DV 1567.70s +320.7%

220 Without DV 913.81s
220 With DV 2120.59s +132.1%

O(n) time where n is the number of constraints. Therefore, if
composing C̃V causes an increase in ⌈log2 n⌉, the proof size
will increase slightly and the prover time and verifier time will
be doubled. Otherwise, there is no additional overhead.

3) Evaluations on Plonk: Things become a bit different
when it comes to Plonk and the Plonkish arithmetization. As
mentioned earlier, Plonkish is a different constraint system
than R1CS. A Plonkish constraint is represented by the equa-
tion

qL · wa + qR · wb + qO · wc + qM · wawb + qC = 0, (13)

where qL, qR, qO, qM , qC ∈ F are called “selectors” and
wa, wb, wc denote two inputs and the output of a gate. By
setting different values of these “selectors”, such a constraint
can represent a single addition or multiplication gate, or
constrain the value of the circuit’s final output (see section
6 in the Plonk paper for more details). The above equation
can also be extended with additional selectors and witness
inputs to represent any custom gate that can be expressed as a
polynomial of witnesses, such as the lookup gate purposed in
[54]. One of the main differences between the two constraint
systems is the number of constraints when representing the
same circuit. Addition gates and multiplication gates with
a scalar input are free in R1CS, but in Plonkish each gate
requires a separate constraint. As a result, the same circuit
might require several times more constraints to be represented
in Plonkish than in R1CS. The Plonk paper [15] points

10

out that the number of addition gates is 2× the number of
multiplication gates in common circuits.

The evaluations on Plonk take a much longer time than
the two R1CS-based zk-SNARKs. We believe this is because
the evaluation toolchain is not well-optimized for Plonkish.
The implementation utilizes only one CPU core, and a sig-
nificant amount of time is taken by the prover to read and
parse the huge outputs of the setup phase (up to 13 GB in
our evaluation). We run evaluations on C̃P with Plonkish
constraint numbers from 217 to 220 and 221 is not tested
because of out of memory. The proof size and verifier time
are constant in Plonk, so we only compare the prover time
here. Similar to Groth16, the prover time is linear to the
number of addition and multiplication gates (or the number of
Plonkish constraints), and the selected C̃V introduces 220.61

Plonkish constraints and 1200s additional prover time, which
is more inefficient compared with R1CS settings and might
be an overkill for a small C̃P . In this case, it may be
helpful to choose another C̃V which is optimized for Plonkish,
utilizes the custom gate feature and contains fewer constraints.
Nevertheless, this evaluation shows that our construction can
also be applied well to Plonkish-based zk-SNARKs.

C. Comparison with Designated-Verifier zk-SNARKs Con-
structed with Bitansky’s Compiler

In this subsection, we compare our Designated-Verifier zk-
SNARK construction with Bitansky’s Compiler from the point
of view of the amount of computation and size instead of
running time.

We only take Groth16 and Elgamal encryption as an ex-
ample here. This is because, as mentioned earlier, Bitansky’s
Compiler is not “compatible” with Plonk, Aurora and other
non-LIP-based zk-SNARKs. For an arithmetic circuit C̃P that
the prover wants to prove its satisfiability with mP constraints
(multiplication gates) and n wires (contains l public input and
output), the amount of computation and size6 are as follows
[6]:

• CRS size: 2mP + nG1,mPG2

• Proof size: 2G1, 1G2

• Prover computation: 3mP + n− lE1,mPE2

• Verifier computation: lE1, 3P

Groth16 maps the prover’s messages a computed by some
linear functions to ga ∈ Gi where g is the primitive element
of Gi. Therefore, in the case of constructing a Designated-
Verifier variant of Groth16 with encryption, it would be more
convenient to encrypt the CRS with Elgamal encryption be-
cause of its multiplicative homomorphism property (or linear
homomorphism property on exponents) since applying linear
operations on exponents is equivalent to multiplying between
different powers of the same base. Encrypting a group element
plaintext requires two exponentiations, the ciphertext is two
group elements and decryption requires one exponentiation.
In Setup, each element of the CRS to be used in Prove needs
to be encrypted, other elements that are only used in Verify

6Notation: Gi and Ei denotes group element and exponentiation in this
group, P denotes Pairing. A bilinear pairing e : G1 × G2 → GT is used in
Groth16.

can be treated as secret verification states. The verifier also
needs to decrypt each element of the proof at the beginning
of Verify, but in Groth16 the decryption only has to be done
for a constant number of times. As a result, the amount of
computation and size of this variant are as follows:

• CRS size: 4mP + 2n− lG1, 2mPG2

• Proof size: 4G1, 2G2

• Prover computation: 3mP +n−lE1,mPE2 (Unchanged)
• Verifier computation: lE1, 3P (Unchanged)
Using our construction, assuming that the circuit C̃V used

to validate the identity of the verifier has mV constraints
(multiplication gates) and the same input and output size n
(and l) as CP , the amount of computation and size of the
Designated-Verifier zk-SNARK for the composed circuit are
as follows:

• CRS size: 2mP + 2mV + nG1,mP +mV G2

• Proof size: 2G1, 1G2 (Unchanged)
• Prover computation: 3mP +3mV +n−lE1,mP +mV E2

• Verifier computation: lE1, 3P (Unchanged)
This also implies that our construction trades computational

effort for stronger security notions of Designated-Verifier zk-
SNARKs.

VI. CONCLUSION

In this paper, we define Strong Designated-Verifier zk-
SNARKs and then propose a new construction to fix the defect
of existing designated-verifier’s definition that the verifier may
lose control of the secret verification state or make it public
on his own, which breaks the designated-verifier property. The
new construction, inspired by designated-verifier signatures
based on two-party ring signatures, uses an additional circuit
to validate the verifier’s identity and composes it by the OR
relation with the circuit that the prover wants to prove its
satisfiability to ensure that anyone except the verifier cannot
be convinced by the proof.

Our construction is more generic and easier than existing
constructions since there is no need for special encryption to
keep the proof designated verifier and our construction can
be applied to any existing zk-SNARKs, especially for those
more advanced zk-SNARKs that do not require the trusted
setup phase and satisfy post-quantum security.

Due to the introduction of the additional circuit for the
verifier’s identity, the size of the statement to be proved
becomes larger and the proof size, prover time and verifier
time may increase. But this varies depending on the underlying
zk-SNARK used. Regardless, choosing a smaller circuit can
always reduce this extra overhead. This leaves room for
improvement by relying on a simpler way to validate the
verifier’s identity.

REFERENCES

[1] J. Weng, J. Weng, G. Tang, A. Yang, M. Li, and J.-N. Liu, “pvCNN:
Privacy-preserving and verifiable convolutional neural network testing,”
IEEE Transactions on Information Forensics and Security, vol. 18, pp.
2218–2233, 2023.

[2] T. Zhaolu, Z. Wan, and H. Wang, “Division of regulatory power: Col-
laborative regulation for privacy-preserving blockchains,” IEEE Trans-
actions on Information Forensics and Security, vol. 19, pp. 2533–2548,
2024.

11

[3] E. Ben Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in 2014 IEEE Symposium on Security and Privacy, 2014, pp.
459–474.

[4] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span
programs and succinct NIZKs without PCPs,” in Advances in Cryptology
– EUROCRYPT 2013, T. Johansson and P. Q. Nguyen, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 626–645.

[5] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: nearly
practical verifiable computation,” Commun. ACM, vol. 59, no. 2, pp.
103–112, jan 2016.

[6] J. Groth, “On the size of pairing-based non-interactive arguments,” in
Advances in Cryptology – EUROCRYPT 2016, M. Fischlin and J.-S.
Coron, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp.
305–326.

[7] Y. Ishai, E. Kushilevitz, and R. Ostrovsky, “Efficient arguments without
short PCPs,” in Twenty-Second Annual IEEE Conference on Computa-
tional Complexity (CCC’07), 2007, pp. 278–291.

[8] N. Bitansky, A. Chiesa, Y. Ishai, O. Paneth, and R. Ostrovsky, “Succinct
non-interactive arguments via linear interactive proofs,” in Theory of
Cryptography, A. Sahai, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 315–333.

[9] I. Giacomelli, J. Madsen, and C. Orlandi, “ZKBoo: Faster Zero-
Knowledge for boolean circuits,” in 25th USENIX Security Symposium
(USENIX Security 16). Austin, TX: USENIX Association, Aug. 2016,
pp. 1069–1083.

[10] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rech-
berger, D. Slamanig, and G. Zaverucha, “Post-quantum zero-knowledge
and signatures from symmetric-key primitives,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Se-
curity, ser. CCS ’17. New York, NY, USA: Association for Computing
Machinery, 2017, pp. 1825–1842.

[11] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam, “Ligero:
Lightweight sublinear arguments without a trusted setup,” in Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, ser. CCS ’17. New York, NY, USA: Association
for Computing Machinery, 2017, pp. 2087–2104.

[12] R. Bhadauria, Z. Fang, C. Hazay, M. Venkitasubramaniam, T. Xie, and
Y. Zhang, “Ligero++: A new optimized sublinear IOP,” in Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communica-
tions Security, ser. CCS ’20. New York, NY, USA: Association for
Computing Machinery, 2020, pp. 2025–2038.

[13] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Zero-knowledge
from secure multiparty computation,” in Proceedings of the Thirty-Ninth
Annual ACM Symposium on Theory of Computing, ser. STOC ’07. New
York, NY, USA: Association for Computing Machinery, 2007, pp. 21–
30.

[14] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward, “Marlin:
Preprocessing zksnarks with universal and updatable srs,” in Advances
in Cryptology – EUROCRYPT 2020, A. Canteaut and Y. Ishai, Eds.
Cham: Springer International Publishing, 2020, pp. 738–768.

[15] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “PLONK:
Permutations over lagrange-bases for oecumenical noninteractive
arguments of knowledge,” Cryptology ePrint Archive, Paper 2019/953,
2019. [Online]. Available: https://eprint.iacr.org/2019/953

[16] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and
N. P. Ward, “Aurora: Transparent succinct arguments for R1CS,” in
Advances in Cryptology – EUROCRYPT 2019, Y. Ishai and V. Rijmen,
Eds. Cham: Springer International Publishing, 2019, pp. 103–128.

[17] A. Chiesa, D. Ojha, and N. Spooner, “Fractal: Post-quantum and trans-
parent recursive proofs from holography,” in Advances in Cryptology –
EUROCRYPT 2020, A. Canteaut and Y. Ishai, Eds. Cham: Springer
International Publishing, 2020, pp. 769–793.

[18] S. Setty, “Spartan: Efficient and general-purpose zkSNARKs without
trusted setup,” in Advances in Cryptology – CRYPTO 2020, D. Miccian-
cio and T. Ristenpart, Eds. Cham: Springer International Publishing,
2020, pp. 704–737.

[19] A. Golovnev, J. Lee, S. Setty, J. Thaler, and R. S. Wahby, “Brakedown:
Linear-time and field-agnostic SNARKs for R1CS,” in Advances in
Cryptology – CRYPTO 2023, H. Handschuh and A. Lysyanskaya, Eds.
Cham: Springer Nature Switzerland, 2023, pp. 193–226.

[20] T. Xie, Y. Zhang, and D. Song, “Orion: Zero knowledge proof
withălinear prover time,” in Advances in Cryptology – CRYPTO 2022,
Y. Dodis and T. Shrimpton, Eds. Cham: Springer Nature Switzerland,
2022, pp. 299–328.

[21] A. Belling and A. Soleimanian, “Vortex : Building a lattice-based
SNARK scheme with transparent setup,” IACR Cryptol. ePrint Arch.,
p. 1633, 2022. [Online]. Available: https://eprint.iacr.org/2022/1633

[22] B. Chen, B. Bünz, D. Boneh, and Z. Zhang, “Hyperplonk: Plonk
withălinear-time prover andăhigh-degree custom gates,” in Advances in
Cryptology – EUROCRYPT 2023, C. Hazay and M. Stam, Eds. Cham:
Springer Nature Switzerland, 2023, pp. 499–530.

[23] M. Campanelli and H. Khoshakhlagh, “Succinct publicly-certifiable
proofs,” in Progress in Cryptology – INDOCRYPT 2021, A. Adhikari,
R. Küsters, and B. Preneel, Eds. Cham: Springer International
Publishing, 2021, pp. 607–631.

[24] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in Advances in Cryptology — EUROCRYPT ’99, J. Stern,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 223–238.

[25] T. Elgamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” IEEE Transactions on Information Theory, vol. 31,
no. 4, pp. 469–472, 1985.

[26] J. Benaloh, “Dense probabilistic encryption,” in Proceedings of the
workshop on selected areas of cryptography, 1994, pp. 120–128.

[27] D. Boneh, Y. Ishai, A. Sahai, and D. J. Wu, “Lattice-based SNARGs
and their application to more efficient obfuscation,” in Advances in
Cryptology – EUROCRYPT 2017, J.-S. Coron and J. B. Nielsen, Eds.
Cham: Springer International Publishing, 2017, pp. 247–277.

[28] ——, “Quasi-optimal SNARGs via linear multi-prover interactive
proofs,” in Advances in Cryptology – EUROCRYPT 2018, J. B. Nielsen
and V. Rijmen, Eds. Cham: Springer International Publishing, 2018,
pp. 222–255.

[29] R. Gennaro, M. Minelli, A. Nitulescu, and M. Orrù, “Lattice-based zk-
SNARKs from square span programs,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’18. New York, NY, USA: Association for Computing Machinery,
2018, pp. 556–573.

[30] Y. Ishai, H. Su, and D. J. Wu, “Shorter and faster post-quantum
designated-verifier zkSNARKs from lattices,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’21. New York, NY, USA: Association for Computing
Machinery, 2021, pp. 212–234.

[31] X. Zhu, X. Song, and Y. Deng, “Fast and designated-verifier friendly
zkSNARKs in the BPK model,” Cryptology ePrint Archive, Paper
2023/1806, 2023. [Online]. Available: https://eprint.iacr.org/2023/1806

[32] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza, “Secure
sampling of public parameters for succinct zero knowledge proofs,” in
2015 IEEE Symposium on Security and Privacy, 2015, pp. 287–304.

[33] S. Bowe, A. Gabizon, and I. Miers, “Scalable multi-party computation
for zk-snark parameters in the random beacon model,” Cryptology
ePrint Archive, Paper 2017/1050, 2017. [Online]. Available: https:
//eprint.iacr.org/2017/1050

[34] S. Bowe, A. Gabizon, and M. D. Green, “A multi-party protocol for
constructing the public parameters of the pinocchio zk-SNARK,” in
Financial Cryptography and Data Security, A. Zohar, I. Eyal, V. Teague,
J. Clark, A. Bracciali, F. Pintore, and M. Sala, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2019, pp. 64–77.

[35] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable zero
knowledge with no trusted setup,” in Advances in Cryptology – CRYPTO
2019, A. Boldyreva and D. Micciancio, Eds. Cham: Springer Interna-
tional Publishing, 2019, pp. 701–732.

[36] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish, “Doubly-
efficient zkSNARKs without trusted setup,” in 2018 IEEE Symposium
on Security and Privacy (SP), 2018, pp. 926–943.

[37] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable,
transparent, and post-quantum secure computational integrity,”
Cryptology ePrint Archive, Paper 2018/046, 2018. [Online]. Available:
https://eprint.iacr.org/2018/046

[38] D. Chaum, “Private signature and proof systems, US Patent 5,493,614,”
Patent US5 493 614A, 1996.

[39] M. Jakobsson, K. Sako, and R. Impagliazzo, “Designated verifier proofs
and their applications,” in Advances in Cryptology — EUROCRYPT ’96,
U. Maurer, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996,
pp. 143–154.

[40] S. Saeednia, S. Kremer, and O. Markowitch, “An efficient strong desig-
nated verifier signature scheme,” in Information Security and Cryptology
- ICISC 2003, J.-I. Lim and D.-H. Lee, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 40–54.

[41] M. H. Au and W. Susilo, “Two-party (blind) ring signatures and
their applications,” in Information Security Practice and Experience,
X. Huang and J. Zhou, Eds. Cham: Springer International Publishing,
2014, pp. 403–417.

https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2022/1633
https://eprint.iacr.org/2023/1806
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2018/046

12

[42] M. Bellés-Muñoz, M. Isabel, J. L. Muñoz-Tapia, A. Rubio, and
J. Baylina, “Circom: A circuit description language for building zero-
knowledge applications,” IEEE Transactions on Dependable and Secure
Computing, vol. 20, no. 6, pp. 4733–4751, 2023.

[43] S. Setty, J. Thaler, and R. Wahby, “Customizable constraint systems
for succinct arguments,” Cryptology ePrint Archive, Paper 2023/552,
2023. [Online]. Available: https://eprint.iacr.org/2023/552

[44] A. Nitulescu, “zk-SNARKs: a gentle introduction,” 2020. [Online].
Available: https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf

[45] F.-Y. Yang and C.-M. Liao, “A provably secure and efficient strong des-
ignated verifier signature scheme,” in International Journal of Network
Security, vol. 10, no. 3, 2010, pp. 220–224.

[46] B. Gong, M. H. Au, and H. Xue, “Constructing strong designated verifier
signatures from key encapsulation mechanisms,” in 2019 18th IEEE
International Conference On Trust, Security And Privacy In Computing
And Communications/13th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE), 2019, pp. 586–593.

[47] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and M. Walfish,
“Taking Proof-Based verified computation a few steps closer to prac-
ticality,” in 21st USENIX Security Symposium (USENIX Security 12).
Bellevue, WA: USENIX Association, 2012, pp. 253–268.

[48] 0xPARC, “circom-ecdsa: Big integer arithmetic and secp256k1 ECC
operations in circom,” 2024. [Online]. Available: https://github.com/
0xPARC/circom-ecdsa

[49] zkp application, “circom-rsa-verify: Zero knowledge proof for
RSA,” 2024. [Online]. Available: https://github.com/zkp-application/
circom-rsa-verify

[50] Electron-Labs, “ed25519-circom: Ed25519 implementation in
circom,” 2024. [Online]. Available: https://github.com/Electron-Labs/
ed25519-circom

[51] iden3, “snarkjs: zkSNARK implementation in JavaScript & WASM,”
2024. [Online]. Available: https://github.com/iden3/snarkjs

[52] scipr lab, “libiop: C++ library for IOP-based zkSNARKs,” 2024.
[Online]. Available: https://github.com/scipr-lab/libiop

[53] A. Gabizon and Z. J. Williamson, “fflonk: a fast-fourier inspired
verifier efficient version of PlonK,” Cryptology ePrint Archive, Paper
2021/1167, 2021. [Online]. Available: https://eprint.iacr.org/2021/1167

[54] L. Pearson, J. Fitzgerald, H. Masip, M. Bellés-Muñoz, and J. L.
Muñoz-Tapia, “PlonKup: Reconciling PlonK with plookup,” Cryptology
ePrint Archive, Paper 2022/086, 2022. [Online]. Available: https:
//eprint.iacr.org/2022/086

Chen Li received the bachelor’s degree in cy-
berspace security from Jinan University, China in
2022. He is currently pursuing the Ph.D. degree with
School of Computer Science and Engineering of
Sun Yat-sen University, China. His research interests
include zero-knowledge proofs.

Fangguo Zhang received his PhD from the School
of Communication Engineering, Xidian University
in 2001. He is currently a Professor at School of
Computer Science and Engineering of Sun Yat-sen
University, China and the director of Guangdong
Key Laboratory of Information Security Technology.
His research mainly focuses on cryptography and
its applications. Specific interests are elliptic curve
cryptography, post-quantum public key cryptosystem
and blockchain.

https://eprint.iacr.org/2023/552
https://www.di.ens.fr/~nitulesc/files/Survey-SNARKs.pdf
https://github.com/0xPARC/circom-ecdsa
https://github.com/0xPARC/circom-ecdsa
https://github.com/zkp-application/circom-rsa-verify
https://github.com/zkp-application/circom-rsa-verify
https://github.com/Electron-Labs/ed25519-circom
https://github.com/Electron-Labs/ed25519-circom
https://github.com/iden3/snarkjs
https://github.com/scipr-lab/libiop
https://eprint.iacr.org/2021/1167
https://eprint.iacr.org/2022/086
https://eprint.iacr.org/2022/086

	Introduction
	The "LIPs to Designated-Verifier zk-SNARKs" compiler
	Our Contributions

	Preliminaries
	A stronger definition of Designated-Verifier zk-SNARKs
	Generic Construction of (Strong) Designated-Verifier zk-SNARKs
	Concrete Implementation and Evaluation
	Implementation
	Comparison with zk-SNARKs without Designated-Verifier Settings
	Comparison with Designated-Verifier zk-SNARKs Constructed with Bitansky's Compiler

	Conclusion
	References
	Biographies
	Chen Li
	Fangguo Zhang

